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Abstract

Dynamic and temporally specific gene regulatory changes may underlie unexplained genetic
associations with complex disease. During a dynamic process such as cellular differentiation, the
overall cell type composition of a tissue (or an in vitro culture) and the gene regulatory profile of
each cell can both experience significant changes over time. To identify these dynamic effects in
high resolution, we collected single-cell RNA-sequencing data over a differentiation time course
from induced pluripotent stem cells to cardiomyocytes, sampled at 7 unique time points in 19
human cell lines. We employed a flexible approach to map dynamic eQTLs whose effects vary
significantly over the course of bifurcating differentiation trajectories, including many whose
effects are specific to one of these two lineages. Our study design allowed us to distinguish true
dynamic eQTLs affecting a specific cell lineage from expression changes driven by potentially
non-genetic differences between cell lines such as cell composition. Additionally, we used the cell
type profiles learned from single-cell data to deconvolve and re-analyze data from matched bulk
RNA-seq samples. Using this approach, we were able to identify a large number of novel dynamic
eQTLs in single cell data while also attributing dynamic effects in bulk to a particular lineage.
Overall, we found that using single cell data to uncover dynamic eQTLs can provide new insight
into the gene regulatory changes that occur among heterogeneous cell types during cardiomyocyte
differentiation.

Introduction

A primary aim of human genetics and genomics is to understand the genetic architecture of
complex traits. Current studies demonstrate that the majority of trait-associated genomic loci are
in non-coding regions of the genome, and are thought to be involved in gene regulation (Edwards
et al. 2013). Therefore, studies exploring gene regulation are essential to our understanding of
complex phenotypes (Li et al. 2016, Albert et al. 2015). Studies mapping expression quantitative
trait loci (eQTLs), identifying genetic variants associated with gene expression levels, reveal the
impact of genetic variation on gene regulation and can inform molecular mechanisms underlying
trait-associated loci. eQTLs have now been identified for a wide variety of tissues, and their study
has contributed to the understanding of gene regulation and disease (GTEx Consortium 2020;
Lappalainen et al. 2013; Battle et al. 2014; Pickrell et al. 2010; Stranger et al. 2012; Nica et al.
2010; Nicolae et al. 2010).

Gene regulation, including genetic regulation of gene expression, can vary between contexts
including different cell types, temporal stages, and environmental stressors. Particular attention
has been paid to differences in gene regulation between tissues and cell types. Large studies
including the Genotype-Tissue Expression Project (GTEX) have been now been successful in
identifying thousands of eQTLs in diverse human tissues [GTEx Consortium 2020; Nica et al.
2011). However, despite these efforts, we are still unable to identify a regulatory mechanism for
the genetic contribution of a majority of disease-associated loci (Bis et al. 2011, Myocardial
Infarction Genetics Consortium 2009, Manolio et al. 2009, Eichler et al. 2010, Arvanitis et al.
2020). One reason for this knowledge gap may be that most large-scale eQTL studies are based
on expression data from adult, bulk tissue samples that do not represent the specific cell types and
contexts in which disease-relevant dysregulation occurs (Umans 2020).
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64
65  Recent advances in single-cell sequencing have allowed us to assay gene expression in individual
66  cells, allowing us to access disease relevant cell types and cell states, even if they compose a small
67  fraction of a tissue and would not be well captured by bulk data, and even if they are not known a
68  priori. Indeed, single cell datasets have revealed a more complex landscape of gene expression in
69  individual cell types than previously known in tissues such as brain and kidney (Welch et al. 2019,
70  Park et al. 2018). Likewise, mapping eQTLs from single-cell RNA-sequencing data promises to
71  enable the identification of previously undiscovered disease-relevant regulatory
72 mechanisms. Recently, collection and analysis of population-scale scRNA-seq datasets have
73  demonstrated that genetic effects do vary between cell types belonging to the same tissue (Fairfax
74  etal. 2012, Kasela et al. 2017, Kim-Hellmuth et al. 2020).
75
76  Beyond cell-type specificity, only a small number of studies have attempted to characterize
77  dynamic gene regulatory changes that occur during development or among contexts that change
78  over time (Strober et al 2019, Knowles et al 2017, Taylor et al 2018, Fairfax et al 2014, Smirnov
79  etal. 2009; Watts et al. 2002, Kariuki et al. 2016; Alleyne et al. 2017). These have highlighted
80  temporally specific eQTL effects that were not evident from static data. Studying the temporal
81  dynamics of gene expression has the potential to uncover genomic loci involved in gene
82  regulation during developmental processes and identify associations that were previously
83  overlooked. Accordingly, we previously studied genetic effects on the regulation of gene
84  expression during the differentiation of induced pluripotent stem cells (iPSCs) to
85  cardiomyocytes (Strober et al 2019). We collected time-series bulk RNA-seq data for nineteen
86  individuals to identify hundreds of eQTLs displaying dynamic, and sometimes transient effects
87  on expression across the course of cardiomyocyte differentiation. These dynamic eQTLs
88 included genetic variants which were associated with cardiovascular disease-related traits,
89  including obesity.
90
91  However, the complexities of cardiomyocyte differentiation and other dynamic processes are not
92  fully captured by bulk RNA-seq data even in a time course study design. During development and
93  differentiation, expression profiles change over time in individual cells along a spectrum of
94  maturity (Pijuan-Sala et al 2018). Cells within a single sample do not necessarily differentiate at
95  the same rate, along the same trajectory, or even toward the same terminal cell type. Different cell
96 lines may also vary in the proportion of cells in different states at each time point. Indeed, in our
97  previous work, we identified two clusters of cell lines undergoing cardiomyocyte differentiation
98 that exhibited broad differences in the expression trajectory of groups of genes over time (Strober
99  etal 2019). Bulk expression profiles represent an average across cells from various points across
100  a developmental landscape, obscuring the underlying variation in cell state, and even making it
101  difficult to definitively attribute differences to cis-regulatory genetic effects. Recent work has
102  demonstrated that the improved resolution of single-cell RNA-seq data can identify homogeneous
103 subpopulations of cells at similar stages of differentiation, offering a clearer view of genetic
104  regulation in an individual time step (Cuomo et al. 2020, Jerber et al. 2021). However, such
105  analysis has only been applied to a few cell types, not including cardiomyocytes, and has been
106  limited to the study of dynamics within a single lineage.
107
108  In this study, we applied single-cell RNA-seq to the nineteen cell lines assayed in our previous
109  bulk RNA-seq analysis, collecting single-cell data at seven informative time points during
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110  cardiomyocyte differentiation, enabling us to observe cell-type specificity, cell composition
111  differences, and temporal changes together in a unified experiment. The resolution of this single
112 cell data enables us to characterize the cardiomyocyte differentiation landscape in much greater
113 detail than was possible in bulk. We identify a bifurcation in cell fate, which explains the
114  previously observed clustering of cell lines and enables us to study genetic regulatory dynamics
115 along two distinct trajectories with a single experiment. Characterization of these trajectories
116  allows us to reanalyze existing bulk samples and mitigate confounding impact of cellular
117 composition and identify dynamic effects specific to each lineage (Westra et al. 2015, Kim-
118  Hellmuth et al. 2020).

119

120

121 Results

122

123 We differentiated induced pluripotent stem cells (iPSCs) from 19 human cell lines into
124  cardiomyocytes; these same cell lines were previously used for a cardiomyocyte time course study
125  published in Strober et al 2019. For the current study, we used new iPSC cultures of the same lines,
126  and differentiated them again to cardiomyocytes. We used Drop-seq to collect single-cell RNA-
127  seqdata at 7 days throughout the 16-day differentiation time course. We chose to collect data from
128  days 0 (iPSC), 1, 3, 5, 7, 11, and 15 (cardiomyocyte), as we have previously observed that these
129  days represent the most informative stages during this particular differentiation trajectory (Strober
130 et al. 2019, Selewa et al. 2020). We collected single-cell data using a balanced study design in
131  which each collection included three individuals at three unique differentiation time points. This
132 design minimizes technical effects associated with individual and differentiation day. After
133 filtering data from low quality cells (Methods), the resulting 131 samples contained an average of
134 1,762 cells per sample and an average of 1,375 genes detected as expressed per cell. Following
135  normalization, a principal component analysis revealed that, as expected, differentiation day is the
136  primary axis of variation in the single cell gene expression data (Fig. S1a-b).

