
 1 

Single-Cell Sequencing Reveals Lineage-Specific Dynamic Genetic Regulation of Gene 1 
Expression During Human Cardiomyocyte Differentiation 2 

 3 
 4 
Authors: Reem Elorbany1*, Joshua M Popp2*, Katherine Rhodes3, Benjamin J Strober2, Kenneth 5 
Barr3, Guanghao Qi2, Yoav Gilad3,4**, Alexis Battle2,5** 6 
 7 
Affiliations: 1. Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 8 
60637, USA. 2. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, 9 
MD 21218, USA. 3. Department of Human Genetics, University of Chicago, Chicago, IL 60637, 10 
USA. 4. Department of Medicine, University of Chicago, Chicago, IL 60637, USA. 11 
5. Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA. 12 
 13 
* These authors contributed equally to this work 14 
** Co-corresponding authors 15 
 16 
  17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446970doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446970
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 18 
 19 
Dynamic and temporally specific gene regulatory changes may underlie unexplained genetic 20 
associations with complex disease. During a dynamic process such as cellular differentiation, the 21 
overall cell type composition of a tissue (or an in vitro culture) and the gene regulatory profile of 22 
each cell can both experience significant changes over time. To identify these dynamic effects in 23 
high resolution, we collected single-cell RNA-sequencing data over a differentiation time course 24 
from induced pluripotent stem cells to cardiomyocytes, sampled at 7 unique time points in 19 25 
human cell lines. We employed a flexible approach to map dynamic eQTLs whose effects vary 26 
significantly over the course of bifurcating differentiation trajectories, including many whose 27 
effects are specific to one of these two lineages. Our study design allowed us to distinguish true 28 
dynamic eQTLs affecting a specific cell lineage from expression changes driven by potentially 29 
non-genetic differences between cell lines such as cell composition. Additionally, we used the cell 30 
type profiles learned from single-cell data to deconvolve and re-analyze data from matched bulk 31 
RNA-seq samples. Using this approach, we were able to identify a large number of novel dynamic 32 
eQTLs in single cell data while also attributing dynamic effects in bulk to a particular lineage. 33 
Overall, we found that using single cell data to uncover dynamic eQTLs can provide new insight 34 
into the gene regulatory changes that occur among heterogeneous cell types during cardiomyocyte 35 
differentiation.    36 
 37 
 38 
Introduction 39 
 40 
A primary aim of human genetics and genomics is to understand the genetic architecture of 41 
complex traits. Current studies demonstrate that the majority of trait-associated genomic loci are 42 
in non-coding regions of the genome, and are thought to be involved in gene regulation (Edwards 43 
et al. 2013). Therefore, studies exploring gene regulation are essential to our understanding of 44 
complex phenotypes (Li et al. 2016, Albert et al. 2015). Studies mapping expression quantitative 45 
trait loci (eQTLs), identifying genetic variants associated with gene expression levels, reveal the 46 
impact of genetic variation on gene regulation and can inform molecular mechanisms underlying 47 
trait-associated loci. eQTLs have now been identified for a wide variety of tissues, and their study 48 
has contributed to the understanding of gene regulation and disease (GTEx Consortium 2020; 49 
Lappalainen et al. 2013; Battle et al. 2014; Pickrell et al. 2010; Stranger et al. 2012; Nica et al. 50 
2010; Nicolae et al. 2010).  51 
 52 
Gene regulation, including genetic regulation of gene expression, can vary between contexts 53 
including different cell types, temporal stages, and environmental stressors.  Particular attention 54 
has been paid to differences in gene regulation between tissues and cell types.  Large studies 55 
including the Genotype-Tissue Expression Project (GTEx) have been now been successful in 56 
identifying thousands of eQTLs in diverse human tissues [GTEx Consortium 2020; Nica et al. 57 
2011).  However, despite these efforts, we are still unable to identify a regulatory mechanism for 58 
the genetic contribution of a majority of disease-associated loci (Bis et al. 2011, Myocardial 59 
Infarction Genetics Consortium 2009, Manolio et al. 2009, Eichler et al. 2010, Arvanitis et al. 60 
2020).  One reason for this knowledge gap may be that most large-scale eQTL studies are based 61 
on expression data from adult, bulk tissue samples that do not represent the specific cell types and 62 
contexts in which disease-relevant dysregulation occurs (Umans 2020).  63 
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 64 
Recent advances in single-cell sequencing have allowed us to assay gene expression in individual 65 
cells, allowing us to access disease relevant cell types and cell states, even if they compose a small 66 
fraction of a tissue and would not be well captured by bulk data, and even if they are not known a 67 
priori.  Indeed, single cell datasets have revealed a more complex landscape of gene expression in 68 
individual cell types than previously known in tissues such as brain and kidney (Welch et al. 2019, 69 
Park et al. 2018).  Likewise, mapping eQTLs from single-cell RNA-sequencing data promises to 70 
enable the identification of previously undiscovered disease-relevant regulatory 71 
mechanisms.  Recently, collection and analysis of population-scale scRNA-seq datasets have 72 
demonstrated that genetic effects do vary between cell types belonging to the same tissue (Fairfax 73 
et al. 2012, Kasela et al. 2017, Kim-Hellmuth et al. 2020).  74 
 75 
Beyond cell-type specificity, only a small number of studies have attempted to characterize 76 
dynamic gene regulatory changes that occur during development or among contexts that change 77 
over time (Strober et al 2019, Knowles et al 2017, Taylor et al 2018, Fairfax et al 2014, Smirnov 78 
et al. 2009; Watts et al. 2002, Kariuki et al. 2016; Alleyne et al. 2017). These have highlighted 79 
temporally specific eQTL effects that were not evident from static data. Studying the temporal 80 
dynamics of gene expression has the potential to uncover genomic loci involved in gene 81 
regulation during developmental processes and identify associations that were previously 82 
overlooked. Accordingly, we previously studied genetic effects on the regulation of gene 83 
expression during the differentiation of induced pluripotent stem cells (iPSCs) to 84 
cardiomyocytes (Strober et al 2019). We collected time-series bulk RNA-seq data for nineteen 85 
individuals to identify hundreds of eQTLs displaying dynamic, and sometimes transient effects 86 
on expression across the course of cardiomyocyte differentiation. These dynamic eQTLs 87 
included genetic variants which were associated with cardiovascular disease-related traits, 88 
including obesity. 89 
 90 
However, the complexities of cardiomyocyte differentiation and other dynamic processes are not 91 
fully captured by bulk RNA-seq data even in a time course study design. During development and 92 
differentiation, expression profiles change over time in individual cells along a spectrum of 93 
maturity (Pijuan-Sala et al 2018).  Cells within a single sample do not necessarily differentiate at 94 
the same rate, along the same trajectory, or even toward the same terminal cell type.  Different cell 95 
lines may also vary in the proportion of cells in different states at each time point. Indeed, in our 96 
previous work, we identified two clusters of cell lines undergoing cardiomyocyte differentiation 97 
that exhibited broad differences in the expression trajectory of groups of genes over time (Strober 98 
et al 2019). Bulk expression profiles represent an average across cells from various points across 99 
a developmental landscape, obscuring the underlying variation in cell state, and even making it 100 
difficult to definitively attribute differences to cis-regulatory genetic effects.  Recent work has 101 
demonstrated that the improved resolution of single-cell RNA-seq data can identify homogeneous 102 
subpopulations of cells at similar stages of differentiation, offering a clearer view of genetic 103 
regulation in an individual time step (Cuomo et al. 2020, Jerber et al. 2021). However, such 104 
analysis has only been applied to a few cell types, not including cardiomyocytes, and has been 105 
limited to the study of dynamics within a single lineage.  106 
 107 
In this study, we applied single-cell RNA-seq to the nineteen cell lines assayed in our previous 108 
bulk RNA-seq analysis, collecting single-cell data at seven informative time points during 109 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446970doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446970
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

