

1 **Enteric coronavirus infection and treatment modeled with an
2 immunocompetent human intestine-on-a-chip**

3

4 Amir Bein^{1†}, Seongmin Kim^{1†}, Girija Goyal^{1†}, Wuji Cao^{1†}, Cicely Fadel¹, Arash Naziripour¹,
5 Sanjay Sharma¹, Ben Swenor¹, Nina LoGrande¹, Atiq Nurani¹, Vincent N. Miao^{2,3,4,5}, Andrew W.
6 Navia^{3,4,5}, Carly G. K. Ziegler^{2,3,4,5,6}, José Ordovas-Montañes^{4,7,8}, Pranav Prabhala¹, Min Sun
7 Kim¹, Rachelle Prantil-Baun¹, Melissa Rodas¹, Amanda Jiang¹, Gladness Tillya¹, Alex K.
8 Shalek^{2,3,4,5}, Donald E. Ingber^{1,9,10*}

9

10 ¹Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA

11 ²Program in Health Sciences & Technology, Harvard Medical School & MIT, Cambridge, MA
12 02139, USA

13 ³Institute for Medical Engineering & Science, Department of Chemistry, and, Koch Institute for
14 Integrative Cancer Research, MIT, Cambridge, MA, USA.

15 ⁴Broad Institute of MIT and Harvard, Cambridge, MA, USA.

16 ⁵Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA

17 ⁶Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA

18 ⁷Harvard Stem Cell Institute, Cambridge, MA, USA

19 ⁸Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston,
20 MA, USA

21 ⁹Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
22 Cambridge, MA 02138, USA.

23 ¹⁰Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston
24 Children's Hospital, Boston, MA 02115, USA.

25

26 [†] These authors contributed equally

27

28 * Correspondence: Donald E. Ingber, M.D., Ph.D.

29 Em: don.ingber@wyss.harvard.edu

30

31 **Abstract**

32 Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2
33 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the
34 human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of
35 coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip
36 (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium
37 interfaced with human vascular endothelium to study host cellular and inflammatory responses to
38 infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically
39 increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like
40 mechanical deformations in the Intestine Chips compared to when cultured statically as organoids
41 or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation
42 of the endothelium as demonstrated by loss of barrier function, increased cytokine production,
43 and recruitment of circulating peripheral blood mononuclear cells (PMBCs). Treatment of NL63
44 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and
45 resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the
46 few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to
47 the endothelium. This model of intestinal infection was also used to test the effects of other drugs
48 that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these
49 data suggest that the human Intestine Chip might be useful as a human preclinical model for
50 studying coronavirus related pathology as well as for testing of potential anti-viral or anti-
51 inflammatory therapeutics.

52

53 **Introduction**

54 The emergence of a worldwide pandemic caused by severe acute respiratory syndrome
55 coronavirus 2 (SARS-CoV-2) has triggered urgent efforts to develop new vaccines and
56 therapeutics for viral diseases¹. Recently, human organ-on-a-chip (Organ Chip) microfluidic

57 culture technology that recapitulates human organ-level pathophysiology in the lung, was used
58 as a preclinical model to repurpose approved drugs for diseases caused by respiratory viruses,
59 including SARS-CoV-2 and influenza². However, sixty percent of patients infected with SARS-
60 CoV-2 also display gastrointestinal (GI) symptoms, and the epithelial lining of the GI tract has
61 been suggested to be a potential transmission route as well as a target of SARS-CoV-2
62 infection because it expresses high levels of angiotensin-converting enzyme 2 (ACE2), which is
63 the primary receptor that mediates SARS-CoV-2 entry³⁻⁶. Other coronaviruses that similarly use
64 the ACE2 receptor for entry, such as the alpha coronavirus NL63 that cause the common cold,
65 also have been reported to induce GI symptoms⁷. The GI symptoms observed in infected
66 patients may be due to virus-induced damage to the epithelial lining tissues or to associated
67 inflammatory responses, including release of cytokines and recruitment of circulating immune
68 cells.

69 Patient-derived intestinal organoids have been used to study coronavirus infection⁸⁻¹⁰,
70 however, they lack many physiologically relevant features of the *in vivo* organ environment
71 including dynamic fluid flow, peristalsis-like mechanical motions, tissue-tissue interactions with
72 neighboring endothelium, and circulating immune cells. Thus, to study these more complex
73 responses to coronavirus infection in human tissues, we leveraged a human Organ Chip model
74 of the intestine (Intestine Chip)¹¹ that is lined by highly differentiated human intestinal epithelium
75 isolated from patient-derived duodenal organoids interfaced with human vascular endothelium
76 and cultured under flow in presence of cyclic, peristalsis-like, mechanical deformations, with or
77 without exposure to circulating peripheral blood mononuclear cells (PBMCs). We show that this
78 human preclinical Organ Chip model can be used to study host injury and inflammatory
79 responses to infection by the NL63 coronavirus, and to test the responses of drugs that target
80 the virus or surface proteases involved in virus entry.

82 **Materials and Methods**

83 ***Organoid, Transwell, and Organ Chip Cultures***

84 Human intestinal organoids were generated from patient duodenal biopsies collected
85 during exploratory gastroscopy following a procedure previously described¹¹, embedded in
86 Matrigel (Corning), and cultured in expansion medium (EM)¹¹ with passaging every 7 days (>10
87 organoids of >100 μ M per well of a 24 well plate). For Transwell and Organ Chip experiments,
88 the cultured duodenal organoids were then removed from the Matrigel using Cell Recovery
89 Solution (Corning) on ice for 60 minutes, and collected by centrifugation prior to being broken
90 into smaller fragments by incubating in TrypLE (Gibco) /PBS (1:1 v/v) solution supplemented
91 with Rock Inhibitor (10 μ M) for 2 min in a 37°C water bath, and neutralizing the reaction with
92 Defined Trypsin Inhibitor (DTI, Gibco). The fragments were collected by centrifugation, washed,
93 and collected by exclusion using a mesh filter (40 μ m diameter pore size; Corning), and then
94 plated onto the upper surface of the porous ECM-coated membrane in the apical channel of the
95 chip.

96 Two-channel microfluidic Organ Chip devices (S-1 Chips; Emulate Inc.) were surface
97 activated according to the manufacturer protocol and both apical and basal channels were then
98 coated with 200 μ g/ml collagen I (Corning) and 1% v/v Matrigel in serum-free DMEM-F12
99 (Gibco) for 2 hours at 37°C. Following a wash step with Hanks' Balanced Salt Solution (HBSS),
100 the channels were filled with fresh EM supplemented with ROCK inhibitor Y-27632 (10 μ M,
101 Sigma) prior to cell seeding with intestinal organoid fragments prepared as described above.
102 The organoid fragments (50 μ l, 3.5x10⁵ organoid fragments/ml) were plated in the apical
103 channel of the chip using a hand 200 μ L micropipettor.

104 The chips with seeded intestinal epithelium were then cultured for 2-3 weeks under
105 continuous medium (EM) flow (60 ml/h) and cyclic mechanical deformations (10% strain, 0.15
106 Hz) using Pods® in the Zoe® automated Organ Chip culture system (Emulate Inc.) to allow full

107 development of villus like structures. Once villi were apparent using phase contrast microscopy,
108 the apical medium was changed to differentiation medium (DM)¹¹ and 2 days later, human large
109 intestine microvascular endothelial cells (HIMECs, Cell Systems) were seeded (50 μ l, 9x10⁶/ml)
110 in the basal channel while inverting the chips (removed from the Pods) for 2 h before restoring
111 their orientation, placing them back into the Pods, and reinserting the Pods into the Zoe
112 instrument to restore flow. From this point on, the EM medium in the basal vascular channel
113 was supplemented with Bullet-Kit supplement pack containing hFGF-B, VEGF, R3-IGF-1 and
114 Ascorbic Acid (Lonza).

115 The same methods for organoid fragment isolation and plating, were used for studies in
116 which cells were cultured in Transwell inserts (0.4 μ m pore; 24 well plate setup, Corning). The
117 only difference was that the chip surface activation step was omitted, and the organoid
118 fragments were plated in 100 μ l at 3.5 x10⁵ organoid fragments/ml, respectively.

119 ***Single cell sequencing***

120 To isolate adherent epithelium and endothelium from the Intestine Chips, the apical and
121 basal channels of the Intestine Chips were filled with warm Dulbecco's phosphate buffered
122 saline without calcium (PBS) containing TrypIE (1:1 v/v, Gibco) + Collagenase type IV (1 mg/ml,
123 Thermo Fisher). Chips were then incubated at 37°C for ~1h until cells were fully dissociated into
124 single cells at which point DTI (Gibco) was added to neutralize the enzymatic activity, and the
125 isolated cells were collected.

126 Single-cell suspensions were processed for single-cell RNA-seq (scRNA-seq) using Seq-Well S³
127 as described previously^{12,13}. Briefly, 20,000 single cells were loaded onto Seq-Well arrays
128 containing barcoded oligo-dT capture beads (ChemGenes). Arrays were washed with PBS and
129 RPMI following a 10-minute incubation and sealed with a semi-permeable membrane for 30
130 minutes. Cells were lysed in-array using 5 M guanidinium thiocyanate/1 mM EDTA/1% BME/0.5%

131 sarkosyl for 20 minutes and cell-associated mRNA was allowed to hybridize to capture beads for
132 40 minutes in 2 M NaCl/8% w/v PEG8000. Beads were then recovered into 1.5 mL tubes in 2 M
133 NaCl/3 mM MgCl₂/20 mM Tris-HCl/8% w/v PEG8000. After reverse transcription, an exonuclease
134 digestion, second-strand synthesis, and a whole transcriptome amplification were performed as
135 previously described. Nextera XT library prep kits were used to generate sequencing libraries,
136 which were sequenced using NextSeq 500/550 High Output 75 Cycle v2.5 kits.