137

138

139  Differentiation progress and cell line differences drive variation in gene expression

140

141  In order to characterize the complex landscape of cardiomyocyte differentiation, we used UMAP
142 to produce a low-dimensional embedding of the single cell data while preserving global structure.
143 We found that while cells from the early days of the differentiation time course exhibited fairly
144  uniform transcription profiles, this was less true for later days (days 7, 11, and 15; Fig. 1A, 1D).
145  Marker genes known to be expressed at various stages in cardiac differentiation, from iPSC to
146  mesoderm to cardiomyocyte, showed high expression at expected early, intermediate, and late
147  stages of the differentiation time course, respectively (Fig. 1B, 1E). Next, we used unsupervised
148  clustering to identify distinct cell populations present in the data, and matched these to known cell
149  types based on expression of known marker genes (Fig. 1C, Methods, Burridge et al. 2014). As
150  suggested by previous reports (Strober et al. 2019, Selewa et al. 2020), we identified a bifurcation
151  inthe differentiation landscape, giving rise to two distinct terminal cell types. One of these terminal
152 cell types has high expression of genes known to be involved in cardiomyocyte function, such as
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TNNT2 and MYL7 (Ahmad et al. 2008,
Bizy et al 2013, Fig. 1B). Cells in the other
terminal cell type do not express
cardiomyocyte markers, and instead have
high expression of genes such as COL341
and VIM, which are expressed in the
extracellular matrix of cardiac fibroblasts
(Ieda et al. 2009, Zhang et al. 2019). The
differentiation outcome of each sample,
namely the proportion of cells in each
cluster, varied by individual cell line;
certain lines differentiated primarily into
either the TNNT2-expressing or the
COL3A1-expressing terminal cell type

clusters (Fig. 1E, S2). For the remainder of

this paper, we will refer to the TNNT2-
expressing cell cluster as cardiomyocytes
(CM) and to the COL3A4I-expressing
cluster as cardiac-fibroblasts (CF) or
fibroblast. We also identified a cluster that
underexpressed marker genes of cardiac
cell types throughout the differentiation
process, and instead expressed several
endoderm-specific markers such as APOA 1
and AFP. We were unable to fully
characterize this cluster based on
expression patterns alone, and omitted
these cells from downstream investigation
of the dynamics of gene regulation on gene
expression during mesoderm and cardiac
cellular differentiation.

Single-cell data offers a highly resolved
view of cellular differentiation

In previous work, we investigated the
relationship between genotype and
chronological time, represented by the
differentiation day in which each bulk
sample was collected. However,
chronological time may not properly
capture the axis of variation along which
genetic regulation is changing, and can
be heavily confounded by heterogeneity
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Fig. 1. Gene expression patterns in single cell data. (A)
UMAP of full single cell dataset; cells are colored by
differentiation day. (B) Estimated density of expression for
several marker genes across cells. (C) UMAP of full single
cell dataset; cells are colored by cell type, assigned based
on Leiden clustering and marker gene expression.
IPSC=induced pluripotent stem cell, MES=mesoderm,
CMES=cardiac mesoderm, PROG=cardiac progenitor,
CM=cardiomyocyte, CF=cardiac fibroblast,
UNK=unknown cell type. (D) Proportion of cells belonging
to each cell type per differentiation day, across all cell lines.
(E) Distribution of LITDI (pluripotency marker), TNNT2
(cardiomyocyte marker) and COL3A41 (cardiac fibroblast
marker) over cells from 6 representative examples of the 19
cell lines studied, for each of the 7 differentiation days.

in differentiation within and between samples. If cells within a sample progress through
differentiation at different rates, their aggregated expression profile will not be truly reflective of
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: Fig. 2. Pseudotime inference and pseudobulk
aggregation. (A) Force atlas embedding of all
‘ ‘ J cells from the two cardiac differentiation lineages
T ‘ combined, colored by cell type. (B) Force atlas
Eog embedding from (A), colored by pseudotime,
J ’ which was inferred for each cell shown using

diffusion pseudotime. (C) Distribution of
normalized  expression of TNNT2, a
cardiomyocyte marker gene, across cells from the
‘ cardiomyocyte lineage for each differentiation
e day. (D) Normalized TNNT2 expression across
g cells from each of 16 pseudotime quantile bins
along the cardiomyocyte trajectory. (E)
Normalized expression of COL3A41, a cardiac

I T fibroblast marker, across cells from the cardiac
f fibroblast lineage for each differentiation day. (F)
l COL3A41 expression across cells for 16
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pseudotime quantile bins along the cardiac
fibroblast trajectory.
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199  an individual stage of differentiation, confounding tests for association between genotype and
200  differentiation progress. Systematic differences between cell lines can exaggerate this:
201  differentiation speed appears to vary between cell lines (Fig. 1E), such that differentiation progress
202  atday 3, for example, is not uniform across samples. Such differences can lead to false associations
203  between genotype and differentiation progress in cases where genotype is partially correlated with
204  acell line's differentiation speed.

205

206  Cellular heterogeneity drives further challenges when aggregating across cells that are
207  differentiating along diverging paths. Aggregated bulk profiles will lose information about the
208 individual cell types present, and if cell type composition varies between individuals (Fig. 1E),
209  this will further confound associations between genotype and expression changes during
210  differentiation.

211

212 By collecting expression at the single-cell level, we are able to address both of these challenges.
213 To properly focus on the two primary cardiac lineages present, we used the scanpy package to
214  produce a low-dimensional Force Atlas embedding of the cells that had been successfully assigned
215  to a known cell type (Fig. 2A, Wolf et al. 2018, Jacomy et al. 2014). We inferred pseudotime for
216  each cell with diffusion pseudotime (Haghverdi et al. 2016, Wolf et al. 2019), so that progress
217  through differentiation is learned from cells' individual expression profiles rather than their time
218  of collection (Fig. 2B). With each cell assigned to a cell type (Fig. 1C), we are additionally able
219  to account for diverging paths by studying gene regulatory dynamics within each lineage
220  separately.

221

222 One disadvantage to single-cell data compared to bulk is that single-cell measurements are more
223  sparse and noisy: by aggregating over cells, bulk RNA-sequencing reduces noise, which makes
224  expression measurements more tractable for eQTL calling. We therefore partitioned cells
225  (separately for each lineage) into pseudotime bins, pooling information across cells to mitigate the
226  noisiness of single cell expression measurement while maintaining homogeneous populations of
227  cells through lineage subsetting and pseudotime binning. This aggregation scheme enables us to

nnnnn
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228  produce a greater number of samples, as we are no longer constrained to the 7 days when
229  experimental collection was performed, while maintaining the expected trends of lineage-specific
230  marker gene expression over pseudotime (Figs. 2C-F).

231

232 Mapping of dynamic eQTLs

233

234  We applied a Gaussian linear model to the aggregated single-cell pseudo-bulk data based on
235  pseudotime bins from each lineage to identify dynamic eQTLs, namely variant-gene pairs in which
236  the interaction effect of genotype and differentiation time is significantly associated with changes
237  in gene expression. We identified linear dynamic eQTLs for 357 genes in the cardiomyocyte
238  lineage (q < 0.05) and 903 genes in the cardiac fibroblast lineage (Methods; Table 1).

239

240  We found that both lineage specificity and the replacement of real chronological time with
241  pseudotime improved power for dynamic eQTL detection. For comparison, using chronological
242  differentiation day as the time variable identified only 142 and 29 dynamic eQTLs for the
243  cardiomyocyte and cardiac fibroblast lineages, respectively. Using differentiation day as the time
244  variable and omitting lineage specificity altogether identified only 5 dynamic eQTLs in the
245  pseudobulk data. Ultimately, our lineage subsetting and pseudotime approach revealed more
246  dynamic eQTLs than were previously identified in an experiment with bulk collections at over
247  twice as many time points (Strober et al 2019). To ensure a meaningful comparison, we re-
248  processed the previously collected bulk data in a similar pipeline as pseudo-bulk, accounting for
249  changes in hypothesis testing and filtering of variant-gene pairs (Methods). This revealed a total
250  of 1028 genes with a dynamic eQTL (compared to a total of 1056 genes detected between both
251  lineages with pseudobulk binned to a similar number of samples). The increased detection rate
252 may stem from increased homogeneity of cellular populations that undergo pseudo-bulk
253  aggregation, as well as improved measurement of differentiation progress achieved by using
254  cellular pseudotime rather than sample collection time.

