

1 **The mutational landscape of SARS-CoV-2 variants diversifies T
2 cell targets in an HLA supertype-dependent manner**

3

4

5 **AUTHORS**

6 David J. Hamelin¹, Dominique Fournelle², Jean-Christophe Grenier², Jana Schockaert³, Kevin
7 Kovalchik¹, Peter Kubiniok¹, Fatima Mostefai², Jérôme D. Duquette¹, Frederic Saab¹, Isabelle
8 Sirois¹, Martin A. Smith^{1,4}, Sofie Pattijn³, Hugo Soudeyns^{1,5,6}, Hélène Decaluwe^{1,6}, Julie
9 Hussin^{2,4*}, Etienne Caron^{1,7,8*}

10

11

12 **AFFILIATIONS**

13 ¹CHU Sainte-Justine Research Center, Montreal, QC, Canada

14 ²Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada

15 ³ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium

16 ⁴Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de
17 Montréal, QC, Canada

18 ⁵Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de
19 Montréal, Montréal, QC, Canada

20 ⁶Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada

21 ⁷Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal,
22 Montreal, QC, Canada

23 ⁸Lead Contact

24

25 *Corresponding author: Julie Hussin (julie.hussin@umontreal.ca) and Etienne Caron
26 (etienne.caron@umontreal.ca)

27

28

29

30

31

32 **SUMMARY**

33 The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has
34 led to the emergence of a diverse range of variants. The initial concerns regarding the virus were
35 quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity,
36 pathogenicity and immunogenicity. To address the latter, we seek to understand how the
37 mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the
38 population level during the first year of the pandemic, before mass vaccination. We analyzed a
39 total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and
40 all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2
41 diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline
42 residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted
43 global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7
44 supertype family. In addition, we show that this predicted global loss of epitopes is largely driven
45 by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-
46 associated epitopes, including the most immunodominant ones, were more likely to escape CD8+
47 T cell immunosurveillance during the first year of the pandemic. Together, our study lays the
48 foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and
49 T cell immunity across human populations. The proposed theoretical framework has implications
50 in viral evolution, disease severity, vaccine resistance and herd immunity.

51

52

53

54

55 INTRODUCTION

56 As of May 2021, the COVID-19 pandemic, caused by the novel Severe Acute Respiratory
57 Syndrome Coronavirus 2 (SARS-CoV-2), has led to upwards 3.4 million deaths and 165 million
58 confirmed cases worldwide (<https://coronavirus.jhu.edu/map.html>), making vaccine development
59 and deployment an urgent necessity (Callaway, 2020). As a result of unprecedent efforts, vaccines
60 have been developed and licensed within a 1-year timeframe and are currently being widely
61 distributed for mass vaccination (Krammer, 2020).

62 A clear understanding of the natural protective immune response against SARS-CoV-2 is
63 essential for the development of vaccines that can trigger lifelong immunologic memory to prevent
64 COVID-19 (Sette and Crotty, 2021; Stephens and McElrath, 2020). Since the start of the
65 pandemic, numerous studies have investigated the association between COVID-19 clinical
66 outcomes and SARS-CoV-2 specific antibodies and T cell immunity (Altmann and Boyton, 2020;
67 Bert et al., 2020; Braun et al., 2020; Grifoni et al., 2020a; Long et al., 2020a, 2020b; Meckiff et
68 al., 2020; Moderbacher et al., 2020; Sekine et al., 2020; Weiskopf et al., 2020). Memory may be a
69 concern for SARS-CoV-2 specific antibodies, as they were recently shown to be present in
70 convalescent COVID-19 patients in a highly heterogenous manner (Dan et al., 2021) and, in some
71 cases, observed to be undetectable just a few months post-infection (Seow et al., 2020). In contrast,
72 an increasing number of studies point CD4+ and CD8+ T cells as key regulators of disease severity
73 (Liao et al., 2020; Moderbacher et al., 2020; Schub et al., 2020; Weiskopf et al., 2020; Zhou et al.,
74 2020). Studies of convalescent COVID-19 patients have also shown broad and strong CD4+ and
75 CD8+ memory T cells induced by SARS-COV-2, suggesting that T cells may provide robust and
76 long-term protection (Dan et al., 2021; Peng et al., 2020). Similar observations have been made
77 for the most closely related human coronavirus, SARS-CoV, for which T cells have been detected

78 11 years (Ng et al., 2016) and 17 years (Bert et al., 2020) after the initial infection, whereas
79 antibodies were noted to be undetectable after 2-3 years (Liu et al., 2006; Tang et al., 2011; Wu et
80 al., 2007). Thus, vaccines designed to produce robust T cell responses are likely to be important
81 for eliciting lifelong immunity against COVID-19 in the general population.

82 To investigate how T cells could contribute to long-term vaccine effectiveness, precise
83 knowledge about SARS-CoV-2 T cell-specific epitopes is of paramount importance (Liu et al.,
84 2020). To this end, bioinformatics tools were developed to predict T cell-specific epitopes during
85 the early phase of the pandemic (Grifoni et al., 2020b). A comprehensive map of epitopes
86 recognized by CD4+ and CD8+ T cell responses across the entire SARS-CoV-2 viral proteome
87 was also recently reported (Tarde et al., 2020). Notably, the structural proteins Spike (S),
88 Nucleocapsid (N) and Membrane (M) were shown to be rich sources of immunodominant HLA-
89 associated epitopes, accounting for a large proportion of the total CD4+ and CD8+ T cell response
90 in the context of a broad set of HLA alleles (Tarde et al., 2021). To date (May 2021), ~700 HLA
91 class I-restricted SARS-CoV-2-derived epitopes have been experimentally validated
92 (<https://www.mckayspcb.com/SARS2TcellEpitopes/>) (Quadeer et al., 2020).

93 T cell epitopes that have been mapped across the entire SARS-CoV-2 viral proteome are
94 reference peptides that are unmutated because they have been predicted from the sequence of the
95 original SARS-CoV-2 that emerged from Wuhan, China (Grifoni et al., 2020b). However, analyses
96 of unprecedented numbers of SARS-CoV-2 genome assemblies available from large-scale efforts
97 have shown that SARS-CoV-2 is accumulating an array of mutations across the world, leading to
98 the circulation and transmission of thousands of variants around the globe at various frequencies,
99 and hence, contributing to the global genomic diversification of SARS-CoV-2 (Dorp et al., 2020a;
100 Korber et al., 2020; Laamarti et al., 2020; Mercatelli and Giorgi, 2020; Mercatelli et al., 2020;

101 Popa et al., 2020). In this regard, recent data indicate that most recurrent mutations appear to be
102 evolutionary neutral with no evidence for increased transmissibility (Dorp et al., 2020a).
103 Nonetheless, it is important to highlight that those neutral mutations are associated with a
104 remarkably high proportion of cytidine-to-uridine (C-to-U) changes that were hypothesized to be
105 induced by members of the APOBEC RNA-editing enzyme family (Dorp et al., 2020a; Giorgio et
106 al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek and Kovařík, 2020;
107 Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). Since shown for other viruses (Grant and
108 Larijani, 2017; Monajemi et al., 2014), we reasoned that the putative action of such host enzymes
109 during the first year of the pandemic could lead to the large-scale escape from immunodominant
110 and protective SARS-CoV-2-specific T cell responses, thereby potentially compromising their
111 effectiveness to control the virus at the population-scale.

112 In this study, we report a comprehensive study of the global genetic diversity of SARS-
113 CoV-2 to expose the impact of mutation bias on epitope presentation and HLA-restricted T cell
114 response within the first year of the pandemic, from December 2019 to December 2020. More
115 specifically, we asked the following questions: 1) What are the impact of SARS-CoV-2 prevalent
116 mutations detected across the global human population on the repertoire of validated SARS-CoV-
117 2 T cell targets, with specific emphasis on CD8+ T cell epitopes? and 2) Are mutational patterns
118 in the genomic and proteomic composition of SARS-CoV-2 indicative of disrupted (or enhanced)
119 epitope presentation and T cell immunity in human populations? By answering these questions,
120 we provide a theoretical framework to understand how SARS-CoV-2 mutants have shaped T cell
121 immunity to evade effective T cell immune responses at the population level during the first year
122 of the pandemic, i.e. without mass vaccination-induced immune pressure on viral evolution and
123 adaptation.

124

125 **RESULTS**

126 **The global diversity of SARS-CoV-2 genomes influences the repertoire of T cell targets**

127 As of May 2021, nearly 1.7M complete SARS-CoV-2 genome assemblies are publicly available
128 via the Global Initiative on Sharing All Influenza Data (GISAID) repository. In the context of this
129 large-scale effort, we performed a global analysis of SARS-CoV-2 genomes to assess whether
130 mutations that emerged during the first year of the pandemic could disrupt HLA binding of
131 clinically relevant SARS-CoV2 CD8+ T cell epitopes. First, we identified missense mutations by
132 aligning 330,246 high-quality consensus SARS-CoV-2 genomic sequences (GISAID; December
133 31st 2020, prior to mass vaccination) to the reference sequence, Wuhan-1 SARS-CoV-2 genome
134 (**Figure S1**). We found a total of 13,780 mutations identified in at least 4 SARS-CoV-2
135 genomes/individuals from GISAID, including 1,721 unique amino acid mutations in the S protein,
136 with D614G as the most frequent one (94%) (Korber et al., 2020) (**Table S1** and **Table S2**). Next,
137 we implemented a bioinformatics pipeline to assess the impact of these mutations on HLA binding
138 for 620 unique SARS-CoV-2 HLA class I epitopes that were recently reported to trigger a CD8+
139 T cell response in acute or convalescent COVID-19 patients (Quadeer et al., 2020; Tarke et al.,
140 2020) (see Methods). On average, we found that the predicted binding affinity of 181 of these
141 SARS-CoV-2 epitopes (30%) for common HLA-I alleles was reduced by ~100-fold (**Table S3** and
142 **Figure S1**). It is also apparent that mutations negatively impacted the HLA binding affinity of 56
143 (31%) and 19 (10%) CD8+ T cell epitopes located in the immunodominant S and N proteins,
144 respectively (**Figure 1A,B**). Notably, a gap in the N protein, composed of a serine-rich region, is
145 associated with higher mutation rate and a marked lack of predicted T cell epitopes and response

146 (Figure 1B). Epitopes located in the RBD vaccine locus were also impacted by mutations (Figure
147 1C).

148 Loss of epitope binding for commonly expressed HLA class I molecules was validated *in*
149 *vitro* for a subset of representative SARS-CoV-2 epitopes (Figure S2). Of relevance, we found
150 that the common D614G mutation in the S protein is linked to a 15-fold decrease in the binding
151 affinity for the mutated HLA-A*02:01 epitope YQGVNCTEV when compared to the
152 reference/unmutated epitope YQDVNCTEV (Figure S2A,B). Interestingly, our analysis also
153 identified a mutation in the HLA-B*07:02-restricted N105 epitope SPRWYFYYL, which is one
154 of the most immunodominant SARS-CoV-2 epitope (Ferretti et al., 2020; Kared et al., 2021; Saini
155 et al., 2021; Schulien et al., 2021; Sekine et al., 2020; Tarke et al., 2021). Although relatively rare
156 (found in only two genomes), the mutation in the N105 epitope consists of P→S at anchor residue
157 position P2 (P106S: SPRWYFYYL → SSRWYFYYL) (Figure 1B) and is predicted to decrease
158 HLA epitope binding by 47-fold (Figure 3D), thereby likely reducing the breadth of the immune
159 response in B*07:02 individuals carrying this mutation. Moreover, our global analysis validated
160 the presence of two previously reported CD8+ T cell mutated epitopes (i.e. GLMWLSYFI →
161 GFMWLSYFI, found in 38 genomes; and MEVTPSGTWL → MKVTPSGTWL, found in 23
162 genomes), which were shown to lose binding to HLA-A*02:01 and -B*40:01, respectively, in
163 addition to disrupt epitope-specific CD8+ T cell response in COVID-19 patients (Figure S3)
164 (Agerer et al., 2021). Together, these results demonstrate that mutations driving the global genomic
165 diversity of SARS-CoV-2 can drastically disrupt HLA binding of clinically relevant CD8+ T cell
166 epitopes, including epitopes encoded by the immunodominant S and N antigens, therefore
167 affecting epitope-specific T cell responses in COVID-19 patients.

168 In addition to mutations leading to a loss of HLA epitope binding, we identified a
169 significant number of mutations predicted to enhance the presentation of peptides by their
170 respective HLA molecules, leading to a ‘Gain’ of binding (**Figure S4**). Because the unmutated
171 epitopes are predicted to be non-HLA binders, these mutations were not searched against the list
172 of known validated epitopes, which consist of strong-HLA binding reference epitopes. Whether
173 SARS-CoV-2 mutations predicted to increase HLA epitope binding can enhance T cell responses
174 to control the virus in COVID-19 patients remains to be determined experimentally.

175

176 **Amino acid mutational biases shape the global diversity of SARS-CoV-2 proteomes**

177 While analysing the impact of the mutational landscape of SARS-CoV-2 on validated CD8+ T-
178 cell epitopes, we observed that specific mutation types were over-represented while others were
179 under-represented (**Figure S2C,D**). For instance, we found that 31% of the mutated epitopes were
180 represented by a removal of proline residue (**Figure S2C,D**), leading to the hypothesis that such
181 biases could originate from biases in the proteome of SARS-CoV-2 mutants. To further investigate
182 whether specific amino acid mutational biases could be observed globally in the proteome of
183 SARS-CoV-2 mutants, we asked whether certain amino acid residues were preferentially removed
184 from, or introduced into the global proteomic diversity of SARS-CoV-2, thereby potentially
185 diversifying CD8+ T cell epitopes in a systematic manner.

186 To test this, we computed all residue substitutions (amino acid removed and introduced)
187 found in SARS-CoV-2 proteomes and calculated Global Residue Substitution Output (GRSO)
188 values, i.e. the % difference in overall amino acid composition for individual amino acids (see
189 Methods for details). GRSO values were computed for mutations found at various frequencies in
190 GISAID (i.e. found in only 1 genome, 2 to 100 genomes, 100 to 1000 genomes and > 1000

191 genomes) (**Figure 2**). Interestingly, distinct mutational patterns at the amino acid level were
192 observed amongst mutations detected in more than 100 genomes/individuals (**Figure 2**), referred
193 in this study to as ‘prevalent mutations’ (see Methods and **Table S2**). Amongst those mutations,
194 the amino acids alanine (A), proline (P) and threonine (T) were preferentially removed by 10.2%
195 ($p = 1.2 \times 10^{-13}$), 9.1% ($p = 1.6 \times 10^{-15}$), and 10.5% ($p = 1.3 \times 10^{-14}$), respectively. In contrast,
196 phenylalanine (F), isoleucine (I), leucine (L) and tyrosine (Y) were preferentially introduced by
197 13.4% ($p = 2.0 \times 10^{-17}$), 15.2% ($p = 2.4 \times 10^{-17}$), 4.3% ($p = 6.3 \times 10^{-11}$) and 5.0% ($p = 7.0 \times 10^{-14}$),
198 respectively (**Figure 2**). Statistical significance of these GRSO values was assessed by generating
199 simulated samples of 1000 SARS-CoV-2 genomes evolving under neutrality ($N = 10$ replicates)
200 using the SANTA-SIM algorithm (Jariani et al., 2019) (see Methods for details). Of note,
201 mutations that were detected in 2 to 100 individuals appeared significantly more neutral, with none
202 of the mutational patterns enriched above the selected cut-off values (fold change > 4 ; p -value $<$
203 1×10^{-11}). Thus, our results show that specific amino acid residues were preferentially removed or
204 introduced in the proteome of SARS-CoV-2 mainly by prevalent mutations. Therefore, we
205 introduce the notion that the global diversity of SARS-CoV-2 proteomes is shaped by specific
206 amino acid mutational biases. Such biased amino acid composition generated by prevalent
207 mutations may have a systematic impact on epitope processing and presentation to shape SARS-
208 CoV-2 T cell immunity in human populations. To address this systematic impact, all downstream
209 analyses described in this study were performed from the set of 1,933 prevalent mutations (> 100
210 genomes) listed in **Table S2**.

211
212 **Prominent removal of proline residues leads to a predicted global loss of epitopes presented**
213 **by HLA-B7 supertype molecules**

214 The association of peptides with the binding groove of HLA molecules largely relies on the
215 presence of anchor residues, also known as peptide binding motifs (Falk et al., 1991). Hundreds of
216 different peptide binding motifs have been reported over the last decades (Gfeller and Bassani-
217 Sternberg, 2018). Overlapping binding motifs are qualified as "HLA supertypes" on the basis of
218 their main anchor specificity (Greenbaum et al., 2011; Sidney et al., 2008). Of relevance here,
219 proline acts as a critical anchor residue at position P2 for epitopes presented by HLA-B7 (B7)
220 supertype molecules, which include a wide range of commonly expressed HLA-B alleles in
221 humans, i.e. HLA-B*07, -B*15, -B*35, -B*42, -B*51, -B*53, -B*54, -B*55, -B*56, -B*67 and
222 B*78 (Sidney et al., 2008). In fact, the B7 supertype covers ~35% of the human population
223 (Francisco et al., 2015). Hence, we reasoned that the global removal of proline residues observed
224 in the proteome of prevalent SARS-CoV-2 mutants (**Figure 2**) could drastically compromise T
225 cell epitope binding to B7 supertype molecules, thereby potentially interfering with SARS-CoV-2
226 T cell immunity in a relatively large proportion of the human population.

