

1

2 **Structure of the phosphoinositide 3-kinase p110 γ -p101 3 complex reveals molecular mechanism of GPCR activation**

4 Manoj K Rathinaswamy^{1*}, Udit Dalwadi^{2*}, Kaelin D Fleming¹, Carson Adams^{3,4}, Jordan
5 TB Stariha¹, Els Pardon^{5,6}, Minkyung Baek^{3,4}, Oscar Vadas⁷, Frank DiMaio^{3,4}, Jan
6 Steyaert^{5,6}, Scott D Hansen⁸, Calvin K Yip^{2%}, John E Burke^{1,2%}

7 ¹Department of Biochemistry and Microbiology, University of Victoria, Victoria, British
8 Columbia, Canada

9 ²Life Sciences Institute, Department of Biochemistry and Molecular Biology, The
10 University of British Columbia, Vancouver, British Columbia, Canada

11 ³Department of Biochemistry, University of Washington, Seattle, WA, USA

12 ⁴Institute for Protein Design, University of Washington, Seattle, WA, USA

13 ⁵Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
14 ⁶VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium

15 ⁷Department of Microbiology and Molecular Medicine, University of Geneva, Geneva,
16 Switzerland

17 ⁸Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA

18 *These authors contributed equally

19 [%]To whom correspondence should be addressed: Calvin K Yip, calvin.yip@ubc.ca;
20 John E Burke, jeburke@uvic.ca

21

22 **Abstract**

23 The class IB phosphoinositide 3-kinase (PI3K), PI3K γ , is a master regulator of immune
24 cell function, and a promising drug target for both cancer and inflammatory diseases.
25 Critical to PI3K γ function is the association of the p110 γ catalytic subunit to either a p101
26 or p84 regulatory subunit, which mediates activation by G-protein coupled receptors
27 (GPCRs). Here, we report the cryo-EM structure of a heterodimeric PI3K γ complex,
28 p110 γ -p101. This structure reveals a unique assembly of catalytic and regulatory subunits
29 that is distinct from other class I PI3K complexes. p101 mediates activation through its
30 G β γ binding domain, recruiting the heterodimer to the membrane and allowing for
31 engagement of a secondary G β γ binding site in p110 γ . Multiple oncogenic mutations
32 mapped to these novel interfaces and enhanced G β γ activation. A nanobody that
33 specifically binds to the p101-G β γ interface blocks activation providing a novel tool to
34 study and target p110 γ -p101-specific signaling events *in vivo*.

35

36

37

38

39

40

41

42

43

44 **Introduction**

45 The class I phosphoinositide 3-kinase (PI3K) family of heterodimeric enzyme
46 complexes are master regulators of numerous essential functions, including growth,
47 survival, proliferation, and metabolism (1-3). Activation of PI3Ks downstream of cell-
48 surface receptors leads to production of the lipid signal phosphatidylinositol 3,4,5, tri-
49 phosphate (PIP₃), which activates multiple downstream signaling pathways. The lipid
50 kinase activity of class I PI3Ks is mediated by the p110 catalytic subunit of which there
51 are four isoforms, split into class IA (p110 α , p110 β , p110 δ) and class IB (p110 γ) based
52 on their association with distinct regulatory subunits. Class IB p110 γ binds to either a
53 p101 or p84 (also called p87) adaptor subunit (4, 5), which mediate activation by upstream
54 stimuli.

55 The class IB p110 isoform p110 γ , encoded by *PIK3CG* is a master regulator of
56 immune cell function (6), chemotaxis (7), cytokine release (8), and reactive oxygen
57 species generation (9), which are important processes for both the innate and adaptive
58 immune systems. It is a key factor in multiple inflammatory diseases, including
59 rheumatoid arthritis (10), atherosclerosis (11), Lupus (12), allergy (8, 13, 14),
60 cardiovascular diseases (15), obesity related changes in metabolism (16), and pulmonary
61 fibrosis (17). The immunomodulatory effects of PI3K γ are drivers of pancreatic ductal
62 adenocarcinoma (18) and targeting PI3K γ in combination with checkpoint inhibitors has
63 shown promise as an anti-cancer therapeutic (19, 20). Its ability to mediate multiple
64 immune cell functions is controlled by its activation downstream of diverse cell surface

65 receptors, including G-protein coupled receptors (GPCRs) (21), the IgE/Antigen receptor
66 (8), receptor tyrosine kinases (22), and Toll-like receptors (TLRs) (23, 24).

67 Structural and biophysical analysis have provided initial insight into the regulation
68 of p110 γ and its activation by upstream stimuli. The structure of a p110 γ fragment
69 revealed a conserved molecular architecture shared by all p110 subunits composed of a
70 Ras Binding Domain (RBD) which mediates activation by the small GTPase Ras (25), a
71 C2 domain, an armadillo repeat helical domain, and an archetypal bi-lobial kinase domain,
72 similar to protein kinases (26) (Fig. 1A). Sequence analysis suggested the presence of a
73 ubiquitin-like domain at the N-terminus, possibly playing a similar function as the Adaptor
74 Binding Domain (ABD) of class IA PI3Ks. Both p101 and p84 differ from the class IA PI3K
75 regulatory subunits, as they are not essential for p110 stability and do not inhibit lipid
76 kinase activity (27), but instead mediate activation by upstream stimuli. The molecular
77 basis for why regulatory subunits differentially regulate class IA and IB PI3Ks has
78 remained elusive.

79 The class I PI3Ks are frequently mis-regulated in multiple human diseases (28).
80 This is most evident by the high frequency of hotspot somatic activating mutations found
81 in *PIK3CA* (encodes for p110 α) in multiple human cancers (29, 30). The other class I
82 PI3K isoforms are also potentially involved in cancer, with overexpression of these p110
83 catalytic subunits leading to oncogenic transformation in cells (31). Both overexpression
84 of *PIK3CG* and rare point mutations spanning the catalytic subunit have been identified
85 in tumor biopsies (32-34). The mechanisms by which these mutations affect lipid kinase
86 activity cannot be clearly explained by the existing structure of the catalytic subunit alone,

87 highlighting the importance of understanding the molecular details of PI3K γ regulatory
88 complexes.

89 PI3K γ is mainly activated downstream of GPCRs, where the presence of different
90 adaptor subunits greatly modulates activation. The p84 and p101 subunits show distinct
91 expression profiles, and alter PI3K γ signaling responses to distinct upstream inputs (35).

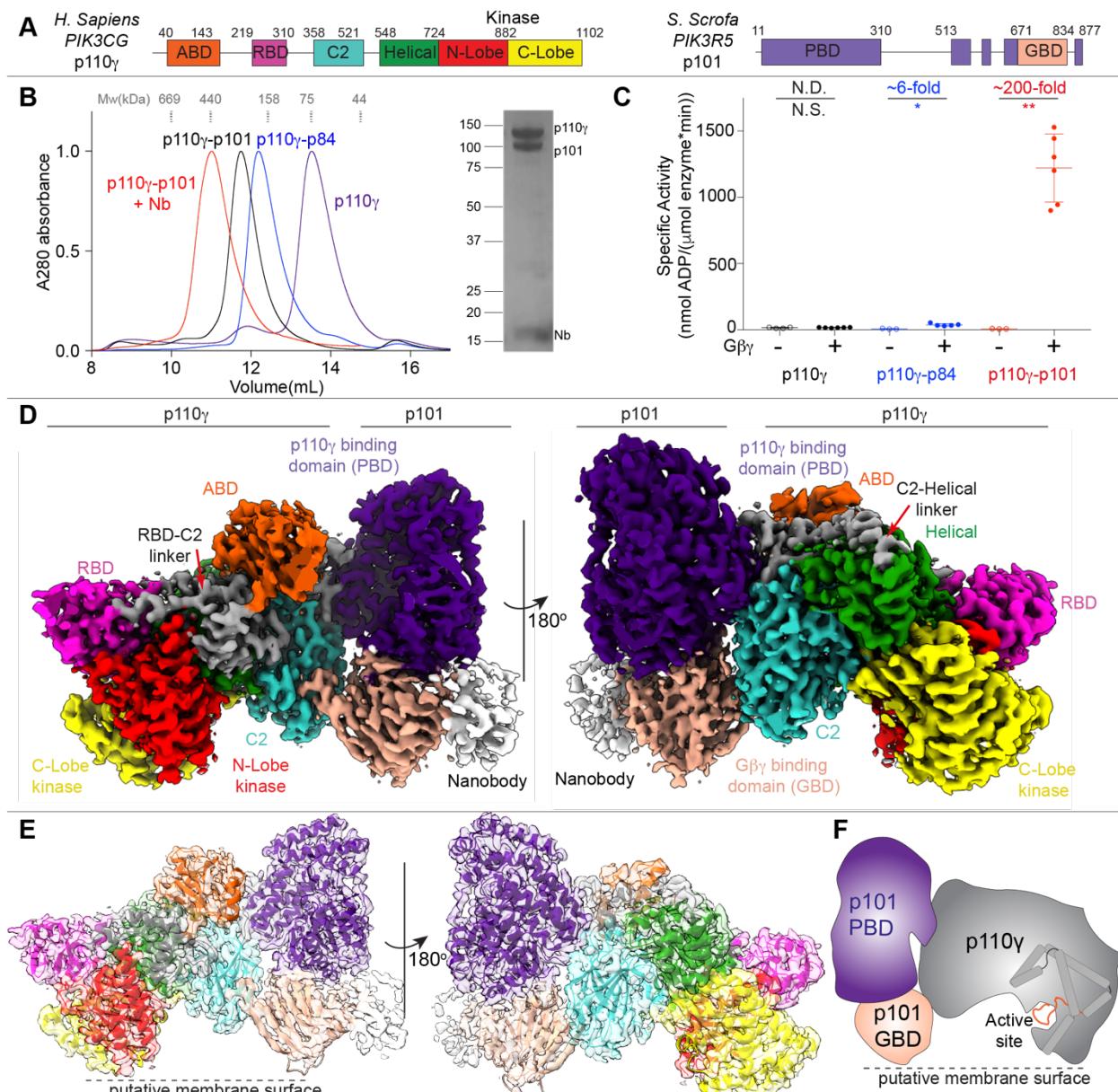
92 *In vivo*, the p110 γ catalytic subunit alone is unable to be activated downstream of GPCRs
93 and requires either the p101 or p84 regulatory subunits to respond to GPCRs (36). p101
94 and p84 play unique roles, with neutrophils lacking p84 having reduced reactive oxide
95 species generation and neutrophils lacking p101 showing impaired migration(37). The
96 distinct signaling responses were attributed to differential sensitivity of each of the PI3K γ
97 heterodimers to G $\beta\gamma$ subunits, with the p110 γ -p101 complex being preferentially activated
98 by G $\beta\gamma$ (27, 38) and p110 γ -p84 requiring Ras binding for activation (39). To better
99 understand how preferences for activating inputs translate into differences in function,
100 there is a need for molecules that selectively inhibit one of the two p110 γ complexes
101 without affecting the other.

102 To decipher the molecular mechanism of how the p101 subunit regulates p110 γ
103 activation, we determined the structure of the p110 γ -p101 complex using cryo-electron
104 microscopy (cryo-EM). This structure reveals a novel binding interface between p101 and
105 p110 γ , which is completely distinct with the interface of class IA PI3K adaptors. Our
106 structure also validates the presence of an ABD in p110 γ similar to other class I PI3Ks,
107 although with a unique orientation. Unlike class IA ABDs, the p110 γ ABD does not directly
108 bind p101, but instead orients the RBD-C2 linker for productive binding to this regulatory

109 subunit. Intriguingly, oncogenic mutations found in p110 γ localize at the interfaces of the
110 ABD and p101. Hydrogen deuterium exchange mass spectrometry analysis revealed the
111 altered dynamics of the p110 γ -p101 interfaces upon mutation, leading to increased
112 activation by G β γ . The structure also showed that the G β γ binding domain (GBD) in p101
113 contains a putative membrane binding surface that positions p110 γ for catalysis. Single
114 molecule fluorescence microscopy experiments indicated that the full activation of the
115 p110 γ -p101 complex requires the engagement of two G β γ molecules to p101 and p110 γ ,
116 respectively. Finally, a nanobody used in the cryo-EM analysis was found to be a potent
117 inhibitor of GPCR activation of only p110 γ -p101, with no effect on p110 γ -p84. This
118 nanobody could be used to decipher the complex specific roles of PI3K γ in immune cell
119 signaling, while also providing a novel potential therapeutic strategy for targeting unique
120 PI3K γ complexes.

121

122 **Results**


123 *Structure of the p110 γ -p101 complex*

124 We purified full length human p110 γ alone, as well as the p110 γ -p84 and p110 γ -
125 p101 complexes (Fig. 1A+B). Gel filtration elution profiles of the p110 γ -p84 and p110 γ -
126 p101 complexes confirmed their heterodimeric stoichiometry. Lipid kinase assays testing
127 G β γ activation revealed a ~100-200-fold activation of p110 γ -p101, a less potent ~6-fold
128 activation of p110 γ -p84, and limited activation for p110 γ alone, results that are consistent
129 with previous work (38) (Fig. 1C). To delineate the molecular basis for how p101 protein

130 controls the activation of p110 γ we examined its architecture using an approach
131 combining hydrogen deuterium exchange mass spectrometry (HDX-MS) and Cryo-EM.