cardiomyocyte differentiation, enabling us to observe cell-type specificity, cell composition 110 
differences, and temporal changes together in a unified experiment. The resolution of this single 111 
cell data enables us to characterize the cardiomyocyte differentiation landscape in much greater 112 
detail than was possible in bulk. We identify a bifurcation in cell fate, which explains the 113 
previously observed clustering of cell lines and enables us to study genetic regulatory dynamics 114 
along two distinct trajectories with a single experiment. Characterization of these trajectories 115 
allows us to reanalyze existing bulk samples and mitigate confounding impact of cellular 116 
composition and identify dynamic effects specific to each lineage (Westra et al. 2015, Kim-117 
Hellmuth et al. 2020). 118 
 119 
 120 
Results 121 
 122 
We differentiated induced pluripotent stem cells (iPSCs) from 19 human cell lines into 123 
cardiomyocytes; these same cell lines were previously used for a cardiomyocyte time course study 124 
published in Strober et al 2019. For the current study, we used new iPSC cultures of the same lines, 125 
and differentiated them again to cardiomyocytes. We used Drop-seq to collect single-cell RNA-126 
seq data at 7 days throughout the 16-day differentiation time course. We chose to collect data from 127 
days 0 (iPSC), 1, 3, 5, 7, 11, and 15 (cardiomyocyte), as we have previously observed that these 128 
days represent the most informative stages during this particular differentiation trajectory (Strober 129 
et al. 2019, Selewa et al. 2020). We collected single-cell data using a balanced study design in 130 
which each collection included three individuals at three unique differentiation time points. This 131 
design minimizes technical effects associated with individual and differentiation day. After 132 
filtering data from low quality cells (Methods), the resulting 131 samples contained an average of 133 
1,762 cells per sample and an average of 1,375 genes detected as expressed per cell. Following 134 
normalization, a principal component analysis revealed that, as expected, differentiation day is the 135 
primary axis of variation in the single cell gene expression data (Fig. S1a-b).  136 
 137 
 138 
Differentiation progress and cell line differences drive variation in gene expression  139 
 140 
In order to characterize the complex landscape of cardiomyocyte differentiation, we used UMAP 141 
to produce a low-dimensional embedding of the single cell data while preserving global structure. 142 
We found that while cells from the early days of the differentiation time course exhibited fairly 143 
uniform transcription profiles, this was less true for later days (days 7, 11, and 15; Fig. 1A, 1D). 144 
Marker genes known to be expressed at various stages in cardiac differentiation, from iPSC to 145 
mesoderm to cardiomyocyte, showed high expression at expected early, intermediate, and late 146 
stages of the differentiation time course, respectively (Fig. 1B, 1E). Next, we used unsupervised 147 
clustering to identify distinct cell populations present in the data, and matched these to known cell 148 
types based on expression of known marker genes (Fig. 1C, Methods, Burridge et al. 2014). As 149 
suggested by previous reports (Strober et al. 2019, Selewa et al. 2020), we identified a bifurcation 150 
in the differentiation landscape, giving rise to two distinct terminal cell types. One of these terminal 151 
cell types has high expression of genes known to be involved in cardiomyocyte function, such as 152 
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TNNT2 and MYL7 (Ahmad et al. 2008, 153 
Bizy et al 2013, Fig. 1B). Cells in the other 154 
terminal cell type do not express 155 
cardiomyocyte markers, and instead have 156 
high expression of genes such as COL3A1 157 
and VIM, which are expressed in the 158 
extracellular matrix of cardiac fibroblasts 159 
(Ieda et al. 2009, Zhang et al. 2019). The 160 
differentiation outcome of each sample, 161 
namely the proportion of cells in each 162 
cluster, varied by individual cell line; 163 
certain lines differentiated primarily into 164 
either the TNNT2-expressing or the 165 
COL3A1-expressing terminal cell type 166 
clusters (Fig. 1E, S2). For the remainder of 167 
this paper, we will refer to the TNNT2-168 
expressing cell cluster as cardiomyocytes 169 
(CM) and to the COL3A1-expressing 170 
cluster as cardiac-fibroblasts (CF) or 171 
fibroblast. We also identified a cluster that 172 
underexpressed marker genes of cardiac 173 
cell types throughout the differentiation 174 
process, and instead expressed several 175 
endoderm-specific markers such as APOA1 176 
and AFP. We were unable to fully 177 
characterize this cluster based on 178 
expression patterns alone, and omitted 179 
these cells from downstream investigation 180 
of the dynamics of gene regulation on gene 181 
expression during mesoderm and cardiac 182 
cellular differentiation.  183 
 184 
Single-cell data offers a highly resolved 185 
view of cellular differentiation  186 
 187 
In previous work, we investigated the 188 
relationship between genotype and 189 
chronological time, represented by the 190 
differentiation day in which each bulk 191 
sample was collected. However, 192 
chronological time may not properly 193 
capture the axis of variation along which 194 
genetic regulation is changing, and can 195 
be heavily confounded by heterogeneity 196 
in differentiation within and between samples. If cells within a sample progress through 197 
differentiation at different rates, their aggregated expression profile will not be truly reflective of  198 

b d
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Fig. 1. Gene expression patterns in single cell data. (A) 
UMAP of full single cell dataset; cells are colored by 
differentiation day. (B) Estimated density of expression for 
several marker genes across cells. (C) UMAP of full single 
cell dataset; cells are colored by cell type, assigned based 
on Leiden clustering and marker gene expression. 
IPSC=induced pluripotent stem cell, MES=mesoderm, 
CMES=cardiac mesoderm, PROG=cardiac progenitor, 
CM=cardiomyocyte, CF=cardiac fibroblast, 
UNK=unknown cell type. (D) Proportion of cells belonging 
to each cell type per differentiation day, across all cell lines. 
(E) Distribution of L1TD1 (pluripotency marker), TNNT2 
(cardiomyocyte marker) and COL3A1 (cardiac fibroblast 
marker) over cells from 6 representative examples of the 19 
cell lines studied, for each of the 7 differentiation days. 
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an individual stage of differentiation, confounding tests for association between genotype and 199 
differentiation progress. Systematic differences between cell lines can exaggerate this: 200 
differentiation speed appears to vary between cell lines (Fig. 1E), such that differentiation progress 201 
at day 3, for example, is not uniform across samples. Such differences can lead to false associations 202 
between genotype and differentiation progress in cases where genotype is partially correlated with 203 
a cell line's differentiation speed.  204 
 205 
Cellular heterogeneity drives further challenges when aggregating across cells that are 206 
differentiating along diverging paths. Aggregated bulk profiles will lose information about the 207 
individual cell types present, and if cell type composition varies between individuals (Fig. 1E), 208 
this will further confound associations between genotype and expression changes during 209 
differentiation.  210 
 211 
By collecting expression at the single-cell level, we are able to address both of these challenges. 212 
To properly focus on the two primary cardiac lineages present, we used the scanpy package to 213 
produce a low-dimensional Force Atlas embedding of the cells that had been successfully assigned 214 
to a known cell type (Fig. 2A, Wolf et al. 2018, Jacomy et al. 2014). We inferred pseudotime for 215 
each cell with diffusion pseudotime (Haghverdi et al. 2016, Wolf et al. 2019), so that progress 216 
through differentiation is learned from cells' individual expression profiles rather than their time 217 
of collection (Fig. 2B). With each cell assigned to a cell type (Fig. 1C), we are additionally able 218 
to account for diverging paths by studying gene regulatory dynamics within each lineage 219 
separately. 220 
 221 
One disadvantage to single-cell data compared to bulk is that single-cell measurements are more 222 
sparse and noisy: by aggregating over cells, bulk RNA-sequencing reduces noise, which makes 223 
expression measurements more tractable for eQTL calling. We therefore partitioned cells 224 
(separately for each lineage) into pseudotime bins, pooling information across cells to mitigate the 225 
noisiness of single cell expression measurement while maintaining homogeneous populations of 226 
cells through lineage subsetting and pseudotime binning. This aggregation scheme enables us to 227 

b

c

d

f

a

e

Fig. 2. Pseudotime inference and pseudobulk 
aggregation. (A) Force atlas embedding of all 
cells from the two cardiac differentiation lineages 
combined, colored by cell type. (B) Force atlas 
embedding from (A), colored by pseudotime, 
which was inferred for each cell shown using 
diffusion pseudotime. (C) Distribution of 
normalized expression of TNNT2, a 
cardiomyocyte marker gene, across cells from the 
cardiomyocyte lineage for each differentiation 
day. (D) Normalized TNNT2 expression across 
cells from each of 16 pseudotime quantile bins 
along the cardiomyocyte trajectory. (E) 
Normalized expression of COL3A1, a cardiac 
fibroblast marker, across cells from the cardiac 
fibroblast lineage for each differentiation day. (F) 
COL3A1 expression across cells for 16 
pseudotime quantile bins along the cardiac 
fibroblast trajectory. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446970doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446970
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

produce a greater number of samples, as we are no longer constrained to the 7 days when 228 
experimental collection was performed, while maintaining the expected trends of lineage-specific 229 
marker gene expression over pseudotime (Figs. 2C-F).  230 
 231 
Mapping of dynamic eQTLs 232 
 233 
We applied a Gaussian linear model to the aggregated single-cell pseudo-bulk data based on 234 
pseudotime bins from each lineage to identify dynamic eQTLs, namely variant-gene pairs in which 235 
the interaction effect of genotype and differentiation time is significantly associated with changes 236 
in gene expression. We identified linear dynamic eQTLs for 357 genes in the cardiomyocyte 237 
lineage (q < 0.05) and 903 genes in the cardiac fibroblast lineage (Methods; Table 1). 238 
 239 
We found that both lineage specificity and the replacement of real chronological time with 240 
pseudotime improved power for dynamic eQTL detection. For comparison, using chronological 241 
differentiation day as the time variable identified only 142 and 29 dynamic eQTLs for the 242 
cardiomyocyte and cardiac fibroblast lineages, respectively. Using differentiation day as the time 243 
variable and omitting lineage specificity altogether identified only 5 dynamic eQTLs in the 244 
pseudobulk data. Ultimately, our lineage subsetting and pseudotime approach revealed more 245 
dynamic eQTLs than were previously identified in an experiment with bulk collections at over 246 
twice as many time points (Strober et al 2019). To ensure a meaningful comparison, we re-247 
processed the previously collected bulk data in a similar pipeline as pseudo-bulk, accounting for 248 
changes in hypothesis testing and filtering of variant-gene pairs (Methods). This revealed a total 249 
of 1028 genes with a dynamic eQTL (compared to a total of 1056 genes detected between both 250 
lineages with pseudobulk binned to a similar number of samples). The increased detection rate 251 
may stem from increased homogeneity of cellular populations that undergo pseudo-bulk 252 
aggregation, as well as improved measurement of differentiation progress achieved by using 253 
cellular pseudotime rather than sample collection time.  254 
 255 
As an example of the trait relevance of these dynamic eQTLs, one dynamic eQTL variant, 256 
rs1234988, has previously been implicated by GWAS to be associated with hypertension (p=2.5e-257 

Table 1. Comparison of dynamic eQTL calling methods. We report the number of dynamic eGenes (genes 
with a significant dynamic eQTL at gene-level q-value <= 0.05), for each of the aggregation schemes 
assessed. Total number of genes tested and total number of tests run are also reported.  
 

