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ABSTRACT

Pigs not only function as a major meat source worldwide but also are commonly used as
an animal model for studying human complex traits. A large haplotype reference panel
has been used to facilitate efficient phasing and imputation of relatively sparse genome-
wide microarray chips and low-coverage sequencing data. Using the imputed genotypes
in the downstream analysis, such as GWASs, TWASs, eQTL mapping and genomic
prediction (GS), is beneficial for obtaining novel findings. However, currently, there is
still a lack of publicly available and high-quality pig reference panels with large sample
sizes and high diversity, which greatly limits the application of genotype imputation in
pigs. In response, we built the pig Haplotype Reference Panel (PHARP) database.
PHARP provides a reference panel of 2,012 pig haplotypes at 34 million SNPs
constructed using whole-genome sequence data from more than 49 studies of 71 pig
breeds. It also provides Web-based analytical tools that allow researchers to carry out
phasing and imputation consistently and efficiently. PHARP is freely accessible at
http://alphaindex.zju.edu.cn/PHARP/index.php. We demonstrate its applicability for pig
commercial 50K SNP arrays, by accurately imputing 2.6 billion genotypes at a
concordance rate value of 0.971 in 81 Large White pigs (~ 17x sequencing coverage).
We also applied our reference panel to impute the low-density SNP chip into the high-
density data for three GWASs and found novel significantly associated SNPs that might
be casual variants.

INTRODUCTION

Over the last decade, because of the rapid development of high-throughput genotyping
technologies, e.g., single nucleotide polymorphism (SNP) arrays (1), reduced-
representation sequencing (RRS) (2,3) and whole-genome sequencing (WGS) (4),
genome-wide association studies (GWASs) have detected thousands of loci associated
with complex traits in animal (5) and human genomes. To date, considering the high
genotyping cost of whole-genome sequencing for thousands of animals or more, the
majority of GWAS:s still use low-density genotyping technologies (at tens of thousands of
sites) such as SNP arrays or RRS. The GWASs based on the low-density SNP panels
have been successful in terms of finding thousands of loci that have been statistically
associated with risks for diseases and traits, and a large number of these loci are well
replicated, indicating that they are true associations (6). However, because there are often
many co-inherited variants in strong linkage disequilibrium (LD) with the most
significant trait-associated variant (lead-SNP), the association of a locus with a
disease/trait does not specify which variant at that locus is actually causing the
association (i.e., the “causal variant”). As a consequence, a higher-resolution view of a
genetic region obtained by adding more variants might be needed to determine which of
the linked variants are functional. Thus, a high-density (1 ~ tens of millions of sites)
genotypes are essential for GWASs, TWASs or eQTL mapping to provide deeper
insights into disease/trait biology.
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Genotype imputation is a more cost-efficient way to obtain a high-density genotype.
Several imputation methods — e.g., BEAGLE (7), IMPUT2 (8), Minimac4 (9) and
GLIMPSE (10) — have been developed to infer unobserved genotypes in one individual
from the estimated haplotypes in a reference panel, which comprises a large number of
markers. Genotype imputation could be beneficial (11) for fine mapping by increasing
the chances of identifying a causal variant, meta-analysis by facilitating the combination
of results across studies using different genotyping arrays, and increasing the power of
association studies by increasing the effective sample size. Therefore, it has been widely
used in genetic research, especially in humans (6), which usually involves genotyping
SNPs in DNA genotyping microarrays (low-density) and then imputing genotypes at tens
of millions of additional sites based on the availability of a large cohort of public
haplotype reference panels (HRPs)., e.g., the 1000 Genomes Project (12) and the
Haplotype Reference Consortium (HRC) (13).

