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Abstract

Gene expression profiling via RNA-sequencing has become standard for measuring and analyzing the gene
activity in bulk and at single cell level. Increasing sample sizes and cell counts provides substantial
information about transcriptional architecture of samples. In addition to quantification of expression at
cellular level, RNA-seq can be used for detecting of variants, including single nucleotide variants and small
insertions/deletions and also large variants such as copy number variants. The joint analysis of variants
with transcriptional state of cells or samples can provide insight about impact of mutations. To provide a
comprehensive method to jointly analyze the genetic variants and cellular states, we introduce XCVATR,
a method that can identify variants, detect local enrichment of expressed variants, within embedding of
samples and cells. The embeddings provide information about cellular states among cells by defining a
cell-cell distance metric. Unlike clustering algorithms, which depend on a cell-cell distance and use it to
define clusters that explain cell clusters globally, XCVATR detects the local enrichment of expressed
variants in the embedding space such that embedding can be computed using any type of measurement
or method, for example by PCA or tSNE of the expression levels. XCVATR searches local patterns of
association of each variant with the positions of cells in an embedding of the cells. XCVATR also visualizes
the local clumps of small and large-scale variant calls in single cell and bulk RNA-sequencing datasets. We
perform simulations and demonstrate that XCVATR can identify the enrichments of expressed variants.
We also apply XCVATR on single cell and bulk RNA-seq datasets and demonstrate its utility.

Introduction

Gene expression profiling experiments generate large datasets that contain information about the activity
levels of all genes in the transcriptome for large number of samples. The analysis of the complex and high
dimensional data can help identify hidden patterns in the expression levels of driver genes, such as disease
markers'?, and delineation of transcriptional architecture of development. These results help formulate
new hypotheses and perform validations®. RNA-sequencing is the standard approach for profiling gene
expression in large samples*, whereby the cDNA from the isolated RNA is sequenced to provide estimates
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of expression levels of the genes. Unlike gene expression arrays, RNA sequencing provides much more
information than estimation of expression levels such as allele-specific expression and eQTL mapping>~’/,
detection of small variants®, large copy number detection®, and transcriptional dynamics®l. The
decreasing cost of DNA-sequencing enables increasing the sample sizes and thousands of samples are
profiled'? with hundreds of tissues’>*, In parallel to the samples sizes, there are now the single cell
technologies™ ™’ whereby the expression can be measured at the single cell level for thousands of cells
for hundreds of cell types and cellular states. In turn, the amount of information that needs be
summarized and interpreted is increasing at a challenging pace.

One of the main challenges of analyzing these large datasets is efficient summarization of the biological
information. To analyze thousands of samples or cells in a meaningful manner®, one of the first steps in
the analysis is decreasing dimensionality by embedding the cells, such as PCA or tSNE. The embedding
enables summarization of the transcriptomic state of the cells and put them in a simple perspective so
that they can be clustered?®, differential-expression can be assessed among clusters®, cell types can be
assigned?!, and they can be integrated with other datasets across multiple modalities*2. While numerous
embedding techniques are proposed??, these techniques are sometimes only used for visualization
purposes only and there is much work that needs to be performed to utilize the embedding space in
downstream analysis.

In this paper, we focus on integration and interpretation of the genetic variation within the embedding
space that is used to analyze single cell and bulk RNA-sequencing datasets. The main motivation for
developing a new method stems from our observations that cells that are mutated with similar mutations
are generally cluster together in “clumps” that can provide interesting insight. For example, a driver
mutation can manifest a specific transcriptional state on the cells that harbor the mutation. These cells,
are then expected to form the clumps in the embedding coordinates. The most consequential variants are
the large scale CNVs that clearly show clump patterns in tSNE and PCA embeddings of gene expression
levels. XCVATR aims at systematically identifying these expressed variant clumps. Our approach, named
XCVATR, is a flexible and integrated framework for detecting, filtering, and analyzing the association of
the mutations (i.e. enrichment of mutations on embedding space) with the distances that are defined by
the cell-embedding techniques. There are two main aspects that XCVATR is different from clustering
methods that use variant calls to cluster cells®*?®; First, XCVATR utilizes the an existing embedding and
maps the variant allele frequencies on the embedding and detect local patterns of enrichment of the
expressed alleles, i.e., spatial-correlation between the expressed variant?® alleles frequencies and
embedding coordinates. This is different from the clustering methods that define the distance metric
using the variants themselves. Secondly, XCVATR identifies local patterns, unlike the clustering algorithms
that aim at finding a clustering of the cells that optimizes the global clustering of the cells. In addition,
XCVATR sets out to be a self-contained framework for detection, annotation, and filtering of small
variants, and detection and visualization the association of variant allele frequencies in the embedding
space. This way, there is no dependency on other methods and the parameters of variant calling and
filtering can be explicitly controlled.

One of the major components of XCVATR is the embedding that is used to summarize the transcriptomic
states of the cells. The embedding is used to define the cell-cell distances. XCVATR expects the embedding
to preserve locality information, i.e., the cells that are close to each other in the embedding coordinates
are biologically similar to each other. This is a reasonable expectation for number of dimensionality
reduction techniques such as PCA, tSNE, and UMAP. Among these, tSNE and UMAP probabilistically
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preserve locality, i.e., there is a random component in the embedding. We analyze and demonstrate
evidence that the locality information is fairly well-preserved even in the presence of randomness in the
embedding. It should also be noted that the opposite statement does not have to hold, i.e., we do not
expect all cells that are biologically similar to map close to each other in the embedding space. This is a
strict requirement that would require the embedding to preserve biological information almost exactly?’
—itis, however, not necessary to analyze the association of the variants with embedding coordinates and
geometry.