137 Sequencing libraries were demultiplexed using bcl2fastq (v2.20.0.422) with default settings
138 (mask_short_adapter_reads = 10, minimum_trimmed_read_length = 10) on Cumulus¹⁴ (snapshot
139 4). Libraries were aligned using STAR implemented on Cumulus (snapshot 9). As these
140 experiments were a pilot for future studies with SARS-CoV2 psuedoviruses, a custom joint viral
141 pseudogene/host reference was created by combining human GRCh38 (from CellRanger version
142 3.0.0, Ensembl 93) and SARS-CoV-2 RNA genomes. The SARS-CoV-2 viral sequence and GTF
143 are previously described¹⁵ and based on NCBI Reference Sequence: NC_045512.2. Gene-by-
144 cell matrices were filtered for cells with at least 400 host genes and less than 20% mitochondrial
145 reads, leaving 6,655 high-quality cells with 35,683 host genes. Dimensionality reduction, cell
146 clustering, and differential gene analysis were performed in Seurat v3.1 and differential gene
147 expression analysis in Seurat v4.0^{16,17}. Data were transformed using the “SCTtransform” function
148 in Seurat (variable.features.n = 3001), and principal component analysis was performed over the
149 3,000 most variable host genes. The first 10 principal components were visually chosen to
150 describe a large portion of the variance in the dataset based on the “elbow-method” and were
151 used for further dimensionality reduction with Uniform Manifold Approximation and Projection.
152 Cells were clustered using Louvain clustering (resolution = 0.4), and differentially expressed gene
153 markers were identified with log2-fold changes greater than 0.25 and minimum differences in the
154 detection of fraction greater than 0.1. Gene module scores were added with the AddModuleScore
155 function in Seurat.

156 ***Immunofluorescence microscopy***

157 To carry out immunofluorescence microscopic imaging, the apical and basal channels of
158 the chips were gently washed with PBS using a micropipettor, fixed with 4% paraformaldehyde
159 (Electron Microscopy Sciences) in PBS for 30 min, and then washed with PBS. The fixed
160 samples were permeabilized in PBS containing 0.1% Triton X-100 and 1% Fetal Bovine Serum
161 for 30 min at room temperature before filling the channels with staining buffer (1.5% BSA in
162 PBS) containing primary antibodies directed against cleaved caspase-3 (Cell Signaling
163 Technology, 9661S) or VE-cadherin (Thermo Fisher Scientific, 14-1449-82), and incubating
164 them overnight at 4°C with gentle shaking. After washing with PBS, the samples were incubated
165 with the corresponding secondary antibodies [Alexa Fluor 647 (Thermo Fisher Scientific,
166 A31573) or Alexa Fluor 555 (Thermo Fisher Scientific, A31570)] for 2 hours in the dark at room
167 temperature. Nuclei were stained by adding Hoechst dye (Invitrogen 33342) to the staining
168 buffer. Fluorescence imaging was performed using a confocal laser-scanning microscope (Leica
169 SP5 X MP DMI-6000) and the images obtained were processed by Imaris software (Bitplane)
170 and analyzed by Image J.

171 ***Barrier function measurements***

172 DM containing Cascade blue (548 Da, 50 µg ml⁻¹, Invitrogen, C3239) was introduced to
173 the apical channel of the Intestine Chip at flow rate of 60 ml h⁻¹. After discarding channel
174 effluents collected overnight, the subsequent outflows from apical and basal channels were
175 collected over the next 24 h and used for barrier function analysis by quantifying Cascade blue
176 fluorescence intensities using a multimode plate reader (BioTek NEO). The apparent
177 permeability was calculated using the following formula:

178
$$P_{app} = (Vr * Cr) / (t * A * Cd_{out})$$

179 Where V_r is the volume of the receiving channel outflow (basal channel), C_r is the concentration
180 of tracer in the receiving channel, t is time (sec), A is the area of the membrane (cm^2), and C_d
181 $_{out}$ is the concentration of tracer in the dosing channel outflow (apical channel).

182 ***Virus infection of human Intestine Chips***

183 OC43 virus (ATCC, VR-1558) was propagated in HCT-8 cells in RPMI with 3% horse
184 serum at 34°C and quantified by TCID50 assays. NL63 virus (BEI resources, NR-470) was
185 propagated in LLC-MK2 cells with 1% fetal bovine serum, also at 34°C and quantified by
186 TCID50 assays.

187 Intestine Chips were washed with HBSS and infected with alpha-coronavirus NL63 or a
188 control beta-coronavirus OC43 by adding viral particles at MOI 0.01 in 50 μL to the apical
189 channel of chip and incubating for 6 hours at 37°C under static conditions, and then repeating
190 this step and incubating for overnight (16 hours). Chips were washed 2-5 times and perfused
191 again for an additional 48 hours (72 hours from the start of infection) before responses were
192 analyzed.

193 ***Quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis***

194 Endothelial cells were removed from the human Intestine Chip using trypsin. Intestinal
195 epithelial cells in the apical channel were lysed and collected with RLT buffer (Qiagen) with 1%
196 2-Mercaptoethanol (Sigma). Total RNA was extracted using RNeasy Micro Kit (Qiagen) and
197 complimentary DNA (cDNA) was synthesized with Omniscript RT kit (Qiagen). RT-qPCR was
198 performed on the QuantStudio™ 7 Flex (Applied Biosystems) with TaqMan Fast Advanced
199 Master Mix (Thermo Fisher) or on the CFX96 RT-PCR (Bio Rad) with Sybr green master mix
200 and primers designed against known gene sequences (**Supp. Fig. 1**). Expression levels of
201 target genes were normalized to GAPDH or Beta Actin (ACTB).

202 ***PBMC recruitment***

203 De-identified human patient-derived apheresis collars (a by-product of platelet isolation)
204 were obtained from the Crimson Biomaterials Collection Core Facility under approval obtained
205 from the Institutional Review Board at Harvard University (#22470); informed written consent
206 was not required. PBMCs were isolated using Ficoll density gradient centrifugation and then
207 used immediately or as a frozen stock. Briefly, PBS (2x volume) was added to dilute whole
208 blood in a 50 ml conical tube before 15 ml of the diluted blood was gently added to the top of the
209 density gradient medium, Lymphoprep (Stem cell) and centrifuged at 300 X g for 25 min.
210 Without disturbing the density gradient, the white PBMC layer was collected and suspended in
211 RPMI medium and centrifuged at 120 X g for 10 min. After removing the supernatant, cells were
212 resuspended in fresh RPMI medium and stained with CellTracker Green CMFDA (1:1000 v/v in
213 -PBS per 4×10^6 cells, Thermo Fisher) for 10 min at 37°C in a water bath. Stained PBMCs were
214 seeded into the basal channel of the Intestine Chip at 5×10^7 /ml and allowed to adhere to the
215 endothelium in an inverted chip for 3 hours before reconnecting the chip back to flow.

216 ***Cytokine analysis***

217 Effluents from the basal channel of the Intestine Chips were collected, measured for
218 volume, and cytokine protein concentrations were determined using a Luminex kit (R&D
219 System). Nine inflammatory cytokines were selected and the Luminex assay was carried out
220 according to the manufacturer's protocol. The analyte concentration was determined using a
221 Luminex 100/200™ Flexmap 3D® instrument with a module, xPONENT software.

222 ***Drug studies***

223 All drugs tested in this study, nafamostat, (Medchemexpress), remdesivir
224 (Selleckchem), toremifene (Selleckchem), nelfinavir (Selleckchem), fenofibrate (Selleckchem),
225 and clofazamine (Selleckchem) had a purity > 95% and were dissolved in dimethyl sulfoxide
226 (DMSO) to a stock concentration of 10 mM. The drug stocks were diluted in the DM culture

227 medium and flowed through the apical epithelial channel (toremifene 10 μ M, nelfinavir 10 μ M,
228 fenofibrate 25 μ M, clofazamine 1 μ M) or EM in the basal microvascular channel (nafamostat 10
229 μ M, remdesivir 1 and 10 μ M) based on whether they are normally administered orally or
230 intravenously in humans, respectively. Treatment was started one day prior to viral infection and
231 continued for 48 to 72 hours as indicated in figure legends.

232 For studies on the effects of drugs on human umbilical vein endothelial cell (HUVEC;
233 Lonza, C2519A) viability, the cells were expanded in EGM-2 medium with 2% FBS (Lonza) and
234 plated at 10,000 cells/well in a 96 well plate. 72 hours after plating, wells were treated with fresh
235 medium alone, with medium with DMSO or remdesivir. 48 hours after dosing, CellTiter-Glo
236 (Promega #G7571) assay was used to measure cell viability.

237 **Statistical analysis**

238 Unpaired Student's *t*-test was performed in GraphPad Prism using the Welch correction for
239 different standard deviations and differences were considered statistically significant when
240 * $P<0.05$, ** $P<0.01$, and *** $P<0.001$. Similar results were obtained with intestinal epithelial
241 cells isolated from two patient donors. Bars represent mean \pm standard deviation (s.d.)
242 throughout.

