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 2 

SUMMARY  32 

The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has 33 

led to the emergence of a diverse range of variants. The initial concerns regarding the virus were 34 

quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity, 35 

pathogenicity and immunogenicity. To address the latter, we seek to understand how the 36 

mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the 37 

population level during the first year of the pandemic, before mass vaccination. We analyzed a 38 

total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and 39 

all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2 40 

diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline 41 

residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted 42 

global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 43 

supertype family. In addition, we show that this predicted global loss of epitopes is largely driven 44 

by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-45 

associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ 46 

T cell immunosurveillance during the first year of the pandemic. Together, our study lays the 47 

foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and 48 

T cell immunity across human populations. The proposed theoretical framework has implications 49 

in viral evolution, disease severity, vaccine resistance and herd immunity.  50 

 51 

 52 

 53 

 54 
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INTRODUCTION  55 

As of May 2021, the COVID-19 pandemic, caused by the novel Severe Acute Respiratory 56 

Syndrome Coronavirus 2 (SARS-CoV-2), has led to upwards 3.4 million deaths and 165 million 57 

confirmed cases worldwide (https://coronavirus.jhu.edu/map.html), making vaccine development 58 

and deployment an urgent necessity (Callaway, 2020). As a result of unprecedent efforts, vaccines 59 

have been developed and licensed within a 1-year timeframe and are currently being widely 60 

distributed for mass vaccination (Krammer, 2020).  61 

A clear understanding of the natural protective immune response against SARS-CoV-2 is 62 

essential for the development of vaccines that can trigger lifelong immunologic memory to prevent 63 

COVID-19 (Sette and Crotty, 2021; Stephens and McElrath, 2020). Since the start of the 64 

pandemic, numerous studies have investigated the association between COVID-19 clinical 65 

outcomes and SARS-CoV-2 specific antibodies and T cell immunity (Altmann and Boyton, 2020; 66 

Bert et al., 2020; Braun et al., 2020; Grifoni et al., 2020a; Long et al., 2020a, 2020b; Meckiff et 67 

al., 2020; Moderbacher et al., 2020; Sekine et al., 2020; Weiskopf et al., 2020). Memory may be a 68 

concern for SARS-CoV-2 specific antibodies, as they were recently shown to be present in 69 

convalescent COVID-19 patients in a highly heterogenous manner (Dan et al., 2021) and, in some 70 

cases, observed to be undetectable just a few months post-infection (Seow et al., 2020). In contrast, 71 

an increasing number of studies point CD4+ and CD8+ T cells as key regulators of disease severity  72 

(Liao et al., 2020; Moderbacher et al., 2020; Schub et al., 2020; Weiskopf et al., 2020; Zhou et al., 73 

2020). Studies of convalescent COVID-19 patients have also shown broad and strong CD4+ and 74 

CD8+ memory T cells induced by SARS-COV-2, suggesting that T cells may provide robust and 75 

long-term protection (Dan et al., 2021; Peng et al., 2020). Similar observations have been made 76 

for the most closely related human coronavirus, SARS-CoV, for which T cells have been detected 77 
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11 years (Ng et al., 2016) and 17 years (Bert et al., 2020) after the initial infection, whereas 78 

antibodies were noted to be undetectable after 2-3 years (Liu et al., 2006; Tang et al., 2011; Wu et 79 

al., 2007). Thus, vaccines designed to produce robust T cell responses are likely to be important 80 

for eliciting lifelong immunity against COVID-19 in the general population.   81 

To investigate how T cells could contribute to long-term vaccine effectiveness, precise 82 

knowledge about SARS-CoV-2 T cell-specific epitopes is of paramount importance (Liu et al., 83 

2020). To this end, bioinformatics tools were developed to predict T cell-specific epitopes during 84 

the early phase of the pandemic (Grifoni et al., 2020b). A comprehensive map of epitopes 85 

recognized by CD4+ and CD8+ T cell responses across the entire SARS-CoV-2 viral proteome 86 

was also recently reported (Tarke et al., 2020). Notably, the structural proteins Spike (S), 87 

Nucleocapsid (N) and Membrane (M) were shown to be rich sources of immunodominant HLA-88 

associated epitopes, accounting for a large proportion of the total CD4+ and CD8+ T cell response 89 

in the context of a broad set of HLA alleles (Tarke et al., 2021). To date (May 2021), ~700 HLA 90 

class I-restricted SARS-CoV-2-derived epitopes have been experimentally validated 91 

(https://www.mckayspcb.com/SARS2TcellEpitopes/) (Quadeer et al., 2020).   92 

T cell epitopes that have been mapped across the entire SARS-CoV-2 viral proteome are 93 

reference peptides that are unmutated because they have been predicted from the sequence of the 94 

original SARS-CoV-2 that emerged from Wuhan, China (Grifoni et al., 2020b). However, analyses 95 

of unprecedented numbers of SARS-CoV-2 genome assemblies available from large-scale efforts 96 

have shown that SARS-CoV-2 is accumulating an array of mutations across the world, leading to 97 

the circulation and transmission of thousands of variants around the globe at various frequencies, 98 

and hence, contributing to the global genomic diversification of SARS-CoV-2 (Dorp et al., 2020a; 99 

Korber et al., 2020; Laamarti et al., 2020; Mercatelli and Giorgi, 2020; Mercatelli et al., 2020; 100 
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Popa et al., 2020). In this regard, recent data indicate that most recurrent mutations appear to be 101 

evolutionary neutral with no evidence for increased transmissibility (Dorp et al., 2020a). 102 

Nonetheless, it is important to highlight that those neutral mutations are associated with a 103 

remarkably high proportion of cytidine-to-uridine (C-to-U) changes that were hypothesized to be 104 

induced by members of the APOBEC RNA-editing enzyme family (Dorp et al., 2020a; Giorgio et 105 

al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek and Kovařík, 2020; 106 

Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). Since shown for other viruses (Grant and 107 

Larijani, 2017; Monajemi et al., 2014), we reasoned that the putative action of such host enzymes 108 

during the first year of the pandemic could lead to the large-scale escape from immunodominant 109 

and protective SARS-CoV-2-specific T cell responses, thereby potentially compromising their 110 

effectiveness to control the virus at the population-scale.  111 

In this study, we report a comprehensive study of the global genetic diversity of SARS-112 

CoV-2 to expose the impact of mutation bias on epitope presentation and HLA-restricted T cell 113 

response within the first year of the pandemic, from December 2019 to December 2020. More 114 

specifically, we asked the following questions: 1) What are the impact of SARS-CoV-2 prevalent 115 

mutations detected across the global human population on the repertoire of validated SARS-CoV-116 

2 T cell targets, with specific emphasis on CD8+ T cell epitopes? and 2) Are mutational patterns 117 

in the genomic and proteomic composition of SARS-CoV-2 indicative of disrupted (or enhanced) 118 

epitope presentation and T cell immunity in human populations? By answering these questions, 119 

we provide a theoretical framework to understand how SARS-CoV-2 mutants have shaped T cell 120 

immunity to evade effective T cell immune responses at the population level during the first year 121 

of the pandemic, i.e. without mass vaccination-induced immune pressure on viral evolution and 122 

adaptation.  123 
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  124 

RESULTS   125 

The global diversity of SARS-CoV-2 genomes influences the repertoire of T cell targets  126 

As of May 2021, nearly 1.7M complete SARS-CoV-2 genome assemblies are publicly available 127 

via the Global Initiative on Sharing All Influenza Data (GISAID) repository. In the context of this 128 

large-scale effort, we performed a global analysis of SARS-CoV-2 genomes to assess whether 129 

mutations that emerged during the first year of the pandemic could disrupt HLA binding of 130 

clinically relevant SARS-CoV2 CD8+ T cell epitopes. First, we identified missense mutations by 131 

aligning 330,246 high-quality consensus SARS-CoV-2 genomic sequences (GISAID; December 132 

31st 2020, prior to mass vaccination) to the reference sequence, Wuhan-1 SARS-CoV-2 genome 133 

(Figure S1). We found a total of 13,780 mutations identified in at least 4 SARS-CoV-2 134 

genomes/individuals from GISAID, including 1,721 unique amino acid mutations in the S protein, 135 

with D614G as the most frequent one (94%) (Korber et al., 2020) (Table S1 and Table S2). Next, 136 

we implemented a bioinformatics pipeline to assess the impact of these mutations on HLA binding 137 

for 620 unique SARS-CoV-2 HLA class I epitopes that were recently reported to trigger a CD8+ 138 

T cell response in acute or convalescent COVID-19 patients (Quadeer et al., 2020; Tarke et al., 139 

2020) (see Methods). On average, we found that the predicted binding affinity of 181 of these 140 

