

1 Title: What should a poor mother do? Influence of host plant quality on oviposition strategy
2 and behavior in a polyphagous moth

3

4 Authors and affiliations: Kristina Karlsson Green^{1*#}, Benjamin Houot^{1,2#}, Peter Anderson¹

5

6 ¹Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box
7 102, SE-230 53, Alnarp Sweden

8

9 ²Current address: Laboratoire de Biologie Fonctionnelle et Adaptative, UMR8251,
10 Université Paris Diderot - Paris 7 / CNRS Equipe Processus Dégénératifs, Stress et
11 Vieillissement Bâtiment Buffon, 4, rue Marie Andrée Lagroua Weill Halle 75013 Paris, France

12

13 *Author of correspondence: kristina.karlsson.green@slu.se

14

15 # Equal author contribution

16

17 Author contributions: KKG and BH performed the experiments and analyses, KKG wrote the
18 manuscript, all authors planned and conceived the research, interpreted the results and
19 participated in the writing process.

20

21

22

23

24

25

26 **Abstract**

27 To maximise fitness, individuals may apply different reproductive strategies. Such strategies
28 could be phenotypically plastic and vary depending on the environment. For example, when
29 resources are limited females often face a trade-off between investing in offspring quantity
30 and quality, and how she balances this trade-off may depend on the environment. For
31 phytophagous insects, and especially generalist insects, variation in host plant quality could
32 have large effects on mating, reproduction and offspring performance. Here, we study if the
33 polyphagous moth *Spodoptera littoralis*, which selects host plants through experience-based
34 preference induction, also has a flexible allocation between egg weight and egg number as
35 well as in temporal egg-laying behavior depending on larval host plant species. We found
36 that *S. littoralis* has a canalized egg size and that an increased reproductive investment is
37 made in egg quantity rather than egg quality. This increased investment depends on larval
38 host plant species, probably reflecting parental condition. The constant egg weight may be
39 due to physiological limitations or to limited possibilities to increase fitness through larger
40 offspring size. We furthermore found that differences in onset of egg-laying is mainly due to
41 differences in mating propensity between individuals raised on different host plant species.
42 Thus, females do not seem to make a strategic reproductive investment in challenging
43 environments. Instead, the low-quality host plant induces less and later reproduction, which
44 could have consequences for population dynamics in the field.

45

46

47

48 **Keywords:** host plant preference, host plant performance, maternal effect, phenotypic
49 plasticity, transgenerational plasticity

50 **Introduction**

51 Reproduction is crucial for individual fitness but it is also a costly engagement that requires
52 large resources. How individuals invest in reproduction could thus be shaped by trade-offs
53 due to resource limitations (Chippindale et al. 1993). To maximize fitness, individuals
54 commonly apply different reproductive strategies (Gross 1996), which include various
55 behavioural, physiological and morphological traits that influence mating and reproduction.
56 Such strategies could either be genetically fixed, such as in the side-blotched lizard *Uta*
57 *stansburiana* where different genetic colour morphs invest in either offspring quality or
58 quantity (Sinervo et al. 2000), or vary depending on the environment and thus be
59 phenotypically plastic. For example, the social environment could influence mating
60 propensity in the fresh-water isopod *Asellus aquaticus* (Karlsson et al. 2010) and experience
61 of acoustic signals could affect male investment in reproductive organs in crickets (Bailey et
62 al. 2010).

63

64 Plasticity is often favourable when the environment varies (West-Eberhard 2003). Plasticity
65 in reproductive strategies can be complex, as this could be induced in the juvenile stage but
66 not expressed until adulthood and in addition, the plastic expression could have
67 consequences for offspring and thus have effects across generations .For example, a plastic
68 expression of reproductive strategies could be affected by the environment that the
69 reproducing individual has experienced previously, e.g. resource acquisition before the
70 reproductive event (Katsuki et al. 2012). In addition, the plastic response could be
71 dependent on the environment that the individual is exposed to during the current mating
72 and reproduction, e.g. characters of the mating partner (Pizzari et al. 2003). The plastic
73 expression could furthermore be either an involuntary consequence of the individual's

74 condition, for example if individuals in good condition may invest more in mating (Duplouy
75 et al. 2018), or a strategic investment to improve offspring fitness depending on assessment
76 of the particular environment, e.g. sex-ratio allocation of offspring based on perceived host
77 quality (Pexton & Mayhew 2005), and thus being adaptive. A plastic reproductive strategy is
78 expressed in the reproducing adults, and is thus a case of within-generational plasticity, but
79 the strategy could have trans-generational consequences if the strategy modifies offspring
80 phenotypes (Bonduriansky & Crean 2018). One example is when females invest either in
81 larger or smaller eggs, which could have consequences for offspring development and
82 survival Cahenzeli & Erhardt 2013). However, although plasticity may be favorable for
83 adjusting to environmental variation, canalization of traits often occurs in nature, for
84 example when plasticity carries a cost or when the benefits of plasticity are limited (Auld et
85 al. 2010; DeWitt et al. 1998). Thus, individuals may not be able to apply plastic strategies in
86 all possible aspects of reproduction.

87
88 For phytophagous insects, the host plant is often of great importance both for mating and
89 for offspring performance and survival (Schoonhoven et al 2005). Host plants commonly vary
90 in quality, both within and between plant species, and females therefore usually select a
91 suitable host plant for their eggs with large care. The host plant species and quality thus
92 have large potential to influence reproductive strategies in insects (reviewed in Awmack &
93 Leather 2002; Moreau et al 2017). For example, female condition is in general influenced by
94 the host plant she developed upon as a larva and the quality of the larval host plant can
95 therefore have a direct effect on the resources available for reproduction, especially when
96 egg production is dependent on nutrients accumulated in the larval stage (Wheeler 1996).
97 Female host plant experience could, however, also influence how she anticipates the

98 environment for her offspring, and she may accordingly adjust her reproductive strategy to
99 maximise their fitness (Cahenzli et al. 2015). Larval host plant quality thus has the potential
100 to influence female reproductive strategies and trade-offs that are governed by resource
101 variation.