Overall, XCVATR combines various components of the general analysis steps into one flexible package for
identifying, filtering, and visualizing the variants at different levels (reads, variants, embedding) and also
analyzes the spatial distributions. This way, it represents a one-stop-shop for detecting. Single cell data
makes it challenging to combine these steps.

Results
We first overview the XCVATR algorithm then we present the main results.

Overview of XCVATR Algorithm

Figure 1 summarizes the steps of XCVATR algorithm. The input to XCVATR is a mapped read file (such as a
BAM file). While this is natural for single cell data, the bulk datasets contain many BAM files (one for each
replicate), which can also be used in the analysis without and extra pre-processing. These steps are
summarized here (See Methods for details).

XCVATR relies on the distance matrix between cells based on the transcriptomic profiles of cells (or
samples). To generate the distance matrix, the first step is read count quantification for each cell (or
samples), which are used for computing either the embedding coordinates of the cells or building the
distance matrix directly from the expression levels.

Next, XCVATR performs detection and annotation of the genetic variants. The variant detection is
designed to include an integrated and flexible SNV/indel calling step into XCVATR’s variant clump
detection analysis. The variant detection can be parametrized in a relaxed manner so that the users can
evaluate the variant clumps for variants that may be missed with conventional pipelines (i.e., variants with
low allele frequencies, etc). We hypothesized that a relaxed variant calling can be meaningful since the
variants will be further filtered in the context of variant clumping analysis. We therefore suggest the
variant calls from XCVATR should not be used for other types of downstream analysis other than clumping
analysis. If there is a variant call set (i.e. VCF file) generated by other pipelines (GATK?®, Mutect®), the
users can provide these as input and skip the variant detection step. XCVATR uses pileups to identify
candidates SNVs that are passed through several filters. This is a strategy similar to that used by VarScan
suite of variant callers3®3!,

Variant annotation is integrated into XCVATR to make the workflows more flexible and complete.
Although there are well-established protocols and for variant annotation such as VEP3? and AnnoVar®,
these methods occasionally change over time and it becomes challenging to integrate the output of these
tools and provide reproducibility. To get around these, XCVATR performs variant annotation step to
provide a flexible filter to select variants with respect to impact. XCVATR takes variant annotation file (GTF
or GFF) and annotates the variants with respect to their impact on the protein sequence. These variants
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are then annotated and filtered to use the most impactful mutations (See Methods for details of
annotation and variant calling on filters).

Allele Counting. For SNVs and small indels, XCVATR counts the number of mapping reads, for each read,
that support the alternate and reference alleles. This is used to generate the estimated alternative allele
frequency of each variant. XCVATR treats the alternate allele frequency of a variant These are then used
as scores for a variant’s existence on each cell.

For copy number variants (CNVs), the variants are first separated into amplifications and deletions (Fig
1c). CNVs are different from small variants since they can cover large domains as long as the chromosomal
arms. To analyze different length scales, XCVATR performs clumping analysis for large scale (chromosome
arm length) and also at segment level scale. The large scale CNV analysis, there are 44 possible events for
each deletion and amplification. For these, XCVATR first builds a binary count matrix that is analogous to
the alternate allele frequency for the small variants. Each entry in this matrix indicates the existence of
the CNV (row) in the corresponding cell (column). At the segment scale, each CNV is treated as a separate
variant. However, since the CNVs identified in each cell has different coordinates, XCVATR first identifies
the common amplification/deletion events by overlapping the CNVs from cells and identifying the minimal
set of common variants (Fig 1). Next, these common variants are used to build a binary count matrix
similar to the large-scale matrix. XCVATR analysis each of the common and disjoint events as a separate
variant and performs variant clump analysis.

After the alleles are counted, XCVATR can optionally summarize the variants on genes by selecting the
most impactful variant in each cell (or sample) om each protein coding gene. This can filter out and many
variants and provide a clearer view on a gene-level to the user.

Smoothing Scale Selection on the Embedding. XCVATR performs a multi-scale analysis of the distances to
identify the variant clumps. This resembles the multi-scale filters that are used to identify blobs in
images3*%¢, Each scale defines a neighborhood around a cell in the embedding coordinates and is used to
smooth the allele frequencies using a Gaussian filter that is centered on a cell and decreases as the cells
get further from the center cell. The scales, however, must be tuned to the distance metric or the
embedding coordinates. XCVATR performs a scale selection to tune the analysis to the selected cell-cell
distance metric.

For each cell, XCVATR identifies N,, cells that are closest to the corresponding cell (i.e. neighbors). This
defines the close neighborhood of each cell. XCVATR then scans the neighborhood size

(01 X Ncells) > Nv > max (001 X Ncells' 10)

between 1% of the cells (or 10 cells, if lower) and 10% of the cells in the sample (N,.;;5) and computes the
radius of the neighborhood of each. For N,, cell neighborhood of a center cell, neighborhood radius is
defined as the distance of the furthest cell to the current center cell. The minimum and maximum scales
(Omin, Tmax) are defined as the median of the neighborhood radii of all cells computed at the minimum
and maximum neighborhood sizes N,, defined above (See Methods). The scales are used for smoothing
the allele frequencies and identifying the variant clumps.