243

244 **Results**

245 ***Organoid enterocytes increase ACE2 expression when grown in Human Intestine Chips***

246 We have previously described human Intestine Chips that are created by culturing
247 patient duodenal organoid-derived intestinal epithelial cells in the top channel of commercially
248 available two-channel microfluidic devices while co-culturing primary microvascular large
249 intestinal endothelial cells on the opposite side of a porous membrane in the bottom channel of
250 the same device¹¹ (**Fig. 1A**). To determine if human Intestine Chips could be used to study

251 ACE2-dependent coronavirus infection, we first compared expression of ACE2, and the
252 intestinal stem cell marker LGR5 in the cultured duodenal organoids and either Transwell insert
253 or Intestine Chip cultures lined by intestinal epithelial cells isolated from the same organoids.
254 Differentiation in both the organoids and Intestine Chip cultures is induced by shifting from an
255 expansion medium (EM) that is used to drive cell proliferation to a differentiation medium (DM)
256 that acts by reducing Wnt signaling (via removal of Wnt3a) and Notch signaling (via addition of
257 γ -secretase inhibitor) while concomitantly promoting cell cycle arrest through Raf/ERK inhibition
258 (via removal of p38 MAP kinase inhibitor)¹¹. Although cells from the same donor organoids were
259 used to create all 3 *in vitro* models which were then grown in DM, the organoids and Transwell
260 cultures exhibited significantly higher mRNA expression of the intestinal stem cell marker LGR5
261 (~6- and 21-fold, respectively) (**Fig. 1B**). This relative decrease in proliferative stem cells in the
262 Intestine Chips was accompanied by much higher expression of ACE2 mRNA compared to the
263 organoid and Transwell cultures (~15- and ~70-fold, respectively) (**Fig. 1B**), and this was
264 confirmed independently by measuring ACE2 protein levels in Western blots (**Fig. 1C**). The
265 presence of DM was critical for this induction as ACE2 mRNA levels in intestinal epithelial cells
266 cultured on-chip in EM were 3-fold lower (**Supp. Fig. 2**). We also confirmed that the organoids,
267 Transwells, and Intestine Chips all expressed three transmembrane proteases that are involved
268 in coronavirus infection, TMPRSS2, TMPRSS4, and FURIN (**Supp. Fig. 3**).

269 To gain insight into the cellular composition and phenotypes in these cultures, single-cell
270 RNA sequencing (scRNA-seq) was carried out on unperturbed Intestine Chips created from
271 duodenal organoids from two different patient donors. Cell identities were defined using key
272 marker genes and published identity scores^{18,19}, revealing key mature and stem populations of
273 the small intestine (**Fig. 1D, E**). In addition to clearly defined intestinal cell types, we also
274 detected a population of non-terminally differentiated cells with intermediate *LGR5* expression
275 that may reflect a transitional state between stem and mature populations. The coronavirus
276 receptor *ACE2* was highly expressed in absorptive enterocytes (40.4%) compared to other

277 recovered cells (12.5% of all other cells), as was the entry co-factor *TPRSS2* (albeit more
278 ubiquitously expressed across all epithelial populations captured).

279 ***Inhibition of NL63 infection by nafamostat but not remdesivir***

280 Epithelial infection of the Intestine Chip by introducing NL63 virus into the lumen of the
281 upper channel resulted in a significant but transient increase in virus load, as detected by
282 Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) analysis of
283 subgenomic viral RNA transcripts (**Fig. 2A**). While the presence of endothelium was shown to
284 influence influenza virus infection in Lung Airway Chips in past studies^{2,20,21}, the presence of
285 endothelium did not significantly alter infection of intestinal epithelium by NL63 (**Supp. Fig. 4**).
286 Virus levels were highest 24 hours after infection, decreased by 48 hours, and returned nearly
287 to baseline levels by 72 hours (**Fig. 2A**). Consistent with this, we observed a transient increase
288 in tissue barrier permeability by quantitating passage of a fluorescent tracer dye (Cascade Blue)
289 from the apical to the basal channel at 48 hours after infection, which reversed by 72 hours (**Fig.**
290 **2B**).

291 While ACE2 functions as an NL63 receptor, the membrane protease *TPRSS2* also can
292 modulate entry of NL63 virus²² as well as SARS-CoV-2⁹. We therefore tested an approved
293 protease inhibitor drug, nafamostat, which can inhibit *TPRSS2* in the Intestine Chip NL63
294 infection model. When we perfused nafamostat through the endothelium-lined vascular
295 channel at its reported human plasma maximum concentration (C_{max}) to simulate intravenous
296 administration in patients, we found that it significantly reduced viral infection, as measured by
297 quantifying subgenomic viral N protein transcripts using RT-qPCR (**Fig. 2C**). In contrast, similar
298 administration of remdesivir, another intravenous drug that has been given emergency use
299 authorization for COVID-19²³, was not effective and it did not provide an added effect when
300 given in combination with nafamostat (**Fig. 2C**). Moreover, this dose of remdesivir also
301 damaged the endothelium, as indicated by detachment of most to the endothelial cell layer
302 (**Supp. Fig. 5**). To further investigate remdesivir induced endothelial cell toxicity, we tested a

303 range of doses on human umbilical vein endothelial cells (HUVEC) in conventional static
304 cultures and found that remdesivir had significant toxicity above a dose of 1uM (**Supp. Fig. 6**).
305 While nafamostat appeared to reduce viral load by about 2-fold, neither it nor remdesivir were
306 able to prevent the compromise of intestinal barrier integrity (**Fig. 2D**). To confirm the specificity
307 of the nafamostat effects, we carried out similar studies using the laboratory adapted strain of
308 beta coronavirus OC43, which is known to be insensitive to nafamostat, and indeed this drug
309 had no inhibitory activity in this model²⁴⁻²⁶ (**Supp. Fig. 7**).

310 Having developed this human preclinical model of intestinal coronavirus infection, we
311 also tested oral drugs, including toremifene, nelfinavir, clofazimine, and fenofibrate, which have
312 been shown to inhibit infection by SARS-CoV-2 and other viruses in vitro²⁷⁻³⁰. Toremifene (10
313 μ M) showed similar efficacy to nafamostat in reducing NL63 viral load (**Fig. 3A**) while again not
314 rescuing barrier compromise (**Fig. 3B**). In contrast, nelfinavir (10 μ M), clofazimine (10 μ M) and
315 fenofibrate (25 μ M) were ineffective at the doses tested (**Fig. 3C,D**).

316 ***Host tissue and immune responses to NL63 and modulation by drugs***

317 Viral infection of the GI system induces a coordinated response between multiple cell
318 types including endothelial cells and immune cells. To study immune responses, fluorescently
319 labeled PBMCs were introduced into the endothelium lined vascular channel, and then flow was
320 stopped and the chips were inverted for 3 hours to promote interactions with the endothelium.
321 Quantification of the PBMCs adherent to the endothelium revealed an increase immune cell
322 recruitment in virus infected Intestine Chips 24 hours after infection compared to uninfected
323 (**Fig. 4A,B**), and this was accompanied by endothelial damage, as measured by loss of staining
324 for the junctional protein VE-cadherin and increased staining for the apoptosis marker, caspase
325 3 (**Fig. 4A**). When we analyzed Intestine Chips that had been pretreated with nafamostat for 24
326 hours prior to infection and the addition of immune cells, we found that while treatment with this
327 drug reduced viral RNA levels (**Fig. 2C**), it did not produce statistically significant inhibition of
328 PBMC recruitment to the endothelium (**Fig. 4B**). This is consistent with the finding that

329 nafamostat treatment also did not reduce production of multiple inflammatory cytokines (IL-8, I-
330 6, MCP-1, MIP-1a, IL33, IFN- γ) released into the vascular channel effluent, and only produced
331 modest reduction in IP-10 levels (**Fig. 4C**). Interestingly, while NL63 infection induced these
332 cytokines, it moderately suppressed production of the antimicrobial protein, Lipocalin-2,
333 whereas treatment with nafamostat increased its expression (**Fig. 4C**).
334

335 **Discussion**

336 Although the lung is the main target of infection by airborne viruses, such as the
337 coronaviruses that cause COVID-19 (SARS-CoV-2) and the common cold (NL63), clinical
338 findings highlight the GI tract as another clinically significant entry point. GI symptoms including
339 diarrhea, abdominal pain, and vomiting have been reported in many cases^{31,32} and are even
340 considered as a common symptom for suspecting SARS-CoV-2 infection^{31,33}. Patients with
341 NL63 also often exhibit GI symptoms, although they are not as severe³⁴. Furthermore,
342 infection of the GI tract by SARS-CoV-2 has been implicated in the severity of COVID-19³⁵ and
343 it is involved in multi-system inflammatory disease³⁶. In addition, some populations might be at
344 increased risk for viral infection through the GI route, for example, people taking gastric acid
345 reducing drugs, such proton pump inhibitors, H2 blockers or acid neutralizing compounds or
346 people with impaired GI motility³⁷⁻⁴¹. Thus, we set out here to leverage a human Intestine Chip
347 microfluidic culture device¹¹ to create an enteric human coronavirus infection model that can be
348 used to study coronavirus infection of the human intestinal epithelium as well as a preclinical
349 tool to identify potential therapeutics.

350 Our results show that the human Intestine Chip can be used to study infection by the
351 NL63 coronavirus that uses the same ACE2 receptor as SARS-CoV-2 to enter cells. While
352 NL63 does not cause life-threatening pathology like SARS-CoV-2, it can be studied in biosafety
353 level-2 laboratories, which makes these studies available to a much broader range of

354 laboratories that are currently exploring Organ Chip approaches. Interestingly, when we
355 compared the levels of ACE2 expression in patient duodenal organoid-derived epithelium
356 cultured in the Intestine Chip, Transwells, or as intact organoids, we observed much higher
357 levels of this viral receptor in cells cultured in the microfluidic chip. As expected, this finding
358 inversely correlated with expression of the LGR5 stem cell marker expression. Organoids and
359 Transwell cultures have been used to study infection by human coronaviruses, including SARS-
360 CoV-2, *in vitro*^{8,9,42,43}. However, the physical microenvironment of Organ chips (e.g., fluid flow,
361 cyclic peristalsis-like mechanical deformations) has been previously shown to have potent
362 effects on cell differentiation and function that are crucial for recapitulation of complex organ
363 level physiology and pathophysiology with high fidelity^{2,44,45}. This also seems to be the case
364 here given that the same organoid-derived cells were cultured in the same medium in the
365 different models, yet their phenotype differed greatly. Also, scRNA-seq analysis confirmed that
366 the primary human intestinal epithelial cells differentiated into multiple intestinal cell lineages,
367 including ACE2-expressing absorptive enterocytes.