102

103 Generalist insect species utilize a wide range of plant species, that may come from very
104 different families and thus represent a large spatial and temporal variation in resource
105 quality. Due to this environmental variation, generalists may not be as well-adapted to each
106 of their possible host plant species as specialist insects are to their few host plant species
107 (Rothwell & Holeski 2019; Schapers et al. 2016). It has therefore been proposed that
108 experience-based plasticity would be important for generalist species to manage the
109 variation that multiple host plant species presents them with, for example during host plant
110 selection (Bernays 2001). The reproductive strategies that ovipositing females could apply
111 may, however, consist of several different components other than the actual host plant
112 choice. For example, females across species groups are commonly expected to face a trade-
113 off between investing in offspring quantity or offspring quality (e.g. weight or size) (Smith &
114 Fretwell 1974, Lim et al 2014). This is also seen in phytophagous insects where females could
115 adjust their egg investment depending on host plant quality (Fox et al. 1997; reviewed in Fox
116 & Czesak 2000). Females may moreover modify their temporal oviposition behavior
117 depending on the environment by adjusting the length or onset of their egg-laying period
118 (Berkvens et al. 2008; Saastamoinen & Hanski 2008). Thus, even if plasticity due to host
119 plant experience is beneficial to generalist insects, it is not known if such plasticity is
120 operating on all or only a selection of the traits.

121

122 In the current paper, we aimed to investigate the effects of larval host plant species on
123 reproductive strategies in the generalist moth *Spodoptera littoralis*. This species feeds on a
124 large number of plant species from many different plant families that are of varying quality
125 for the insect and *S. littoralis* exhibits plastic responses in both preference and performance
126 depending on larval host plant species. For example, larval immune function (Karlsson Green
127 *In press*), performance and adult lifespan differ depending on larval host plant species
128 (Karlsson Green et al *unpubl.*) indicating important effects of plant species on individuals'
129 condition. The larval host plant species of parents furthermore have transgenerational
130 effects on their offspring performance (Rösvik et al. 2020). Host plant induced plasticity
131 does, however, not only occur on performance but also on preference in *S. littoralis*. Adults
132 of both sexes have an innate preference hierarchy among host plant species, which can be
133 altered depending on the plant species that they experienced as larvae (Anderson et al.
134 2013; Lhomme et al. 2018; Proffit et al. 2015; Thöming et al. 2013; Zakir et al. 2017). Thus,
135 one component of the females' reproductive strategy, host plant selection for mating and
136 oviposition, is plastic and depends on the larval host plant species. Whether the plastic host
137 plant choice is further combined with a flexible oviposition strategy depending on larval host
138 plant species is, however, not known.

139

140 Here, we thus address if ovipositing *S. littoralis* females show plasticity in their egg-laying
141 strategy depending on larval host plant species. We use three host plant species that vary in
142 quality as larval food and hypothesize that the differences in host plant quality could induce
143 plastic responses and change the oviposition strategy depending on female host plant
144 experience. The plastic response could however be either a direct consequence of the
145 female's resource availability during the larval stage, or an adaptive allocation depending on

146 expectations of her own reproductive potential and future offspring environment. In our
147 experiments, we address if females alter investment between egg quantity (number) and
148 egg quality (measured as weight). In addition, we address if females alter their temporal
149 egg-laying behavior and if this is dependent on delayed onset of oviposition or delayed
150 mating. We hypothesise that if the plastic response is a carry-over effect of female
151 condition, females of the most challenging host plant species would have smaller and fewer
152 eggs as well as a shorter and later egg-laying period. However, if the plastic response is an
153 adaptive strategy to compensate for a resource-poor environment, we expect females from
154 the challenging host plant species to invest more in egg quality than in quantity and also to
155 oviposit earlier.

156

157 **Materials and methods**

158 *Study species*

159 *Spodoptera littoralis* is a polyphagous and nocturnal moth that feeds on more than 80
160 different plant species that comes from a wide range of plant families (CABI 2019). The
161 species is a significant crop pest that is present throughout Africa, the Middle East and
162 Southern Europe (CABI 2019). A lab colony of field-collected *S. littoralis* from Egypt is reared
163 at SLU, Alnarp where the animals are raised in climate chambers with controlled settings of
164 16:8 L:D, 25°C, 60% RH. In all bioassays described below, larvae were reared in groups in
165 plastic boxes (H*W*L 6.5*18*22 cm), feeding detached leaves *ad libitum* until pupation. At
166 the pupal stage, males and females were separated until eclosion and adults were mated at
167 the age of two days. All bioassays were performed in the rearing conditions (16:8 L:D, 25°C,
168 60% RH).

169

170 Cotton (*Gossypium hirsutum*), cabbage (*Brassica oleracea v. capitata*) and maize (*Zea mays*),
171 that were used as host plants in the current study, were cultivated from seeds in a
172 greenhouse with controlled settings (16:8 L:D, 25°C, 70% RH). All these species are present
173 in the agroecosystem Egypt where the lab population originates from. Even though all plants
174 are domesticated and that they have different geographic origin, wild related plants to these
175 three crops naturally occur within the distribution of the studied population of *S. littoralis*.
176 This indicates that the evolutionary relationship between the plants and the insect is longer
177 than when cultivation of crops was intensified in this region. The Egyptian population of *S.*
178 *littoralis* has an innate preference hierarchy in which it prefers cotton and maize over
179 cabbage but this preference hierarchy may shift due to larval induced preference (Anderson
180 et al. 2013; Thöming et al. 2013) which is mediated by olfactory cues (Lhomme et al. 2018).
181 The preference hierarchy is not associated with larval performance (Karlsson Green et al
182 unpubl) as individuals in general have a fast development and large pupal weight on
183 cabbage, which they don't prefer, but a very poor development on maize, which they prefer
184 over cabbage (Roy et al. 2016).
185

