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Abstract

To maximise fitness, individuals may apply different reproductive strategies. Such strategies
could be phenotypically plastic and vary depending on the environment. For example, when
resources are limited females often face a trade-off between investing in offspring quantity
and quality, and how she balances this trade-off may depend on the environment. For
phytophagous insects, and especially generalist insects, variation in host plant quality could
have large effects on mating, reproduction and offspring performance. Here, we study if the
polyphagous moth Spodoptera littoralis, which selects host plants through experience-based
preference induction, also has a flexible allocation between egg weight and egg number as
well as in temporal egg-laying behavior depending on larval host plant species. We found
that S. littoralis has a canalized egg size and that an increased reproductive investment is
made in egg quantity rather than egg quality. This increased investment depends on larval
host plant species, probably reflecting parental condition. The constant egg weight may be
due to physiological limitations or to limited possibilities to increase fitness through larger
offspring size. We furthermore found that differences in onset of egg-laying is mainly due to
differences in mating propensity between individuals raised on different host plant species.
Thus, females do not seem to make a strategic reproductive investment in challenging
environments. Instead, the low-quality host plant induces less and later reproduction, which

could have consequences for population dynamics in the field.

Keywords: host plant preference, host plant performance, maternal effect, phenotypic

plasticity, transgenerational plasticity
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Introduction

Reproduction is crucial for individual fitness but it is also a costly engagement that requires
large resources. How individuals invest in reproduction could thus be shaped by trade-offs
due to resource limitations (Chippindale et al. 1993). To maximize fitness, individuals
commonly apply different reproductive strategies (Gross 1996), which include various
behavioural, physiological and morphological traits that influence mating and reproduction.
Such strategies could either be genetically fixed, such as in the side-blotched lizard Uta
stansburiana where different genetic colour morphs invest in either offspring quality or
quantity (Sinervo et al. 2000), or vary depending on the environment and thus be
phenotypically plastic. For example, the social environment could influence mating
propensity in the fresh-water isopod Asellus aquaticus (Karlsson et al. 2010) and experience
of acoustic signals could affect male investment in reproductive organs in crickets (Bailey et

al. 2010).

Plasticity is often favourable when the environment varies (West-Eberhard 2003). Plasticity
in reproductive strategies can be complex, as this could be induced in the juvenile stage but
not expressed until adulthood and in addition, the plastic expression could have
consequences for offspring and thus have effects across generations .For example, a plastic
expression of reproductive strategies could be affected by the environment that the
reproducing individual has experienced previously, e.g. resource acquisition before the
reproductive event (Katsuki et al. 2012). In addition, the plastic response could be
dependent on the environment that the individual is exposed to during the current mating
and reproduction, e.g. characters of the mating partner (Pizzari et al. 2003). The plastic

expression could furthermore be either an involuntary consequence of the individual’s
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condition, for example if individuals in good condition may invest more in mating (Duplouy
et al. 2018), or a strategic investment to improve offspring fitness depending on assessment
of the particular environment, e.g. sex-ratio allocation of offspring based on perceived host
quality (Pexton & Mayhew 2005), and thus being adaptive. A plastic reproductive strategy is
expressed in the reproducing adults, and is thus a case of within-generational plasticity, but
the strategy could have trans-generational consequences if the strategy modifies offspring
phenotypes (Bonduriansky & Crean 2018). One example is when females invest either in
larger or smaller eggs, which could have consequences for offspring development and
survival Cahenzeli & Erhardt 2013). However, although plasticity may be favorable for
adjusting to environmental variation, canalization of traits often occurs in nature, for
example when plasticity carries a cost or when the benefits of plasticity are limited (Auld et
al. 2010; DeWitt et al. 1998). Thus, individuals may not be able to apply plastic strategies in

all possible aspects of reproduction.

For phytophagous insects, the host plant is often of great importance both for mating and
for offspring performance and survival (Schoonhoven et al 2005). Host plants commonly vary
in quality, both within and between plant species, and females therefore usually select a
suitable host plant for their eggs with large care. The host plant species and quality thus
have large potential to influence reproductive strategies in insects (reviewed in Awmack &
Leather 2002; Moreau et al 2017). For example, female condition is in general influenced by
the host plant she developed upon as a larva and the quality of the larval host plant can
therefore have a direct effect on the resources available for reproduction, especially when
egg production is dependent on nutrients accumulated in the larval stage (Wheeler 1996).