255

256  As an example of the trait relevance of these dynamic eQTLs, one dynamic eQTL variant,
257  1s1234988, has previously been implicated by GWAS to be associated with hypertension (p=2.5e-

Dataset Aggregation Time Points Lineage Dyn;z)i:tiec;eGdenes Total # Genes Tested Total # Tests
Pseudobulk Pseudotime 16 CM 357 8,969 1,601,727
Pseudobulk Pseudotime 16 CF 903 9,140 1,633,408
Pseudobulk Differentiation Day 7 CM 142 9,541 1,693,532
Pseudobulk Differentiation Day 7 CF 100 9,548 1,711,693
Pseudobulk Differentiation Day 7 Combined 5 9,656 1,731,798

Bulk Differentiation Day 7 Combined 210 10,772 1,963,378
Bulk Differentiation Day 16 Combined 1028 10,981 1,991,072

Table 1. Comparison of dynamic eQTL calling methods. We report the number of dynamic eGenes (genes
with a significant dynamic eQTL at gene-level g-value <= 0.05), for each of the aggregation schemes
assessed. Total number of genes tested and total number of tests run are also reported.
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35), and was detected as a dynamic eQTL for ARHGAP42, a Rho GTPase which has previously
been identified as a critical regulator of vascular tone and hypertension in mice (Fig. 3A-B,
Barbeira et al. 2021, Loirand and Pacaud 2014). Notably, ARHGAP42 is known to be a smooth-
muscle selective Rho GAP, and this dynamic eQTL was exclusively identified in the cardiac
fibroblast lineage (Bonferroni-adj. p=2.4e-5, cardiac fibroblast lineage, adj. p=0.79,
cardiomyocyte lineage). This variant is not detected as a dynamic eQTL without lineage subsetting
or pseudotime binning (adj. p=1). This example illustrates the advantages of incorporating
exploratory data analysis in the study of in vitro experimental datasets: while the differentiation
procedure used for these experiments was designed to produce exclusively cardiomyocytes, an
alternative terminal cell type discovered after exploratory data analysis is able to provide
meaningful insight into an additional differentiation process.

The pseudotime values can be interpreted as intermediate time points with greater resolution than
chronological time. We therefore used these values to also identify nonlinear dynamic eQTLs,
whose effects may be present only at intermediate stages of the differentiation (Fig. 3C). We
identified 74 nonlinear dynamic eQTL variants for the cardiomyocyte lineage (q<0.05), and 147
for the cardiac fibroblast lineage. Our time course study design is particularly useful for detecting
transient nonlinear genetic effects which may not be found by studying only the initial or terminal
cell types of a dynamic process such as differentiation.
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Fig. 3. Linear and nonlinear dynamic eQTLs. (A) rs1234988 is a linear dynamic eQTL for ARHGAP42,
the effect of genotype (color) on ARHGAP42 expression (y-axis) varies across pseudotime (x-axis). (B) A
previously reported genome-wide association study (bottom) showed that hypertension is associated with

genotype at the rs1234988 locus, where a dynamic eQTL for ARHGAP42 was identified. (C) rs1814432 is a
nonlinear dynamic eQTL for the gene CFCIB.
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277  We examined the extent to which the dynamic eQTLs detected overlapped with eQTLs previously
278  identified in GTEx (GTEx Consortium 2020). After subsetting to gene-variant pairs that were
279  tested in both our data and GTEx, we found that the greatest replication of pseudotime-binned,
280  cardiomyocyte lineage linear dynamic eQTLs occurred in atrial appendage tissue (111=0.50), while
281  the greatest replication of pseudotime-binned, cardiac fibroblast linear dynamic eQTLs (as well as
282  bulk) occurred in cultured fibroblasts (11=0.47, 0.56 respectively). However, by searching directly
283  for dynamic effects across tissues rather than within a single tissue in isolation, we additionally
284  identify eQTLs which were not found to be a significant eQTL in any tissue in GTEx. After
285  subsetting to variant-gene pairs that were tested in both our data and GTEx, we found that 100 of
286  the 359 (28%) linear dynamic eQTLs in the cardiomyocyte lineage were identified as eQTLs in
287  GTEx. Similarly, only 22 of 75 (29.3%) nonlinear dynamic eQTLs on the cardiomyocyte lineage
288  where previously identified as eQTLs in GTEx.

289

290  Deconvolution of bulk RNA sequencing data assigns lineage specificity to dynamic eQTLs

291

292  The information about the landscape of cardiomyocyte information obtained through single-cell
293  RNA sequencing can also be applied retroactively to improve dynamic eQTL calling in bulk data.
294  For each cell type that we identified in the single cell data, we computed a signature expression
295  profile across the top 300 differentially expressed genes that were also measured in bulk
296  (Methods). We then used CIBERSORTx to deconvolve our bulk data, assigning to each bulk
297  sample a vector of cell type proportions (Fig. 4A, Newman et al. 2019). Deconvolution reveals
298  that cell type heterogeneity is prominent between samples, particularly in days 7-15. This
299  heterogeneity emphasizes the need to account for cell type proportion in measuring genetic
300 regulatory dynamics, as these broad differences between cell lines can drive false positive
301  associations between time and any genotype that is correlated with broad cell type proportion

302 differences between cell lines.
303
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304  We then used these cell type proportions to identify cell type specific effects, based on cell type
305 interaction eQTLs (ieQTLs) for each known cell type that was observed in the single cell data
306  (Fig. 4B). In this context, where cell types represent sequential steps along a developmental
307  lineage, ieQTL calling is analogous to dynamic eQTL calling, using cell type proportion as a proxy
308  for differentiation progress instead of time or pseudotime. Thus, ieQTLs for a cell type at an
309  endpoint of the differentiation (iPSC, cardiomyocyte [CM], and cardiac fibroblast [CF]) are
310  analogous to linear dynamic eQTLs, with additional information gained by assigning lineage
311  specificity. CM and CF ieQTLs called with this approach were replicated in the previously used
312 dynamic eQTL calling framework on the same bulk dataset (771=0.84 and 0.43, respectively). They
313  additionally showed enrichment for genes related to myogenesis that had not been observed among
314  bulk dynamic eQTLs (p=7e-4, both CM and CF ieQTL, compared to p=0.17, bulk dynamic eQTL).
315 Notably, many of the CM- and CF-ieQTLs are lineage-specific, including some which are
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Fig. 4. Cell type deconvolution and interaction eQTL calling. (A) Cell type deconvolution was applied to
decompose RNA expression of a mixed sample, aggregated over multiple cell types, into its constituent cell
type proportions (Methods). Each row represents a cell line, collected in two separate experiments. In the left
column, bulk RNA-sequencing data was collected for 15 timepoints (time on x-axis). In the right column,
pseudobulk was aggregated across cells collected for 7 time points (time on x-axis). For pseudobulk data,
deconvolution is not needed, as each cell is assigned to a cell type. Thus, "ground truth" cell type fractions
are accessible as reflected here. (B) Number of genes with a cell type interaction eQTL in bulk for each of
six cell types. (C-D) CMYAS5 has an interaction eQTL for the cardiomyocyte lineage (C) that is not identified

in the cardiac fibroblast lineage (D).
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316  potentially relevant to heart-related disease. Fig. 4C-D show an example of a cardiomyocyte
317  interaction eQTL for cardiomyopathy-associated protein 5 (CMYAS), a gene which is highly
318 expressed in heart and skeletal muscle and has previously been associated with cardiac
319  hypertrophy (Nakagami et al. 2007). This variant was not previously identified by GTEx as an
320 eQTL for CMYAS.