SARS-CoV-2 epitopes (30%) for common HLA-I alleles was reduced by ~100-fold (Table S3 and 141 

Figure S1). It is also apparent that mutations negatively impacted the HLA binding affinity of 56 142 

(31%) and 19 (10%) CD8+ T cell epitopes located in the immunodominant S and N proteins, 143 

respectively (Figure 1A,B). Notably, a gap in the N protein, composed of a serine-rich region, is 144 

associated with higher mutation rate and a marked lack of predicted T cell epitopes and response 145 
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(Figure 1B). Epitopes located in the RBD vaccine locus were also impacted by mutations (Figure 146 

1C).  147 

Loss of epitope binding for commonly expressed HLA class I molecules was validated in 148 

vitro for a subset of representative SARS-CoV-2 epitopes (Figure S2). Of relevance, we found 149 

that the common D614G mutation in the S protein is linked to a 15-fold decrease in the binding 150 

affinity for the mutated HLA-A*02:01 epitope YQGVNCTEV when compared to the 151 

reference/unmutated epitope YQDVNCTEV (Figure S2A,B). Interestingly, our analysis also 152 

identified a mutation in the HLA-B*07:02-restricted N105 epitope SPRWYFYYL, which is one 153 

of the most immunodominant SARS-CoV-2 epitope (Ferretti et al., 2020; Kared et al., 2021; Saini 154 

et al., 2021; Schulien et al., 2021; Sekine et al., 2020; Tarke et al., 2021). Although relatively rare 155 

(found in only two genomes), the mutation in the N105 epitope consists of PàS at anchor residue 156 

position P2 (P106S: SPRWYFYYL à SSRWYFYYL) (Figure 1B) and is predicted to decrease 157 

HLA epitope binding by 47-fold (Figure 3D), thereby likely reducing the breadth of the immune 158 

response in B*07:02 individuals carrying this mutation. Moreover, our global analysis validated 159 

the presence of two previously reported CD8+ T cell mutated epitopes (i.e. GLMWLSYFI à 160 

GFMWLSYFI, found in 38 genomes; and MEVTPSGTWL à MKVTPSGTWL, found in 23 161 

genomes), which were shown to lose binding to HLA-A*02:01 and -B*40:01, respectively, in 162 

addition to disrupt epitope-specific CD8+ T cell response in COVID-19 patients (Figure S3) 163 

(Agerer et al., 2021). Together, these results demonstrate that mutations driving the global genomic 164 

diversity of SARS-CoV-2 can drastically disrupt HLA binding of clinically relevant CD8+ T cell 165 

epitopes, including epitopes encoded by the immunodominant S and N antigens, therefore 166 

affecting epitope-specific T cell responses in COVID-19 patients.  167 
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In addition to mutations leading to a loss of HLA epitope binding, we identified a 168 

significant number of mutations predicted to enhance the presentation of peptides by their 169 

respective HLA molecules, leading to a ‘Gain’ of binding (Figure S4). Because the unmutated 170 

epitopes are predicted to be non-HLA binders, these mutations were not searched against the list 171 

of known validated epitopes, which consist of strong-HLA binding reference epitopes. Whether 172 

SARS-CoV-2 mutations predicted to increase HLA epitope binding can enhance T cell responses 173 

to control the virus in COVID-19 patients remains to be determined experimentally. 174 

 175 

Amino acid mutational biases shape the global diversity of SARS-CoV-2 proteomes 176 

While analysing the impact of the mutational landscape of SARS-CoV-2 on validated CD8+ T-177 

cell epitopes, we observed that specific mutation types were over-represented while others were 178 

under-represented (Figure S2C,D). For instance, we found that 31% of the mutated epitopes were 179 

represented by a removal of proline residue (Figure S2C,D), leading to the hypothesis that such 180 

biases could originate from biases in the proteome of SARS-CoV-2 mutants. To further investigate 181 

whether specific amino acid mutational biases could be observed globally in the proteome of 182 

SARS-CoV-2 mutants, we asked whether certain amino acid residues were preferentially removed 183 

from, or introduced into the global proteomic diversity of SARS-CoV-2, thereby potentially 184 

diversifying CD8+ T cell epitopes in a systematic manner.  185 

To test this, we computed all residue substitutions (amino acid removed and introduced) 186 

found in SARS-CoV-2 proteomes and calculated Global Residue Substitution Output (GRSO) 187 

values, i.e. the % difference in overall amino acid composition for individual amino acids (see 188 

Methods for details). GRSO values were computed for mutations found at various frequencies in 189 

GISAID (i.e. found in only 1 genome, 2 to 100 genomes, 100 to 1000 genomes and > 1000 190 
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genomes) (Figure 2). Interestingly, distinct mutational patterns at the amino acid level were 191 

observed amongst mutations detected in more than 100 genomes/individuals (Figure 2), referred 192 

in this study to as ‘prevalent mutations’ (see Methods and Table S2). Amongst those mutations, 193 

the amino acids alanine (A), proline (P) and threonine (T) were preferentially removed by 10.2% 194 

(p = 1.2x10-13), 9.1% (p = 1.6x10-15), and 10.5% (p = 1.3x10-14), respectively. In contrast, 195 

phenylalanine (F), isoleucine (I), leucine (L) and tyrosine (Y) were preferentially introduced by 196 

13.4% (p = 2.0x10-17), 15.2% (p = 2.4x10-17), 4.3% (p = 6.3x10-11) and 5.0% (p = 7.0x10-14), 197 

respectively (Figure 2). Statistical significance of these GRSO values was assessed by generating 198 

simulated samples of 1000 SARS-CoV-2 genomes evolving under neutrality (N = 10 replicates) 199 

using the SANTA-SIM algorithm (Jariani et al., 2019) (see Methods for details). Of note, 200 

mutations that were detected in 2 to 100 individuals appeared significantly more neutral, with none 201 

of the mutational patterns enriched above the selected cut-off values (fold change > 4; p-value < 202 

1x10-11). Thus, our results show that specific amino acid residues were preferentially removed or 203 

introduced in the proteome of SARS-CoV-2 mainly by prevalent mutations. Therefore, we 204 

introduce the notion that the global diversity of SARS-CoV-2 proteomes is shaped by specific 205 

amino acid mutational biases. Such biased amino acid composition generated by prevalent 206 

mutations may have a systematic impact on epitope processing and presentation to shape SARS-207 

CoV-2 T cell immunity in human populations. To address this systematic impact, all downstream 208 

analyses described in this study were performed from the set of 1,933 prevalent mutations (>100 209 

genomes) listed in Table S2.  210 

 211 

Prominent removal of proline residues leads to a predicted global loss of epitopes presented 212 

by HLA-B7 supertype molecules  213 
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The association of peptides with the binding groove of HLA molecules largely relies on the 214 

presence of anchor residues, also known as peptide binding motifs (Falk et al., 1991). Hundreds of 215 

different peptide binding motifs have been reported over the last decades (Gfeller and Bassani-216 

Sternberg, 2018). Overlapping binding motifs are qualified as "HLA supertypes" on the basis of 217 

their main anchor specificity (Greenbaum et al., 2011; Sidney et al., 2008). Of relevance here, 218 

proline acts as a critical anchor residue at position P2 for epitopes presented by HLA-B7 (B7) 219 

supertype molecules, which include a wide range of commonly expressed HLA-B alleles in 220 

humans, i.e. HLA-B*07, -B*15, -B*35, -B*42, -B*51, -B*53, -B*54, -B*55, -B*56, -B*67 and 221 

B*78 (Sidney et al., 2008). In fact, the B7 supertype covers ~35% of the human population 222 

(Francisco et al., 2015). Hence, we reasoned that the global removal of proline residues observed 223 

in the proteome of prevalent SARS-CoV-2 mutants (Figure 2) could drastically compromise T 224 

cell epitope binding to B7 supertype molecules, thereby potentially interfering with SARS-CoV-2 225 

T cell immunity in a relatively large proportion of the human population.   226 

Due to the preferential removal of proline by prevalent mutations, we investigated the 227 

extent at which proline residues were substituted at anchor binding position P2 and, consequently, 228 

resulted in loss of epitopes presented by B7 supertype molecules. To answer this, we performed 229 

the following four steps: (i) We applied NetMHCpan 4.1 (Reynisson et al., 2020) using the 230 

reference and mutated SARS-CoV-2 genomes to generate a list of all possible reference/mutated 231 

peptide pairs (8-11 mers) predicted to bind 16 common HLA-B types that belong to the B7 232 

supertype family (Figure S5B). (ii) We analyzed all reference/mutated peptide pairs, along with 233 

their differential predicted binding affinities to quantitatively identify HLA strong binder (SB) to 234 

non-binder (NB) transitions [(SB) NetMHCpan %rank < 0.5 to (NB) NetMHCpan %rank >2]. (iii) 235 

