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SUMMARY

The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has
led to the emergence of a diverse range of variants. The initial concerns regarding the virus were
quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity,
pathogenicity and immunogenicity. To address the latter, we seek to understand how the
mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the
population level during the first year of the pandemic, before mass vaccination. We analyzed a
total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and
all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2
diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline
residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted
global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7
supertype family. In addition, we show that this predicted global loss of epitopes is largely driven
by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-
associated epitopes, including the most immunodominant ones, were more likely to escape CD8+
T cell immunosurveillance during the first year of the pandemic. Together, our study lays the
foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and
T cell immunity across human populations. The proposed theoretical framework has implications

in viral evolution, disease severity, vaccine resistance and herd immunity.
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INTRODUCTION
As of May 2021, the COVID-19 pandemic, caused by the novel Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), has led to upwards 3.4 million deaths and 165 million

confirmed cases worldwide (https://coronavirus.jhu.edu/map.html), making vaccine development

and deployment an urgent necessity (Callaway, 2020). As a result of unprecedent efforts, vaccines
have been developed and licensed within a 1-year timeframe and are currently being widely
distributed for mass vaccination (Krammer, 2020).

A clear understanding of the natural protective immune response against SARS-CoV-2 is
essential for the development of vaccines that can trigger lifelong immunologic memory to prevent
COVID-19 (Sette and Crotty, 2021; Stephens and McElrath, 2020). Since the start of the
pandemic, numerous studies have investigated the association between COVID-19 clinical
outcomes and SARS-CoV-2 specific antibodies and T cell immunity (Altmann and Boyton, 2020;
Bert et al., 2020; Braun et al., 2020; Grifoni et al., 2020a; Long et al., 2020a, 2020b; Meckiff et
al., 2020; Moderbacher et al., 2020; Sekine et al., 2020; Weiskopf et al., 2020). Memory may be a
concern for SARS-CoV-2 specific antibodies, as they were recently shown to be present in
convalescent COVID-19 patients in a highly heterogenous manner (Dan et al., 2021) and, in some
cases, observed to be undetectable just a few months post-infection (Seow et al., 2020). In contrast,
an increasing number of studies point CD4+ and CD8+ T cells as key regulators of disease severity
(Liao et al., 2020; Moderbacher et al., 2020; Schub et al., 2020; Weiskopf et al., 2020; Zhou et al.,
2020). Studies of convalescent COVID-19 patients have also shown broad and strong CD4+ and
CD8+ memory T cells induced by SARS-COV-2, suggesting that T cells may provide robust and
long-term protection (Dan et al., 2021; Peng et al., 2020). Similar observations have been made

for the most closely related human coronavirus, SARS-CoV, for which T cells have been detected
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78 11 years (Ng et al., 2016) and 17 years (Bert et al., 2020) after the initial infection, whereas
79  antibodies were noted to be undetectable after 2-3 years (Liu et al., 2006; Tang et al., 2011; Wu et
80 al., 2007). Thus, vaccines designed to produce robust T cell responses are likely to be important
81  for eliciting lifelong immunity against COVID-19 in the general population.

82 To investigate how T cells could contribute to long-term vaccine effectiveness, precise
83  knowledge about SARS-CoV-2 T cell-specific epitopes is of paramount importance (Liu et al.,
84  2020). To this end, bioinformatics tools were developed to predict T cell-specific epitopes during
85  the early phase of the pandemic (Grifoni et al., 2020b). A comprehensive map of epitopes
86  recognized by CD4+ and CD8+ T cell responses across the entire SARS-CoV-2 viral proteome
87  was also recently reported (Tarke et al., 2020). Notably, the structural proteins Spike (S),
88  Nucleocapsid (N) and Membrane (M) were shown to be rich sources of immunodominant HLA-
89  associated epitopes, accounting for a large proportion of the total CD4+ and CD8+ T cell response
90 in the context of a broad set of HLA alleles (Tarke et al., 2021). To date (May 2021), ~700 HLA
91 class [I-restricted SARS-CoV-2-derived epitopes have been experimentally validated
92 (https://www.mckayspcb.com/SARS2TcellEpitopes/) (Quadeer et al., 2020).

93 T cell epitopes that have been mapped across the entire SARS-CoV-2 viral proteome are
94  reference peptides that are unmutated because they have been predicted from the sequence of the
95  original SARS-CoV-2 that emerged from Wuhan, China (Grifoni et al., 2020b). However, analyses
96  of unprecedented numbers of SARS-CoV-2 genome assemblies available from large-scale efforts
97  have shown that SARS-CoV-2 is accumulating an array of mutations across the world, leading to
98  the circulation and transmission of thousands of variants around the globe at various frequencies,
99  and hence, contributing to the global genomic diversification of SARS-CoV-2 (Dorp et al., 2020a;

100  Korber et al., 2020; Laamarti et al., 2020; Mercatelli and Giorgi, 2020; Mercatelli et al., 2020;
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101  Popa et al., 2020). In this regard, recent data indicate that most recurrent mutations appear to be
102  evolutionary neutral with no evidence for increased transmissibility (Dorp et al., 2020a).
103 Nonetheless, it is important to highlight that those neutral mutations are associated with a
104  remarkably high proportion of cytidine-to-uridine (C-to-U) changes that were hypothesized to be
105  induced by members of the APOBEC RNA-editing enzyme family (Dorp et al., 2020a; Giorgio et
106  al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyasek and Kovatik, 2020;
107  Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). Since shown for other viruses (Grant and
108  Larijani, 2017; Monajemi et al., 2014), we reasoned that the putative action of such host enzymes
109  during the first year of the pandemic could lead to the large-scale escape from immunodominant
110  and protective SARS-CoV-2-specific T cell responses, thereby potentially compromising their
111  effectiveness to control the virus at the population-scale.

112 In this study, we report a comprehensive study of the global genetic diversity of SARS-
113 CoV-2 to expose the impact of mutation bias on epitope presentation and HLA-restricted T cell
114  response within the first year of the pandemic, from December 2019 to December 2020. More
115  specifically, we asked the following questions: 1) What are the impact of SARS-CoV-2 prevalent
116  mutations detected across the global human population on the repertoire of validated SARS-CoV-
117 2 T cell targets, with specific emphasis on CD8+ T cell epitopes? and 2) Are mutational patterns
118  in the genomic and proteomic composition of SARS-CoV-2 indicative of disrupted (or enhanced)
119  epitope presentation and T cell immunity in human populations? By answering these questions,
120 we provide a theoretical framework to understand how SARS-CoV-2 mutants have shaped T cell
121  immunity to evade effective T cell immune responses at the population level during the first year
122 of the pandemic, i.e. without mass vaccination-induced immune pressure on viral evolution and

123 adaptation.
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124

125 RESULTS

126  The global diversity of SARS-CoV-2 genomes influences the repertoire of T cell targets

127  As of May 2021, nearly 1.7M complete SARS-CoV-2 genome assemblies are publicly available
128  via the Global Initiative on Sharing All Influenza Data (GISAID) repository. In the context of this
129  large-scale effort, we performed a global analysis of SARS-CoV-2 genomes to assess whether
130  mutations that emerged during the first year of the pandemic could disrupt HLA binding of
131  clinically relevant SARS-CoV2 CD8+ T cell epitopes. First, we identified missense mutations by
132 aligning 330,246 high-quality consensus SARS-CoV-2 genomic sequences (GISAID; December
133 31% 2020, prior to mass vaccination) to the reference sequence, Wuhan-1 SARS-CoV-2 genome
134 (Figure S1). We found a total of 13,780 mutations identified in at least 4 SARS-CoV-2
135  genomes/individuals from GISAID, including 1,721 unique amino acid mutations in the S protein,
136  with D614G as the most frequent one (94%) (Korber et al., 2020) (Table S1 and Table S2). Next,
137  we implemented a bioinformatics pipeline to assess the impact of these mutations on HLA binding
138  for 620 unique SARS-CoV-2 HLA class I epitopes that were recently reported to trigger a CD8+
139 T cell response in acute or convalescent COVID-19 patients (Quadeer et al., 2020; Tarke et al.,
140  2020) (see Methods). On average, we found that the predicted binding affinity of 181 of these
141  SARS-CoV-2 epitopes (30%) for common HLA-I alleles was reduced by ~100-fold (Table S3 and
142 Figure S1). It is also apparent that mutations negatively impacted the HLA binding affinity of 56
143 (31%) and 19 (10%) CD8+ T cell epitopes located in the immunodominant S and N proteins,
144  respectively (Figure 1A,B). Notably, a gap in the N protein, composed of a serine-rich region, is

145  associated with higher mutation rate and a marked lack of predicted T cell epitopes and response
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146  (Figure 1B). Epitopes located in the RBD vaccine locus were also impacted by mutations (Figure
147  1C).