Dataset Aggregation Time Points Lineage Dynamic eGenes
Detected Total # Genes Tested Total # Tests

Pseudobulk Pseudotime 16 CM 357 8,969 1,601,727

Pseudobulk Pseudotime 16 CF 903 9,140 1,633,408

Pseudobulk Differentiation Day 7 CM 142 9,541 1,693,532

Pseudobulk Differentiation Day 7 CF 100 9,548 1,711,693

Pseudobulk Differentiation Day 7 Combined 5 9,656 1,731,798

Bulk Differentiation Day 7 Combined 210 10,772 1,963,378

Bulk Differentiation Day 16 Combined 1028 10,981 1,991,072
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35), and was detected as a dynamic eQTL for ARHGAP42, a Rho GTPase which has previously 258 
been identified as a critical regulator of vascular tone and hypertension in mice (Fig. 3A-B, 259 
Barbeira et al. 2021, Loirand and Pacaud 2014). Notably, ARHGAP42 is known to be a smooth-260 
muscle selective Rho GAP, and this dynamic eQTL was exclusively identified in the cardiac 261 
fibroblast lineage (Bonferroni-adj. p=2.4e-5, cardiac fibroblast lineage, adj. p=0.79, 262 
cardiomyocyte lineage). This variant is not detected as a dynamic eQTL without lineage subsetting 263 
or pseudotime binning (adj. p=1). This example illustrates the advantages of incorporating 264 
exploratory data analysis in the study of in vitro experimental datasets: while the differentiation 265 
procedure used for these experiments was designed to produce exclusively cardiomyocytes, an 266 
alternative terminal cell type discovered after exploratory data analysis is able to provide 267 
meaningful insight into an additional differentiation process.  268 
 269 
The pseudotime values can be interpreted as intermediate time points with greater resolution than 270 
chronological time. We therefore used these values to also identify nonlinear dynamic eQTLs, 271 
whose effects may be present only at intermediate stages of the differentiation (Fig. 3C). We 272 
identified 74 nonlinear dynamic eQTL variants for the cardiomyocyte lineage (q<0.05), and 147 273 
for the cardiac fibroblast lineage. Our time course study design is particularly useful for detecting 274 
transient nonlinear genetic effects which may not be found by studying only the initial or terminal 275 
cell types of a dynamic process such as differentiation.  276 

ba

c

Fig. 3. Linear and nonlinear dynamic eQTLs. (A) rs1234988 is a linear dynamic eQTL for ARHGAP42; 
the effect of genotype (color) on ARHGAP42 expression (y-axis) varies across pseudotime (x-axis). (B) A 
previously reported genome-wide association study (bottom) showed that hypertension is associated with 
genotype at the rs1234988 locus, where a dynamic eQTL for ARHGAP42 was identified. (C) rs1814432 is a 
nonlinear dynamic eQTL for the gene CFC1B.  
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We examined the extent to which the dynamic eQTLs detected overlapped with eQTLs previously 277 
identified in GTEx (GTEx Consortium 2020). After subsetting to gene-variant pairs that were 278 
tested in both our data and GTEx, we found that the greatest replication of pseudotime-binned, 279 
cardiomyocyte lineage linear dynamic eQTLs occurred in atrial appendage tissue (π1=0.50), while 280 
the greatest replication of pseudotime-binned, cardiac fibroblast linear dynamic eQTLs (as well as 281 
bulk) occurred in cultured fibroblasts (π1=0.47, 0.56 respectively). However, by searching directly 282 
for dynamic effects across tissues rather than within a single tissue in isolation, we additionally 283 
identify eQTLs which were not found to be a significant eQTL in any tissue in GTEx. After 284 
subsetting to variant-gene pairs that were tested in both our data and GTEx, we found that 100 of 285 
the 359 (28%) linear dynamic eQTLs in the cardiomyocyte lineage were identified as eQTLs in 286 
GTEx. Similarly, only 22 of 75 (29.3%) nonlinear dynamic eQTLs on the cardiomyocyte lineage 287 
where previously identified as eQTLs in GTEx.  288 
 289 
Deconvolution of bulk RNA sequencing data assigns lineage specificity to dynamic eQTLs 290 
 291 
The information about the landscape of cardiomyocyte information obtained through single-cell 292 
RNA sequencing can also be applied retroactively to improve dynamic eQTL calling in bulk data. 293 
For each cell type that we identified in the single cell data, we computed a signature expression 294 
profile across the top 300 differentially expressed genes that were also measured in bulk 295 
(Methods). We then used CIBERSORTx to deconvolve our bulk data, assigning to each bulk 296 
sample a vector of cell type proportions (Fig. 4A, Newman et al. 2019). Deconvolution reveals 297 
that cell type heterogeneity is prominent between samples, particularly in days 7-15. This 298 
heterogeneity emphasizes the need to account for cell type proportion in measuring genetic 299 
regulatory dynamics, as these broad differences between cell lines can drive false positive 300 
associations between time and any genotype that is correlated with broad cell type proportion 301 
differences between cell lines.  302 
 303 
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We then used these cell type proportions to identify cell type specific effects, based on cell type 304 
interaction eQTLs (ieQTLs) for each known cell type that was observed in the single cell data 305 
(Fig. 4B). In this context, where cell types represent sequential steps along a developmental 306 
lineage, ieQTL calling is analogous to dynamic eQTL calling, using cell type proportion as a proxy 307 
for differentiation progress instead of time or pseudotime. Thus, ieQTLs for a cell type at an 308 
endpoint of the differentiation (iPSC, cardiomyocyte [CM], and cardiac fibroblast [CF]) are 309 
analogous to linear dynamic eQTLs, with additional information gained by assigning lineage 310 
specificity. CM and CF ieQTLs called with this approach were replicated in the previously used 311 
dynamic eQTL calling framework on the same bulk dataset (𝜋1=0.84 and 0.43, respectively). They 312 
additionally showed enrichment for genes related to myogenesis that had not been observed among 313 
bulk dynamic eQTLs (p=7e-4, both CM and CF ieQTL, compared to p=0.17, bulk dynamic eQTL). 314 
Notably, many of the CM- and CF-ieQTLs are lineage-specific, including some which are 315 