227 Due to the preferential removal of proline by prevalent mutations, we investigated the
228 extent at which proline residues were substituted at anchor binding position P2 and, consequently,
229 resulted in loss of epitopes presented by B7 supertype molecules. To answer this, we performed
230 the following four steps: (i) We applied NetMHCpan 4.1 (Reynisson et al., 2020) using the
231 reference and mutated SARS-CoV-2 genomes to generate a list of all possible reference/mutated
232 peptide pairs (8-11 mers) predicted to bind 16 common HLA-B types that belong to the B7
233 supertype family (**Figure S5B**). (ii) We analyzed all reference/mutated peptide pairs, along with
234 their differential predicted binding affinities to quantitatively identify HLA strong binder (SB) to
235 non-binder (NB) transitions [(SB) NetMHCpan %rank < 0.5 to (NB) NetMHCpan %rank >2]. (iii)
236 We categorized all peptide pairs based on the mutation type (amino acid X → amino acid Y) and

237 the position of the mutation within the peptide sequence. (iv) Lastly, we quantified the number of
238 reference/mutated peptide pairs and the associated fold-change in predicted binding affinity for
239 each category. Our results show that prevalent mutations predicted to impact the presentation of
240 peptides by the B7 supertype are dominated by P→L ($p = 8.6 \times 10^{-35}$) and P→S ($p = 3.4 \times 10^{-24}$)
241 substitutions at anchor residue position P2 (**Figure 3A,B**). Reference/mutated peptide pairs from
242 these categories were the most abundant, with > 250 mutated peptides per category (**Figure 3C**).
243 P→L and P→S mutations resulted, on average, in a 61-fold reduction in predicted HLA binding
244 affinity for a representative set of clinically validated CD8+ T cell epitopes (**Figure 3D**).

245 In addition to the dominant P→S/L substitution type, other P→X substitutions were
246 observed. Interestingly, analysis of mutations found in the Pangolin B.1.1.7 variant (January 2021)
247 showed that the P681H mutation found in the Spike protein led to disrupted association of the
248 reference epitope SPRRARSVA for several HLA-B7 types. In fact, the P-to-H substitution
249 resulted in a strong loss of epitope binding predicted for 7/16 HLA-B types tested. Thus, our results
250 strongly suggest that biased substitutions of proline residues in the proteome of SARS-CoV-2
251 shapes the repertoire of epitopes presented by B7 supertype, including epitopes encoded by the
252 genome of the B.1.1.7 variant. This finding let us to propose that mutation biases found in SARS-
253 CoV-2 may contribute to CD8+ T cell epitope escape in a B7 supertype-dependent manner.

254

255 **The mutational landscape of SARS-CoV-2 enables disruption or enhancement of epitope
256 presentation in an HLA supertype-dependent manner**

257 We found that specific amino acid residues were preferentially removed (proline, alanine and
258 threonine) or introduced (isoleucine, phenylalanine, leucine and tyrosine) in SARS-CoV-2
259 proteomes (**Figure 2**). Importantly, most of these amino acids act as key epitope anchor residues

260 for multiple HLA class I supertypes (**Figure S5**). For instance, phenylalanine and tyrosine are key
261 anchor residues for all known A*24 alleles of the A24 supertype family, whereas proline is known
262 to play a critical role in the anchoring of epitopes to alleles of the B7 supertype family (**Figure 4**).
263 Therefore, one would expect the introduction of phenylalanine and tyrosine in SARS-CoV-2
264 proteomes to facilitate peptide presentation by A24, whereas the removal of proline would disrupt
265 peptide presentation by B7. With this concept in mind, we hypothesized that the distinct amino
266 acid mutational biases found throughout prevalent SARS-CoV-2 mutations could systematically
267 mold epitope presentation in an HLA supertype-dependent manner.

268 In order to compare supertypes to each other, we generated a ‘Gain/Loss plot’ for each
269 supertype assessed (**Figure 4C**). Gain/Loss plot were generated by computing the number of
270 mutations that resulted in ‘Gain’ or ‘Loss’ of epitopes for representative class I alleles selected for
271 each supertype (see methods for details). ‘Gain’ was assigned for mutated epitopes that were
272 predicted to transit from non-HLA binders (NetMHCpan %rank > 2) to strong HLA binders
273 (NetMHCpan %rank < 0.5), whereas ‘Loss’ was assigned for mutated epitopes that were predicted
274 to transit from strong HLA binders to non-HLA binders. Surprisingly, our analysis shows that
275 most supertypes preferentially gain new epitopes as a result of SARS-CoV-2 mutations: A1 (p =
276 4.5×10^{-11}), A2 (p = 0.001), A24 (p = 1.0×10^{-26}), B8 (p = 2.4×10^{-14}), B27 (p = 2.5×10^{-6}).
277 Interestingly, preferential loss of epitopes was only shown to be statistically significant for B7
278 supertype (p = 0.0012). Note that we explain the relatively low statistical value obtained for B7
279 supertype by the presence of isoleucine and phenylalanine (preferentially introduced in SARS-
280 CoV-2 proteomes; see Figure 2) at anchor residue P9 for certain HLA types (namely HLAB*51:01
281 and HLA-B*53:01) (**Figure 4A**). In fact, omitting motifs containing isoleucine or phenylalanine
282 increased the significance of epitope lost *versus* gained (p = 2.6×10^{-7}) (**Figure 4C**). Together, our

283 results show that the amino acid mutational biases that feature the global diversity of SARS-CoV-
284 2 proteomes can positively or negatively affect binding affinities of mutated epitopes for a wide
285 range of HLA class I molecules in a supertype-dependent manner.

286

287 **The C-to-U point mutation bias largely drives diversification of SARS-CoV-2 T cell epitopes**

288 Next, we sought to better understand the genetic determinants that drive the association between
289 epitope presentation and the amino acid mutational biases found in the SARS-CoV-2 population.
290 To this end, we analyzed the abundance of all the possible nucleotide mutation types (i.e. A-to-C,
291 A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.). This analysis indicates that C-to-U is the most
292 common mutation type (43%), followed by G-to-U (28%), as well as A-to-G, G-to-A and U-to-C
293 (from 9.7% to 11.6%) (**Figure S6A**), in line with observations made by others (Giorgio et al.,
294 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek and Kovařík, 2020;
295 Rice et al., 2020; Simmonds, 2020; Wang et al., 2020).

296 Next, we aimed to determine the contribution of these different nucleic acid mutation types
297 to the global mutational pattern observed at the amino acid level in Figure 2. To do so, we
298 generated simulated population samples of 1000 SARS-CoV-2 genomes using SANTA-SIM
299 (Jariani et al., 2019), applying various extents of mutational biases corresponding to the two most
300 common mutation types observed (i.e. C-to-U and G-to-U). The resulting simulated viral
301 populations were then analyzed to elucidate the global amino acid mutational pattern engendered
302 by these simulated nucleic acid point mutation biases, and whether they recapitulate the observed
303 patterns. Indeed, our data show that the mutational pattern resulting from the simulated C-to-U
304 bias very closely mimicked the mutational pattern observed in the real-life dataset (**Figure 5A**).
305 Namely, the *in silico* introduction of a C-to-U mutation bias resulted in the preferential removal

306 of alanine, proline, and threonine, by 6.7% ($p = 5.1 \times 10^{-11}$), 6.9% ($p = 1.2 \times 10^{-11}$) and 8% ($p =$
307 4.8×10^{-12}), respectively, as well as the introduction of isoleucine and phenylalanine by 8.2% ($p =$
308 1.3×10^{-8}) and 5.2% ($p = 4.3 \times 10^{-11}$), respectively (**Figure 5A**). The G-to-U mutation bias also
309 contributed to the introduction of isoleucine and phenylalanine (**Figure S6**). Together, these results
310 show that the predominant C-to-U point mutations largely contribute to shaping the global
311 proteomic diversity of SARS-CoV-2.

312 Given the significant impact of the C-to-U point mutation bias on the amino acid content
313 of SARS-CoV-2 proteomes, we reasoned that C-to-U could be the main driver shaping the
314 repertoire and diversification of SARS-CoV-2 T cell targets in human populations, including
315 targets presented by the particularly interesting B7 supertype molecules. To investigate this, we
316 used all the SARS-CoV-2 CD8+ T cell epitopes that were experimentally validated using
317 peripheral blood mononuclear cells (PBMC) of acute and convalescent COVID-19 patients
318 (Quadeer et al., 2020; Tarke et al., 2020) and matched them with their corresponding nucleic acid
319 sequence found in reference/mutated genome pairs. We then calculated the frequency of the
320 various mutation types (i.e. A-to-C, A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.) coding for the
321 mutated form of those clinically validated CD8+ T cell epitopes. Importantly, we found that C-to-
322 U and G-to-U were the two main mutation types leading to mutated epitopes, both accounting for
323 37% of all mutation types amongst prevalent mutations (>100 individuals) (**Figure 5B**). Most
324 strikingly, 62% of the prevalent mutations predicted to disrupt the presentation of epitopes by HLA
325 alleles for the B7 supertype were found to derive from the C-to-U mutation type (**Figure 5B**).
326 These results strongly suggest that the dominant C-to-U point mutation bias found amongst
327 prevalent SARS-CoV-2 mutants has the potential to significantly contribute to shaping the
328 repertoire of SARS-CoV-2 T cell epitopes in B7 supertype individuals across human populations.

329 Collectively, our study lets us to propose the model that C-to-U editing enzymes play a
330 fundamental role in shaping the mutational landscape dynamics of SARS-CoV-2 CD8+ T cell
331 targets in humans (**Figure 5C**), and hence, may contribute to molding T cell immunity against
332 COVID-19 at the population level.

333

334 **DISCUSSION**

335 Mutations contribute to the genetic diversity of SARS-CoV-2 and shape the progression of the
336 COVID-19 pandemic (Dorp et al., 2020b, 2020a; Popa et al., 2020). T cells are key players
337 controlling COVID-19 disease severity. Therefore, determining whether and how the mutational
338 landscape of SARS-CoV-2 shapes or is shaped by HLA-restricted T cell response is fundamentally
339 important. Traditionally, most studies have investigated how viral mutations are shaped by T cell
340 response in the context of HLA-typed cohort patients. This type of approach sought to determine
341 the evolutionary relationship between HLA genotypes and variants of long-standing viruses such
342 as HIV-1 (Brumme et al., 2007; Kawashima et al., 2009) and influenza (Woolthuis et al., 2016).
343 In the case of novel virus such as SARS-CoV-2, such a relationship remains to be established and
344 does not constitute the scope of our work. Here, we rationalized that an alternative approach to
345 interrogating SARS-CoV-2 epitope-associated variants is by investigating the global genomic and
346 proteomic diversity of SARS-CoV-2 for any outstanding mutational biases, and then, assessing
347 the relationship between such biases and epitope presentation for a broad set of HLA alleles. In
348 other words, in this study, we did not seek to understand how viral mutations are shaped by T cell
349 immunity, but rather to understand how mutational biases in SARS-CoV-2 may have shaped T
350 cell immunity at the population level during the first year of the pandemic. This approach was
351 possible thanks to an unprecedented number of SARS-CoV-2 genome sequences available for

352 downstream analysis. Our approach is universal and could be applied to other epidemic or
353 pandemic viruses in the future, given the development of distinct, prevalent mutational biases.
354 Importantly, our global approach has led to several striking conclusions to help understand how
355 the increasing genomic diversity of SARS-CoV-2 may shape T cell immunity in human
356 populations. Our findings have important implications that are discussed below in the context of
357 disease severity, viral evolution and vaccine resistance.

358 In this study, we found that prevalent SARS-CoV-2 mutations are governed by defined
359 mutational patterns, with C-to-U being a predominant mutation type, as previously shown by
360 others (Giorgio et al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyášek
361 and Kovařík, 2020; Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). In fact, we show that
362 the C-to-U mutation bias in SARS-CoV-2 genomes has a remarkably intimate relationship with
363 the observed amino acid mutational biases, indicating that C-to-U mutations largely contribute to
364 the global proteomic diversity of SARS-CoV-2. Most importantly, we show that this mutational
365 bias leads to the preferential substitution of proline residues with leucine or serine residues in the
366 P2 anchor position of SARS-CoV-2 CD8+ T cell epitopes, and hence, drastically compromise
367 epitope binding to B7 supertype molecules, which represent ~35% of the human population
368 (Francisco et al., 2015). Therefore, the C-to-U mutational bias observed amongst prevalent
369 mutants may partially disrupt SARS-CoV-2 T cell immunity in a very significant proportion of the
370 human population. Noteworthy, this impact of C-to-U mutations on B7-dependent epitope escape
371 was somehow predictable. In fact, proline residues originate from codons that are highly rich in C
372 whereas serine and leucine residues originate from codons that are rich in both C and U. One could
373 therefore predict, at least to some extent, that a strong C-to-U bias would lead to proline-to-leucine
374 or proline-to-serine substitutions. Thus, this study highlights the impact of viral mutational biases

375 and codon usage in shaping the diversity of CD8+ T cell targets. This being said, it is important to
376 realize that we do not make the claim that the presence of proline-to-leucine or proline-to-serine
377 mutations in the SARS-CoV-2 proteomes depend on patients being B7 supertype-positive, or that
378 the B7 supertype drives the evolution of proline-to-leucine/serine mutations. We do, however,
379 demonstrate that the prevalent mutations currently in circulation are enriched for proline-to-
380 leucine/serine, and our *in silico* predictions suggest that the high occurrence of this mutation type
381 leads to widespread hinderance of epitope presentation in B7 supertype-positive individuals.

382 A key question to address is to what extent does the C-to-U bias drives SARS-CoV-2
383 evolution and adaptation over the course of the ongoing pandemic. As proposed by others, the
384 most likely explanation for the observed C-to-U bias is the action of the host-mediated RNA-
385 editing APOBEC enzymes, a family of cytidine deaminases that catalyze deamination of cytidine
386 to uridine in RNA (Dorp et al., 2020a; Giorgio et al., 2020; Kosuge et al., 2020; Olson et al., 2018;
387 Salter et al., 2016). In this regard, APOBEC activity has been shown to broadly drive viral
388 evolution and diversity, including in human immunodeficiency virus (HIV) (Albin et al., 2010;
389 Cuevas et al., 2015; Haché et al., 2008; Jern et al., 2009; Peretti et al., 2018; Sadler et al., 2010;
390 Wood et al., 2009). In fact, APOBEC-induced mutations driving the evolution and diversification
391 of HIV-1 were shown to have an intimate relationship with T cell immunity (Kim et al., 2014;
392 Wood et al., 2009). Notably, those studies have shown that the impact of APOBEC-induced
393 mutations may result in either a decrease or increase of CD8+ T cell recognition, and that the
394 direction of this response is dictated by the HLA context (Casartelli et al., 2010; Grant and Larijani,
395 2017; Kim et al., 2014; Monajemi et al., 2014; Squires et al., 2015; Wood et al., 2009). This is
396 very much in line with our findings. Indeed, we showed that amino acid mutation biases in SARS-
397 CoV-2 proteomes generally positively affect epitope binding for various HLA class I supertypes,

398 and most strikingly for A24, whereas B7 is the only supertype negatively affected by the mutation
399 biases given the markable loss of proline residues in SARSCoV-2 proteomes. Together, our results
400 raise the important hypothesis that host-mediated RNA editing systems shape the repertoire of
401 SARS-CoV-2 T cell epitopes in a positive and negative HLA-dependant manner.

402 Another question is whether populations of B7 supertype individuals represent an
403 advantageous reservoir for the virus to evolve toward more transmissible variants. As the genetic
404 diversity of the SARS-CoV-2 population continue to increase, and as new variants emerge, our
405 global analysis suggests that the probability for SARS-CoV-2 epitopes to escape CD8+ T cell
406 immunosurveillance is much higher in B7 individuals compared to A24 individuals. In fact, a
407 slower T cell response dynamic to control SARS-CoV-2 infection in B7 individuals may offer a
408 selective advantage for the virus to evolve. In this regard, we noted that the B.1.1.7 variant lost the
409 B7 supertype-associated epitope SP/HRRARSVA as a result of a proline-to-histidine substitution.
410 While genomic surveillance is ongoing in different regions of the world, measuring the level of
411 transmission of the B.1.1.7 variant within geographical regions of the world with low B7
412 population densities and high A24 population densities (in Asia) or the opposite trend (in Sub-
413 Saharan Africa) (<http://www.allelefrequencies.net/top10freqs.asp>) may provide insights into this
414 concern. As new variants of concern continue to emerge and as new epitope data are continuously
415 being generated (Grifoni et al., 2021), another interesting avenue would be to study the mutational
416 patterns of those emerging variants and assess whether and how the potential loss of B7-associated
417 epitopes in those specific variants impact T cell response in infected patients. Understanding the
418 impact of losing several subdominant B7-associated epitopes versus one single immunodominant
419 epitope could also be investigated in the context of those variants. In this regard, a particular
420 attention was allocated in our study to the B*07:02-restricted N105 epitope SPRWYFYYL. This

421 epitope is of high interest as its immunodominance was experimentally demonstrated in many
422 independent studies (Ferretti et al., 2020; Kared et al., 2021; Saini et al., 2021; Schulien et al.,
423 2021; Sekine et al., 2020; Tarke et al., 2021). Precisely, we found a rare mutation consisting of
424 P→S at P2 of this epitope (SPRWYFYYL → SSRWYFYYL). Its occurrence was predicted to
425 result in the complete abrogation of binding of the epitope to B*07:02, thereby likely reducing the
426 breadth of the immune response in individuals carrying this mutation. As such, we advise the
427 community to carefully monitor this mutation in subsequent months. Moreover, it is also possible
428 that B7 individuals respond less efficiently to the currently available vaccines, as genetic variants
429 promoting B7 escape might favorably emerge in the future. The B7 supertype could therefore
430 potentially represent a biomarker of vaccine resistance.

431 In summary, our study shows that mutation biases in the SARS-CoV-2 population diversify
432 the repertoire of SARS-CoV-2 T cell targets in humans in an HLA-supertype dependent manner.
433 Hence, we provide a foundation model to help understand how SARS-CoV-2 may continue to
434 mutate over time to shape T cell immunity at a global population scale. The proposed process will
435 likely continue to influence the evolution and diversification of SARS-CoV-2 lineages as the virus
436 is under tremendous pressure to adapt in response to mass vaccination.