As one of the most important livestock and animal models of human diseases, the genetic
mechanisms of traits in pigs need to be dissected through fine mapping to locate the
causal loci. Recently, pig haplotype reference panels have been begun to be used in pig
genetic studies. For example, Yan et al (14) constructed a reference panel including 403
individuals from 10 populations and applied it to impute 60K SNPs (i.e., the
PorcineSNP60 BeadChip) into whole-genome sequences of 418 Sutai individuals for a
GWAS of lumbar number. They did not detect any significant signals using the original
60K SNPs but rediscovered the missing QTL for lumbar number in Sutai pigs using
imputed-genotypes. Later, Yan et al also constructed a reference panel including 117
individuals and utilized it to impute 60K SNPs onto the whole-genome sequences of
1,020 individuals for a GWAS of haematological traits and found 87 novel quantitative
trait loci (QTLs) for 18 haematological traits at three different physiological stages.
Moreover, a previous study also suggested that using imputation-based whole-genome
sequencing data can improve the accuracy of genomic prediction for combined
populations of pigs (15). However, the pig reference panels in previous studies are either
publicly unavailable or have a small sample size, which is the major determinant of
genotype imputation accuracy (16,17). We only found one publicly available pig
reference panel in Animal-ImputeDB (18), which includes a very small sample size (n =
233). With the increasing amounts of publicly available of pig genomic sequencing data
(more than 25 terabytes), especially in the last five years, it is urgent to use these
resources to construct a reference panel to facilitate a wide application of genotype
imputation in pig genetic studies. Therefore, it is essential to develop a convenient
database to provide a high-quality reference panel with a large sample size and good
evaluation and imputation tools for pig genetic research.

Therefore, the aims of this study are to 1 ) build the largest (in terms of sample size)

reference panel of pigs to date and 11 ) provide a user-friendly online tool for efficient
phasing and imputation of missing genotypes based on a high-quality reference panel.

MATERIALS AND METHODS
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In this study, we built a pig haplotype reference panel that integrates 1,006 individuals’
(Supplementary Figure S1) whole-genome sequence data from our laboratory (n = 84)
and the NCBI SRA database (n = 922) that were publicly available (Supplementary
Table S1), comprehensively evaluated its imputation performance, further developed an
online imputation platform and applied it to GWASs and GSs (Figure 1).

Datasets and their sources

WGS for PHARP building. From 52 pig whole genome sequencing projects collected in
SRA (as of April 2020), we collected 1,097 individuals’ WGS data, including more than
two thousands of experimental datasets (Supplementary Table S1). To increase the
diversity of the reference panel, we also sequenced an additional 84 individuals’ genomes
(including eight breeds). In total, 1,181 individuals’ WGS data from 71 populations were
collected (Supplementary Table S1).

Test data for missing genotype imputation performance based on PHARP. The test data
included (i) WGS data (n = 81, Large White pig breed, depth ranging from 9.7 ~ 38x)
from PRJEB39374 and PRIEB38156; (i1)) WGS data (n = 54, Jiaxinghei pig breed, depth
ranging from 3.5 ~ 12x); (iii) WGS data ( n = 299, Duroc pig breed, ELC depth ~ 1x);
and (iv) individuals genotyped by both the S0K Chip and ELC (n = 20, Duroc pig breed,
ELC depth ~ 1x) (Supplementary Table S1 and Figure S2).

Genotypes and phenotypes data for the GWAS/GS. In total, 1,432 individual genotypes
based on SNP arrays (i.e., the PorcineSNP50 BeadChip, the PorcineSNP60 BeadChip, or
the Seek GGP Porcine 80K SNP chip) and phenotypes of 13 traits related to growth and
fatness and reproduction in two pig breeds (Duroc and Sujiang) were collected from three
previously reported GWASs (19-21) (see details in Supplementary Table S2).

Construction of PHARP

Data processing and variant discovery. We used SRA Toolkit
(https://github.com/ncbi/sra-tools) to download (prefetch) WGS data and convert
(fasterg-dump) them from SRA to FASTQ format; performed quality control, read
filtering and base correction for the raw FASTQ data by using fastp (22) with default
parameters; mapped the high-quality reads to the latest version of the pig reference
genome (Sscrofall.l) using BWA v0.7.17 (23) with the MEM function and the
parameters for paired-end data; converted SAM files to BAM files and merged library
data from individual and multiple experiments into one dataset using samtools
v1.10 (24); removed duplicated reads with sambamba v0.7.1 (25); individually
calculated coverage and depth with Mosdepth v0.2.9 (26); and finally applied GATK
v4d.1.6(27) HaplotypeCaller to each sample to generate an intermediate GVCF,
which was then used in GenotypeGVCF's for joint genotyping across all samples.

Sample filtering. We first removed samples that could not be successfully converted from
SRA to FASTQ format (n = 5, PRJEB29465) and that had a depth less than 4x (n = 166),
as suggested by Jiang et al., (28) to reduce false-positive variant detection in pigs. To
detect possible duplicates, we counted the number of genotypes (measured by Euclidean
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distance using the dist function in R) that differed between each sample pair using the
original genotypes of SNPs after pruning by PLINk v1.9 (--indep-pairwise
50 5 0.2) (29,30). We identified four sample pairs with Euclidean distance outlier
(extremely low values less than 2) as duplicates and removed one of the samples in each
pair as described in Supplementary Figure S3. These filters resulted in a total of 1,006
samples being used for the final phased reference panel.