a b

c

d

Fig. 4. Cell type deconvolution and interaction eQTL calling. (A) Cell type deconvolution was applied to 
decompose RNA expression of a mixed sample, aggregated over multiple cell types, into its constituent cell 
type proportions (Methods). Each row represents a cell line, collected in two separate experiments. In the left 
column, bulk RNA-sequencing data was collected for 15 timepoints (time on x-axis). In the right column, 
pseudobulk was aggregated across cells collected for 7 time points (time on x-axis). For pseudobulk data, 
deconvolution is not needed, as each cell is assigned to a cell type. Thus, "ground truth" cell type fractions 
are accessible as reflected here. (B) Number of genes with a cell type interaction eQTL in bulk for each of 
six cell types. (C-D) CMYA5 has an interaction eQTL for the cardiomyocyte lineage (C) that is not identified 
in the cardiac fibroblast lineage (D). 
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potentially relevant to heart-related disease. Fig. 4C-D show an example of a cardiomyocyte 316 
interaction eQTL for cardiomyopathy-associated protein 5 (CMYA5), a gene which is highly 317 
expressed in heart and skeletal muscle and has previously been associated with cardiac 318 
hypertrophy (Nakagami et al. 2007). This variant was not previously identified by GTEx as an 319 
eQTL for CMYA5.  320 
 321 
The discovery of additional dynamic eQTLs in bulk data with fewer differentiation time points 322 
sampled, as well as the ability to distinguish lineage-specific dynamic eQTLs from bulk data, 323 
demonstrate the utility of single-cell RNA-seq data matched to bulk samples to uncover dynamic 324 
genetic effects throughout a differentiation time course. 325 
 326 
 327 
Discussion 328 
 329 
Using iPSCs and their derived terminal cell types, we can identify genetic effects related to 330 
dynamic changes in gene expression over time. We used single-cell gene expression data to 331 
investigate the effects of gene regulatory and cell type composition changes throughout a 332 
cardiomyocyte differentiation time course. Single-cell data enables us to identify cells going down 333 
distinct differentiation trajectories, and to deconvolve heterogeneous cell types in matched bulk 334 
samples.  335 
 336 
One question that arises from these single-cell data is the interpretation of distinct differentiation 337 
trajectories and potentially different cell types at the end of the time course. We found that, in later 338 
stages of differentiation (days 7, 11, and 15), most cells have either high gene expression of cardiac 339 
troponin T (TNNT2) and associated genes such as myosin light chain/MYL7, or high gene 340 
expression of a collagen-coding gene (COL3A1) and associated genes such as vimentin/VIM, as 341 
discovered through a semi-supervised pipeline which includes dimensionality reduction, 342 
unsupervised clustering, and visualization of expression patterns for known marker genes (Fig. 343 
1B). Cells broadly express either of these gene sets in a mutually exclusive manner, suggesting 344 
that these gene sets represent two distinct cell types. The focus of this project was not to fully 345 
characterize these cell types, but instead to disentangle the broad effects of cell line differences in 346 
differentiation rate/ lineage preference from the dynamics of cis-regulation of gene expression. 347 
Still, the identity of these terminal cell types and the circumstances in which each trajectory might 348 
be favored is an interesting question. 349 
 350 
These data suggest that there are differences in gene expression trajectory and ultimate cell fate 351 
that may arise in response to the same differentiation protocol. The identity of these terminal cell 352 
types, and the factors that might cause a cell line to favor one differentiation trajectory and ultimate 353 
cell type at the expense of another, are questions that have been explored in previous studies. In a 354 
study by D’Antonio-Chronowska et al. (2019), embryonic stem cell lines undergoing cardiac 355 
differentiation resulted in a heterogeneous cell type population. These cells were identified as 356 
either true cardiomyocytes --which exhibit mechanical beating and have high expression of 357 
TNNT2--or “epicardium-derived cells” which do not exhibit mechanical beating and have high 358 
expression of gene markers such as VIM and TAGLN. The study demonstrated that these two cell 359 
types were present in varying proportions in each individual cell line, and suggests that this cell 360 
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fate decision can be influenced by genetic factors, such as variability in X chromosome gene 361 
dosage (D’Antonio-Chronowska et al. 2019). 362 
 363 
The cardiomyocyte and epicardium framework explored by D’Antonio-Chronowska et al. may be 364 
useful in understanding the distinct differentiation trajectories present in our cardiac 365 
differentiations. The terminal non-cardiomyocyte cells expressing COL3A1 in these samples may 366 
represent an endothelial or cardiac fibroblast cell type, which derive from the epicardium cell 367 
lineage. Cardiac fibroblasts express gene markers such as collagen and vimentin, which were 368 
found to be expressed in the terminal cells of this differentiation trajectory (Brade et al. 2013, Ieda 369 
et al. 2009, Zhang et al. 2019). The gene expression profile of COL3A1-expressing cells, which 370 
includes high expression of genes related to extracellular matrix and physical cellular structure, 371 
implies that these terminal cells may be involved in providing some kind of structural support, 372 
perhaps as a reinforcement to true beating cardiomyocytes. 373 
 374 
To determine whether differentiation trajectory and ultimate cell fate decision is influenced by 375 
genetic factors, it may be useful to perform cardiomyocyte differentiation with multiple replicates 376 
of each cell line, and compare the differentiation trajectories between these replicates. The 377 
relatively high correlation between these single-cell RNA-seq samples compared to matched bulk 378 
RNA-seq samples of the same cell line (Strober et. al 2019) suggests that there may be genetic 379 
factors involved in this trajectory decision -- although more rigorous testing should be performed 380 
to investigate this claim. We may also investigate whether subtle systematic differences exist 381 
between cell lines even in the iPSC stage (Day 0), and whether these differences correlate with the 382 
ultimate trajectory of these cell lines during differentiation. Recent studies have suggested that 383 
there may be genes whose expression level at the iPSC stage correlates with downstream 384 
differentiation efficiency in a predictable manner (Cuomo et al. 2020 and Jerber et al. 2020). Their 385 
results suggest that the decision for ultimate cell type trajectories remains consistent within a cell 386 
line, and that iPSCs from those cell lines exhibit distinct gene expression profiles that can be used 387 
to accurately predict differentiation trajectories even before differentiation begins. This is an 388 
intriguing possibility, and more work should be performed to investigate whether the cell lines 389 
used here also exhibit distinct gene expression profiles early on that may correlate with the 390 
outcomes of any subsequent differentiation. 391 
 392 
It is worth noting that the task of regression on an estimated latent variable (such as pseudotime, 393 
in dynamic eQTL calling, or cell type proportion, in cell type interaction eQTL calling), while 394 
biologically interesting, poses a challenge for statistical inference. Pseudotime and cell type 395 
proportions are estimated from expression data, rather than being experimentally measured. As a 396 
result, this represents an example of 'double dipping', where we determine which hypotheses to 397 
test downstream of exploratory data analysis. Such contexts have motivated interesting recent 398 
work in selective inference to address inflated type I error rates (Taylor et al. 2015, Gao et al. 399 
2020). The jackstraw procedure (Chung and Storey 2015) accounts for selective inference in the 400 
context of regression on a continuous latent variable, but its application to pseudotime inference 401 
in this case is infeasible, as the procedure depends on latent variable inference for each of many 402 
resampling iterations. It is also worth noting that both dynamic and cell type interaction eQTLs 403 
assess effects of the interaction of genotype (a measured variable) with a latent variable, rather 404 
than the latent variable itself, which may mitigate the inflation effects of double dipping. We 405 
demonstrate in simulation that the fixed-effect linear model used in this study was conservative in 406 
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the presence of multiple measurements per individual, and did not lead to type I error inflation 407 
(Methods, Fig. S18). As unsupervised and semi-supervised machine learning methods provide 408 
increasingly reliable estimates of biologically important latent variables such as pseudotime, this 409 
will become an increasingly important area for further statistical methods development.  410 
 411 
All together, the results from this study demonstrate the benefit of using single-cell RNA-412 
sequencing with a balanced time course study design to investigate dynamic gene regulatory 413 
differences between individuals during cellular differentiation. Single-cell data offers a high-414 
resolution view of the landscape of differentiation, which we leveraged to infer pseudotime along 415 
multiple differentiation trajectories. By isolating axes of variation of cis-regulatory dynamics 416 
(pseudotime within a particular lineage, rather than chronological differentiation day), we were 417 
able to identify a greater number of dynamic eQTLs with less than half as many collection time 418 
points as previous efforts in bulk RNA-seq data. The dynamic eQTLs detected included variants 419 
which overlapped known GWAS hits, demonstrating the utility of this approach in identifying 420 
causal loci that underlie risk for development of disease. We also used this data to lend new utility 421 
to bulk RNA-seq datasets, by assigning lineage specificity to dynamic eQTLs through the use of 422 
cell type interaction eQTL calling. While further follow-up studies should be performed to validate 423 
the function of these genomic loci and their potential relevance to downstream phenotypes, the 424 
dynamic genetic effects identified in this study and the methodology used to identify them provide 425 
a resource for investigating mechanisms underlying important biological processes such as cellular 426 
differentiation and perturbation response. 427 
 428 
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Materials and Methods 449 
 450 
Samples We used induced pluripotent stem cell (iPSC) lines from 19 individuals from the 451 
Yoruba HapMap population. These iPSC lines were reprogrammed from lymphoblastoid cell 452 
lines and characterized previously (Banovich et al. 2018). All 19 individuals were female and 453 
unrelated. We chose to use only female individuals to avoid introducing additional variance that 454 
is not of interest in this study. 455 
 456 
iPSC Maintenance Feeder-free iPSC cultures were maintained on Matrigel Growth Factor 457 
Reduced Matrix (CB40230, Thermo Fisher Scientific, Waltham, MA) with Essential 8 Medium 458 
(A1517001, Thermo Fisher Scientific) and Penicillin/Streptomycin (30002Cl, Corning, Corning, 459 
NY). Cells were grown in an incubator at 37°C, 5% CO2, and atmospheric O2. Cells were 460 
passaged to a new dish every 3-5 days using a dissociation reagent (0.5 mM EDTA, 300 mM 461 
NaCl in PBS) and seeded with ROCK inhibitor Y-27632 (ab120129, Abcam, Cambridge, UK). 462 
 463 
Cardiomyocyte Differentiation We differentiated iPSCs using a protocol previously optimized 464 
for use with the Yoruba HapMap panel (Banovich et al. 2018). This protocol implements slight 465 
modifications to the cardiomyocyte differentiation protocols from Lian et al. 2013 and Burridge 466 
et al. 2014. Feeder-free iPSCs were seeded onto wells of a 6-well plate and grown for 3-5 days 467 
prior to differentiation. When most lines were 70%-100% confluent, E8 media was replaced with 468 
“heart media” along with 1:100 Matrigel hESC-qualified Matrix (08-774-552, Corning) and 469 
12uM of GSK-3 inhibitor CHIR99021 trihydrochloride (4953, Tocris, Bristol, UK). “Heart 470 
media” is composed of RPMI (15-040-CM, Thermo Fisher Scientific) with B27 Supplement 471 
minus insulin (A1895601, Thermo Fisher Scientific), 2mM GlutaMAX (35050-061, Thermo 472 
Fisher Scientific), and 100mg/mL Penicillin/Streptomycin (30002Cl, Corning). CHIR99021 is a 473 
small molecule that activates WNT signaling and initiates the differentiation on day 0 (after the 474 
‘day 0’ cell collection) (Lian et al. 2012). “Heart media” was replaced 24 hours later at day 1 of 475 
differentiation. 48 hours later, at day 3 of differentiation, cells were fed with new “heart media” 476 
containing 2uM of the WNT inhibitor Wnt-C59 (5148, Tocris) (Lian et al. 2013). We cultured 477 
cells in Wnt-C59 heart media for 48 hours. At day 5, Wnt-C59 was removed, and base “heart 478 
media” was added. “Heart media” was refreshed on days 7, 10, 12, and 14 of differentiation. 479 
Cells began spontaneous mechanical beating between days 7 and 13 of differentiation. 480 
 481 
In some cases, after performing cardiac differentiation, one might choose to perform a post hoc 482 
purification process to remove any non-cardiac cell types present at the terminal time point 483 
(Tohyama et al. 2013). However, for the purposes of a time course experiment where multiple 484 
intermediate time points are assayed, a purification protocol undertaken only at the end of the 485 
differentiation would not prove useful; therefore, no cell type purification was performed. 486 
 487 
Sample Collection and Processing We performed cardiomyocyte differentiations in three total 488 
batches of six to seven cell lines at a time. For each batch, cardiomyocyte differentiations were 489 
performed with three staggered starting days, such that samples could be collected from each cell 490 
line in three differentiation stages at any given time. For all 19 cell lines, samples were collected 491 
on differentiation days 0 (iPSC, before treatment with CHIR99021), 1, 3, 5, 7, 11, and 15. Drop-492 
seq collection was performed a total of three collection days for each batch of six to seven cell 493 
lines. In the first collection day, samples from all cell lines in the batch were collected for 494 
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differentiation days 1, 3, and 7. In the second collection day, samples from all cell lines in the 495 
batch were collected for differentiation days 5, 7, and 11. In the third collection day, samples 496 
from all cell lines in the batch were collected for differentiation days 0 (iPSC), 11, and 15. 497 
Through this process, single-cell gene expression data was collected for all cell lines in seven 498 
unique time points, with two time points (differentiation days 7 and 11) having two replicates. 499 
This staggered differentiation and collection study design was performed to minimize the 500 
technical effect of sample collection as a potential confounding variable associated with cell line 501 
or differentiation day. 502 
 503 
To harvest the samples at the start of each collection day, cells in at least two wells of a 6-well 504 
culture dish were released from the dish using Accutase (BD Biosciences, San Jose, CA, 505 
#561527). Samples were washed three times and resuspended in 1X PBS, 0.01% BSA. Cells 506 
were then passed through a 40 um filter to encourage the formation of a single cell suspension. 507 
The concentration of each single cell suspension was quantified manually using an NI 508 
hemocytometer (INCYTO, Cheonan, Korea, DHC-N01-2). 509 
 510 
Using a 125 um Drop-seq microfluidic device, single cells were captured in droplets along with a 511 
DNA barcoded bead (ChemGenes, Wilmington, MA, Macosko-2011-10(V+)), following the 512 
standard Drop-seq protocol (Macosko et. al 2015). The DNA barcoded beads include a cell-513 
specific barcode so the cell identity of each RNA molecule can be recovered. After Drop-seq 514 
collection, the RNA molecules were reverse transcribed, and cDNA amplification was performed 515 
according to the Drop-seq protocol. cDNA concentration and library size were measured using 516 
the Qubit 3 fluorometer (Thermo Fisher) and BioAnalyzer High Sensitivity Chip (Agilent, Santa 517 
Clara, CA, #5067-4626). 518 
 519 
Library preparation was performed using the Illumina Nextera XT DNA Library Preparation Kit 520 
(Illumina, FC-131-1096). Libraries in each batch were multiplexed together so that every 521 
sequencing lane contained three samples, one from each of the three collection days. Each of 522 
those samples was itself a multiplexed collection of three individual cell lines at three distinct 523 
differentiation time points, which were mixed upon Drop-seq collection. Samples went through 524 
paired-end sequencing using the Illumina NextSeq 500. 20 bp were sequenced for Read 1, and 525 
60 bp for Read 2 using Custom Read 1 primer, 526 
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC, according to manufacturer’s 527 
instructions (Macosko et al. 2015). The same multiplexed library pool was sequenced twice with 528 
the goal of achieving at least 20 million reads per sample. 529 
 530 
We recorded 20 technical and biological covariates and measured their contribution to variation 531 
in our data (Fig. S9). 532 
 533 
RNA-seq quantification For each sequencing run, we obtained paired-end reads, with one pair 534 
representing the cell-specific barcode and unique molecular identifier (UMI), and the second pair 535 
representing a 60 bp mRNA fragment. We used dropseqRunner (available at 536 
github.com/aselewa/dropseqRunner) which takes a fastq file with paired-end reads as input and 537 
produces an expression matrix corresponding to the UMI of each gene in each cell. All RNA-seq 538 
samples were aligned to the human genome (GRCh38) using STAR-solo (Dobin et al. 2013). We 539 
used featureCounts (Liao et al. 2014) to assign each aligned read to a genomic feature, and 540 
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umi_tools (Smith et al. 2017) to create a count matrix representing the frequency of each feature 541 
in our dataset. We then used the single-cell demultiplexing software 'demuxlet' to assign to each 542 
cell a probability that the cell is a doublet (Kang et al. 2018; Fig. S3, S4, S14).  543 
 544 
The following filter was applied to remove 21,725 rare genes (out of 60,668) from downstream 545 
analysis: 546 
 547 