This computation can be performed efficiently since the distance matrix (unless it is provided) can be
computed quickly from the embedding coordinates using fast matrix multiplications. Neighbor detection
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is performed by sorting the distances and selecting the closest N, cell (or samples). After this step, only
closest neighbors are processed by XCVATR.

Variant Clump Candidate Selection. One of the challenges in clump detection is the large number of cells
that needs to be analyzed in different scales. To decrease the search space, XCVATR performs a cell-
centered analysis, where XCVATR does not aim at modeling the whole embedding space but rather
focuses on the cells, i.e., each detected clump is centered around a specific cell (or sample). We believe
this is a reasonable expectation since the expected clumps are substantially larger than the cell-cell
distances and therefore clump-detection should be accurate even when they are centered around cells.
This way, XCVATR cuts the cost of modeling and searching the whole embedding space and focuses on
cells.

Secondly, in visual evaluation of the variant allele frequency distributions on embeddings, the number of
clumps were observed to be much smaller than the number of samples or cells. Motivated by this, we
designed a candidate pre-selection that decreases the search space for the variant clumps. Given a
smoothing scale g, at the scale a, XCVATR computes a smoothed AF value for each cell:

qsi(a) N(a)(l)| Z P; X exp( )

kEN(a) (D\i

where ¢; denotes that alternate AF of the variant on the j" cell (1 > ¢; > 0), d; ; denotes the distance

between it" and jt"cells in the sample, lea)(i) indicates the set of indices for the cells that are in the
vicinity of the it"cell for the scale a. From the above equation, the smoothed allele frequency of i*" cell,

d_)i(a), is higher when its neighborhood contains many cells with high allele frequencies. In addition, the
smoothed AF depends on the scaling parameter o,. Each scale is processed independently from other
scales. The cells with high smoothed allele frequencies represent the potential variant clump centers in
the embedding coordinates. XCVATR identifies the set of cells as candidates for which the cells in the
neighborhood are strictly lower in terms of smoothed allele frequency (Figure 1):

o= 1) € N@: ¢ > /)

where C, denotes the indices of cells that are clump centers. Above condition defines the candidate clump
centers as the cells which have locally maximum smoothed allele frequencies when they are compared to
the smoothed allele frequencies assigned to all their close neighbors.

Specification of Position and Size of Clumps. Up to current point, we identified a clump by the cell at its
center, which specifies the position of the clump in the embedding space. In addition to the center, it is
also necessary to define the radius of the clump so that the size of the clump can be specified. XCVATR
makes use of the scale parameter at which the clump is identified, i.e., g, at scale a. Thus, all the cells
that are closer than g, to the center of a clump are assigned to this clump. Later on, we provide a method
to detect the most enriched

Variant Clump Evaluation by RD-aware permutation. For each of the cells in C,, (a" scale), the smoothed
allele frequencies are compared to an empirical background. XCVATR utilizes a permutation test to assign
significance to the each of the candidate clump centers. For this, XCVATR generates K permutations of
the AF’s that are assigned to the cells and computes the smoothed AF for all the candidate. For each
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permutation, the smoothed AFs are computed for each candidate clump center. XCVATR then computes
a z-score that is used to rank the clumps.

B — g

A
¢
8¢

One of the important factors is to ensure that the AF provides new information and does not simply
recapitulate the coordinates-based information in the embedding. One example for this is that some cells
may exhibit a cell-specific marker that is not expressed in other cells at all. In this case, a germline variant
will be expressed on these cells while other cells will have no expression of the variant. In such a scenario,
a naive approach would determine that this variant exhibits a clump on the cells where the gene is
expressed. This would be an uninteresting clump that emerges based on the cell-type specificity of the
gene. XCVATR aims at uncovering variant-specific clumps. To filter out these clumps, XCVATR sets a
threshold 7 on the total read depth at which the variant is expressed. XCVATR also reports the read depth
z-score. This way, the clumps are evaluated with respect to the read-depth bias.

Read-level and Cell-level Enrichment of the Alternate Allele Expression in the Clumps. In order to filter
the clumps, XCVATR computes the significance of enrichment of expressed alternate alleles at the read
level and at the cell (or sample) level in each clump. To compute the enrichment at the read level, XCVATR
first computes the total number of alternate and reference reads in all cells. These are used to estimate a
baseline (bulk) alternate AF. Next, for each clump, the total alternate allele supporting reads and total
reads are computed. At scale a, and the bt" clump, these are used to compute the read-level modified
binomial p-value:

, . (a;b) (a;b)
Bin (n5 P p = ARE) = N (M o
. i
n@D) s>
t= (ng:;ff ) +n$;tb) -7)
where nﬁi}b) and ngll;tb) denote the number of reads that support alternate and reference alleles for the

corresponding variant in the b clump that is identified in scale a:

;b . ;b .
B = > (), S = Y ()

=y (@b) - =y (@;h)
JEN, JEN,,

where N,Sa;b) denotes the neighborhood of the center of the clump b at the scale a, and n,..¢(j) indicates

the number of reference alleles in cell j. In above equation, the flip probability is chosen as p = AF;x =
(bulk)