186 *Experiment 1: egg investment and egg-laying behaviour*

187 To assess if females alter their oviposition strategy depending on larval host plant species we
188 studied their investment in egg quality vs. egg quantity as well as their temporal egg-laying
189 behavior during the entire life-time of females reared on either cotton, cabbage or maize
190 plants as above. First, a male and a female were introduced into a cylindric mating cage
191 (height 15 cm, Ø 11 cm) provided with honey-water to feed on. A tracing paper was included
192 around the cage walls to oviposit on but no host plant material. To characterize the egg-
193 laying behaviour, we measured the weight of the egg batches every day until the death of

194 the female. We also noted the first day of oviposition and the total number of egg-laying
195 days for each female. To record the number of eggs for the first egg batch, this batch was
196 deposited on filter paper (Whatman GradeNo; 1, Ø 90 mm) inside a glass petri dish (Ø 90
197 mm) with 1 ml of methanol overnight. The egg batches were photographed and analysed
198 with the ImageJ software. The investment in individual egg weight (i.e. egg size) for each
199 female was then calculated as the total weight of the first egg batch divided with the
200 number of eggs in that batch (number of clutches analysed per treatment: 10≤N≤23).

201

202 *Experiment 2: mating propensity*

203 To disentangle if onset of egg-laying behaviour is affected by differences in mating
204 propensity (i.e. time until mating occurs) or differences in the time it takes for the fertilised
205 eggs to develop until oviposition, we performed a mating experiment with individuals reared
206 on either cotton, cabbage or maize. Larvae were reared in groups on detached leaves of
207 either of the three host plants as described above. Two-days old adults that had fed the
208 same host plant diet were put in cylindric mating cages (height 15 cm, Ø 11 cm), one male
209 and one female in each cage, provided with paper to oviposit on and water. No honey was
210 added to the water in this experiment to ensure that differences between treatments were
211 due to larval acquired resources. During the first day of the experiment, the cages were
212 monitored every 45 minutes, for eight hours, to observe if mating occurred or not. The
213 following days, the cages were monitored once every day to record if and when the first egg
214 batch appeared. The experiment was ended when a clutch had been laid or when the female
215 was found dead. The mating experiment was performed in a climate chamber with the same
216 settings as the rearing chamber (16:8 L:D, 25°C, 60% RH). In the experiment, we used a total
217 of 50 pairs (17 reared on cotton, 18 reared on cabbage and 15 reared on maize).

218

219 *Statistical analyses*

220 For Experiment 1, the effect of larval host plant diet on egg-laying parameters was analysed
221 using XLSTAT 2012 software (Addinsoft, XLSTAT 2012). The impact of larval host plant
222 species on individual egg weight, the number of eggs in the first batch, total egg weight,
223 onset of egg-laying-and length of the egg-laying period (number of days) was assayed with
224 Kruskal–Wallis tests completed by Dunn’s procedure to obtain multiple pairwise
225 comparisons (at level $p = 0.05$). An ANCOVA was performed in JMP version Pro 15 to analyse
226 the differences in weight of the first egg clutch depending on host plant species, the number
227 of eggs in the clutch, and their interaction.

228

229 To assess differences in mating propensity in Experiment 2, we performed a generalised
230 linear model with binary response variable and logit link-function in JMP version Pro 14.
231 Response variable was whether the pair mated the first day or not and explanatory factor
232 was larval host plant species. To address if a difference in time until the first oviposition
233 event was due to differences in mating propensity or in the time between mating and
234 oviposition, we analysed the number of days between mating and egg-laying for the pairs
235 that we had observed mating to occur with Kruskal-Wallis test. Also in this model, larval host
236 plant was included as the explanatory factor and a total of 36 pairs were analysed of the
237 initial 50 pairs in the experiment (N cotton = 16, N cabbage = 14, N maize = 6).

238

239 **Results**

240 In Experiment 1, larval host plant was found to affect egg quantity of the first clutch
241 oviposited, as females reared on cotton laid both a higher number of eggs than females fed

242 on maize (mean eggs \pm SD: cotton: 350 ± 122 , cabbage: 225 ± 149 , maize: 131 ± 55 ; df = 2, χ^2
243 = 18.975 , p < 0.0001) and a larger clutch weight (mean mg \pm SD: cotton: 20 ± 7 , cabbage: 13
244 ± 8 , maize: 7 ± 3 , df = 2, $\chi^2 = 22.957$, p < 0.0001). The ANCOVA revealed that the weight of
245 the first egg clutch was only dependent on the number of eggs in the clutch ($F_{1,50} = 327.763$,
246 p < 0.0001) and not on host plant species ($F_{2,50} = 1.468$, p = 0.241) or the interaction
247 between species and egg number ($F_{2,50} = 0.819$ p = 0.448). Moreover, there were no
248 differences in individual egg weight in the first clutch between the three host plant diets (Fig.
249 1; df = 2, $\chi^2 = 2.476$, p = 0.290). We also found that the total egg weight that a female
250 deposited during her lifetime differed depending on larval diet, where females raised on
251 maize had a lower total egg weight than females reared on cotton and cabbage (Fig. 2a; df =
252 2, $\chi^2 = 12.326$, p = 0.0002). Onset of egg-laying differed depending on larval host plants as
253 cotton raised females laid their first clutch earlier than cabbage fed females and maize fed
254 females initiated their egg-laying latest of all (Fig 2b; df = 2, $\chi^2 = 19.240$, p < 0.0001).
255 However, there was no difference in length of egg-laying period depending on larval host
256 plant (Fig 2c; df = 2, $\chi^2 = 5.490$, p = 0.064).