• Gene must be detected in at least 10 cells 548 
 549 
The following filters were then applied to remove 330,750 low-quality cells (out of 564,362) for 550 
downstream analysis: 551 
 552 

• Maximum doublet probability of 0.3 from demuxlet 553 
• Unambiguous assignment of the cell to an individual by demuxlet (maintain cells not 554 

assigned to 'doublet_ambiguous') 555 
• Maximum of 25% mitochondrial reads 556 
• Minimum of 300 unique genes detected (of the genes that passed the previous filtering 557 

step) 558 
 559 
Following these filtering steps, an additional 2,826 cells were removed whose feature or read 560 
counts were more than 4 standard deviations away from the median. This left a total of 230,786 561 
cells and 38,943 genes for downstream analysis.  562 
 563 
Cell cycle correction and normalization of single-cell expression data with Seurat We used the 564 
Seurat workflow for cell cycle regression in differentiating. Each cell was assigned a score for 565 
G2/M phase and S phase according to marker gene expression, and the difference between these 566 
scores was regressed out during normalization. The data was then normalized using the 567 
SCTransform function in (Stuart et al. 2019, Hafemeister and Satija 2019), producing corrected 568 
counts, log-normalized corrected counts, Pearson residuals, and a set of highly variable features. 569 
The Pearson residuals of 1,000 highly variable features were scaled so that each gene had unit 570 
variance across all cells for downstream analysis. 571 
 572 
Dimensionality reduction and clustering with scanpy Dimensionality reduction, clustering and 573 
pseudotime were performed using the scanpy package (Wolf et al. 2018), following Seurat object 574 
to h5ad conversion via the sceasy package (Cakir et al. 2020). The scaled Pearson residuals from 575 
1000 highly variable features were used to compute 50 principal components (PCs), which were 576 
then embedded into a 2D UMAP plot (Fig. 1A,1C). These 50 PCs were also used to produce a 577 
neighborhood graph, and Leiden clustering was performed at resolution 0.35 to produce the 578 
clusters shown in Fig. 1C. (Several clusters are merged into the unknown cell type, as described 579 
below). 580 
 581 
Lineage specification and pseudotime inference Based on marker gene expression patterns (Fig. 582 
1B), 6 of the 10 Leiden clusters were annotated with known cell types. To facilitate trajectory 583 
reconstruction, 3 outlier clusters with less than 5,000 cells were removed. Cluster 7 contained a 584 
group of cells which did not express marker genes for cardiomyocytes or progenitor cell types, 585 
and instead expressed a group of genes that are specifically expressed in hepatocytes, a cell type 586 
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stemming from the endoderm layer rather than the mesoderm layer. This small population of 587 
cells drove a significant amount of variation in the data (Fig. S5), making it difficult to properly 588 
resolve the mesoderm-specific lineages that were the focus of this project. For this reason, the 589 
cells assigned to one of the mesoderm-specific lineages (clusters 1-6) were isolated, log-590 
normalized gene expression was re-centered and re-scaled, and PCA was re-run on specifically 591 
these cells to properly focus on the variation among the lineages of interest. The top 3 re-592 
computed PCs were used to calculate a new neighborhood graph, which was used to compute a 593 
new embedding to visualize specifically the two cardiac-related differentiating lineages (Fig. 594 
2A). The bifurcation into separate cardiac fibroblast and cardiomyocyte lineages can clearly be 595 
observed in the PAGA plot (Fig. S6), which was created with the previously described cell type 596 
annotations, the re-computed neighborhood graph, and an edge weight threshold of 0.15. This 597 
PAGA embedding was used to define the two lineages used for downstream lineage isolation 598 
tasks, where all iPSC, mesoderm, cardiac mesoderm, and cardiac progenitor cells are assigned 599 
jointly to both lineages, while cardiomyocyte and cardiac fibroblast (terminal cell types) are 600 
unique to their corresponding lineage. Finally, four diffusion components were computed from 601 
the new neighborhood graph, and diffusion pseudotime was used to assign pseudotime values to 602 
cells from both cardiac lineages.  603 
 604 
Pseudobulk expression aggregation and normalization Although the noisiness of single cell 605 
expression profiles necessitates aggregation across cells before dynamic eQTL calling, an 606 
improved understanding of the differentiation landscape allows us to pursue an aggregation 607 
strategy that mitigates the confounding impact of cellular composition differences and offers 608 
greater power than dynamic eQTL calling on bulk samples. Three pseudobulk aggregation 609 
schemes were used in this study: 610 
 611 