We categorized all peptide pairs based on the mutation type (amino acid X à amino acid Y) and 236 
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the position of the mutation within the peptide sequence. (iv) Lastly, we quantified the number of 237 

reference/mutated peptide pairs and the associated fold-change in predicted binding affinity for 238 

each category. Our results show that prevalent mutations predicted to impact the presentation of 239 

peptides by the B7 supertype are dominated by PàL (p = 8.6x10-35) and PàS (p = 3.4x10-24) 240 

substitutions at anchor residue position P2 (Figure 3A,B). Reference/mutated peptide pairs from 241 

these categories were the most abundant, with > 250 mutated peptides per category (Figure 3C). 242 

PàL and PàS mutations resulted, on average, in a 61-fold reduction in predicted HLA binding 243 

affinity for a representative set of clinically validated CD8+ T cell epitopes (Figure 3D).   244 

In addition to the dominant PàS/L substitution type, other PàX substitutions were 245 

observed. Interestingly, analysis of mutations found in the Pangolin B.1.1.7 variant (January 2021) 246 

showed that the P681H mutation found in the Spike protein led to disrupted association of the 247 

reference epitope SPRRARSVA for several HLA-B7 types. In fact, the P-to-H substitution 248 

resulted in a strong loss of epitope binding predicted for 7/16 HLA-B types tested. Thus, our results 249 

strongly suggest that biased substitutions of proline residues in the proteome of SARS-CoV-2 250 

shapes the repertoire of epitopes presented by B7 supertype, including epitopes encoded by the 251 

genome of the B.1.1.7 variant. This finding let us to propose that mutation biases found in SARS-252 

CoV-2 may contribute to CD8+ T cell epitope escape in a B7 supertype-dependent manner.  253 

 254 

The mutational landscape of SARS-CoV-2 enables disruption or enhancement of epitope 255 

presentation in an HLA supertype-dependent manner  256 

We found that specific amino acid residues were preferentially removed (proline, alanine and 257 

threonine) or introduced (isoleucine, phenylalanine, leucine and tyrosine) in SARS-CoV-2 258 

proteomes (Figure 2). Importantly, most of these amino acids act as key epitope anchor residues 259 
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for multiple HLA class I supertypes (Figure S5). For instance, phenylalanine and tyrosine are key 260 

anchor residues for all known A*24 alleles of the A24 supertype family, whereas proline is known 261 

to play a critical role in the anchoring of epitopes to alleles of the B7 supertype family (Figure 4). 262 

Therefore, one would expect the introduction of phenylalanine and tyrosine in SARS-CoV-2 263 

proteomes to facilitate peptide presentation by A24, whereas the removal of proline would disrupt 264 

peptide presentation by B7. With this concept in mind, we hypothesized that the distinct amino 265 

acid mutational biases found throughout prevalent SARS-CoV-2 mutations could systematically 266 

mold epitope presentation in an HLA supertype-dependent manner.  267 

In order to compare supertypes to each other, we generated a ‘Gain/Loss plot’ for each 268 

supertype assessed (Figure 4C). Gain/Loss plot were generated by computing the number of 269 

mutations that resulted in ‘Gain’ or ‘Loss’ of epitopes for representative class I alleles selected for 270 

each supertype (see methods for details). ‘Gain’ was assigned for mutated epitopes that were 271 

predicted to transit from non-HLA binders (NetMHCpan %rank > 2) to strong HLA binders 272 

(NetMHCpan %rank < 0.5), whereas ‘Loss’ was assigned for mutated epitopes that were predicted 273 

to transit from strong HLA binders to non-HLA binders. Surprisingly, our analysis shows that 274 

most supertypes preferentially gain new epitopes as a result of SARS-CoV-2 mutations: A1 (p = 275 

4.5x10-11), A2 (p = 0.001), A24 (p = 1.0x10-26), B8 (p = 2.4x10-14), B27 (p = 2.5x10-6). 276 

Interestingly, preferential loss of epitopes was only shown to be statistically significant for B7 277 

supertype (p = 0.0012). Note that we explain the relatively low statistical value obtained for B7 278 

supertype by the presence of isoleucine and phenylalanine (preferentially introduced in SARS-279 

CoV-2 proteomes; see Figure 2) at anchor residue P9 for certain HLA types (namely HLAB*51:01 280 

and HLA-B*53:01) (Figure 4A). In fact, omitting motifs containing isoleucine or phenylalanine 281 

increased the significance of epitope lost versus gained (p = 2.6x10-7) (Figure 4C). Together, our 282 
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results show that the amino acid mutational biases that feature the global diversity of SARS-CoV-283 

2 proteomes can positively or negatively affect binding affinities of mutated epitopes for a wide 284 

range of HLA class I molecules in a supertype-dependent manner.   285 

 286 

The C-to-U point mutation bias largely drives diversification of SARS-CoV-2 T cell epitopes   287 

Next, we sought to better understand the genetic determinants that drive the association between 288 

epitope presentation and the amino acid mutational biases found in the SARS-CoV-2 population. 289 

To this end, we analyzed the abundance of all the possible nucleotide mutation types (i.e. A-to-C, 290 

A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.). This analysis indicates that C-to-U is the most 291 

common mutation type (43%), followed by G-to-U (28%), as well as A-to-G, G-to-A and U-to-C  292 

(from 9.7% to 11.6%) (Figure S6A), in line with observations made by others (Giorgio et al., 293 

2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek and Kovařík, 2020; 294 

Rice et al., 2020; Simmonds, 2020; Wang et al., 2020).  295 

Next, we aimed to determine the contribution of these different nucleic acid mutation types 296 

to the global mutational pattern observed at the amino acid level in Figure 2. To do so, we 297 

generated simulated population samples of 1000 SARS-CoV-2 genomes using SANTA-SIM 298 

(Jariani et al., 2019), applying various extents of mutational biases corresponding to the two most 299 

common mutation types observed (i.e. C-to-U and G-to-U). The resulting simulated viral 300 

populations were then analyzed to elucidate the global amino acid mutational pattern engendered 301 

by these simulated nucleic acid point mutation biases, and whether they recapitulate the observed 302 

patterns. Indeed, our data show that the mutational pattern resulting from the simulated C-to-U 303 

bias very closely mimicked the mutational pattern observed in the real-life dataset (Figure 5A). 304 

Namely, the in silico introduction of a C-to-U mutation bias resulted in the preferential removal 305 
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of alanine, proline, and threonine, by 6.7% (p = 5.1x10-11), 6.9% (p = 1.2x10-11) and 8% (p = 306 

4.8x10-12), respectively, as well as the introduction of isoleucine and phenylalanine by 8.2% (p = 307 

1.3x10-8) and 5.2% (p = 4.3x10-11), respectively (Figure 5A). The G-to-U mutation bias also 308 

contributed to the introduction of isoleucine and phenylalanine (Figure S6). Together, these results 309 

show that the predominant C-to-U point mutations largely contribute to shaping the global 310 

proteomic diversity of SARS-CoV-2.   311 

Given the significant impact of the C-to-U point mutation bias on the amino acid content 312 

of SARS-CoV-2 proteomes, we reasoned that C-to-U could be the main driver shaping the 313 

repertoire and diversification of SARS-CoV-2 T cell targets in human populations, including 314 

targets presented by the particularly interesting B7 supertype molecules. To investigate this, we 315 

used all the SARS-CoV-2 CD8+ T cell epitopes that were experimentally validated using 316 

peripheral blood mononuclear cells (PBMC) of acute and convalescent COVID-19 patients 317 

(Quadeer et al., 2020; Tarke et al., 2020) and matched them with their corresponding nucleic acid 318 

sequence found in reference/mutated genome pairs. We then calculated the frequency of the 319 

various mutation types (i.e. A-to-C, A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.) coding for the 320 

mutated form of those clinically validated CD8+ T cell epitopes. Importantly, we found that C-to-321 

U and G-to-U were the two main mutation types leading to mutated epitopes, both accounting for 322 

37% of all mutation types amongst prevalent mutations (>100 individuals) (Figure 5B). Most 323 

strikingly, 62% of the prevalent mutations predicted to disrupt the presentation of epitopes by HLA 324 

alleles for the B7 supertype were found to derive from the C-to-U mutation type (Figure 5B). 325 

These results strongly suggest that the dominant C-to-U point mutation bias found amongst 326 

prevalent SARS-CoV-2 mutants has the potential to significantly contribute to shaping the 327 

repertoire of SARS-CoV-2 T cell epitopes in B7 supertype individuals across human populations. 328 
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Collectively, our study lets us to propose the model that C-to-U editing enzymes play a 329 

fundamental role in shaping the mutational landscape dynamics of SARS-CoV-2 CD8+ T cell 330 

targets in humans (Figure 5C), and hence, may contribute to molding T cell immunity against 331 