437

438 **LIMITATIONS AND FUTURE DIRECTIONS**

439 Our analyses focused on class I molecules for which predictors are established to be more accurate
440 in comparison with class II. HLA-C and non-classical HLA were not included in this study.
441 Predictions were performed on the most common HLA class I alleles and rare HLA alleles were
442 not included. Study has been performed using the GISAID dataset available in December 31st
443 2020, i.e. first year of the pandemic, before mass vaccination. Our epitope binding results rely on

444 *in silico* predictions using a method that has been widely benchmarked, but is designed to predict
445 peptide presentation rather than immunogenicity. Follow up experiments would need to be
446 performed to further validate the proposed model. Priority follow up studies are 1) to investigate
447 T cell response to SARS-CoV-2 mutants in large cohorts of B7 supertype-positive versus negative
448 patients, and 2) to determine the direct role of APOBEC family proteins in modulation of SARS-
449 CoV-2-specific T cell immunity. Moreover, this study lays the foundation to understand the
450 evolutionary dynamics of pandemic viruses with a time 0 / no vaccine-induced immune pressure
451 start point. Employing SARS-CoV-2 as model provides an opportunity in future studies to look at
452 the dynamic of the relationship between mutational patterns and HLA-restricted T cell immunity
453 in real-time. Kinetic analyses using the latest GISAID datasets, which now include 1.7M SARS-
454 CoV-2 genomes as of May 2021, may lead to additional insights in this regard.

455

456 **ACKNOWLEDGMENTS**

457 We thank Drs. Alessandro Sette, John Sidney and Alba Grifoni (La Jolla Institute for Immunology,
458 USA) for helpful discussions. This study was supported by funding from the Fonds de recherche
459 du Québec – Santé (FRQS), the Cole Foundation, CHU Sainte-Justine and the Charles-Bruneau
460 Foundations, Canada Foundation for Innovation, IVADO COVID19 Rapid Response grant
461 (CVD19-030), Montreal Heart Institute Foundation, the National Sciences and Engineering
462 Research Council (NSERC) (#RGPIN-2020-05232) and the Canadian Institutes of Health
463 Research (CIHR) (#174924). K.K. is a recipient of IVADO's postdoctoral scholarship
464 (#4879287150). D.F. is a BioTalent awardee. E.C. and J.H. are FRQS Junior 1 Research Scholars.

465

466 **AUTHOR CONTRIBUTIONS**

467 Conceptualization: D.H., J.H., and E.C.; Data Curation and Bioinformatic Analysis: D.H., D.F., J-
468 C.G., F.M, K.K., and P.K.; Formal Analysis: D.H., and D.F.; Investigation: D.H., D.F., J.S., J-
469 C.G., K.K., J.D.D., F.S., P.K., I.S., H.D., S.P., J.H., and E.C.; Writing – Original Draft: D.H., and
470 E.C.; Writing – Review & Editing: D.H., D.F., J.S., J.S., J-C.G., F.M., K.K., P.K., J.D.D., F.S.,
471 I.S., M.S., H.S., H.D., S.P., J.H., and E.C.; Supervision: J.H., and E.C.; Funding Acquisition: J.H.,
472 and E.C.

473

474 **DECLARATION OF INTERESTS**

475 Jana Schockaert and Sofie Pattijn are employees of ImmunXperts, a Nexelis Group Company.

476

477 **FIGURE LEGENDS**

478 **Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the**
479 **immunodominant S and N antigens. (A, B)** Lower panel: blue dots showing all mutations that
480 occurred in at least 4 SARS-CoV-2 genomes (GISAID). Middle panel: epitope density showing
481 the overlap of HLA class I epitopes predicted within the 1st percentile for 12 queried HLA-I
482 molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from
483 multiple studies aggregated in the database <https://www.mckayspcb.com/SARS2TcellEpitopes> as
484 of January 2021. Red dots are mutated epitopes wherein the mutation event led to a predicted loss
485 of binding. Sequences of specific epitopes are shown with the mutant amino acid in red. The red
486 box in the N protein highlights a serine-rich region associated with no T cell response, low epitope
487 density and high mutation frequency. **(C)** 3D structure of the Spike glycoprotein (Moderna

488 Vaccine) and highlighted in yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in
489 red are mutated epitopes wherein mutation events led to a predicted loss of HLA binding.

490

491 **Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes.** A total of 330,246
492 SARS-CoV-2 genomes were translated into protein sequences and analyzed for the identification
493 of any amino acid mutational bias. Amino acid residues (x-axis) that were removed and introduced
494 in SARS-CoV-2 variants are presented by negative and positive %-difference in overall amino
495 acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was
496 performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes
497 (orange line), 100 to 1000 genomes (green line) and more than 1000 genomes (red line).
498 Simulation of neutral evolution simulation (random mutations) were performed using the SANTA-
499 SIM algorithm and serves as control for assessing the statistical significance of the observed
500 pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change
501 > 4; p-value < 1x10-11) that were used to define the residues that were preferentially removed or
502 introduced (asterisk).

503

504 **Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated**
505 **epitopes. (A)** (Left panel) Motif view of SARS-CoV-2 reference peptides predicted to bind B7
506 supertype molecules (HLA-B*07:02, -B*35:03, -B42:02, -B*5101, -B*53:01, -B*54:01, -
507 B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides.
508 **(B)** Heat map showing the frequency of specific amino acid substitutions between reference and
509 mutated peptides. **(C)** Graph showing the number of mutations (upper panel; y-axis) leading to
510 specific amino acid substitutions (x-axis) at anchor residue positions P2 (red dots) and P9 (green

511 dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant
512 substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D)
513 Representative examples of validated CD8+ T cell epitopes
514 (<https://www.mckayspcb.com/SARS2TcellEpitopes> as of January 2021). Effect of the P→X
515 substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T
516 cell response data for reference epitopes extracted from
517 <https://www.mckayspcb.com/SARS2TcellEpitopes>.

518

519 **Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class I supertypes.**
520 (A, B) Motif views showing established epitope binding motifs for different HLA-I alleles that
521 belong to the HLA-B7 (A) and HLA-A24 (B) supertype family. Shaded squares highlight anchor
522 residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-2
523 proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the
524 number of frequent mutations (identified in at least 100 individuals) leading to the loss or gain of
525 epitopes. (C) ‘Gain/Loss plots’ showing number of mutations (y-axis) leading to a preferentially
526 loss (pale green) or gain (pale orange) of epitopes for different HLA class I supertypes. Each black
527 dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-
528 I allele. Between 14 to 19 alleles per supertype (Figure S5) were used to generate the graphs and
529 p-values (*p ≤ 0.001, **p < 1e-5, ***p < 1e-10).

530

531 **Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2**
532 **proteomes and CD8+ T cell epitopes.** (A) Comparison of global amino acid mutational patterns
533 generated from real-life versus simulated SARS-CoV-2 genomes. Amino acid residues (x-axis)

534 that were removed and introduced in real-life versus simulated SARS-CoV-2 are presented by
535 negative and positive %-difference in overall amino acid composition (GRSO values; y-axis),
536 respectively. Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U
537 biases, i.e. x1, x15 and x20 (n = 10). The red line shows the pattern obtained from mutations
538 identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. **(B)** (Top) Pie chart
539 showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell
540 epitopes in <https://www.mckayspcb.com/SARS2TcellEpitopes> as of January 2021. (Bottom) Pie
541 chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T
542 cell epitopes specific to the B7 supertype. **(C)** Schematic illustrating the C-to-U-mediated epitope
543 escape model. The observed mutation of the immunodominant SPRWYLFYYL epitope in the N
544 protein is shown as an example.

545

546 **STAR METHODS**

547 **RESOURCE AVAILABILITY**

548 **Lead Contact**

549 Further information and requests should be directed to the lead contact, Dr. Etienne Caron
550 (etienne.caron@umontreal.ca)

551 **Materials Availability**

552 This study did not generate new unique reagents.

553 **Data and Code Availability**

554 All sequence data used here are available from The Initiative for Sharing All Influenza Data
555 (GISAID), at <https://gisaid.org/>. The user agreement for GISAID does not permit redistribution of
556 sequences, but researchers can register to get access to the dataset. Code to create the alignments,

557 to predict mutated and unmutated HLA-I peptides, and to perform the global analysis of SARS-
558 CoV-2 proteomes are available at <https://github.com/CaronLab>.

559

560 **METHOD DETAILS**

561 **Identification of SARS-CoV-2 mutations**

562 All SARS-CoV-2 nucleotide sequences were acquired from the GISAID on 31/12/2021. A total of
563 330,246 SARS-CoV-2 sequences spanning 143 countries were acquired and analyzed. All
564 sequences isolated from animals (including viral RNA isolated from bat, pangolin, mink, cat and
565 tiger) were removed from the list and only high-quality sequences were further analysed.
566 Consensus sequences were aligned to the reference sequence, Wuhan-1 (NC_045512.2) using
567 minimap2 2.17-r974. All mapped sequences were then merged back with all others in a single
568 alignment bam file. The variant calling was done using bcftools mpileup v1.91 in a haploid calling
569 mode. Sequences were processed by batches of 1000 to overcome technical issues with very low-
570 frequency variants. With the variant calling obtained for each batch, vcf-merge (from the vcftools
571 suite) was used to merge all the variant calls across the entire dataset. A total of 24,220 variants in
572 at least two consensus sequences were identified. Mutations appearing in only one genome were
573 excluded as they are likely enriched for sequencing errors. A list of all missense mutations
574 considered in our analyses is provided in **Table S1**. The 1,933 prevalent mutations observed in
575 more than 100 genomes are also clearly shown in **Table S2**.

576

577 **Prediction of mutated and reference CD8+ T-cell epitopes**

578 Prediction of CD8+ T cell epitopes was carried out using netMHCpan 4.0 EL (Reynisson et al.,
579 2020). For each unique missense mutation, short sequence windows consisting of 14 amino acids

580 on either side of the mutation site were generated, containing either the reference or mutated amino
581 acid. Working from the resulting 29-residue sequence windows (mutation +/- 14 residues),
582 811mers were predicted against the 12 most frequent HLA alleles within the global population
583 (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02,
584 HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, and
585 HLAB*44:03). Briefly, the NetMHCpan 4.0 EL method relies on a neural network trained on both
586 binding affinity as well as eluted ligand data to produce a likelihood score for a peptide to be an
587 eluted ligand for the indicated HLA types. The likelihood score consists of a percentile rank
588 (%rank) wherein predicted (weak) binders obtain a %rank below 2.0, whereas strong binder (SB)
589 obtain a %rank below 0.5. Using this ranking system, only mutation-containing peptides where
590 the mutated and/or the reference peptide were ranked as SB were considered for further analyses.
591 Mutations causing percentile ranks to transition from strong HLA-binder (SB, netMHCpan %Rank
592 < 0.5) to HLA non-binders (NB, netMHCpan %Rank > 2.0) were considered as leading to 'Loss
593 of binding'. Mutations causing predicted binding affinities to transition from NB to SB were
594 considered as leading to 'Gain of binding'.

595

596 **Selection of clinically validated CD8+ T-Cell epitopes**

597 A list of validated CD8+ T Cell epitopes presented by both HLA-A and -B molecules were
598 downloaded from <https://www.mckayspcb.com/SARS2TcellEpitopes/> (as of January 2021). This
599 database, developed by Dr. Matthew R. McKay and his team, contains compiled and catalogued
600 validated T-cell epitope-HLA pairs from 13 studies aimed at identifying immunogenic
601 SARS-CoV-2 T-cell epitopes.

602

603 **In vitro HLA-peptide binding assays**

604 Peptide binding to class I HLA molecules was quantitatively measured using classical competition
605 assays based on the inhibition of binding of a high affinity radiolabeled peptide to purified HLA
606 molecules, as detailed elsewhere (Sidney et al., 2013). Briefly, HLA molecules were purified from
607 lysates of EBV transformed homozygous cell lines by affinity chromatography by repeated
608 passage over Protein A Sepharose beads conjugated with the W6/32 (anti-HLA-A, -B, -C)
609 antibody, following separation from HLA-B and -C molecules by pre-passage over a B1.23.2
610 (antiHLA B, C) column. Protein purity, concentration, and the effectiveness of depletion steps was
611 monitored by SDS-PAGE and BCA assay. Peptide affinity for respective class I molecules was
612 determined by incubating 0.1-1 nM of radiolabeled peptide at room temperature with 1 μ M to 1
613 nM of purified HLA in the presence of a cocktail of protease inhibitors and 1 μ M B2microglobulin.
614 Following a two-day incubation, HLA bound radioactivity was determined by capturing
615 MHC/peptide complexes on W6/32 antibody coated Lumitrac 600 plates (Greiner Bioone,
616 Frickenhausen, Germany). Bound cpm was measured using the TopCount (Packard Instrument
617 Co., Meriden, CT) microscintillation counter. The concentration of peptide yielding 50%
618 inhibition of the binding of the radiolabeled peptide was calculated. Under the conditions utilized,
619 where $[\text{label}] < [\text{MHC}]$ and $\text{IC50} \geq [\text{MHC}]$, the measured IC50 values are reasonable
620 approximations of the true Kd values. Each competitor peptide was tested at six different
621 concentrations covering a 100,000-fold dose range, and in three or more independent experiments.
622 As a positive control for inhibition, the unlabeled version of the radiolabeled probe was also tested
623 in each experiment.

624

625 **SANTA-SIM simulations**

626 We simulated SARS-CoV-2 genomes with SANTA-SIM, using the consensus sequence
627 WuhanHu-1 as input sequence available at <https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3>.
628 Each simulation was run with a population size of 10,000 individual viral sequences evolving for
629 1000 generations, and analyses were conducted on random samples of 1,000 viral sequences.
630 Following Huddelston et.al. (Huddleston et al., 2020) who used SANTA-SIM to simulate
631 influenza A/H3N2 that has a yearly substitution rate approximately twice as high as SARS-CoV-
632 2 [\sim 48,824 substitutions/year (<https://nextstrain.org/flu/seasonal/h3n2/ha/2y?l=clock>) vs. \sim 24.5
633 substitution/year (<https://nextstrain.org/ncov/global?l=clock>)], we chose 400 generations/year,
634 with the mutation rate per position per generation set to 2.04E-6 (yearly substitution
635 rate/(generations in one year * genome size)). The transition bias was set to 3.0 for baseline
636 simulations. To evaluate the impact of specific substitution biases, additional simulations were
637 conducted using a substitution matrix with scores set to 1.0 of transversions, 3.0 for transitions,
638 and biases ranging from 4.0 to 20.0 for the targeted substitution. We generated 10 replicates for
639 all simulated scenarios, except for C-to-U where we made 100 replicates to better assess statistical
640 significance.

641

642 **Determination of amino acid mutational patterns**

643 Mutational biases were identified by calculating the overall change in amino acid composition
644 caused by the mutational landscape of SARS-CoV-2 for each individual amino acid, referred in
645 the main text as ‘global residue substitution output’ (GRSO). For this analysis, all mutations found
646 globally in at least 4 GISAID entries were analysed together. Preferential introduction or removal
647 of amino acids was determined by comparing the overall amino acid composition in reference

648 residues vs mutated residues throughout the mutation pool, resulting in a percentile difference in
649 amino acid composition. As such, for amino acid X , the % difference was calculated according to
650 the following formula:

$$651 \quad \% \text{ difference} = \left(\frac{\text{Nbr of mutations introducing } X - \text{Nbr of mutations removing } X}{\text{All Global mutations in at least 4 GISAID entries}} \right) \times 100$$

652 This analysis took into consideration the number of unique mutations. Therefore, to consider
653 mutational biases in the context of mutation frequencies, the analysis described above was
654 conducted separately for mutations occurring in a single GISAID entry (expected to be enriched
655 for errors); 2-10 GISAID entries; 11-99 GISAID entries; and 100 or more GISAID entries. As a
656 negative control, the SANTA SIM algorithm was used to simulate the neutral evolution of 1000
657 SARS-CoV-2 genomes (baseline simulations, $N = 10$ replicates). This control was used to
658 calculate the statistical significance of the observed biases, by way of a One-Sample T-Test.

659

660 **Prediction of mutation impacts on peptide presentation in the context of HLA supertypes**

661 Reference/mutated peptide pairs for which the differential predicted binding affinities led to
662 transitions from strong HLA binder (SB) to non-HLA binder (NB) [(SB) NetMHCpan %rank <
663 0.5 to (NB) NetMHCpan %rank >2] or from NB to SB, were identified, catalogued and analyzed
664 as described above. Binding affinities were predicted for representative HLA types from several
665 major HLA supertypes (A1, A2, A3, A24, B7, B8, B27, B44), as defined by Sydney *et al.* We then
666 categorized all reference/mutated peptide pairs on the basis of their 1) mutation type (amino acid
667 $X \rightarrow$ amino acid Y) and 2) the position of the mutation in the peptide sequence. Finally, we
668 quantified the number of reference/mutated peptide pairs and the associated average fold change
669 in predicted binding affinity for each category. P-values were generated for each category by
670 performing a two-tailed independent T-Test between the fold changes in binding affinity

671 associated with mutation type A at position X , and all fold changes in binding affinity associated
672 with position X .