1. Chronological differentiation day binning - This strategy is most directly comparable to 612 
bulk RNA-sequencing. Aggregation is performed by taking the sum of SCTransform-613 
corrected counts from all cells from the same differentiation day and individual.  614 

2. Lineage subsetting - Differentiation day binning was performed within each lineage 615 
separately. As evidenced by the PAGA graph, all cells up to the progenitor cell type 616 
(PROG) are assigned to both lineages, only cells from the terminal cell type 617 
(cardiomyocyte or cardiac fibroblast) are unique to one lineage or another.  618 

3. Lineage subsetting & pseudotime binning - After lineage subsetting, cells are partitioned 619 
into 16 quantile bins according to pseudotime. We chose 16 bins in order to directly 620 
compare to our previous 16 time-point bulk experiment (see Fig. S7). Aggregation then 621 
consists of the sum of SCTransform-corrected counts from cells within the same cell line 622 
and pseudotime bin.  623 

 624 
After pseudobulk aggregation, low-depth samples with library size less than 10,000 were filtered 625 
out. Remaining samples underwent TMM normalization with singleton pairing through the 626 
edgeR package so that expression could be compared across samples for dynamic eQTL calling 627 
(Robinson et al. 2010, Robinson and Oshlack 2010). We then transform the TMM-normalized 628 
counts into compute counts per million (CPM) for each sample, and apply log normalization 629 
(with the edgeR package, which uses an approach to pseudocount addition that is adapted for 630 
library size). These logCPM expression values are used for QTL calling. 631 
 632 
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Bulk expression normalization In order to properly compare bulk RNA-seq data to our 633 
pseudobulk data, we reprocessed the bulk data from a previous experiment in a way that is 634 
intended to most closely match the logcpm pseudobulk expression. For this reason, we used 635 
transcripts per million (TPM) instead of previously used reads per kilobase of transcript, per 636 
million mapped reads (RPKM). For each sample, we first divided each gene's counts by the 637 
length in kilobase to compute reads per kilobase (RPK), and then fed these adjusted expression 638 
values into the same normalization pipeline as was used for pseudobulk counts (which are not 639 
biased by gene length) - TMM normalization with singleton pairing and logCPM adjustment, 640 
with the edgeR package.  Since the input was reads per kilobase rather than counts, this gives 641 
logTPM expression values for use in QTL calling.  642 
 643 
Sample PCA To identify primary sources of variation between samples, we ran principal 644 
component analysis (PCA) on the gene expression matrix for pseudobulk data. The first principal 645 
component is correlated with differentiation time (Fig. S8). For the top 10 PCs, we calculated the 646 
percent variance explained of each principal component by each technical factor recorded during 647 
sample collection (Fig. S9). 648 
 649 
Cell line collapsed PCA To perform dynamic eQTL calling, we search for changes in gene 650 
expression over time that are correlated with a specific genotype. This can be confounded by 651 
broad differences between cell lines across the differentiation time course, such as differences in 652 
differentiation speed, lineage preference, or technical factors. For example, assume cell lines 653 
with genotype G at locus i generally have increasing proportions of cardiomyocytes over time, 654 
while cell lines with genotype C at locus i have increased proportions of cardiac fibroblasts over 655 
time. In this case, any gene whose expression is upregulated in cardiomyocytes will appear to 656 
have a dynamic eQTL at locus i, regardless of any cis-regulatory dynamics related to that gene, 657 
which constitute the intended focus of this study.  658 
 659 
With single-cell data, we are able to more directly account for some of these factors, namely 660 
differentiation speed (with pseudotime binning) and lineage preference (with lineage subsetting). 661 
However, it remains useful to control for any broad cell line differences in this more 662 
unsupervised fashion, as any broad effects could drive false positive QTL detection. 663 
 664 
We used a “cell line collapsed PCA” approach to identify such patterns across the entire time 665 
course (Strober et al. 2019). To identify cell line collapsed PCs, we rearranged the gene 666 
expression matrix from the standard pseudobulk expression quantification such that each row 667 
represented expression from one cell line and each column represented a gene at a single time 668 
point. After standardizing each column to have zero mean and unit variance, we applied PCA to 669 
this matrix to learn a low dimensional representation. Each cell line has a shared loading across 670 
all time points, and PCs reflect trajectories across all genes. We controlled for the first five cell 671 
line collapsed PCs when detecting both linear and nonlinear dynamic eQTLs, in both bulk and 672 
pseudobulk. 673 
 674 
To detect cell line specific patterns that may potentially be confounding variables in our dynamic 675 
eQTLs, we calculated the frequency at which each pair of cell lines share the same genotype 676 
across all significant dynamic eQTLs, compared to what is expected by chance. After controlling 677 
for five cell line collapsed PCs, cell lines do not share the same genotype at more significant 678 
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eQTLs than expected by chance, confirming that cell line PCs adequately address these potential 679 
confounding effects (Fig. S15). 680 
 681 
Genotype data We used previously collected and imputed genotype data for the 19 Yoruba 682 
individuals from the HapMap and 1000 Genomes Project (Degner et al. 2012). For eQTL 683 
analyses, we filtered to variants with no missingness and a minor allele frequency of at least 0.1 684 
across the 19 individuals present.  685 
 686 
Dynamic cis-eQTL test selection We selected which genes to check for dynamic eQTLs based 687 
on the following filters: 688 
 689 

• Gene must have at least 0.1 CPM in at least 10 bulk/ pseudobulk samples  690 
• Gene must have at least 6 counts (reads) in at least 10 samples  691 

 692 
Both of these filters were applied separately for each aggregation scheme. We tested all variants 693 
within 50kb of the transcription start site of each gene. Transcription start sites were obtained 694 
from Gencode's release 37 (GRCh38.p13, Frankish et al. 2019) basic gene annotation, and 695 
matched to mapped genes by Ensembl gene ID. The total number of tests is presented alongside 696 
the number of dynamic eQTLs detected in tables 1 and 2. 697 
 698 
Linear dynamic eQTLs using single-cell pseudobulk data Linear dynamic eQTLs are cis-699 
eQTLs whose effects are linearly modulated by differentiation time. We detected linear dynamic 700 
eQTLs with a Gaussian linear model that quantified the interaction between genotype and 701 
differentiation time on gene expression, while controlling for the linear effects of both genotype 702 
and differentiation time. We also controlled for linear effects of the first five cell line collapsed 703 
PCs (see below). 704 
 705 
Following the method used in Strober et al 2019, we built a separate linear model for each tested 706 
variant-gene pair. Specifically, let 𝑡 denote the time point (or, for pseudotime binning, the 707 
median pseudotime value across cells constituting the pseudobulk sample) of the current sample, 708 
𝑐 denote the cell line of the current sample, T denote the total number of time points, and C 709 
denote the total number of samples. 𝐸 ∈ 𝑅!"#denotes the standardized expression matrix for the 710 
current gene, 𝐺 ∈ 𝑅!denotes the dosage based genotype vector for the current variant, and 711 
𝑃𝐶$ ∈ 𝑅!denotes the Kth cell line collapsed PC vector. We modeled the expression levels as 712 
follows: 713 
 714 
𝐸%&~	𝑁(𝜇 + 𝛽'𝐺% +	𝛽(𝑡 +	𝛽)𝑃𝐶%' +⋯+	𝛽*𝑃𝐶%+ +	𝛽,𝑃𝐶%'𝑡 + ⋯+	𝛽'(𝑃𝐶%+𝑡 + 𝛽')𝐺%𝑡, 𝜎) 715 

 716 
We used lmFit from the limma package to fit this model, and used a t-test to measure the 717 
significance of the genotype and time coefficient (𝛽13).  718 
 719 
Bonferroni correction was applied to account for multiple SNPs being tested per gene, and 720 
Storey's q-value was used to control false discovery rates at the gene level, after selecting the 721 
most significant dynamic eQTL per gene. Genetic correlation among significant dynamic 722 
eQTLs, which could be indicative of broad effects driving inflated type I error rates, did not 723 
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appear to significantly differ from background variants within 50kb of a TSS matched for minor 724 
allele frequency (Fig. S15).   725 
 726 
Nonlinear dynamic eQTLs using single-cell pseudobulk data To detect dynamic eQTLs whose 727 
effect size changes non-linearly with time, we used a second order polynomial basis function 728 
over time, which alters the above linear dynamic eQTL model as follows:  729 
 730 
𝐸%&~	𝑁(𝜇 + 𝛽'𝐺% +	𝛽(𝑡 +	𝛽)𝑡( + 𝛽-𝑃𝐶%' +⋯+	𝛽,𝑃𝐶%+ +	𝛽.𝑃𝐶%'𝑡 + 𝛽'/𝑃𝐶%'𝑡(…+	𝛽'*𝑃𝐶%+𝑡731 