Site filtering. After sample filtering, we filtered SNPs with the following criteria: (1) “QD
< 2.0, FS>60.0, MQ < 40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, SOR >
3.0”; (2) a minor allele frequency (MAF) < 0.01; and (3) a call rate < 0.9 using GATK
VariantFiltration. After applying these filters, in total 34,135,654 SNPs of
autosomes were retained in the final site list.

Pre-phasing. We applied the SHAPIT v2 (31) method to individually pre-phase the
called genotypes for each autosome, as it was reported that the rephrasing approach
substantially improved imputation accuracy when using the haplotypes (16).

WGS processing of test data

For each genotype imputation performance test dataset from WGS, we used the same
procedure and filtering steps as described above in ‘Construction of PHARP’ to obtain
their genotypes except 1) without MAF filtering and i1 ) keeping only the site within our
reference panel.

Imputation performance estimation

We used the four experiments data sets (related to the three pig breeds) mentioned above
to assess the imputation accuracy performance of our reference panel. Imputation was
carried out using Minmac4 (9), in which parameters were set to default values. The
reference/target panel was pre-phased by SHAPIT v2 (31). We used two measures to
evaluate the imputation accuracy: ( 1) the concordance rate (CR), which is calculated as
the percentage of genotypes imputed correctly among the total imputed genotypes, and
(ii) 72, a correlation-based measure, which is the squared correlation between the true
and imputed doses of an allele across all imputed samples. Five scenarios of genotype
imputation performance estimations are given below.

Mimic chips. To mimic a typical imputation analysis, we created three target panels on
the basis of three chip lists: the Illumina PorcineSNP50 Genotyping BeadChip (50K), the
[llumina PorcineSNP60 v2 Genotyping BeadChip (60K), and the GeneSeek GGP Porcine
80K SNP chip (80K). These pseudo-chip genotypes (from test datasets 1, 2, and 3) were
pre-phased by SHAPIT v2 before being used to impute the remaining genotypes, which
were then compared to the held-out genotypes.

Density of the genotyping array. To estimate the general imputation accuracy affected by
genotype array density, we also created target panels (from test datasets 1, 2, and 3) with
a gradient density of sites as follows: we divided autosomes into bins according to the


https://doi.org/10.1101/2021.06.03.446888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446888; this version posted June 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

physical location at a specific length (we set up bins with a length of 2.5, 5, 10, 20, 40,
50, 60, 80, 100, 200, and 400 kb), and randomly selected one site from each bin. We used
the selected sites to compose new pseudo-chip genotypes, which were then used to
impute the genotypes of unselected sites. We then compared the unselected site
genotypes between imputed and observed (real) data and repeated the above pseudo-chip
genotypes imputation at each specific density five times.

Size of the reference panel. Generally, increasing the size of the reference panel will
increase the imputation accuracy, as a larger panel provides a larger set of template
haplotypes to match against. We randomly selected 10, 30, 50, 100, 200, 400, 600, 800,
and 900 samples from PHARP to construct a subset reference panel (repeated 5 times).
Test dataset 4 and test dataset 1 mimicking a 50K chip were used to estimate the
imputation accuracy.

A breed subset of PHARP. We built two reference panels, i.e., a subset of the Large
White (n = 115) and Duroc (n = 85) pig breeds with the largest sample sizes from
PHARP, to compare the imputation accuracies of different reference panels. The
imputation accuracy was estimated the same way as mentioned in the ‘Size of the
reference panel’ section using the same test data sets.

Comparison with Animal-ImputeDB. To date, we have only found one publicly available
pig reference panel from Animal-ImputeDB (18), containing 233 samples. To keep the
assembly of our test dataset 4 consistent with Animal-ImputeDB (based on Sscrofal(.2),
we used 11 ftOver (the chain file was downloaded from
http://hgdownload.soe.ucsc.edu/goldenPath/susScrl11/1iftOver/) to convert the genome
coordinates of test dataset from Sscrofall.l to Sscrofal0.2. We conformed their
chromosome strand and allele order matched those of the Animal-ImputeDB reference
panel using conform-gt . jar. We only used sites consistent between the reference
panels to enable direct comparison. These 50K genotypes of 20 samples were used to
impute the remaining genotypes, which were then compared to the ELC genotypes of the
same samples.