321

322 The discovery of additional dynamic eQTLs in bulk data with fewer differentiation time points
323  sampled, as well as the ability to distinguish lineage-specific dynamic eQTLs from bulk data,
324  demonstrate the utility of single-cell RNA-seq data matched to bulk samples to uncover dynamic
325  genetic effects throughout a differentiation time course.

326

327

328  Discussion

329

330  Using iPSCs and their derived terminal cell types, we can identify genetic effects related to
331 dynamic changes in gene expression over time. We used single-cell gene expression data to
332 investigate the effects of gene regulatory and cell type composition changes throughout a
333  cardiomyocyte differentiation time course. Single-cell data enables us to identify cells going down
334  distinct differentiation trajectories, and to deconvolve heterogeneous cell types in matched bulk
335  samples.

336

337  One question that arises from these single-cell data is the interpretation of distinct differentiation
338 trajectories and potentially different cell types at the end of the time course. We found that, in later
339  stages of differentiation (days 7, 11, and 15), most cells have either high gene expression of cardiac
340  troponin T (TNNT2) and associated genes such as myosin light chain/MYL7, or high gene
341  expression of a collagen-coding gene (COL3A41) and associated genes such as vimentin/VIM, as
342  discovered through a semi-supervised pipeline which includes dimensionality reduction,
343  unsupervised clustering, and visualization of expression patterns for known marker genes (Fig.
344  1B). Cells broadly express either of these gene sets in a mutually exclusive manner, suggesting
345  that these gene sets represent two distinct cell types. The focus of this project was not to fully
346  characterize these cell types, but instead to disentangle the broad effects of cell line differences in
347  differentiation rate/ lineage preference from the dynamics of cis-regulation of gene expression.
348  Still, the identity of these terminal cell types and the circumstances in which each trajectory might
349  be favored is an interesting question.

350

351 These data suggest that there are differences in gene expression trajectory and ultimate cell fate
352 that may arise in response to the same differentiation protocol. The identity of these terminal cell
353  types, and the factors that might cause a cell line to favor one differentiation trajectory and ultimate
354  cell type at the expense of another, are questions that have been explored in previous studies. In a
355 study by D’Antonio-Chronowska et al. (2019), embryonic stem cell lines undergoing cardiac
356  differentiation resulted in a heterogeneous cell type population. These cells were identified as
357  either true cardiomyocytes --which exhibit mechanical beating and have high expression of
358  TNNT2--or “epicardium-derived cells” which do not exhibit mechanical beating and have high
359  expression of gene markers such as VIM and TAGLN. The study demonstrated that these two cell
360 types were present in varying proportions in each individual cell line, and suggests that this cell

11


https://doi.org/10.1101/2021.06.03.446970
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446970; this version posted June 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

361 fate decision can be influenced by genetic factors, such as variability in X chromosome gene
362  dosage (D’Antonio-Chronowska et al. 2019).

363

364  The cardiomyocyte and epicardium framework explored by D’ Antonio-Chronowska et al. may be
365 useful in understanding the distinct differentiation trajectories present in our cardiac
366  differentiations. The terminal non-cardiomyocyte cells expressing COL3A1 in these samples may
367  represent an endothelial or cardiac fibroblast cell type, which derive from the epicardium cell
368 lineage. Cardiac fibroblasts express gene markers such as collagen and vimentin, which were
369  found to be expressed in the terminal cells of this differentiation trajectory (Brade et al. 2013, Ieda
370 et al. 2009, Zhang et al. 2019). The gene expression profile of COL3A41-expressing cells, which
371  includes high expression of genes related to extracellular matrix and physical cellular structure,
372 implies that these terminal cells may be involved in providing some kind of structural support,
373  perhaps as a reinforcement to true beating cardiomyocytes.

374

375  To determine whether differentiation trajectory and ultimate cell fate decision is influenced by
376  genetic factors, it may be useful to perform cardiomyocyte differentiation with multiple replicates
377  of each cell line, and compare the differentiation trajectories between these replicates. The
378  relatively high correlation between these single-cell RNA-seq samples compared to matched bulk
379  RNA-seq samples of the same cell line (Strober et. al 2019) suggests that there may be genetic
380  factors involved in this trajectory decision -- although more rigorous testing should be performed
381 to investigate this claim. We may also investigate whether subtle systematic differences exist
382  between cell lines even in the iPSC stage (Day 0), and whether these differences correlate with the
383  ultimate trajectory of these cell lines during differentiation. Recent studies have suggested that
384  there may be genes whose expression level at the iPSC stage correlates with downstream
385  differentiation efficiency in a predictable manner (Cuomo et al. 2020 and Jerber et al. 2020). Their
386  results suggest that the decision for ultimate cell type trajectories remains consistent within a cell
387 line, and that iPSCs from those cell lines exhibit distinct gene expression profiles that can be used
388  to accurately predict differentiation trajectories even before differentiation begins. This is an
389  intriguing possibility, and more work should be performed to investigate whether the cell lines
390 used here also exhibit distinct gene expression profiles early on that may correlate with the
391  outcomes of any subsequent differentiation.

392

393 It is worth noting that the task of regression on an estimated latent variable (such as pseudotime,
394  in dynamic eQTL calling, or cell type proportion, in cell type interaction eQTL calling), while
395 biologically interesting, poses a challenge for statistical inference. Pseudotime and cell type
396  proportions are estimated from expression data, rather than being experimentally measured. As a
397  result, this represents an example of 'double dipping', where we determine which hypotheses to
398  test downstream of exploratory data analysis. Such contexts have motivated interesting recent
399  work in selective inference to address inflated type I error rates (Taylor et al. 2015, Gao et al.
400  2020). The jackstraw procedure (Chung and Storey 2015) accounts for selective inference in the
401  context of regression on a continuous latent variable, but its application to pseudotime inference
402  in this case is infeasible, as the procedure depends on latent variable inference for each of many
403  resampling iterations. It is also worth noting that both dynamic and cell type interaction eQTLs
404  assess effects of the interaction of genotype (a measured variable) with a latent variable, rather
405  than the latent variable itself, which may mitigate the inflation effects of double dipping. We
406  demonstrate in simulation that the fixed-effect linear model used in this study was conservative in
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407  the presence of multiple measurements per individual, and did not lead to type I error inflation
408  (Methods, Fig. S18). As unsupervised and semi-supervised machine learning methods provide
409 increasingly reliable estimates of biologically important latent variables such as pseudotime, this
410  will become an increasingly important area for further statistical methods development.

411

412 All together, the results from this study demonstrate the benefit of using single-cell RNA-
413 sequencing with a balanced time course study design to investigate dynamic gene regulatory
414  differences between individuals during cellular differentiation. Single-cell data offers a high-
415  resolution view of the landscape of differentiation, which we leveraged to infer pseudotime along
416  multiple differentiation trajectories. By isolating axes of variation of cis-regulatory dynamics
417  (pseudotime within a particular lineage, rather than chronological differentiation day), we were
418  able to identify a greater number of dynamic eQTLs with less than half as many collection time
419  points as previous efforts in bulk RNA-seq data. The dynamic eQTLs detected included variants
420  which overlapped known GWAS hits, demonstrating the utility of this approach in identifying
421  causal loci that underlie risk for development of disease. We also used this data to lend new utility
422  to bulk RNA-seq datasets, by assigning lineage specificity to dynamic eQTLs through the use of
423 cell type interaction eQTL calling. While further follow-up studies should be performed to validate
424  the function of these genomic loci and their potential relevance to downstream phenotypes, the
425  dynamic genetic effects identified in this study and the methodology used to identify them provide
426  aresource for investigating mechanisms underlying important biological processes such as cellular
427  differentiation and perturbation response.