+ 𝛽',𝑃𝐶%+𝑡( + 𝛽'.𝐺%𝑡 + 𝛽(/𝐺%𝑡(, 𝜎) 732 
 733 
Once again, time is either time of collection, or median pseudotime of the sample. As before, we 734 
used lmFit from the limma package to fit this model, and this time used a similar t-test to 735 
measure the significance of the genotype and quadratic time coefficient (𝛽20). Multiple testing 736 
correction was applied as with linear dynamic eQTL calling. 737 
 738 
Permutation analysis We assessed calibration of our dynamic eQTL calling methods with 739 
permutations. If we permute the time variable in the interaction term, we do not expect this term 740 
to properly capture interactions between genotype and time. For each variant-gene pair, we 741 
performed an independent permutation of the time variable in the interaction term, across all 742 
(cell line, day) samples. The results of this analysis are shown in Fig. S10. As another check for 743 
confounding factors, we checked whether dynamic eQTLs were enriched for genotypes shared 744 
between any particular pair of individuals (suggesting broad individual differences could be 745 
driving the dynamic eQTLs, Fig. S10).  746 
 747 
Simulations to examine type I errors due to 'double dipping' We conducted simulations to 748 
evaluate potential type I error inflation caused by selective inference. We simulated gene 749 
expression data from the following linear mixed model: 750 
 751 

𝑌012 = 𝛽2𝐺02 + 𝛼2𝑀01 + 𝑎02 + 𝜖012 , 752 
 753 
Here 𝑌012 is the expression of gene 𝑘 in cell 𝑗 of individual 𝑖, where 𝑘 = 1,… ,1000, 𝑗 =754 
1,… ,100 and 𝑖 = 1,… , 𝑛. The sample size 𝑛 is 10 or 20. We assumed one cis-eQTL per gene. 755 
To simulate the genotype 𝐺02, we first generated the minor allele frequency (𝑀𝐴𝐹2) from 756 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,0.5) and then generated 𝐺02~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,𝑀𝐴𝐹2).  757 
The other variables included genetic effect size 𝛽2, cell maturity 𝑀01 and its effect size 𝛼2, 758 
individual-specific random effect 𝑎02 and error term 𝜖012. They were generated from the 759 
following distributions: 760 
 761 

𝛽2~𝑁O0, 𝜎3(P, 𝑀01~𝑁(0,1), 𝛼2~𝑁(0, 𝜎4() 762 
 763 

(𝑎0', … , 𝑎0,'///)~𝑁(0, 𝜎(Σ), (𝜖01', … , 𝜖01,'///)~𝑁(0, 𝜎6(Σ),		 764 
 765 
Note that (𝑎0', … , 𝑎0,'///) are i.i.d. across individuals and (𝜖01', … , 𝜖01,'///) are i.i.d. across 766 
individuals and cells, but they are both correlated across genes. To construct a realistic 767 
correlation structure, we chose Σ to be the correlation matrix of the expression of 1000 randomly 768 
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selected genes from our pseudo bulk data. We fixed 𝜎4( + 𝜎( = 0.3 so that cell maturity and 769 
individual specific random effect explained 30% variance of expression and varied 7!

"

7"
=770 

0, 0.1, 0.5, 1, 2, 10. We then generated the genetic effect size 𝛽2~𝑁(0,0.1() or 𝑁(0,0.4(), 771 
corresponding to on average 0.4% or 6.3% variance of gene expression explained by genetic 772 
effects. The variance of the error term 𝜎6( was chosen so that the expression of each gene has unit 773 
variance. 774 
 775 
We defined the pseudo time in this simulation study to be the first gene expression principal 776 
component (PC). We divided the cells into three equal pseudo time bins and averaged expression 777 
of the cells for each individual in each pseudo time bin into pseudo bulk expression (𝑌T082). We 778 
also calculated the average pseudo time for cells 779 
 within each pseudo bulk sample, denoted by 𝑡08. We tested two models for dynamic eQTL 780 
calling (fitted for each gene k separately): 1) linear mixed model with individual-specific random 781 
effects  𝑌T082~𝐺02 + 𝑡08 + 𝐺02𝑡08 + (1|individual); 2) linear model 𝑌T082~𝐺02 + 𝑡08 + 𝐺02𝑡08 without 782 
random effects. Type I error was calculated across 1000 genes (Fig. S18). The simulation 783 
suggests that a fixed-effect linear model for dynamic eQTL calling, as used in this study, was 784 
conservative in the presence of multiple measurements per individual and did not lead to type I 785 
error inflation. The more powerful linear mixed model did lead to moderate inflation. 786 
 787 
Correlation between bulk and pseudobulk data We calculated the Pearson correlation of the 788 
normalized gene expression matrix from matched bulk RNA-seq data (Strober et al 2019) with 789 
the normalized gene expression matrix from pseudobulk RNA-seq data. We observed a high 790 
correlation of gene expression values between bulk and pseudobulk samples of any given 791 
differentiation day (Fig. S11), and a consistent pattern of correlation for all cell lines (Fig. S12).  792 
 793 
Bulk dataset deconvolution using single cell data Cell type deconvolution was performed using 794 
CIBERSORTx (Rusk 2019). The method was first assessed for accuracy using pseudobulk data, 795 
where a ground truth is available. Cells from each annotated cell type were split into training 796 
(60% of cells) and testing (40%) groups. The annotated Seurat object was subset to training data, 797 
and the FindAllMarkers command was used to identify a subset of 404 genes for use in 798 
deconvolution. We removed genes that were not measured in bulk, leaving 317 genes for use in 799 
deconvolution. A gene expression signature matrix was created from exclusively the training 800 
data by taking the sum of SCTransform-corrected counts within each cell type. Normalization of 801 
the signature matrix was performed using edgeR: normalization factors were first computed with 802 
‘TMMwsp’ method, then TMM-normalized counts were converted to counts per million. To 803 
assess the accuracy of this approach, we then used the same normalization pipeline to aggregate 804 
pseudobulk by sample for the testing data, where samples corresponded to a (cell line, 805 
differentiation day) combination (Fig. S13). To perform deconvolution of the bulk RNA 806 
sequencing data, we used the signature matrix described above and subset the bulk data to the 807 
317 genes contained in the signature matrix.  808 
 809 
Cell type interaction eQTLs To account for variable cell type composition in bulk RNA-seq 810 
data, rather than looking for cis-eQTLs whose effects are modulated by time (linear dynamic 811 
eQTLs), we looked for those whose effects are modulated by cell type proportion (Kim-812 
Hellmuth et al. 2020). This mitigates the confounding impact of lineage preference on dynamic 813 
eQTL calling, as well as differences in differentiation speed (to the extent that this is captured by 814 
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cell type proportion). To do so, we replaced the time variable in the dynamic eQTL model with 815 
cell type proportion as follows: 816 
 817 

𝐸%&~	𝑁(𝜇 + 𝛽'𝐺% +	𝛽(𝐾%& +	𝛽)𝑃𝐶%' +⋯+	𝛽*𝑃𝐶%+ +	𝛽,𝑃𝐶%'𝐾%& +⋯+	𝛽'(𝑃𝐶%+𝐾%&818 
+ 𝛽')𝐺%𝐾%& , 𝜎) 819 

 820 
Where Kct is the CIBERSORTx inferred cell type proportions in the sample. Separate models 821 
were built for each variant-gene pair, in each cell type except the ‘unknown’ cell type. We 822 
additionally explored a model in which we regressed out all cell type proportions (except the 823 
unknown cell type, as cell type proportions are constrained to sum to 1).  824 
 825 

𝐸%&~	𝑁(𝜇 + 𝛽'𝐺% +	𝛽(𝐾9:;!+. . . +𝛽*𝐾!< +	𝛽,𝑃𝐶%' +⋯+	𝛽'(𝑃𝐶%+ +	𝛽')𝑃𝐶%'𝐾%& +⋯826 
+	𝛽'*𝑃𝐶%+𝐾%& + 𝛽',𝐺%𝐾%& , 𝜎) 827 

 828 
Note that while all fixed cell type proportion terms are included as covariates, there is only one 829 
interaction term for a single cell type proportion. Therefore, once again, separate models were fit 830 
for each variant-gene pair, in each cell type except 'unknown'. We found that regressing out 831 
additional cell types, not just the one included in the interaction term, led to detection of a greater 832 
number of genes with a cell type interaction eQTL (Fig. S16). To check whether these additional 833 
covariates were in fact introducing false positive associations between individuals, we measured 834 
the pairwise genetic correlation between cell lines among the top hits detected after regressing 835 
out additional cell type proportions. We then compared this to the genetic correlation among a 836 
set of hits detected before regressing out additional cell type proportions, matched for minor 837 
allele frequency. We did not see an increase in genetic correlation among significant tests 838 
introduced by incorporation of additional covariates (Fig. S17). However, we did observe a 839 
lower replication rate of this expanded set of interaction eQTLs among linear dynamic eQTLs 840 
(𝜋1=0.69 and 0.32, respectively, compared to 0.84 and 0.43 under the first model).  841 
 842 
We also explored including sample-level principal components as covariates in the linear model:  843 
 844 