Female host plant experience could, however, also influence how she anticipates the
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98 environment for her offspring, and she may accordingly adjust her reproductive strategy to
99  maximise their fitness (Cahenzli et al. 2015). Larval host plant quality thus has the potential
100 toinfluence female reproductive strategies and trade-offs that are governed by resource
101  variation.
102
103  Generalist insect species utilize a wide range of plant species, that may come from very
104  different families and thus represent a large spatial and temporal variation in resource
105 quality. Due to this environmental variation, generalists may not be as well-adapted to each
106  of their possible host plant species as specialist insects are to their few host plant species
107  (Rothwell & Holeski 2019; Schapers et al. 2016). It has therefore been proposed that
108 experience-based plasticity would be important for generalist species to manage the
109  variation that multiple host plant species presents them with, for example during host plant
110  selection (Bernays 2001). The reproductive strategies that ovipositing females could apply
111 may, however, consist of several different components other than the actual host plant
112  choice. For example, females across species groups are commonly expected to face a trade-
113  off between investing in offspring quantity or offspring quality (e.g. weight or size) (Smith &
114  Fretwell 1974, Lim et al 2014). This is also seen in phytophagous insects where females could
115  adjust their egg investment depending on host plant quality (Fox et al. 1997; reviewed in Fox
116 & Czesak 2000). Females may moreover modify their temporal oviposition behavior
117  depending on the environment by adjusting the length or onset of their egg-laying period
118  (Berkvens et al. 2008; Saastamoinen & Hanski 2008). Thus, even if plasticity due to host
119  plant experience is beneficial to generalist insects, it is not known if such plasticity is
120 operating on all or only a selection of the traits.

121
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122 In the current paper, we aimed to investigate the effects of larval host plant species on

123 reproductive strategies in the generalist moth Spodoptera littoralis. This species feeds on a
124 large number of plant species from many different plant families that are of varying quality
125  for theinsect and S. littoralis exhibits plastic responses in both preference and performance
126  depending on larval host plant species. For example, larval immune function (Karlsson Green
127  In press), performance and adult lifespan differ depending on larval host plant species

128  (Karlsson Green et al unpubl.) indicating important effects of plant species on individuals’
129  condition. The larval host plant species of parents furthermore have transgenerational

130 effects on their offspring performance (Résvik et al. 2020). Host plant induced plasticity

131 does, however, not only occur on performance but also on preference in S. littoralis. Adults
132 of both sexes have an innate preference hierarchy among host plant species, which can be
133  altered depending on the plant species that they experienced as larvae (Anderson et al.

134  2013; Lhomme et al. 2018; Proffit et al. 2015; Thoming et al. 2013; Zakir et al. 2017). Thus,
135 one component of the females’ reproductive strategy, host plant selection for mating and
136  oviposition, is plastic and depends on the larval host plant species. Whether the plastic host
137  plant choice is further combined with a flexible oviposition strategy depending on larval host
138 plant species is, however, not known.

139

140 Here, we thus address if ovipositing S. littoralis females show plasticity in their egg-laying
141  strategy depending on larval host plant species. We use three host plant species that vary in
142  quality as larval food and hypothesize that the differences in host plant quality could induce
143  plastic responses and change the oviposition strategy depending on female host plant

144  experience. The plastic response could however be either a direct consequence of the

145 female’s resource availability during the larval stage, or an adaptive allocation depending on
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146  expectations of her own reproductive potential and future offspring environment. In our
147  experiments, we address if females alter investment between egg quantity (nhumber) and
148  egg quality (measured as weight). In addition, we address if females alter their temporal
149  egg-laying behavior and if this is dependent on delayed onset of oviposition or delayed

150 mating. We hypothesise that if the plastic response is a carry-over effect of female

151  condition, females of the most challenging host plant species would have smaller and fewer
152  eggs as well as a shorter and later egg-laying period. However, if the plastic response is an
153  adaptive strategy to compensate for a resource-poor environment, we expect females from
154  the challenging host plant species to invest more in egg quality than in quantity and also to
155  oviposit earlier.

156

157  Materials and methods

158  Study species

159  Spodoptera littoralis is a polyphagous and nocturnal moth that feeds on more than 80

160 different plant species that comes from a wide range of plant families (CABI 2019). The

161  species is a significant crop pest that is present throughout Africa, the Middle East and

162  Southern Europe (CABI 2019). A lab colony of field-collected S. littoralis from Egypt is reared
163  at SLU, Alnarp where the animals are raised in climate chambers with controlled settings of
164  16:8 L:D, 25°C, 60% RH. In all bioassays described below, larvae were reared in groups in
165  plastic boxes (H*W*L 6.5%18*22 cm), feeding detached leaves ad libitum until pupation. At
166 the pupal stage, males and females were separated until eclosion and adults were mated at
167  the age of two days. All bioassays were performed in the rearing conditions (16:8 L:D, 25°C,
168  60% RH).