COVID-19 at the population level.   332 

  333 

DISCUSSION   334 

Mutations contribute to the genetic diversity of SARS-CoV-2 and shape the progression of the 335 

COVID-19 pandemic (Dorp et al., 2020b, 2020a; Popa et al., 2020). T cells are key players 336 

controlling COVID-19 disease severity. Therefore, determining whether and how the mutational 337 

landscape of SARS-CoV-2 shapes or is shaped by HLA-restricted T cell response is fundamentally 338 

important. Traditionally, most studies have investigated how viral mutations are shaped by T cell 339 

response in the context of HLA-typed cohort patients. This type of approach sought to determine 340 

the evolutionary relationship between HLA genotypes and variants of long-standing viruses such 341 

as HIV-1 (Brumme et al., 2007; Kawashima et al., 2009) and influenza (Woolthuis et al., 2016). 342 

In the case of novel virus such as SARS-CoV-2, such a relationship remains to be established and 343 

does not constitute the scope of our work. Here, we rationalized that an alternative approach to 344 

interrogating SARS-CoV-2 epitope-associated variants is by investigating the global genomic and 345 

proteomic diversity of SARS-CoV-2 for any outstanding mutational biases, and then, assessing 346 

the relationship between such biases and epitope presentation for a broad set of HLA alleles. In 347 

other words, in this study, we did not seek to understand how viral mutations are shaped by T cell 348 

immunity, but rather to understand how mutational biases in SARS-CoV-2 may have shaped T 349 

cell immunity at the population level during the first year of the pandemic. This approach was 350 

possible thanks to an unprecedented number of SARS-CoV-2 genome sequences available for 351 
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downstream analysis. Our approach is universal and could be applied to other epidemic or 352 

pandemic viruses in the future, given the development of distinct, prevalent mutational biases. 353 

Importantly, our global approach has led to several striking conclusions to help understand how 354 

the increasing genomic diversity of SARS-CoV-2 may shape T cell immunity in human 355 

populations. Our findings have important implications that are discussed below in the context of 356 

disease severity, viral evolution and vaccine resistance.   357 

In this study, we found that prevalent SARS-CoV-2 mutations are governed by defined 358 

mutational patterns, with C-to-U being a predominant mutation type, as previously shown by 359 

others (Giorgio et al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek 360 

and Kovařík, 2020; Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). In fact, we show that 361 

the C-to-U mutation bias in SARS-CoV-2 genomes has a remarkably intimate relationship with 362 

the observed amino acid mutational biases, indicating that C-to-U mutations largely contribute to 363 

the global proteomic diversity of SARS-CoV-2. Most importantly, we show that this mutational 364 

bias leads to the preferential substitution of proline residues with leucine or serine residues in the 365 

P2 anchor position of SARS-CoV-2 CD8+ T cell epitopes, and hence, drastically compromise 366 

epitope binding to B7 supertype molecules, which represent ~35% of the human population 367 

(Francisco et al., 2015). Therefore, the C-to-U mutational bias observed amongst prevalent 368 

mutants may partially disrupt SARS-CoV-2 T cell immunity in a very significant proportion of the 369 

human population. Noteworthy, this impact of C-to-U mutations on B7-depedent epitope escape 370 

was somehow predictable. In fact, proline residues originate from codons that are highly rich in C 371 

whereas serine and leucine residues originate from codons that are rich in both C and U. One could 372 

therefore predict, at least to some extent, that a strong C-to-U bias would lead to proline-to-leucine 373 

or proline-to-serine substitutions. Thus, this study highlights the impact of viral mutational biases 374 
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and codon usage in shaping the diversity of CD8+ T cell targets. This being said, it is important to 375 

realize that we do not make the claim that the presence of proline-to-leucine or proline-to-serine 376 

mutations in the SARS-CoV-2 proteomes depend on patients being B7 supertype-positive, or that 377 

the B7 supertype drives the evolution of proline-to-leucine/serine mutations. We do, however, 378 

demonstrate that the prevalent mutations currently in circulation are enriched for proline-to-379 

leucine/serine, and our in silico predictions suggest that the high occurrence of this mutation type 380 

leads to widespread hinderance of epitope presentation in B7 supertype-positive individuals.  381 

A key question to address is to what extent does the C-to-U bias drives SARS-CoV-2 382 

evolution and adaptation over the course of the ongoing pandemic. As proposed by others, the 383 

most likely explanation for the observed C-to-U bias is the action of the host-mediated RNA-384 

editing APOBEC enzymes, a family of cytidine deaminases that catalyze deamination of cytidine 385 

to uridine in RNA (Dorp et al., 2020a; Giorgio et al., 2020; Kosuge et al., 2020; Olson et al., 2018; 386 

Salter et al., 2016). In this regard, APOBEC activity has been shown to broadly drive viral 387 

evolution and diversity, including in human immunodeficiency virus (HIV) (Albin et al., 2010; 388 

Cuevas et al., 2015; Haché et al., 2008; Jern et al., 2009; Peretti et al., 2018; Sadler et al., 2010; 389 

Wood et al., 2009). In fact, APOBEC-induced mutations driving the evolution and diversification 390 

of HIV-1 were shown to have an intimate relationship with T cell immunity (Kim et al., 2014; 391 

Wood et al., 2009). Notably, those studies have shown that the impact of APOBEC-induced 392 

mutations may result in either a decrease or increase of CD8+ T cell recognition, and that the 393 

direction of this response is dictated by the HLA context (Casartelli et al., 2010; Grant and Larijani, 394 

2017; Kim et al., 2014; Monajemi et al., 2014; Squires et al., 2015; Wood et al., 2009). This is 395 

very much in line with our findings. Indeed, we showed that amino acid mutation biases in SARS-396 

CoV-2 proteomes generally positively affect epitope binding for various HLA class I supertypes, 397 
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and most strikingly for A24, whereas B7 is the only supertype negatively affected by the mutation 398 

biases given the markable loss of proline residues in SARSCoV-2 proteomes. Together, our results 399 

raise the important hypothesis that host-mediated RNA editing systems shape the repertoire of 400 

SARS-CoV-2 T cell epitopes in a positive and negative HLA-dependant manner.   401 

Another question is whether populations of B7 supertype individuals represent an 402 

advantageous reservoir for the virus to evolve toward more transmissible variants. As the genetic 403 

diversity of the SARS-CoV-2 population continue to increase, and as new variants emerge, our 404 

global analysis suggests that the probability for SARS-CoV-2 epitopes to escape CD8+ T cell 405 

immunosurveillance is much higher in B7 individuals compared to A24 individuals. In fact, a 406 

slower T cell response dynamic to control SARS-CoV-2 infection in B7 individuals may offer a 407 

selective advantage for the virus to evolve. In this regard, we noted that the B.1.1.7 variant lost the 408 

B7 supertype-associated epitope SP/HRRARSVA as a result of a proline-to-histidine substitution. 409 

While genomic surveillance is ongoing in different regions of the world, measuring the level of 410 

transmission of the B.1.1.7 variant within geographical regions of the world with low B7 411 

population densities and high A24 population densities (in Asia) or the opposite trend (in Sub-412 

Saharan Africa) (http://www.allelefrequencies.net/top10freqs.asp) may provide insights into this 413 

concern. As new variants of concern continue to emerge and as new epitope data are continuously 414 

being generated (Grifoni et al., 2021), another interesting avenue would be to study the mutational 415 

patterns of those emerging variants and assess whether and how the potential loss of B7-associated 416 

epitopes in those specific variants impact T cell response in infected patients. Understanding the 417 

impact of losing several subdominant B7-associated epitopes versus one single immunodominant 418 

epitope could also be investigated in the context of those variants. In this regard, a particular 419 

attention was allocated in our study to the B*07:02-restricted N105 epitope SPRWYFYYL. This 420 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446959
http://creativecommons.org/licenses/by-nd/4.0/


 19 

epitope is of high interest as its immunodominance was experimentally demonstrated in many 421 

independent studies (Ferretti et al., 2020; Kared et al., 2021; Saini et al., 2021; Schulien et al., 422 

2021; Sekine et al., 2020; Tarke et al., 2021). Precisely, we found a rare mutation consisting of 423 

PàS at P2 of this epitope (SPRWYFYYL à SSRWYFYYL). Its occurrence was predicted to 424 

result in the complete abrogation of binding of the epitope to B*07:02, thereby likely reducing the 425 

breadth of the immune response in individuals carrying this mutation. As such, we advise the 426 

community to carefully monitor this mutation in subsequent months. Moreover, it is also possible 427 

that B7 individuals respond less efficiently to the currently available vaccines, as genetic variants 428 

promoting B7 escape might favorably emerge in the future. The B7 supertype could therefore 429 

potentially represent a biomarker of vaccine resistance.   430 

In summary, our study shows that mutation biases in the SARS-CoV-2 population diversify 431 

the repertoire of SARS-CoV-2 T cell targets in humans in an HLA-supertype dependent manner. 432 