368 Importantly, the high expression of ACE2 in the Intestine Chip, along with expression of
369 multiple surface proteases, such as TMPRSS2, that also help to support virus entry, enabled
370 efficient infection of the intestinal epithelium when NL63 virus was introduced into the apical
371 lumen. Viral replication in the epithelium was confirmed by detection of a large increase in
372 subgenomic viral RNA transcripts, with a noticeable peak at 24 hours and return to baseline
373 levels by 72 hours post infection. Other unique features of the Organ Chip include the ability to
374 quantify changes in intestinal barrier integrity, measure host inflammatory responses in the
375 presence or absence of endothelium, and study recruitment of immune cells that are introduced
376 through the endothelium-lined channel. Indeed, we were able to demonstrate intestinal barrier
377 compromise in response to NL63 infection on-chip, which one of the known symptoms of
378 coronavirus infection. However, in contrast to past work on influenza virus infection of human
379 Lung Airway Chips², we did not find that the presence of the endothelium altered viral infection

380 efficiency. We also used the Intestine Chip to study the host inflammatory response to NL63
381 coronavirus infection. We first introduced fluorescently labeled PBMCs into the endothelium
382 lined vascular channel and found that virus infection resulted in a significant increase in
383 recruitment of immune cells to the endothelium surface at 24 hours after infection. This is
384 consistent with our finding that NL63 infection induced secretion of multiple inflammatory
385 cytokines (e.g., IL-6, IL-8, MCP-1, etc.) that are known to stimulate immune cell recruitment.

386 Having demonstrated the ability of the human Intestine Chip to model coronavirus
387 infection *in vitro*, we then explored whether it might be useful as a tool for drug repurposing. The
388 outburst of the COVID-19 pandemic started a race to identify approved drugs that might be
389 rapidly repurposed to inhibit SARS-CoV-2 infection by avoiding the lengthy steps required for
390 new drug approvals. One of the first drugs to receive an emergency use authorization from the
391 FDA was the anti-viral drug remdesivir. Because we have dynamic flow in our chips, we can
392 administer drugs either through the epithelial channel lumen to mimic oral administration or via
393 the vascular channel to simulate intravenous administration, and we can introduce the drugs at
394 their clinically relevant C_{max} dose. Interestingly, our results show that when we administered the
395 intravenous drug remdesivir through the vascular channel, it had no protective effect against
396 NL63 infection in the Intestine Chip. This finding is likely due to inherent differences between
397 coronavirus subtypes (i.e., NL63 vs. SARS-CoV-2). But surprisingly we found that remdesivir
398 also induced significant endothelial cell toxicity, and we confirmed this in two different types of
399 human endothelium, which should raise some concerns for its use clinically in COVID-19 given
400 the contribution of vascular injury to patient morbidity in this disease.

401 Importantly, when we tested another approved intravenous drug, nafamostat, which is a
402 broad spectrum protease inhibitor that has been reported to inhibit TMPRSS2, we found it
403 significantly inhibited NL63 infection in the Intestine Chip, although it did not prevent
404 compromise of the intestinal barrier. Moreover, similar results were obtained when the oral
405 approved drug, toremifene, which also has been reported to inhibit TMPRSS2, was

406 administered through the lumen of the epithelial channel. Thus, both ACE2 and TMPRSS2
407 appear to be involved in NL63 coronavirus entry into the human intestinal epithelium.

408 Nafamostat also reduced secretion of some cytokines in response to virus infection, but
409 it did not suppress the inflammatory response completely, and recruitment of immune cells was
410 not affected by this treatment. This likely reflects the fact that the infection was not prevented
411 completely by this drug and an important aspect of organ level control of the infection, as the
412 presence of a controlled level of inflammation is a key response to infection⁴². Interestingly,
413 while NL63 infection induced production of some cytokines, it partially suppressed production of
414 an antimicrobial protein, Lipocalin-2, whereas treatment with nafamostat reversed this effect and
415 slightly increased their expression. This might imply a role of these peptides in cellular response
416 to NL63 infection. Finally, when we screened other approved drugs that have been shown to
417 inhibit infection by SARS-CoV-2 and other viruses in vitro, including nelfinavir, clofazimine, and
418 fenofibrate, none of them showed any efficacy in preventing intestinal infection by NL63,
419 although no adverse effects were observed with these drugs.

420 Taken together, these data suggest that the human Intestine Chip might be useful as a
421 human preclinical model of coronavirus related pathology as well as for testing of potential anti-
422 viral or anti-inflammatory therapeutics. While we only studied NL63 coronavirus infection and
423 screened for drugs that inhibit this response in this study, we previously showed that a human
424 lung Airway Chip can be used in a similar manner, and that study led to the discovery of a
425 potential therapeutic for SARS-CoV-2 that is currently in human clinical trials for COVID-19².
426 Thus, the current Intestine Chip model might enable this approach to be used to search for
427 drugs that can target the GI complications associated with both common cold (NL63) and
428 SARS-CoV-2 virus infections in the future.

429

430

431

432 **Acknowledgments**

433 This research was sponsored by funding from Defense Advanced Research Projects
434 Agency (DARPA) under Cooperative Agreement (HR0011-20-2-0040, to D.E.I), NIH (UH3-HL-
435 141797 to D.E.I), Bill and Melinda Gates Foundation (independent support to D.E.I and
436 A.K.S) , and the Wyss Institute for Biologically Inspired Engineering (to D.E.I). The authors
437 would like to thank Dr. Kenneth E. Carlson for helpful discussions and Dr. Matthew B. Frieman
438 for helpful discussions and providing NL63 virus.

439

440 **Author contributions**

441 A.B., G.G and S.K. led this study, and G.G and D.E.I. developed the overall research pipeline.
442 AB., S.K., and W.C. performed and analyzed all the experiments with other authors assisting with
443 experiments and data analysis. A.N. and N.L. assisted with the organoids culture and chip
444 seeding. S.S. assisted with the cytokine assay. R.P-B, M.R, and A.J. generated and quantified
445 NL63 and OC43 virus. V.N.M., C.G.K.Z., and A.W.N performed the scRNA-seq experiments and
446 C.F., V.N.M., C.G.K.Z., and J.O.-M. performed analyses on these data under the supervision of
447 A.K.S. G.T sourced, reconstituted and distributed the compounds. G.G. and R.P-B., managed the
448 project progress. A.B., S.K., G.G., and D.E.I. finalized the manuscript with feedback from all
449 authors.

450

451 **Competing Interests**

452 D.E.I. is a founder, board member, scientific advisory board chair, and equity holder in Emulate,
453 Inc.

454

455

456

457 **References**

458 1 Sharma, A., Tiwari, S., Deb, M. K. & Marty, J. L. Severe acute respiratory syndrome
459 coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. *Int J*
460 *Antimicrob Agents* **56**, 106054, doi:10.1016/j.ijantimicag.2020.106054 (2020).

461 2 Si, L. *et al.* A human-airway-on-a-chip for the rapid identification of candidate antiviral
462 therapeutics and prophylactics. *Nat Biomed Eng*, doi:10.1038/s41551-021-00718-9
463 (2021).

464 3 Parasa, S. *et al.* Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in
465 Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis.
466 *JAMA Netw Open* **3**, e2011335, doi:10.1001/jamanetworkopen.2020.11335 (2020).

467 4 Jiao, L. *et al.* The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2
468 Infection in a Nonhuman Primate Model. *Gastroenterology* **160**, 1647-1661,
469 doi:10.1053/j.gastro.2020.12.001 (2021).

470 5 Pan, L. *et al.* Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in
471 Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. *Am J Gastroenterol*
472 **115**, 766-773, doi:10.14309/ajg.0000000000000620 (2020).

473 6 Xu, J. *et al.* Digestive symptoms of COVID-19 and expression of ACE2 in digestive tract
474 organs. *Cell Death Discov* **6**, 76, doi:10.1038/s41420-020-00307-w (2020).

475 7 Bordeianu, C. D. [Tenoplasty by marginal scleral division (author's transl)]. *J Fr*
476 *Ophthalmol* **3**, 671-674 (1980).

477 8 Lamers, M. M. *et al.* SARS-CoV-2 productively infects human gut enterocytes. *Science*
478 **369**, 50-54, doi:10.1126/science.abc1669 (2020).

479 9 Zang, R. *et al.* TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human
480 small intestinal enterocytes. *Sci Immunol* **5**, doi:10.1126/sciimmunol.abc3582 (2020).

481 10 Zhou, J. *et al.* Infection of bat and human intestinal organoids by SARS-CoV-2. *Nat Med*
482 **26**, 1077-1083, doi:10.1038/s41591-020-0912-6 (2020).

483 11 Kasendra, M. *et al.* Development of a primary human Small Intestine-on-a-Chip using
484 biopsy-derived organoids. *Sci Rep* **8**, 2871, doi:10.1038/s41598-018-21201-7 (2018).

485 12 Gierahn, T. M. *et al.* Seq-Well: portable, low-cost RNA sequencing of single cells at high
486 throughput. *Nat Methods* **14**, 395-398, doi:10.1038/nmeth.4179 (2017).