169
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170  Cotton (Gossypium hirsutum), cabbage (Brassica oleracea v. capitata) and maize (Zea mays),
171  that were used as host plants in the current study, were cultivated from seeds in a

172  greenhouse with controlled settings (16:8 L:D, 25°C, 70% RH). All these species are present
173  in the agroecosystem Egypt where the lab population originates from. Even though all plants
174  are domesticated and that they have different geographic origin, wild related plants to these
175  three crops naturally occur within the distribution of the studied population of S. littoralis.
176  This indicates that the evolutionary relationship between the plants and the insect is longer
177  that when cultivation of crops was intensified in this region. The Egyptian population of S.
178 littoralis has an innate preference hierarchy in which it prefers cotton and maize over

179  cabbage but this preference hierarchy may shift due to larval induced preference (Anderson
180 etal. 2013; Théming et al. 2013) which is mediated by olfactory cues (Lhomme et al. 2018).
181 The preference hierarchy is not associated with larval performance (Karlsson Green et al

182  unpubl) as individuals in general have a fast development and large pupal weight on

183  cabbage, which they don’t prefer, but a very poor development on maize, which they prefer
184  over cabbage (Roy et al. 2016).

185

186  Experiment 1: egg investment and egg-laying behaviour

187  To assess if females alter their oviposition strategy depending on larval host plant species we
188  studied their investment in egg quality vs. egg quantity as well as their temporal egg-laying
189  behavior during the entire life-time of females reared on either cotton, cabbage or maize
190 plants as above. First, a male and a female were introduced into a cylindric mating cage

191 (height 15 cm, @ 11 cm) provided with honey-water to feed on. A tracing paper was included
192  around the cage walls to oviposit on but no host plant material. To characterize the egg-

193 laying behaviour, we measured the weight of the egg batches every day until the death of
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194 the female. We also noted the first day of oviposition and the total number of egg-laying
195 days for each female. To record the number of eggs for the first egg batch, this batch was
196  deposited on filter paper (Whatman GradeNo; 1, @ 90 mm) inside a glass petri dish (@ 90
197  mm) with 1 ml of methanol overnight. The egg batches were photographed and analysed
198  with the Imagel software. The investment in individual egg weight (i.e. egg size) for each

199 female was then calculated as the total weight of the first egg batch divided with the

200 number of eggs in that batch (number of clutches analysed per treatment: 10<N<23).

201

202  Experiment 2: mating propensity

203  To disentangle if onset of egg-laying behaviour is affected by differences in mating

204  propensity (i.e. time until mating occurs) or differences in the time it takes for the fertilised
205  eggs to develop until oviposition, we performed a mating experiment with individuals reared
206  on either cotton, cabbage or maize. Larvae were reared in groups on detached leaves of

207  either of the three host plants as described above. Two-days old adults that had fed the

208  same host plant diet were put in cylindric mating cages (height 15 cm, @ 11 cm), one male
209 and one female in each cage, provided with paper to oviposit on and water. No honey was
210 added to the water in this experiment to ensure that differences between treatments were
211 due to larval acquired resources. During the first day of the experiment, the cages were

212 monitored every 45 minutes, for eight hours, to observe if mating occurred or not. The

213  following days, the cages were monitored once every day to record if and when the first egg
214  batch appeared. The experiment was ended when a clutch had been laid or when the female
215  was found dead. The mating experiment was performed in a climate chamber with the same
216  settings as the rearing chamber (16:8 L:D, 25°C, 60% RH). In the experiment, we used a total

217  of 50 pairs (17 reared on cotton, 18 reared on cabbage and 15 reared on maize).
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218

219  Statistical analyses

220  For Experiment 1, the effect of larval host plant diet on egg-laying parameters was analysed
221  using XLSTAT 2012 software (Addinsoft, XLSTAT 2012). The impact of larval host plant

222  species on individual egg weight, the number of eggs in the first batch, total egg weight,

223 onset of egg-laying-and length of the egg-laying period (number of days) was assayed with
224 Kruskal-Wallis tests completed by Dunn’s procedure to obtain multiple pairwise

225  comparisons (at level p = 0.05). An ANCOVA was performed in JMP version Pro 15 to analyse
226  the differences in weight of the first egg clutch depending on host plant species, the number
227  of eggs in the clutch, and their interaction.