Hence, we provide a foundation model to help understand how SARS-CoV-2 may continue to 433 

mutate over time to shape T cell immunity at a global population scale. The proposed process will 434 

likely continue to influence the evolution and diversification of SARS-CoV-2 lineages as the virus 435 

is under tremendous pressure to adapt in response to mass vaccination.  436 

 437 

LIMITATIONS AND FUTURE DIRECTIONS  438 

Our analyses focused on class I molecules for which predictors are established to be more accurate 439 

in comparison with class II. HLA-C and non-classical HLA were not included in this study. 440 

Predictions were performed on the most common HLA class I alleles and rare HLA alleles were 441 

not included. Study has been performed using the GISAID dataset available in December 31st 442 

2020, i.e. first year of the pandemic, before mass vaccination. Our epitope binding results rely on 443 
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in silico predictions using a method that has been widely benchmarked, but is designed to predict 444 

peptide presentation rather than immunogenicity. Follow up experiments would need to be 445 

performed to further validate the proposed model. Priority follow up studies are 1) to investigate 446 

T cell response to SARS-CoV-2 mutants in large cohorts of B7 supertype-positive versus negative 447 

patients, and 2) to determine the direct role of APOBEC family proteins in modulation of SARS-448 

CoV-2-specific T cell immunity.  Moreover, this study lays the foundation to understand the 449 

evolutionary dynamics of pandemic viruses with a time 0 / no vaccine-induced immune pressure 450 

start point. Employing SARS-CoV-2 as model provides an opportunity in future studies to look at 451 

the dynamic of the relationship between mutational patterns and HLA-restricted T cell immunity 452 

in real-time. Kinetic analyses using the latest GISAID datasets, which now include 1.7M SARS-453 

CoV-2 genomes as of May 2021, may lead to additional insights in this regard.  454 
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FIGURE LEGENDS  477 

Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the 478 

immunodominant S and N antigens. (A, B) Lower panel: blue dots showing all mutations that 479 

occurred in at least 4 SARS-CoV-2 genomes (GISAID). Middle panel: epitope density showing 480 

the overlap of HLA class I epitopes predicted within the 1st percentile for 12 queried HLA-I 481 

molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from 482 

multiple studies aggregated in the database https://www.mckayspcb.com/SARS2TcellEpitopes as 483 

of January 2021. Red dots are mutated epitopes wherein the mutation event led to a predicted loss 484 

of binding. Sequences of specific epitopes are shown with the mutant amino acid in red. The red 485 

box in the N protein highlights a serine-rich region associated with no T cell response, low epitope 486 

density and high mutation frequency. (C) 3D structure of the Spike glycoprotein (Moderna 487 
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Vaccine) and highlighted in yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in 488 

red are mutated epitopes wherein mutation events led to a predicted loss of HLA binding.   489 

  490 

Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes. A total of 330,246 491 

SARS-CoV-2 genomes were translated into protein sequences and analyzed for the identification 492 

of any amino acid mutational bias. Amino acid residues (x-axis) that were removed and introduced 493 

in SARS-CoV-2 variants are presented by negative and positive %-difference in overall amino 494 

acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was 495 

performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes 496 

(orange line), 100 to 1000 genomes (green line) and more than 1000 genomes (red line). 497 

Simulation of neutral evolution simulation (random mutations) were performed using the SANTA-498 

SIM algorithm and serves as control for assessing the statistical significance of the observed 499 

pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change 500 

> 4; p-value < 1x10-11) that were used to define the residues that were preferentially removed or 501 

introduced (asterisk). 502 

   503 

Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated 504 

epitopes. (A) (Left panel) Motif view of SARS-CoV-2 reference peptides predicted to bind B7 505 

supertype molecules (HLA-B*07:02, -B*35:03, -B42:02 , -B*5101, -B*53:01, -B*54:01, -506 

B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides. 507 

(B) Heat map showing the frequency of specific amino acid substitutions between reference and 508 

mutated peptides. (C) Graph showing the number of mutations (upper panel; y-axis) leading to 509 

specific amino acid substitutions (x-axis) at anchor residue positions P2 (red dots) and P9 (green 510 
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dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant 511 

substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D) 512 

Representative examples of validated CD8+ T cell epitopes 513 

(https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021). Effect of the P→X 514 

substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T 515 

cell response data for reference epitopes extracted from 516 

https://www.mckayspcb.com/SARS2TcellEpitopes.     517 

  518 

Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class I supertypes. 519 

(A, B) Motif views showing established epitope binding motifs for different HLA-I alleles that 520 

belong to the HLA-B7 (A) and HLA-A24 (B) supertype family. Shaded squares highlight anchor 521 

residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-2 522 

proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the 523 

number of frequent mutations (identified in at least 100 individuals) leading to the loss or gain of 524 

epitopes. (C) ‘Gain/Loss plots’ showing number of mutations (y-axis) leading to a preferentially 525 

loss (pale green) or gain (pale orange) of epitopes for different HLA class I supertypes. Each black 526 

dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-527 

I allele. Between 14 to 19 alleles per supertype (Figure S5) were used to generate the graphs and 528 

p-values (*p ≤ 0.001, **p < 1e-5, ***p < 1e-10).  529 

  530 

Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2 531 

proteomes and CD8+ T cell epitopes. (A) Comparison of global amino acid mutational patterns 532 

generated from real-life versus simulated SARS-COV-2 genomes. Amino acid residues (x-axis) 533 
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that were removed and introduced in real-life versus simulated SARS-CoV-2 are presented by 534 

negative and positive %-difference in overall amino acid composition (GRSO values; y-axis), 535 

respectively. Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U 536 

biases, i.e. x1, x15 and x20 (n = 10). The red line shows the pattern obtained from mutations 537 

identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. (B) (Top) Pie chart 538 

showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell 539 

epitopes in https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. (Bottom) Pie 540 

chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T 541 

cell epitopes specific to the B7 supertype. (C) Schematic illustrating the C-to-U-mediated epitope 542 

escape model. The observed mutation of the immunodominant SPRWYLFYYL epitope in the N 543 

protein is shown as an example.  544 

  545 

STAR METHODS  546 

RESOURCE AVAILABILITY  547 

Lead Contact   548 

Further information and requests should be directed to the lead contact, Dr. Etienne Caron  549 

(etienne.caron@umontreal.ca)  550 

Materials Availability  551 

This study did not generate new unique reagents.   552 

Data and Code Availability  553 

All sequence data used here are available from The Initiative for Sharing All Influenza Data 554 

(GISAID), at https://gisaid.org/. The user agreement for GISAID does not permit redistribution of 555 

sequences, but researchers can register to get access to the dataset. Code to create the alignments, 556 
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to predict mutated and unmutated HLA-I peptides, and to perform the global analysis of SARS-557 

CoV-2 proteomes are available at https://github.com/CaronLab.  558 

  559 

METHOD DETAILS  560 

Identification of SARS-CoV-2 mutations  561 

All SARS-CoV-2 nucleotide sequences were acquired from the GISAID on 31/12/2021. A total of  562 

330,246 SARS-CoV-2 sequences spanning 143 countries were acquired and analyzed. All 563 

sequences isolated from animals (including viral RNA isolated from bat, pangolin, mink, cat and 564 

tiger) were removed from the list and only high-quality sequences were further analysed. 565 

Consensus sequences were aligned to the reference sequence, Wuhan-1 (NC_045512.2) using 566 

minimap2 2.17-r974. All mapped sequences were then merged back with all others in a single 567 

alignment bam file. The variant calling was done using bcftools mpileup v1.91 in a haploid calling 568 

mode. Sequences were processed by batches of 1000 to overcome technical issues with very low-569 

frequency variants. With the variant calling obtained for each batch, vcf-merge (from the vcftools 570 

suite) was used to merge all the variant calls across the entire dataset. A total of 24,220 variants in 571 

at least two consensus sequences were identified. Mutations appearing in only one genome were 572 

excluded as they are likely enriched for sequencing errors. A list of all missense mutations 573 

considered in our analyses is provided in Table S1.  The 1,933 prevalent mutations observed in 574 

more than 100 genomes are also clearly shown in Table S2.  575 

  576 

Prediction of mutated and reference CD8+ T-cell epitopes  577 

Prediction of CD8+ T cell epitopes was carried out using netMHCpan 4.0 EL (Reynisson et al., 578 