132 We first conducted cryo-EM analysis of the p110 γ -p101 complex. Although
133 negative stain analysis revealed that purified p110 γ -p101 was homogeneous (data not
134 shown) and high-quality vitrified specimens from this relatively small-sized and
135 asymmetric complex could be obtained, the region encompassing the p101 regulatory
136 subunit was poorly resolved in our initial 3D reconstruction of p110 γ -p101. This could be
137 attributed to the highly dynamic nature of the C-terminal region of p101. To obtain a more
138 “rigid” complex for cryo-EM analysis, we screened nanobodies targeting p110 γ -p101 and
139 found one that specifically stabilized the p101 C-terminal domain (NB1-PIK3R5, full
140 details to be published in a separate manuscript). We purified the nanobody-bound p110 γ -
141 p101 complex and confirmed its 1:1:1 stoichiometry by gel filtration (Fig 1B). Using this
142 sample, we were able to obtain a cryo-EM reconstruction of the ternary complex of
143 nanobody-bound p110 γ -p101 at 2.9 Å overall resolution from 320,179 particles (Table S2,
144 Fig. S1-S3). The density map was of sufficient quality to allow for automated and manual
145 building of the majority of the p110 γ and p101 subunits (Fig. 1D-F). We were able to
146 unambiguously fit available crystal structures of p110 γ (144-1102) (40) into our map and
147 build an additional 210 residues that constitute the ABD, the linkers connecting the RBD-
148 C2 and C2-helical domains, and the kinase domain activation loop (Fig. S3C). The region
149 with the lowest local resolution was the G β γ binding domain (GBD) of p101, along with
150 the bound nanobody. The GBD forms a beta sandwich structure composed of two sheets,
151 and initial automated and manual model building only allowed for partial building of one

152 of the two sheets. To build the remainder of the GBD we utilized a combination of Rosetta
153 de novo modelling (41) and a trRosetta-guided protein folding method (42, 43) (Fig. S2).
154 This allowed us to build a complete model of the structured regions of p101 (Fig. S4).
155
156

157

158 **Figure 1. Cryo-EM structure of the p110 γ p101 complex**

159 **A.** Domain schematic of *H. Sapiens* p110 γ and *S. Scrofa* p101 used in this study.

160 **B.** Gel filtration elution profile of different p110 γ complexes (i.e. apo or bound to p84, p101, and p101-NB1-

161 PIK3R5). An SDS-PAGE image of the p110 γ -p101-NB1-PIK3R5 complex is shown, with MW standards

162 indicated.

163 **C.** Lipid kinase activity assays of different p110 γ complexes (concentration 30-3,000 nM) with and without

164 lipidated G β γ (1.5 μ M concentration) using 5% PIP2 vesicles mimicking the plasma membrane (20%

165 phosphatidylserine (PS), 50% phosphatidylethanolamine (PE), 10% Cholesterol, 10% phosphatidylcholine

166 (PC), 5% sphingomyelin (SM) and 5% phosphatidylinositol-3,4,5-trisphosphate (PIP₂)). The fold change

167 upon G β γ activation is indicated. Every replicate is plotted, with error shown as standard deviation (n = 3–

168 6). Two tailed p-values represented by the symbols as follows: **<0.001; *<0.02; N.S.>0.02.

169 **D.** Density map of the p110 γ -p101-NB1-PIK3R5 complex colored according to the schematic in panel **A**.

170 **E.** Cartoon representation of the p110 γ -p101 complex colored according to the schematic in panel **A**.

171 **F.** Cartoon schematic of the p110 γ -p101 complex.

172

173 The p101 regulatory subunit structure (Fig. S4A-C) features a helical solenoid (11–

174 149, 186–267) and a α / β barrel (150–185, 268–670, 867–877) that together we refer to as

175 the p110 γ binding domain (PBD), and a beta sandwich G β γ binding domain (671–834,

176 GBD). In addition to these motifs, there are four linker regions that were not resolved in

177 the electron density map (311–512, 560–603, 623–650, and 835–866). Comparisons

178 between p101 and p84 revealed that the structured regions of the PBD and GBD are

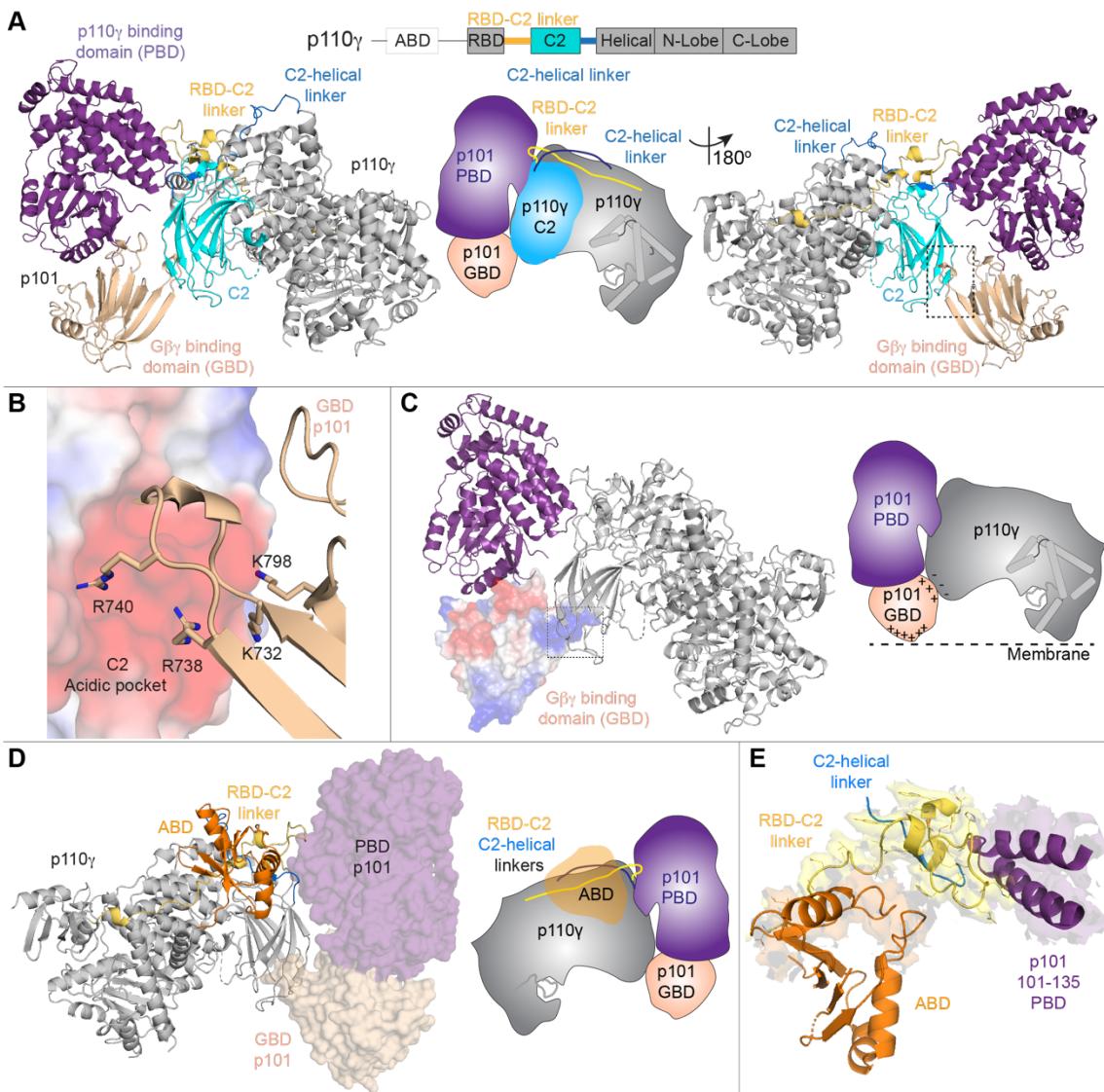
179 partially conserved (28% identity and 47% similarity for the PBD, and 24% identity and

180 44% similarity for the GBD) (Fig. S4E). We analyzed our p101 model using the DALI

181 server (44) and found multiple lipid kinases that shared a similar arrangement of an α / β

182 barrel and β sandwich domain, including Diacylglycerol kinase, the phosphatidyl kinase

183 YegS and Sphingosine kinase 1 (Fig. S4D). The catalytic residues at the active site were
184 not conserved, suggesting that p101 has no kinase activity. However, comparing the
185 previously identified lipid binding region of Sphingosine kinase 1 (45) with p110 γ -p101
186 showed that the corresponding region of p101 is oriented towards the putative membrane
187 interface (Fig. 1E+F), indicating a membrane binding site in p101.


188

189 *Molecular details of the p110 γ -p101 interface*

190 Our cryo-EM structure revealed that p101 engages p110 γ in an extended interface
191 resulting in buried surface area of \sim 1202 Å² (Fig. 2A+B, Fig. S5A+B). There are three
192 specific regions of p110 γ that bound to p101: the C2 domain, and the two linkers between
193 the RBD-C2 and the C2-helical domains (Fig. 2A). These inter-domain linkers were not
194 resolved in previous structures of p110 γ alone and contain critical contact residues with
195 p101. The primary binding interface on p101 is composed of the helices α 5+6 and the
196 intervening turn in the PBD which interacts with the C2 domain and linkers. The C2
197 domain also makes an additional interaction with the C-terminal proline of p101. These
198 interfacial residues are strongly conserved across evolution (Fig. S4E). Intriguingly, we
199 found that the PBD contact residues in p101 were also conserved with p84 (78% identical,
200 89% similar), revealing a likely shared mode of binding for both regulatory subunits.

201

202

203

204 **Figure 2. Structural basis of the p110 γ -p101 binding interface**

205 **A.** Cartoon representation of the p110 γ -p101 complex, with p101 colored as in Figure 1, and p110 γ colored
206 according to the attached schematic, with p101 interacting regions (RBD-C2 linker, C2, and the C2-helical
207 linker) indicated. Important features are shown in a cartoon schematic.

208 **B.** Interaction between the GBD of p101 and the C2 domain of p110 γ . The p110 γ C2 domain is shown as
209 an electrostatic surface with p101 shown as sticks.

210 **C.** The electrostatic surface of the GBD of p101. A cartoon schematic highlighting potential electrostatic
211 interactions between the GBD of p101 and the C2 domain of p110 γ and membranes.

212 **D.** The structure of p110 γ -p101 complex, highlighting the orientation of the p110 γ ABD, with p101 shown
213 as a transparent surface. The different domains are colored as indicated according to the cartoon schematic.
214 **E.** The ABD of p110 γ coordinates the RBD-C2 linker of p110 γ to interact with p101. The RBD-C2 linker,
215 ABD, and the region of p101 that binds the RBD-C2 linker are shown in a cartoon representation. The
216 electron density of the ABD interface, RBD-C2 linker and region of p101 that binds the RBD-C2 linker are
217 visible.

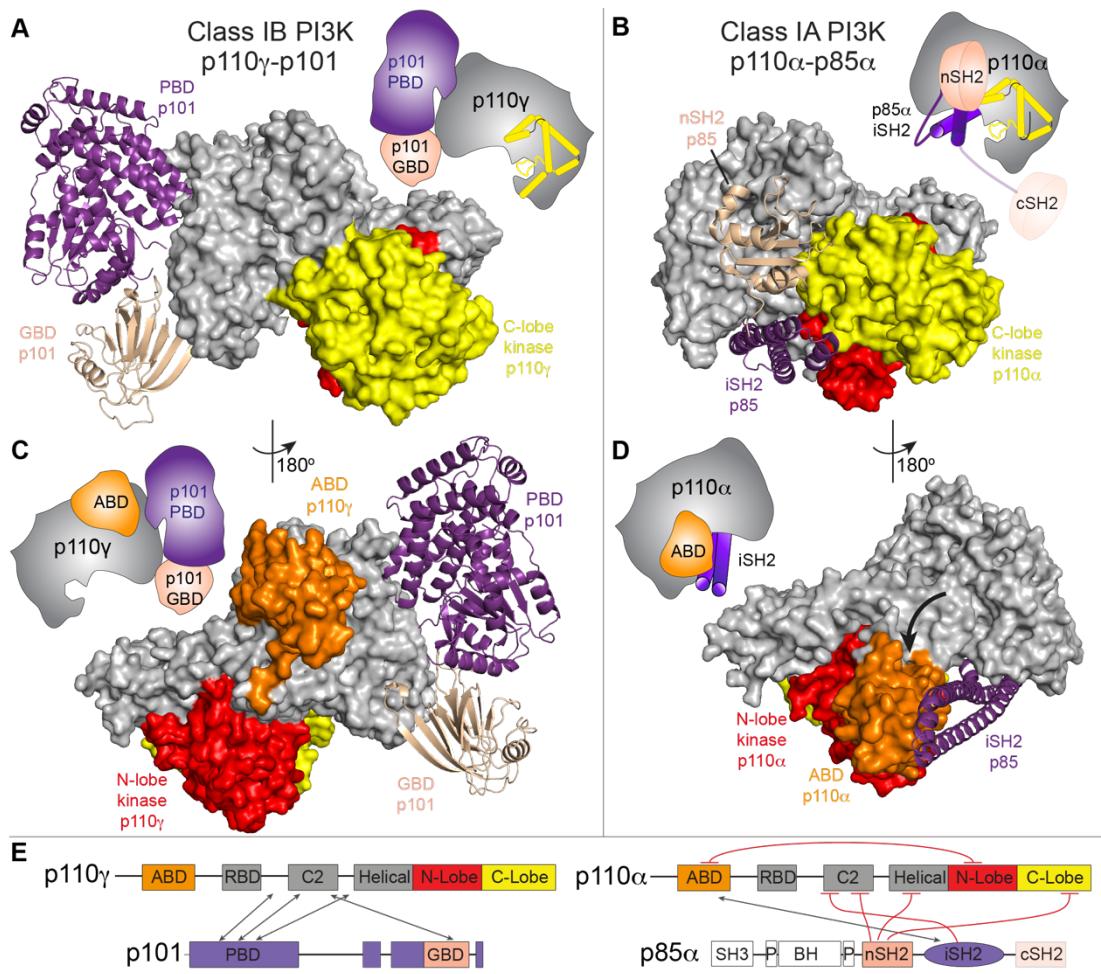
218

219 A secondary contact site between p101 and p110 γ is formed between two beta
220 strands in the GBD of p101 (729-741) and the C2 domain of p110 γ (Fig. S5B). This
221 interface is formed by multiple electrostatic interactions between positively charged
222 residues from the GBD of p101 and an anionic surface in the C2 domain of p110 γ (Fig.
223 2B, Fig. S5B). This anionic surface in the C2 is absent in all other class I PI3Ks. Residues
224 forming this contact site are conserved in the evolutionary history of both p101 and p110 γ ,
225 but are only partially conserved in p84 (57% identical, 86% similar), suggesting that the
226 dynamics of this contact may be altered between the two complexes. This unique
227 interface could explain how a previously designed C2 binding antibody specifically
228 inhibited GPCR activation of p110 γ -p84 over p110 γ -p101 (46).