487 13 Hughes, T. K. *et al.* Second-Strand Synthesis-Based Massively Parallel scRNA-Seq
488 Reveals Cellular States and Molecular Features of Human Inflammatory Skin
489 Pathologies. *Immunity* **53**, 878-894 e877, doi:10.1016/j.jimmuni.2020.09.015 (2020).

490 14 Li, B. *et al.* Cumulus provides cloud-based data analysis for large-scale single-cell and
491 single-nucleus RNA-seq. *Nat Methods* **17**, 793-798, doi:10.1038/s41592-020-0905-x
492 (2020).

493 15 Kim, D. *et al.* The Architecture of SARS-CoV-2 Transcriptome. *Cell* **181**, 914-921 e910,
494 doi:10.1016/j.cell.2020.04.011 (2020).

495 16 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902
496 e1821, doi:10.1016/j.cell.2019.05.031 (2019).

497 17 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *bioRxiv*,
498 2020.2010.2012.335331, doi:10.1101/2020.10.12.335331 (2020).

499 18 Serra, D. *et al.* Self-organization and symmetry breaking in intestinal organoid
500 development. *Nature* **569**, 66-72, doi:10.1038/s41586-019-1146-y (2019).

501 19 Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature* **551**, 333-
502 339, doi:10.1038/nature24489 (2017).

503 20 Saygili, E., Yildiz-Ozturk, E., Green, M. J., Ghaemmaghami, A. M. & Yesil-Celiktas, O.
504 Human lung-on-chips: Advanced systems for respiratory virus models and assessment
505 of immune response. *Biomicrofluidics* **15**, 021501, doi:10.1063/5.0038924 (2021).

506 21 Teijaro, J. R. *et al.* Endothelial cells are central orchestrators of cytokine amplification
507 during influenza virus infection. *Cell* **146**, 980-991, doi:10.1016/j.cell.2011.08.015 (2011).

508 22 Milewska, A. *et al.* Entry of Human Coronavirus NL63 into the Cell. *J Virol* **92**,
509 doi:10.1128/JVI.01933-17 (2018).

510 23 Eastman, R. T. *et al.* Remdesivir: A Review of Its Discovery and Development Leading
511 to Emergency Use Authorization for Treatment of COVID-19. *ACS Cent Sci* **6**, 672-683,
512 doi:10.1021/acscentsci.0c00489 (2020).

513 24 de Haan, C. A. *et al.* Cleavage of group 1 coronavirus spike proteins: how furin cleavage
514 is traded off against heparan sulfate binding upon cell culture adaptation. *J Virol* **82**,
515 6078-6083, doi:10.1128/JVI.00074-08 (2008).

516 25 Shirato, K., Kawase, M. & Matsuyama, S. Wild-type human coronaviruses prefer cell-
517 surface TMPRSS2 to endosomal cathepsins for cell entry. *Virology* **517**, 9-15,
518 doi:10.1016/j.virol.2017.11.012 (2018).

519 26 Sasaki, M. *et al.* SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are
520 generated in vitro during propagation in TMPRSS2-deficient cells. *PLoS Pathog* **17**,
521 e1009233, doi:10.1371/journal.ppat.1009233 (2021).

522 27 Martin, W. R. & Cheng, F. Repurposing of FDA-Approved Toremifene to Treat COVID-
523 19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2. *J Proteome Res* **19**,
524 4670-4677, doi:10.1021/acs.jproteome.0c00397 (2020).

525 28 Yamamoto, N. *et al.* HIV protease inhibitor nelfinavir inhibits replication of SARS-
526 associated coronavirus. *Biochem Biophys Res Commun* **318**, 719-725,
527 doi:10.1016/j.bbrc.2004.04.083 (2004).

528 29 Yuan, S. *et al.* Clofazimine is a broad-spectrum coronavirus inhibitor that antagonizes
529 SARS-CoV-2 replication in primary human cell culture and hamsters. *Res Sq*,
530 doi:10.21203/rs.3.rs-86169/v1 (2020).

531 30 Xu, J. *et al.* SARS-CoV-2 induces transcriptional signatures in human lung epithelial
532 cells that promote lung fibrosis. *Respir Res* **21**, 182, doi:10.1186/s12931-020-01445-6
533 (2020).

534 31 Villapol, S. Gastrointestinal symptoms associated with COVID-19: impact on the gut
535 microbiome. *Transl Res* **226**, 57-69, doi:10.1016/j.trsl.2020.08.004 (2020).

536 32 Lin, L. *et al.* Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. *Gut* **69**,
537 997-1001, doi:10.1136/gutjnl-2020-321013 (2020).

538 33 Lan, F. Y. *et al.* COVID-19 symptoms predictive of healthcare workers' SARS-CoV-2
539 PCR results. *PLoS One* **15**, e0235460, doi:10.1371/journal.pone.0235460 (2020).

540 34 Luo, X. *et al.* Coronaviruses and gastrointestinal diseases. *Mil Med Res* **7**, 49,
541 doi:10.1186/s40779-020-00279-z (2020).

542 35 Livanos, A. E. *et al.* Gastrointestinal involvement attenuates COVID-19 severity and
543 mortality. *medRxiv*, doi:10.1101/2020.09.07.20187666 (2020).

544 36 Yonker, L. M. *et al.* Multisystem inflammatory syndrome in children is driven by zonulin-
545 dependent loss of gut mucosal barrier. *J Clin Invest*, doi:10.1172/JCI149633 (2021).

546 37 Bavishi, C. & Dupont, H. L. Systematic review: the use of proton pump inhibitors and
547 increased susceptibility to enteric infection. *Aliment Pharmacol Ther* **34**, 1269-1281,
548 doi:10.1111/j.1365-2036.2011.04874.x (2011).

549 38 Vilcu, A. M. *et al.* Association Between Acute Gastroenteritis and Continuous Use of
550 Proton Pump Inhibitors During Winter Periods of Highest Circulation of Enteric Viruses.
551 *JAMA Netw Open* **2**, e1916205, doi:10.1001/jamanetworkopen.2019.16205 (2019).

552 39 Prag, C., Prag, M. & Fredlund, H. Proton pump inhibitors as a risk factor for norovirus
553 infection. *Epidemiol Infect* **145**, 1617-1623, doi:10.1017/S0950268817000528 (2017).

554 40 Nightingale, J. M. D. *et al.* The management of adult patients with severe chronic small
555 intestinal dysmotility. *Gut* **69**, 2074-2092, doi:10.1136/gutjnl-2020-321631 (2020).

556 41 Goodgame, R. W. Viral infections of the gastrointestinal tract. *Curr Gastroenterol Rep* **1**,
557 292-300, doi:10.1007/s11894-999-0112-5 (1999).

558 42 Triana, S. *et al.* Single-cell analyses reveal SARS-CoV-2 interference with intrinsic
559 immune response in the human gut. *Mol Syst Biol* **17**, e10232,
560 doi:10.15252/msb.202110232 (2021).

561 43 Wang, P. *et al.* A cross-talk between epithelium and endothelium mediates human
562 alveolar-capillary injury during SARS-CoV-2 infection. *Cell Death Dis* **11**, 1042,
563 doi:10.1038/s41419-020-03252-9 (2020).

564 44 Gazzaniga, F. S. *et al.* Harnessing Colon Chip Technology to Identify Commensal
565 Bacteria That Promote Host Tolerance to Infection. *Front Cell Infect Microbiol* **11**,
566 638014, doi:10.3389/fcimb.2021.638014 (2021).

567 45 Ingber, D. E. Enabling out-of-body experiences for living organs. *J Exp Med* **218**,
568 doi:10.1084/jem.20201756 (2021).

569

570 **Figure Legends**

571 **Figure 1. Characterization of human Intestine Chip and ACE2 receptor. (A)**
572 Schematic illustration of the Intestine Chip used to study viral infection. **(B)** Relative mRNA
573 expression levels of LGR5 (top) and ACE2 (bottom) genes measured within intestinal epithelium
574 by RT-qPCR when cultured as organoids or within Transwells (TW) or Intestine Chips (Chips).
575 Each data point represents one chip; similar results were obtained using cells from two donors;
576 data represent the mean \pm s.d. ($n = 3$); ** $P < 0.01$ and *** $P < 0.001$. **(C)** Western blot showing
577 ACE2 and GAPDH protein expression levels. **(D)** Dot plot of gene expression (columns) across
578 major cell types (rows) determined using scRNA-seq shown in **E**. Dot size reflects percent of
579 cell types expressing a given gene; dot hue reflects average gene expression within each cell
580 type. **(E)** UMAP visualization of scRNA-seq analysis of duodenal epithelial cells cultured within
581 Intestine Chips. Results include samples from 6 chips and two different donors; points are
582 colored by cell type as indicated in the figure.

583 **Figure 2. NL63 infection in the human Intestine Chip and effect of drugs on viral**
584 **load.** (A) Relative NL63 subgenomic RNA expression levels measured by RT-qPCR at 2, 24,
585 48, and 72 hrs from the start of infection. Similar results obtained in a three independent
586 experiments with two different donors. (B) Effects of NL63 infection on the apparent
587 permeability (P_{app}) of the intestinal barrier measured on-chip at 0, 48, and 72 hrs after infection
588 by quantifying the translocation of Cascade Blue from the apical to the basal channel of the
589 Intestine Chip. Similar results obtained in a 3 independent experiments (squares and empty or
590 filled circles) with two different donors. (C) Comparison of relative NL63 infection levels
591 measured by RT-qPCR 24 hrs after infection when Intestine Chips were treated with vehicle
592 (DMSO), remdesivir (Rem, 9 μ M), nafamostat (Naf, 10 μ M), both drugs combined (Rem + Naf)
593 starting 1 day prior to infection. Data from two experiments are shown (empty and filled circles);
594 each data point is one chip. (D) P_{app} of NL63 infected Intestine Chips measured at 0, 48, or 72
595 hrs after infection under the conditions described in C. In all graphs, data represent the mean \pm
596 s.d. ($n = 3$); * $P < 0.05$.