System design and implementation

The current version of PHARP was developed using MySQL 5.7.27
(http://www.mysql.com) and runs on a Linux-based Apache Web server. PHP 7.0.33
(http://www. php.net/) is used for server-side scripting. We designed and built the
interactive interface using layui (https://www.layui.com/) with the HTML, CSS and JS
frameworks on the Web. We recommend using a modern Web browser such as Google
Chrome (preferred), Firefox, or Safari to achieve the best display effect.

Applications of PHARP

To illustrate the benefits of using the PHARP resource, we applied it to three previously
reported GWASs as mentioned in the ‘Data sets and their sources’ section. For each
study, we first pre-phased individuals by SHAPIT v2 (31) using autosomal SNPs after
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filtering out SNPs with a MAF < 0.01 and a call rate < 0.9. SNPs were also removed if
they could not be remapped to the SusScrofal 1.1 pig reference genome. We next
remotely performed imputation using our PHARP imputation server
(http://alphaindex.zju.edu.cn/PHARP/index.php), and subsequently applied it to
imputation data sets with an imputation quality threshold of R? > 0.4 before association
testing.

GWAS. To make the association results comparable before and after imputation, we
adopted the same association model and significance threshold as described in each
original paper (19-21). Association analysis using a single marker regression model was
implemented in GEMMA v.0.98.1 software (32). The association plots were produced
using the R ggplot2 package.

GS. Datasets included in the aforementioned GWAS (19) was also used to carry out
genomic prediction based on different SNP datasets. The fivefold cross-validation
scheme was adopted to evaluate prediction accuracy. Briefly, the individuals were
randomly separated into five groups with the same sample size, and each time, the
genomic estimated breeding values (GEBVs) of one tested group were predicted using
the phenotypic information of the other four groups and genomic information of all
individuals with the following genomic best linear unbiased prediction (GBLUP) model:

y=1u+Xp+Za+e 1)

where y is the phenotypic vector; u is the overall mean; B is the fixed effect used in the
original studies; and a is a vector of breeding values that is assumed to follow the normal
distribution N (0, Ko?2) , where ¢ is the additive genetic variance and K is the genomic
relationship matrix (GRM) built from three different SNP datasets using GCTA (33) (--
make-grm-alg 1), including ( 1) chip SNPs from the original studies (GBLUP_CHIP);
(ii) imputed SNPs (GBLUP IMP); and (iii) LD-pruned (1> < 0.5) imputed SNPs
(GBLUP_PRUNE) using PLINK (--indep-pairwise 50 5 0.2). e is a vector of the residual
variance following normal distribution N (0, I62), where I is the identity matrix and ¢ is
the residual variance. 1, X and Z are incidence matrices. The variance components and
GEBVs were estimated using the BGLR package (34), and the prediction accuracy was
calculated as the Pearson’s correlation coefficient between the GEBVs and true breeding
values (TBVs), where TBVs were estimated based on the full dataset using the GBLUP
model with the GRM built from the chip SNP dataset as used in Xu et al (19). The
fivefold cross validation was repeated ten times.

RESULTS
Imputation evaluation

To mimic a typical imputation analysis, we first created three datasets by extracting high-
coverage whole-genome sequencing genotypes for 81 Large White pigs at all sites
included in the most popular commercial porcine microarray genotyping platform (50K,
60K, and 80K). These were used to impute the remaining genotypes, which were then
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compared to the held-out genotypes. The imputation accuracy as assessed by the CR
value reached 0.971 to 0.978 (with a ? value from 0.920 to 0.939, Figure 2A and
Supplementary Table S3), indicating that PHARP can be well applied to low-density
genotypes from the current popular commercial porcine microarray genotyping platform
for imputation with high accuracy performance. We also performed the same imputation
accuracy test on the extremely low-coverage whole-genome sequencing genotypes for
299 Duroc pigs. Although the CR value estimated from the Duroc panel decreased
slightly compared to that for the Large White panel, it was still greater than 0.9 (CR =
0.934 to 0.947, = 0.876 to 0.901, Figure 2A and Supplementary Table S3). We
speculated that this might be because the low coverage (~ 1x) probably result in a certain
proportion of heterozygotes being falsely genotyped, causing incorrect haplotype
inference and in turn reducing the imputation accuracy. Finally, we attempted to
investigate the imputation performance of PHARP on pig breeds uncovered in our panel
using a middle-coverage (average of depth was 6.3x) whole-genome sequencing
genotypes for 54 JiaXingHei pigs (JXH, a Chinese indigenous pig breed). The CR value
of JXH decreased to approximately 0.81 (Figure 2A and Supplementary Table S3,
was approximately 0.5), which was expected because low genetic similarity between the
reference and target panels may decrease imputation accuracy.