229 To verify the contacts observed in the cryo-EM structure of p110 γ -p101, and to
230 compare to dynamics at the p110 γ -p84 interfaces, we carried out HDX-MS experiments
231 on p110 γ alone and with the two regulatory subunits. Consistent with our previous work
232 (38, 47), we found that with both p84 and p101, there was protection of large sections of
233 the ABD and C2 domains along with the RBD-C2 and C2-helical linkers (Fig. S6A-C,
234 Table S3). The same regions were protected in both complexes, however, the differences

235 were larger in the presence of p101, indicating enhanced stability of the p101-bound
236 complex. These differences in stability can be explained by the only partial conservation
237 of the secondary interface residues between p101 and p84, in line with previous data (35).

238 Previous work showed that the interaction of the p110 γ with its regulatory partners
239 required the presence of the N-terminal ABD (47). Intriguingly, the ABD in p110 γ does
240 not directly interact with the regulatory subunit, but instead forms extensive contacts with
241 the RBD-C2 linker (Fig. 2D, Fig. S5C+D) to orient the two linkers for binding the PBD of
242 p101 (Fig. 2E, Fig. S5E). Consistent with this structural information, HDX-MS analysis of
243 full length p110 γ compared to a Δ ABD construct (144-1102) showed clear protection of
244 the RBD-C2 linker by the ABD (Fig. S6D).


245

246 *Comparison of regulatory subunit interactions in class IB to class IA PI3Ks*

247 All class I PI3Ks bind to regulatory subunits, with the class IA PI3Ks binding to five
248 different p85 regulatory subunits. p85 binding has three main effects: (1) it stabilizes the
249 p110 catalytic subunit, (2) inhibits basal lipid kinase activity, and (3) allows activation
250 downstream of pYXXM motifs (48). In contrast, association with class IB regulatory
251 subunits neither stabilizes nor inhibits the p110 γ catalytic subunit. To explain these
252 differences in regulation, we compared the orientation of adaptor subunits and the ABD
253 between class IA and class IB PI3Ks (Fig. 3A-D).

254

255

256

257 **Figure 3. Class IA and IB PI3Ks form distinct interfaces with regulatory subunits and the ABD**

258 **A.** The structure of p110 γ -p101 complex, with p110 γ shown as a surface and p101 shown as a ribbon, and
259 the domains colored according to the cartoon schematic as indicated in panel **E**.

260 **B.** The structure of p110 α -p85 α complex (PDB:4JPS), with p110 α shown as a surface and the nSH2 and
261 iSH2 domains of p85 α shown as a ribbon, and the domains colored according to the cartoon schematic as
262 indicated in panel **E**.

263 **C.** The ABD of p110 γ does not interact with either the regulatory subunit or kinase domain. The p110 γ -p101
264 complex is shown as in panel **A**.

265 **D.** The ABD of p110 α interacts with both the regulatory subunit and kinase domain. The p110 α -p85 α
266 complex is shown as in panel **B**. The altered orientation of the ABD compared to p110 γ is indicated by the

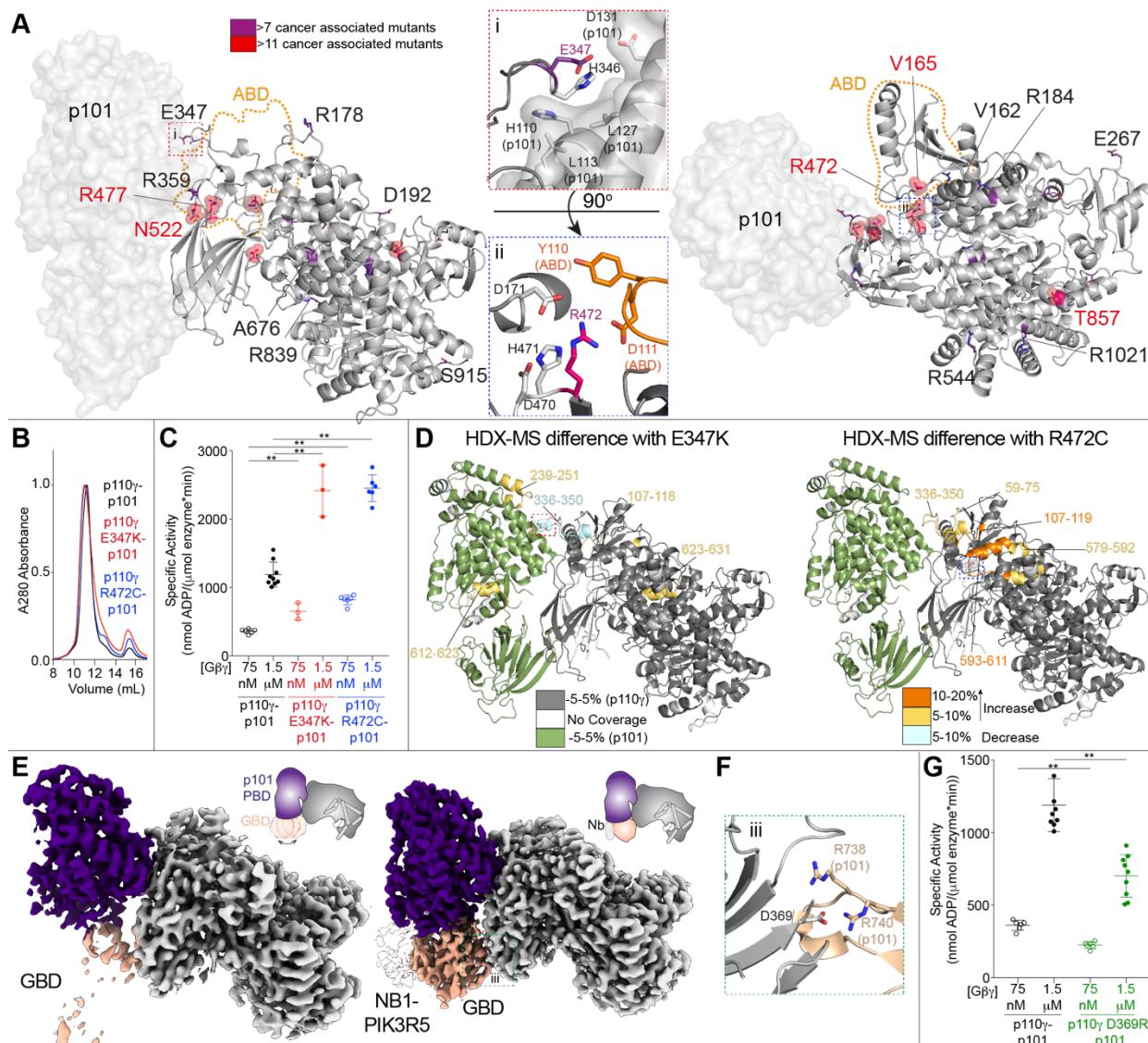
267 black arrow. (Cartoon schematics indicating the differences between class IA and class IB are shown for
268 panels **A-D**).

269 **E.** Domain schematic comparing the interactions between p110 catalytic and the p101 / p85 regulatory
270 subunits. Inhibitory interactions are colored in red, with interacting regions indicated by the arrows.

271

272 The binding interface with regulatory subunits is completely distinct in class IA
273 PI3Ks compared to class IB. While the C2 domain of class IA PI3Ks does interact with
274 the iSH2 and nSH2 of p85 regulatory subunits, the interface is different from the one that
275 binds the PBD and GBD of p101. Regulatory subunits in class IA PI3Ks make extensive
276 inhibitory interactions with the C-lobe of the kinase domain, while no such contact is
277 observed in the p110 γ -p101 complex. Although ABDs of class IA and IB share a similar
278 overall fold (Fig. S7A+B), there are extensive conformational differences in secondary
279 structure elements, consistent with the limited sequence conservation (identity ranging
280 from 13-16% for p110 α , p110 β , and p110 δ). The ABD from class IA PI3Ks is required for
281 forming a high affinity interaction with the iSH2 from p85, mediated by contacts between
282 beta strands β 1 and β 2, and helix α 3. This region is at the surface in the p110 γ ABD,
283 making no interactions with the rest of the p110 γ subunit (Fig. S7C+D). For all class IA
284 PI3Ks, the ABD forms an inhibitory contact with the N-lobe of the kinase domain, through
285 its N-terminus and the β 4- α 3 loop. The ABD in p110 γ is rotated 180° around the ABD-
286 RBD linker allowing the β 4- α 3 loop to bind to the RBD-C2 linker. The residues in these
287 regions are highly conserved in the evolution of p110 γ , with no conservation with other
288 class I PI3Ks (Fig. S7E+F). Overall, this comparison reveals why p110 γ is not inhibited

289 by p101 unlike class IA PI3Ks which are potently inhibited by extensive intra- and inter-
290 subunit contacts with regulatory partners. (Fig. 3E).


291

292 *Rare oncogenic mutations cluster at the p101 and ABD interfaces in p110 γ*

293 The PI3K-Akt pathway is the most commonly activated pathway in human cancer,
294 primarily driven by activating oncogenic mutations in the *PIK3CA* gene encoding p110 α .
295 The role of the p110 γ isoform in cancer development has been ambiguous, with
296 overexpression and rare somatic mutations of *PIK3CG* implicated in multiple cancers,
297 including pancreatic, prostate, renal, and breast. To further explore if activating mutations
298 potentially exist in *PIK3CG* we analyzed the Catalog Of Somatic Mutations In Cancer
299 (COSMIC) (49), which showed mutations spanning the primary sequence of p110 γ .
300 Intriguingly, many of the most frequent mutations in p110 γ mapped to interfaces with
301 either the ABD or p101 (Fig. 4A).

302 To identify the consequence of these interfacial mutations we purified mutant
303 complexes of p101 with p110 γ E347K (p101 interface) and p110 γ R472C (ABD interface).
304 Mutant complexes eluted from gel filtration similar to wild-type (Fig. 4B), demonstrating
305 that they can still form heterodimers. Lipid kinase assays showed that the mutations
306 resulted in a ~2-3-fold increased activity at both saturating and sub-saturating amounts
307 of G β γ (Fig. 4C). To understand the mechanism of how these mutations lead to increased
308 kinase activity, we carried out comparative HDX-MS experiments between the wild-type
309 and mutant p110 γ -p101 complexes. The E347K mutant caused increased dynamics at
310 the p101 interface with p110 γ , while the R472C mutant led to increased dynamics of the

311 ABD, and the RBD-C2 linker (Fig. 4D, Fig. S8A+B). This suggests that altering the
 312 orientation of p101 and ABD relative to the rest of p110 γ , may allow for increased access
 313 to membrane localized G β γ subunits.

314

315 **Figure 4. Disease-linked and engineered p110 γ mutations at the interface with p101 and the ABD**
 316 **modulate G β γ activation**

317 **A.** Somatic mutations found in *PIK3CG* from the Catalogue of Somatic Mutations in Cancer Database
 318 (COSMIC) are indicated on the structure, with frequency indicated by the legend. Mutations found in more
 319 than 7 tumors are shown as sticks, with mutations found in more than 11 tumors shown as spheres. The

320 orientation of residues around mutations located at the p110 γ -p101 interface (i, E347) and ABD interface
321 (ii, R472) are shown.

322 **B.** Mutations do not disrupt the p110 γ -p101 complex. Gel filtration elution profiles of complexes of p110 γ
323 (wild-type, E347, and R472) bound to p101.