148 Loss of epitope binding for commonly expressed HLA class I molecules was validated in
149  vitro for a subset of representative SARS-CoV-2 epitopes (Figure S2). Of relevance, we found
150  that the common D614G mutation in the S protein is linked to a 15-fold decrease in the binding
151  affinity for the mutated HLA-A*02:01 epitope YQGVNCTEV when compared to the
152  reference/unmutated epitope YQDVNCTEV (Figure S2A,B). Interestingly, our analysis also
153  identified a mutation in the HLA-B*07:02-restricted N105 epitope SPRWYFYYL, which is one
154  of the most immunodominant SARS-CoV-2 epitope (Ferretti et al., 2020; Kared et al., 2021; Saini
155 etal., 2021; Schulien et al., 2021; Sekine et al., 2020; Tarke et al., 2021). Although relatively rare
156  (found in only two genomes), the mutation in the N105 epitope consists of P=>S at anchor residue
157  position P2 (P106S: SPRWYFYYL - SSRWYFYYL) (Figure 1B) and is predicted to decrease
158  HLA epitope binding by 47-fold (Figure 3D), thereby likely reducing the breadth of the immune
159  response in B*07:02 individuals carrying this mutation. Moreover, our global analysis validated
160  the presence of two previously reported CD8+ T cell mutated epitopes (i.e. GLMWLSYFI -
161 GFMWLSYFI, found in 38 genomes; and MEVTPSGTWL - MKVTPSGTWL, found in 23
162  genomes), which were shown to lose binding to HLA-A*02:01 and -B*40:01, respectively, in
163  addition to disrupt epitope-specific CD8+ T cell response in COVID-19 patients (Figure S3)
164  (Agereretal.,2021). Together, these results demonstrate that mutations driving the global genomic
165  diversity of SARS-CoV-2 can drastically disrupt HLA binding of clinically relevant CD8+ T cell
166  epitopes, including epitopes encoded by the immunodominant S and N antigens, therefore

167  affecting epitope-specific T cell responses in COVID-19 patients.
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168 In addition to mutations leading to a loss of HLA epitope binding, we identified a
169  significant number of mutations predicted to enhance the presentation of peptides by their
170  respective HLA molecules, leading to a ‘Gain’ of binding (Figure S4). Because the unmutated
171  epitopes are predicted to be non-HLA binders, these mutations were not searched against the list
172 of known validated epitopes, which consist of strong-HLA binding reference epitopes. Whether
173 SARS-CoV-2 mutations predicted to increase HLA epitope binding can enhance T cell responses
174  to control the virus in COVID-19 patients remains to be determined experimentally.

175

176  Amino acid mutational biases shape the global diversity of SARS-CoV-2 proteomes

177  While analysing the impact of the mutational landscape of SARS-CoV-2 on validated CD8+ T-
178  cell epitopes, we observed that specific mutation types were over-represented while others were
179  under-represented (Figure S2C,D). For instance, we found that 31% of the mutated epitopes were
180  represented by a removal of proline residue (Figure S2C,D), leading to the hypothesis that such
181  biases could originate from biases in the proteome of SARS-CoV-2 mutants. To further investigate
182  whether specific amino acid mutational biases could be observed globally in the proteome of
183  SARS-CoV-2 mutants, we asked whether certain amino acid residues were preferentially removed
184  from, or introduced into the global proteomic diversity of SARS-CoV-2, thereby potentially
185  diversifying CD8+ T cell epitopes in a systematic manner.

186 To test this, we computed all residue substitutions (amino acid removed and introduced)
187  found in SARS-CoV-2 proteomes and calculated Global Residue Substitution Output (GRSO)
188  wvalues, i.e. the % difference in overall amino acid composition for individual amino acids (see
189  Methods for details). GRSO values were computed for mutations found at various frequencies in

190  GISAID (i.e. found in only 1 genome, 2 to 100 genomes, 100 to 1000 genomes and > 1000
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191  genomes) (Figure 2). Interestingly, distinct mutational patterns at the amino acid level were
192  observed amongst mutations detected in more than 100 genomes/individuals (Figure 2), referred
193  in this study to as ‘prevalent mutations’ (see Methods and Table S2). Amongst those mutations,
194  the amino acids alanine (A), proline (P) and threonine (T) were preferentially removed by 10.2%
195  (p = 1.2x1015), 9.1% (p = 1.6x10°"%), and 10.5% (p = 1.3x10'%), respectively. In contrast,
196  phenylalanine (F), isoleucine (I), leucine (L) and tyrosine (Y) were preferentially introduced by
197 13.4% (p = 2.0x10"'7), 15.2% (p = 2.4x10'Y7), 4.3% (p = 6.3x10°!!) and 5.0% (p = 7.0x10"'%),
198  respectively (Figure 2). Statistical significance of these GRSO values was assessed by generating
199  simulated samples of 1000 SARS-CoV-2 genomes evolving under neutrality (N = 10 replicates)
200  using the SANTA-SIM algorithm (Jariani et al., 2019) (see Methods for details). Of note,
201  mutations that were detected in 2 to 100 individuals appeared significantly more neutral, with none
202  of the mutational patterns enriched above the selected cut-off values (fold change > 4; p-value <
203 1x10'Y). Thus, our results show that specific amino acid residues were preferentially removed or
204  introduced in the proteome of SARS-CoV-2 mainly by prevalent mutations. Therefore, we
205 introduce the notion that the global diversity of SARS-CoV-2 proteomes is shaped by specific
206 amino acid mutational biases. Such biased amino acid composition generated by prevalent
207  mutations may have a systematic impact on epitope processing and presentation to shape SARS-
208  CoV-2 T cell immunity in human populations. To address this systematic impact, all downstream
209  analyses described in this study were performed from the set of 1,933 prevalent mutations (>100
210  genomes) listed in Table S2.

211

212 Prominent removal of proline residues leads to a predicted global loss of epitopes presented

213 by HLA-B7 supertype molecules
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214  The association of peptides with the binding groove of HLA molecules largely relies on the
215  presence of anchor residues, also known as peptide binding motifs (Falk et al., 1991). Hundreds of
216  different peptide binding motifs have been reported over the last decades (Gfeller and Bassani-
217  Sternberg, 2018). Overlapping binding motifs are qualified as "HLA supertypes" on the basis of
218  their main anchor specificity (Greenbaum et al., 2011; Sidney et al., 2008). Of relevance here,
219  proline acts as a critical anchor residue at position P2 for epitopes presented by HLA-B7 (B7)
220  supertype molecules, which include a wide range of commonly expressed HLA-B alleles in
221  humans, i.e. HLA-B*07, -B*15, -B*35, -B*42, -B*51, -B*53, -B*54, -B*55, -B*56, -B*67 and
222 B*78 (Sidney et al., 2008). In fact, the B7 supertype covers ~35% of the human population
223  (Francisco et al., 2015). Hence, we reasoned that the global removal of proline residues observed
224 in the proteome of prevalent SARS-CoV-2 mutants (Figure 2) could drastically compromise T
225  cell epitope binding to B7 supertype molecules, thereby potentially interfering with SARS-CoV-2
226 T cell immunity in a relatively large proportion of the human population.