257
258 In Experiment 2, we furthermore found that the delay in egg-laying between females reared
259 on different host plants depended on mating propensity, where a higher proportion of pairs
260 reared on cabbage and cotton mated during the first day, than pairs reared on maize (df = 2,
261 $\chi^2 = 9.511$, p = 0.009, Fig. 3a). There was however, no difference in time between mating and
262 egg-laying between pairs raised on different host plants (df = 2, $\chi^2 = 1.113$, p = 0.573, Fig.
263 3b).

264

265 **Discussion**

266 Here, we investigated the potential for larval host plant species to affect reproductive
267 strategies in the generalist and highly plastic moth *S. littoralis*. Our results indicate that larval
268 host plant species has consequences for female reproductive output but that females overall
269 allocate resources to egg quantity rather than egg quality, and thus do not have a plastic
270 investment in egg weight. In addition, the differences in temporal oviposition behaviour may
271 be due to delayed mating for individuals reared on low-quality hosts and thus, both male
272 and female condition may affect the subsequent egg-laying pattern.

273

274 A plastic reproductive strategy could be favourable when resources vary in the environment.
275 As female reproduction often is resource limited, a trade-off between egg number and egg
276 weight is often assumed, and females are generally predicted to invest in egg quality in poor
277 environments, given her offspring could then benefit from more resources (Amiri et al. 2020;
278 Cesar and Rossi 2019; Moreau et al. 2017). In our experiments, the lowest quality resource
279 environment for females was maize as this host plant is known to provide poor conditions
280 for larval development which results in low pupal weight (Roy et al 2016; P. Anderson
281 unpubl data). However, as there were no differences in individual egg weight between host
282 plants, our results indicate that females do not adjust the weight of individual eggs. Instead,
283 ovipositing females alter their egg quantity depending on larval host plant and oviposit a
284 larger quantity of eggs when they have developed on a better (high quality) host plant. The
285 allocation strategy is thus likely based on female resource acquisition when her eggs are
286 developing, rather than a flexible decision made in relation to larval host plant quality. In
287 some species, the resources that females have available for egg production is also affected
288 by nuptial gifts and ejaculate size from the males they mated with (South and Lewis 2011;
289 Vahed 1998). The size of such gifts could be dependent both on male genotype and the

290 resources he had access to during his development, i.e. may also be an effect of larval host
291 plant. We currently do not know if nuptial gifts are important in *S. littoralis* but males may
292 produce spermatophores of different sizes (P. Anderson unpubl. data) and as we mated
293 pairs that were raised on the same host plant species, the differences that we found in total
294 egg load between females raised on different plants could also depend on how the larval
295 host plant affects males. In Lepidopteran species, both female and male size has been shown
296 to affect female fecundity (Schapers et al. 2017), however Cahenzli and Erhardt (2013) found
297 that males' larval resources only had minor effects on egg production.

298

299 In general, variation in female size (which may be a result of her larval resource acquisition)
300 within Lepidopteran species has an effect on egg number rather than egg size (Bauerfeind
301 and Fischer 2008), which is consistent with our current results. A lack of flexibility of egg size
302 has also been found in other species (Snell-Rood and Steck 2019) but there is in general little
303 knowledge on the possible physiological factors that may constrain egg size plasticity in
304 insects (Fox and Czesak 2000). Aside of the potential physiological constraints to egg size
305 plasticity, there may be only minor opportunities to increase offspring fitness through egg
306 size and the actual egg size could be a result of selection for maternal fitness rather than
307 offspring fitness, as has been found in Atlantic salmon (Einum and Fleming 2000). There may
308 also be more complex relationships between egg quantity and egg quality in insects than a
309 simple trade off (Fischer et al. 2003).

310

311 Rösvik et al. (2020) recently showed indications of transgenerational plasticity on offspring
312 performance in *S. littoralis* depending on parental host plant species during the larval stage.
313 An increased egg investment could be a mechanism behind such transgenerational plasticity

314 (Fischer and Fiedler 2001), i.e. maternal effects, where non-genetic components, such as egg
315 nutrients, are transferred from the mother to her offspring to improve their fitness
316 (Bernardo 1996). However, as the results in our current paper indicate that females do not
317 alter egg size depending on larval host plant species, we suggest that egg size in itself does
318 not explain the mechanism behind the transgenerational effects previously found in *S.*
319 *littoralis* (Rösvik et al. 2020). Indeed, egg size may not be the only parameter for estimating
320 egg investment and egg quality as the yolk protein content could be unrelated to egg size
321 (Diss et al. 1996). There could therefore still be differences in egg quality due to the
322 composition of the egg content that affects offspring performance. In addition, there may be
323 other pathways for transgenerational effects, such as epigenetics (Berger et al. 2009;
324 Bossdorf et al. 2008; Ho and Burggren 2010) or transfer of microbes (Freitak et al. 2014),
325 that do not alter egg size or weight.

326
327 We further found that maize-fed females had a later onset of oviposition in comparison to
328 females fed cotton and cabbage. We interpret from this that females on low-quality hosts do
329 not mate and reproduce at an earlier age in order to increase possibilities of reproduction at
330 a low life-expectancy. Instead, we interpret this pattern as an inability to reproduce rapidly
331 due to poor resource environment they have developed in. The delay in onset of egg-laying
332 that we found for individuals reared on cabbage and maize could be due to either a longer
333 time to mature to mating or for eggs to mature following fertilisation, or both. For cabbage
334 fed-females, our mating experiment showed that they mated as early as cotton-fed females
335 and had a similar time between mating and oviposition, thus indicating a difference between
336 experiments in whether there is a delay in oviposition onset or not. However, for maize-fed
337 females this result was consistent across experiments and, as our mating experiment

338 revealed that both cotton-fed and cabbage-fed females mate earlier than maize-fed females,
339 we suggest that the difference in oviposition pattern for maize-fed females is mainly
340 dependent on a delay in mating.