We next estimated imputation accuracy in a more general scenario by testing a wide
range of densities of SNPs in target panels. As expected, the 7 value increased with a
denser SNPs in the target panels. Specifically, it dramatically increased before a density
of 60 kb per SNP, achieved an average of more than 0.8 (varying from 0.755 to 0.903 in
Large White pigs and 0.840 to 0.902 in Duroc pigs, replicated 5 times, Figure 2B,
Supplementary Figure S4 and Table S4) for the majority of autosomes, and achieved an
average of greater than 0.8 (varying from 0.817 to 0.931 in Large White pigs and 0.876 to
0.925 in Duroc pigs) for all autosomes with a density of 40 kb per SNP. Interestingly, the
densities of commonly used commercial porcine SNP arrays (e.g., S0K, 60K, and 80K)
are exactly between 40 and 60 kb per SNP and are approximately 50 kb per SNP,
suggesting that PHARP has wide applicability to the current porcine SNP arrays for
imputation and can achieve high imputation accuracy.

We then explored factors, such as the size and breed subsets of the reference panel and
the minor allele frequencies (MAFs) of variants in the reference panel, that can affect
imputation accuracy. The 7° value increased with a larger sample size in the reference
panels, which is expected because a larger panel provides a larger set of template
haplotypes to match against, which improves imputation accuracy. It grew slowly after
the size increased to 600 (average of CR =0.969 and 0.919, = 0.912 and 0.856, in
Large White and Duroc pigs, respectively, when the size of the reference panel was 600,
Figure 2C). Moreover, we examined imputation performance using two subsets of
reference panels constructed for the Large White pig breed (n = 114) and the Duroc pig
breed (n = 85). We observed that the 7° value was greater when using PHARP (CR =
0.971, * = 0.920, Figure 2D) than when using only Large White pigs as a reference
panel (CR = 0.964, * = 0.896, Figure 2D), estimated by mimicking 50K SNP array
using the test dataset 1 (81 Large White pigs). However, the 7 value obtained using the
PHARP (CR = 0.926, * = 0.869, Figure 2D) was slightly less than obtained using the
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reference panel (CR = 0.935, r* = 0.885, Figure 2D) including only Duroc pigs estimated
from using the test dataset 4 (20 Duroc pigs). Note that for 20 Duroc pigs, ELC-WGS (~
1x) genotypes were used as ‘real’ genotypes to calculate the imputation accuracy, which
might have underestimated imputation performance because the ELC-WGS probably
caused heterozygotes to be falsely genotyped due to the limitation of the extremely low
sequencing depth. We also investigated imputation accuracy under different MAF bin
sizes. Taking the imputation accuracy estimation of the mimic 50K SNP array from the
Large White target panel as an example, the 7 value surpassed 0.89 when the MAF of
variants was greater than 0.05 and reached 0.762 even when the MAF was less than 0.02
(Figure 2E). Imputation accuracy increase in each bin of the MAF for the other two
denser mimic SNP arrays (60K and 80K, Figure 2E) in comparison with the S0K SNP
array.

We finally compared our reference panel with that from Animal-ImputeDB, which is the
only one publicly available pig reference panel. Test dataset 4 was used to evaluate
performance accuracy. The results showed that PHARP achieved a CR value of 0.921 (+°
= 0.836), whereas Animal-ImputeDB had a CR value of 0.854 (+*= 0.7, Figure 2F),
suggesting that PHARP greatly increased the imputation accuracy.