673

674 **Assessing the contribution of nucleic acid mutation types to the global amino acid**
675 **mutational patterns.**

676 To assess the contribution of various nucleic acid mutation types to the observed amino acid
677 mutational patterns, we first determined the respective contributions of each nucleic acid mutation
678 type to the global mutation landscape. We then selected the five most abundant mutation types
679 [$C \rightarrow U$ (41%), $G \rightarrow U$ (18%), $A \rightarrow G$, $G \rightarrow A$, $U \rightarrow C$ (9.7-11.6%)] and assessed their individual
680 impacts on amino acid mutational patterns using the simulation algorithm SANTA SIM as follows:
681 For each mutation type, we simulated the evolution of 1000 SARS-CoV-2 genomes over 1000
682 generations ($N = 10$ replicates) with varying degrees of biases (the coefficient used to determine
683 the extent of the biases was exploratively set to ‘x4’, ‘x8’, ‘x15’, and ‘x20’) (Figure S6A). Because
684 the input coefficient does not have a linear relationship with the abundance of the mutation type
685 observed in the simulation output, we used the simulations with all four parameter values (x4, x8,
686 x15, x20) in order to identify the simulation parameter that most closely reflected observations in
687 real-life SARS-CoV-2 data. The coefficient for the ratio of $X \rightarrow Y$ nucleic acid mutation type to
688 all other mutation types was generated using the following formula:

$$689 \text{Mutation Bias Coefficient} = \frac{\left(\frac{\text{All } X \rightarrow Y \text{ mutations}}{\text{All } X \text{ positions in reference genome}} \right)}{\left(\frac{\text{All mutations}}{\text{All positions in reference genome}} \right)}$$

690 Finally, all amino acid mutations were identified for the output of each simulation, as described
691 above. To determine statistical significances, simulated mutational biases (at the amino acid level)

692 were compared to a neutral evolution as a negative control (N = 10 replicates) by way of twetailed
693 independent T-Test.

694

695 **Statistical analysis**

696 A Two-tailed One-Sample T-Test was used to assess the statistical significance of the observed
697 mutational biases against the neutral simulations (N = 10 replicates). A Two-tailed Independent
698 T-Test assuming different variances was used to assess the statistical significances of 1) the
699 simulated biased SARS-CoV-2 evolution, 2) the gain/loss plots in the context of supertypes, and
700 3) the statistical significance associated with the average fold change in %rank associated with
701 each position-specific amino acid mutation type in the supertype analysis.

702

703 **SUPPLEMENTARY MATERIALS**

704 **SUPPLEMENTARY FIGURE LEGENDS**

705 **Figure S1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes, Related to Figure 1**
706 **and 4. (A)** Bioinformatic pipeline for the prediction of SARS-CoV-2 mutated class I peptides
707 associated to 12 common HLA alleles. **(B)** Pyramidal graph showing the number of i) missense
708 mutations in SARS-CoV-2 genomes, ii) predicted class I mutated peptides, iii) predicted class I
709 peptides subject to Weak Binder (WB) to Non-Binder (NB) and Strong Binder (SB) to NB
710 transition (epitope loss category), and iv) predicted class I mutated peptides matching reference
711 CD8+ T cell epitopes that have been experimentally validated. **(C)** Representative examples of
712 predicted class I mutated peptides and the impact of the identified amino acid mutation (bold) on
713 peptide binding to a given HLA-I allele. Reference and mutated EL (eluted ligand) Rank (%)
714 generated by NetMHCpan 4.1 EL is indicated for individual predictions. Gain = NB to SB (pale

715 red); Loss = SB to NB (pale green). **(D)** Left panel: number of unique mutations leading to ‘Gain’
716 or ‘Loss’ of class I peptides for the indicated HLA-I alleles. Right panel: number of unique
717 mutations showing no effect on peptide binding for the indicated HLA-I alleles. **(E)** Validated
718 SARS-CoV-2 CD8+ T cell epitopes (McKay Database) subjected to mutation events detected in
719 more than 4 individuals (GISAID) and predicted lead to a strong loss of HLA-epitope binding.
720 Top: number of unique missense mutations corresponding to the indicated amino acid substitution
721 type. Bottom: Predicted loss of HLA-epitope binding (NetMHCpan4.1 %Rank) corresponding to
722 the indicated residue substitution type from the list of validated CD8+ T cell epitopes in the McKay
723 Database. Each dot represents an epitope pair (mutated / reference). Color indicates HLA type
724 affected by the mutations.

725
726 **Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2**
727 **mutated epitopes, Related to Figure 1.** **(A)** HLA binding assay was performed to determine the
728 in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific HLA class I
729 alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common
730 HLA class I alleles, and 3) the mutated form was predicted to lose binding to its corresponding
731 HLA. **(B)** Plots showing raw values for the binding affinities (nM) of the reference vs mutated
732 peptides in (A). The first three amino acid residues of the reference peptides with fold change >
733 2.5 are shown. **(C)** Pie chart showing the proportion of X-to-Y substitution types from the list of
734 validated CD8+ T cell epitopes in <https://www.mckayspcb.com/SARS2TcellEpitopes/> (as of
735 January 2021). **(D)** Predicted loss of HLA-epitope binding clustered by substitution type from the
736 list of validated CD8+ T cell epitopes in the McKay database. Each dot represents an epitope pair
737 (mutated / reference; NetMHCpan 4.1 %rank ratio).

738

739 **Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were**
740 **previously associated with decreased CD8+ T cell responses, Related to Figure 1.** (A) The
741 mutated epitopes GFMWLSYFI (A*02) and MKVTPSGTWL (B*40) were detected in 38 and 23
742 genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly
743 investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from
744 AAAS) (B) Experimental overview. (C) T cells expanded with mutant peptides do not give rise to
745 wild type peptide-specific CD8+ T cell. PBMCs were isolated from HLA-A*02:01 or HLA-
746 B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and stained
747 with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response.
748 PBMCs expanded with wild type or mutant peptides as indicated, were analyzed for IFN- γ -
749 production via ICS after restimulation with wild type or mutant peptide. (E) Representative FACS
750 plots for (D).

751

752 **Figure S4. Impact of mutations on gain of peptide binding to various HLA class I molecules**
753 **across the immunodominant S and N antigens, Related to Figure 1.** (A, B) Lower panel: blue
754 dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Upper
755 panel: dots showing predicted peptides subjected to a strong gain of binding (see also Figure
756 S1C,D) to one of 12 highly common HLA types queried (color coded) due to a mutation.

757

758 **Figure S5. HLA class I supertypes, Related to Figure 4.** (A) Epitope binding motifs for several
759 HLA class I supertypes. Anchor residues are located at P2 and P9. Pale orange and green squares
760 cover amino acid residues that are preferentially introduced (F, I, L, Y) and removed (A, P, T) in

761 SARS-CoV-2 proteomes, respectively. Representative supertypes used in this study are shown by
762 an asterisk. Epitope binding motifs were extracted from NetMHCpan Motif Viewer
763 (http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected
764 alleles per supertype that were used in this study to generate the ‘Gain/Loss plots’.

765

766 **Figure S6. Comparison of mutation biases between real-life/observed and simulated data,**
767 **Related to Figure 5.** (A) Histograms showing the number of unique mutations identified for each
768 mutation type (A-to-C, A-to-G, etc.) after simulating the evolution of SARS-CoV-2 genomes
769 through the introduction of different C-to-U bias values (x4 to x20) using the SANTA-SIM
770 software. Simulated (black squares) and real-life/observed prevalent mutations found in more than
771 100 genomes (red square) at the nucleotide level are shown. (B) Comparison of global amino acid
772 mutational patterns generated from simulated versus real-life/observed SARS-CoV-2 genomes.
773 Various extents of C-to-U (top) and G-to-U (bottom) biases were introduced to perform the
774 simulation and to generate the graphs.

775

776 **SUPPLEMENTARY TABLE LEGENDS**

777 **Table S1. SARS-CoV-2 mutations identified from 330,246 GISAID entries (December 31st**
778 **2020), Related to Figure 1.** SARS-CoV-2 mutations at the nucleic and amino acid level are
779 indicated. Number of genomes carrying mutation show the frequency of individual mutations
780 among all SARS-CoV-2 variants.

781

782 **Table S2. SARS-CoV-2 prevalent mutations identified from 330,246 GISAID entries**
783 **(December 31st 2020) and detected in at least 100 individuals, Related to Figure 1.**

784

785 **Table S3. Documented SARS-CoV-2 CD8+ T cell epitopes and their matching mutated**
786 **forms identified in this study, Related to Figure 1.**

787

788 **Table S4. List of documented SARS-CoV-2 CD8+ T cell epitopes.** Epitopes were downloaded
789 from <https://www.mckayspcb.com/SARS2TcellEpitopes/> (as of January 2021). This database has
790 effectively catalogued all SARS-CoV-2 CD8+ epitopes validated by 18 separate studies.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807 REFERENCES

808

809 Agerer, B., Koblischke, M., Gudipati, V., Montaño-Gutierrez, L.F., Smyth, M., Popa, A.,
810 Genger, J.-W., Endler, L., Florian, D.M., Mühlgrabner, V., et al. (2021). SARS-CoV-2 mutations
811 in MHC-I-restricted epitopes evade CD8+ T cell responses. *Sci Immunol* *6*, eabg6461.

812 Albin, J.S., Haché, G., Hultquist, J.F., Brown, W.L., and Harris, R.S. (2010). Long-Term
813 Restriction by APOBEC3F Selects Human Immunodeficiency Virus Type 1 Variants with
814 Restored Vif Function. *J Virol* *84*, 10209–10219.

815 Altmann, D.M., and Boyton, R.J. (2020). SARS-CoV-2 T cell immunity: Specificity, function,
816 durability, and role in protection. *Sci Immunol* *5*, eabd6160.

817 Bert, N.L., Tan, A.T., Kunasegaran, K., Tham, C.Y.L., Hafezi, M., Chia, A., Chng, M.H.Y., Lin,
818 M., Tan, N., Linster, M., et al. (2020). SARS-CoV-2-specific T cell immunity in cases of
819 COVID-19 and SARS, and uninfected controls. *Nature* *584*, 457–462.

820 Braun, J., Loyal, L., Frentsche, M., Wendisch, D., Georg, P., Kurth, F., Hippenstiel, S.,
821 Dingeldey, M., Kruse, B., Fauchere, F., et al. (2020). SARS-CoV-2-reactive T cells in healthy
822 donors and patients with COVID-19. *Nature* *587*, 270–274.

823 Brumme, Z.L., Brumme, C.J., Heckerman, D., Korber, B.T., Daniels, M., Carlson, J., Kadie, C.,
824 Bhattacharya, T., Chui, C., Szinger, J., et al. (2007). Evidence of Differential HLA Class I-
825 Mediated Viral Evolution in Functional and Accessory/Regulatory Genes of HIV-1. *Plos Pathog*
826 *3*, e94.

827 Callaway, E. (2020). The race for coronavirus vaccines: a graphical guide. *Nature* *580*, 576–577.

828 Casartelli, N., Guivel-Benhassine, F., Bouziat, R., Brandler, S., Schwartz, O., and Moris, A.
829 (2010). The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T
830 cells. *J Exp Medicine* *207*, 39–49.

831 Cuevas, J.M., Geller, R., Garijo, R., López-Aldeguer, J., and Sanjuán, R. (2015). Extremely High
832 Mutation Rate of HIV-1 In Vivo. *Plos Biol* *13*, e1002251.

833 Dan, J.M., Mateus, J., Kato, Y., Hastie, K.M., Yu, E.D., Faliti, C.E., Grifoni, A., Ramirez, S.I.,
834 Haupt, S., Frazier, A., et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to
835 8 months after infection. *Science* *371*, eabf4063.

836 Dorp, L. van, Richard, D., Tan, C.C.S., Shaw, L.P., Acman, M., and Balloux, F. (2020a). No
837 evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. *Nat Commun*
838 *11*, 5986.

839 Dorp, L. van, Acman, M., Richard, D., Shaw, L.P., Ford, C.E., Ormond, L., Owen, C.J., Pang, J.,
840 Tan, C.C.S., Boshier, F.A.T., et al. (2020b). Emergence of genomic diversity and recurrent
841 mutations in SARS-CoV-2. *Infect Genetics Evol* 83, 104351.

842 Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.-G. (1991). Allele-specific
843 motifs revealed by sequencing of self-peptides eluted from MHC molecules. *Nature* 351, 290-
844 296.

845 Ferretti, A.P., Kula, T., Wang, Y., Nguyen, D.M.V., Weinheimer, A., Dunlap, G.S., Xu, Q.,
846 Nabilsi, N., Perullo, C.R., Cristofaro, A.W., et al. (2020). Unbiased Screens Show CD8+ T Cells
847 of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside
848 the Spike Protein. *Immunity* 53, 1095-1107.e3.

849 Francisco, R. dos S., Buhler, S., Nunes, J.M., Bitarello, B.D., França, G.S., Meyer, D., and
850 Sanchez-Mazas, A. (2015). HLA supertype variation across populations: new insights into the
851 role of natural selection in the evolution of HLA-A and HLA-B polymorphisms.
852 *Immunogenetics* 67, 651-663.

853 Gfeller, D., and Bassani-Sternberg, M. (2018). Predicting Antigen Presentation-What Could We
854 Learn From a Million Peptides? *Front Immunol* 9, 1716.

855 Giorgio, S.D., Martignano, F., Torcia, M.G., Mattiuz, G., and Conticello, S.G. (2020). Evidence
856 for host-dependent RNA editing in the transcriptome of SARS-CoV-2. *Sci Adv* 6, eabb5813.

857 Grant, M., and Larijani, M. (2017). Evasion of adaptive immunity by HIV through the action of
858 host APOBEC3G/F enzymes. *Aids Res Ther* 14, 44.

859 Greenbaum, J., Sidney, J., Chung, J., Brander, C., Peters, B., and Sette, A. (2011). Functional
860 classification of class II human leukocyte antigen (HLA) molecules reveals seven different
861 supertypes and a surprising degree of repertoire sharing across supertypes. *Immunogenetics* 63,
862 325-335.

863 Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings,
864 S.A., Sutherland, A., Premkumar, L., Jadi, R.S., et al. (2020a). Targets of T cell responses to
865 SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. *Cell*
866 18, 1489-1501.e15.

867 Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R.H., Peters, B., and Sette, A. (2020b). A
868 Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune
869 Responses to SARS-CoV-2. *Cell Host Microbe* 27, 671-680.e2.

870 Grifoni, A., Sidney, J., Vita, R., Peters, B., Crotty, S., Weiskopf, D., and Sette, A. (2021). SARS-
871 CoV-2 Human T cell Epitopes: adaptive immune response against COVID-19. *Cell Host*
872 *Microbe*. In press.

873 Haché, G., Shindo, K., Albin, J.S., and Harris, R.S. (2008). Evolution of HIV-1 Isolates that Use
874 a Novel Vif-Independent Mechanism to Resist Restriction by Human APOBEC3G. *Curr Biol* 18,
875 819–824.

876 Huddleston, J., Barnes, J.R., Rowe, T., Xu, X., Kondor, R., Wentworth, D.E., Whittaker, L.,
877 Ermetal, B., Daniels, R.S., McCauley, J.W., et al. (2020). Integrating genotypes and phenotypes
878 improves long-term forecasts of seasonal influenza A/H3N2 evolution. *Elife* 9, e60067.

879 Jariani, A., Warth, C., Deforche, K., Libin, P., Drummond, A.J., Rambaut, A., IV, F.A.M., and
880 Theys, K. (2019). SANTA-SIM: simulating viral sequence evolution dynamics under selection
881 and recombination. *Virus Evol* 5, vez003.

882 Jern, P., Russell, R.A., Pathak, V.K., and Coffin, J.M. (2009). Likely Role of APOBEC3G-
883 Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance. *Plos Pathog* 5, e1000367.

884 Kared, H., Redd, A.D., Bloch, E.M., Bonny, T.S., Sumatoh, H.R., Kairi, F., Carbajo, D., Abel,
885 B., Newell, E.W., Bettinotti, M., et al. (2021). SARS-CoV-2-specific CD8+ T cell responses in
886 convalescent COVID-19 individuals. *J Clin Invest* 131, e145476.

887 Kawashima, Y., Pfafferott, K., Frater, J., Matthews, P., Payne, R., Addo, M., Gatanaga, H.,
888 Fujiwara, M., Hachiya, A., Koizumi, H., et al. (2009). Adaptation of HIV-1 to human leukocyte
889 antigen class I. *Nature* 458, 641–645.

890 Kim, E.-Y., Lorenzo-Redondo, R., Little, S.J., Chung, Y.-S., Phalora, P.K., Berry, I.M., Archer,
891 J., Penugonda, S., Fischer, W., Richman, D.D., et al. (2014). Human APOBEC3 Induced
892 Mutation of Human Immunodeficiency Virus Type-1 Contributes to Adaptation and Evolution in
893 Natural Infection. *Plos Pathog* 10, e1004281.

894 Klimczak, L.J., Randall, T.A., Saini, N., Li, J.-L., and Gordenin, D.A. (2020). Similarity between
895 mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes
896 accumulated during the COVID-19 pandemic. *Plos One* 15, e0237689.

897 Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N.,
898 Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike:
899 evidence that D614G increases infectivity of the COVID-19 virus. *Cell* 182, 812-827.e19.

900 Kosuge, M., Furusawa-Nishii, E., Ito, K., Saito, Y., and Ogasawara, K. (2020). Point mutation
901 bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses.
902 *Sci Rep-Uk* 10, 17766.

903 Krammer, F. (2020). SARS-CoV-2 vaccines in development. *Nature* 586, 516–527.

904 Laamarti, M., Alouane, T., Kartti, S., Chemao-Elfhiri, M.W., Hakmi, M., Essabbar, A.,
905 Laamarti, M., Hlali, H., Bendani, H., Boumajdi, N., et al. (2020). Large scale genomic analysis
906 of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of
907 hotspots mutations. *Plos One* 15, e0240345.

908 Li, Y., Yang, X., Wang, N., Wang, H., Yin, B., Yang, X., and Jiang, W. (2020). Mutation profile
909 of over 4500 SARS-CoV-2 isolations reveals prevalent cytosine-to-uridine deamination on viral
910 RNAs. *Future Microbiol* 15, 1343–1352.

911 Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., et
912 al. (2020). Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.
913 *Nat Med* 26, 842–844.

914 Liu, G., Carter, B., Bricken, T., Jain, S., Viard, M., Carrington, M., and Gifford, D.K. (2020).
915 Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted
916 to Target Human Haplotype Distributions. *Cell Syst* 11, 131-144.e6.