428
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Materials and Methods

Samples We used induced pluripotent stem cell (iPSC) lines from 19 individuals from the
Yoruba HapMap population. These iPSC lines were reprogrammed from lymphoblastoid cell
lines and characterized previously (Banovich et al. 2018). All 19 individuals were female and
unrelated. We chose to use only female individuals to avoid introducing additional variance that
is not of interest in this study.

iPSC Maintenance Feeder-free iPSC cultures were maintained on Matrigel Growth Factor
Reduced Matrix (CB40230, Thermo Fisher Scientific, Waltham, MA) with Essential 8 Medium
(A1517001, Thermo Fisher Scientific) and Penicillin/Streptomycin (30002Cl, Corning, Corning,
NY). Cells were grown in an incubator at 37°C, 5% CO2, and atmospheric O2. Cells were
passaged to a new dish every 3-5 days using a dissociation reagent (0.5 mM EDTA, 300 mM
NaCl in PBS) and seeded with ROCK inhibitor Y-27632 (ab120129, Abcam, Cambridge, UK).

Cardiomyocyte Differentiation We differentiated iPSCs using a protocol previously optimized
for use with the Yoruba HapMap panel (Banovich et al. 2018). This protocol implements slight
modifications to the cardiomyocyte differentiation protocols from Lian et al. 2013 and Burridge
et al. 2014. Feeder-free iPSCs were seeded onto wells of a 6-well plate and grown for 3-5 days
prior to differentiation. When most lines were 70%-100% confluent, E§ media was replaced with
“heart media” along with 1:100 Matrigel hESC-qualified Matrix (08-774-552, Corning) and
12uM of GSK-3 inhibitor CHIR99021 trihydrochloride (4953, Tocris, Bristol, UK). “Heart
media” is composed of RPMI (15-040-CM, Thermo Fisher Scientific) with B27 Supplement
minus insulin (A1895601, Thermo Fisher Scientific), 2mM GlutaMAX (35050-061, Thermo
Fisher Scientific), and 100mg/mL Penicillin/Streptomycin (30002Cl, Corning). CHIR99021 is a
small molecule that activates WNT signaling and initiates the differentiation on day 0 (after the
‘day 0’ cell collection) (Lian et al. 2012). “Heart media” was replaced 24 hours later at day 1 of
differentiation. 48 hours later, at day 3 of differentiation, cells were fed with new “heart media”
containing 2uM of the WNT inhibitor Wnt-C59 (5148, Tocris) (Lian et al. 2013). We cultured
cells in Wnt-C59 heart media for 48 hours. At day 5, Wnt-C59 was removed, and base “heart
media” was added. “Heart media” was refreshed on days 7, 10, 12, and 14 of differentiation.
Cells began spontaneous mechanical beating between days 7 and 13 of differentiation.

In some cases, after performing cardiac differentiation, one might choose to perform a post hoc
purification process to remove any non-cardiac cell types present at the terminal time point
(Tohyama et al. 2013). However, for the purposes of a time course experiment where multiple
intermediate time points are assayed, a purification protocol undertaken only at the end of the
differentiation would not prove useful; therefore, no cell type purification was performed.

Sample Collection and Processing We performed cardiomyocyte differentiations in three total
batches of six to seven cell lines at a time. For each batch, cardiomyocyte differentiations were
performed with three staggered starting days, such that samples could be collected from each cell
line in three differentiation stages at any given time. For all 19 cell lines, samples were collected
on differentiation days 0 (iPSC, before treatment with CHIR99021), 1, 3, 5, 7, 11, and 15. Drop-
seq collection was performed a total of three collection days for each batch of six to seven cell
lines. In the first collection day, samples from all cell lines in the batch were collected for
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differentiation days 1, 3, and 7. In the second collection day, samples from all cell lines in the
batch were collected for differentiation days 5, 7, and 11. In the third collection day, samples
from all cell lines in the batch were collected for differentiation days 0 (iPSC), 11, and 15.
Through this process, single-cell gene expression data was collected for all cell lines in seven
unique time points, with two time points (differentiation days 7 and 11) having two replicates.
This staggered differentiation and collection study design was performed to minimize the
technical effect of sample collection as a potential confounding variable associated with cell line
or differentiation day.

To harvest the samples at the start of each collection day, cells in at least two wells of a 6-well
culture dish were released from the dish using Accutase (BD Biosciences, San Jose, CA,
#561527). Samples were washed three times and resuspended in 1X PBS, 0.01% BSA. Cells
were then passed through a 40 um filter to encourage the formation of a single cell suspension.
The concentration of each single cell suspension was quantified manually using an NI
hemocytometer (INCYTO, Cheonan, Korea, DHC-NO1-2).

Using a 125 um Drop-seq microfluidic device, single cells were captured in droplets along with a
DNA barcoded bead (ChemGenes, Wilmington, MA, Macosko-2011-10(V+)), following the
standard Drop-seq protocol (Macosko et. al 2015). The DNA barcoded beads include a cell-
specific barcode so the cell identity of each RNA molecule can be recovered. After Drop-seq
collection, the RNA molecules were reverse transcribed, and cDNA amplification was performed
according to the Drop-seq protocol. cDNA concentration and library size were measured using
the Qubit 3 fluorometer (Thermo Fisher) and BioAnalyzer High Sensitivity Chip (Agilent, Santa
Clara, CA, #5067-4626).

Library preparation was performed using the [llumina Nextera XT DNA Library Preparation Kit
(Illumina, FC-131-1096). Libraries in each batch were multiplexed together so that every
sequencing lane contained three samples, one from each of the three collection days. Each of
those samples was itself a multiplexed collection of three individual cell lines at three distinct
differentiation time points, which were mixed upon Drop-seq collection. Samples went through
paired-end sequencing using the Illumina NextSeq 500. 20 bp were sequenced for Read 1, and
60 bp for Read 2 using Custom Read 1 primer,
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC, according to manufacturer’s
instructions (Macosko et al. 2015). The same multiplexed library pool was sequenced twice with
the goal of achieving at least 20 million reads per sample.

We recorded 20 technical and biological covariates and measured their contribution to variation
in our data (Fig. S9).

RNA-seq quantification For each sequencing run, we obtained paired-end reads, with one pair
representing the cell-specific barcode and unique molecular identifier (UMI), and the second pair
representing a 60 bp mRNA fragment. We used dropseqRunner (available at
github.com/aselewa/dropseqRunner) which takes a fastq file with paired-end reads as input and
produces an expression matrix corresponding to the UMI of each gene in each cell. All RNA-seq
samples were aligned to the human genome (GRCh38) using STAR-solo (Dobin et al. 2013). We
used featureCounts (Liao et al. 2014) to assign each aligned read to a genomic feature, and
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umi_tools (Smith et al. 2017) to create a count matrix representing the frequency of each feature
in our dataset. We then used the single-cell demultiplexing software 'demuxlet' to assign to each
cell a probability that the cell is a doublet (Kang et al. 2018; Fig. S3, S4, S14).

The following filter was applied to remove 21,725 rare genes (out of 60,668) from downstream
analysis:

e Gene must be detected in at least 10 cells

The following filters were then applied to remove 330,750 low-quality cells (out of 564,362) for
downstream analysis:

e Maximum doublet probability of 0.3 from demuxlet

e Unambiguous assignment of the cell to an individual by demuxlet (maintain cells not
assigned to 'doublet ambiguous')

e Maximum of 25% mitochondrial reads

e Minimum of 300 unique genes detected (of the genes that passed the previous filtering

step)

Following these filtering steps, an additional 2,826 cells were removed whose feature or read
counts were more than 4 standard deviations away from the median. This left a total of 230,786
cells and 38,943 genes for downstream analysis.

Cell cycle correction and normalization of single-cell expression data with Seurat We used the
Seurat workflow for cell cycle regression in differentiating. Each cell was assigned a score for
G2/M phase and S phase according to marker gene expression, and the difference between these
scores was regressed out during normalization. The data was then normalized using the
SCTransform function in (Stuart et al. 2019, Hafemeister and Satija 2019), producing corrected
counts, log-normalized corrected counts, Pearson residuals, and a set of highly variable features.
The Pearson residuals of 1,000 highly variable features were scaled so that each gene had unit
variance across all cells for downstream analysis.

Dimensionality reduction and clustering with scanpy Dimensionality reduction, clustering and
pseudotime were performed using the scanpy package (Wolf et al. 2018), following Seurat object
to h5ad conversion via the sceasy package (Cakir et al. 2020). The scaled Pearson residuals from
1000 highly variable features were used to compute 50 principal components (PCs), which were
then embedded into a 2D UMAP plot (Fig. 1A,1C). These 50 PCs were also used to produce a
neighborhood graph, and Leiden clustering was performed at resolution 0.35 to produce the
clusters shown in Fig. 1C. (Several clusters are merged into the unknown cell type, as described
below).