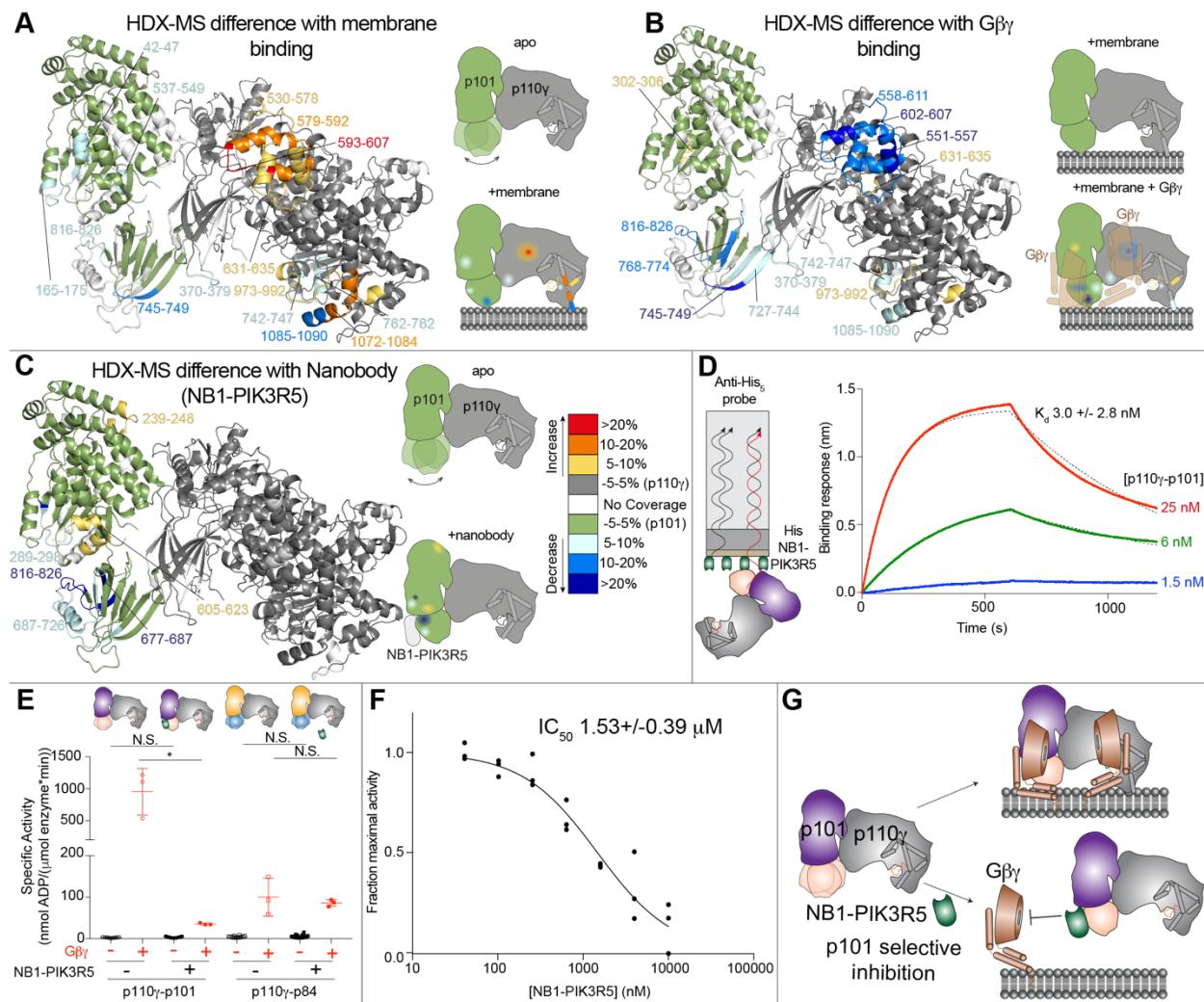
324 **C.** Mutations at the p110 γ -p101 and ABD interface can lead to enhanced activation by G β γ . Lipid kinase
325 activity assays of different p110 γ complexes (concentration 10-1,000 nM) with and without G β γ
326 (concentration indicated).

327 **D.** Hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed enhanced protein dynamics at
328 p101 and ABD interfaces induced by E347K and R472 mutants. Peptides showing significant deuterium
329 exchange differences (>5%,>0.4 kDa and p<0.01 in an unpaired two-tailed t-test) between p110 γ -p101
330 complexes of wild-type and E347K (left) and wild-type and R472C (right) are colored on a cartoon model
331 of p110 γ -p101 according to the legend.

332 **E.** The GBD is dynamic in solution, but is stabilized by nanobody (NB1-PIK3R5) binding. Electron density
333 maps of p110 γ -p101 alone (left) and p110 γ -p101 bound to NB1-PK3R5 (right).

334 **F.** Charged residues in p110 γ -p101 mediate the interaction of the p110 γ C2 domain to the p101 GBD.

335 **G.** Mutation of the p110 γ -C2 p101-GBD interface (p110 γ D369R) leads to decreased activation by G β γ .
336 Biochemical assays in panels **C+G** were carried out with p110 γ -p101 complexes (concentration 10-1,000
337 nM) and G β γ (concentration indicated). 5% PIP₂ membranes were made mimicking the plasma membrane.
338 Every replicate is plotted, with error shown as standard deviation (n = 3–9). Two tailed p-values represented
339 by the symbols as follows: **<0.001; *<0.02.


340 In addition to the disease-associated mutations at the primary interface between
341 p110 γ and p101, we also wanted to determine the role of the GBD-C2 interface in
342 regulating G β γ activation. This was motivated by analysis of the electron density maps
343 between the free p110 γ -p101 complex, and the p110 γ -p101 complex with the NB1-
344 PIK3R5 nanobody, which showed that the GBD is highly dynamic in the absence of the
345 nanobody (Fig. 4E). We mutated a residue in the C2 domain (D369R) that interacts with

346 R738 and R740 in the GBD (Fig. 4F). The p110 γ D369R-p101 mutant eluted from gel
347 filtration as a heterodimer, showing that this contact is not required for p101 binding. Lipid
348 kinase activity assays revealed that this mutation led to a ~2-fold decrease in activation
349 by G β γ subunits, indicating that the secondary p110 γ -p101 interface is crucial in mediating
350 full activation (Fig. 4G).

351

352 *The G β γ binding domain is critical for membrane binding and G β γ activation*

353 To decipher how p101 mediates activation by G β γ , we have previously examined
354 the dynamic consequences of p110 γ -p101 binding to membranes, and membrane
355 localized G β γ subunits using HDX-MS (38). Our current model of p110 γ -p101 allowed us
356 to better understand these data in the context of the full complex. Analysis of the HDX
357 differences upon membrane binding indicated the presence of a membrane binding
358 region in the GBD and protection at the secondary interface between p110 γ and p101
359 (Fig. 5A, S8C+E). Upon binding to G β γ subunits, many of these same regions showed
360 greatly decreased exchange indicating enhanced membrane recruitment. Additionally,
361 the G β γ binding sites (p101 GBD and p110 γ helical domain) showed decreases in
362 exchange (Fig. 5B, S8D+E). Combined with our observations of the GBD flexibility in
363 cryo-EM and activity assays with the p110 γ D369R mutant, this HDX-MS data indicated
364 that the GBD forms the secondary interface upon membrane binding, potentially
365 explaining the inability of non-lipidated soluble G β γ (C68S, G γ) to interact with p110 γ -
366 p101.

367

368 **Figure 5. Full activation of p110 γ by lipidated G $\beta\gamma$ requires the GBD domain of p101 and the GBD-G $\beta\gamma$ interface can be disrupted by a p101 specific nanobody**

369

370 **A.** HDX-MS revealed that interaction of p110 γ -p101 with membranes leads to altered protein dynamics in

371 both the p110 γ and p101 subunits, with stabilization of the GBD of p101. For panels **A-C**, peptides showing

372 significant deuterium exchange differences ($>5\%$, >0.4 kDa and $p < 0.01$ in an unpaired two-tailed t-test)

373 between conditions are colored on a cartoon model of p110 γ -p101 according to the legend in panel B. A

374 cartoon schematic is shown indicating the two conditions compared using HDX-MS.

375 **B.** HDX-MS revealed that interaction of p110 γ -p101 with lipidated G $\beta\gamma$ subunits stabilizes the GBD and C2-

376 helical/helical domain of p110 γ . HDX-MS data from panels **A+B** are reproduced with permission from (38).

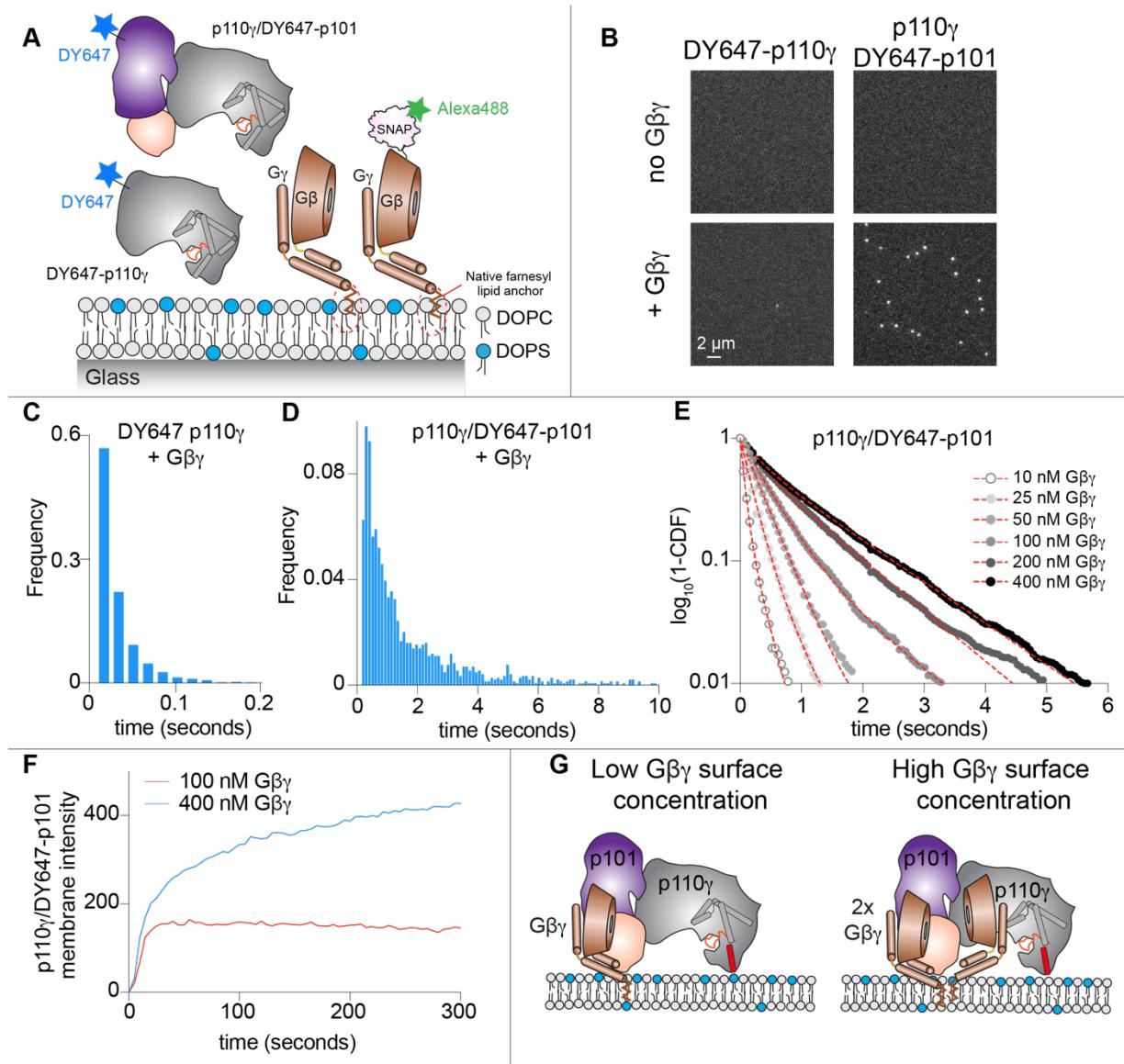
377 **C.** HDX-MS revealed that interaction of p110 γ -p101 with NB1-PIK3R5 protects the same surface of GBD
378 that is stabilized upon binding G β γ on membranes.

379 **D.** Biolayer interferometry (BLI) analysis of the binding of the immobilized NB1-PIK3R5 nanobody to p110 γ -
380 p101.

381 **E.** The NB1-PIK3R5 nanobody specifically inhibits only the p110 γ -p101 complex from GPCR activation,
382 while not affecting the p110 γ -p84 complex. Biochemical assays were carried out with p110 γ -p101 (50-3,000
383 nM) and p110 γ -p84 (1,500-3,000 nM) using plasma membrane mimic vesicles with and without NB1-PIK3R5
384 (6 μ M). Lipidated G β γ was present at 1.5 μ M concentration.

385 **F.** IC50 measurement of p110 γ -p101 inhibition using varying concentrations of the NB1-PIK3R5 nanobody
386 in the presence of 600 nM G β γ . For panels **E+F** every replicate is plotted, with error shown as standard
387 deviation (n = 3–6). Two tailed p-values represented by the symbols as follows: **<0.001; *<0.02. N.S.>0.02.

388 **G.** Model of the inhibition of GPCR activation of the p110 γ -p101 complex by the NB1-PIK3R5 nanobody.


389

390 *A p101 binding nanobody prevents activation by G β γ subunits*

391 HDX-MS analysis of the NB1-PIK3R5 nanobody used in cryo-EM experiments of
392 p110 γ -p101(**Fig. 1D, 5C, Fig. S8F**) showed that it binds with high affinity (~3 nM) to the
393 identified G β γ binding site in the GBD (**Fig. 5D**). This suggested that this nanobody might
394 be useful in specifically disrupting G β γ activation of the p110 γ -p101 complex. We utilized
395 lipid kinase assays with both p110 γ -p101 and p110 γ -p84 to study the effects of NB1-
396 PIK3R5 on GPCR activation. The NB1-PIK3R5 nanobody at 6 μ M led to a ~50-100-fold
397 reduction in G β γ activation for p110 γ -p101, with no effect on p110 γ -p84 activation (**Fig.**
398 **5E**). The nanobody was capable of potently inhibiting the p110 γ -p101 complex (IC50 ~1.5
399 μ M) at super-physiological levels of G β γ (600 nM) (**Fig. 5F**), thereby providing a novel

400 tool that may aid in deciphering the exact roles of the p110 γ -p101 complex in cells/tissues
401 (Fig. 5G), and in designing complex-specific therapeutic strategies.