917 Liu, W., Fontanet, A., Zhang, P.-H., Zhan, L., Xin, Z.-T., Baril, L., Tang, F., Lv, H., and Cao,
918 W.-C. (2006). Two-Year Prospective Study of the Humoral Immune Response of Patients with
919 Severe Acute Respiratory Syndrome. *J Infect Dis* 193, 792–795.

920 Long, Q.-X., Liu, B.-Z., Deng, H.-J., Wu, G.-C., Deng, K., Chen, Y.-K., Liao, P., Qiu, J.-F., Lin,
921 Y., Cai, X.-F., et al. (2020a). Antibody responses to SARS-CoV-2 in patients with COVID-19.
922 *Nat Med* 26, 845–848.

923 Long, Q.-X., Tang, X.-J., Shi, Q.-L., Li, Q., Deng, H.-J., Yuan, J., Hu, J.-L., Xu, W., Zhang, Y.,
924 Lv, F.-J., et al. (2020b). Clinical and immunological assessment of asymptomatic SARS-CoV-2
925 infections. *Nat Med* 26, 1200–1204.

926 Matyášek, R., and Kovařík, A. (2020). Mutation Patterns of Human SARS-CoV-2 and Bat
927 RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid
928 Evolution in Their Hosts. *Genes-Basel* 11, 761.

929 Meckiff, B.J., Ramírez-Suástegui, C., Fajardo, V., Chee, S.J., Kusnadi, A., Simon, H.,
930 Eschweiler, S., Grifoni, A., Pelosi, E., Weiskopf, D., et al. (2020). Imbalance of regulatory and
931 cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. *Cell* 183, 1340-1353.e16.

932 Mercatelli, D., and Giorgi, F.M. (2020). Geographic and Genomic Distribution of SARS-CoV-2
933 Mutations. *Front Microbiol* 11, 1800.

934 Mercatelli, D., Triboli, L., Fornasari, E., Ray, F., and Giorgi, F.M. (2020). coronapp: A Web
935 Application to Annotate and Monitor SARS-CoV-2 Mutations. *J Med Virol* 93, 3238-3245.

936 Moderbacher, C.R., Ramirez, S.I., Dan, J.M., Grifoni, A., Hastie, K.M., Weiskopf, D., Belanger,
937 S., Abbott, R.K., Kim, C., Choi, J., et al. (2020). Antigen-specific adaptive immunity to SARS-
938 CoV-2 in acute COVID-19 and associations with age and disease severity. *Cell* 183, 996–
939 1012.e19.

940 Monajemi, M., Woodworth, C.F., Zipperlen, K., Gallant, M., Grant, M.D., and Larijani, M.
941 (2014). Positioning of APOBEC3G/F Mutational Hotspots in the Human Immunodeficiency
942 Virus Genome Favors Reduced Recognition by CD8+ T Cells. *Plos One* 9, e93428.

943 Ng, O.-W., Chia, A., Tan, A.T., Jadi, R.S., Leong, H.N., Bertoletti, A., and Tan, Y.-J. (2016).
944 Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.
945 Vaccine 34, 2008–2014.

946 Olson, M.E., Harris, R.S., and Harki, D.A. (2018). APOBEC Enzymes as Targets for Virus and
947 Cancer Therapy. *Cell Chem Biol* 25, 36–49.

948 Peng, Y., Mentzer, A.J., Liu, G., Yao, X., Yin, Z., Dong, D., Dejnirattisai, W., Rostron, T.,
949 Supasa, P., Liu, C., et al. (2020). Broad and strong memory CD4+ and CD8+ T cells induced by
950 SARS-CoV-2 in UK convalescent individuals following COVID-19. *Nat Immunol* 21, 1336–
951 1345.

952 Peretti, A., Geoghegan, E.M., Pastrana, D.V., Smola, S., Feld, P., Sauter, M., Lohse, S., Ramesh,
953 M., Lim, E.S., Wang, D., et al. (2018). Characterization of BK Polyomaviruses from Kidney
954 Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. *Cell*
955 *Host Microbe* 23, 628–635.e7.

956 Popa, A., Genger, J.-W., Nicholson, M.D., Penz, T., Schmid, D., Aberle, S.W., Agerer, B.,
957 Lercher, A., Endler, L., Colaço, H., et al. (2020). Genomic epidemiology of superspreading
958 events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. *Sci*
959 *Transl Med* 12, eabe2555.

960 Quadeer, A.A., Ahmed, S.F., and McKay, M.R. (2020). Epitopes targeted by T cells in
961 convalescent COVID-19 patients. *BioRxiv* 2020.08.26.267724.

962 Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020). NetMHCpan-4.1 and
963 NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif
964 deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res* 48, W449–
965 W454.

966 Rice, A.M., Morales, A.C., Ho, A.T., Mordstein, C., Mühlhausen, S., Watson, S., Cano, L.,
967 Young, B., Kudla, G., and Hurst, L.D. (2020). Evidence for strong mutation bias towards, and
968 selection against, U content in SARS-CoV-2: implications for vaccine design. *Mol Biol Evol* 38,
969 67–83.

970 Sadler, H.A., Stenglein, M.D., Harris, R.S., and Mansky, L.M. (2010). APOBEC3G Contributes
971 to HIV-1 Variation through Sublethal Mutagenesis. *J Virol* 84, 7396–7404.

972 Saini, S.K., Hersby, D.S., Tamhane, T., Povlsen, H.R., Hernandez, S.P.A., Nielsen, M., Gang,
973 A.O., and Hadrup, S.R. (2021). SARS-CoV-2 genome-wide T cell epitope mapping reveals
974 immunodominance and substantial CD8+ T cell activation in COVID-19 patients. *Sci Immunol*
975 6, eabf7550.

976 Salter, J.D., Bennett, R.P., and Smith, H.C. (2016). The APOBEC Protein Family: United by
977 Structure, Divergent in Function. *Trends Biochem Sci* 41, 578–594.

978 Schub, D., Klemis, V., Schneitler, S., Mihm, J., Lepper, P.M., Wilkens, H., Bals, R., Eichler, H.,
979 Gärtner, B.C., Becker, S.L., et al. (2020). High levels of SARS-CoV-2 specific T-cells with
980 restricted functionality in severe course of COVID-19. *JCI Insight* 5, e142167.

981 Schulien, I., Kemming, J., Oberhardt, V., Wild, K., Seidel, L.M., Killmer, S., Sagar, Daul, F.,
982 Lago, M.S., Decker, A., et al. (2021). Characterization of pre-existing and induced SARS-CoV-
983 2-specific CD8+ T cells. *Nat Med* 27, 78–85.

984 Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Strålin, K., Gorin, J.-B., Olsson, A.,
985 Llewellyn-Lacey, S., Kamal, H., Bogdanovic, G., Muschiol, S., et al. (2020). Robust T cell
986 immunity in convalescent individuals with asymptomatic or mild COVID-19. *Cell* 183, 158–
987 168.e14.

988 Seow, J., Graham, C., Merrick, B., Acors, S., Pickering, S., Steel, K.J.A., Hemmings, O.,
989 O’Byrne, A., Kouphou, N., Galao, R.P., et al. (2020). Longitudinal observation and decline of
990 neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans.
991 *Nat Microbiol* 5, 1598–1607.

992 Sette, A., and Crotty, S. (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. *Cell* 184,
993 861–880.

994 Sidney, J., Peters, B., Frahm, N., Brander, C., and Sette, A. (2008). HLA class I supertypes: a
995 revised and updated classification. *BMC Immunol* 9, 1.

996 Sidney, J., Southwood, S., Moore, C., Oseroff, C., Pinilla, C., Grey, H.M., and Sette, A. (2013).
997 Measurement of MHC/Peptide Interactions by Gel Filtration or Monoclonal Antibody Capture.
998 *Curr Protoc Immunol* Chapter 18:Unit 18.3.

999 Simmonds, P. (2020). Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and
1000 Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary
1001 Trajectories. *mSphere* 5, e00408-20.

1002 Squires, K.D., Monajemi, M., Woodworth, C.F., Grant, M.D., and Larijani, M. (2015). Impact of
1003 APOBEC Mutations on CD8+ T Cell Recognition of HIV Epitopes Varies Depending on
1004 the Restricting HLA. *J AIDS* 70, 172–178.

1005 Stephens, D.S., and McElrath, M.J. (2020). COVID-19 and the Path to Immunity. *Jama* 324,
1006 1279–1281.

1007 Tang, F., Quan, Y., Xin, Z.-T., Wrammert, J., Ma, M.-J., Lv, H., Wang, T.-B., Yang, H.,
1008 Richardus, J.H., Liu, W., et al. (2011). Lack of Peripheral Memory B Cell Responses in
1009 Recovered Patients with Severe Acute Respiratory Syndrome: A Six-Year Follow-Up Study. *J*
1010 *Immunol* 186, 7264–7268.

1011 Tarke, A., Sidney, J., Kidd, C.K., Dan, J.M., Ramirez, S.I., Yu, E.D., Mateus, J., Antunes, R. da
1012 S., Moore, E., Rubiro, P., et al. (2021). Comprehensive analysis of T cell immunodominance and

1013 immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. *Cell Reports Medicine* 2,
1014 100204.

1015 Wang, R., Hozumi, Y., Zheng, Y.-H., Yin, C., and Wei, G.-W. (2020). Host Immune Response
1016 Driving SARS-CoV-2 Evolution. *Viruses* 12, 1095.

1017 Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A., Endeman, H., Akker,
1018 J.P.C. van den, Molenkamp, R., Koopmans, M.P.G., Gorp, E.C.M. van, et al. (2020). Phenotype
1019 and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory
1020 distress syndrome. *Sci Immunol* 5, eabd2071.

1021 Wood, N., Bhattacharya, T., Keele, B.F., Giorgi, E., Liu, M., Gaschen, B., Daniels, M., Ferrari,
1022 G., Haynes, B.F., McMichael, A., et al. (2009). HIV Evolution in Early Infection: Selection
1023 Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC. *Plos Pathog* 5,
1024 e1000414.

1025 Woolthuis, R.G., Dorp, C.H. van, Keşmir, C., Boer, R.J. de, and Boven, M. van (2016). Long-
1026 term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition. *Sci Rep* 6,
1027 33334.

1028 Wu, L.-P., Wang, N.-C., Chang, Y.-H., Tian, X.-Y., Na, D.-Y., Zhang, L.-Y., Zheng, L., Lan, T.,
1029 Wang, L.-F., and Liang, G.-D. (2007). Duration of Antibody Responses after Severe Acute
1030 Respiratory Syndrome. *Emerg Infect Dis* 13, 1562–1564.

1031 Zhou, R., To, K.K.-W., Wong, Y.-C., Liu, L., Zhou, B., Li, X., Huang, H., Mo, Y., Luk, T.-Y.,
1032 Lau, T.T.-K., et al. (2020). Acute SARS-CoV-2 infection impairs dendritic cell and T cell
1033 responses. *Immunity* 53, 864-877.e5.

1034

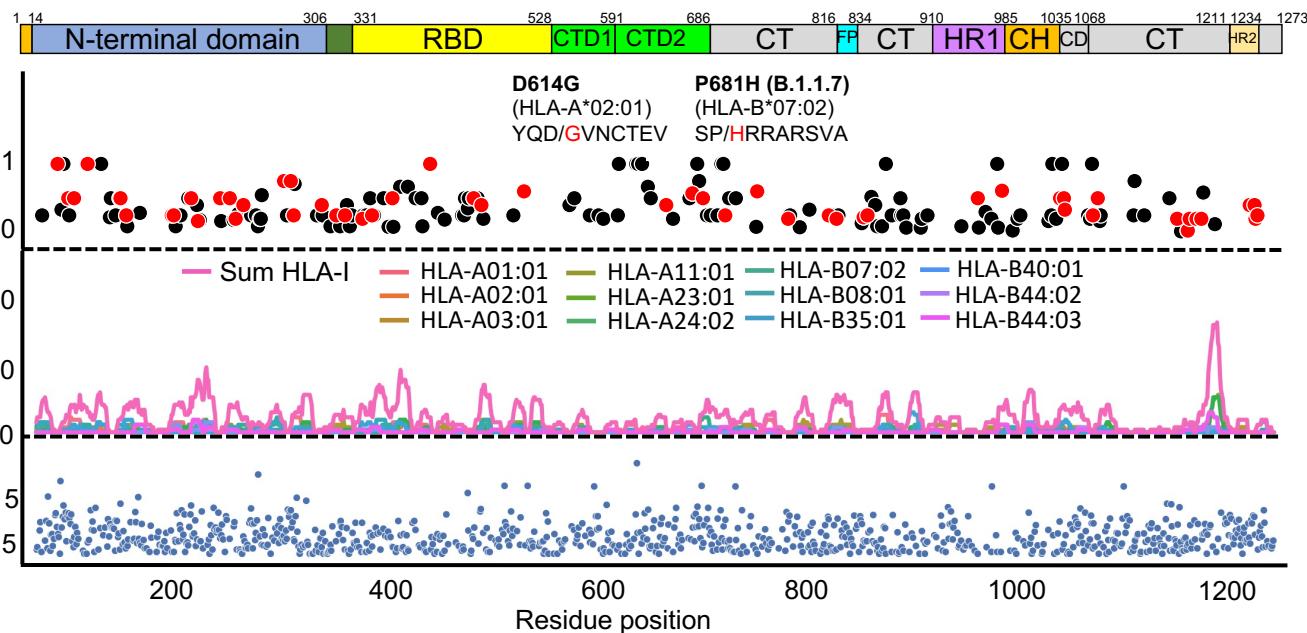
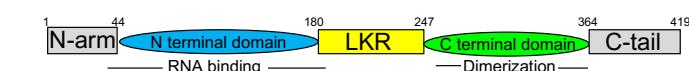
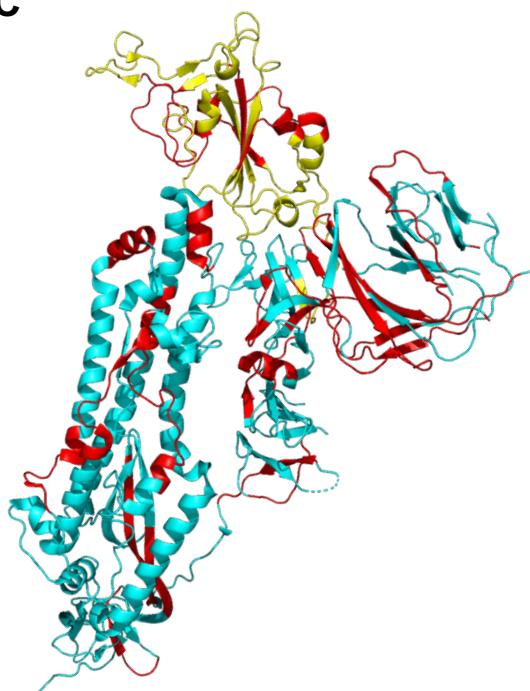
A**S****B****N****C**

Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the immunodominant S and N antigens. (A, B) Lower panel: blue dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Middle panel: epitope density showing the overlap of HLA class I epitopes predicted within the 1st percentile for 12 queried HLA-I molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from multiple studies aggregated in the database <https://www.mckayspcb.com/SARS2TcellEpitopes> as of January 2021. Red dots are mutated epitopes wherein the mutation event led to a predicted loss of binding. Sequences of specific epitopes are shown with the mutant amino acid in red. The red box in the N protein highlights a serine-rich region associated with no T cell response, low epitope density and high mutation frequency. (C) 3D structure of the Spike glycoprotein (Moderna Vaccine) and highlighted in yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in red are mutated epitopes wherein mutation events led to a predicted loss of HLA binding.