2020). For each unique missense mutation, short sequence windows consisting of 14 amino acids 579 
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on either side of the mutation site were generated, containing either the reference or mutated amino 580 

acid. Working from the resulting 29-residue sequence windows (mutation +/- 14 residues), 581 

811mers were predicted against the 12 most frequent HLA alleles within the global population  582 

(HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02,  583 

HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, and 584 

HLAB*44:03). Briefly, the NetMHCpan 4.0 EL method relies on a neural network trained on both 585 

binding affinity as well as eluted ligand data to produce a likelihood score for a peptide to be an 586 

eluted ligand for the indicated HLA types. The likelihood score consists of a percentile rank  587 

(%rank) wherein predicted (weak) binders obtain a %rank below 2.0, whereas strong binder (SB) 588 

obtain a %rank below 0.5. Using this ranking system, only mutation-containing peptides where 589 

the mutated and/or the reference peptide were ranked as SB were considered for further analyses.  590 

Mutations causing percentile ranks to transition from strong HLA-binder (SB, netMHCpan %Rank 591 

< 0.5) to HLA non-binders (NB, netMHCpan %Rank > 2.0) were considered as leading to ‘Loss 592 

of binding’. Mutations causing predicted binding affinities to transition from NB to SB were 593 

considered as leading to ‘Gain of binding’.  594 

  595 

Selection of clinically validated CD8+ T-Cell epitopes  596 

A list of validated CD8+ T Cell epitopes presented by both HLA-A and -B molecules were 597 

downloaded from https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). This 598 

database, developed by Dr. Matthew R. McKay and his team, contains compiled and catalogued 599 

validated T-cell epitope-HLA pairs from 13 studies aimed at identifying immunogenic 600 

SARSCOV-2 T-cell epitopes.  601 

  602 
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In vitro HLA-peptide binding assays   603 

Peptide binding to class I HLA molecules was quantitatively measured using classical competition 604 

assays based on the inhibition of binding of a high affinity radiolabeled peptide to purified HLA 605 

molecules, as detailed elsewhere (Sidney et al., 2013). Briefly, HLA molecules were purified from 606 

lysates of EBV transformed homozygous cell lines by affinity chromatography by repeated 607 

passage over Protein A Sepharose beads conjugated with the W6/32 (anti-HLA-A, -B, -C) 608 

antibody, following separation from HLA-B and -C molecules by pre-passage over a B1.23.2 609 

(antiHLA B, C) column. Protein purity, concentration, and the effectiveness of depletion steps was 610 

monitored by SDS-PAGE and BCA assay. Peptide affinity for respective class I molecules was 611 

determined by incubating 0.1-1 nM of radiolabeled peptide at room temperature with 1 µM to 1 612 

nM of purified HLA in the presence of a cocktail of protease inhibitors and 1 µM B2microglobulin. 613 

Following a two-day incubation, HLA bound radioactivity was determined by capturing 614 

MHC/peptide complexes on W6/32 antibody coated Lumitrac 600 plates (Greiner Bioone, 615 

Frickenhausen, Germany). Bound cpm was measured using the TopCount (Packard Instrument 616 

Co., Meriden, CT) microscintillation counter. The concentration of peptide yielding 50% 617 

inhibition of the binding of the radiolabeled peptide was calculated. Under the conditions utilized, 618 

where [label]<[MHC] and IC50 ≥ [MHC], the measured IC50 values are reasonable 619 

approximations of the true Kd values. Each competitor peptide was tested at six different 620 

concentrations covering a 100,000-fold dose range, and in three or more independent experiments. 621 

As a positive control for inhibition, the unlabeled version of the radiolabeled probe was also tested 622 

in each experiment.  623 

  624 
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SANTA-SIM simulations  625 

We simulated SARS-CoV-2 genomes with SANTA-SIM, using the consensus sequence 626 

WuhanHu-1 as input sequence available at https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3. 627 

Each simulation was run with a population size of 10,000 individual viral sequences evolving for 628 

1000 generations, and analyses were conducted on random samples of 1,000 viral sequences. 629 

Following Huddelston et.al. (Huddleston et al., 2020) who used SANTA-SIM to simulate 630 

influenza A/H3N2 that has a yearly substitution rate approximately twice as high as SARS-CoV-631 

2 [~48,824 substitutions/year (https://nextstrain.org/flu/seasonal/h3n2/ha/2y?l=clock) vs. ~24.5 632 

substitution/year (https://nextstrain.org/ncov/global?l=clock)], we chose 400 generations/year, 633 

with the mutation rate per position per generation set to 2.04E-6 (yearly substitution 634 

rate/(generations in one year * genome size)). The transition bias was set to 3.0 for baseline 635 

simulations. To evaluate the impact of specific substitution biases, additional simulations were 636 

conducted using a substitution matrix with scores set to 1.0 of transversions, 3.0 for transitions, 637 

and biases ranging from 4.0 to 20.0 for the targeted substitution. We generated 10 replicates for 638 

all simulated scenarios, except for C-to-U where we made 100 replicates to better assess statistical 639 

significance.  640 

  641 

Determination of amino acid mutational patterns  642 

Mutational biases were identified by calculating the overall change in amino acid composition 643 

caused by the mutational landscape of SARS-CoV-2 for each individual amino acid, referred in 644 

the main text as ‘global residue substitution output’ (GRSO). For this analysis, all mutations found 645 

globally in at least 4 GISAID entries were analysed together. Preferential introduction or removal 646 

of amino acids was determined by comparing the overall amino acid composition in reference 647 
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residues vs mutated residues throughout the mutation pool, resulting in a percentile difference in 648 

amino acid composition. As such, for amino acid X, the % difference was calculated according to 649 

the following formula:  650 

%	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 = 	 +
𝑁𝑏𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔	𝑋 − 𝑁𝑏𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔	𝑋

𝐴𝑙𝑙	𝐺𝑙𝑜𝑏𝑎𝑙	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	4	𝐺𝐼𝑆𝐴𝐼𝐷	𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ? × 100 651 

This analysis took into consideration the number of unique mutations. Therefore, to consider 652 

mutational biases in the context of mutation frequencies, the analysis described above was 653 

conducted separately for mutations occurring in a single GISAID entry (expected to be enriched 654 

for errors); 2-10 GISAID entries; 11-99 GISAID entries; and 100 or more GISAID entries. As a 655 

negative control, the SANTA SIM algorithm was used to simulate the neutral evolution of 1000 656 

SARS-CoV-2 genomes (baseline simulations, N = 10 replicates). This control was used to 657 

calculate the statistical significance of the observed biases, by way of a One-Sample T-Test.  658 

 659 

Prediction of mutation impacts on peptide presentation in the context of HLA supertypes  660 

Reference/mutated peptide pairs for which the differential predicted binding affinities led to 661 

transitions from strong HLA binder (SB) to non-HLA binder (NB) [(SB) NetMHCpan %rank < 662 

0.5 to (NB) NetMHCpan %rank >2] or from NB to SB, were identified, catalogued and analyzed 663 

as described above. Binding affinities were predicted for representative HLA types from several 664 

major HLA supertypes (A1, A2, A3, A24, B7, B8, B27, B44), as defined by Sydney et al. We then 665 

categorized all reference/mutated peptide pairs on the basis of their 1) mutation type (amino acid 666 

X à amino acid Y) and 2) the position of the mutation in the peptide sequence. Finally, we 667 

quantified the number of reference/mutated peptide pairs and the associated average fold change 668 

in predicted binding affinity for each category. P-values were generated for each category by 669 

performing a two-tailed independent T-Test between the fold changes in binding affinity 670 
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associated with mutation type A at position X, and all fold changes in binding affinity associated 671 

with position X.  672 

  673 

Assessing the contribution of nucleic acid mutation types to the global amino acid 674 

mutational patterns.  675 

To assess the contribution of various nucleic acid mutation types to the observed amino acid 676 

mutational patterns, we first determined the respective contributions of each nucleic acid mutation 677 

type to the global mutation landscape. We then selected the five most abundant mutation types 678 

[CàU (41%), GàU (18%), AàG, GàA, UàC (9.7-11.6%)] and assessed their individual 679 

impacts on amino acid mutational patterns using the simulation algorithm SANTA SIM as follows:  680 

For each mutation type, we simulated the evolution of 1000 SARS-CoV-2 genomes over 1000 681 

generations (N = 10 replicates) with varying degrees of biases (the coefficient used to determine 682 

the extent of the biases was exploratively set to ‘x4’, ‘x8’, ‘x15’, and ‘x20’) (Figure S6A). Because 683 

the input coefficient does not have a linear relationship with the abundance of the mutation type 684 

observed in the simulation output, we used the simulations with all four parameter values (x4, x8, 685 

x15, x20) in order to identify the simulation parameter that most closely reflected observations in 686 

real-life SARS-CoV-2 data. The coefficient for the ratio of X à Y nucleic acid mutation type to 687 

all other mutation types was generated using the following formula:  688 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝐵𝑖𝑎𝑠	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	
+ 𝐴𝑙𝑙	𝑋 → 𝑌	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	
𝐴𝑙𝑙	𝑋	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑔𝑒𝑛𝑜𝑚𝑒?