597 **Figure 3. Effect of repurposed oral drugs on NL63 infection in the human**
598 **Intestine chip.** Relative NL63 expression levels measured by RT-qPCR (A) and P_{app} (B) in
599 Intestine Chips treated with toremifene (Tor, 10 μ M) versus vehicle (DMSO). Data from two
600 experiments are shown (empty and filled circles). Relative NL63 expression levels in Intestine
601 Chips treated with nelfinavir (Nel, 10 μ M) (C) and fenofibrate (Fen, 25 μ M) and clofazimine
602 (Clof, 10 μ M) (D). In all graphs, each data point is one chip and bars represent the mean \pm s.d.;
603 * $P < 0.05$.

604 **Figure 4. Host immune response to NL63 infection in the Intestine Chip. (A)**
605 Immunofluorescence micrographs of intestinal endothelium cultured on-chip in the presence or
606 absence of NL63 infection with or without treatment with nafamostat (Naf, 10 μ M) and stained
607 for VE-cadherin (yellow, top) or nuclei (blue, middle) and caspase-3 (red, middle). Bottom
608 images show the endothelium with adherent fluorescently labeled PBMCs visualized (green,

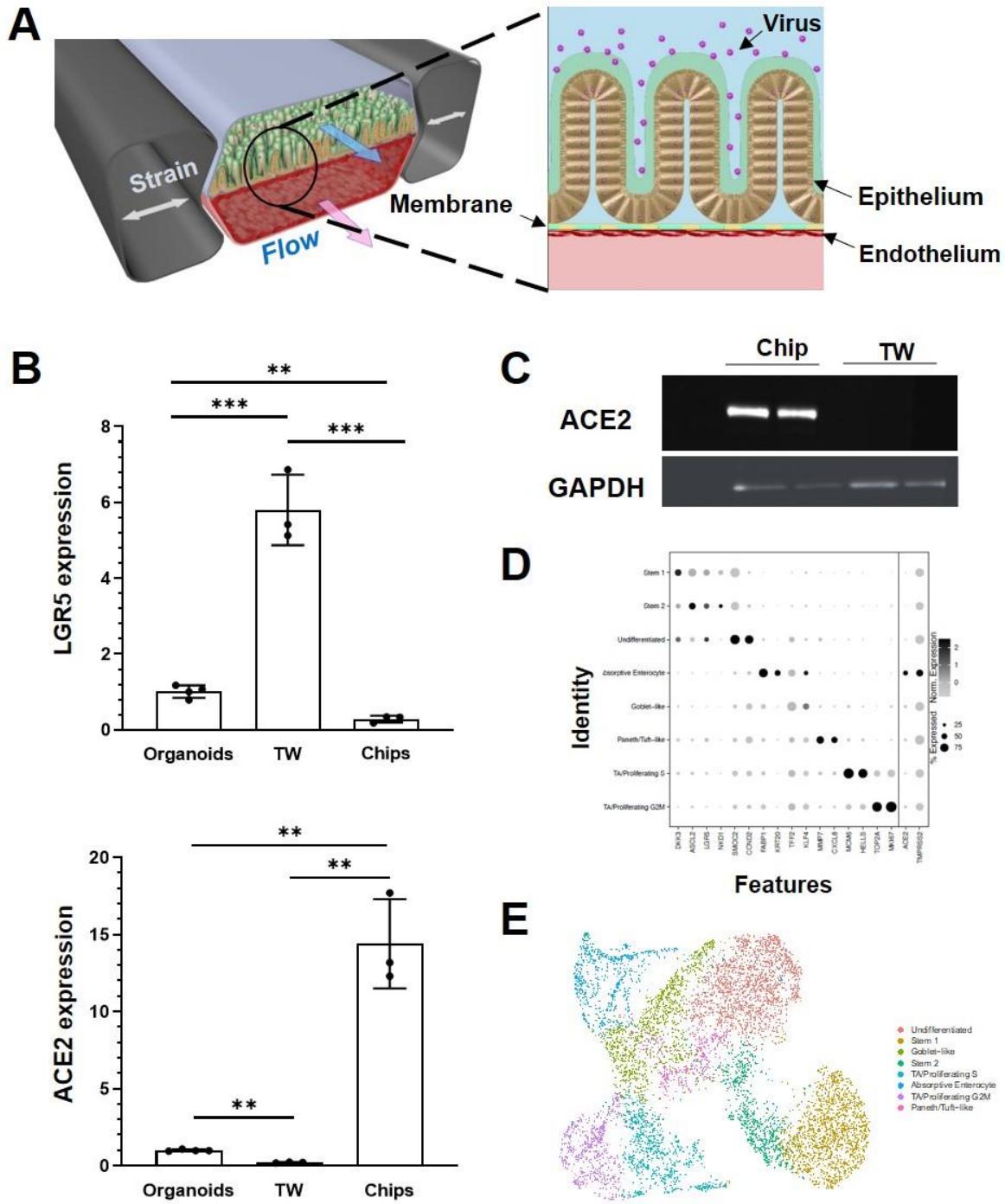
609 bottom). Bar, 100 μ m; similar results were obtained in two independent experiments. (B)
610 Quantification of the PBMC recruitment results shown in A. Each data point represents a field of
611 view; gray and black dots show different experiments; 2 chips were analyzed for each
612 experiment; bars indicate mean \pm s.d. ($n = 3$); ** $P < 0.01$. (C) Heat map of the fold change
613 (Log₂) in the indicated cytokine protein levels in NL63 infected Intestine Chips versus infected
614 chips treated with nafamostat (Naf, 10 μ M), as compared to baseline levels in uninfected
615 controls.

616

617 **Supplementary Figures:**

618 **Supplementary Figure 1.** List of primers used for RT-qPCR.

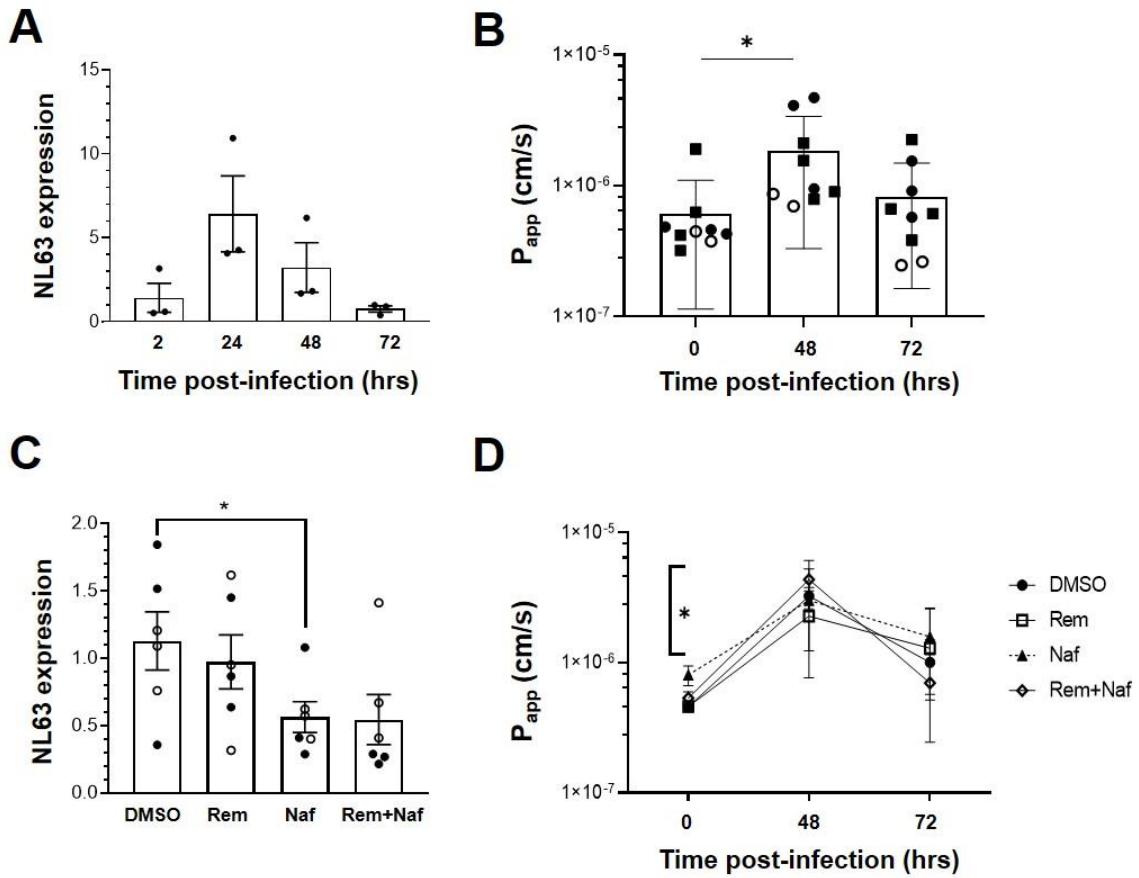
619 **Supplementary Figure 2.** Comparison of relative ACE2 mRNA expression levels in
620 intestinal epithelium cultured in expansion medium (EM) versus differentiation medium (DM)
621 with or without infection by NL63 for 24 hrs, as measured by RT-qPCR. Bars represent the
622 mean \pm s.d. ($n = 3$); ** $P < 0.01$.