Lineage specification and pseudotime inference Based on marker gene expression patterns (Fig.
1B), 6 of the 10 Leiden clusters were annotated with known cell types. To facilitate trajectory
reconstruction, 3 outlier clusters with less than 5,000 cells were removed. Cluster 7 contained a
group of cells which did not express marker genes for cardiomyocytes or progenitor cell types,
and instead expressed a group of genes that are specifically expressed in hepatocytes, a cell type
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587  stemming from the endoderm layer rather than the mesoderm layer. This small population of
588  cells drove a significant amount of variation in the data (Fig. SS), making it difficult to properly
589  resolve the mesoderm-specific lineages that were the focus of this project. For this reason, the
590  cells assigned to one of the mesoderm-specific lineages (clusters 1-6) were isolated, log-

591 normalized gene expression was re-centered and re-scaled, and PCA was re-run on specifically
592  these cells to properly focus on the variation among the lineages of interest. The top 3 re-

593  computed PCs were used to calculate a new neighborhood graph, which was used to compute a
594  new embedding to visualize specifically the two cardiac-related differentiating lineages (Fig.
595  2A). The bifurcation into separate cardiac fibroblast and cardiomyocyte lineages can clearly be
596  observed in the PAGA plot (Fig. S6), which was created with the previously described cell type
597  annotations, the re-computed neighborhood graph, and an edge weight threshold of 0.15. This
598 PAGA embedding was used to define the two lineages used for downstream lineage isolation
599  tasks, where all iPSC, mesoderm, cardiac mesoderm, and cardiac progenitor cells are assigned
600 jointly to both lineages, while cardiomyocyte and cardiac fibroblast (terminal cell types) are
601  unique to their corresponding lineage. Finally, four diffusion components were computed from
602  the new neighborhood graph, and diffusion pseudotime was used to assign pseudotime values to
603  cells from both cardiac lineages.

604

605  Pseudobulk expression aggregation and normalization Although the noisiness of single cell
606  expression profiles necessitates aggregation across cells before dynamic eQTL calling, an

607  improved understanding of the differentiation landscape allows us to pursue an aggregation

608  strategy that mitigates the confounding impact of cellular composition differences and offers
609  greater power than dynamic eQTL calling on bulk samples. Three pseudobulk aggregation

610  schemes were used in this study:

611

612 1. Chronological differentiation day binning - This strategy is most directly comparable to
613 bulk RNA-sequencing. Aggregation is performed by taking the sum of SCTransform-
614 corrected counts from all cells from the same differentiation day and individual.

615 2. Lineage subsetting - Differentiation day binning was performed within each lineage

616 separately. As evidenced by the PAGA graph, all cells up to the progenitor cell type

617 (PROG) are assigned to both lineages, only cells from the terminal cell type

618 (cardiomyocyte or cardiac fibroblast) are unique to one lineage or another.

619 3. Lineage subsetting & pseudotime binning - After lineage subsetting, cells are partitioned
620 into 16 quantile bins according to pseudotime. We chose 16 bins in order to directly

621 compare to our previous 16 time-point bulk experiment (see Fig. S7). Aggregation then
622 consists of the sum of SCTransform-corrected counts from cells within the same cell line
623 and pseudotime bin.

624

625  After pseudobulk aggregation, low-depth samples with library size less than 10,000 were filtered
626  out. Remaining samples underwent TMM normalization with singleton pairing through the

627  edgeR package so that expression could be compared across samples for dynamic eQTL calling
628  (Robinson et al. 2010, Robinson and Oshlack 2010). We then transform the TMM-normalized
629  counts into compute counts per million (CPM) for each sample, and apply log normalization

630  (with the edgeR package, which uses an approach to pseudocount addition that is adapted for
631  library size). These logCPM expression values are used for QTL calling.

632
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Bulk expression normalization In order to properly compare bulk RNA-seq data to our
pseudobulk data, we reprocessed the bulk data from a previous experiment in a way that is
intended to most closely match the logcpm pseudobulk expression. For this reason, we used
transcripts per million (TPM) instead of previously used reads per kilobase of transcript, per
million mapped reads (RPKM). For each sample, we first divided each gene's counts by the
length in kilobase to compute reads per kilobase (RPK), and then fed these adjusted expression
values into the same normalization pipeline as was used for pseudobulk counts (which are not
biased by gene length) - TMM normalization with singleton pairing and logCPM adjustment,
with the edgeR package. Since the input was reads per kilobase rather than counts, this gives
logTPM expression values for use in QTL calling.

Sample PCA To identify primary sources of variation between samples, we ran principal
component analysis (PCA) on the gene expression matrix for pseudobulk data. The first principal
component is correlated with differentiation time (Fig. S8). For the top 10 PCs, we calculated the
percent variance explained of each principal component by each technical factor recorded during
sample collection (Fig. S9).

Cell line collapsed PCA To perform dynamic eQTL calling, we search for changes in gene
expression over time that are correlated with a specific genotype. This can be confounded by
broad differences between cell lines across the differentiation time course, such as differences in
differentiation speed, lineage preference, or technical factors. For example, assume cell lines
with genotype G at locus i generally have increasing proportions of cardiomyocytes over time,
while cell lines with genotype C at locus i have increased proportions of cardiac fibroblasts over
time. In this case, any gene whose expression is upregulated in cardiomyocytes will appear to
have a dynamic eQTL at locus i, regardless of any cis-regulatory dynamics related to that gene,
which constitute the intended focus of this study.

With single-cell data, we are able to more directly account for some of these factors, namely
differentiation speed (with pseudotime binning) and lineage preference (with lineage subsetting).
However, it remains useful to control for any broad cell line differences in this more
unsupervised fashion, as any broad effects could drive false positive QTL detection.

We used a “cell line collapsed PCA” approach to identify such patterns across the entire time
course (Strober et al. 2019). To identify cell line collapsed PCs, we rearranged the gene
expression matrix from the standard pseudobulk expression quantification such that each row
represented expression from one cell line and each column represented a gene at a single time
point. After standardizing each column to have zero mean and unit variance, we applied PCA to
this matrix to learn a low dimensional representation. Each cell line has a shared loading across
all time points, and PCs reflect trajectories across all genes. We controlled for the first five cell
line collapsed PCs when detecting both linear and nonlinear dynamic eQTLs, in both bulk and
pseudobulk.

To detect cell line specific patterns that may potentially be confounding variables in our dynamic
eQTLs, we calculated the frequency at which each pair of cell lines share the same genotype
across all significant dynamic eQTLs, compared to what is expected by chance. After controlling
for five cell line collapsed PCs, cell lines do not share the same genotype at more significant
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679  eQTLs than expected by chance, confirming that cell line PCs adequately address these potential
680  confounding effects (Fig. S15).

681

682  Genotype data We used previously collected and imputed genotype data for the 19 Yoruba

683  individuals from the HapMap and 1000 Genomes Project (Degner et al. 2012). For eQTL

684  analyses, we filtered to variants with no missingness and a minor allele frequency of at least 0.1
685  across the 19 individuals present.

686

687  Dynamic cis-eQTL test selection We selected which genes to check for dynamic eQTLs based
688  on the following filters:

689

690 e Gene must have at least 0.1 CPM in at least 10 bulk/ pseudobulk samples
691 e Gene must have at least 6 counts (reads) in at least 10 samples

692

693  Both of these filters were applied separately for each aggregation scheme. We tested all variants
694  within 50kb of the transcription start site of each gene. Transcription start sites were obtained
695  from Gencode's release 37 (GRCh38.p13, Frankish et al. 2019) basic gene annotation, and

696  matched to mapped genes by Ensembl gene ID. The total number of tests is presented alongside
697  the number of dynamic eQTLs detected in tables 1 and 2.