228

229  To assess differences in mating propensity in Experiment 2, we performed a generalised

230 linear model with binary response variable and logit link-function in JMP version Pro 14.

231  Response variable was whether the pair mated the first day or not and explanatory factor
232 was larval host plant species. To address if a difference in time until the first oviposition

233  event was due to differences in mating propensity or in the time between mating and

234 oviposition, we analysed the number of days between mating and egg-laying for the pairs
235 that we had observed mating to occur with Kruskal-Wallis test. Also in this model, larval host
236  plant was included as the explanatory factor and a total of 36 pairs were analysed of the
237  initial 50 pairs in the experiment (N cotton = 16, N cabbage = 14, N maize = 6).

238

239  Results

240 In Experiment 1, larval host plant was found to affect egg quantity of the first clutch

241  oviposited, as females reared on cotton laid both a higher number of eggs than females fed
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242  on maize (mean eggs + SD: cotton: 350 + 122, cabbage: 225 + 149, maize: 131 + 55; df = 2, x*
243  =18.975, p < 0.0001) and a larger clutch weight (mean mg + SD: cotton: 20 + 7, cabbage: 13
244 8, maize: 7+3,df =2, x*=22.957, p <0.0001). The ANCOVA revealed that the weight of
245  the first egg clutch was only dependent on the number of eggs in the clutch (F150=327.763,
246  p <0.0001) and not on host plant species (F2,50 = 1.468, p = 0.241) or the interaction

247  between species and egg number (F2,50=0.819 p = 0.448). Moreover, there were no

248  differences in individual egg weight in the first clutch between the three host plant diets (Fig.
249  1;df=2,x*>=2.476, p =0.290). We also found that the total egg weight that a female

250 deposited during her lifetime differed depending on larval diet, where females raised on
251  maize had a lower total egg weight than females reared on cotton and cabbage (Fig. 2a; df =
252  2,x*=12.326, p = 0.0002). Onset of egg-laying differed depending on larval host plants as
253  cotton raised females laid there first clutch earlier than cabbage fed females and maize fed
254  females initiated their egg-laying latest of all (Fig 2b; df = 2, x2 = 19.240, p < 0.0001).

255  However, there was no difference in length of egg-laying period depending on larval host
256  plant (Fig 2¢c; df = 2, 2 = 5.490, p = 0.064).

257

258 In Experiment 2, we furthermore found that the delay in egg-laying between females reared
259  on different host plants depended on mating propensity, where a higher proportion of pairs
260 reared on cabbage and cotton mated during the first day, than pairs reared on maize (df = 2,
261 x?=9.511, p=0.009, Fig. 3a). There was however, no difference in time between mating and
262  egg-laying between pairs raised on different host plants (df = 2, x> = 1.113, p = 0.573, Fig.
263  3b).

264

265 Discussion
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266  Here, we investigated the potential for larval host plant species to affect reproductive

267  strategies in the generalist and highly plastic moth S. littoralis. Our results indicate that larval
268  host plant species has consequences for female reproductive output but that females overall
269 allocate resources to egg quantity rather than egg quality, and thus do not have a plastic

270 investment in egg weight. In addition, the differences in temporal oviposition behaviour may
271  be due to delayed mating for individuals reared on low-quality hosts and thus, both male
272  and female condition may affect the subsequent egg-laying pattern.

273

274  Aplastic reproductive strategy could be favourable when resources vary in the environment.
275  Asfemale reproduction often is resource limited, a trade-off between egg number and egg
276  weight is often assumed, and females are generally predicted to invest in egg quality in poor
277  environments, given her offspring could then benefit from more resources (Amiri et al. 2020;
278  Cesar and Rossi 2019; Moreau et al. 2017). In our experiments, the lowest quality resource
279  environment for females was maize as this host plant is known to provide poor conditions
280 for larval development which results in low pupal weight (Roy et al 2016; P. Anderson

281  unpubl data). However, as there were no differences in individual egg weight between host
282  plants, our results indicate that females do not adjust the weight of individual eggs. Instead,
283  ovipositing females alter their egg quantity depending on larval host plant and oviposit a

284  larger quantity of eggs when they have developed on a better (high quality) host plant. The
285  allocation strategy is thus likely based on female resource acquisition when her eggs are