402
403 *Defining the molecular basis of how G β γ subunits activate the p110 γ -p101 complex*
404 Structural analysis of the G β γ binding sites in p110 γ and p101 from HDX-MS
405 indicated that these regions are separated by ~50 Å, which is greater than the ~40 Å
406 diameter of the G β γ propeller domain. This suggested that activation of p110 γ -p101 is
407 potentially mediated by interactions with two membrane anchored G β γ molecules. To gain
408 new insight about the mechanism of G β γ dependent activation of p110 γ -p101 we
409 performed single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy
410 experiments on supported lipid bilayers (SLBs) (Fig. 6A, S9). Experiments were carried
411 out using fluorescently tagged proteins (DY647-p110 γ , DY647-p110 γ -p101, and
412 Alexa488-SNAP-G β γ) to track membrane binding. For these experiments, we flowed
413 farnesylated Alexa488-SNAP-G β γ over a SLB, leading to passive insertion into the
414 membrane ($t_{1/2}$ ~8 min; Fig. S9). Single molecule dwell time measurements of
415 fluorescently tagged DY647-p110 γ and DY647-p101-p110 γ revealed no appreciable
416 membrane binding in the absence of G β γ (Fig. 6B). In the presence of membrane
417 anchored G β γ , we observed an increased binding frequency of DY647-p110 γ and
418 transient dwell times that lasted 10-100 ms (Figure 6B+C). By contrast, DY647-p101-
419 p110 γ bound strongly to membrane anchored G β γ and exhibited single molecule dwell
420 times that lasted several seconds (Figure 6B+D, Table S4).

421

422 **Figure 6. Single molecule characterization of p110 γ -p101 reveals both subunits can engage**
423 **membrane anchored G β γ**

424 **A.** Schematic showing proteins examined using the single molecule fluorescence approach. Experiments
425 measured the association of fluorescently tagged proteins (Alexa488-SNAP-G β γ , DY647-p110 γ , and
426 DY647-p101-p110 γ to a supported lipid bilayer.

427 **B.** Membrane association of DY647-p110 γ or DY647-p101-p110 γ requires membrane anchored G β γ . Single
428 molecule localization measurements were measured in the presence of either 100 pM DY647-p110 γ or 10
429 pM DY647-p101-p110 γ .

430 **C-D.** Single molecule dwell time distributions of DY647-p110 γ or DY647-p101-p110 γ , measured in the
431 presence of membrane anchored G $\beta\gamma$. DY647-p110 γ transiently associates with membrane anchored G $\beta\gamma$
432 (**C** $\tau_1= 22$ ms, n=2832 events). DY647-p101-p110 γ binds strongly to membrane anchored G $\beta\gamma$ ($\tau_1= 0.334$
433 sec (31%), $\tau_2= 1.31$ sec (69%), n=3996 events).
434 **E.** G $\beta\gamma$ membrane density dependent changes in the membrane binding behavior of DY647-p101-p110 γ .
435 Concentration of G $\beta\gamma$ represents the solution concentration.
436 **F.** DY647-p101-p110 γ absorption kinetics at different G $\beta\gamma$ membrane densities
437 **G.** Model of p110 γ -p101 recruitment to G $\beta\gamma$ subunits at both low and high membrane densities.
438

439 Since both subunits in the p110 γ -p101 complex contain G $\beta\gamma$ binding interfaces we
440 hypothesized that the single molecule dwell times of DY647-p101-p110 γ would strongly
441 depend on the concentration of membrane anchored G $\beta\gamma$. When we titrated the
442 concentration of G $\beta\gamma$, we observed a density dependent switch in p110 γ -p101 membrane
443 binding behavior (**Fig. 6E, Table S4**). In the presence of low G $\beta\gamma$ concentration (i.e. ≤ 100
444 nM), the dwell time distribution of DY647-p101-p110 γ was best described by a single
445 exponential decay curve with dwell times ranging from 100-400 ms (**Table S4**). In contrast,
446 we observed longer lived membrane binding interactions when our measurements were
447 performed using more than 100 nM G $\beta\gamma$. Under these conditions, the dwell time
448 distribution shifted from a single to double exponential decay curve (**Table S4**).

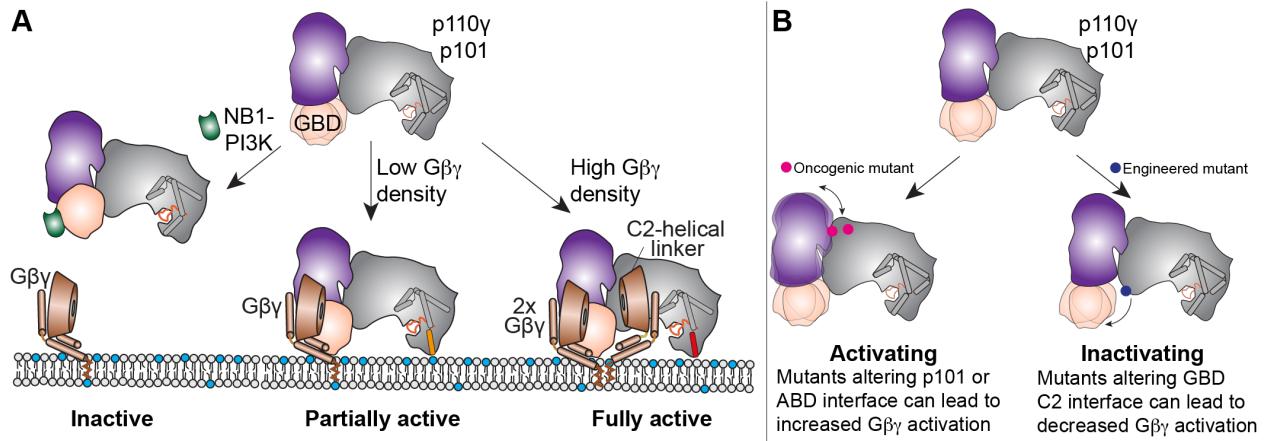
449 Consistent with the concentration of G $\beta\gamma$ modulating the dwell time of DY647-p101-
450 p110 γ , we also observed changes in the bulk membrane absorption kinetics of p110 γ -
451 p101 (**Fig. 6F**). In the presence of low G $\beta\gamma$ concentrations (100 nM), DY647-p101-p110 γ
452 rapidly associated with the membrane and reached an equilibrium within ~30 seconds

453 (Fig. 6F). This is the expected kinetic profile for a simple biomolecular interaction between
454 two proteins. In contrast, the membrane absorption kinetics of DY647-p101-p110 γ was
455 biphasic in the presence of 400 nM G β γ (Fig. 6F). Under these conditions, DY647-p101-
456 p110 γ association kinetics are described by rapid binding to the first G β γ , followed by slow
457 engagement with a second G β γ (Fig. 6F). This type of biphasic membrane absorption is
458 similar to how BTK reportedly interacts with two PI(3,4,5)P₃ lipids (50). In summary, our
459 TIRF microscopy measurements show that the p110 γ -p101 can engage up to two G β γ
460 molecules depending on the level of GPCR activation (Fig. 6G).

461

462 **Discussion**

463 Understanding how p110 γ activity is regulated by p84 or p101 regulatory subunits
464 has been critical in deciphering physiological roles (13, 36, 37), and will be important in
465 effective PI3K therapeutic design. The class IB p110 γ catalytic subunit is a key regulator
466 of immune cell signaling and is a therapeutic target for inflammatory diseases (10, 51)
467 and immunomodulatory cancer treatment (19, 20). Here we report the architecture of the
468 p110 γ -p101 complex and a new mechanism of how it can be activated during GPCR
469 signaling.


470 Our cryo-EM structure of p110 γ -p101 reveals important differences in the
471 assembly of catalytic and regulatory subunits between class IA and class IB PI3Ks, and
472 provides novel insight into PI3K regulation. Previous X-ray crystallographic studies of a
473 p110 γ fragment revealed its domain organization and the molecular basis for interaction
474 with the upstream activator Ras (25, 26, 40). Our cryo-EM structure showed an

475 evolutionarily well-conserved binding surface between the regulatory p101 subunit and
476 p110 γ . The p110 γ ABD does not directly bind p101, but instead coordinates the p101
477 interaction site on the RBD-C2 linker. This unique architecture is distinct from the ABD in
478 class IA PI3Ks, which mediates direct contacts with the iSH2 of p85 and forms an
479 inhibitory interface with the N-lobe of the kinase domain (52, 53).

480 The architecture of the p110 γ -p101 complex reveals how the GBD of p101 orients
481 the kinase domain of p110 γ towards the membrane upon G β γ binding. The p101 protein
482 was identified as a key regulator of the activation of p110 γ by GPCRs (5, 54), however,
483 defining the full details of this mechanism was hampered by a paucity of structural
484 information. Complicating structural analysis of p101 is the lack of homologous proteins,
485 with p84 being the only protein with greater than 20% sequence identity in the human
486 proteome. Our p101 structural model validated and defined at high resolution the
487 presence of a G β γ binding surface on the GBD of p101 (38). The structural similarity of
488 the α / β barrel and the GBD of p101 with the lipid binding surfaces of the lipid kinases
489 diacylglycerol kinase and sphingosine kinase (45) support the idea that the GBD
490 participates in membrane binding upon G β γ activation. Cellular studies revealed that G β γ
491 was able to activate membrane localized p110 γ , suggesting that G β γ may orient p110 γ in
492 a catalytically competent state (55). Our structure reveals how the GBD participates in
493 membrane and G β γ binding, which orients the kinase domain for catalysis. Once recruited
494 to the membrane, the p110 γ -p101 complex can engage a second G β γ binding site located
495 on the helical domain of p110 γ , leading to full activation. Further structural analysis of the

496 GBD bound to G $\beta\gamma$ will be required to narrow down the exact molecular details of GPCR
497 activation.

498 The ability of p110 γ to generate discrete PIP₃ signals upon activation by a unique
499 set of upstream stimuli is critical to their role in immune cells (1) and is ultimately
500 controlled by the p101 and p84 regulatory subunits. This has been highlighted by
501 responses in neutrophils and mast cells, where p101 complexes mediate cell migration,
502 and p84 complexes mediate reactive oxide production and degranulation (13, 37).
503 Various stimuli have been identified that can activate p110 γ , including G-protein coupled
504 receptors (27), Ras (25), Toll like receptors (TLR, mediated by Rab8 activation) (24, 56),
505 and the IgE antigen receptor (partially mediated by protein kinase C phosphorylation of
506 p110 γ) (47). The p101 and p84 regulatory subunits confer the ability to be preferentially
507 stimulated by a specific subset of these stimuli. The p110 γ -p84 complex is uniquely
508 sensitive to Ras activation (39), and is less responsive to signals downstream of GPCRs
509 in comparison to the p101 complex (36). Our TIRF microscopy data reveals how p110 γ -
510 p101 is uniquely situated to generate varying PIP₃ responses depending on the different
511 G $\beta\gamma$ membrane surface densities (Fig. 7A). The GBD of p101 uniquely responds to low
512 G $\beta\gamma$ surface densities and allows for distinct p110 γ -p101 stimulated PIP₃ responses
513 compared to p110 γ -p84. In combination with the membrane localized activators Ras and
514 Rab8 this allows for a multi-faceted set of PIP₃ responses generated by p110 γ -p101.
515

516

517 **Figure 7. Model for regulation of p110 γ -p101 activation by G β γ membrane density, and modulation**
518 **by nanobodies and disease-linked mutations**

519 **A.** Schematic of how G β γ subunits can lead to p110 γ -p101 activation at different G β γ surface densities, and
520 how this can be disrupted by the NB1-PIK3R5 nanobody.

521 **B.** Schematic of how mutations at the p101 and ABD interfaces in p110 γ can lead to enhanced G β γ
522 activation, and how disruption of the GBD-C2 interface can lead to decreased G β γ activation.

523

524 Activating mutations in the class I PI3K pathway are the most frequent alterations
525 in human cancer (30), with this primarily driven by oncogenic mutations of p110 α (29, 57).
526 p110 γ is often overexpressed in cancer, specifically in pancreatic ductal adenocarcinoma
527 (18, 33, 58). Supporting this role of increased expression of p110 γ in cancer is the
528 knockdown of a microRNA targeting *PIK3CG* in patients that promotes metastasis in triple
529 negative breast cancer (32). Tumor associated mutations in p110 γ are rare compared to
530 p110 α (1739 for *PIK3CG* compared to 17,359 for *PIK3CA*, from the COSMIC database
531 as of April 2021 (49)). However, multiple studies have found an association of somatic
532 mutations in *PIK3CG* with cancer development and progression (59-61). Whether these
533 mutants function within the tumor or the surrounding immune environment remains to be

534 confirmed. Activating oncogenic mutants in the regulatory motif of the kinase domain of
535 p110 γ (R1021C) have been identified (62), with bi-allelic inactivating mutations involving
536 the same site (R1021P, R982 frameshift) causing primary immunodeficiencies (63). We
537 found oncogenic mutations clustered at ABD and p101 interfaces in *PIK3CG*. These
538 mutants led to increased kinase activity upon G β γ stimulation, which is explained by the
539 altered interaction between p110 γ and p101 as observed by HDX-MS. This may lead to
540 a reorientation of the GBD allowing for increased binding to membranes or lipidated G β γ
541 (Fig. 7B). Further analysis of the effect of these mutations on membrane recruitment, and
542 their effects in cells and model organisms, will be required to understand their complete
543 mechanism of regulation.