+ 𝐴𝑙𝑙	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
𝐴𝑙𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑔𝑒𝑛𝑜𝑚𝑒?

 689 

Finally, all amino acid mutations were identified for the output of each simulation, as described 690 

above. To determine statistical significances, simulated mutational biases (at the amino acid level) 691 
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were compared to a neutral evolution as a negative control (N = 10 replicates) by way of twotailed 692 

independent T-Test.  693 

  694 

Statistical analysis  695 

A Two-tailed One-Sample T-Test was used to assess the statistical significance of the observed 696 

mutational biases against the neutral simulations (N = 10 replicates). A Two-tailed Independent 697 

T-Test assuming different variances was used to assess the statistical significances of 1) the 698 

simulated biased SARS-CoV-2 evolution, 2) the gain/loss plots in the context of supertypes, and 699 

3) the statistical significance associated with the average fold change in %rank associated with 700 

each position-specific amino acid mutation type in the supertype analysis.  701 

  702 

SUPPLEMENTARY MATERIALS  703 

SUPPLEMENTARY FIGURE LEGENDS  704 

Figure S1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes, Related to Figure 1 705 

and 4. (A) Bioinformatic pipeline for the prediction of SARS-CoV-2 mutated class I peptides 706 

associated to 12 common HLA alleles. (B) Pyramidal graph showing the number of i) missense 707 

mutations in SARS-CoV-2 genomes, ii) predicted class I mutated peptides, iii) predicted class I 708 

peptides subject to Weak Binder (WB) to Non-Binder (NB) and Strong Binder (SB) to NB 709 

transition (epitope loss category), and iv) predicted class I mutated peptides matching reference 710 

CD8+ T cell epitopes that have been experimentally validated. (C) Representative examples of 711 

predicted class I mutated peptides and the impact of the identified amino acid mutation (bold) on 712 

peptide binding to a given HLA-I allele. Reference and mutated EL (eluted ligand) Rank (%) 713 

generated by NetMHCpan 4.1 EL is indicated for individual predictions. Gain = NB to SB (pale 714 
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red); Loss = SB to NB (pale green). (D) Left panel: number of unique mutations leading to ‘Gain’ 715 

or ‘Loss’ of class I peptides for the indicated HLA-I alleles. Right panel: number of unique 716 

mutations showing no effect on peptide binding for the indicated HLA-I alleles. (E) Validated 717 

SARS-CoV-2 CD8+ T cell epitopes (McKay Database) subjected to mutation events detected in 718 

more than 4 individuals (GISAID) and predicted lead to a strong loss of HLA-epitope binding. 719 

Top: number of unique missense mutations corresponding to the indicated amino acid substitution 720 

type. Bottom: Predicted loss of HLA-epitope binding (NetMHCpan4.1 %Rank) corresponding to 721 

the indicated residue substitution type from the list of validated CD8+ T cell epitopes in the McKay 722 

Database. Each dot represents an epitope pair (mutated / reference). Color indicates HLA type 723 

affected by the mutations.  724 

  725 

Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2 726 

mutated epitopes, Related to Figure 1. (A) HLA binding assay was performed to determine the 727 

in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific HLA class I 728 

alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common 729 

HLA class I alleles, and 3) the mutated form was predicted to lose binding to its corresponding 730 

HLA. (B) Plots showing raw values for the binding affinities (nM) of the reference vs mutated 731 

peptides in (A). The first three amino acid residues of the reference peptides with fold change > 732 

2.5 are shown. (C) Pie chart showing the proportion of X-to-Y substitution types from the list of 733 

validated CD8+ T cell epitopes in https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of 734 

January 2021). (D) Predicted loss of HLA-epitope binding clustered by substitution type from the 735 

list of validated CD8+ T cell epitopes in the McKay database.  Each dot represents an epitope pair 736 

(mutated / reference; NetMHCpan 4.1 %rank ratio). 737 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446959
http://creativecommons.org/licenses/by-nd/4.0/


 33 

 738 

Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were 739 

previously associated with decreased CD8+ T cell responses, Related to Figure 1. (A) The 740 

mutated epitopes GFMWLSYFI (A*02) and MKVTPSGTWL (B*40) were detected in 38 and 23 741 

genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly 742 

investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from 743 

AAAS) (B) Experimental overview. (C) T cells expanded with mutant peptides do not give rise to 744 

wild type peptide-specific CD8+ T cell. PBMCs were isolated from HLA-A*02:01 or HLA-745 

B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and stained 746 

with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response. 747 

PBMCs expanded with wild type or mutant peptides as indicated, were analyzed for IFN-γ-748 

production via ICS after restimulation with wild type or mutant peptide. (E) Representative FACS 749 

plots for (D).  750 

 751 

Figure S4. Impact of mutations on gain of peptide binding to various HLA class I molecules 752 

across the immunodominant S and N antigens, Related to Figure 1. (A, B) Lower panel: blue 753 

dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Upper 754 

panel: dots showing predicted peptides subjected to a strong gain of binding (see also Figure 755 

S1C,D) to one of 12 highly common HLA types queried (color coded) due to a mutation. 756 

  757 

Figure S5. HLA class I supertypes, Related to Figure 4. (A) Epitope binding motifs for several 758 

HLA class I supertypes. Anchor residues are located at P2 and P9. Pale orange and green squares 759 

cover amino acid residues that are preferentially introduced (F, I, L, Y) and removed (A, P, T) in 760 
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SARS-CoV-2 proteomes, respectively. Representative supertypes used in this study are shown by 761 

an asterisk. Epitope binding motifs were extracted from NetMHCpan Motif Viewer 762 

(http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected 763 

alleles per supertype that were used in this study to generate the ‘Gain/Loss plots’.  764 

 765 

Figure S6. Comparison of mutation biases between real-life/observed and simulated data, 766 

Related to Figure 5. (A) Histograms showing the number of unique mutations identified for each 767 

mutation type (A-to-C, A-to-G, etc.) after simulating the evolution of SARS-CoV-2 genomes 768 

through the introduction of different C-to-U bias values (x4 to x20) using the SANTA-SIM 769 

software. Simulated (black squares) and real-life/observed prevalent mutations found in more than 770 

100 genomes (red square) at the nucleotide level are shown. (B) Comparison of global amino acid 771 

mutational patterns generated from simulated versus real-life/observed SARS-COV-2 genomes. 772 

Various extents of C-to-U (top) and G-to-U (bottom) biases were introduced to perform the 773 

simulation and to generate the graphs. 774 

  775 

SUPPLEMENTARY TABLE LEGENDS  776 

Table S1. SARS-CoV-2 mutations identified from 330,246 GISAID entries (December 31st 777 

2020), Related to Figure 1. SARS-CoV-2 mutations at the nucleic and amino acid level are 778 

indicated. Number of genomes carrying mutation show the frequency of individual mutations 779 

among all SARS-CoV-2 variants.   780 

 781 

 Table S2. SARS-CoV-2 prevalent mutations identified from 330,246 GISAID entries 782 

(December 31st 2020) and detected in at least 100 individuals, Related to Figure 1. 783 
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 784 

Table S3. Documented SARS-CoV-2 CD8+ T cell epitopes and their matching mutated 785 

forms identified in this study, Related to Figure 1.  786 

 787 

Table S4. List of documented SARS-CoV-2 CD8+ T cell epitopes. Epitopes were downloaded 788 

from https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). This database has 789 

effectively catalogued all SARS-CoV-2 CD8+ epitopes validated by 18 separate studies. 790 
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Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the immunodominant S and N
antigens. (A, B) Lower panel: blue dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID).
Middle panel: epitope density showing the overlap of HLA class I epitopes predicted within the 1st percentile for 12 queried
HLA-I molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from multiple studies
aggregated in the database https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. Red dots are mutated
epitopes wherein the mutation event led to a predicted loss of binding. Sequences of specific epitopes are shown with the
mutant amino acid in red. The red box in the N protein highlights a serine-rich region associated with no T cell response, low
epitope density and high mutation frequency. (C) 3D structure of the Spike glycoprotein (Moderna Vaccine) and highlighted in
yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in red are mutated epitopes wherein mutation events led to a
predicted loss of HLA binding.