623 **Supplementary Figure 3.** Relative expression levels of the transmembrane proteases
624 TMPRSS2, TMPRSS4, and FURIN measured in the organoids (black), Transwells (TW; grey)
625 and Intestine Chips (Chips; white) using RT-qPCR. Bars represent the mean \pm s.d. ($n = 3$); * $P <$
626 0.05.

627 **Supplementary Figure 4.** Relative NL63 expression measured by RT-PCR in the
628 intestinal epithelium on-chip in the presence (+) or absence (-) of endothelium, with or without
629 NL63 infection.

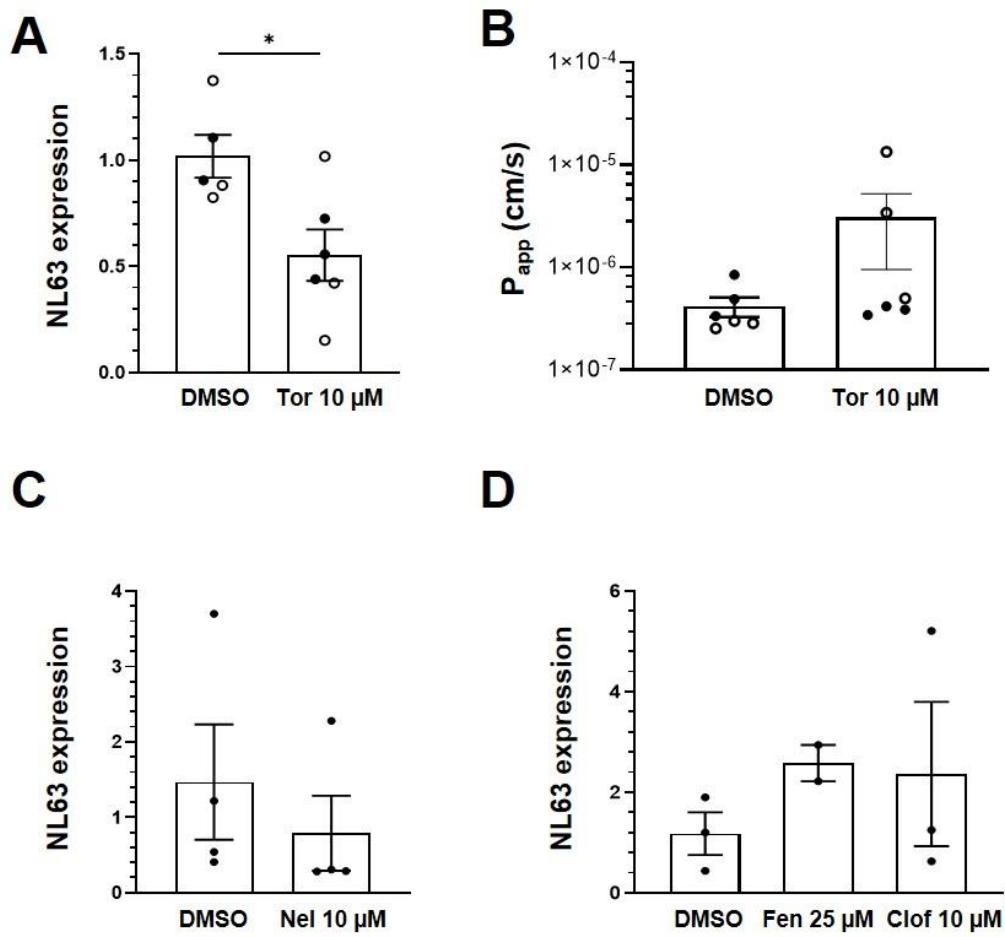
630 **Supplementary Figure 5.** Phase contrast microscopic views of the entire length of the
631 epithelium with insets showing higher magnification views (left), and high magnification views of
632 the endothelium (right), when uninfected or infected with NL63 in the absence or presence of
633 nafamostat (Naf, 10 μ M), and remdesivir (Rem, 1 μ M and 9 μ M). All images were taken 48
634 hours after infection; bar, 100 μ m.

635 **Supplementary Figure 6.** Graph showing effects of exposure of human umbilical vein
636 endothelial cells to different concentrations of remdesivir for 24 hrs. Each data point represents
637 the mean of two replicate wells; bars indicate mean \pm s.d. (note the error bars are smaller than
638 some symbols).


639 **Supplementary Figure 7.** Graph showing that nafamostat (Naf, 10 μ M) has no effect
640 on infection by OC43 corona virus when compared to vehicle (DMSO) and measured 24 hrs
641 after infection by RT-qPCR.