341
342 Mating behaviour and investment often depends on the individual's condition (Buzatto and
343 Machado 2014; Candolin 1999; Perry and Rowe 2010) and could thus depend on either or
344 both of the sexes. For example, male insects are expected to select females based on her
345 fecundity, i.e. her body size (Bonduriansky 2001); as maize-reared individual of *S. littoralis* in
346 general are small (Roy et al. 2016; P. Anderson unpubl data) a low male interest in these
347 females could be a reason for the delayed mating. Moreover, previous studies on *S. littoralis*
348 have shown that females begin pheromone calling for males earlier on host plants than on
349 non-host plants (and on undamaged plants compared to herbivore-damaged plants) (Sadek
350 and Anderson 2007; Zakir et al. 2017). It is possible that larval host plants of different quality
351 could induce similar temporal differences in calling behaviour. Whether it is one of the sexes
352 or both that mature at a later stage may affect the operational sex ratio in the adult
353 population and thus have consequences for sexual selection and mating behaviour (Karlsson
354 et al. 2010; Moura and Gonzaga 2019). A delayed mating, could moreover affect the
355 reproductive output if older females lay less eggs, as in the Codling Moth, *Cydia pomonella*
356 (Vickers 1997). In addition, a delay in the time needed to reach the reproductive phase could
357 result in increased risk of predation before they are able to produce any offspring.

358
359 Irrespective of the causes, the delay in mating and the subsequent later oviposition in
360 maizefed individuals, further amplify the differences in moth performance on these three
361 plants species as the generation time on maize is additionally extended. Populations that

362 inhabit this low-quality host could thus suffer from several negative effects on reproduction
363 that likely have consequences on population growth. Interestingly, despite these negative
364 consequence of maize as a host plant, previous research has shown that *S. littoralis* that
365 individuals that have been reared on maize as larvae prefers maize over other host plant
366 species (e.g. Thöming et al. 2013). Together with our results, which indicate that females do
367 not invest in offspring to make them better suited for a low-quality host, this may be
368 interpreted that reproductive plasticity in females has evolved to improve female fitness and
369 not offspring fitness. However, seemingly negative effects on reproduction at some host
370 plant species could in nature be balanced by differences in exposure to predators and
371 parasitoids if low-quality hosts provides an enemy free space (Murphy and Loewy 2015;
372 Singer et al. 2004). It is thus relevant for both fundamental science and pest management
373 understand how ecology affects female reproductive strategies and which consequences this
374 has for population dynamics.

375
376 As shown here, larval host plant species affect some, but not all, aspects of the reproductive
377 strategies in the generalist *S. littoralis*. We interpret our results to be due to female
378 condition and her larval resource acquisition rather than a strategic investment to maximize
379 offspring fitness. However, to fully understand the oviposition behaviour will require further
380 studies on how offspring fitness is altered by female strategies. In this context, it would be
381 valuable to consider both higher trophic interactions and the (co-)evolutionary history of
382 plant species and *S. littoralis*. The lack of egg size investment raises further questions on
383 transgenerational plasticity; if the offspring are not affected by maternal condition through
384 increased energy allocation, what other mechanisms for maternal effects, such as
385 epigenetics or transfer of microbiota, may be more relevant in this system? Finally, research

386 on how host plant species affect female reproductive strategies is not only of importance to
387 understand fundamental aspects of ecology and evolution; how egg-laying behaviour of pest
388 insects differ between host plants may also affect how we predict pest outbreaks and
389 optimise biological control (Moreau et al. 2016).

390

391 **Acknowledgements**

392 We are thankful to Elin Isberg, Elisabeth Marling, and Zahra Mouradinour for help with the
393 experiments and insect rearing. We also thank Audrey Bras, Axel Rösvik, Björn Eriksson,
394 Mattias Larsson, Fredrik Schlyter and Paul Egan for providing valuable comments on a
395 previous draft of this manuscript. Funding was provided from the Swedish Research Council
396 (2014-6482) and Marie Skłodowska Curie Action (INCA 2014-6418) to KKG and from Carl
397 Trygger's Foundation to PA.

398

399

400 **References**

401 Amiri E, Le K, Melendez CV, Strand MK, Tarpy DR, Rueppell O (2020) Egg-size plasticity in
402 *Apis mellifera*: Honey bee queens alter egg size in response to both genetic and
403 environmental factors. *Journal of Evolutionary Biology* 33:534-543. doi:
404 10.1111/jeb.13589

405 Anderson P, Sadek MM, Larsson M, Hansson BS, Thoming G (2013) Larval host plant
406 experience modulates both mate finding and oviposition choice in a moth. *Animal
407 Behaviour* 85:1169-1175. doi: 10.1016/j.anbehav.2013.03.002

408 Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive
409 phenotypic plasticity. *Proc. R. Soc. B-Biol. Sci.* 277:503-511. doi:
410 10.1098/rspb.2009.1355

411 Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. *Annu.*
412 *Rev. Entomol.* 47:817-844. doi: 10.1146/annurev.ento.47.091201.145300

413 Bailey NW, Gray B, Zuk M (2010) Acoustic Experience Shapes Alternative Mating Tactics and
414 Reproductive Investment in Male Field Crickets. *Current Biology* 20:845-849. doi:
415 10.1016/j.cub.2010.02.063

416 Bauerfeind SS, Fischer K (2008) Maternal body size as a morphological constraint on egg size
417 and fecundity in butterflies. *Basic and Applied Ecology* 9:443-451. doi:
418 10.1016/j.baae.2007.05.005

419 Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of
420 epigenetics. *Genes & Development* 23:781-783. doi: 10.1101/gad.1787609

421 Berkvens N, Bonte J, Berkvens D, Tirry L, De Clercq P (2008) Influence of diet and
422 photoperiod on development and reproduction of European populations of
423 *Harmonia axyridis* (Pallas) (Coleoptera : Coccinellidae). *Biocontrol* 53:211-221. doi:
424 10.1007/s10526-007-9130-0