698

699  Linear dynamic eQTLs using single-cell pseudobulk data Linear dynamic eQTLs are cis-

700  eQTLs whose effects are linearly modulated by differentiation time. We detected linear dynamic
701  eQTLs with a Gaussian linear model that quantified the interaction between genotype and

702  differentiation time on gene expression, while controlling for the linear effects of both genotype
703  and differentiation time. We also controlled for linear effects of the first five cell line collapsed
704  PCs (see below).

705

706  Following the method used in Strober et al 2019, we built a separate linear model for each tested
707  variant-gene pair. Specifically, let t denote the time point (or, for pseudotime binning, the

708  median pseudotime value across cells constituting the pseudobulk sample) of the current sample,
709 ¢ denote the cell line of the current sample, T denote the total number of time points, and C

710  denote the total number of samples. E € R““T denotes the standardized expression matrix for the
711  current gene, G € R¢denotes the dosage based genotype vector for the current variant, and

712 PCK € R®denotes the Kth cell line collapsed PC vector. We modeled the expression levels as
713 follows:

714

715 E..~N(u+ B,G, + Bt + B3PCL+ -+ B,PC>+ BgPClt + -+ B1,PC2t + B13G.t,0)
716

717  We used ImFit from the limma package to fit this model, and used a t-test to measure the

718  significance of the genotype and time coefficient (f13).

719

720  Bonferroni correction was applied to account for multiple SNPs being tested per gene, and

721  Storey's g-value was used to control false discovery rates at the gene level, after selecting the
722 most significant dynamic eQTL per gene. Genetic correlation among significant dynamic

723 eQTLs, which could be indicative of broad effects driving inflated type I error rates, did not
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724  appear to significantly differ from background variants within 50kb of a TSS matched for minor
725  allele frequency (Fig. S15).

726

727  Nonlinear dynamic eQTLs using single-cell pseudobulk data To detect dynamic eQTLs whose
728  effect size changes non-linearly with time, we used a second order polynomial basis function
729  over time, which alters the above linear dynamic eQTL model as follows:

730

731 ECI','~ N(H + BlGC + ﬁzt + ﬁ3t2 + ﬁ4PCél + b + ﬁgPCCS + ﬁgpcgt + ﬁlopcgtz ...+ ﬁ17PCC5t
732 + B1gPC3t* + BroG .t + ProGot?, o)

733

734 Once again, time is either time of collection, or median pseudotime of the sample. As before, we
735  used ImFit from the limma package to fit this model, and this time used a similar t-test to

736  measure the significance of the genotype and quadratic time coefficient (520). Multiple testing
737  correction was applied as with linear dynamic eQTL calling.

738

739  Permutation analysis We assessed calibration of our dynamic eQTL calling methods with

740  permutations. If we permute the time variable in the interaction term, we do not expect this term
741  to properly capture interactions between genotype and time. For each variant-gene pair, we

742  performed an independent permutation of the time variable in the interaction term, across all
743 (cell line, day) samples. The results of this analysis are shown in Fig. S10. As another check for
744  confounding factors, we checked whether dynamic eQTLs were enriched for genotypes shared
745  between any particular pair of individuals (suggesting broad individual differences could be
746  driving the dynamic eQTLs, Fig. S10).

747

748  Simulations to examine type I errors due to 'double dipping’ We conducted simulations to

749  evaluate potential type I error inflation caused by selective inference. We simulated gene

750  expression data from the following linear mixed model:

751

752 Yiik = BrGix + aiM;j + ag + €,

753

754 Here Y;jy is the expression of gene k in cell j of individual i, where k = 1, ...,1000, j =

755 1,..,100and i = 1, ...,n. The sample size n is 10 or 20. We assumed one cis-eQTL per gene.
756  To simulate the genotype G;;, we first generated the minor allele frequency (MAF;) from

757  Uniform(0.1,0.5) and then generated G;;,~binomial(2, MAF,).

758  The other variables included genetic effect size By, cell maturity M;; and its effect size ay,

759 individual-specific random effect a;; and error term €; . They were generated from the

760  following distributions:

761

762 B~N(0,05),  M;~N(0,1),  a~N(0,0%)

763

764 (ai1) -+ 4,1000)~N (0, 0°%), (Eijp oy 6ij,1000)~N(0» 02%),
765

766  Note that (a;q, ..., @ 1000) are i.i.d. across individuals and (€;j1, ..., €;j,1000) are 1.i.d. across
767  individuals and cells, but they are both correlated across genes. To construct a realistic
768  correlation structure, we chose X to be the correlation matrix of the expression of 1000 randomly
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selected genes from our pseudo bulk data. We fixed 62 + o2 = 0.3 so that cell maturity and

2
individual specific random effect explained 30% variance of expression and varied = =
o

0,0.1,0.5,1,2,10. We then generated the genetic effect size B, ~N (0,0.1%) or N(0,0.4?),
corresponding to on average 0.4% or 6.3% variance of gene expression explained by genetic
effects. The variance of the error term o2 was chosen so that the expression of each gene has unit
variance.

We defined the pseudo time in this simulation study to be the first gene expression principal
component (PC). We divided the cells into three equal pseudo time bins and averaged expression
of the cells for each individual in each pseudo time bin into pseudo bulk expression (¥;;,). We
also calculated the average pseudo time for cells

within each pseudo bulk sample, denoted by t;;. We tested two models for dynamic eQTL
calling (fitted for each gene k separately): 1) linear mixed model with individual-specific random
effects ¥ ~G + ti + Gyty + (1]individual); 2) linear model Yy, ~Gyy, + t;; + G t;; without
random effects. Type I error was calculated across 1000 genes (Fig. S18). The simulation
suggests that a fixed-effect linear model for dynamic eQTL calling, as used in this study, was
conservative in the presence of multiple measurements per individual and did not lead to type I
error inflation. The more powerful linear mixed model did lead to moderate inflation.

Correlation between bulk and pseudobulk data We calculated the Pearson correlation of the
normalized gene expression matrix from matched bulk RNA-seq data (Strober et al 2019) with
the normalized gene expression matrix from pseudobulk RNA-seq data. We observed a high
correlation of gene expression values between bulk and pseudobulk samples of any given
differentiation day (Fig. S11), and a consistent pattern of correlation for all cell lines (Fig. S12).

Bulk dataset deconvolution using single cell data Cell type deconvolution was performed using
CIBERSORTx (Rusk 2019). The method was first assessed for accuracy using pseudobulk data,
where a ground truth is available. Cells from each annotated cell type were split into training
(60% of cells) and testing (40%) groups. The annotated Seurat object was subset to training data,
and the FindAllMarkers command was used to identify a subset of 404 genes for use in
deconvolution. We removed genes that were not measured in bulk, leaving 317 genes for use in
deconvolution. A gene expression signature matrix was created from exclusively the training
data by taking the sum of SCTransform-corrected counts within each cell type. Normalization of
the signature matrix was performed using edgeR: normalization factors were first computed with
‘TMMwsp’ method, then TMM-normalized counts were converted to counts per million. To
assess the accuracy of this approach, we then used the same normalization pipeline to aggregate
pseudobulk by sample for the testing data, where samples corresponded to a (cell line,
differentiation day) combination (Fig. S13). To perform deconvolution of the bulk RNA
sequencing data, we used the signature matrix described above and subset the bulk data to the
317 genes contained in the signature matrix.

Cell type interaction eQTLs To account for variable cell type composition in bulk RNA-seq
data, rather than looking for cis-eQTLs whose effects are modulated by time (linear dynamic
eQTLs), we looked for those whose effects are modulated by cell type proportion (Kim-
Hellmuth et al. 2020). This mitigates the confounding impact of lineage preference on dynamic
eQTL calling, as well as differences in differentiation speed (to the extent that this is captured by
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cell type proportion). To do so, we replaced the time variable in the dynamic eQTL model with
cell type proportion as follows:

E..~N(u+ B1G. + BoKee + BsPCE A4+ B,PCE + BgPClK r + -+ B1oPCEK,,
+ ﬁlSGcKctr U)

Where K., is the CIBERSORTX inferred cell type proportions in the sample. Separate models
were built for each variant-gene pair, in each cell type except the ‘unknown’ cell type. We
additionally explored a model in which we regressed out all cell type proportions (except the
unknown cell type, as cell type proportions are constrained to sum to 1).