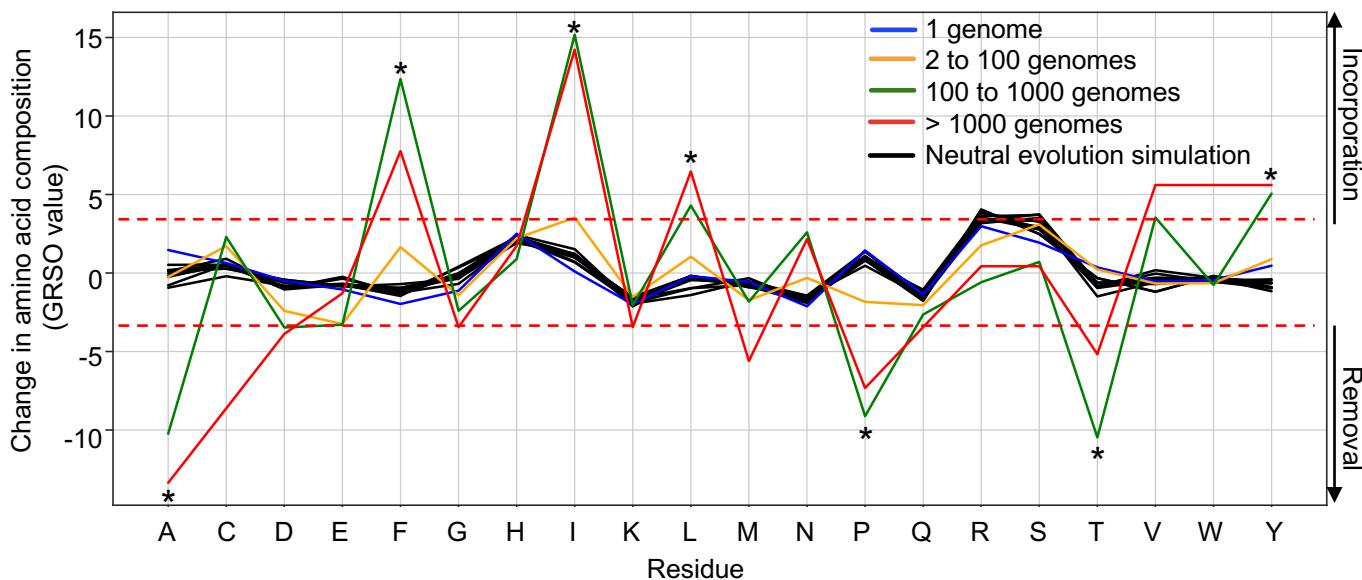
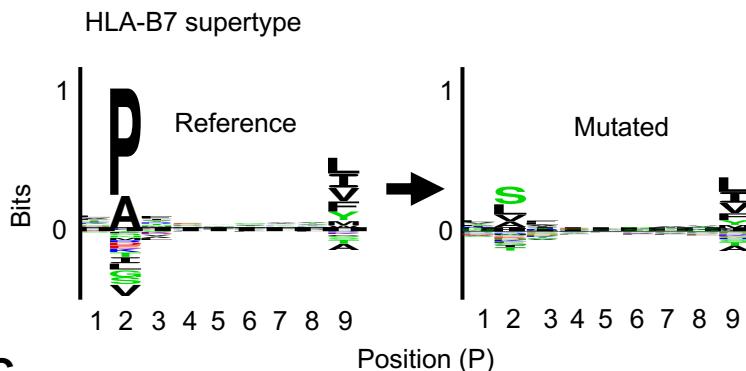
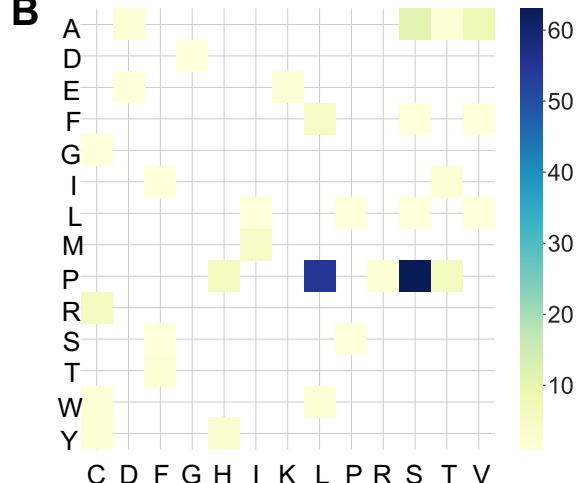
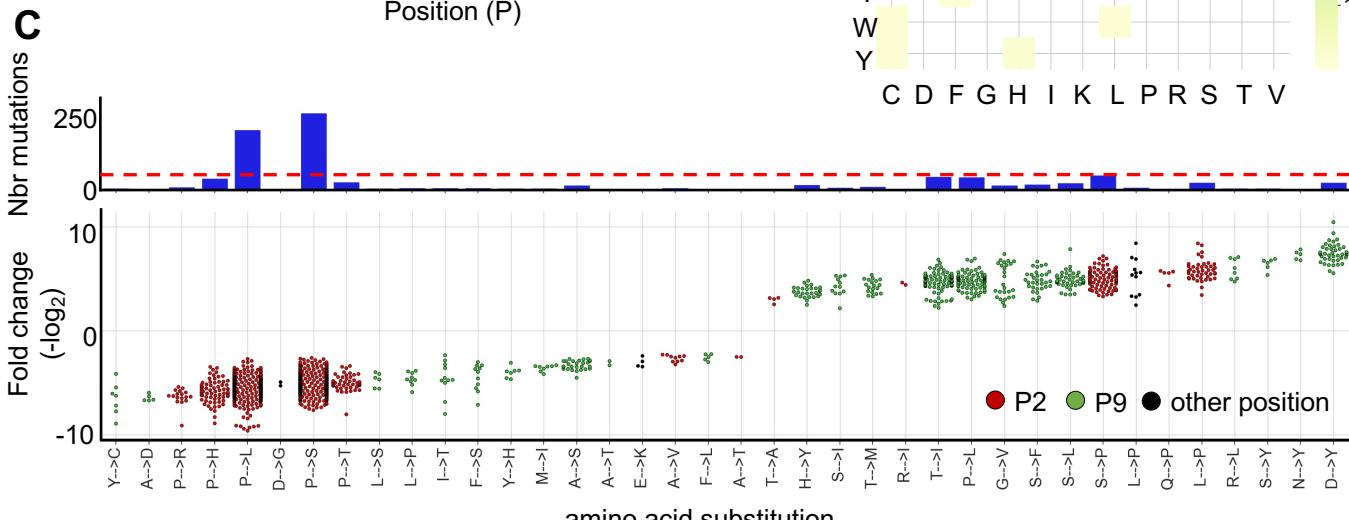


Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes. A total of 330,246 SARS-CoV-2 genomes were translated into protein sequences and analyzed for the identification of any amino acid mutational bias. Amino acid residues (x-axis) that were removed and introduced in SARS-CoV-2 variants are presented by negative and positive %difference in overall amino acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes (orange line), 100 to 1000 genomes (green line) and more than 1000 genomes (red line). Simulation of neutral evolution simulation (random mutations) were performed using the SANTA-SIM algorithm and serves as control for assessing the statistical significance of the observed pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change > 4; p-value < 1×10^{-11}) that were used to define the residues that were preferentially removed or introduced (asterisk).

A**B****C****D**

Protein	Mutation	No. of Genomes	Epitope	Substitution	HLA allele	NetMHCpan (reference)	NetMHCpan (mutated)	Magnitude of T cell response
S	P1263L	976	EP/LVLKGVKL	P → L	B*07:02	0.2	10.0	0.4
S	P681H	21,186	SP/HRRARSVA	P → H	B*07:02	0.06	5.5	0.571
N	P151L	4,488	NP/LANNAAIVL	P → L	B*67:01	0.2	6.0	0.2
N	P122H	171	LP/HYGANKDGI	P → H	B*51:02	0.3	26.0	0.333
N	P106S	2	SP/SRWFYFYYL	P → S	B*07:02	0.1	4.7	0.857
N	P67S	9,791	FP/SGQQGVPI	P → S	B*55:02	0.06	4.1	0.227
ORF1a	P3613S	104	LP/SFAMGIIAM	P → S	B*56:01	0.4	11.0	0.5
S	P34S	443	LP/SPAYTNSF	P → S	B*51:01	0.1	5.6	0.2
ORF3a	P42L	171	LP/LFGWLIV	P → L	B*51:01	0.1	18.0	0.5
N	P326S	248	VP/SSGTWLTY	P → S	B*53:01	0.3	3.8	1
ORF1b	P2533L	873	NP/LIQLSSYSL	P → L	B*07:02	0.4	9.0	0.5

Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated epitopes. (A) (Left panel) Motif view of SARS-CoV-2 reference peptides predicted to bind B7 supertype molecules (HLA-B*07:02, -B*35:03, -B42:02, -B*5101, -B*53:01, -B*54:01, -B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides. (B) Heat map showing the frequency of specific amino acid substitutions between reference and mutated peptides. (C) Graph showing the number of mutations (upper panel; y-axis) leading to specific amino acid substitutions (x-axis) at anchor residue positions P2 (red dots) and P9 (green dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D) Representative examples of validated CD8+ T cell epitopes (<https://www.mckayspcb.com/SARS2TcellEpitopes> as of January 2021). Effect of the P→X substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T cell response data for reference epitopes extracted from <https://www.mckayspcb.com/SARS2TcellEpitopes>.

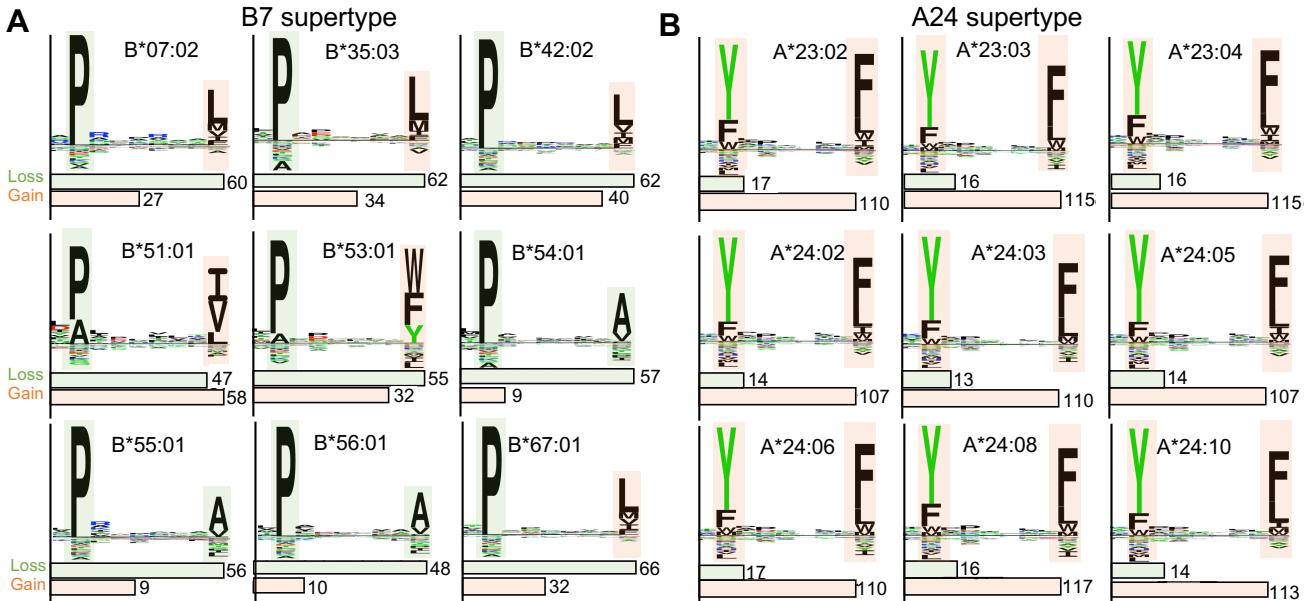
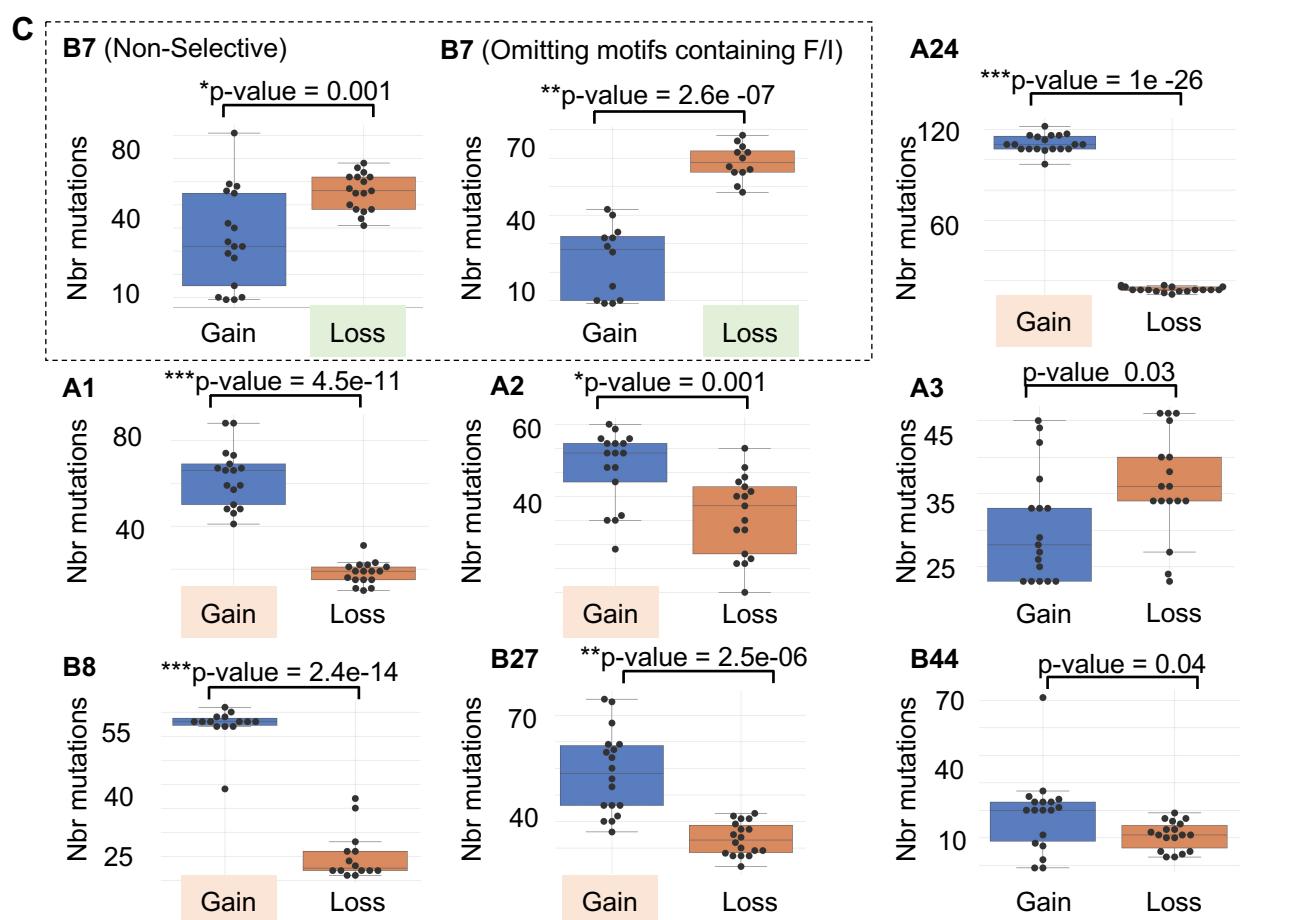


Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class I supertypes. (A, B) Motif views showing established epitope binding motifs for different HLA-I alleles that belong to the HLA-B*07 (A) and HLA-A*24 (B) supertype family. Shaded squares highlight anchor residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-2 proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the number of frequent mutations (identified in at least 100 individuals) leading to the loss or gain of epitopes. (C) 'Gain/Loss plots' showing number of mutations (y-axis) leading to a preferentially loss (pale green) or gain (pale orange) of epitopes for different HLA class I supertypes. Each black dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-I allele. Between 14 to 19 alleles per supertype (Figure S5) were used to generate the graphs and p-values (*p \leq 0.001, **p $<$ 1e-5, ***p $<$ 1e-10).

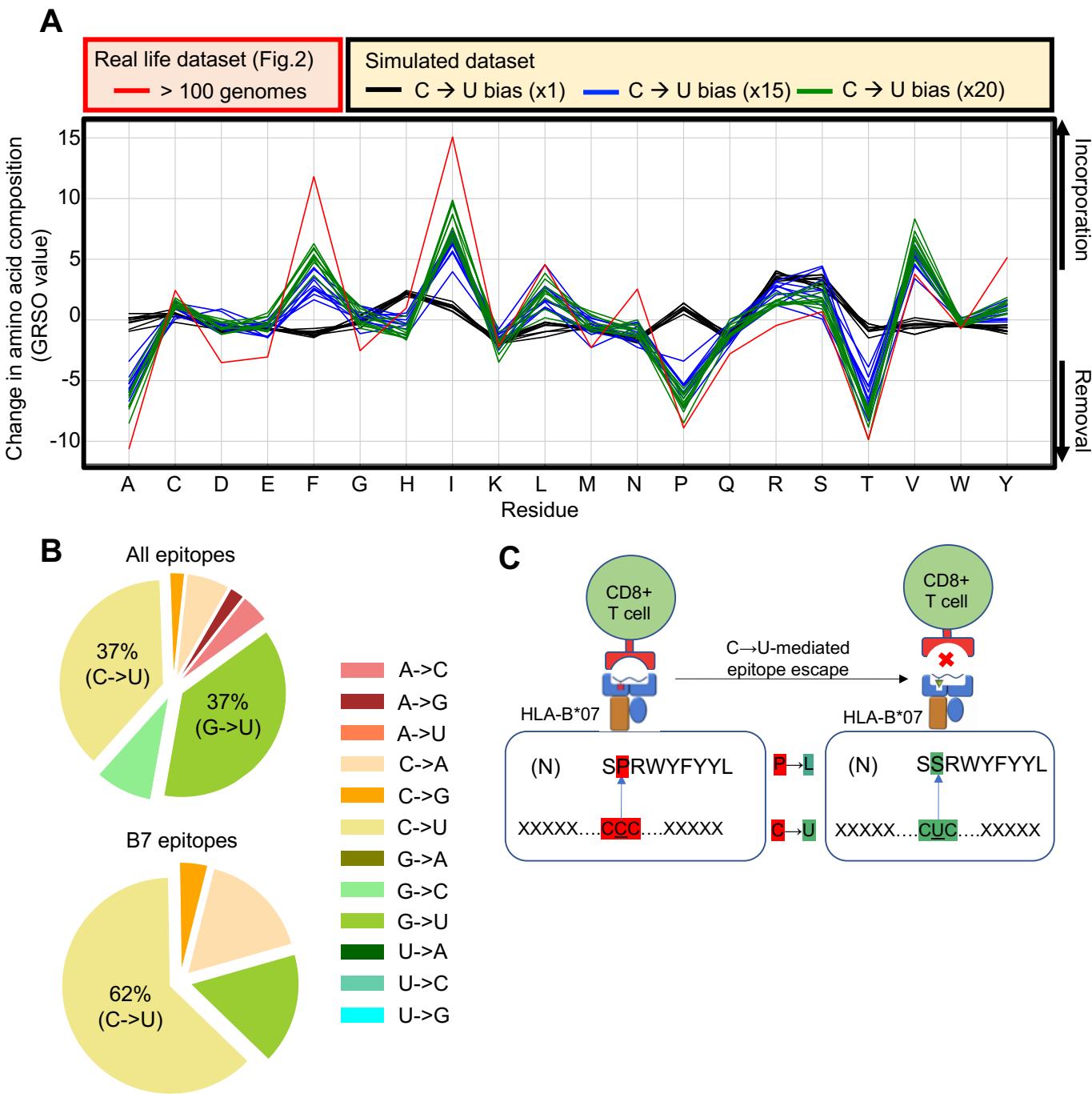
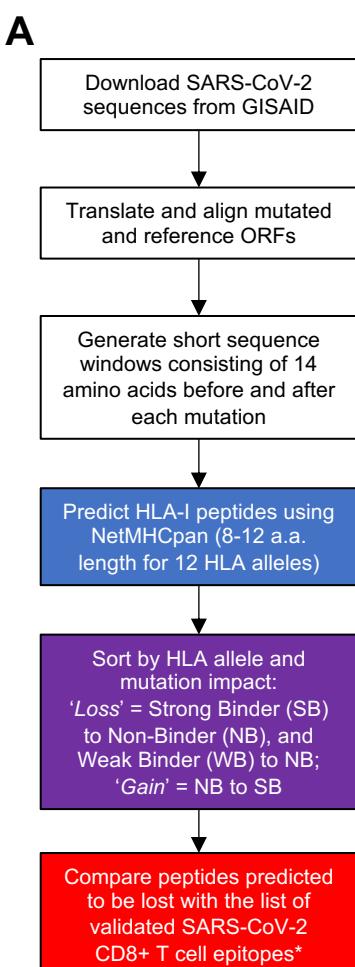
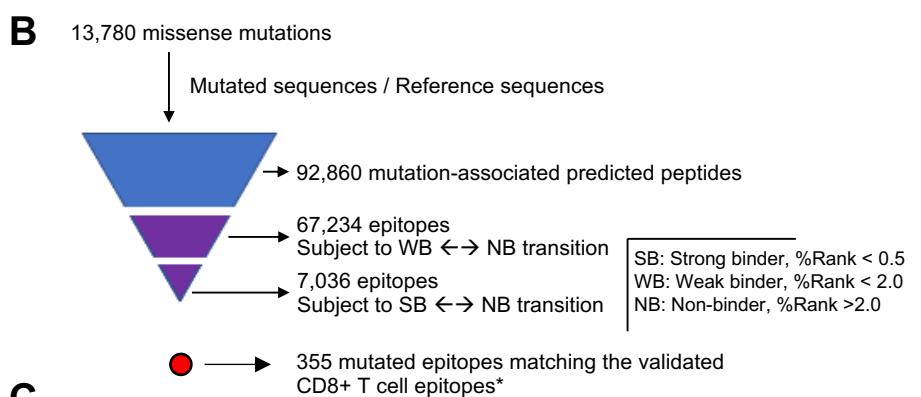


Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2 proteomes and CD8+ T cell epitopes. (A) Comparison of global amino acid mutational patterns generated from real-life versus simulated SARS-CoV-2 genomes. Amino acid residues (x-axis) that were removed and introduced in real-life versus simulated SARS-CoV-2 are presented by negative and positive %-difference in overall amino acid composition (GRSO values; y-axis), respectively. Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U biases, i.e. x1, x15 and x20 (n = 10). The red line shows the pattern obtained from mutations identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. (B) (Top) Pie chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes in <https://www.mckayspcb.com/SARS2TcellEpitopes> as of January 2021. (Bottom) Pie chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes specific to the B7 supertype. (C) Schematic illustrating the C-to-U-mediated epitope escape model. The observed mutation of the immunodominant SPRWYLFYYL epitope in the N protein is shown as an example.



Peptide	Protein	Mutation	Reference EL Rank (%)	Mutated EL Rank (%)	Impact
FPP/LTSFGPLV	ORF1b	P214L	16.0032	0.8133	No Effect
<u>VLFSTVFPPL</u>	ORF1b	P214L	3.8846	0.3436	Gain
VLYQD/GVNCT	Spike	D614G	2.2374	1.6168	No Effect
VLYQD/GVNCTEV	Spike	D614G	0.5089	0.4271	No Effect
YQD/GVNCTEV	Spike	D614G	0.9048	2.7219	No Effect
FL/FYEN AFL	ORF1a	L3606F	0.1427	6.8425	Loss
FL/FYEN AFLP	ORF1a	L3606F	0.4213	7.3316	Loss
FL/FYEN AFLPF	ORF1a	L3606F	0.9925	8.8673	No Effect
FL/FYEN AFLPFA	ORF1a	L3606F	0.2688	6.2256	Loss
FL/FVQAGNVQL	ORF1a	L3330F	0.1764	2.3875	Loss
LFVQAGNVQL	ORF1a	L3330F	2.0564	0.3571	Gain

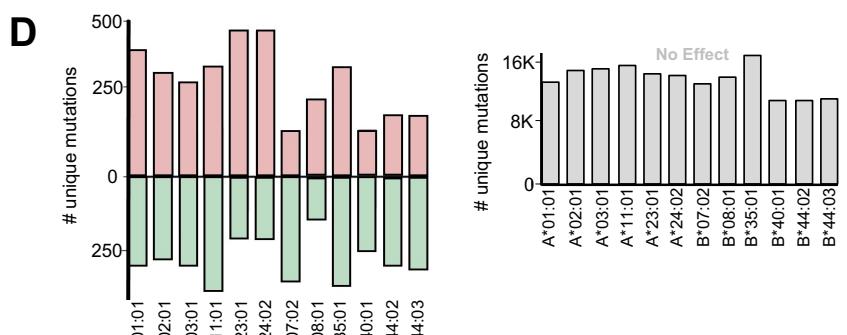
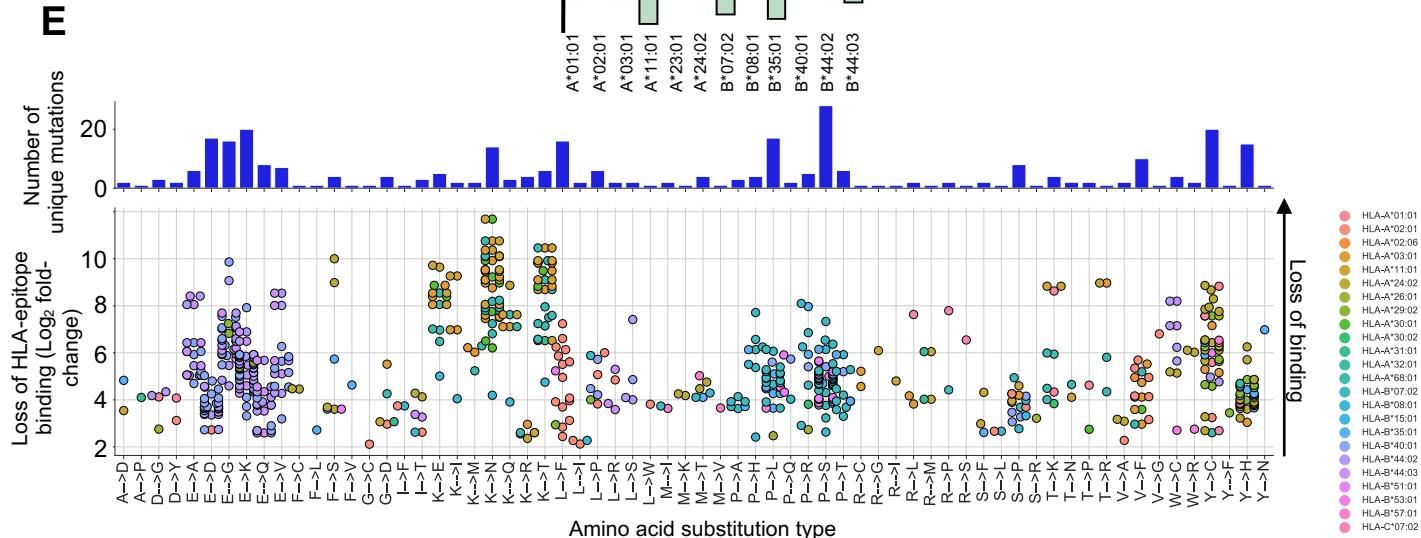
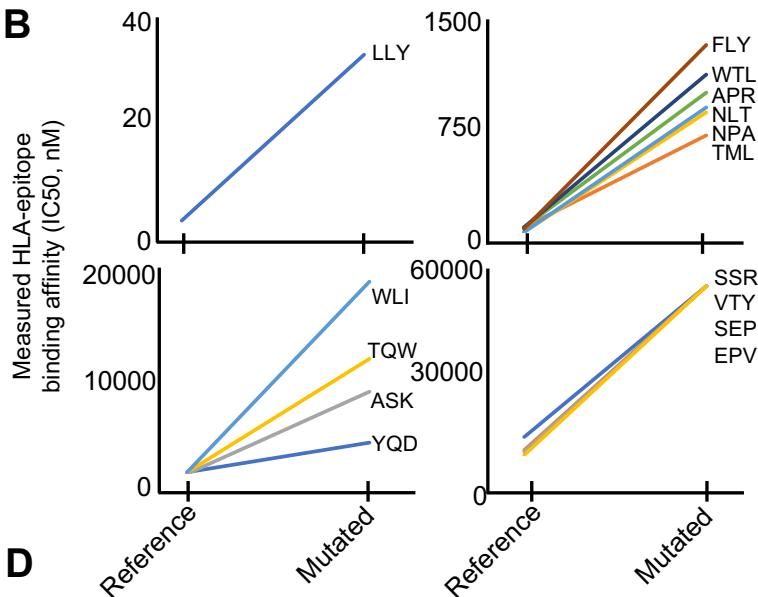
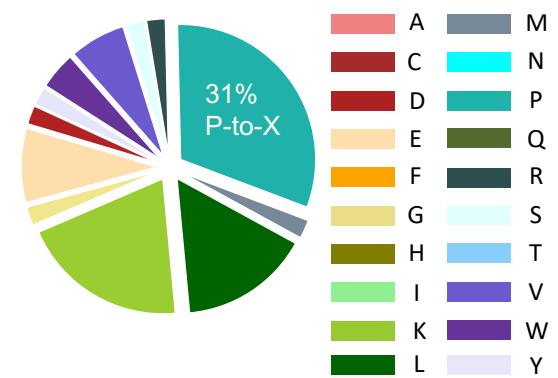
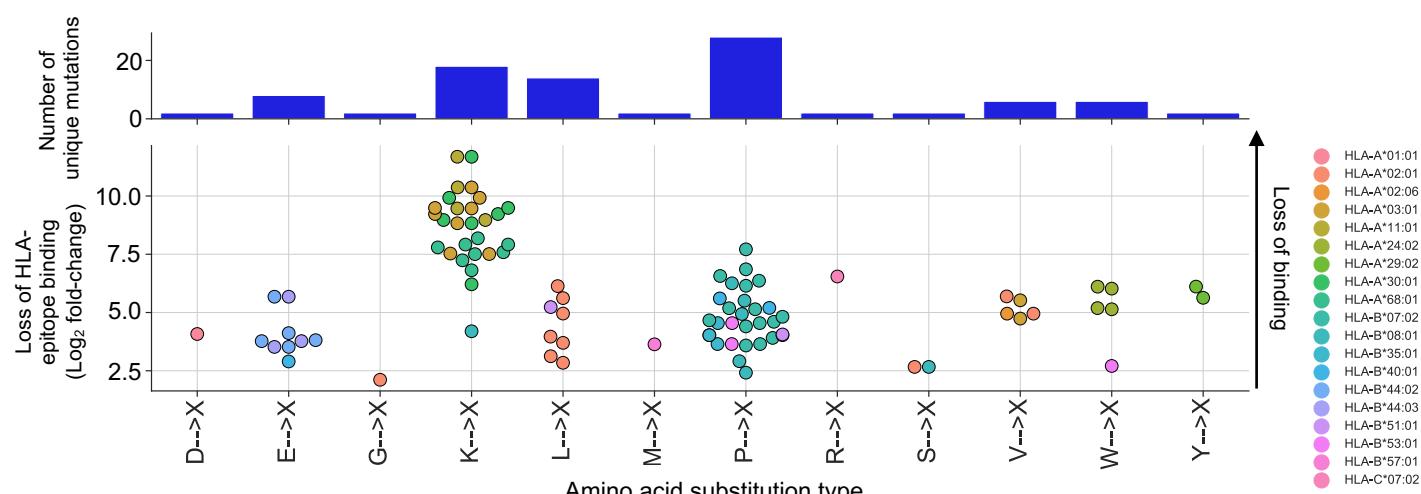


Figure S1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes, Related to Figure 1 and 4. (A) Bioinformatic pipeline for the prediction of SARS-CoV-2 mutated class I peptides associated to 12 common HLA alleles. (B) Pyramidal graph showing the number of i) missense mutations in SARS-CoV-2 genomes, ii) predicted class I mutated peptides, iii) predicted class I peptides subject to Weak Binder (WB) to Non-Binder (NB) and Strong Binder (SB) to NB transition (epitope loss category), and iv) predicted class I mutated peptides matching reference CD8+ T cell epitopes that have been experimentally validated. (C) Representative examples of predicted class I mutated peptides and the impact of the identified amino acid mutation (bold) on peptide binding to a given HLA-I allele. Reference and mutated EL (eluted ligand) Rank (%) generated by NetMHCpan 4.1 EL is indicated for individual predictions. Gain = NB to SB (pale red); Loss = SB to NB (pale green). (D) Left panel: number of unique mutations leading to 'Gain' or 'Loss' of class I peptides for the indicated HLA-I alleles. Right panel: number of unique mutations showing no effect on peptide binding for the indicated HLA-I alleles. (E) Validated SARS-CoV-2 CD8+ T cell epitopes (McKay Database) subjected to mutation events detected in more than 4 individuals (GISAID) and predicted lead to a strong loss of HLA-epitope binding. Top: number of unique missense mutations corresponding to the indicated amino acid substitution type. Bottom: Predicted loss of HLA-epitope binding (NetMHCpan4.1 %Rank) corresponding to the indicated residue substitution type from the list of validated CD8+ T cell epitopes in the McKay Database. Each dot represents an epitope pair (mutated / reference). Color indicates HLA type affected by the mutations.

A

HLA	Genome location ref>mut	Mutation ID	number of GISAID entries carrying mutation (n = 68,031)	peptide (reference/mutated)	substitution	Reference (nM)	Mutated (nM)
A*02:01	23403A>G	S_D614G	50186	YQDVNCTEV / YQGVNCTEV	D → G	166	2423
A*02:01	11083G>T	ORF1a_L3606F	6739	FLYENAFL / FFYENAFL	L → F	36	1298
A*02:01	11083G>T	ORF1a_L3606F	6739	TQWSLFFF / TQWSLFFF	L → F	83	9088
A*02:01	25528C>T	ORF3a_L46F	209	WLIVGVALL / WFIVGVALL	L → F	163	15161
A*02:01	11417G>T	ORF1a_V3718F	90	WTLMNVLT / WTLMNVLT	V → F	47	1098
A*02:01	25831C>T	ORF3a_L147F	45	NPLLYDANYFL / NPLLYDANYFF	L → F	2221	5041
A*02:01	11417G>T	ORF1a_V3718F	90	TLMNVLT / TLMNVLT	V → F	50	682
A*02:01	25831C>T	ORF3a_L147F	45	LLYDANYFL / LLYDANYFF	L → F	3.6	36
A*02:06	25563G>T	ORF3a_Q57H	14981	FQSASKIITL / FHSASKIITL	Q → H	572	749
A*11:01	24781G>T	S_K1073N	124	VTYVPAQE / VTYVPAQEN	K → N	28	50000
A*11:01	25593G>C	ORF3a_K67N	47	ASKIITLKK / ASKIITLKN	K → N	23	6494
B*07:02	28881G>A	N_R203K	20893	SSRGTS / SSKGTSPARM	P → L	5445	50000
B*07:02	17747C>T	ORF1b_P1327L	1991	NPAWRAV / NLAWRRAV	P → L	11	840
B*07:02	28311C>T	N_P13L	1252	APRITFGGP / ALRITFGGP	P → L	45	976
B*07:02	25350C>T	S_P1263L	538	SEPVLKGV / SELVLKGV	P → L	1397	50000
B*07:02	25350C>T	S_P1263L	538	EPVLKG / ELVLKG	P → L	942	50000
B*08:01	21624G>T	S_R21I	431	NLTTRTQL / NLTTITQL	R → I	14	869

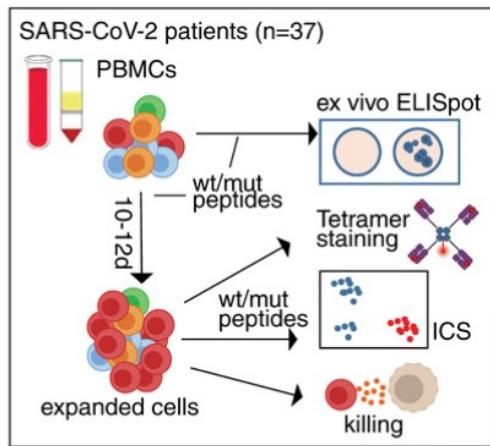
B**C****D****Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2 mutated epitopes, Related to Figure 1.**

(A) HLA binding assay was performed to determine the in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific HLA class I alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common HLA class I alleles, and 3) the mutated form was predicted to lose binding to its corresponding HLA. **(B)** Plots showing raw values for the binding affinities (nM) of the reference vs mutated peptides in (A). The first three amino acid residues of the reference peptides with fold change > 2.5 are shown. **(C)** Pie chart showing the proportion of X-to-Y substitution types from the list of validated CD8+ T cell epitopes in <https://www.mckayspcb.com/SARS2TcellEpitopes/> (as of January 2021). **(D)** Predicted loss of HLA-epitope binding clustered by substitution type from the list of validated CD8+ T cell epitopes in the McKay database. Each dot represents an epitope pair (mutated / reference; NetMHCpan 4.1 %rank ratio).