425 Bernardo J (1996) Maternal effects in animal ecology. *American Zoologist* 36:83-105

426 Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and
427 evidence. *Biol. Rev.* 76:305-339. doi: 10.1017/s1464793101005693

428 Bonduriansky R, Crean AJ (2018) What are parental condition-transfer effects and how can
429 they be detected? *Methods Ecol. Evol.* 9:450-456. doi: 10.1111/2041-210x.12848

430 Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. *Ecol. Lett.* 11:106-115.
431 doi: 10.1111/j.1461-0248.2007.01130.x

432 Buzatto BA, Machado G (2014) Male dimorphism and alternative reproductive tactics in
433 harvestmen (Arachnida: Opiliones). *Behavioural Processes* 109:2-13. doi:
434 10.1016/j.beproc.2014.06.008

435 CABI (2019) *Spodoptera littoralis* Invasive Species Compendium. CAB International,
436 Wallingford, UK

437 Cahenzli F, Erhardt A (2013) Nectar amino acids enhance reproduction in male butterflies.
438 *Oecologia* 171:197-205. doi: 10.1007/s00442-012-2395-8

439 Cahenzli F, Wenk BA, Erhardt A (2015) Female butterflies adapt and allocate their progeny to
440 the host-plant quality of their own larval experience. *Ecology* 96:1966-1973. doi:
441 10.1890/14-1275.1

442 Candolin U (1999) The relationship between signal quality and physical condition: is sexual
443 signalling honest in the three-spined stickleback? *Anim. Behav.* 58:1261-1267. doi:
444 10.1006/anbe.1999.1259

445 Cesar CS, Rossi MN (2019) The interaction effect between intraspecific competition and seed
446 quality on the life-history traits of the seed-feeding beetle *Acanthoscelides*
447 *macrophthalmus*. *Entomologia Experimentalis Et Applicata*. doi: 10.1111/eea.12854

448 Chippindale AK, Leroi AM, Kim SB, Rose MR (1993) PHENOTYPIC PLASTICITY AND SELECTION
449 IN DROSOPHILA LIFE-HISTORY EVOLUTION .1. NUTRITION AND THE COST OF
450 REPRODUCTION. *Journal of Evolutionary Biology* 6:171-193. doi: 10.1046/j.1420-
451 9101.1993.6020171.x

452 DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. *Trends Ecol. Evol.*
453 13:77-81. doi: 10.1016/s0169-5347(97)01274-3

454 Diss AL, Kunkel JG, Montgomery ME, Leonard DE (1996) Effects of maternal nutrition and
455 egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy
456 moth, *Lymantria dispar* L. *Oecologia* 106:470-477. doi: 10.1007/bf00329704

457 Duplouy A, Woestmann L, Gallego Zamorano J, Saastamoinen M (2018) Impact of male
458 condition on his spermatophore and consequences for female reproductive
459 performance in the Glanville fritillary butterfly. *Insect Science* 25:284-296. doi:
460 <https://doi.org/10.1111/1744-7917.12424>

461 Einum S, Fleming IA (2000) Highly fecund mothers sacrifice offspring survival to maximize
462 fitness. *Nature* 405:565-567. doi: 10.1038/35014600

463 Fischer K, Brakefield PM, Zwaan BJ (2003) Plasticity in butterfly egg size: Why larger offspring
464 at lower temperatures? *Ecology* 84:3138-3147. doi: 10.1890/02-0733

465 Fischer K, Fiedler K (2001) Effects of larval starvation on adult life-history traits in the
466 butterfly species *Lycaena tityrus* (Lepidoptera : Lycaenidae). *Entomologia Generalis*.
467 25(4):249-54.

468 Fox CW (1993) THE INFLUENCE OF MATERNAL AGE AND MATING FREQUENCY ON EGG SIZE
469 AND OFFSPRING PERFORMANCE IN *CALLOSOBRUCHUS-MACULATUS* (COLEOPTERA,
470 BRUCHIDAE). *Oecologia* 96:139-146. doi: 10.1007/bf00318042

471 Fox CW, Thakar MS, Mousseau TA (1997) Egg size plasticity in a seed beetle: An adaptive
472 maternal effect. *American Naturalist* 149:149-163. doi: 10.1086/285983

473 Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. *Annual
474 Review of Entomology* 45:341-369. doi: 10.1146/annurev.ento.45.1.341

475 Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A (2014) The maternal
476 transfer of bacteria can mediate trans-generational immune priming in insects.
477 *Virulence* 5:547-554. doi: 10.4161/viru.28367

478 Gross MR (1996) Alternative reproductive strategies and tactics: Diversity within sexes (vol
479 11, pg 92, 1996). *Trends in Ecology & Evolution* 11:263-263

480 Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological
481 perspective. *J. Exp. Biol.* 213:3-16. doi: 10.1242/jeb.019752

482 Katsuki M, Okada Y, Okada K (2012) Impacts of diet quality on life-history and reproductive
483 traits in male and female armed beetle, *Gnatocerus cornutus*. *Ecological Entomology*
484 37:463-470. doi: <https://doi.org/10.1111/j.1365-2311.2012.01390.x>

485 Karlsson K, Eroukhmanoff F, Svensson EI (2010) Phenotypic Plasticity in Response to the
486 Social Environment: Effects of Density and Sex Ratio on Mating Behaviour Following
487 Ecotype Divergence. *Plos One* 5. doi: 10.1371/journal.pone.0012755

488 Karlsson Green, K. The effects of host plant species and larval density on immune function in
489 the polyphagous moth *Spodoptera littoralis*, *Ecology and Evolution*, *In press*

490 Lhomme P, Carrasco D, Larsson M, Hansson B, Anderson P (2018) A context-dependent
491 induction of natal habitat preference in a generalist herbivorous insect. *Behavioral
492 Ecology* 29:360-367. doi: 10.1093/beheco/arx173