227 Due to the preferential removal of proline by prevalent mutations, we investigated the
228  extent at which proline residues were substituted at anchor binding position P2 and, consequently,
229  resulted in loss of epitopes presented by B7 supertype molecules. To answer this, we performed
230  the following four steps: (i) We applied NetMHCpan 4.1 (Reynisson et al., 2020) using the
231  reference and mutated SARS-CoV-2 genomes to generate a list of all possible reference/mutated
232 peptide pairs (8-11 mers) predicted to bind 16 common HLA-B types that belong to the B7
233 supertype family (Figure S5B). (ii)) We analyzed all reference/mutated peptide pairs, along with
234 their differential predicted binding affinities to quantitatively identify HLA strong binder (SB) to
235  non-binder (NB) transitions [(SB) NetMHCpan %rank < 0.5 to (NB) NetMHCpan %rank >2]. (iii)

236  We categorized all peptide pairs based on the mutation type (amino acid X = amino acid Y) and

10
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237  the position of the mutation within the peptide sequence. (iv) Lastly, we quantified the number of
238  reference/mutated peptide pairs and the associated fold-change in predicted binding affinity for
239  each category. Our results show that prevalent mutations predicted to impact the presentation of
240  peptides by the B7 supertype are dominated by P>L (p = 8.6x107%) and P>S (p = 3.4x10%%)
241  substitutions at anchor residue position P2 (Figure 3A,B). Reference/mutated peptide pairs from
242 these categories were the most abundant, with > 250 mutated peptides per category (Figure 3C).
243  P->L and P->S mutations resulted, on average, in a 61-fold reduction in predicted HLA binding
244  affinity for a representative set of clinically validated CD8+ T cell epitopes (Figure 3D).

245 In addition to the dominant P->S/L substitution type, other P->X substitutions were
246  observed. Interestingly, analysis of mutations found in the Pangolin B.1.1.7 variant (January 2021)
247  showed that the P681H mutation found in the Spike protein led to disrupted association of the
248  reference epitope SPRRARSVA for several HLA-B7 types. In fact, the P-to-H substitution
249  resulted in a strong loss of epitope binding predicted for 7/16 HLA-B types tested. Thus, our results
250  strongly suggest that biased substitutions of proline residues in the proteome of SARS-CoV-2
251  shapes the repertoire of epitopes presented by B7 supertype, including epitopes encoded by the
252 genome of the B.1.1.7 variant. This finding let us to propose that mutation biases found in SARS-
253  CoV-2 may contribute to CD8+ T cell epitope escape in a B7 supertype-dependent manner.

254

255  The mutational landscape of SARS-CoV-2 enables disruption or enhancement of epitope
256  presentation in an HLA supertype-dependent manner

257  We found that specific amino acid residues were preferentially removed (proline, alanine and
258  threonine) or introduced (isoleucine, phenylalanine, leucine and tyrosine) in SARS-CoV-2

259  proteomes (Figure 2). Importantly, most of these amino acids act as key epitope anchor residues

11
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260  for multiple HLA class I supertypes (Figure S5). For instance, phenylalanine and tyrosine are key
261  anchor residues for all known A*24 alleles of the A24 supertype family, whereas proline is known
262  to play a critical role in the anchoring of epitopes to alleles of the B7 supertype family (Figure 4).
263  Therefore, one would expect the introduction of phenylalanine and tyrosine in SARS-CoV-2
264  proteomes to facilitate peptide presentation by A24, whereas the removal of proline would disrupt
265  peptide presentation by B7. With this concept in mind, we hypothesized that the distinct amino
266  acid mutational biases found throughout prevalent SARS-CoV-2 mutations could systematically
267  mold epitope presentation in an HLA supertype-dependent manner.

268 In order to compare supertypes to each other, we generated a ‘Gain/Loss plot’ for each
269  supertype assessed (Figure 4C). Gain/Loss plot were generated by computing the number of
270  mutations that resulted in ‘Gain’ or ‘Loss’ of epitopes for representative class I alleles selected for
271  each supertype (see methods for details). ‘Gain’ was assigned for mutated epitopes that were
272  predicted to transit from non-HLA binders (NetMHCpan %rank > 2) to strong HLA binders
273  (NetMHCpan %rank < 0.5), whereas ‘Loss’ was assigned for mutated epitopes that were predicted
274  to transit from strong HLA binders to non-HLA binders. Surprisingly, our analysis shows that
275  most supertypes preferentially gain new epitopes as a result of SARS-CoV-2 mutations: Al (p =
276  4.5x10'), A2 (p = 0.001), A24 (p = 1.0x102°), B8 (p = 2.4x10'%), B27 (p = 2.5x10°).
277  Interestingly, preferential loss of epitopes was only shown to be statistically significant for B7
278  supertype (p = 0.0012). Note that we explain the relatively low statistical value obtained for B7
279  supertype by the presence of isoleucine and phenylalanine (preferentially introduced in SARS-
280  CoV-2 proteomes; see Figure 2) at anchor residue P9 for certain HLA types (namely HLAB*51:01
281 and HLA-B*53:01) (Figure 4A). In fact, omitting motifs containing isoleucine or phenylalanine

282  increased the significance of epitope lost versus gained (p = 2.6x1077) (Figure 4C). Together, our
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283  results show that the amino acid mutational biases that feature the global diversity of SARS-CoV-
284 2 proteomes can positively or negatively affect binding affinities of mutated epitopes for a wide
285  range of HLA class I molecules in a supertype-dependent manner.

286

287  The C-to-U point mutation bias largely drives diversification of SARS-CoV-2 T cell epitopes
288  Next, we sought to better understand the genetic determinants that drive the association between
289  epitope presentation and the amino acid mutational biases found in the SARS-CoV-2 population.
290  To this end, we analyzed the abundance of all the possible nucleotide mutation types (i.e. A-to-C,
291  A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.). This analysis indicates that C-to-U is the most
292  common mutation type (43%), followed by G-to-U (28%), as well as A-to-G, G-to-A and U-to-C
293 (from 9.7% to 11.6%) (Figure S6A), in line with observations made by others (Giorgio et al.,
294  2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; Matyasek and Kovarik, 2020;
295  Rice et al., 2020; Simmonds, 2020; Wang et al., 2020).

296 Next, we aimed to determine the contribution of these different nucleic acid mutation types
297  to the global mutational pattern observed at the amino acid level in Figure 2. To do so, we
298  generated simulated population samples of 1000 SARS-CoV-2 genomes using SANTA-SIM
299  (Jariani et al., 2019), applying various extents of mutational biases corresponding to the two most
300 common mutation types observed (i.e. C-to-U and G-to-U). The resulting simulated viral
301  populations were then analyzed to elucidate the global amino acid mutational pattern engendered
302 by these simulated nucleic acid point mutation biases, and whether they recapitulate the observed
303  patterns. Indeed, our data show that the mutational pattern resulting from the simulated C-to-U
304  bias very closely mimicked the mutational pattern observed in the real-life dataset (Figure 5A).

305  Namely, the in silico introduction of a C-to-U mutation bias resulted in the preferential removal
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306 of alanine, proline, and threonine, by 6.7% (p = 5.1x107'!), 6.9% (p = 1.2x10'") and 8% (p =
307  4.8x10°12?), respectively, as well as the introduction of isoleucine and phenylalanine by 8.2% (p =
308  1.3x10%) and 5.2% (p = 4.3x10°!"), respectively (Figure 5A). The G-to-U mutation bias also
309  contributed to the introduction of isoleucine and phenylalanine (Figure S6). Together, these results
310  show that the predominant C-to-U point mutations largely contribute to shaping the global
311  proteomic diversity of SARS-CoV-2.

312 Given the significant impact of the C-to-U point mutation bias on the amino acid content
313 of SARS-CoV-2 proteomes, we reasoned that C-to-U could be the main driver shaping the
314  repertoire and diversification of SARS-CoV-2 T cell targets in human populations, including
315  targets presented by the particularly interesting B7 supertype molecules. To investigate this, we
316 used all the SARS-CoV-2 CD8+ T cell epitopes that were experimentally validated using
317  peripheral blood mononuclear cells (PBMC) of acute and convalescent COVID-19 patients
318  (Quadeer et al., 2020; Tarke et al., 2020) and matched them with their corresponding nucleic acid
319  sequence found in reference/mutated genome pairs. We then calculated the frequency of the
320  various mutation types (i.e. A-to-C, A-to-G, A-to-U, C-to-A, C-to-G, C-to-U, etc.) coding for the
321  mutated form of those clinically validated CD8+ T cell epitopes. Importantly, we found that C-to-
322 U and G-to-U were the two main mutation types leading to mutated epitopes, both accounting for
323 37% of all mutation types amongst prevalent mutations (>100 individuals) (Figure 5B). Most
324 strikingly, 62% of the prevalent mutations predicted to disrupt the presentation of epitopes by HLA
325  alleles for the B7 supertype were found to derive from the C-to-U mutation type (Figure 5B).
326  These results strongly suggest that the dominant C-to-U point mutation bias found amongst
327  prevalent SARS-CoV-2 mutants has the potential to significantly contribute to shaping the

328  repertoire of SARS-CoV-2 T cell epitopes in B7 supertype individuals across human populations.
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329  Collectively, our study lets us to propose the model that C-to-U editing enzymes play a
330  fundamental role in shaping the mutational landscape dynamics of SARS-CoV-2 CD8+ T cell
331 targets in humans (Figure 5C), and hence, may contribute to molding T cell immunity against
332 COVID-19 at the population level.