PHARP imputation server

We developed a user-friendly website to provide an imputation service
(http://alphaindex.zju.edu.cn/index.php, Supplementary Figure S5) using the PHARP
for researchers, which provides the imputation process for a genotype data in variant call
format (VCF) (35). The imputation pipeline includes four main steps: pre-processing,
phasing, imputation, and post-processing. The pre-processing step for uploaded files
consists of checking their format and content validity, summarizing their basic
information such as sample size, and modifying their records to be consistent with our
reference VCF file. After that, the pre-processed data are phased using SHAPIT v2 (31)
or Beagle v5.1 (7) without a reference panel. Then the imputation is carried out with
Minmac4 (9). In the final post-processing step, the output is evaluated and provided as
bgzip-compressed VCF file. Users will be notified by email after the imputation is
completed and the result will be stored on the server for two weeks.

Applications

To illustrate the benefits of using the PHARP resource, we imputed GWASs of 1,432
samples from three studies. This analysis highlighted potential new associations at the
genome-wide suggestive significance threshold of P-value < 1/the number of independent
markers. For example, for the backfat thickness phenotypes, Xu et al. and Zhang et al.
reported two (XKR4 and PENK) and nine (such as GRM4, SNRPC, TSHZ1I and PHLPPI)
associated genes, respectively. Using the PHARP-imputed genotypes, we found novel
genes, such as ANGPTL2, CCLS, TNXB, MC4R, PACSINI, and MLIP (Figure 3A and B,
see more results for other phenotypes in Supplementary Table S2). We also found that it
is possible for PHARP-based imputation to refine signals of association. For example, the
association results using PHARP-based imputation for the backfat thickness phenotype at
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the SNRPC, GRM4 and PACSINI loci are shown in Figure 3C-E. At the SNRPC locus,
the original paper reported that MARC0061142 was the most significant SNP (P-value =
5.42 x 10®) associated with the backfat thickness phenotype. We found a more
significant SNP (chr7:30719820:G:A, P-value = 5.42 x 10-%) with a tight linkage with
this SNP (2 = 0.99), implying a potential causal variant. Similarly, at the GRM4 and
PACSINI loci, we found one (chr7:30191165:T:C, P-value = 1.19 x 10”7, r> = 0.98) and
two (chr7:30509485:C:G and chr7:30509543:C:G, P-value = 8.91 x 10% r?=0.98)
missense variants, potential casual variants, with high linkages with their most significant
SNPs (chr7:30250983:G:C, P-value = 6.08 x 108, and chr7:30497108:T:C, P-value =
1.44 x 10%, Figure 3D-E), respectively.

We also carried out genomic prediction using the chip and the same imputed genotypes
and phenotypes as in the above GWASs. GBLUP IMP and GBLUP PRUNE had higher
prediction accuracies across most traits (except for CW) tested in the datasets of Xu et al.
(Supplementary Table S5).

DISCUSSION

The first release of the PHARP is the largest pig genetic variation resource thus far with
enriched ancestral diversity and has been created by combining data from many different
studies. We searched the NCBI SRA database and identified WGS-based studies of pigs
to collect together as many whole-genome sequencing datasets as possible and joined
them with WGS data from our laboratory to build a much larger combined haplotype
reference panel. By doing so, we provide a single centralized resource for pig genetics
researchers to carry out genotype imputation.

PHARP achieves high imputation performance. We systematically estimated the
imputation performance of PHARP using multiple test datasets. First, PHARP is able to
accurately impute porcine commercial SNP array chips (e.g., S0K, 60K and 80K) for the
most represented pig breeds worldwide, such as the Large White and Duroc pig breeds.
As test dataset 1 includes high-coverage (with an average depth of 17x, Large White pig
breed) whole-genome sequencing, implying high-quality genotyping, we do expect the
imputation performance estimated from these data to be more reliable and find that the
imputation accuracy as assessed by CR value (mimicking a 50K chip) surpasses 0.97