544 The association of p110 γ in human disease has driven intense interest in the
545 generation of PI3K selective small molecule inhibitors, however, severe side-effects have
546 limited their efficacy, particularly for pan-PI3K inhibitors (64). Multiple p110 γ isoform
547 selective inhibitors are currently in clinical trials for cancer, and are in development for
548 COPD, and inflammatory disease. Inhibition of p110 γ has also been found to improve
549 anti-tumor properties of CAR T-cells (65). Regulatory subunits are differentially involved
550 in the onset and progression of p110 γ associated diseases. Upregulation of p110 γ -p101
551 is involved in congestive heart failure (66), while p110 γ -p84 plays a protective role by
552 maintaining cardiac contractility (15). The p110 γ -p101 complex could also be involved in
553 TLR9-induced inflammation (67) due to its sensitivity to Rab8 activation downstream of
554 TLRs (23). In pancreatic cancer models, targeting p110 γ is protective in cancer
555 development (33), however, its applicability is limited by hepatotoxicity. Therefore,

556 targeting p110 γ in these disease states could benefit from specifically inhibiting p110 γ -
557 p101 signaling. We have identified the structural basis for how the NB1-PIK3R5 nanobody
558 can selectively inhibit G β γ activation of the p110 γ -p101 complex, which can be used to
559 determine potential advantages of p110 γ -p101 specific inhibition in p110 γ -linked diseases,
560 and may allow for design of novel therapeutic strategies.

561 Collectively, our detailed biochemical and structural analysis of the p110 γ -p101
562 complex provides unique insight into the assembly and regulation of PI3K γ complexes.
563 This work provides a framework for the design of selective modulators outside of the ATP
564 binding pocket, which will be useful to decipher PI3K γ signaling roles and for the
565 generation of potential therapeutics in inflammatory diseases and cancer.

566

567 **Materials and Methods** (full resources for all experiments in Table S1)

568 *Expression and purification of nanobody:*

569 Nanobody NB1-PIK3R5 with a C-terminal 6X His tag was expressed from a pMESy4
570 vector in the periplasm of WK6 E.coli. A 1L culture was grown to OD600 of 0.7 in Terrific
571 Broth containing 0.1% glucose and 2mM MgCl₂ in the presence of 100 μ g/mL ampicillin
572 and was induced with 0.5 mM isopropyl- β -D-thiogalactoside (IPTG). Cells were harvested
573 the following day by centrifuging at 2500 RCF (Eppendorf Centrifuge 5810 R) and the
574 pellet was snap-frozen in liquid nitrogen. The frozen pellet was resuspended in 15 mL of
575 buffer containing 200 mM Tris pH 8.0, 0.5mM ethylenediaminetetraacetic acid (EDTA)
576 and 500 mM Sucrose and was mixed for 1 hour at 4°C. To this mixture, 30 mL of
577 resuspension buffer diluted four times in water was added and mixed for 45 minutes at
578 4°C to induce osmotic shock. The lysate was clarified by centrifuging at 14,000 rpm for

579 30 minutes (Beckman Coulter JA-20 rotor). Imidazole was added to the supernatant to
580 final concentration of 10mM loaded onto a 5 mL HisTrap™ FF crude column (GE
581 Healthcare) equilibrated in NiNTA A buffer (20 mM Tris pH 8.0, 100 mM NaCl, 20 mM
582 imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β -mercaptoethanol (β ME)). The column was
583 washed with high salt NiNTA A buffer (20 mM Tris pH 8.0, 1 M NaCl, 20 mM imidazole
584 pH 8.0, 5% (v/v) glycerol, 2 mM β ME), NiNTA A buffer, 6% NiNTA B buffer (20 mM Tris
585 pH 8.0, 100 mM NaCl, 250 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β ME) and the
586 protein was eluted with 100% NiNTA B. The eluent was concentrated in a 10,000 MWCO
587 Amicon Concentrator (Millipore) to <1 mL and injected onto a Superdex™ 75 10/300 GL
588 Increase size-exclusion column (GE Healthcare) equilibrated in gel filtration buffer (20mM
589 Tris pH 8.5, 100 mM NaCl, 50 mM Ammonium Sulfate and 0.5 mM tris(2-carboxyethyl)
590 phosphine (TCEP)). Following size exclusion, the protein was concentrated, frozen and
591 stored at -80°C.

592

593 *Plasmid Generation for PI3K γ constructs:*

594 PI3K γ constructs without the regulatory subunit (p110 γ full length and p110 γ 144-1102)
595 were encoded in a pACEBac vector while the complexes were expressed from MutliBac
596 (WT) or biGBac (mutants) vectors. For purification, a 10X histidine tag, a 2X-strep tag
597 and a Tobacco Etch Virus protease cleavage site were cloned to the N-terminus of the
598 regulatory subunits for the complex and to p110 γ for constructs without regulatory
599 subunits. All mutations were made in pLib vectors encoding p110 γ using site-directed
600 mutagenesis according to published commercial protocols (QuickChange Site-Directed

601 Mutagenesis, Novagen). Oligonucleotides spanning the region of interest containing
602 altered nucleotides were used in PCR reactions (Q5 High-Fidelity 2X MasterMix, New
603 England Biosciences #M0492L) and the resulting reaction mixture was transformed into
604 XL10 E.coli. Single colonies were grown overnight and purified using QIAprep Spin
605 Miniprep Kit (Qiagen #27104). Plasmid identity was confirmed by sequencing.

606

607 *Virus Generation and Amplification:*

608 The plasmids encoding genes for insect cell expression were transformed into
609 DH10MultiBac cells (MultiBac, Geneva Biotech) containing the baculovirus viral genome
610 (bacmid) and a helper plasmid expressing transposase to transpose the expression
611 cassette harbouring the gene of interest into the baculovirus genome. Bacmids with
612 successful incorporation of the expression cassette into the bacmid were identified by
613 blue-white screening and were purified from a single white colony using a standard
614 isopropanol-ethanol extraction method. Briefly, colonies were grown overnight (16 hours)
615 in 3-5 mL 2xYT (BioBasic #SD7019). Cells were pelleted by centrifugation and the pellet
616 was resuspended in 300 μ L P1 Buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 mg/mL
617 RNase A), chemically lysed by the addition of 300 μ L Buffer P2 (1% sodium dodecyl
618 sulfate (SDS) (W/V), 200 mM NaOH), and the lysis reaction was neutralized by addition
619 of 400 μ L Buffer N3 (3.0 M potassium acetate, pH 5.5). Following centrifugation at 21130
620 RCF and 4 °C (Rotor #5424 R), the supernatant was separated and mixed with 800 μ L
621 isopropanol to precipitate the DNA out of solution. Further centrifugation at the same
622 temperature and speed pelleted the Bacmid DNA, which was then washed with 500 μ L

623 70% Ethanol three times. The Bacmid DNA pellet was then dried for 1 minute and re-
624 suspended in 50 μ L Buffer EB (10 mM Tris-Cl, pH 8.5; All buffers from QIAprep Spin
625 Miniprep Kit, Qiagen #27104). Purified bacmid was then transfected into Sf9 cells. 2 mL
626 of Sf9 cells between 0.3-0.5X10⁶ cells/mL were aliquoted into the wells of a 6-well plate
627 and allowed to attach, creating a monolayer of cells at ~70-80% confluency. Transfection
628 reactions were prepared by the addition of 2-10 μ g of bacmid DNA to 100 μ L 1xPBS and
629 12 μ L polyethyleneimine (PEI) at 1 mg/mL (Polyethyleneimine “Max” MW 40.000,
630 Polysciences #24765, USA) to 100 μ L 1xPBS. The bacmid-PBS and the PEI-PBS
631 solutions were mixed together, and the reaction occurred for 20-30 minutes before
632 addition drop-by-drop to an Sf9 monolayer containing well. Transfections were allowed to
633 proceed for 5-7 days before harvesting virus containing supernatant as a P1 viral stock.

634 Viral stocks were amplified by adding P1 viral stock to suspension Sf9 cells
635 between 1-2x10⁶ cells/mL at a 2/100 volume ratio. This amplification produces a P2 stage
636 viral stock that can be used in final protein expression. The amplification proceeded for
637 4-5 days before harvesting, with cell shaking at 120 RPM in a 27°C shaker (New
638 Brunswick). Harvesting of P2 viral stocks was carried out by centrifuging cell suspensions
639 in 50 mL Falcon tubes at 2281 RCF (Beckman GS-15), collecting the supernatant in a
640 fresh sterile tube, and adding 5-10% inactivated foetal bovine serum (FBS; VWR Canada
641 #97068-085).

642

643 *Expression and purification of PI3K γ constructs:*

644 The PI3K γ complexes (Human p110 γ -porcine p101 WT/mutants and Human p110 γ -
645 mouse p84 WT) were expressed in Sf9 insect cells using the baculovirus expression
646 system. Following 55 hours of expression, cells were harvested by centrifuging at 1680
647 RCF (Eppendorf Centrifuge 5810 R) and the pellets were snap-frozen in liquid nitrogen.
648 Constructs without the regulatory subunit (Human p110 γ full length and Human p110 γ -
649 144-1102) were expressed in insect cells for 55 hours from a pACEBac vector. Both the
650 monomer and the complex were purified identically through a combination of nickel affinity,
651 streptavidin affinity and size exclusion chromatographic techniques.

652 Frozen insect cell pellets were resuspended in lysis buffer (20 mM Tris pH 8.0, 100
653 mM NaCl, 10 mM imidazole pH 8.0, 5% glycerol (v/v), 2 mM β ME), protease inhibitor
654 (Protease Inhibitor Cocktail Set III, Sigma) and sonicated for 2 minutes (15s on, 15s off,
655 level 4.0, Misonix sonicator 3000). Triton-X was added to the lysate to a final
656 concentration of 0.1% and clarified by spinning at 15,000 RCF for 45 minutes (Beckman
657 Coulter JA-20 rotor). The supernatant was loaded onto a 5 mL HisTrapTM FF crude
658 column (GE Healthcare) equilibrated in NiNTA A buffer (20 mM Tris pH 8.0, 100 mM NaCl,
659 20 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β ME). The column was washed with
660 high salt NiNTA A buffer (20 mM Tris pH 8.0, 1 M NaCl, 20 mM imidazole pH 8.0, 5% (v/v)
661 glycerol, 2 mM β ME), NiNTA A buffer, 6% NiNTA B buffer (20 mM Tris pH 8.0, 100 mM
662 NaCl, 250 mM imidazole pH 8.0, 5% (v/v) glycerol, 2 mM β ME) and the protein was eluted
663 with 100% NiNTA B. The eluent was loaded onto a 5 mL StrepTrapTM HP column (GE
664 Healthcare) equilibrated in gel filtration buffer (20 mM Tris pH 8.5, 100 mM NaCl, 50 mM
665 Ammonium Sulfate and 0.5 mM TCEP). The column was washed with the same buffer

666 and loaded with tobacco etch virus protease. After cleavage on the column overnight, the
667 protein was eluted in gel filtration buffer. For the complex with nanobody, the eluted
668 protein was incubated with two-fold molar excess of purified nanobody on ice for 15
669 minutes. The protein was concentrated in a 50,000 MWCO Amicon Concentrator
670 (Millipore) to <1 mL and injected onto a Superdex™ 200 10/300 GL Increase size-
671 exclusion column (GE Healthcare) equilibrated in gel filtration buffer. After size exclusion,
672 the protein was concentrated, aliquoted, frozen and stored at -80°C.

673

674 *Cryo-EM Sample Preparation and Data Collection*

675 C-Flat 2/2-T 300 mesh grids were glow discharged for 25s at 15mA using a Pelco
676 easiGlow glow-discharger. 3µL of purified p110 γ -p101 complex with or without bound
677 nanobody was then applied to the grids at a concentration of 0.45 mg/ml. Grids were then
678 prepared using a Vitrobot Mark IV (Thermo Fisher Scientific) by blotting for 1.5s at 4°C
679 and 100% humidity with a blot force of -5 followed by plunge freezing in liquid ethane.
680 Grids were screened for particle and ice quality at the UBC High Resolution
681 Macromolecular Cryo-Electron Microscopy (HRMCM) facility using a 200kV Glacios TEM
682 (Thermo Fisher Scientific) equipped with a Falcon 3EC DED. All datasets were then
683 collected at the Pacific Northwest Cryo-EM Center (PNCC) using a Titan Krios equipped
684 with a K3 DED and a BioQuantum K3 energy filter with a slit width of 20 eV (Gatan). For
685 the apo p110 γ -p101 complex, 6153 super-resolution movies were collected using
686 SerialEM with a total dose of 50e $^-$ /Å 2 over 50 frames at a physical pixel size of 1.079Å/pix,
687 using a defocus range of -0.8 to -2µm. For the nanobody-bound p110 γ -p101 complex,

688 6808 super-resolution movies were collected using SerialEM with a total dose of 36.4e-
689 /Å² over 50 frames at a physical pixel size of 1.059Å/pix, using a defocus range of -1 to -
690 2.4μm.