333

334  DISCUSSION

335  Mutations contribute to the genetic diversity of SARS-CoV-2 and shape the progression of the
336 COVID-19 pandemic (Dorp et al., 2020b, 2020a; Popa et al., 2020). T cells are key players
337  controlling COVID-19 disease severity. Therefore, determining whether and how the mutational
338  landscape of SARS-CoV-2 shapes or is shaped by HLA-restricted T cell response is fundamentally
339  important. Traditionally, most studies have investigated how viral mutations are shaped by T cell
340  response in the context of HLA-typed cohort patients. This type of approach sought to determine
341  the evolutionary relationship between HLA genotypes and variants of long-standing viruses such
342  as HIV-1 (Brumme et al., 2007; Kawashima et al., 2009) and influenza (Woolthuis et al., 2016).
343  In the case of novel virus such as SARS-CoV-2, such a relationship remains to be established and
344  does not constitute the scope of our work. Here, we rationalized that an alternative approach to
345  interrogating SARS-CoV-2 epitope-associated variants is by investigating the global genomic and
346  proteomic diversity of SARS-CoV-2 for any outstanding mutational biases, and then, assessing
347  the relationship between such biases and epitope presentation for a broad set of HLA alleles. In
348  other words, in this study, we did not seek to understand how viral mutations are shaped by T cell
349  immunity, but rather to understand how mutational biases in SARS-CoV-2 may have shaped T
350  cell immunity at the population level during the first year of the pandemic. This approach was

351  possible thanks to an unprecedented number of SARS-CoV-2 genome sequences available for
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352  downstream analysis. Our approach is universal and could be applied to other epidemic or
353  pandemic viruses in the future, given the development of distinct, prevalent mutational biases.
354  Importantly, our global approach has led to several striking conclusions to help understand how
355  the increasing genomic diversity of SARS-CoV-2 may shape T cell immunity in human
356  populations. Our findings have important implications that are discussed below in the context of
357  disease severity, viral evolution and vaccine resistance.

358 In this study, we found that prevalent SARS-CoV-2 mutations are governed by defined
359  mutational patterns, with C-to-U being a predominant mutation type, as previously shown by
360  others (Giorgio et al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al., 2020; MatyaSek
361 and Kovatik, 2020; Rice et al., 2020; Simmonds, 2020; Wang et al., 2020). In fact, we show that
362  the C-to-U mutation bias in SARS-CoV-2 genomes has a remarkably intimate relationship with
363  the observed amino acid mutational biases, indicating that C-to-U mutations largely contribute to
364  the global proteomic diversity of SARS-CoV-2. Most importantly, we show that this mutational
365  bias leads to the preferential substitution of proline residues with leucine or serine residues in the
366 P2 anchor position of SARS-CoV-2 CD8+ T cell epitopes, and hence, drastically compromise
367  epitope binding to B7 supertype molecules, which represent ~35% of the human population
368  (Francisco et al., 2015). Therefore, the C-to-U mutational bias observed amongst prevalent
369  mutants may partially disrupt SARS-CoV-2 T cell immunity in a very significant proportion of the
370  human population. Noteworthy, this impact of C-to-U mutations on B7-depedent epitope escape
371  was somehow predictable. In fact, proline residues originate from codons that are highly rich in C
372 whereas serine and leucine residues originate from codons that are rich in both C and U. One could
373  therefore predict, at least to some extent, that a strong C-to-U bias would lead to proline-to-leucine

374  or proline-to-serine substitutions. Thus, this study highlights the impact of viral mutational biases
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375  and codon usage in shaping the diversity of CD8+ T cell targets. This being said, it is important to
376  realize that we do not make the claim that the presence of proline-to-leucine or proline-to-serine
377  mutations in the SARS-CoV-2 proteomes depend on patients being B7 supertype-positive, or that
378  the B7 supertype drives the evolution of proline-to-leucine/serine mutations. We do, however,
379  demonstrate that the prevalent mutations currently in circulation are enriched for proline-to-
380  leucine/serine, and our in silico predictions suggest that the high occurrence of this mutation type
381 leads to widespread hinderance of epitope presentation in B7 supertype-positive individuals.

382 A key question to address is to what extent does the C-to-U bias drives SARS-CoV-2
383  evolution and adaptation over the course of the ongoing pandemic. As proposed by others, the
384  most likely explanation for the observed C-to-U bias is the action of the host-mediated RNA-
385  editing APOBEC enzymes, a family of cytidine deaminases that catalyze deamination of cytidine
386  touridine in RNA (Dorp et al., 2020a; Giorgio et al., 2020; Kosuge et al., 2020; Olson et al., 2018;
387  Salter et al., 2016). In this regard, APOBEC activity has been shown to broadly drive viral
388  evolution and diversity, including in human immunodeficiency virus (HIV) (Albin et al., 2010;
389  Cuevas et al., 2015; Haché et al., 2008; Jern et al., 2009; Peretti et al., 2018; Sadler et al., 2010;
390 Wood et al., 2009). In fact, APOBEC-induced mutations driving the evolution and diversification
391  of HIV-1 were shown to have an intimate relationship with T cell immunity (Kim et al., 2014;
392 Wood et al., 2009). Notably, those studies have shown that the impact of APOBEC-induced
393  mutations may result in either a decrease or increase of CD8+ T cell recognition, and that the
394  direction of this response is dictated by the HLA context (Casartelli et al., 2010; Grant and Larijani,
395  2017; Kim et al., 2014; Monajemi et al., 2014; Squires et al., 2015; Wood et al., 2009). This is
396  very much in line with our findings. Indeed, we showed that amino acid mutation biases in SARS-

397  CoV-2 proteomes generally positively affect epitope binding for various HLA class I supertypes,
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398  and most strikingly for A24, whereas B7 is the only supertype negatively affected by the mutation
399  biases given the markable loss of proline residues in SARSCoV-2 proteomes. Together, our results
400  raise the important hypothesis that host-mediated RNA editing systems shape the repertoire of
401  SARS-CoV-2 T cell epitopes in a positive and negative HLA-dependant manner.

402 Another question is whether populations of B7 supertype individuals represent an
403  advantageous reservoir for the virus to evolve toward more transmissible variants. As the genetic
404  diversity of the SARS-CoV-2 population continue to increase, and as new variants emerge, our
405  global analysis suggests that the probability for SARS-CoV-2 epitopes to escape CD8+ T cell
406  immunosurveillance is much higher in B7 individuals compared to A24 individuals. In fact, a
407  slower T cell response dynamic to control SARS-CoV-2 infection in B7 individuals may offer a
408  selective advantage for the virus to evolve. In this regard, we noted that the B.1.1.7 variant lost the
409  B7 supertype-associated epitope SPZHRRARSVA as a result of a proline-to-histidine substitution.
410  While genomic surveillance is ongoing in different regions of the world, measuring the level of
411  transmission of the B.1.1.7 variant within geographical regions of the world with low B7
412  population densities and high A24 population densities (in Asia) or the opposite trend (in Sub-
413 Saharan Africa) (http://www.allelefrequencies.net/top10freqs.asp) may provide insights into this
414  concern. As new variants of concern continue to emerge and as new epitope data are continuously
415  being generated (Grifoni et al., 2021), another interesting avenue would be to study the mutational
416  patterns of those emerging variants and assess whether and how the potential loss of B7-associated
417  epitopes in those specific variants impact T cell response in infected patients. Understanding the
418  impact of losing several subdominant B7-associated epitopes versus one single immunodominant
419  epitope could also be investigated in the context of those variants. In this regard, a particular

420  attention was allocated in our study to the B*07:02-restricted N105 epitope SPRWYFYYL. This
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421  epitope is of high interest as its immunodominance was experimentally demonstrated in many
422  independent studies (Ferretti et al., 2020; Kared et al., 2021; Saini et al., 2021; Schulien et al.,
423 2021; Sekine et al., 2020; Tarke et al., 2021). Precisely, we found a rare mutation consisting of
424 P->S at P2 of this epitope (SPRWYFYYL - SSRWYFYYL). Its occurrence was predicted to
425  result in the complete abrogation of binding of the epitope to B*07:02, thereby likely reducing the
426  breadth of the immune response in individuals carrying this mutation. As such, we advise the
427  community to carefully monitor this mutation in subsequent months. Moreover, it is also possible
428  that B7 individuals respond less efficiently to the currently available vaccines, as genetic variants
429  promoting B7 escape might favorably emerge in the future. The B7 supertype could therefore
430  potentially represent a biomarker of vaccine resistance.