E.;~N(u+ B1G. + BoKipsct... +B7Key + BePCr + -+ B1,PCE + B1sPCrK e + -
+ ﬁl7PCCSKCt +ﬁ1chKct' 0)

Note that while all fixed cell type proportion terms are included as covariates, there is only one
interaction term for a single cell type proportion. Therefore, once again, separate models were fit
for each variant-gene pair, in each cell type except 'unknown'. We found that regressing out
additional cell types, not just the one included in the interaction term, led to detection of a greater
number of genes with a cell type interaction eQTL (Fig. S16). To check whether these additional
covariates were in fact introducing false positive associations between individuals, we measured
the pairwise genetic correlation between cell lines among the top hits detected after regressing
out additional cell type proportions. We then compared this to the genetic correlation among a
set of hits detected before regressing out additional cell type proportions, matched for minor
allele frequency. We did not see an increase in genetic correlation among significant tests
introduced by incorporation of additional covariates (Fig. S17). However, we did observe a
lower replication rate of this expanded set of interaction eQTLs among linear dynamic eQTLs
(m1=0.69 and 0.32, respectively, compared to 0.84 and 0.43 under the first model).

We also explored including sample-level principal components as covariates in the linear model:

E.~N(u+ B1G, + BoU+...+B,U° + BgPCL+ -+ B1,PCE + B13PClK . + -+
+ ﬁl7PCc5Kct + B18G Kt 0)

Where U’ represents the first sample principal component, as opposed to PC./, the first cell line
principal component. Here, we again found that additional covariates led to an increased number
of cell type interaction eQTLs detected (Fig. S16): for several cell types (pluripotent cells,
mesoderm and progenitor) this figure continued to increase with up to 30 principal components
regressed out. With the terminal cell types where more interaction eGenes were detected, the
maximum number of hits detected occurred after regressing out 10 principal components. The
replication rate among dynamic eQTLs decreased as the number of hits detected increased
(1=0.63 and 0.30 for cardiomyocyte and cardiac fibroblast, respectively, after 5 PCs were
regressed out; 0.59 and 0.38 after 10; 0.64 and 0.42 after 20; 0.68 and 0.44 after 30). The results
from fitting the first model are reflected in the main text.

Overlap with published GTEx eQTLs We used the GTEx v8 release to evaluate replication and
overlap of our dynamic eQTLs with variants previously detected in adult tissues. To assess
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861  replication in each tissue, we used the qvalue package in R (Storey 2003) to compute
862  m, replication rates among all variant-gene pairs that were declared dynamic eQTLs that were
863  also tested in GTEx. To determine the percentage of variant-gene pairs that were declared both

864  dynamic eQTLs and significant cis e€QTLs in GTEx, we incorporated cis eQTLs from all tissues.
865
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Fig. S2: Cell lines display differences in trajectory preference. The force atlas embedding
which was learned from all cells jointly is shown for each individual cell line, colored by cell

type.
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Fig. S3. Number of UMIs, genes, and percent mitochondrial reads per cell in single cell
data, by day. Distribution of the number of Unique Molecular Identifiers (UMIs) per cell,
number of genes per cell, and the percent mitochondrial reads per cell in full single cell dataset,
prior to (top row) and after (bottom row) filtering as described in Methods (RNA-seq
quantification). X-axis separated by differentiation day.
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Fig. S4. Number of UMIs, genes, and percent mitochondrial reads per cell in single cell
data, by individual. Distribution of the number of Unique Molecular Identifiers (UMIs) per cell,
number of genes per cell, and the percent mitochondrial reads per cell in full single cell dataset,
prior to (top row) and after (bottom row) filtering as described in Methods (RNA-seq
quantification). X-axis separated by cell line.
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943  Fig. S5: Cell cluster 6 appears to be an outlier cluster. This group of cells which

944  underexpresses cardiac markers from all stages of differentiation and overexpresses endoderm
945  markers such as APOA1 and AFP is picked up by the third principal component (top), and
946  largely drives the variation behind the second diffusion component (bottom). The variation
947  driven by relatively small population of cells interferes with reconstruction of biologically
948  feasible trajectories, and was removed from downstream analysis.

949
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953  Fig. S6: PAGA identifies a bifurcation in cellular differentiation. PAGA identifies a

954  bifurcation into cardiomyocyte and cardiac fibroblast cell types after the cardiac progenitor
955  stage.
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Fig. S7: Dynamic eQTL detection rates across multiple bin sizes. Y-axis shows the number of
significant linear dynamic eGenes (genes with a dynamic eQTL, q<0.05) for a variety of
numbers of pseudotime quantile bins (x-axis) for both the cardiac fibroblast (pseudobulk-cf, left)
and cardiomyocyte (pseudobulk-cm, right) lineages.
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primary source of variation. PCA on bulk (row 1), single cell data aggregated into pseudobulk

by differentiation day / individual (row 2), cardiomyocyte lineage-specific single cell data
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993  Fig. S9: PCs percent variance explained by technical factors in single cell data. (a) Variance
994  explained of each gene expression principal component (1-10) for pseudobulk samples
995  aggregated by cell line and differentiation day using recorded covariates, including: percent cells
996  beating (visually assessed), differentiation day, collection day, culture confluence, cell
997  morphology (visually assessed), and cellular debris. (b) Variance explained of principal
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999  (CF, left) and cardiomyocyte (CM, right) lineages. Technical covariates shown are cell line,
1000  library size, median pseudotime, number of cells, and the normalization factor used for TMM
1001  normalization, from the edgeR package (see Methods).
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1049  Fig. S11: Correlation of bulk and pseudobulk data by day. Pearson correlation between
1050  single-cell pseudobulk data and bulk RNA-seq data (Strober et al 2019) for each individual;
1051  panels separated by differentiation day.
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1053
1054  Fig. S12: Correlation of bulk and pseudobulk data by individual. Pearson correlation

1055  between single-cell pseudobulk data and bulk RNA-seq data (Strober et al 2019) for each
1056  differentiation day; panels separated by individual.
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Fig. S13: CIBERSORTX assessment in pseudobulk. Assessment of CIBERSORTx
performance in pseudobulk, where 'ground truth' is available. CIBERSORTx-estimated cell type
proportions from differentiation day-binned pseudobulk data for three cell lines is shown at left
(‘inferred’), compared to true cell type proportions (‘true', right), as determined by the cell type
annotation approach described in the supplement.
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1066  Fig. S14: Number of cells per sample. Number of cells per collected sample following filtering

1067  described in Methods (RNA-seq quantification).
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1073 Fig. S15: Genetic correlation across dynamic eQTLs. In order to check whether broad cell
1074  line differences are driving false positive dynamic eQTLs, we compared genetic correlation

1075  among the top 200 linear dynamic eQTLs for bulk (top, left), and both pseudobulk lineages,
1076  cardiomyocyte (middle, left) and cardiac fibroblast (bottom, left), to genetic correlation among a
1077  set of background variants within 50kb of a gene, and matched for minor allele frequency (right).
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1112 Fig. S16: Impact of additional cell type proportion covariates. We examined the impact of
1113 regressing out additional covariates from the interaction eQTL model, and found an increase in
1114  the number of genes with a dynamic eQTL, as well as a decrease in the replication rates in bulk
1115  dynamic eQTLs (Methods) for both regression of cell type proportions (top) and up to 30

1116  principal components (bottom).
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Fig. S17: Genetic correlation across cell type interaction eQTLs. We compared genetic
correlation among 200 cardiac fibroblast cell type interaction eQTLs detected exclusively after
regressing out additional cell type proportion covariates (a), compared to 200 interaction eQTLs,
detected before controlling for cell type proportions (b). We similarly computed genetic
correlation among 200 cell type interaction eQTLs discovered only after regression of 5 (c), 10
(d), 20 (e), and 30 (f) sample principal components.
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1127  Fig. S18: Selective inference simulations Simulations were performed to examine the impact of
1128  selective inference on type I error rates (Simulations to examine type I errors due to 'double

1129  dipping’). Under the generative model used, inflated type I error rates (bars exceeding the dashed
1130  line) were not observed when testing is performed using a linear model (blue).
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