493 Lim JN, Senior AM, Nakagawa S (2014) HETEROGENEITY IN INDIVIDUAL QUALITY AND
494 REPRODUCTIVE TRADE-OFFS WITHIN SPECIES. *Evolution* 68:2306-2318. doi:
495 10.1111/evo.12446

496 Moreau J et al. (2017) How Host Plant and Fluctuating Environments Affect Insect
497 Reproductive Strategies? In: Sauvion N, Thiery D, Calatayud PA (eds) *Insect-Plant
498 Interactions in a Crop Protection Perspective*, vol 81. Academic Press Ltd-Elsevier
499 Science Ltd, London, pp 259-287

500 Moreau J, Monceau K, Thiery D (2016) Larval food influences temporal oviposition and egg
501 quality traits in females of *Lobesia botrana*. *Journal of Pest Science* 89:439-448. doi:
502 10.1007/s10340-015-0695-6

503 Moura RR, Gonzaga MO (2019) Spatial variation in sex ratio and density explains subtle
504 changes in the strength of size-assortative mating in *Edessa contermina* (Hemiptera:
505 Pentatomidae). *Acta Oecol.-Int. J. Ecol.* 95:86-92. doi: 10.1016/j.actao.2018.12.003

506 Murphy SM, Loewy KJ (2015) Trade-offs in host choice of an herbivorous insect based on
507 parasitism and larval performance. *Oecologia* 179:741-751. doi: 10.1007/s00442-
508 015-3373-8

509 Perry JC, Rowe L (2010) Condition-dependent ejaculate size and composition in a ladybird
510 beetle. *Proc. R. Soc. B-Biol. Sci.* 277:3639-3647. doi: 10.1098/rspb.2010.0810

511 Pexton JJ, Mayhew PJ (2005) Clutch size adjustment, information use and the evolution of
512 gregarious development in parasitoid wasps. *Behavioral Ecology and Sociobiology*
513 58:99-110. doi: 10.1007/s00265-004-0881-7

514 Pizzari T, Cornwallis CK, Løvlie H, Jakobsson S, Birkhead TR (2003) Sophisticated sperm
515 allocation in male fowl. *Nature* 426:70-74. doi: 10.1038/nature02004

516 Proffit M, Khallaf MA, Carrasco D, Larsson MC, Anderson P (2015) 'Do you remember the
517 first time?' Host plant preference in a moth is modulated by experiences during larval
518 feeding and adult mating. *Ecol. Lett.* 18:365-374. doi: 10.1111/ele.12419

519 Richardson J, Smiseth PT (2019) Effects of variation in resource acquisition during different
520 stages of the life cycle on life-history traits and trade-offs in a burying beetle. *J Evol
521 Biol.* 32(1):19-30.

522 Roy A et al. (2016) Diet dependent metabolic responses in three generalist insect herbivores

523 Spodoptera spp. *Insect Biochem. Mol. Biol.* 71:91-105. doi:
524 10.1016/j.ibmb.2016.02.006

525 Rösvik A, Lhomme P, Khallaf MA, Anderson P (2020) Plant-induced transgenerational
526 plasticity affecting performance but not preference in a polyphagous moth. *Frontiers*
527 in *Ecology and Evolution*. doi: doi: 10.3389/fevo.2020.00254

528 Saastamoinen M, Hanski I (2008) Genotypic and environmental effects on flight activity and
529 oviposition in the Glanville fritillary butterfly. *American Naturalist* 171:E701-E712.
530 doi: 10.1086/587531

531 Sadek MM, Anderson P (2007) Modulation of reproductive behaviour of *Spodoptera*
532 *littoralis* by host and non-host plant leaves. *Basic and Applied Ecology* 8:444-452. doi:
533 10.1016/j.baae.2006.08.001

534 Schaplers A, Nylin S, Carlsson MA, Janz N (2016) Specialist and generalist oviposition
535 strategies in butterflies: maternal care or precocious young? *Oecologia* 180:335-343.
536 doi: 10.1007/s00442-015-3376-5

537 Schaplers A, Petren H, Wheat CW, Wiklund C, Friberg M (2017) Female fecundity variation
538 affects reproducibility of experiments on host plant preference and acceptance in a
539 phytophagous insect. *Proceedings of the Royal Society B-Biological Sciences* 284. doi:
540 10.1098/rspb.2016.2643

541 Schoonhoven LM, van Loo J, Dicke M (2005). *Insect-plant Biology*. Oxford University Press,
542 Oxford.

543 Sinervo B, Svensson E, Comendant T (2000) Density cycles and an offspring quantity and
544 quality game driven by natural selection. *Nature* 406:985-988. doi:
545 10.1038/35023149

546 Singer MS, Rodrigues D, Stireman III JO, Carrière Y (2004) ROLES OF FOOD QUALITY AND
547 ENEMY-FREE SPACE IN HOST USE BY A GENERALIST INSECT HERBIVORE. *Ecology*
548 85:2747-2753. doi: <https://doi.org/10.1890/03-0827>

549 Snell-Rood EC, Steck MK (2019) Behaviour shapes environmental variation and selection on
550 learning and plasticity: review of mechanisms and implications. *Animal Behaviour*
551 147:147-156. doi: 10.1016/j.anbehav.2018.08.007

552 South A, Lewis SM (2011) The influence of male ejaculate quantity on female fitness: a meta-
553 analysis. *Biological Reviews* 86:299-309. doi: 10.1111/j.1469-185X.2010.00145.x

554 Smith CC, Fretwell SD (1974) OPTIMAL BALANCE BETWEEN SIZE AND NUMBER OF
555 OFFSPRING. *American Naturalist* 108:499-506. doi: 10.1086/282929

556 Thöming G, Larsson MC, Hansson BS, Anderson P (2013) Comparison of plant preference
557 hierarchies of male and female moths and the impact of larval rearing hosts. *Ecology*
558 94:1744-1752. doi: 10.1890/12-0907.1