431 In summary, our study shows that mutation biases in the SARS-CoV-2 population diversify
432 the repertoire of SARS-CoV-2 T cell targets in humans in an HLA-supertype dependent manner.
433 Hence, we provide a foundation model to help understand how SARS-CoV-2 may continue to
434 mutate over time to shape T cell immunity at a global population scale. The proposed process will
435  likely continue to influence the evolution and diversification of SARS-CoV-2 lineages as the virus
436  is under tremendous pressure to adapt in response to mass vaccination.

437

438  LIMITATIONS AND FUTURE DIRECTIONS

439  Our analyses focused on class I molecules for which predictors are established to be more accurate
440  in comparison with class II. HLA-C and non-classical HLA were not included in this study.
441  Predictions were performed on the most common HLA class I alleles and rare HLA alleles were
442  not included. Study has been performed using the GISAID dataset available in December 31%

443 2020, i.e. first year of the pandemic, before mass vaccination. Our epitope binding results rely on
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444 in silico predictions using a method that has been widely benchmarked, but is designed to predict
445  peptide presentation rather than immunogenicity. Follow up experiments would need to be
446  performed to further validate the proposed model. Priority follow up studies are 1) to investigate
447 T cell response to SARS-CoV-2 mutants in large cohorts of B7 supertype-positive versus negative
448  patients, and 2) to determine the direct role of APOBEC family proteins in modulation of SARS-
449  CoV-2-specific T cell immunity. Moreover, this study lays the foundation to understand the
450  evolutionary dynamics of pandemic viruses with a time 0 / no vaccine-induced immune pressure
451  start point. Employing SARS-CoV-2 as model provides an opportunity in future studies to look at
452  the dynamic of the relationship between mutational patterns and HLA-restricted T cell immunity
453  in real-time. Kinetic analyses using the latest GISAID datasets, which now include 1.7M SARS-
454  CoV-2 genomes as of May 2021, may lead to additional insights in this regard.

455
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477  FIGURE LEGENDS

478  Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the
479  immunodominant S and N antigens. (A, B) Lower panel: blue dots showing all mutations that
480  occurred in at least 4 SARS-CoV-2 genomes (GISAID). Middle panel: epitope density showing
481  the overlap of HLA class I epitopes predicted within the 1st percentile for 12 queried HLA-I
482  molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from
483  multiple studies aggregated in the database https://www.mckayspcb.com/SARS2TcellEpitopes as
484  of January 2021. Red dots are mutated epitopes wherein the mutation event led to a predicted loss
485  of binding. Sequences of specific epitopes are shown with the mutant amino acid in red. The red
486  box in the N protein highlights a serine-rich region associated with no T cell response, low epitope

487  density and high mutation frequency. (C) 3D structure of the Spike glycoprotein (Moderna
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488  Vaccine) and highlighted in yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in
489  red are mutated epitopes wherein mutation events led to a predicted loss of HLA binding.

490

491  Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes. A total of 330,246
492  SARS-CoV-2 genomes were translated into protein sequences and analyzed for the identification
493  of any amino acid mutational bias. Amino acid residues (x-axis) that were removed and introduced
494  in SARS-CoV-2 variants are presented by negative and positive %-difference in overall amino
495 acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was
496  performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes
497  (orange line), 100 to 1000 genomes (green line) and more than 1000 genomes (red line).
498  Simulation of neutral evolution simulation (random mutations) were performed using the SANTA-
499  SIM algorithm and serves as control for assessing the statistical significance of the observed
500  pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change
501 > 4; p-value < 1x10-11) that were used to define the residues that were preferentially removed or
502  introduced (asterisk).

503

504  Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated
505  epitopes. (A) (Left panel) Motif view of SARS-CoV-2 reference peptides predicted to bind B7
506  supertype molecules (HLA-B*07:02, -B*35:03, -B42:02 , -B*5101, -B*53:01, -B*54:01, -
507  B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides.
508  (B) Heat map showing the frequency of specific amino acid substitutions between reference and
509  mutated peptides. (C) Graph showing the number of mutations (upper panel; y-axis) leading to

510  specific amino acid substitutions (x-axis) at anchor residue positions P2 (red dots) and P9 (green
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511  dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant
512 substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D)
513  Representative examples of validated CD8+ T cell epitopes
514 (https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021). Effect of the P—X
515  substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T
516  cell response data for reference epitopes extracted from
517  https://www.mckayspcb.com/SARS2TcellEpitopes.

518

519  Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class I supertypes.
520 (A, B) Motif views showing established epitope binding motifs for different HLA-I alleles that
521  belong to the HLA-B7 (A) and HLA-A24 (B) supertype family. Shaded squares highlight anchor
522  residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-2
523  proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the
524  number of frequent mutations (identified in at least 100 individuals) leading to the loss or gain of
525  epitopes. (C) ‘Gain/Loss plots’ showing number of mutations (y-axis) leading to a preferentially
526  loss (pale green) or gain (pale orange) of epitopes for different HLA class I supertypes. Each black
527  dotrepresents the number of mutations associated with gain and loss of epitopes for a given HLA-
528 T allele. Between 14 to 19 alleles per supertype (Figure S5) were used to generate the graphs and
529  p-values (*p <0.001, **p < le-5, ***p < 1e-10).

530

531 Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2
532  proteomes and CD8+ T cell epitopes. (A) Comparison of global amino acid mutational patterns

533  generated from real-life versus simulated SARS-COV-2 genomes. Amino acid residues (x-axis)
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534  that were removed and introduced in real-life versus simulated SARS-CoV-2 are presented by
535 negative and positive %-difference in overall amino acid composition (GRSO values; y-axis),
536  respectively. Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U
537  biases, i.e. x1, x15 and x20 (n = 10). The red line shows the pattern obtained from mutations
538 identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. (B) (Top) Pie chart
539  showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell
540  epitopes in https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. (Bottom) Pie
541  chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T
542  cell epitopes specific to the B7 supertype. (C) Schematic illustrating the C-to-U-mediated epitope
543  escape model. The observed mutation of the immunodominant SPRWYLFYYL epitope in the N
544  protein is shown as an example.

545

546 STAR METHODS

547 RESOURCE AVAILABILITY

548 Lead Contact

549  Further information and requests should be directed to the lead contact, Dr. Etienne Caron

550  (etienne.caron@umontreal.ca)

551  Materials Availability

552 This study did not generate new unique reagents.

553  Data and Code Availability

554  All sequence data used here are available from The Initiative for Sharing All Influenza Data

555  (GISAID), at https://gisaid.org/. The user agreement for GISAID does not permit redistribution of

556  sequences, but researchers can register to get access to the dataset. Code to create the alignments,
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557  to predict mutated and unmutated HLA-I peptides, and to perform the global analysis of SARS-

558  CoV-2 proteomes are available at https://github.com/CaronLab.

559

560 METHOD DETAILS

561 Identification of SARS-CoV-2 mutations

562  All SARS-CoV-2 nucleotide sequences were acquired from the GISAID on 31/12/2021. A total of
563 330,246 SARS-CoV-2 sequences spanning 143 countries were acquired and analyzed. All
564  sequences isolated from animals (including viral RNA isolated from bat, pangolin, mink, cat and
565  tiger) were removed from the list and only high-quality sequences were further analysed.
566  Consensus sequences were aligned to the reference sequence, Wuhan-1 (NC 045512.2) using
567  minimap2 2.17-r974. All mapped sequences were then merged back with all others in a single
568  alignment bam file. The variant calling was done using bcftools mpileup v1.91 in a haploid calling
569  mode. Sequences were processed by batches of 1000 to overcome technical issues with very low-
570  frequency variants. With the variant calling obtained for each batch, vcf-merge (from the veftools
571  suite) was used to merge all the variant calls across the entire dataset. A total of 24,220 variants in
572  atleast two consensus sequences were identified. Mutations appearing in only one genome were
573  excluded as they are likely enriched for sequencing errors. A list of all missense mutations
574  considered in our analyses is provided in Table S1. The 1,933 prevalent mutations observed in
575  more than 100 genomes are also clearly shown in Table S2.