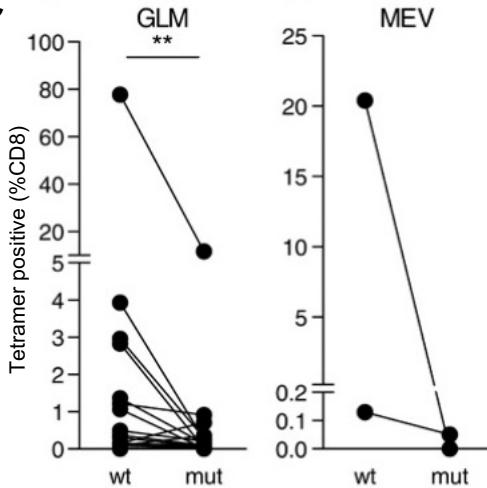
A

Epitope	HLA	Mutation	No genomes (GISAID)	NetMHCpan %rank (reference)	NetMHCpan %rank (mutated)
GL/ F FMWLSYFI	A02:01	M-L90 F	38	0.5	11.9
ME/ K VTPSGTWL	B40:01	N-E323 K	23	0.3	10.1

B



C



E

D

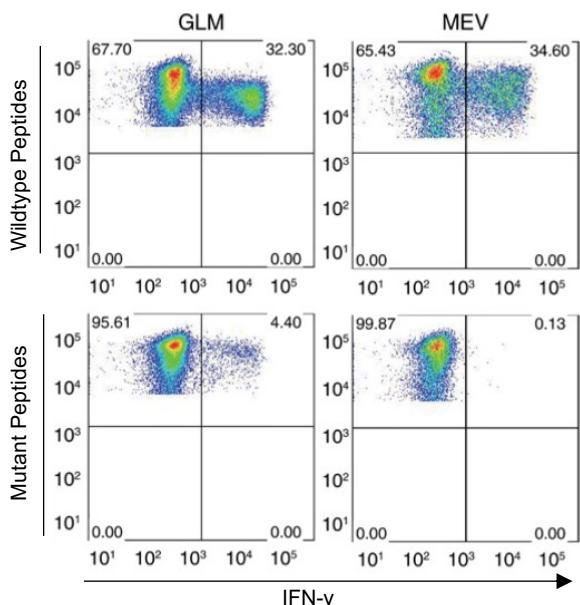
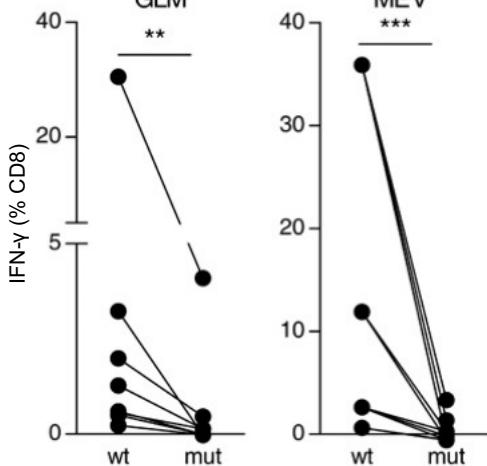


Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were previously associated with decreased CD8+ T cell responses, Related to Figure 1. (A) The mutated epitopes G**F**MWLSYFI (A*02) and M**K**VTPSGTWL (B*40) were detected in 38 and 23 genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from AAAS) (B) Experimental overview. (C) T cells expanded with mutant peptides do not give rise to wild type peptide-specific CD8+ T cell. PBMCs were isolated from HLA-A*02:01 or HLA-B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and stained with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response. PBMCs expanded with wild type or mutant peptides as indicated, were analyzed for IFN- γ -production via ICS after restimulation with wild type or mutant peptide. (E) Representative FACS plots for (D).

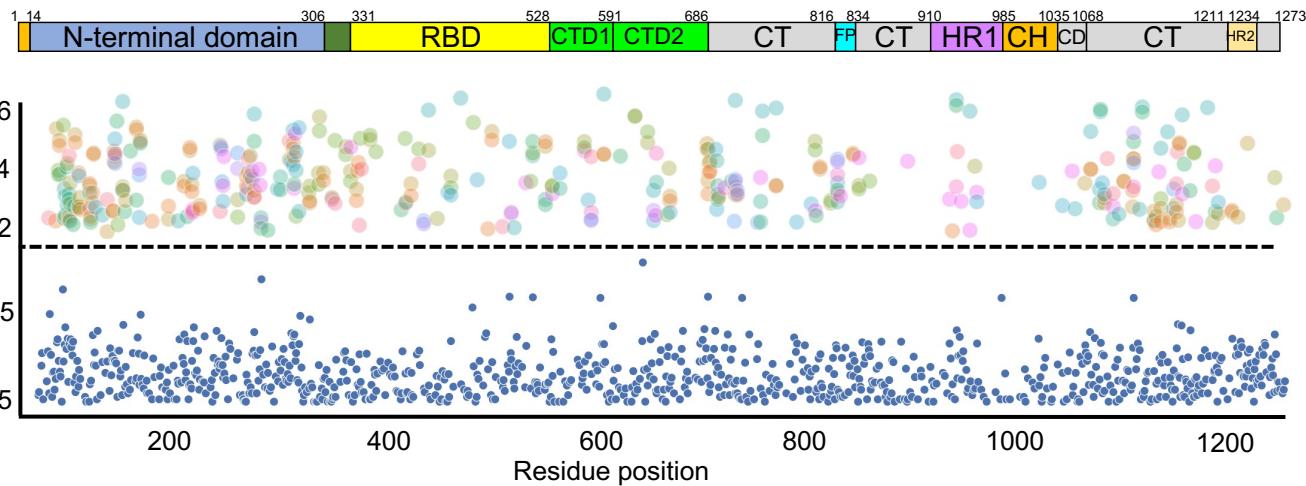
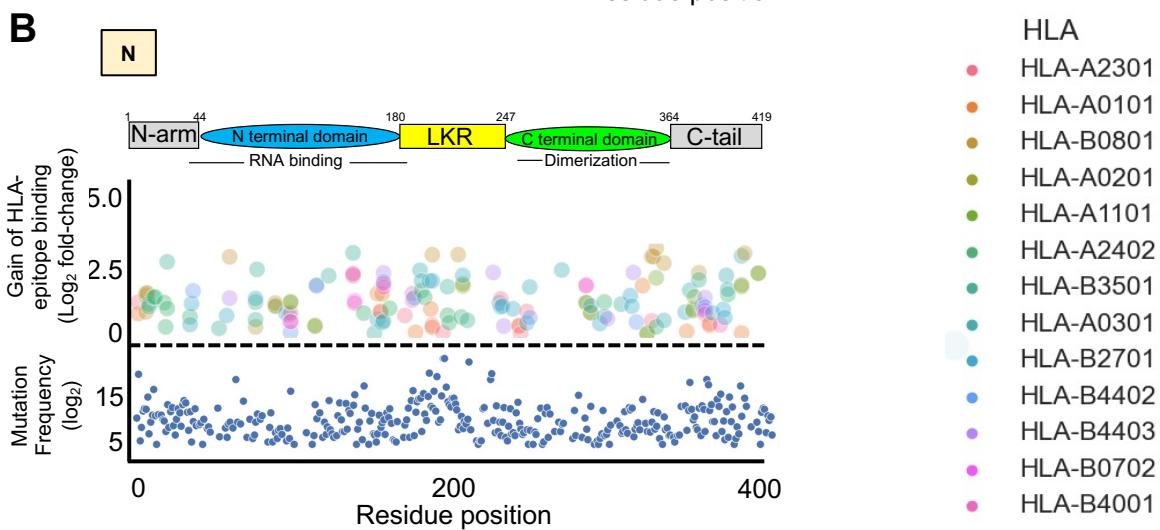
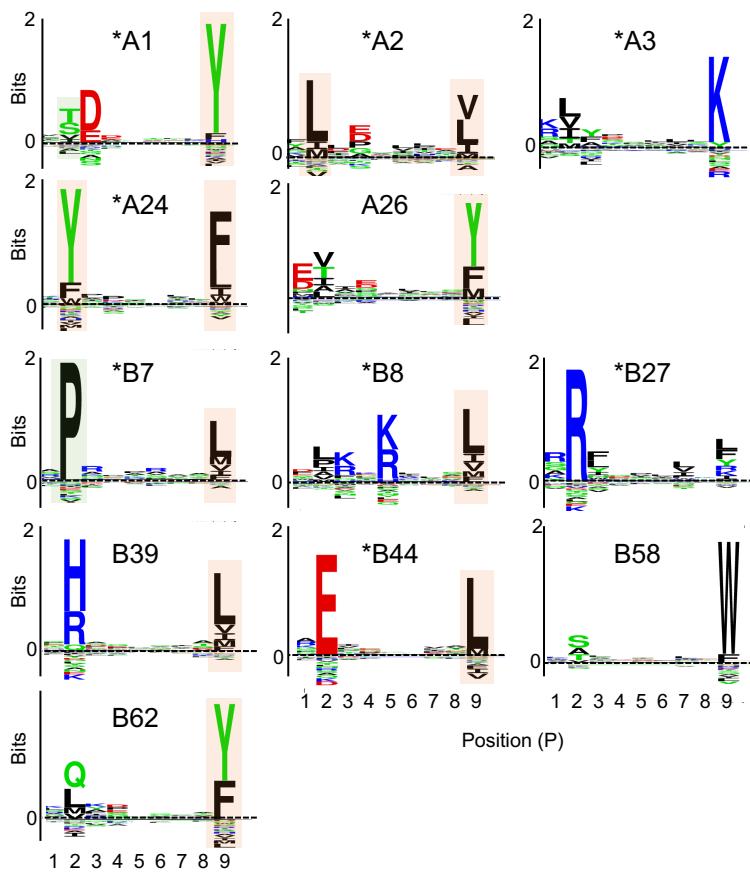
A**S****B****N**

Figure S4. Impact of mutations on gain of peptide binding to various HLA class I molecules across the immunodominant S and N antigens, Related to Figure 1. (A, B) Lower panel: blue dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Upper panel: dots showing predicted peptides subjected to a strong gain of binding (see also Figure S1C,D) to one of 12 highly common HLA types queried (color coded) due to a mutation.

A**B**

A1	A*01:01 A*30:02 A*01:03 A*30:03 A*01:04 A*30:04 A*01:07 A*30:06 A*26:01 A*30:09 A*26:02 A*32:01 A*26:03 A*32:02 A*26:04 A*32:05 A*26:05
A2	A*02:01 A*02:14 A*02:02 A*02:16 A*02:03 A*02:17 A*02:04 A*02:18 A*02:05 A*02:30 A*02:06 A*02:36 A*02:07 A*68:02 A*02:13 A*69:01 A*02:45
A3	A*03:01 A*11:05 A*03:02 A*31:01 A*03:04 A*33:03 A*03:05 A*66:01 A*03:06 A*66:02 A*11:01 A*68:01 A*11:02 A*68:03 A*11:03 A*74:01 A*11:04
A24	A*23:02 A*24:13 A*23:03 A*24:18 A*23:04 A*24:20 A*23:06 A*24:21 A*24:02 A*24:22 A*24:03 A*24:23 A*24:05 A*24:26 A*24:06 A*24:27 A*24:08 A*24:03 A*24:10
B7	B*07:02 B*53:01 B*07:05 B*54:01 B*07:08 B*55:01 B*15:08 B*55:02 B*35:03 B*56:01 B*42:02 B*67:01 B*51:01 B*78:01 B*51:02 B*51:03
B8	B*08:01 B*08:20 B*08:02 B*08:21 B*08:07 B*08:22 B*08:09 B*08:23 B*08:11 B*08:24 B*08:13 B*08:25 B*08:15 B*08:18
B27	B*14:02 B*27:05 B*15:03 B*27:06 B*15:09 B*27:07 B*15:10 B*27:09 B*15:18 B*38:01 B*27:01 B*39:01 B*27:02 B*39:02 B*27:03 B*39:09 B*27:04 B*48:01
B44	B*15:53 B*40:06 B*18:01 B*40:16 B*18:03 B*44:02 B*18:05 B*44:03 B*18:06 B*44:04 B*37:01 B*44:07 B*37:04 B*44:13 B*40:01 B*45:01 B*40:02 B*45:03

Figure S5. HLA class I supertypes, Related to Figure 4. (A) Epitope binding motifs for several HLA class I supertypes. Anchor residues are located at P2 and P9. Pale orange and green squares cover amino acid residues that are preferentially introduced (F, I, L, Y) and removed (A, P, T) in SARS-CoV-2 proteomes, respectively. Representative supertypes used in this study are shown by an asterisk (*). Epitope binding motifs were extracted from NetMHCpan Motif Viewer (http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected alleles per supertype that were used in this study to generate the 'Gain/Loss plots'.

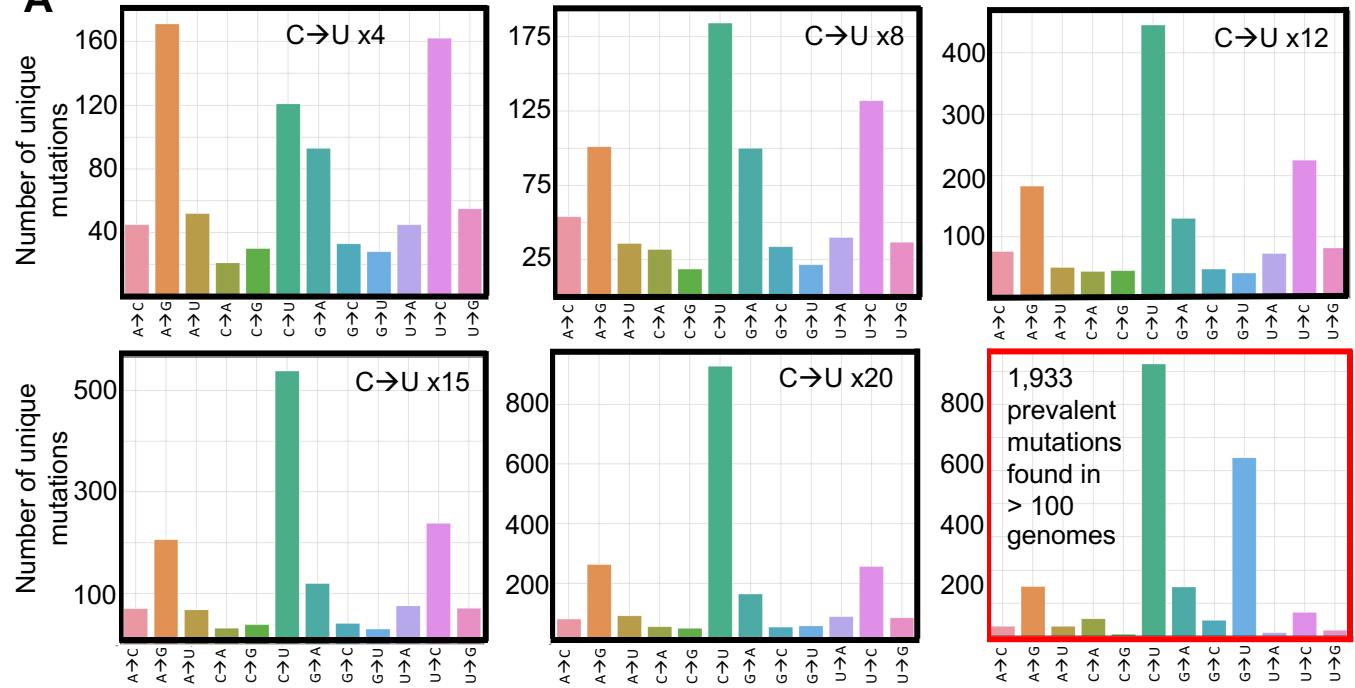
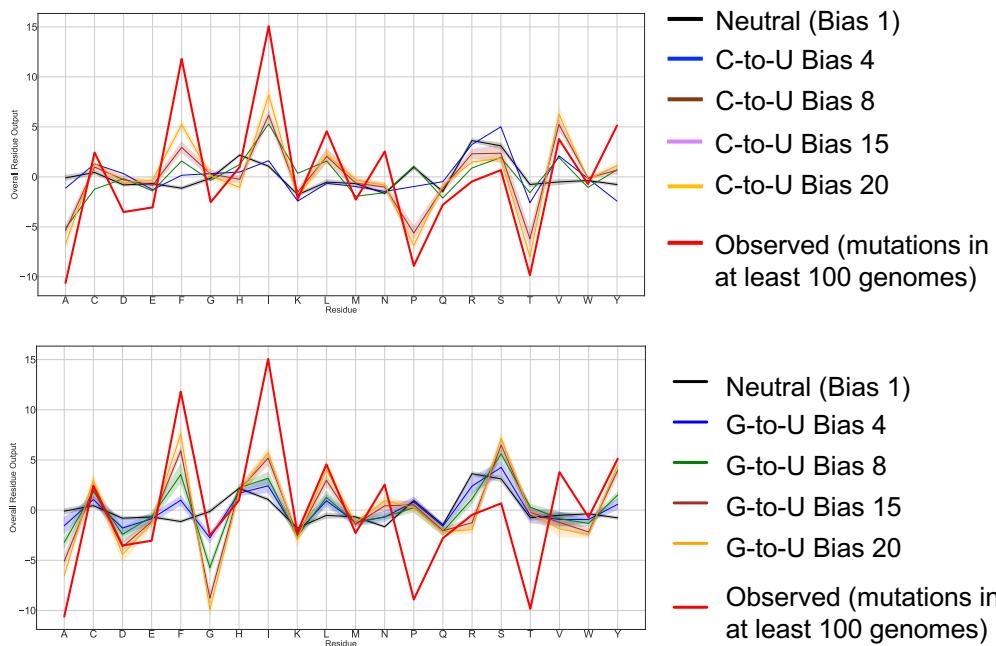
A**B**

Figure S6. Comparison of mutation biases between real-life/observed and simulated data, Related to Figure 5. (A) Histograms showing the number of unique mutations identified for each mutation type (A-to-C, A-to-G, etc.) after simulating the evolution of SARS-CoV-2 genomes through the introduction of different C-to-U bias values (x4 to x20) using the SANTA-SIM software. Simulated (black squares) and real-life/observed prevalent mutations found in more than 100 genomes (red square) at the nucleotide level are shown. **(B)** Comparison of global amino acid mutational patterns generated from simulated versus real-life/observed SARS-CoV-2 genomes. Various extents of C-to-U (top) and G-to-U (bottom) biases were introduced to perform the simulation and to generate the graphs.