(? > 0.92), suggesting high imputation accuracy. Compared to the test dataset 1, the test
dataset 2 (with an average depth of 1x, Duroc pig breed) had a slightly decreased
imputation accuracy (mimicking a 50K chip, CR = 0.93, 7 = 0.88), possibly caused by a
low density of SNPs (sites covered by the 50K chip that were kept after quality control
were less abundant than those in test dataset 1) and false genotyping of heterozygotes
resulting from low coverage. We also investigated the imputation performance for a pig
breed (JXH) that is not covered in PHARP and found that, as expected, imputation
accuracy decreased (mimicking a 50K chip, CR = 0.81, 7 = 0.49) because of low genetic
similarity between the reference and target panels. To overcome this limitation, we will
substantially increase the ancestral diversity of the panel by sequencing more pig breeds
in the future. Second, imputation accuracy increases with an increasing SNP density in
the target panel and grows slowly after the SNP density surpasses 60 kb per SNP (Figure
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2B), implying that the SNP density of the most popular SNP array chips (e.g., S0K, 60K
and 80K, with SNP densities of 40 ~ 60 kb per SNP) might be enough to achieve high
imputation accuracy for these imputed sites. Third, PHARP is able to accurately impute
genotypes of rare variants. The 7* value is still high under a low MAF ((0,0.02], CR =
0.996, r* = 0.76; (0.02,0.05], CR = 0.99, * = 0.85; mimicking the 50K chip, test dataset
1). Fourth, PHARP has a better imputation performance than the publicly available pig
reference panel in Animal-ImputeDB. The imputation accuracy as assessed by the CR 2
value could be improved from 0.85 (Animal-ImputeDB, 7 = 0.7) to 0.93 (PHARP, ° =
0.84) (test dataset 4, 20 Duroc pigs, S0K), probably because of the large increase in the
sample size in PHARP (n = 1,006). We are planning to sequence decades of breeds that
are not included in the first release of PHARP and add more pig WGS data that are
publicly available worldwide to enlarge the ancestral diversity and sample size.
Therefore, we expect to be able to make future gains in imputation performance.

We have developed centralized imputation server resources to enable pig genetic
researchers to easily carry out imputation, which will greatly facilitate the application of
reference panels in imputation. Users simply upload phased or unphased genotypes, and
imputation is carried out on online servers. The users will be alerted by email once
imputation is completed, at which time they can download the imputed datasets.

We demonstrated the good application of PHARP in pig genetic studies. Increasing the
power of association studies. We could replicate genes well known to be to highly related
to a specific trait. For example, the melanocortin-4 receptor (MC4R) gene is reported to
be related to fatness and growth traits in pigs (36). However, Zhang et al. failed to detect
this signal in D100 and L100 (two phenotypes of fatness and growth traits). Interestingly,
we were able to rediscover this gene using their imputed-genotypes for those two
phenotypes (Supplementary Table S2). Moreover, we found novel candidate genes
associated with a specific trait. For example, using the imputed-genotypes from Xu et al.,
we detected the Angiopoietin-like protein 2 (ANGPTL?2) gene, with the most significant P
value (1.68 x 108, Figure 3A) for backfat thickness. A previous study reported that
ANGPTL? treatment can induce lipid accumulation and increase fatty acid synthesis and
lipid metabolism-related gene expression in mouse liver (37), suggesting that this gene is
an important candidate gene associated with backfat thickness. Fine mapping. Imputation
increases the number of variants and thus provides a higher-resolution view of a genetic
region, thereby increasing the chances of identifying a causal variant. We were able to
find functionally annotated variants, such as missense variants, implying a potential
causal variant, by pinpointing whether they had an LD score with the most significant
SNPs at a locus (Figure 3D-E). Increasing the prediction accuracy of specific traits in
GS. The genomic prediction accuracies obtained using SNP datasets at different densities
(SNP chip, WGS or imputed WGS) were compared in several previous studies (38-40),
and generally, the sparse chip SNPs were sufficient enough to obtain accurate
predictions. The reason might be that the inclusion of many SNPs could also induce more
noise, and the sample size did not match the large number of SNPs. However, the
prediction accuracies obtained using imputed WGS data will be higher for some traits.
We observed this for the traits in the datasets of Xu et al. Some studies also showed that
genomic prediction based on LD-pruned WGS-level SNP datasets could result in higher
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prediction accuracy (41), which could be observed for the dataset of Xu et al., where the
pruned SNP dataset had the highest prediction accuracies for most traits (Supplementary
Table S5). In addition, PHARP might be of great value if we could integrate the results
of GWASSs based on imputed datasets into genomic prediction using genomic feature
BLUP (42) or trait-associated BLUP (43); such a strategy has been validated in several
studies (44,45). We did not validate this strategy because the sample size of the test
dataset is too small.