576

577  Prediction of mutated and reference CD8+ T-cell epitopes

578  Prediction of CD8+ T cell epitopes was carried out using netMHCpan 4.0 EL (Reynisson et al.,

579  2020). For each unique missense mutation, short sequence windows consisting of 14 amino acids
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580  oneither side of the mutation site were generated, containing either the reference or mutated amino
581 acid. Working from the resulting 29-residue sequence windows (mutation +/- 14 residues),
582  8l1lmers were predicted against the 12 most frequent HLA alleles within the global population
583 (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02,
584 HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, and
585 HLAB%*44:03). Briefly, the NetMHCpan 4.0 EL method relies on a neural network trained on both
586  binding affinity as well as eluted ligand data to produce a likelihood score for a peptide to be an
587  eluted ligand for the indicated HLA types. The likelihood score consists of a percentile rank

588  (%rank) wherein predicted (weak) binders obtain a %rank below 2.0, whereas strong binder (SB)
589  obtain a %rank below 0.5. Using this ranking system, only mutation-containing peptides where
590 the mutated and/or the reference peptide were ranked as SB were considered for further analyses.
591  Mutations causing percentile ranks to transition from strong HLA-binder (SB, netMHCpan %Rank
592  <0.5) to HLA non-binders (NB, netMHCpan %Rank > 2.0) were considered as leading to ‘Loss
593  of binding’. Mutations causing predicted binding affinities to transition from NB to SB were
594  considered as leading to ‘Gain of binding’.

595

596  Selection of clinically validated CD8+ T-Cell epitopes

597 A list of validated CD8+ T Cell epitopes presented by both HLA-A and -B molecules were

598  downloaded from https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). This

599  database, developed by Dr. Matthew R. McKay and his team, contains compiled and catalogued
600  validated T-cell epitope-HLA pairs from 13 studies aimed at identifying immunogenic
601  SARSCOV-2 T-cell epitopes.

602
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603  In vitro HLA-peptide binding assays

604  Peptide binding to class | HLA molecules was quantitatively measured using classical competition
605  assays based on the inhibition of binding of a high affinity radiolabeled peptide to purified HLA
606  molecules, as detailed elsewhere (Sidney et al., 2013). Briefly, HLA molecules were purified from
607  lysates of EBV transformed homozygous cell lines by affinity chromatography by repeated
608 passage over Protein A Sepharose beads conjugated with the W6/32 (anti-HLA-A, -B, -C)
609 antibody, following separation from HLA-B and -C molecules by pre-passage over a B1.23.2
610 (antiHLA B, C) column. Protein purity, concentration, and the effectiveness of depletion steps was
611  monitored by SDS-PAGE and BCA assay. Peptide affinity for respective class I molecules was
612  determined by incubating 0.1-1 nM of radiolabeled peptide at room temperature with 1 uM to 1
613  nM of purified HLA in the presence of a cocktail of protease inhibitors and 1 uM B2microglobulin.
614  Following a two-day incubation, HLA bound radioactivity was determined by capturing
615 MHC/peptide complexes on W6/32 antibody coated Lumitrac 600 plates (Greiner Bioone,
616  Frickenhausen, Germany). Bound cpm was measured using the TopCount (Packard Instrument
617  Co., Meriden, CT) microscintillation counter. The concentration of peptide yielding 50%
618  inhibition of the binding of the radiolabeled peptide was calculated. Under the conditions utilized,
619  where [label][<[MHC] and IC50 > [MHC], the measured IC50 values are reasonable
620  approximations of the true Kd values. Each competitor peptide was tested at six different
621  concentrations covering a 100,000-fold dose range, and in three or more independent experiments.
622  Asapositive control for inhibition, the unlabeled version of the radiolabeled probe was also tested
623  in each experiment.

624
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625 SANTA-SIM simulations

626 We simulated SARS-CoV-2 genomes with SANTA-SIM, using the consensus sequence
627  WuhanHu-1 as input sequence available at https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3.
628  Each simulation was run with a population size of 10,000 individual viral sequences evolving for
629 1000 generations, and analyses were conducted on random samples of 1,000 viral sequences.
630  Following Huddelston et.al. (Huddleston et al., 2020) who used SANTA-SIM to simulate
631  influenza A/H3N2 that has a yearly substitution rate approximately twice as high as SARS-CoV-

632 2 [~48,824 substitutions/year (https://nextstrain.org/flu/seasonal/h3n2/ha/2y?l=clock) vs. ~24.5

633  substitution/year (https://nextstrain.org/ncov/global?l=clock)], we chose 400 generations/year,
634  with the mutation rate per position per generation set to 2.04E-6 (yearly substitution
635  rate/(generations in one year * genome size)). The transition bias was set to 3.0 for baseline
636  simulations. To evaluate the impact of specific substitution biases, additional simulations were
637  conducted using a substitution matrix with scores set to 1.0 of transversions, 3.0 for transitions,
638  and biases ranging from 4.0 to 20.0 for the targeted substitution. We generated 10 replicates for
639  all simulated scenarios, except for C-to-U where we made 100 replicates to better assess statistical
640  significance.

641

642  Determination of amino acid mutational patterns

643  Mutational biases were identified by calculating the overall change in amino acid composition
644  caused by the mutational landscape of SARS-CoV-2 for each individual amino acid, referred in
645  the main text as ‘global residue substitution output’ (GRSO). For this analysis, all mutations found
646  globally in at least 4 GISAID entries were analysed together. Preferential introduction or removal

647  of amino acids was determined by comparing the overall amino acid composition in reference
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648  residues vs mutated residues throughout the mutation pool, resulting in a percentile difference in
649  amino acid composition. As such, for amino acid X, the % difference was calculated according to

650  the following formula:

Nbr of mutations introducing X — Nbr of mutations removing X
All Global mutations in at least 4 GISAID entries

651 % dif ference = ( ) %x 100

652  This analysis took into consideration the number of unique mutations. Therefore, to consider
653  mutational biases in the context of mutation frequencies, the analysis described above was
654  conducted separately for mutations occurring in a single GISAID entry (expected to be enriched
655  for errors); 2-10 GISAID entries; 11-99 GISAID entries; and 100 or more GISAID entries. As a
656  negative control, the SANTA SIM algorithm was used to simulate the neutral evolution of 1000
657 SARS-CoV-2 genomes (baseline simulations, N = 10 replicates). This control was used to
658 calculate the statistical significance of the observed biases, by way of a One-Sample T-Test.

659

660 Prediction of mutation impacts on peptide presentation in the context of HLA supertypes
661  Reference/mutated peptide pairs for which the differential predicted binding affinities led to
662 transitions from strong HLA binder (SB) to non-HLA binder (NB) [(SB) NetMHCpan %rank <
663 0.5 to (NB) NetMHCpan %rank >2] or from NB to SB, were identified, catalogued and analyzed
664  as described above. Binding affinities were predicted for representative HLA types from several
665  major HLA supertypes (A1, A2, A3, A24, B7, B8, B27, B44), as defined by Sydney et al. We then
666  categorized all reference/mutated peptide pairs on the basis of their 1) mutation type (amino acid
667 X - amino acid Y) and 2) the position of the mutation in the peptide sequence. Finally, we
668  quantified the number of reference/mutated peptide pairs and the associated average fold change
669 in predicted binding affinity for each category. P-values were generated for each category by

670  performing a two-tailed independent T-Test between the fold changes in binding affinity
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671  associated with mutation type A at position X, and all fold changes in binding affinity associated
672  with position X.

673

674  Assessing the contribution of nucleic acid mutation types to the global amino acid

675  mutational patterns.