𝐸%&~	𝑁(𝜇 + 𝛽'𝐺% +	𝛽(𝑈'+. . . +𝛽*𝑈+ +	𝛽,𝑃𝐶%' +⋯+	𝛽'(𝑃𝐶%+ +	𝛽')𝑃𝐶%'𝐾%& +⋯845 
+	𝛽'*𝑃𝐶%+𝐾%& + 𝛽',𝐺%𝐾%& , 𝜎) 846 

 847 
Where U1 represents the first sample principal component, as opposed to PCc1, the first cell line 848 
principal component. Here, we again found that additional covariates led to an increased number 849 
of cell type interaction eQTLs detected (Fig. S16): for several cell types (pluripotent cells, 850 
mesoderm and progenitor) this figure continued to increase with up to 30 principal components 851 
regressed out. With the terminal cell types where more interaction eGenes were detected, the 852 
maximum number of hits detected occurred after regressing out 10 principal components. The 853 
replication rate among dynamic eQTLs decreased as the number of hits detected increased 854 
(𝜋1=0.63 and 0.30 for cardiomyocyte and cardiac fibroblast, respectively, after 5 PCs were 855 
regressed out; 0.59 and 0.38 after 10; 0.64 and 0.42 after 20; 0.68 and 0.44 after 30). The results 856 
from fitting the first model are reflected in the main text.  857 
 858 
Overlap with published GTEx eQTLs We used the GTEx v8 release to evaluate replication and 859 
overlap of our dynamic eQTLs with variants previously detected in adult tissues. To assess 860 
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replication in each tissue, we used the qvalue package in R (Storey 2003) to compute 861 
𝜋'	replication rates among all variant-gene pairs that were declared dynamic eQTLs that were 862 
also tested in GTEx. To determine the percentage of variant-gene pairs that were declared both 863 
dynamic eQTLs and significant cis eQTLs in GTEx, we incorporated cis eQTLs from all tissues.  864 
  865 
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 897 
 898 
Fig. S1: Principal component analysis of single cell data. (Top) Principal components biplot 899 
for single cell data, colored by differentiation day. The first principal component is correlated 900 
with differentiation progress (Bottom), while the second principal component differentiates 901 
between the two terminal cell types. 902 
 903 
  904 
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905 
Fig. S2: Cell lines display differences in trajectory preference. The force atlas embedding 906 
which was learned from all cells jointly is shown for each individual cell line, colored by cell 907 
type.    908 
  909 
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Fig. S3. Number of UMIs, genes, and percent mitochondrial reads per cell in single cell 910 
data, by day. Distribution of the number of Unique Molecular Identifiers (UMIs) per cell, 911 
number of genes per cell, and the percent mitochondrial reads per cell in full single cell dataset, 912 
prior to (top row) and after (bottom row) filtering as described in Methods (RNA-seq 913 
quantification). X-axis separated by differentiation day. 914 
  915 
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 916 
Fig. S4. Number of UMIs, genes, and percent mitochondrial reads per cell in single cell 917 
data, by individual. Distribution of the number of Unique Molecular Identifiers (UMIs) per cell, 918 
number of genes per cell, and the percent mitochondrial reads per cell in full single cell dataset, 919 
prior to (top row) and after (bottom row) filtering as described in Methods (RNA-seq 920 
quantification). X-axis separated by cell line. 921 
  922 
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 942 
Fig. S5: Cell cluster 6 appears to be an outlier cluster. This group of cells which 943 
underexpresses cardiac markers from all stages of differentiation and overexpresses endoderm 944 
markers such as APOA1 and AFP is picked up by the third principal component (top), and 945 
largely drives the variation behind the second diffusion component (bottom). The variation 946 
driven by relatively small population of cells interferes with reconstruction of biologically 947 
feasible trajectories, and was removed from downstream analysis.  948 
  949 
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 950 

 951 
 952 
Fig. S6: PAGA identifies a bifurcation in cellular differentiation. PAGA identifies a 953 
bifurcation into cardiomyocyte and cardiac fibroblast cell types after the cardiac progenitor 954 
stage. 955 
  956 
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957 
Fig. S7: Dynamic eQTL detection rates across multiple bin sizes. Y-axis shows the number of 958 
significant linear dynamic eGenes (genes with a dynamic eQTL, q<0.05) for a variety of 959 
numbers of pseudotime quantile bins (x-axis) for both the cardiac fibroblast (pseudobulk-cf, left) 960 
and cardiomyocyte (pseudobulk-cm, right) lineages. 961 
  962 
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 963 
Fig. S8: PCA on pseudobulk and bulk samples identifies differentiation progress as 964 
primary source of variation. PCA on bulk (row 1), single cell data aggregated into pseudobulk 965 
by differentiation day / individual (row 2), cardiomyocyte lineage-specific single cell data 966 
aggregated into pseudobulk by pseudotime / individual (row 3), and cardiac fibroblast lineage-967 
specific single cell data aggregated into pseudobulk by pseudotime / individual (row 4). Samples 968 
colored on a gradient by (left column) differentiation day or pseudotime bin, or (right column) 969 
cell line. 970 
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 990 
 991 
 992 
Fig. S9: PCs percent variance explained by technical factors in single cell data. (a) Variance 993 
explained of each gene expression principal component (1-10) for pseudobulk samples 994 
aggregated by cell line and differentiation day using recorded covariates, including: percent cells 995 
beating (visually assessed), differentiation day, collection day, culture confluence, cell 996 
morphology (visually assessed), and cellular debris. (b) Variance explained of principal 997 
components for pseudobulk samples aggregated by cell line pseudotime bin for cardiac fibroblast 998 
(CF, left) and cardiomyocyte (CM, right) lineages. Technical covariates shown are cell line, 999 
library size, median pseudotime, number of cells, and the normalization factor used for TMM 1000 
normalization, from the edgeR package (see Methods).  1001 
  1002 
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Fig. S10: Permutation analyses. Permutation analyses (see Permutation analysis in Methods) 1042 
do not suggest inflation in bulk (a), pseudotime-binned cardiomyocyte-subset pseudobulk (b), or 1043 
pseudotime-binned cardiac fibroblast-subset pseudobulk (c). The p-values from this study are 1044 
shown in blue, while those obtained from a permutation test are shown in red. 1045 
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 1047 
 1048 
Fig. S11: Correlation of bulk and pseudobulk data by day. Pearson correlation between 1049 
single-cell pseudobulk data and bulk RNA-seq data (Strober et al 2019) for each individual; 1050 
panels separated by differentiation day. 1051 
  1052 
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1053 
Fig. S12: Correlation of bulk and pseudobulk data by individual. Pearson correlation 1054 
between single-cell pseudobulk data and bulk RNA-seq data (Strober et al 2019) for each 1055 
differentiation day; panels separated by individual. 1056 
  1057 
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1058 
Fig. S13: CIBERSORTx assessment in pseudobulk. Assessment of CIBERSORTx 1059 
performance in pseudobulk, where 'ground truth' is available. CIBERSORTx-estimated cell type 1060 
proportions from differentiation day-binned pseudobulk data for three cell lines is shown at left 1061 
('inferred'), compared to true cell type proportions ('true', right), as determined by the cell type 1062 
annotation approach described in the supplement.  1063 
  1064 
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1065 
Fig. S14: Number of cells per sample. Number of cells per collected sample following filtering 1066 
described in Methods (RNA-seq quantification). 1067 
  1068 
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1069 

1070 

 1071 
 1072 
Fig. S15: Genetic correlation across dynamic eQTLs. In order to check whether broad cell 1073 
line differences are driving false positive dynamic eQTLs, we compared genetic correlation 1074 
among the top 200 linear dynamic eQTLs for bulk (top, left), and both pseudobulk lineages, 1075 
cardiomyocyte (middle, left) and cardiac fibroblast (bottom, left), to genetic correlation among a 1076 
set of background variants within 50kb of a gene, and matched for minor allele frequency (right).   1077 
  1078 
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Fig. S16: Impact of additional cell type proportion covariates. We examined the impact of 1112 
regressing out additional covariates from the interaction eQTL model, and found an increase in 1113 
the number of genes with a dynamic eQTL, as well as a decrease in the replication rates in bulk 1114 
dynamic eQTLs (Methods) for both regression of cell type proportions (top) and up to 30 1115 
principal components (bottom).  1116 
  1117 
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 1118 
Fig. S17: Genetic correlation across cell type interaction eQTLs. We compared genetic 1119 
correlation among 200 cardiac fibroblast cell type interaction eQTLs detected exclusively after 1120 
regressing out additional cell type proportion covariates (a), compared to 200 interaction eQTLs, 1121 
detected before controlling for cell type proportions (b). We similarly computed genetic 1122 
correlation among 200 cell type interaction eQTLs discovered only after regression of 5 (c), 10 1123 
(d), 20 (e), and 30 (f) sample principal components.  1124 
  1125 
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1126 
Fig. S18: Selective inference simulations Simulations were performed to examine the impact of 1127 
selective inference on type I error rates (Simulations to examine type I errors due to 'double 1128 
dipping'). Under the generative model used, inflated type I error rates (bars exceeding the dashed 1129 
line) were not observed when testing is performed using a linear model (blue).  1130 
  1131 
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