P681H (B.1.1.7)
(HLA-B*07:02)
SP/HRRARSVA

D614G
(HLA-A*02:01)
YQD/GVNCTEV

E323K 
(HLA-B*40:01)
ME/KVTPSGTW



Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes. A total of 330,246 SARS-CoV-2 genomes
were translated into protein sequences and analyzed for the identification of any amino acid mutational bias. Amino acid
residues (x-axis) that were removed and introduced in SARS-CoV-2 variants are presented by negative and positive %-
difference in overall amino acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was
performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes (orange line), 100 to 1000
genomes (green line) and more than 1000 genomes (red line). Simulation of neutral evolution simulation (random mutations)
were performed using the SANTA-SIM algorithm and serves as control for assessing the statistical significance of the
observed pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change > 4; p-value <
1x10-11) that were used to define the residues that were preferentially removed or introduced (asterisk).
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Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated epitopes. (A) (Left panel) Motif
view of SARS-CoV-2 reference peptides predicted to bind B7 supertype molecules (HLA-B*07:02, -B*35:03, -B42:02 , -B*5101, -
B*53:01, -B*54:01, -B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides. (B) Heat map
showing the frequency of specific amino acid substitutions between reference and mutated peptides. (C) Graph showing the
number of mutations (upper panel; y-axis) leading to specific amino acid substitutions (x-axis) at anchor residue positions P2
(red dots) and P9 (green dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant
substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D) Representative examples of
validated CD8+ T cell epitopes (https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021). Effect of the P→X
substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T cell response data for reference
epitopes extracted from https://www.mckayspcb.com/SARS2TcellEpitopes.
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Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class I supertypes. (A, B) Motif views showing
established epitope binding motifs for different HLA-I alleles that belong to the HLA-B*07 (A) and HLA-A*24 (B) supertype family.
Shaded squares highlight anchor residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-
2 proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the number of frequent mutations
(identified in at least 100 individuals) leading to the loss or gain of epitopes. (C) ‘Gain/Loss plots’ showing number of mutations
(y-axis) leading to a preferentially loss (pale green) or gain (pale orange) of epitopes for different HLA class I supertypes. Each
black dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-I allele. Between 14 to 19
alleles per supertype (Figure S5) were used to generate the graphs and p-values (*p ≤ 0.001, **p < 1e-5, ***p < 1e-10).
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Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2 proteomes and CD8+ T cell
epitopes. (A) Comparison of global amino acid mutational patterns generated from real-life versus simulated SARS-COV-2
genomes. Amino acid residues (x-axis) that were removed and introduced in real-life versus simulated SARS-CoV-2 are
presented by negative and positive %-difference in overall amino acid composition (GRSO values; y-axis), respectively.
Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U biases, i.e. x1, x15 and x20 (n = 10). The
red line shows the pattern obtained from mutations identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. (B)
(Top) Pie chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes in
https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. (Bottom) Pie chart showing the proportion of
nucleotide substitution types from the list of validated CD8+ T cell epitopes specific to the B7 supertype. (C) Schematic
illustrating the C-to-U-mediated epitope escape model. The observed mutation of the immunodominant SPRWYLFYYL
epitope in the N protein is shown as an example.
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Figure S1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes, Related to Figure 1 and 4. (A) Bioinformatic pipeline for the prediction
of SARS-CoV-2 mutated class I peptides associated to 12 common HLA alleles. (B) Pyramidal graph showing the number of i) missense mutations
in SARS-CoV-2 genomes, ii) predicted class I mutated peptides, iii) predicted class I peptides subject to Weak Binder (WB) to Non-Binder (NB) and
Strong Binder (SB) to NB transition (epitope loss category), and iv) predicted class I mutated peptides matching reference CD8+ T cell epitopes
that have been experimentally validated. (C) Representative examples of predicted class I mutated peptides and the impact of the identified amino
acid mutation (bold) on peptide binding to a given HLA-I allele. Reference and mutated EL (eluted ligand) Rank (%) generated by NetMHCpan 4.1
EL is indicated for individual predictions. Gain = NB to SB (pale red); Loss = SB to NB (pale green). (D) Left panel: number of unique mutations
leading to ‘Gain’ or ‘Loss’ of class I peptides for the indicated HLA-I alleles. Right panel: number of unique mutations showing no effect on peptide
binding for the indicated HLA-I alleles. (E) Validated SARS-CoV-2 CD8+ T cell epitopes (McKay Database) subjected to mutation events detected
in more than 4 individuals (GISAID) and predicted lead to a strong loss of HLA-epitope binding. Top: number of unique missense mutations
corresponding to the indicated amino acid substitution type. Bottom: Predicted loss of HLA-epitope binding (NetMHCpan4.1 %Rank) corresponding
to the indicated residue substitution type from the list of validated CD8+ T cell epitopes in the McKay Database. Each dot represents an epitope
pair (mutated / reference). Color indicates HLA type affected by the mutations.
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A*11:01 25593G>C ORF3a_K67N 47 ASKIITLKK  /  ASKIITLKN K -> N 23 6494
B*07:02 28881G>A N_R203K 20893 SSRGTSPARM  /  SSKGTSPARM P -> L 5445 50000
B*07:02 17747C>T ORF1b_P1327L 1991 NPAWRKAVF  /  NLAWRKAVF P -> L 11 840
B*07:02 28311C>T N_P13L 1252 APRITFGGP  /  ALRITFGGP P -> L 45 976
B*07:02 25350C>T S_P1263L 538 SEPVLKGVKL  /  SELVLKGVKL P -> L 1397 50000
B*07:02 25350C>T S_P1263L 538 EPVLKGVKL  /  ELVLKGVKL P -> L 942 50000
B*08:01 21624G>T S_R21I 431 NLTTRTQL  /  NLTTITQL R -> I 14 869
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Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2 mutated epitopes, Related to Figure 1.
(A) HLA binding assay was performed to determine the in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific
HLA class I alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common HLA class I alleles, and 3)
the mutated form was predicted to lose binding to its corresponding HLA. (B) Plots showing raw values for the binding affinities (nM) of
the reference vs mutated peptides in (A). The first three amino acid residues of the reference peptides with fold change > 2.5 are
shown. (C) Pie chart showing the proportion of X-to-Y substitution types from the list of validated CD8+ T cell epitopes in
https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). (D) Predicted loss of HLA-epitope binding clustered by
substitution type from the list of validated CD8+ T cell epitopes in the McKay database. Each dot represents an epitope pair (mutated /
reference; NetMHCpan 4.1 %rank ratio).
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Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were previously associated with
decreased CD8+ T cell responses, Related to Figure 1. (A) The mutated epitopes GFMWLSYFI (A*02) and MKVTPSGTWL
(B*40) were detected in 38 and 23 genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly
investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from AAAS) (B) Experimental
overview. (C) T cells expanded with mutant peptides do not give rise to wild type peptide-specific CD8+ T cell. PBMCs were
isolated from HLA-A*02:01 or HLA-B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and
stained with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response. PBMCs expanded
with wild type or mutant peptides as indicated, were analyzed for IFN-γ-production via ICS after restimulation with wild type or
mutant peptide. (E) Representative FACS plots for (D).
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Figure S4. Impact of mutations on gain of peptide binding to various HLA class I molecules across the
immunodominant S and N antigens, Related to Figure 1. (A, B) Lower panel: blue dots showing all mutations that occurred
in at least 4 SARS-CoV-2 genomes (GISAID). Upper panel: dots showing predicted peptides subjected to a strong gain of
binding (see also Figure S1C,D) to one of 12 highly common HLA types queried (color coded) due to a mutation.
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A3

Figure S5. HLA class I supertypes, Related to Figure 4. (A) Epitope binding motifs for several HLA class I supertypes.
Anchor residues are located at P2 and P9. Pale orange and green squares cover amino acid residues that are preferentially
introduced (F, I, L, Y) and removed (A, P, T) in SARS-CoV-2 proteomes, respectively. Representative supertypes used in this
study are shown by an asterisk. Epitope binding motifs were extracted from NetMHCpan Motif Viewer
(http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected alleles per supertype that were
used in this study to generate the ‘Gain/Loss plots’.
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Figure S6. Comparison of mutation biases between real-life/observed and simulated data, Related to Figure 5. (A)
Histograms showing the number of unique mutations identified for each mutation type (A-to-C, A-to-G, etc.) after simulating
the evolution of SARS-CoV-2 genomes through the introduction of different C-to-U bias values (x4 to x20) using the
SANTA-SIM software. Simulated (black squares) and real-life/observed prevalent mutations found in more than 100
genomes (red square) at the nucleotide level are shown. (B) Comparison of global amino acid mutational patterns
generated from simulated versus real-life/observed SARS-COV-2 genomes. Various extents of C-to-U (top) and G-to-U
(bottom) biases were introduced to perform the simulation and to generate the graphs.
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