676  To assess the contribution of various nucleic acid mutation types to the observed amino acid
677  mutational patterns, we first determined the respective contributions of each nucleic acid mutation
678  type to the global mutation landscape. We then selected the five most abundant mutation types
679 [C2>U (41%), G>U (18%), A>G, G2A, U>C (9.7-11.6%)] and assessed their individual
680  impacts on amino acid mutational patterns using the simulation algorithm SANTA SIM as follows:
681  For each mutation type, we simulated the evolution of 1000 SARS-CoV-2 genomes over 1000
682  generations (N = 10 replicates) with varying degrees of biases (the coefficient used to determine
683  the extent of the biases was exploratively set to ‘x4’, ‘x8’, ‘x15°, and ‘x20) (Figure S6A). Because
684  the input coefficient does not have a linear relationship with the abundance of the mutation type
685  observed in the simulation output, we used the simulations with all four parameter values (x4, x8,
686  x15, x20) in order to identify the simulation parameter that most closely reflected observations in
687  real-life SARS-CoV-2 data. The coefficient for the ratio of X = Y nucleic acid mutation type to

688  all other mutation types was generated using the following formula:

All X - Y mutations
(All X positions inreference genome)
All mutations
(All positions in reference genome)

689 Mutation Bias Coef ficient =

690  Finally, all amino acid mutations were identified for the output of each simulation, as described

691 above. To determine statistical significances, simulated mutational biases (at the amino acid level)
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692  were compared to a neutral evolution as a negative control (N = 10 replicates) by way of twotailed
693  independent T-Test.

694

695  Statistical analysis

696 A Two-tailed One-Sample T-Test was used to assess the statistical significance of the observed
697  mutational biases against the neutral simulations (N = 10 replicates). A Two-tailed Independent
698  T-Test assuming different variances was used to assess the statistical significances of 1) the
699  simulated biased SARS-CoV-2 evolution, 2) the gain/loss plots in the context of supertypes, and
700  3) the statistical significance associated with the average fold change in %rank associated with
701  each position-specific amino acid mutation type in the supertype analysis.

702

703  SUPPLEMENTARY MATERIALS

704  SUPPLEMENTARY FIGURE LEGENDS

705  Figure S1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes, Related to Figure 1
706  and 4. (A) Bioinformatic pipeline for the prediction of SARS-CoV-2 mutated class I peptides
707  associated to 12 common HLA alleles. (B) Pyramidal graph showing the number of i) missense
708  mutations in SARS-CoV-2 genomes, ii) predicted class I mutated peptides, iii) predicted class I
709  peptides subject to Weak Binder (WB) to Non-Binder (NB) and Strong Binder (SB) to NB
710  transition (epitope loss category), and iv) predicted class I mutated peptides matching reference
711  CD8+ T cell epitopes that have been experimentally validated. (C) Representative examples of
712 predicted class I mutated peptides and the impact of the identified amino acid mutation (bold) on
713 peptide binding to a given HLA-I allele. Reference and mutated EL (eluted ligand) Rank (%)

714 generated by NetMHCpan 4.1 EL is indicated for individual predictions. Gain = NB to SB (pale
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715  red); Loss = SB to NB (pale green). (D) Left panel: number of unique mutations leading to ‘Gain’
716  or ‘Loss’ of class I peptides for the indicated HLA-I alleles. Right panel: number of unique
717  mutations showing no effect on peptide binding for the indicated HLA-I alleles. (E) Validated
718  SARS-CoV-2 CD8+ T cell epitopes (McKay Database) subjected to mutation events detected in
719  more than 4 individuals (GISAID) and predicted lead to a strong loss of HLA-epitope binding.
720  Top: number of unique missense mutations corresponding to the indicated amino acid substitution
721  type. Bottom: Predicted loss of HLA-epitope binding (NetMHCpan4.1 %Rank) corresponding to
722 the indicated residue substitution type from the list of validated CD8+ T cell epitopes in the McKay
723  Database. Each dot represents an epitope pair (mutated / reference). Color indicates HLA type
724  affected by the mutations.

725

726  Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2
727  mutated epitopes, Related to Figure 1. (A) HLA binding assay was performed to determine the
728  in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific HLA class I
729  alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common
730  HLA class I alleles, and 3) the mutated form was predicted to lose binding to its corresponding
731  HLA. (B) Plots showing raw values for the binding affinities (nM) of the reference vs mutated
732 peptides in (A). The first three amino acid residues of the reference peptides with fold change >
733 2.5 are shown. (C) Pie chart showing the proportion of X-to-Y substitution types from the list of
734  validated CD8+ T cell epitopes in https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of
735  January 2021). (D) Predicted loss of HLA-epitope binding clustered by substitution type from the
736  list of validated CD8+ T cell epitopes in the McKay database. Each dot represents an epitope pair

737  (mutated / reference; NetMHCpan 4.1 %rank ratio).
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738

739  Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were
740  previously associated with decreased CD8+ T cell responses, Related to Figure 1. (A) The
741  mutated epitopes GFMWLSYFI (A*02) and MKVTPSGTWL (B*40) were detected in 38 and 23
742  genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly
743  investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from
744  AAAS) (B) Experimental overview. (C) T cells expanded with mutant peptides do not give rise to
745  wild type peptide-specific CD8+ T cell. PBMCs were isolated from HLA-A*02:01 or HLA-
746  B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and stained
747  with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response.
748  PBMCs expanded with wild type or mutant peptides as indicated, were analyzed for IFN-y-
749  production via ICS after restimulation with wild type or mutant peptide. (E) Representative FACS
750  plots for (D).

751

752  Figure S4. Impact of mutations on gain of peptide binding to various HLA class I molecules
753  across the immunodominant S and N antigens, Related to Figure 1. (A, B) Lower panel: blue
754  dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Upper
755  panel: dots showing predicted peptides subjected to a strong gain of binding (see also Figure
756  S1C,D) to one of 12 highly common HLA types queried (color coded) due to a mutation.

757

758  Figure SS. HLA class I supertypes, Related to Figure 4. (A) Epitope binding motifs for several
759  HLA class I supertypes. Anchor residues are located at P2 and P9. Pale orange and green squares

760  cover amino acid residues that are preferentially introduced (F, I, L, Y) and removed (A, P, T) in
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761  SARS-CoV-2 proteomes, respectively. Representative supertypes used in this study are shown by
762  an asterisk. Epitope binding motifs were extracted from NetMHCpan Motif Viewer
763 (http://www.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected
764  alleles per supertype that were used in this study to generate the ‘Gain/Loss plots’.

765

766  Figure S6. Comparison of mutation biases between real-life/observed and simulated data,
767  Related to Figure 5. (A) Histograms showing the number of unique mutations identified for each
768  mutation type (A-to-C, A-to-G, etc.) after simulating the evolution of SARS-CoV-2 genomes
769  through the introduction of different C-to-U bias values (x4 to x20) using the SANTA-SIM
770  software. Simulated (black squares) and real-life/observed prevalent mutations found in more than
771 100 genomes (red square) at the nucleotide level are shown. (B) Comparison of global amino acid
772  mutational patterns generated from simulated versus real-life/observed SARS-COV-2 genomes.
773  Various extents of C-to-U (top) and G-to-U (bottom) biases were introduced to perform the
774  simulation and to generate the graphs.

775

776 SUPPLEMENTARY TABLE LEGENDS

777  Table S1. SARS-CoV-2 mutations identified from 330,246 GISAID entries (December 31%
778  2020), Related to Figure 1. SARS-CoV-2 mutations at the nucleic and amino acid level are
779  indicated. Number of genomes carrying mutation show the frequency of individual mutations
780  among all SARS-CoV-2 variants.

781

782 Table S2. SARS-CoV-2 prevalent mutations identified from 330,246 GISAID entries

783  (December 31% 2020) and detected in at least 100 individuals, Related to Figure 1.
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784

785  Table S3. Documented SARS-CoV-2 CD8+ T cell epitopes and their matching mutated

786  forms identified in this study, Related to Figure 1.