(bul,g” wumeyy Which represents the alternate allele frequency of the variant in the whole bulk sample.

alt ref

The binomial p-value estimates the enrichment of the alternate allele supporting reads in the clump b
when compared to randomly assigning reads to all cells with probability p = AFy%-

n

Next, XCVATR computes enrichment of alternate AF at cell level. At the scale a, XCVATR counts the cells
in the clump b whose alternate allele frequencies are above 1. Next, XCVATR counts the number of cells
in the whole sample for which the alternate allele frequency is above 1. These values are used to compute
a significance of the enrichment of alternate alleles at cell level using Fisher’s exact test:
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FE@b) — FE (Cr(la;b) (])’ C(a:b) (l)’ Cr(lbulk), Cébulk))

where c,(]a;b)(i) indicates the number of cells in clump b in scale a where allele frequency exceeds 7:
;b . ;b
ST () = 2,105 > ).

Similarly, c,(]bulk) indicates the number of cells among all the cells (i.e., bulk) for which the allele frequency
exceeds 17. The read-level and cell-level enrichment estimates are used to filter out clumps that exhibit
low levels of enrichment in comparison to the bulk sample at read and cell (or sample) level.

Finally, XCVATR computes the effective radius for each clump. For each clump, XCVATR iterates over the
cells closest to the clump’s center cell. This way, the neighborhood around the clump’s center are analyzed
as they expand in radius. For each neighborhood, the neighborhood where the cell-level enrichment is
maximized (Fisher’s exact test p-value is minimized) is selected as the effective radius of the clump. After
the clumps are identified, the clump centers and the scale at which they are identified, permutation z-
scores, and alternate allele enrichment statistics, and effective radii are reported in the output.

Visualization. XCVATR provides visualization of the clumps on the embedding coordinates for each
variant. This enables the users to manually evaluate the variants. This can also be helpful to visualize the
cell-type specifications and phenotypic properties in comparison to the clumps. The visualization utilities
are implemented in R and directly make use of the data generated by XCVATR.

Analysis of Detected Variants and Testing of Clumps

To explore the statistics of the identified variants, we analyzed the alternate allele frequency of the
detected variants in bulk (160 Meningioma patients®’) and single cell datasets (BT-S2 sample from
Darmanis et al.3). We observed generally that the detected variants exhibit allele frequency spectrum
that are dominated by alternate AFs of 0% and 100% (Fig. 2) and a slight enrichment at 50%. For the single
cell dataset, substantial portion of the mutations are expressed in small fraction of cells. This is in
concordance with the previous studies?. In the single cell data, we also observed that most of the
mutations are observed in small fraction of cells (Fig 2).

We next quantified our hypothesis that variants clumps are observed in tSNE embeddings. Although we
did manually observe clumps, it is useful to evaluate their existence automatically and objectively. To test
whether the variant clumps frequently occur in embedding coordinates, we computed the average
distance between cells that contain variants with high alternate allele frequencies. If these cells are closer
to each of other than expected by random chance, this provides us with empirical evidence that there is
detectable general clumping behavior of variants. We implemented the above procedure using Darmanis
et al dataset. We computed the distribution of closest distance of cells that contain variants with alternate
AF greater than 1. We computed the same distribution in real and in shuffled data (Fig 2). As the allele
frequencies cutoff, n, increases, we observed that the cells that contain variants with high alternate AFs
are closer to each other compared to the shuffled data, where the allele frequencies are shuffled in read-
depth aware manner. The clumping behavior is much clearer when we performed the same analysis with
CNVs (Fig 2XX). For this, we computed the cell-cell distance distributions for the cells that contain CNVs
(amplifications and deletions). Fig 2XX shows that the distribution of distances are much smaller
compared to the shuffled datasets for both deletions and amplifications. The CNVs exhibit a much
stronger clumping effect compared to the SNVs and indels since they potentially have much stronger
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impact on the transcriptional state of the cells. These results provide evidence for the potential general
clumping of cells with respect to the SNV, indel, and CNV frequencies and they objectively motivate the
need for a method such as XCVATR.

Robustness of Local Statistics and Accuracy of Clump Detection

We evaluated the robustness of local distance statistics from the tSNE coordinates that we use as the
embedding of the single cell RNA-seq data. This is generally necessary because tSNE has a random
component that requires a seed pseudorandom-number generator®. When the seed is changed, or when
tSNE is ran twice with the same seed, the returned coordinates completely change. We analyzed whether
the closest samples are still close when the seed changes. The robustness of the locality of samples is
essential for XCVATR’s clumping analysis since XCVATR aims at detecting the local clumping of the cells
that harbor variants with high alternate AFs. To test the local robustness of the embedding coordinates,
we first ran tSNE as provided by the SEURAT package*® with default parameters using the Darmanis et al.
dataset. tSNE coordiantes are generated 100 times while changing the seed number with every run. Next,
for each cell, we identified the neighborhoods upto 600 closest neighboring cells (out of 1,170 cells in
total). For each of the 100 embeddings, we computed the number of unique cells at each of the 600
distinct closest neighborhoods and plotted the average number unique cells at each neighborhood size,
which is shown in Figure 2. Compared to the shuffled dataset where we start with the shuffling of the cell
identifiers coordinates, the real data shows strong preservation of the embedding. At each neighborhood
size, which determines the rank or strength of locality, the real dataset contains on average between 1
and 3 unique cells for each closest cell. In addition, this average does not change with increasing
neighborhood size. For shuffled data control data, the average number of unique cells for each closest cell
increases to as high as 60 cells for each additional closest neighbor. It should be noted that these results
only attest to the robustness of locality statistics. Over the neighborhoods covering more than 25% of the
cells, the randomized and real locality statistics are very similar, which suggests that the clumps that
contain larger than 25% of the cells may be non-robust and non-reproducible between different runs of
tSNE.