691

692 *Cryo-EM image analysis*

693 All data processing was carried out using cryoSPARC v2.18+ unless otherwise specified.
694 For the nanobody-bound p110 γ -p101 complex dataset, patch motion correction using
695 default settings was first applied to all movies to align the frames and Fourier crop the
696 outputs by a factor of 2. The contrast transfer function (CTF) of the resulting micrographs
697 was estimated using the patch CTF estimation job with default settings. 2D class
698 averages from a previous dataset were low-pass filtered to 15Å and used as templates
699 to auto-pick 3,762,631 particles, which were then extracted with a box size of 300 pixels.
700 The particles were subjected to 2D classification with the 2D class re-center threshold set
701 to 0.05, and a circular mask of 200Å. 2D class averages that had ice contamination or
702 showed no features were discarded. The remaining 952,705 particles were next used for
703 *ab initio* reconstruction and heterogenous refinement using 2 classes. 692,109 particles
704 from the better 3D reconstruction were curated and any particles from micrographs with
705 a CTF estimation worse than 3Å or total frame motion greater than 30Å were discarded.
706 Per-particle local motion correction was then carried out on the remaining 662,855
707 particles. The particles were then used for *ab initio* reconstruction and heterogeneous
708 refinement using 4 classes. 320,179 particles from the most complete class were used to
709 carry out homogenous refinement using the 3D reconstruction for that class as a starting

710 model, yielding a reconstruction with an overall resolution of 2.99Å based on the Fourier
711 shell correlation (FSC) 0.143 criterion. The particles were further refined using local CTF
712 refinement before being used for non-uniform refinement with simultaneous global CTF
713 refinement, yielding a map with an overall resolution of 2.90Å. Finally, the map was
714 subjected to a final non-uniform refinement using a mask enveloping the entire volume
715 with the rotation fulcrum centered at the low-resolution nanobody-p101 interaction
716 interface, producing the final map used for model building at a 2.89Å overall resolution.

717 For the apo p110 γ -p101 complex dataset, full-frame motion correction using
718 default settings was first applied to all movies to align the frames. The contrast transfer
719 function (CTF) of the resulting micrographs was estimated using CTFFIND4 with default
720 settings. 2D class averages from a previous dataset were low-pass filtered to 15Å and
721 used as a template to auto-pick 4,792,176 particles, which were then down-sampled by
722 2 (resulting pixel size of 1.079 Å/pix) and extracted with a box size of 320 pixels. The
723 particles were subjected to multiple rounds of 2D classification with the 2D class re-center
724 threshold set to 0.05, and a circular mask of 200Å. 2D class averages that had ice
725 contamination or did not align to high-resolution were then discarded. The remaining
726 1,285,510 particles were next subjected to patch CTF estimation and per-particle motion
727 correction before being used for 2 more rounds of 2D classification. 731,169 particles
728 which classified to “good” classes were then used for *ab initio* reconstruction and
729 heterogenous refinement using 2 classes twice iteratively. 196,390 particles from the
730 better 3D reconstruction were used to carry out homogenous refinement using the 3D
731 reconstruction for that class as a starting model, yielding a reconstruction with an overall

732 resolution of 3.49Å based on the Fourier shell correlation (FSC) 0.143 criterion. The map
733 was further refined non-uniform refinement, yielding a map with an overall resolution of
734 3.36Å.

735

736 *Building the structural model of p110 γ -p101*

737 The crystal structure of the Δ ABD p110 γ (PDB: 1E8Y) {Walker:2000bb} was fit into
738 the map using Chimera. Model building was carried out using iterative rounds of
739 automated model building in Phenix, manual model building in COOT (68), and
740 refinement in Phenix.real_space_refine using realspace, rigid body, and adp refinement
741 with tight secondary structure restraints (69). This allowed for building the ABD, activation
742 loop of the kinase domain, the RBD-C2 and C2-helical linkers in p110 γ , and all structured
743 regions of the PBD, and part of the GBD of p101 with high confidence. The regions of the
744 GBD that were manually built included the N-terminal strand (residues 667-676) and the
745 beta hairpin (residues 725 to 745).

746 Due to the GBD being highly dynamic further automated or manual model building
747 was limited. Starting with this initial model of the GBD, we used a combination of Rosetta
748 de novo modelling (41) and folding with trRosetta deep-learned constraints (42, 43) to
749 build the remaining GBD (667-837). Rosetta de novo model building was then run on the
750 entire domain starting from this model. This placed an additional strand (residues 677-
751 686). Unfortunately, additional rounds of de novo model-building in Rosetta failed to
752 identify additional regions of the sequence.

753 Next, we used trRosetta (with some unpublished improvements) to predict
754 contacts for this domain (42). The sequence input for trRosetta included the fasta
755 sequence from residues 671-838, and this resulted in ~2000 aligned sequences, 206 of
756 which (after filtering by 90% of maximum pairwise sequence identity and 50% of minimum
757 coverage) were used to derive constraints. Unfortunately, structure predictions using
758 constraints from trRosetta alone yielded structures that were inconsistent with the
759 observed density data. Therefore, we instead turned to modelling using density and
760 constraints simultaneously. The trRosetta constraints were input along with the density
761 map as inputs to Rosetta comparative modeling (RosettaCM), starting with the partially
762 complete model from Rosetta de novo (43). A total of 10,000 modelling trajectories were
763 sampled, yielding good convergence on a model with good agreement to the density (Fig
764 S2). Compared to prior trRosetta modelling procedures (42), the constraint weight was
765 reduced to balance the relative contributions of density and the constraints.

766 To further improve model-map agreement (and overall model geometry), the
767 lowest energy model was used as the input for subsequent rounds of modelling. A total
768 of three rounds of modelling were carried out in this way, each model producing 100
769 output models, of which the best 10 (by Rosetta + density energies) were carried over to
770 the next round. The final model shows very good agreement with the predicted
771 constraints (Fig S2).

772 This final model of the GBD was combined with the rest of the p110 γ -p101 complex,
773 and final real space refinement was carried out in Phenix using tight secondary structure

774 restraints to give the final model, with full refinement and validation statistics shown in

775 **Table S2.**

776

777 *Expression and Purification of lipidated G $\beta\gamma$ for kinase activity assays:*

778 Full length, lipidated human G $\beta\gamma$ (G $\beta_1\gamma_2$) was expressed in Sf9 insect cells and purified as

779 described previously (70). After 65 hours of expression, cells were harvested and the

780 pellets were frozen as described above. Pellets were resuspended in lysis buffer (20 mM

781 HEPES pH 7.7, 100 mM NaCl, 10 mM β ME, protease inhibitor (Protease Inhibitor Cocktail

782 Set III, Sigma)) and sonicated for 2 minutes (15s on, 15s off, level 4.0, Misonix sonicator

783 3000). The lysate was spun at 500 RCF (Eppendorf Centrifuge 5810 R) to remove intact

784 cells and the supernatant was centrifuged again at 25,000 RCF for 1 hour (Beckman

785 Coulter JA-20 rotor). The pellet was resuspended in lysis buffer and sodium cholate was

786 added to a final concentration of 1% and stirred at 4°C for 1 hour. The membrane extract

787 was clarified by spinning at 10,000 RCF for 30 minutes (Beckman Coulter JA-20 rotor).

788 The supernatant was diluted 3 times with NiNTA A buffer (20 mM HEPES pH 7.7, 100

789 mM NaCl, 10 mM Imidazole, 0.1% C₁₂E₁₀, 10mM β ME) and loaded onto a 5 mL HisTrap™

790 FF crude column (GE Healthcare) equilibrated in the same buffer. The column was

791 washed with NiNTA A, 6% NiNTA B buffer (20 mM HEPES pH 7.7, 25 mM NaCl, 250 mM

792 imidazole pH 8.0, 0.1% C12E10, 10 mM β ME) and the protein was eluted with 100%

793 NiNTA B. The eluent was loaded onto HiTrap™ Q HP anion exchange column

794 equilibrated in Hep A buffer (20 mM Tris pH 8.0, 8 mM CHAPS, 2 mM Dithiothreitol (DTT)).

795 A gradient was started with Hep B buffer (20 mM Tris pH 8.0, 500 mM NaCl, 8 mM CHAPS,

796 2 mM DTT) and the protein was eluted in ~50% Hep B buffer. The eluent was
797 concentrated in a 30,000 MWCO Amicon Concentrator (Millipore) to < 1 mL and injected
798 onto a SuperdexTM 75 10/300 GL size exclusion column (GE Healthcare) equilibrated in
799 Gel Filtration buffer (20 mM HEPES pH 7.7, 100 mM NaCl, 10 mM CHAPS, 2 mM TCEP).
800 Fractions containing protein were pooled, concentrated, aliquoted, frozen and stored at -
801 80°C.

802

803 *Lipid vesicle preparation for kinase activity assays:*

804 Lipid vesicles containing 5% brain phosphatidylinositol 4,5- bisphosphate (PIP2), 20%
805 brain phosphatidylserine (PS), 50% egg-yolk phosphatidylethanolamine (PE), 10% egg-
806 yolk phosphatidylcholine (PC), 10% cholesterol and 5% egg-yolk sphingomyelin (SM)
807 were prepared by mixing the lipids solutions in organic solvent. The solvent was
808 evaporated in a stream of argon following which the lipid film was desiccated in a vacuum
809 for 45 minutes. The lipids were resuspended in lipid buffer (20 mM HEPES pH 7.0, 100
810 mM NaCl and 10 % glycerol) and the solution was sonicated for 15 minutes. The vesicles
811 were subjected to five freeze thaw cycles and extruded 11 times through a 100-nm filter
812 (T&T Scientific: TT-002-0010). The extruded vesicles were sonicated again for 5 minutes,
813 aliquoted and stored at -80°C. Final vesicle concentration was 5 mg/mL.

814

815 *Lipid kinase activity assays:*

816 All lipid kinase activity assays employed the Transcreener ADP2 Fluorescence Intensity
817 (FI) Assay (Bellbrook labs) which measures ADP production. For assays comparing the

818 activities of p110 γ , p110 γ -p101 and p110 γ -p84, PM-mimic vesicles at a final concentration
819 of 1 mg/mL, ATP at a final concentration of 100 μ M ATP and G β γ at 1.5 μ M final
820 concentration were used. Final concentration of kinase was 3000nM for all basal
821 conditions. For conditions with G β γ , p110 γ : 3000 nM, p110 γ -p84: 1000 nM and p110 γ -
822 p101: 30 nM. 2 μ L kinase solution at 2X final concentration was mixed with 2 μ L
823 substrate solution containing ATP, vesicles and G β γ or G β γ gel filtration buffer and the
824 reaction was allowed to proceed for 60 minutes at 20°C. For assays comparing mutants,
825 kinase was mixed with vesicles at 1mg/mL, ATP at 100 μ M and G β γ at 75 nM or 1.5 μ M
826 final concentrations and the reaction was allowed to proceed for 60 minutes at 37°C. The
827 reactions were stopped with 4 μ L of 2X stop and detect solution containing Stop and
828 Detect buffer, 8 nM ADP Alexa Fluor 594 Tracer and 93.7 μ g/mL ADP2 Antibody IRDye
829 QC-1 and incubated for 50 minutes. The fluorescence intensity was measured using a
830 SpectraMax M5 plate reader at excitation 590 nm and emission 620 nm. This data was
831 normalized against the measurements obtained for 100 μ M ATP and 100 μ M ADP. The %
832 ATP turnover was interpolated from a standard curve (0.1-100 μ M ADP). This was then
833 used to calculate the specific activity of the enzyme.

834 For assays measuring nanobody inhibition at saturating G β γ concentrations, kinase
835 at 4X concentration was mixed with nanobody at 4X concentration to obtain 2X enzyme-
836 nanobody solution (6 μ M final nanobody). Final concentration of kinase was 3000nM for
837 all basal conditions. For conditions with G β γ , p110 γ -p84: 1500 nM and p110 γ -p101: 50
838 nM. 2 μ L of this solution was mixed with 2 μ L of 2X substrate solution containing ATP
839 (100 μ M final), vesicles (1 mg/mL final) with or without G β γ (1.5 μ M final) to start the

840 reaction and allowed to proceed for 60 minutes at 20 °C. Following this, the reaction was
841 stopped, the intensity was measured, the data was normalized and specific activity
842 calculated as described above. For the nanobody IC₅₀ curve, kinase at 4X concentration
843 was mixed with nanobody at 4X concentration to obtain 2X enzyme-nanobody solution
844 (200nM final kinase; 41-10,000 nM final nanobody). 2 µL of this solution was mixed with
845 2 µL of 2X substrate solution containing ATP (100 µM final), vesicles (2 mg/mL final) and
846 G β γ (600 nM final) to start the reaction and allowed to proceed for 60 minutes at 20 °C.
847 Following this, the reaction was stopped, the intensity was measured, and the data was
848 normalized as described above. The normalized values for conditions with nanobody
849 were then further normalized against the condition with maximal activity (no nanobody).

850

851 *Bio-layer interferometry:*

852 Biolayer interferometry was performed using Octet K2 (ForteBio, Inc.). His-tagged
853 nanobody was immobilized on an Anti-Penta-His biosensor for 600 seconds and the
854 sensor was dipped into solutions of p110 γ -p101 at 1.5, 6 and 25 nM final concentrations
855 diluted in kinetics buffer (KB) containing 20mM Tris pH 8.5, 100mM NaCl, 50mM
856 ammonium sulphate, 0.1% bovine serum albumin and 0.02% tween-20. The association
857 step was allowed to proceed for 600 seconds followed by a dissociation step in KB without
858 protein for 600 seconds. The baseline was obtained by dipping sensor without nanobody
859 into a solution containing 25 nM p110 γ -p101 in a similar fashion. The average K_d was
860 calculated from the three binding curves based on their global fit to a 1:1 binding model.

861

862 *Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) (STAR methods)*

863 **HDX-MS sample preparation**

864 For HDX reactions comparing p110 γ alone and p110 γ in complex with p101 or p84,
865 exchange was carried out in a 50 μ l reaction containing 20 picomoles of protein, either
866 p110 γ , p110 γ -p84 or p110 γ -p101. To initiate hydrogen-deuterium exchange, 1.5 μ L of
867 either protein was incubated with 48.5 μ L of D₂O buffer solution (20mM HEPES pH 7.5,
868 100mM NaCl, 94.3% D₂O) for five time points (3s on ice, 3s, 30s, 300s, 3000s at room
869 temperature) to give a final concentration of 91.5% D₂O.