286 developing, rather than a flexible decision made in relation to larval host plant quality. In
287  some species, the resources that females have available for egg production is also affected
288 by nuptial gifts and ejaculate size from the males they mated with (South and Lewis 2011;

289  Vahed 1998). The size of such gifts could be dependent both on male genotype and the
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290 resources he had access to during his development, i.e. may also be an effect of larval host
291  plant. We currently do not know if nuptial gifts are important in S. littoralis but males may
292  produce spermatophores of different sizes (P. Anderson unpubl. data) and as we mated

293  pairs that were raised on the same host plant species, the differences that we found in total
294  eggload between females raised on different plants could also depend on how the larval
295  host plant affects males. In Lepidopteran species, both female and male size has been shown
296  to affect female fecundity (Schapers et al. 2017), however Cahenzli and Erhardt (2013) found
297  that males’ larval resources only had minor effects on egg production.

298

299 In general, variation in female size (which may be a result of her larval resource acquisition)
300 within Lepidopteran species has an effect on egg number rather than egg size (Bauerfeind
301 and Fischer 2008), which is consistent with our current results. A lack of flexibility of egg size
302 has also been found in other species (Snell-Rood and Steck 2019) but there is in general little
303 knowledge on the possible physiological factors that may constrain egg size plasticity in

304 insects (Fox and Czesak 2000). Aside of the potential physiological constraints to egg size
305 plasticity, there may be only minor opportunities to increase offspring fitness through egg
306 size and the actual egg size could be a result of selection for maternal fitness rather than
307 offspring fitness, as has been found in Atlantic salmon (Einum and Fleming 2000). There may
308 also be more complex relationships between egg quantity and egg quality in insects than a
309 simple trade off (Fischer et al. 2003).

310

311  Rosvik et al. (2020) recently showed indications of transgenerational plasticity on offspring
312  performance in S. littoralis depending on parental host plant species during the larval stage.

313  Anincreased egg investment could be a mechanism behind such transgenerational plasticity
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314  (Fischer and Fiedler 2001), i.e. maternal effects, where non-genetic components, such as egg
315 nutrients, are transferred from the mother to her offspring to improve their fitness

316 (Bernardo 1996). However, as the results in our current paper indicate that females do not
317  alter egg size depending on larval host plant species, we suggest that egg size in itself does
318 not explain the mechanism behind the transgenerational effects previously found in S.

319 littoralis (Rosvik et al. 2020). Indeed, egg size may not be the only parameter for estimating
320 egginvestment and egg quality as the yolk protein content could be unrelated to egg size
321  (Diss et al. 1996). There could therefore still be differences in egg quality due to the

322  composition of the egg content that affects offspring performance. In addition, there may be
323  other pathways for transgenerational effects, such as epigenetics (Berger et al. 2009;

324  Bossdorf et al. 2008; Ho and Burggren 2010) or transfer of microbes (Freitak et al. 2014),

325 that do not alter egg size or weight.

326

327  We further found that maize-fed females had a later onset of oviposition in comparison to
328 females fed cotton and cabbage. We interpret from this that females on low-quality hosts do
329 not mate and reproduce at an earlier age in order to increase possibilities of reproduction at
330 alow life-expectancy. Instead, we interpret this pattern as an inability to reproduce rapidly
331 due to poor resource environment they have developed in. The delay in onset of egg-laying
332 that we found for individuals reared on cabbage and maize could be due to either a longer
333  time to mature to mating or for eggs to mature following fertilisation, or both. For cabbage
334 fed-females, our mating experiment showed that they mated as early as cotton-fed females
335 and had a similar time between mating and oviposition, thus indicating a difference between
336 experiments in whether there is a delay in oviposition onset or not. However, for maize-fed

337 females this result was consistent across experiments and, as our mating experiment
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338 revealed that both cotton-fed and cabbage-fed females mate earlier than maize-fed females,
339  we suggest that the difference in oviposition pattern for maize-fed females is mainly

340 dependent on a delay in mating.