Next, we tested the accuracy of multiscale clump detection approach. In order to have a ground truth, we
simulated one clump and ran XCVATR to detect this simulated clump. For this, we simulated variant
clumps on the tSNE embedding coordinates (See Methods) from the Darmanis et al. study. First, a cell is
randomly selected and is designated as the known clump center. We simulated two parameters in the
simulations. First is the scale parameter, which determines the size of the simulated clump. Second
parameter is the strength of the clump (we refer to as “AF weight”), this is tuned by a parameter that
enforces high AFs to be assigned closer to the center of the simulated clump. This parameter tunes how
strong the AF is distributed around the clump. We simulated 5 different scales and 6 different AF weight
parameters and for each parameter combination, we simulated 100 randomly selected clump centers.
For each simulation, an alternate read count matrix is generated for the 1,170 cells in the simulated
dataset and is input to XCVATR. The accuracy of the simulation is evaluated by comparison of the known
clump center and the centers of the clumps detected by XCVATR. Any clump that is detected within less
than 1% of the whole embedding space radius is deemed a match. We evaluated the fraction of times
XCVATR was able to identify the cell at the center of the clumps correctly. We also recorded the number
of clumps that are identified by XCVATR. Figure 2 shows these accuracy statistics.
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We also evaluated how the RD-aware permutation impacts the identified clumps. For this, we identified
the clumps from Darmanis et al. dataset with and without the RD-aware shuffling. We next plotted the
distribution of the cell-level enrichment Fisher’s Exact test p-value from of the clumps detected with and
without RD-aware shuffling (Fig. 2). We observed that the RD-aware shuffling enables detection of clumps
with higher enrichment of cells with variants that are expressing higher alternate alleles. This analysis
provides evidence that RD-aware shuffling can be helpful to identify clumps that are enriched more in
cells expressed alternate alleles.

Single Cell Glioma Datasets

For demonstration of data analysis using XCVATR, we first focused on the analysis of Darmanis et al, which
contains single-cell RNA sequencing of 4 patients with glioma brain tumors using the Smart-Seq2
technology®. The advantage of Smart-Seq2 is that it provides a more uniform coverage compared to
technologies such as Drop-Seq and 10X where there is a 3’-bias on the transcript*>. While the bias can
potentially bias the variant detection step, XCVATR does not require the variants to be complete or
unbiased since each variant is analyzed independent of the other variants. The datasets were downloaded
from GEO (Accession number GSE84465). We found 3590 cells from the metadata that were processed
and mapped using Hisat2. We used the tSNE that is provided by the original study. Figure 3 shows the
distribution of the cells from all the samples. After initial inspection of the samples, we focused on the
sample with id “BT_S2” that contains the most impactful events in terms of the copy number variants,
SNVs, and the indels. Also, this sample had 1170 cells and sequenced as one of the largest sample
sequenced. Figure 3a shows an example of a clump that is identified by XCVATR for the deletion of
chromosome arm 17q, which is identified as the top clump among other large-scale deletions. This is a
well-known deletion that is observed in glioma tumors. Two clumps are highlighted on the malignant cells.
Fig 3b highlights the deletion clumps on the 17p, 10q, and 22q arms, that are reported as the top CNVs.
While these results are partially expected, these corroborate the clump detection performed by XCVATR.

We next analyzed the SNVs and indels identified by XCVATR. One of the top deleterious variants that is
detected by XCVATR is on TP53, which codes for a well-known DNA-repair protein (Figure 3c). This figure
also shows the smoothed allele frequencies on all the cells. This mutation is also found in the COSMIC
catalogue and is marked as deleterious. The smoothed signals show that there is a clear enrichment of
the alternate allele frequencies among the malignant cells. One of the main aspects of clump detection is
the read-depth at which each cell harbors the variants, which is shown in the bottom panel in Figure 3c.
We also identified that several other genes, including TCTN3 and MTG1, which are highlighted in Figure
3c as forming significant clumps on the same set of cells. Interestingly, these genes are also mutated in
some of the normal cells as it is seen on the tSNE embedding. These genes have been implicated with
tumor biology in previous studies. These results highlight that clump detection can provide additional
insight in analysis of tumor RNA-sequencing datasets.