There is an additional potential utilization of PHARP. Meta-analysis. PHARP can aid in
meta-analysis by generating a common set of variants that can be analysed across
multiple studies to boost power. Different studies often use difference genotyping
platforms (SNP arrays or GGRS), resulting in a small proportion of shared variants. For
example, less than 10% of the SNPs included on the 50K SNP array are included in
GGRS. Genome-wide eQTL mapping. Gene expression levels measured by high-
throughput technologies, such as RNA-Seq, are treated as quantitative traits. Genotypes
are also called using the RNA-Seq data from the same set of individuals and can be
imputed to the WGS level, and statistical analyses are performed to detect associations
between imputed markers and expression traits. Genetic resource identification. PHARP
includes an enriched ancestral diversity that can be used as a control for clustering
analysis. PHARP data can be applied to easily pinpoint an unknow individual/population
as a novel genetic resource or identify which pig breed it is closely related/similar by
doing cluster analysis such as the NJ-trees construction.

CONCLUSIONS

In summary, we generated a large-scale reference panel for pigs, which will be a highly
valuable resource for resolving the deficiency of large-sample-size pig genomic data. We
believe that our efforts will markedly contribute to improving the genotype imputation
accuracy in pigs, and ultimately facilitate genomic research of variants and their roles in
pig complex traits.

In the future, we envisage the reference panel increasing in size and consisting of samples
from a more diverse set of breeds. On the one hand, our group will genotype thousands of
individuals from more than 100 pig breeds using WGS in the upcoming one/two year and
is cooperating with other pig genome research groups to include their WGS data. On the
other hand, more pig WGS data are becoming publicly available. Thus, we expect to
greatly enlarge the sample size of PHARP, which should lead to further gains in
imputation performance, especially for rare variants. Moreover, we will add small indels
into the reference panels and continue to update PHARP.
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FIGURES AND LEGENDS.

Figure 1. Schematic diagram of the pig haplotype reference panel’s construction,
imputation accuracy evaluation, implementation platform and applications. A: Data
resources and processing steps used to construct the PHARP. B: Imputation accuracy
estimation of PHARP on multiple test datasets. C: Imputation platform development. D:
Applications of PHARP in GWASs, GS and other potential studies such as eQTL
mapping and TWAS:s.

Figure 2. Imputation accuracy under different scenarios. A: Mimicing three popular
pig commercial chips (50K, 60K, and 80K) using three datasets by masking all variants
(only autosomes were used) except those on the chips; the held-out genotypes were
considered as ‘real’ to calculate the CR and ° values. B: Boxplot of imputation accuracy
estimated by mimicking the target panel with different densities of SNPs on chromosome
1 using test datasets 1, 2 and 3 (See Supplementary Figure S4 for plots of the remaining
autosomes). C: Boxplot of the imputation accuracy estimated by mimicking 50K chip
genotypes from dataset 1 using different sizes of reference panels constructed by
randomly extracting samples from 1,006 individuals (repeated 5 times). D: Mimicking
the 50K chip genotypes from dataset 1 and 2 and using reference panels constructed by
extracting samples according to pig breed (LW, Large White, n = 114; DU, Duroc, n =
85). E: The imputation accuracies of the different MAF bins ((0, 0.02], (0.02, 0.05],
(0.05, 0.1], (0.1, 0.2], (0.2, 0.3], (0.4 0.5]) estimated by mimicking the 50K chip
genotypes using dataset 1. F: The imputation accuracy estimated from dataset 4 using our
reference panel and that from Animal-ImputeDB. Dataset 1, Large White pig breed, LW,
n = 81; dataset 2, Duroc pig breed, DU, n = 299; dataset 3, Jiaxinghei pig breed, JXH, n =
54; dataset 4, Duroc pig breed, n = 20, pigs were genotyped by both a 50K chip and ELC.

Figure 3. Association signals for growth phenotypes before and after imputation.
Association test statistics on the —log10 (P-value) scale (y-axis) are plotted for each SNP
position (x-axis) for the trait of backfat thickness at an age of 180 days (A), from Zhang
et al., and at 100 kg (B), from Fu et al. To simplify the plot, only the variants with a P-
value less than 1.08x10* are shown, and they are colored according to the annotated
genes. The black-labeled genes are reported in the original paper, and the blue-labeled
genes are novel genes detected after imputation. Examples of potential causal variants
(marked by blue asterisks) in the SNRPC (C), GRM4 (D) and PACSINI (E) genes. Each
dot represents a variant, whose LD (%) with the Chip SNP (marked by blue diamonds) or
the one with the lowest P-value (marked by a black circle) is indicated by the colour of
the dot. The two horizontal lines divide SNPs with P-values < 2.05x10° and < 1.08x10*
(A), and P-values < 6.46x107 and < 1.86x107 (B).
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