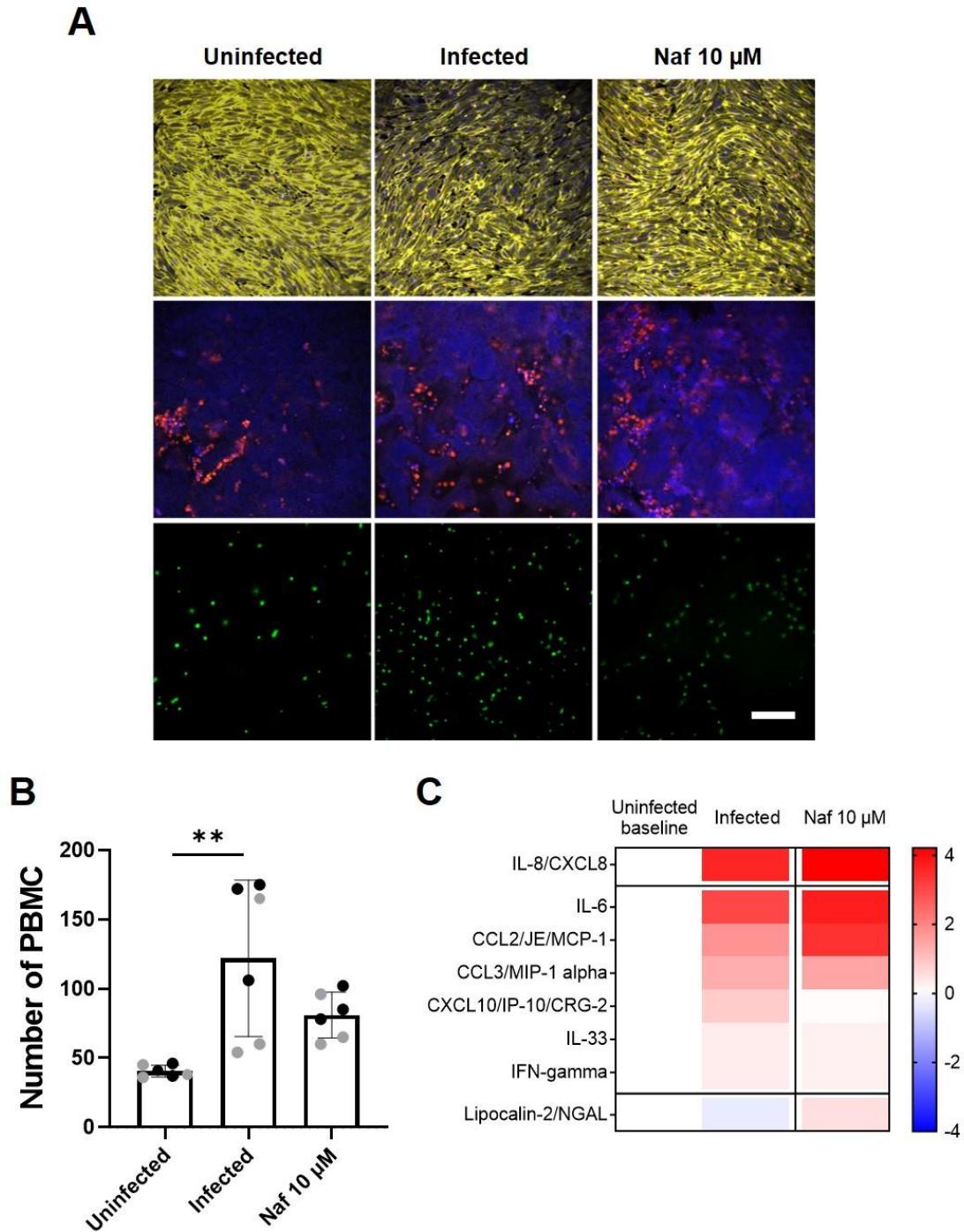
642

643


Figure 1

644

645


Figure 2

646

647

Figure 3

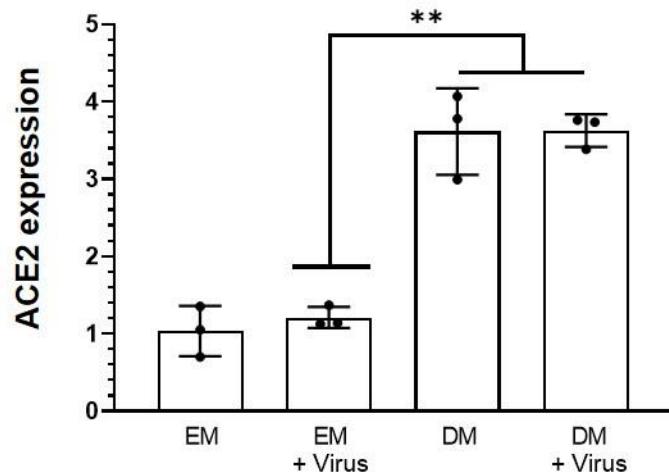
648

649

Figure 4

SYBR green primers

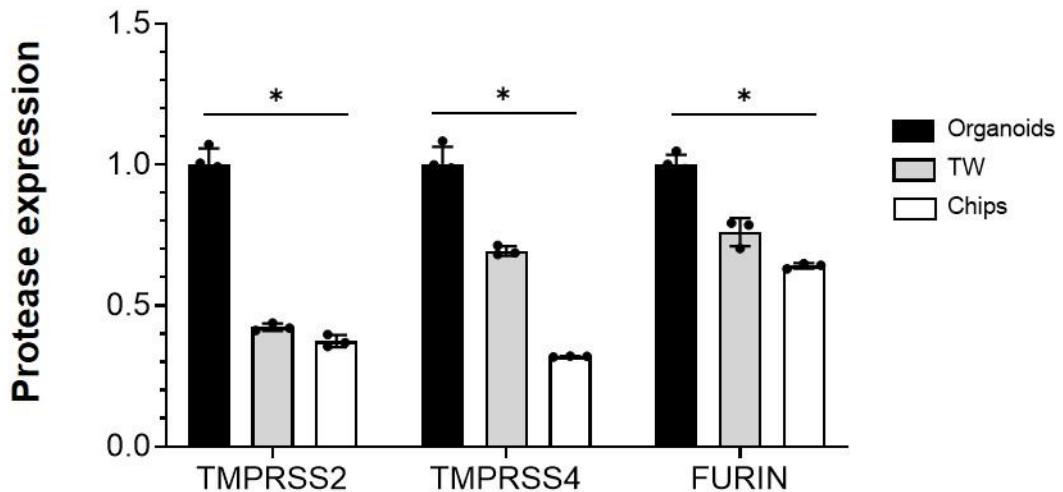
Primer	Forward	Reverse
NL63 subgenomic	GATAGAGAATTTCTTATTTAGACTTTGTG	CATGTAAAATGAAGGAGGAGGAA
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG


Taqman primers

Primer	Catalog Number (Thermo Fisher)
OC43	Vi06439646_s1
ACE2	Hs01085333_m1
LGR5	Hs00969422_m1
ACTB	Hs01060665_g1
GAPDH	Hs02786624_g1
TMPRSS2	Hs01122322_m1
TMPRSS4	Hs00854071_mH
FURIN	Hs00965485_g1

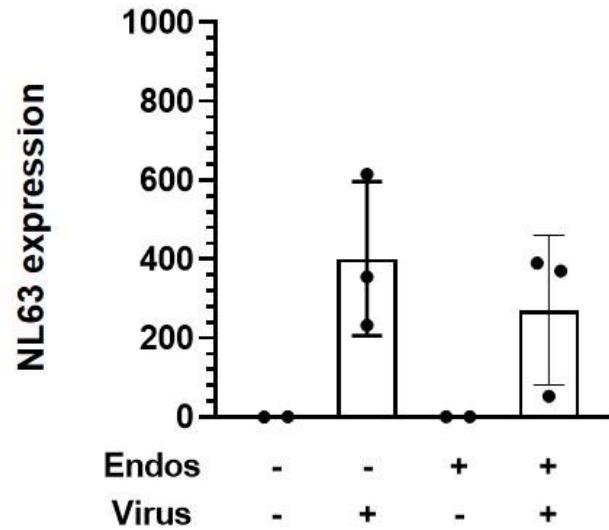
650

651


Supplementary Figure 1

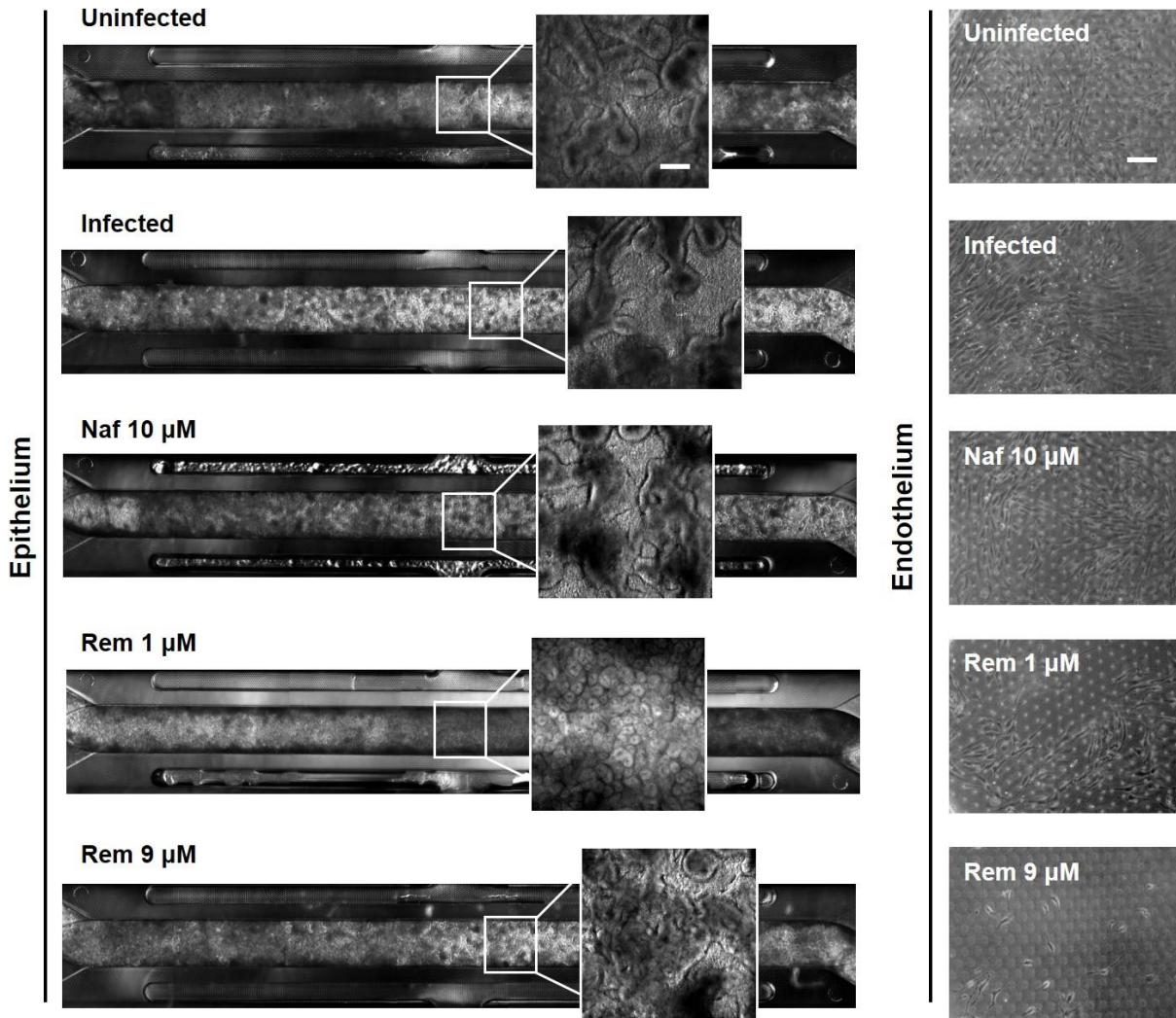
652

653


Supplementary Figure 2

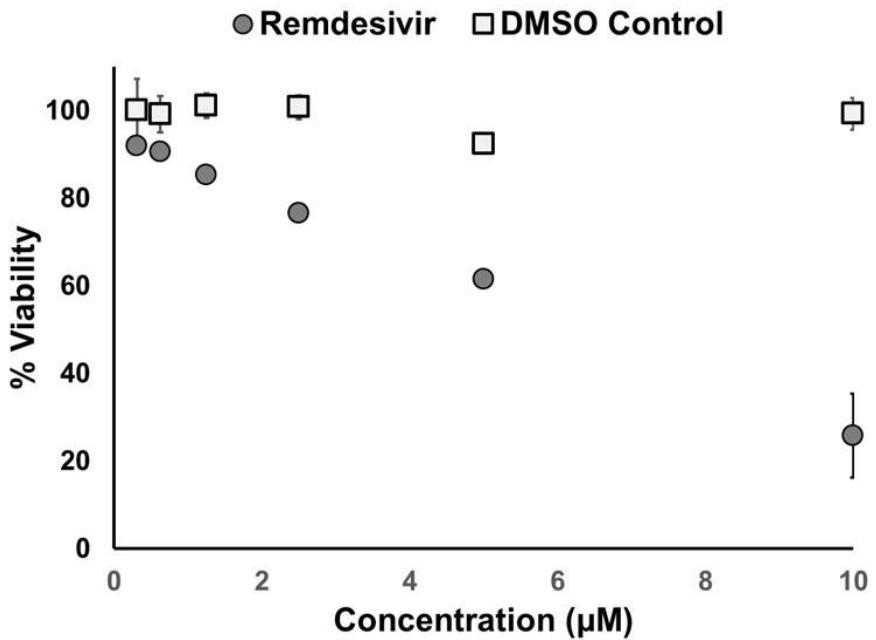
654

655


Supplementary Figure 3

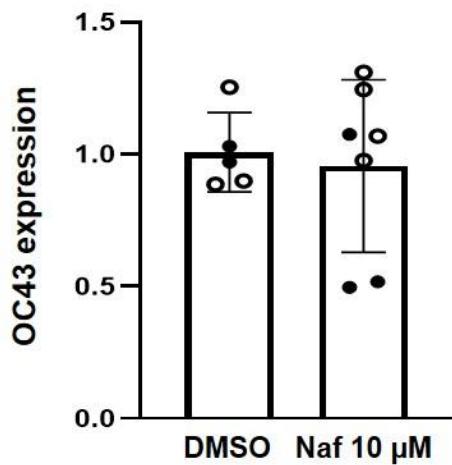
656

657


Supplementary Figure 4

658

659


Supplementary Figure 5

660

661

Supplementary Figure 6

662

663

Supplementary Figure 7