Bulk RNA-Sequencing from 160 Meningioma Samples

We finally used XCVATR to analyze the SNV and indels in bulk RNA-sequencing datasets. For this, we used
an existing bulk RNA-sequencing dataset from a cohort of 160 meningioma patients’. We used XCVATR
to detect and annotate variants (See Methods) and filter with respect to impact and population frequency
(See Methods). Next, the identified variants are summarized to gene-level events. We generated the gene
expression matrix and performed tSNE to generate the embedding of the data. We next ran XCVATR to
identify the strong variant clumps. In order to evaluate the effect of tSNE parameters (namely the
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perplexity parameter, number of top variable genes, and minimum expression cutoff) that are used to
detect the clumps, we ran tSNE on 180 different parameter combinations and ran XCVATR in each of the
embeddings. We next analyzed the genes that are associated with the top scoring clumps (Fig 4). We saw
that the top scoring clumps are associated with KLF4, AKT1, and TRAF7 gene mutations, which are most
frequently reported by XCVATR among 180 different embedding parameters that were used. These three
mutations are also reported as recurrent events in meningioma tumors*. Interestingly, the clumps
associated with NF2 mutations (which are strong and most common drivers of meningioma) were scored
lower in the XCVATR'’s clump analysis (Fig 4). This result provides evidence that XCVATR can help uncover
biologically relevant mutations in bulk RNA-seq samples.

Discussion

We presented XCVATR, a method that analyzes the spatial enrichment of expressed variant alleles, i.e.,
local clumps in the cell and sample embeddings. XCVATR makes use of local spatial geometry of the
embedding and multiscale analysis to provide a comprehensive workflow for detecting expressed variant
clumps. These clumps can be used provide insight into driver genes and mutations by visualizing them on
the embeddings, if possible. To provide as much control as possible, XCVATR integrates the variant
detection, annotation, filtering, and clump detection in one package. This way, XCVATR does not explicitly
have any requirements on variant calling methods such as GATK*. We hypothesize that this high level of
control on variant calls is especially important since the variant calling can be made as relaxed as possible
to provide a comprehensive set of variant calls, which can be stringently filtered at the clump detection
stage. This way, rare somatic variants in cancer samples can be more inclusively analyzed compared to
other existing pipelines that may miss rare variants with the default calibrated parameters*. One of the
current limitations is that the concept of a clump needs more refinement and should be more discretely
defined. In addition, the different embedding strategies should be surveyed to evaluate how embedding
strategy and dimensions impact the clump identification.

Methods

XCVATR algorithm’s methodology is summarized in Figure 1. XCVATR takes BAM formatted mapped read
files. The bulk datasets that contain many BAM files, a BAM file per sample, can also be input to XCVATR.
XCVATR makes use of samtools to process the BAM files and depends on a samtools installation.

Quantification and Distance Matrix Generation. First, XCVATR quantifies reads on each gene for each cell
(or sample). XCVATR makes extensive use of “CB:Z:” tag that is assigned by CellRanger software suite for
assigning reads to different cells. This tag is also used internally by XCVATR to process bulk samples so
that same implementation can handle single cell and bulk samples. The count matrix is used for generating
the embedding of the cells in lower dimensions that will be used in the detection of variant clumps on the
embeddings. The count matrix can also be used for building cell-to-cell distance matrix that can be used
by XCVATR. Currently, XCVATR can provide tSNE and UMAP* based embeddings of the cells into lower
dimensions and XCVATR uses the distances from these embeddings. For single cell datasets, XCVATR uses
SEURAT package to generate the tSNE/PCA/UMAP-based embeddings. For bulk samples, XCVATR utilizes
“rtsne” function.

Variant Detection and Annotation. Next, XCVATR performs detection and annotation of the genetic
variants. This step can be optionally skipped in case there is a variant call set (i.e. VCF file) generated by
other pipelines (GATK%, Mutect?). The users can provide these as input and skip the variant detection
step.
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SNV Detection. XCVATR makes use of pileups to identify SNVs. To identify SNVs, the deduplicated
(samtools) and mapping quality filtered reads (mapQ>30) from all cells are used to generate a pileup of
the nucleotides at each position on the genome. Next, the candidates are filtered with respect to a
minimum alternate AF cutoff. XCVATR also filters variants with respect to strand bias. For this, XCVATR
build strand specific pileups and analyzes these pileups jointly to make sure the identified variants are not
technical artefacts.

Indel Detection. XCVATR performs scanning to identify the reads that support indels and clusters them to
identify insertions and deletions. These are filtered with respect to mapQ and allele frequency.

Variant Annotation. XCVATR takes variant annotation file (GTF or GFF) and annotates the variants with
respect to their impact on the protein sequence. XCVATR maps the variants onto the transcripts that are
specified on the GFF files. They are classified with respect to their location: CDS, splice, start/stop codons.
For the mutations on the CDSs, the mutations are mapped on the coding sequences and coding impacts
are evaluated: For SNVs, the variants are classified into synonymous, non-synonymous, splice altering,
start/stop loss/gain. These are the most important impacts that we handle in XCVATR. For indels, the
variants are classified into frameshift/in-frame (CDS overlapping length is multiple of 3 indicates in-frame),
splice altering, start/stop loss.

Allele Counting. For SNVs and small indels, XCVATR counts the number of mapping reads, for each read,
that support the alternate and reference alleles. This is used to generate the estimated alternative allele
frequency of each variant. XCVATR treats the alternate allele frequency of a variant These are then used
as scores for a variant’s existence on each cell.