341

342  Mating behaviour and investment often depends on the individual’s condition (Buzatto and
343 Machado 2014; Candolin 1999; Perry and Rowe 2010) and could thus depend on either or
344  both of the sexes. For example, male insects are expected to select females based on her
345  fecundity, i.e. her body size (Bonduriansky 2001); as maize-reared individual of S. littoralis in
346  general are small (Roy et al. 2016; P. Anderson unpubl data) a low male interest in these

347  females could be a reason for the delayed mating. Moreover, previous studies on S. littoralis
348  have shown that females begin pheromone calling for males earlier on host plants than on
349  non-host plants (and on undamaged plants compared to herbivore-damaged plants) (Sadek
350 and Anderson 2007; Zakir et al. 2017). It is possible that larval host plants of different quality
351  could induce similar temporal differences in calling behaviour. Whether it is one of the sexes
352  or both that mature at a later stage may affect the operational sex ratio in the adult

353  population and thus have consequences for sexual selection and mating behaviour (Karlsson
354  etal. 2010; Moura and Gonzaga 2019). A delayed mating, could moreover affect the

355 reproductive output if older females lay less eggs, as in the Codling Moth, Cydia pomonella
356  (Vickers 1997). In addition, a delay in the time needed to reach the reproductive phase could
357  resultinincreased risk of predation before they are able to produce any offspring.

358

359 Irrespective of the causes, the delay in mating and the subsequent later oviposition in

360 maizefed individuals, further amplify the differences in moth performance on these three

361 plants species as the generation time on maize is additionally extended. Populations that
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362 inhabit this low-quality host could thus suffer from several negative effects on reproduction
363 that likely have consequences on population growth. Interestingly, despite these negative
364 consequence of maize as a host plant, previous research has shown that S. littoralis that

365 individuals that have been reared on maize as larvae prefers maize over other host plant
366 species (e.g. Thoming et al. 2013). Together with our results, which indicate that females do
367 notinvest in offspring to make them better suited for a low-quality host, this may be

368 interpreted that reproductive plasticity in females has evolved to improve female fitness and
369 not offspring fitness. However, seemingly negative effects on reproduction at some host
370 plant species could in nature be balanced by differences in exposure to predators and

371  parasitoids if low-quality hosts provides an enemy free space (Murphy and Loewy 2015;

372  Singer et al. 2004). It is thus relevant for both fundamental science and pest management
373 understand how ecology affects female reproductive strategies and which consequences this
374  has for population dynamics.

375

376  Asshown here, larval host plant species affect some, but not all, aspects of the reproductive
377  strategies in the generalist S. littoralis. We interpret our results to be due to female

378 condition and her larval resource acquisition rather than a strategic investment to maximize
379  offspring fitness. However, to fully understand the oviposition behaivour will require further
380 studies on how offspring fitness is altered by female strategies. In this context, it would be
381  valuable to consider both higher trophic interactions and the (co-)evolutionary history of
382 plant species and S. littoralis. The lack of egg size investment raises further questions on

383  transgenerational plasticity; if the offspring are not affected by maternal condition through
384 increased energy allocation, what other mechanisms for maternal effects, such as

385  epigenetics or transfer of microbiota, may be more relevant in this system? Finally, research
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386 on how host plant species affect female reproductive strategies is not only of importance to
387 understand fundamental aspects of ecology and evolution; how egg-laying behaviour of pest
388 insects differ between host plants may also affect how we predict pest outbreaks and

389 optimise biological control (Moreau et al. 2016).
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573  Fig. 1 The investment in individual egg weight depending on larval diet in S. littoralis. The
574  individual egg weight in the first clutch for females feeding cotton, cabbage or maize, which
575 showed no significant difference (Kruskal-Wallis test with Dunn procedure, p = 0.29). Boxes
576  represents 25" and 75™ percentiles and error bars represents the 10" and 90t percentiles.
577  Horizontal lines within boxes represent median value and black dots represent the mean.
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Fig. 2 Egg production and temporal egg laying behaviour depending on larval host plantin S.
littoralis. (a) The difference in total egg weight that females raised on cotton, cabbage or
maize deposited during the experiment (p = 0.0002). (b) The difference in oviposition onset
(number of days from experiment start until the first egg clutch) for females raised on
cotton, cabbage or maize (p < 0.0001). (c) The length of the total egg-laying period for
females raised on cotton, cabbage or maize (no significant difference, p = 0.064). Different
letters above boxes indicate significant differences at level p = 0.005 in Kruskal-Wallis test
with Dunn’s procedure. Boxes represents 25" and 75" percentiles and error bars represents
the 10™" and 90™" percentiles. Horizontal lines within boxes represent median value and black

dots represent the mean.
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Fig. 3 The effects of delayed mating on oviposition in S. littoralis. (a) The proportion of pairs
raised on different larval host plants that mated during the first day (GLM, p = 0.009). (b) The
number of days between mating and oviposition which is equal for all females irrespective of

larval host plant species (Kruskal-Wallis test, p = 0.573).
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