787

788  Table S4. List of documented SARS-CoV-2 CD8+ T cell epitopes. Epitopes were downloaded

789  from https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). This database has

790  effectively catalogued all SARS-CoV-2 CD8+ epitopes validated by 18 separate studies.
791
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Figure 1. Distribution of CD8+ T cell epitopes and their mutated variants across the immunodominant S and N
antigens. (A, B) Lower panel: blue dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID).
Middle panel: epitope density showing the overlap of HLA class | epitopes predicted within the 1st percentile for 12 queried
HLA-I molecules. Upper panel: dots showing the frequency of CD8+ T cell response as determined from multiple studies
aggregated in the database https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. Red dots are mutated
epitopes wherein the mutation event led to a predicted loss of binding. Sequences of specific epitopes are shown with the
mutant amino acid in red. The red box in the N protein highlights a serine-rich region associated with no T cell response, low
epitope density and high mutation frequency. (C) 3D structure of the Spike glycoprotein (Moderna Vaccine) and highlighted in
yellow is the Receptor Binding Domain (Pfizer Vaccine). Shown in red are mutated epitopes wherein mutation events led to a

predicted loss of HLA binding.
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Figure 2. Global amino acid mutational biases in SARS-CoV-2 proteomes. A total of 330,246 SARS-CoV-2 genomes
were translated into protein sequences and analyzed for the identification of any amino acid mutational bias. Amino acid
residues (x-axis) that were removed and introduced in SARS-CoV-2 variants are presented by negative and positive %-
difference in overall amino acid composition (GRSO values; y-axis), respectively. Analysis of mutational biases was
performed for mutations occurring at various frequencies: 1 genome (blue line), 2 to 100 genomes (orange line), 100 to 1000
genomes (green line) and more than 1000 genomes (red line). Simulation of neutral evolution simulation (random mutations)
were performed using the SANTA-SIM algorithm and serves as control for assessing the statistical significance of the
observed pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold change > 4; p-value <
1x10-'") that were used to define the residues that were preferentially removed or introduced (asterisk).
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Figure 3. Mutation of proline at the anchor residue position for B7 supertype-associated epitopes. (A) (Left panel) Motif
view of SARS-CoV-2 reference peptides predicted to bind B7 supertype molecules (HLA-B*07:02, -B*35:03, -B42:02 , -B*5101, -
B*53:01, -B*54:01, -B*55:01, -B*56:01, -B*67:01). (Right panel) Motif view of the corresponding mutated peptides. (B) Heat map
showing the frequency of specific amino acid substitutions between reference and mutated peptides. (C) Graph showing the
number of mutations (upper panel; y-axis) leading to specific amino acid substitutions (x-axis) at anchor residue positions P2
(red dots) and P9 (green dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant
substitutions. The lower panel shows fold changes for individual amino acid substitutions. (D) Representative examples of
validated CD8+ T cell epitopes (https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021). Effect of the P—X
substitutions on predicted epitope binding affinities (NetMHCpan 4.1 EL %Rank) are shown. T cell response data for reference
epitopes extracted from https://www.mckayspcb.com/SARS2TcellEpitopes.
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Figure 4. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class | supertypes. (A, B) Motif views showing
established epitope binding motifs for different HLA-I alleles that belong to the HLA-B*07 (A) and HLA-A*24 (B) supertype family.
Shaded squares highlight anchor residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-
2 proteomes (related to Figure 2), respectively. Histograms below the binding motifs indicate the number of frequent mutations
(identified in at least 100 individuals) leading to the loss or gain of epitopes. (C) ‘Gain/Loss plots’ showing number of mutations
(y-axis) leading to a preferentially loss (pale green) or gain (pale orange) of epitopes for different HLA class | supertypes. Each
black dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-I allele. Between 14 to 19
alleles per supertype (Figure S5) were used to generate the graphs and p-values (*p < 0.001, **p < 1e-5, ***p < 1e-10).



Real life dataset (Fig.2) Simulated dataset
=== > 100 genomes === C - U bias (x1) === C -> U bias (x15) === C - U bias (x20)
g5 ° =
= 8
g 10 3
g~ o
o2 5 S
.6 m
® >
29 o
59
C
o O 2
> 3
5 2
S -10| 5
A C D E F G H I K L M N P Q R S T V WY
Residue
B All epitopes C
CD8+
o T cell
37% C—U-mediated ®
(C->U) A->C o epitope escape > gy
% Ao " .y
(G->U) AU HLA-B07 HLA-807 [0
C->A (N) SBRWYFYYL |B-E| (N) S?RWYFYYL
C->G
B7 epitopes C->U XXXXX.... o XXXXX B-g xxxxx....-....xxxxx
N G->A
G->C
G->U
El U->A
62% u->C
(C->U) U->G

Figure 5. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2 proteomes and CD8+ T cell
epitopes. (A) Comparison of global amino acid mutational patterns generated from real-life versus simulated SARS-COV-2
genomes. Amino acid residues (x-axis) that were removed and introduced in real-life versus simulated SARS-CoV-2 are
presented by negative and positive %-difference in overall amino acid composition (GRSO values; y-axis), respectively.
Evolution of SARS-CoV-2 was simulated by introducing various extents of C-to-U biases, i.e. x1, x15 and x20 (n = 10). The
red line shows the pattern obtained from mutations identified in more than 100 SARS-CoV-2 genomes, related to Figure 2. (B)
(Top) Pie chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes in
https://www.mckayspcb.com/SARS2TcellEpitopes as of January 2021. (Bottom) Pie chart showing the proportion of
nucleotide substitution types from the list of validated CD8+ T cell epitopes specific to the B7 supertype. (C) Schematic
illustrating the C-to-U-mediated epitope escape model. The observed mutation of the immunodominant SPRWYLFYYL
epitope in the N protein is shown as an example.
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Figure S2. HLA peptide binding measurements and mutational biases in SARS-CoV-2 mutated epitopes, Related to Figure 1.
(A) HLA binding assay was performed to determine the in vitro binding affinity (nM) of representative SARS-CoV-2 peptides for specific
HLA class | alleles. Peptides were selected based on 1) frequency of mutations, 2) presentation by common HLA class | alleles, and 3)
the mutated form was predicted to lose binding to its corresponding HLA. (B) Plots showing raw values for the binding affinities (nM) of
the reference vs mutated peptides in (A). The first three amino acid residues of the reference peptides with fold change > 2.5 are
shown. (C) Pie chart showing the proportion of X-to-Y substitution types from the list of validated CD8+ T cell epitopes in
https://www.mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). (D) Predicted loss of HLA-epitope binding clustered by
substitution type from the list of validated CD8+ T cell epitopes in the McKay database. Each dot represents an epitope pair (mutated /
reference; NetMHCpan 4.1 %rank ratio).
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Figure S3. Identification of two SARS-CoV-2 mutated epitopes in this study that were previously associated with
decreased CD8+ T cell responses, Related to Figure 1. (A) The mutated epitopes GFMWLSYFI (A*02) and MKVTPSGTWL
(B*40) were detected in 38 and 23 genomes/individuals in this study (GISAID) and their T cell immunogenicity was thoroughly
investigated in Agerer et al. (B-E from Agerer et al., copyright 2021, with permission from AAAS) (B) Experimental
overview. (C) T cells expanded with mutant peptides do not give rise to wild type peptide-specific CD8+ T cell. PBMCs were
isolated from HLA-A*02:01 or HLA-B*40:01 positive SARS-CoV-2 patients, stimulated with wild type or mutant peptides and
stained with tetramers containing the wild type peptide. (D) Impact of mutations on CD8+ T cell response. PBMCs expanded
with wild type or mutant peptides as indicated, were analyzed for IFN-y-production via ICS after restimulation with wild type or
mutant peptide. (E) Representative FACS plots for (D).
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Figure S5. HLA class | supertypes, Related to Figure 4. (A) Epitope binding motifs for several HLA class | supertypes.
Anchor residues are located at P2 and P9. Pale orange and green squares cover amino acid residues that are preferentially
introduced (F, |, L, Y) and removed (A, P, T) in SARS-CoV-2 proteomes, respectively. Representative supertypes used in this
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Epitope binding motifs were extracted from NetMHCpan

Motif Viewer

(http://lwww.cbs.dtu.dk/services/NetMHCpan/logos_ps.php). (B) Table showing the selected alleles per supertype that were
used in this study to generate the ‘Gain/Loss plots’.
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Figure S6. Comparison of mutation biases between real-life/observed and simulated data, Related to Figure 5. (A)
Histograms showing the number of unique mutations identified for each mutation type (A-to-C, A-to-G, etc.) after simulating
the evolution of SARS-CoV-2 genomes through the introduction of different C-to-U bias values (x4 to x20) using the
SANTA-SIM software. Simulated (black squares) and real-life/observed prevalent mutations found in more than 100
genomes (red square) at the nucleotide level are shown. (B) Comparison of global amino acid mutational patterns
generated from simulated versus real-life/observed SARS-COV-2 genomes. Various extents of C-to-U (top) and G-to-U
(bottom) biases were introduced to perform the simulation and to generate the graphs.