For copy number variants (CNVs), the variants are first separated into amplifications and deletions (Fig
1c). CNVs are different from small variants since they can cover large domains as long as the chromosomal
arms. To analyze different length scales, XCVATR performs clumping analysis for large scale (chromosome
arm length) and also at segment level scale. The large scale CNV analysis, there are 44 possible events for
each deletion and amplification. For these, XCVATR first builds a binary count matrix that is analogous to
the alternate allele frequency for the small variants. Each entry in this matrix indicates the existence of
the CNV (row) in the corresponding cell (column). At the segment scale, each CNV is treated as a separate
variant. However, since the CNVs identified in each cell has different coordinates, XCVATR first identifies
the common amplification/deletion events by overlapping the CNVs from cells and identifying the minimal
set of common variants (Fig 1). Next, these common variants are used to build a binary count matrix
similar to the large-scale matrix. XCVATR analysis each of the common and disjoint events as a separate
variant and performs variant clump analysis.

Gene Level Summarization of SNVs/Indels. After the allele counting, XCVATR iterates over each cell and
each gene and assigns the highest impacting mutations allele count to this gene:

SAF,

r vAFYSTk > 0;Vvar, € V,

cell; gv

peell; = { max (vAF voTk impact(vary) > impact(varm))

cell;
VvarEVg]

The gene-level summarization takes into account the positioning of the variants and removes some of the
information. It is worth noting that summarization is an optional step as the clump detection can be
performed at the variant level.
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Smoothing Scale Selection on the Embedding. XCVATR performs a multi-scale analysis of the distances to
identify the variant clumps. Each scale defines a neighborhood around a cell in the embedding coordinates
and is used to smooth the allele frequencies using a Gaussian filter that is centered on a cell and decreases
as the cells get further from the center cell. The scales are tuned to the distance metric or the embedding
coordinates. XCVATR performs a scale selection to tune the analysis to the selected cell-cell distance
metric.

For each cell, XCVATR identifies N, cells that are closest to the corresponding cell (i.e. neighbors). This
defines the close neighborhood of each cell. XCVATR then scans the neighborhood size

(01 X Ncells) > NV > max (001 X Ncellsr 10)

between 1% of the cells (or 10 cells, if lower) and 10% of the cells in the sample (N_.;;5) and computes the
radius of the neighborhood of each. For N,, cell neighborhood of a center cell, neighborhood radius is
defined as the distance of the furthest cell to the current center cell. The minimum and maximum scales
(Omin, Tmax) are defined as the median of the neighborhood radii of all cells computed at the minimum
and maximum neighborhood sizes N,, defined above (See Methods). The scales are used for smoothing
the allele frequencies and identifying the variant clumps.

This computation can be performed efficiently since the distance matrix (unless it is provided) can be
computed quickly from the embedding coordinates using fast matrix multiplications. Neighbor detection
is performed by sorting the distances and selecting the closest N, cell (or samples). After this step, only
closest neighbors are processed by XCVATR.

Variant Clump Candidate Selection. One of the challenges in clump detection is the large number of cells
that needs to be analyzed in different scales. To decrease the search space, XCVATR performs a cell-
centered analysis, where XCVATR does not aim at modeling the geometry of the embedding space but
rather focuses on the cells, i.e., each detected clump is centered around a specific cell (or sample). We
believe this is a reasonable expectation since the expected clumps are substantially larger than the cell-
cell distances and therefore clump-detection should be accurate even when they are centered around
cells. This way, XCVATR cuts the cost of modeling and searching the whole embedding space and focuses
on cells.

Secondly, in visual evaluation of the variant allele frequency distributions on embeddings, the number of
clumps were observed to be much smaller than the number of samples or cells. Motivated by this, we
designed a candidate pre-selection that decreases the search space for the variant clumps. Given a
smoothing scale o, at the scale a, XCVATR computes a smoothed AF value for each cell:

#" - N(a)(l)| 2 d”xeXp( )

kEN(a) (D\i

where ¢; denotes that alternate AF of the variant on the jt* cell (1 > ¢; > 0), d; ; denotes the distance
between it" and jthcells in the sample, N,Ea)(i) indicates the set of indices for the cells that are in the
vicinity of the it"cell for the scale a. From the above equation, the smoothed allele frequency of i*" cell,
q,'_)l.(a), is higher when its neighborhood contains many cells with high allele frequencies. In addition, the

smoothed AF depends on the scaling parameter g,. Each scale is processed independently from other
scales. The cells with high smoothed allele frequencies represent the potential variant clump centers in
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the embedding coordinates. XCVATR identifies the set of cells as candidates for which the cells in the
neighborhood are strictly lower in terms of smoothed allele frequency (Figure 1):

Co={i1Vj € NP D): (% > (™)

where C, denotes the indices of cells that are clump centers. Above condition defines the candidate clump
centers as the cells which have locally maximum smoothed allele frequencies when they are compared to
the smoothed allele frequencies assigned to all their close neighbors.

Specification of Position and Size of Clumps. Up to current point, we identified a clump by the cell at its
center, which specifies the position of the clump in the embedding space. In addition to the center, it is
also necessary to define the radius of the clump so that the size of the clump can be specified. XCVATR
makes use of the scale parameter at which the clump is identified, i.e., g, at scale a. Thus, all the cells
that are closer than g, to the center of a clump are assigned to this clump. Later on, we provide a method
to detect the most enriched

Variant Clump Evaluation by RD-aware permutation. For each of the cells in C, (a‘"* scale), the smoothed
allele frequencies are compared to an empirical background. XCVATR utilizes a permutation test to assign
significance to the each of the candidate clump centers. For this, XCVATR generates K permutations of
the AF’s that are assigned to the cells and computes the smoothed AF for all the candidate. For each
permutation, the smoothed AFs are computed for each candidate clump center. XCVATR then computes
a z-score that is used to rank the clumps.