559 Vahed K (1998) The function of nuptial feeding in insects: review of empirical studies.
560 *Biological Reviews* 73:43-78. doi: 10.1017/s0006323197005112

561 West-Eberhard M-J (2003) Developmental plasticity and evolution. Oxford University Press,
562 Inc., New York


563 Wheeler D (1996) The role of nourishment in oogenesis. *Annu. Rev. Entomol.* 41:407-431.
564 doi: 10.1146/annurev.en.41.010196.002203

565 Zakir A, Khallaf MA, Hansson BS, Witzgall P, Anderson P (2017) Herbivore-Induced Changes
566 in Cotton Modulates Reproductive Behavior in the Moth *Spodoptera littoralis*.
567 *Frontiers in Ecology and Evolution* 5. doi: 10.3389/fevo.2017.00049

568

569

570 **Figures**

571

572

573 **Fig. 1** The investment in individual egg weight depending on larval diet in *S. littoralis*. The
574 individual egg weight in the first clutch for females feeding cotton, cabbage or maize, which
575 showed no significant difference (Kruskal-Wallis test with Dunn procedure, $p = 0.29$). Boxes
576 represents 25th and 75th percentiles and error bars represents the 10th and 90th percentiles.

577 Horizontal lines within boxes represent median value and black dots represent the mean.

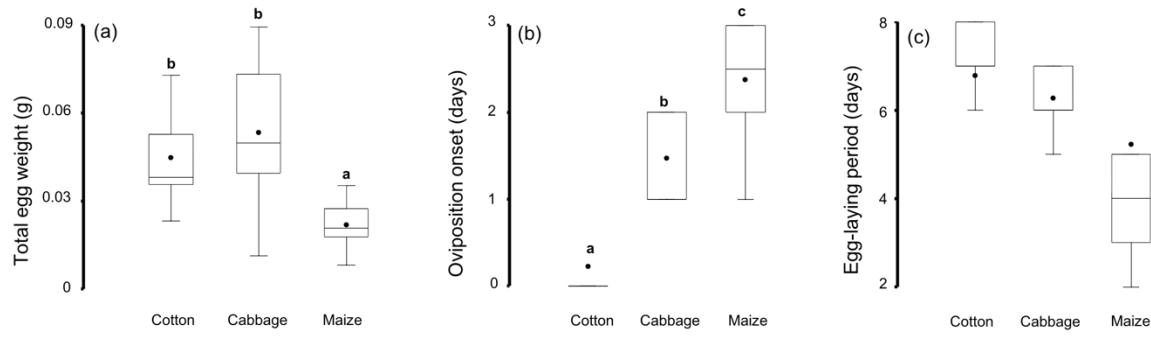
578

579

580

581

582


583

584

585

586

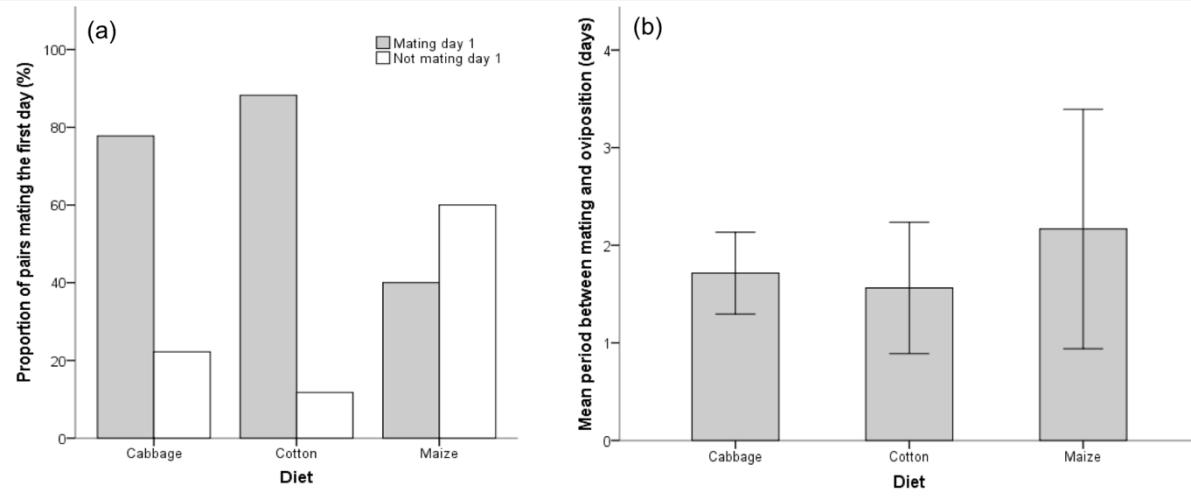
587

588

589 **Fig. 2** Egg production and temporal egg laying behaviour depending on larval host plant in *S.*
590 *littoralis*. (a) The difference in total egg weight that females raised on cotton, cabbage or
591 maize deposited during the experiment ($p = 0.0002$). (b) The difference in oviposition onset
592 (number of days from experiment start until the first egg clutch) for females raised on
593 cotton, cabbage or maize ($p < 0.0001$). (c) The length of the total egg-laying period for
594 females raised on cotton, cabbage or maize (no significant difference, $p = 0.064$). Different
595 letters above boxes indicate significant differences at level $p = 0.005$ in Kruskal-Wallis test
596 with Dunn's procedure. Boxes represents 25th and 75th percentiles and error bars represents
597 the 10th and 90th percentiles. Horizontal lines within boxes represent median value and black
598 dots represent the mean.

599

600


601

602

603

604

605

606
607 **Fig. 3** The effects of delayed mating on oviposition in *S. littoralis*. (a) The proportion of pairs
608 raised on different larval host plants that mated during the first day (GLM, $p = 0.009$). (b) The
609 number of days between mating and oviposition which is equal for all females irrespective of
610 larval host plant species (Kruskal-Wallis test, $p = 0.573$).
611
612
613
614
615
616
617
618
619
620
621
622

623

624