6P — g

7z
¢
8¢

One of the important factors is to ensure that the AF provides new information and does not simply
recapitulate the coordinates-based information in the embedding. One example for this is that some cells
may exhibit a cell-specific marker that is not expressed in other cells at all. In this case, a germline variant
will be expressed on these cells while other cells will have no expression of the variant. In such a scenario,
a naive approach would determine that this variant exhibits a clump on the cells where the gene is
expressed. This would be an uninteresting clump that emerges based on the cell-type specificity of the
gene. XCVATR aims at uncovering variant-specific clumps. To filter out these clumps, XCVATR sets a
threshold 7 on the total read depth at which the variant is expressed. XCVATR also reports the read depth
z-score. This way, the clumps are evaluated with respect to the read-depth bias.

Read-level and Cell-level Enrichment of the Alternate Allele Expression in the Clumps. In order to filter
the clumps, XCVATR computes the significance of enrichment of expressed alternate alleles at the read
level and at the cell (or sample) level in each clump. To compute the enrichment at the read level, XCVATR
first computes the total number of alternate and reference reads in all cells. These are used to estimate a
baseline (bulk) alternate AF. Next, for each clump, the total alternate allele supporting reads and total
reads are computed. At scale a, and the bt" clump, these are used to compute the read-level modified
binomial p-value:
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) ) (a;b) (a;b)
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(a;b) (a;b)
where Noyef and n,;, ~ denote the number of reads that support alternate and reference alleles for the

corresponding variant in the b clump that is identified in scale a:

(a;b) _ , (a;b) _ .
WP = Y () w0 = D na)
jenge jeng)

where N,Ea;b) denotes the neighborhood of the center of the clump b at the scale a, and n,..¢(j) indicates
the number of reference alleles in cell j. In above equation, the flip probability is chosen as p = AFy,,;, =

(bulk)
—Gue g, Which represents the alternate allele frequency of the variant in the whole bulk sample.
alt ref

The binomial p-value estimates the enrichment of the alternate allele supporting reads in the clump b
when compared to randomly assigning reads to all cells with probability p = AFy,%-

Next, XCVATR computes enrichment of alternate AF at cell level. At the scale a, XCVATR counts the cells
in the clump b whose alternate allele frequencies are above 1. Next, XCVATR counts the number of cells
in the whole sample for which the alternate allele frequency is above 1. These values are used to compute
a significance of the enrichment of alternate alleles at cell level using Fisher’s exact test:

FE@b) — g (C,(]a;b) (])’ Céa:b) (])’ C,(,bulk), Cébulk))
where c,sa;b)(j) indicates the number of cells in clump b in scale a where allele frequency exceeds 7:

ey () = 2165 > m).

(bu
n
exceeds 17. The read-level and cell-level enrichment estimates are used to filter out clumps that exhibit

low levels of enrichment in comparison to the bulk sample at read and cell (or sample) level.

Similarly, c ") indicates the number of cells among all the cells (i.e., bulk) for which the allele frequency

Finally, XCVATR computes the effective radius for each clump. For each clump, XCVATR iterates over the
cells closest to the clump’s center cell. This way, the neighborhood around the clump’s center are analyzed
as they expand in radius. For each neighborhood, the neighborhood where the cell-level enrichment is
maximized (Fisher’s exact test p-value is minimized) is selected as the effective radius of the clump. After
the clumps are identified, the clump centers and the scale at which they are identified, permutation z-
scores, and alternate allele enrichment statistics, and effective radii are reported in the output.

Visualization. XCVATR provides visualization of the clumps on the embedding coordinates for each
variant. This enables the users to manually evaluate the variants. This can also be helpful to visualize the
cell-type specifications and phenotypic properties in comparison to the clumps. The visualization utilities
are implemented in R and directly make use of the data generated by XCVATR.

CNV Calling by CaSpER. We have used CaSpER?® for detecting the copy number variants.
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Figure Legends
Figure 1. The steps of XCVATR algorithm.

Figure 2. The analysis of clumping behavior and statistics of CNVs, SNVs. The conservation of local
statistics by tSNE with different parameters and pseudorandom seeds.

Figure 3. The analysis of small and large scale CNV clumps from Darmanis et al single cell RNA-seq
dataset.

Figure 4. The analysis of the expressed variant clumps in 160 meningioma RNA-sequencing datasets.
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Fig. 2: AF distributions + Multiple variants on genes (Bulk — Meningioma 160 Samples)
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Fig. 2. De-novo clumping stats
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Fig. 2: tSNE’s locality preserving statistics
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Fig 2. Covg.-aware vs 03
non-aware shuffling
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Fig. 3. Darmanis etal (CNVSs)
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Fig. 3a. Darmanis etal (CNVSs)
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Fig. 3c. Single nucleotide mutations
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Fig. 4. Bulk Meningioma
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Fig. 4. Bulk Meningioma
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