870 HDX reactions comparing full length p110 γ and ABD truncated p110 γ were
871 conducted in 50 μ l reaction volumes with a final p110 γ amount of 15 pmol. Exchange was
872 carried out for four time points (3s, 30s, 300s and 3000s at room temperature). To initiate
873 hydrogen-deuterium exchange, 1.2 μ L of either protein was incubated with 48.8 μ L of
874 D₂O buffer solution (20mM HEPES pH 7.5, 100mM NaCl, 94.3% D₂O) to give a final
875 concentration of 92% D₂O.

876 HDX reactions comparing p110 γ -p101 with and without nanobody were conducted
877 in 50 μ l reaction volumes with a final p110 γ amount of 16 pmol and a final nanobody
878 amount of 7 pmol. Exchange was carried out for two time points (3s and 300s at room
879 temperature). To initiate hydrogen-deuterium exchange, 1 μ L of p110 γ -p101 and 1 μ L of
880 nanobody was incubated with 48 μ L of D₂O buffer solution (20mM HEPES pH 7.5, 100mM
881 NaCl, 94.3% D₂O) to give a final concentration of 90.5% D₂O.

882 HDX reactions comparing wild-type p110 γ -p101, R472C p110 γ -p101, and E347K
883 p110 γ -p101 were conducted in 50 μ l reaction volumes with a final protein amount of 12.5

884 pmol. Exchange was carried out for five time points (3s on ice, 3s, 30s, 300s and 3000s
885 at room temperature). To initiate hydrogen-deuterium exchange, 2 μ L of protein was
886 incubated with 48 μ L of D₂O buffer solution (20mM HEPES pH 7.5, 100mM NaCl, 94.3%
887 D₂O) to give a final concentration of 90.5% D₂O. All exchange reactions were terminated
888 by the addition of ice-cold quench buffer to give a final concentration 0.6M guanidine-HCl
889 and 0.9% formic acid and samples were frozen in liquid nitrogen and stored at -80°C. All
890 experiments were carried out in independent triplicate.

891

892 **Protein digestion and MS/MS data collection**

893 Protein samples were rapidly thawed and injected onto an integrated fluidics system
894 containing a HDx-3 PAL liquid handling robot and climate-controlled chromatography
895 system (LEAP Technologies), a Dionex Ultimate 3000 UHPLC system, as well as an
896 Impact HD QTOF Mass spectrometer (Bruker). The full details of the fluidics system are
897 described in (71). The protein was run over either one (at 10°C) or two (at 10°C and 2°C)
898 immobilized pepsin columns (Applied Biosystems; Poroszyme Immobilized Pepsin
899 Cartridge, 2.1 mm x 30 mm; Thermo-Fisher 2-3131-00; Trajan; ProDx protease column,
900 2.1 mm x 30 mm PDX.PP01-F32) at 200 μ L/min for 3 minutes. The resulting peptides
901 were collected and desalted on a C18 trap column (Acquity UPLC BEH C18 1.7mm
902 column (2.1 x 5 mm); Waters 186003975). The trap was subsequently eluted in line with
903 a C18 reverse-phase separation column (Acquity 1.7 mm particle, 100 x 1 mm² C18
904 UPLC column, Waters 186002352), using a gradient of 5-36% B (Buffer A 0.1% formic
905 acid; Buffer B 100% acetonitrile) over 16 minutes. Mass spectrometry experiments

906 acquired over a mass range from 150 to 2200 m/z using an electrospray ionization source
907 operated at a temperature of 200°C and a spray voltage of 4.5 kV.

908

909 **Peptide identification**

910 Peptides were identified from the non-deuterated samples of p110 γ alone, p110 γ -p84, or
911 p110 γ -p101 using data-dependent acquisition following tandem MS/MS experiments (0.5
912 s precursor scan from 150-2000 m/z; twelve 0.25 s fragment scans from 150-2000 m/z).
913 MS/MS datasets were analyzed using PEAKS7 (PEAKS), and peptide identification was
914 carried out by using a false discovery-based approach, with a threshold set to 1% using
915 a database of purified proteins and known contaminants (72). The search parameters
916 were set with a precursor tolerance of 20 ppm, fragment mass error 0.02 Da, charge
917 states from 1-8, with a selection criterion of peptides that had a -10logP score of 21.7.

918

919 **Mass Analysis of Peptide Centroids and Measurement of Deuterium Incorporation**

920 HD-Examiner Software (Sierra Analytics) was used to automatically calculate the level of
921 deuterium incorporation into each peptide. All peptides were manually inspected for
922 correct charge state, correct retention time, appropriate selection of isotopic distribution,
923 etc. Deuteration levels were calculated using the centroid of the experimental isotope
924 clusters. The results for these proteins are presented as the raw percent deuterium
925 incorporation, as shown in Supplemental Data, with the only correction being applied
926 correcting for the deuterium oxide percentage of the buffer utilized in the exchange (91.7%
927 for comparing p110 γ to p110 γ -p101 and p110 γ -p84, 86.8% for comparing p110 γ -p101

928 with NB1-PIK3R5, 92% for the ABD deletion, and 90.5% for the oncogenic mutants). No
929 corrections for back exchange that occurs during the quench and digest/separation were
930 applied. Attempts to generate a fully deuterated class I PI3K sample were unsuccessful,
931 which is common for large macromolecular complexes. Therefore, all deuterium
932 exchange values are relative.

933 Differences in exchange in a peptide were considered significant if they met all
934 three of the following criteria: $\geq 5\%$ change in exchange, ≥ 0.4 Da difference in exchange,
935 and a p value < 0.01 using a two tailed student t-test. The raw HDX data are shown in two
936 different formats.

937 The raw peptide deuterium incorporation graphs for a selection of peptides with
938 significant differences are shown, with the raw data for all analyzed peptides in the source
939 data. To allow for visualization of differences across all peptides, we utilized number of
940 deuterium difference (#D) plots. These plots show the total difference in deuterium
941 incorporation over the entire H/D exchange time course, with each point indicating a
942 single peptide. These graphs are calculated by summing the differences at every time
943 point for each peptide and propagating the error (example Fig S6A-B). For a selection of
944 peptides we are showing the %D incorporation over a time course, which allows for
945 comparison of multiple conditions at the same time for a given region (Fig. S6C). Samples
946 were only compared within a single experiment and were never compared to experiments
947 completed at a different time with a different final D₂O level. The data analysis statistics
948 for all HDX-MS experiments are in Table S3 according to the guidelines of (73). The mass

949 spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
950 via the PRIDE partner repository (74) with the dataset identifier [PXD025209](#).

951

952 *Total Internal Reflection Fluorescence Microscopy (TIRF) (STAR methods)*

953 **Purification of recombinant farnesyl G_{β1}G_{γ2} and SNAP-G_{β1}G_{γ2} for TIRF microscopy:**

954

955 Genes encoding bovine G_{β1} and G_{γ2} were cloned into baculovirus expression vectors
956 Gibson assembly. This was achieved using YFP-G_{β1} (Addgene plasmid # 36397) and
957 YFP-G_{γ2} (Addgene plasmid # 36102) as templates for PCR. These G_{β1} and
958 G_{γ2} containing plasmids were kindly provided to Addgene by Narasimhan Gautam (75).

959 We recombinantly expressed either G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2} in High
960 five insect cells using a dual expression vector system with tandem polyhedron promoters.

961 General procedures for making BACMID and baculovirus were performed as previously
962 described (76). For G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2} expression, 2-4 liters of
963 High Five cells (2 x 10⁶ cells/mL) were infected with 2% vol/vol of baculovirus. Cultures
964 were then grown in 3 liter shaker flasks (120 rpm) for 48 hours at 27 °C before harvesting.
965 Insect cells were harvested by centrifugation and stored as 10 g pellets in the -80°C until
966 initiating the purification.

967 To isolate farnesylated G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2} complexes
968 from insect cells, we used a hybrid purification protocol based on both (70, 77). Cells were
969 lysed by dounce homogenization into the buffer containing 50 mM HEPES-NaOH [pH 8],
970 100 mM NaCl, 3 mM MgCl₂, 0.1 mM EDTA, 10 μM GDP, 10 mM BME, Sigma PI tablets,

971 1 mM PMSF, DNase. Cell lysate was subjected to low speed centrifugation (10 min at
972 800 RCF) to remove nuclei and large cell debri. Next, soluble cell membranes isolated
973 from partially clarified lysate were pelleted by centrifugation using a Beckman Ti45 rotor
974 (100,000 RCF for 30 minutes). Pellets containing the membrane fraction of the cell lysate
975 were solubilize in membrane extraction buffer: 50 mM HEPES-NaOH (pH 8), 50 mM NaCl,
976 3 mM MgCl₂, 1% sodium deoxycholate (wt/vol, Sigma D6750), 10 μ M GDP (Sigma
977 G7127), 10 mM BME, and Sigma protease inhibitor tablet in order to solubilize
978 farnesylated G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2}. Membranes were
979 resuspended in enough membrane extraction buffer to reach a protein concentration of 5
980 mg/mL. We used a dounce homogenizer to break apart the membrane followed by stirring
981 in a beaker at 4°C for 1 hour. Following membrane extraction, insoluble material was
982 removed by 4°C ultracentrifugation at 100,000 RCF for 45 minutes. Clarify supernatant
983 containing detergent solubilized G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2} was diluted
984 5-fold in post membrane extraction buffer: 20 mM HEPES-NaOH (pH 7.7), 100 mM NaCl,
985 0.1 % C₁₂E₁₀ (Polyoxyethylene (10) lauryl ether; Sigma, P9769), 25 mM imidazole, and 2
986 mM BME. For affinity purification of G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2}, 7-10
987 mL of Qiagen NiNTA resin (50% slurry) was added diluted post membrane extraction
988 sample and incubated on a stir plate in a beaker at 4°C for 2 hours. Using a gravity flow
989 column, NiNTA resin was washed with 20 column volumes of buffer containing 20 mM
990 HEPES-NaOH (pH 7.7), 100 mM NaCl, 0.1 % C₁₂E₁₀, 20 mM imidazole, 2 mM BME. Next,
991 the contaminating G alpha subunit of the heterotrimeric G-protein complex was eluted by
992 washing with warm buffer (30°C) containing 20 mM HEPES-NaOH (pH 7.7), 100 mM

993 NaCl, 0.1 % C₁₂E₁₀, 20 mM imidazole, 2 mM BME, 50 mM MgCl₂, 10 μ M GDP, 30 μ M
994 AlCl₃, 10 mM NaF. When dissolving AlCl₃ into water we worked in a fume hood to prevent
995 inhalation of gaseous HCl. Finally, G_{β1}/his₆-TEV-G_{γ2} or SNAP-G_{β1}/his₆-TEV-G_{γ2} were
996 eluted from NiNTA resin with buffer containing 20 mM Tris-HCl (pH 8.0), 25 mM NaCl,
997 0.1 % C₁₂E₁₀, 200 mM imidazole, 2 mM BME. Eluate was combined with TEV protease
998 and incubated overnight in the NTA elution buffer at 4°C. During day two of the purification,
999 G_{β1}G_{γ2} or SNAP-G_{β1}G_{γ2} were desalted into buffer containing 20 mM Tris-HCl (pH 8.0),
1000 25mM NaCl, 8 mM CHAPS, 2 mM TCEP and loaded onto a MonoQ column equilibrated
1001 with the same buffer. G_{β1}G_{γ2} or SNAP-G_{β1}G_{γ2} eluted from the MonoQ column in the
1002 presence of 175-200 mM NaCl. A single peak was combined and concentrated using a
1003 Millipore Amicon Ultra-4 (10 kDa MWCO) centrifuge filter. G_{β1}G_{γ2} or SNAP-G_{β1}G_{γ2} were
1004 respectively loaded on either Superdex 75 or Superdex 200 gel filtration columns
1005 equilibrated 20 mM Tris [pH 8.0], 100 mM NaCl, 8 mM CHAPS, 2 mM TCEP. We pooled
1006 peak fractions and concentrated the protein using a Millipore Amicon Ultra-4 (10 kDa
1007 MWCO) centrifuge tube. Concentrated G_{β1}G_{γ2} or SNAP-G_{β1}G_{γ2} was aliquoted and flash
1008 frozen liquid nitrogen. Using single molecule TIRF microscopy, we determined that the
1009 quality of the protein was similarly high when the protein was frozen in the absence or
1010 presence of 10% glycerol.

1011

1012 **Fluorescent labeling of ybbr-p110 γ and p110 γ /ybbr-p101**

1013 The Dyomics647-CoA derivative was generated in-house by combining 15 mM
1014 Dyomics647 maleimide (Dyomics, Cat #647P1-03) in DMSO with 10 mM CoA (Sigma,

1015 #C3019, MW = 785.33 g/mole) dissolved in 1x PBS. This mixture was incubated overnight
1016 at 23°C. Unreacted Dyomics647 maleimide was quenched by the addition of 5 mM DTT.
1017 DY647-CoA can be stored at -20°C for at least one year. We labeled recombinant
1018 p110 γ /p101 containing a N-terminal ybbR13 motif (DSLEFIASKLA) using Sfp transferase
1019 and DY647-CoA (78). Chemical labeling was achieved by combining 5 μ M p110 γ /ybbr-
1020 p101 (or ybbr-p110 γ), 4 μ M Sfp-his₆, and 10 μ M DY647-CoA, in 2 mL of buffer containing
1021 20 mM Tris [pH 8], 150 mM NaCl, 10 mM MgCl₂, 10% Glycerol, 1 mM TCEP, 0.05%
1022 CHAPS. Following a 4 hour labeling reaction on ice, excess DY647-CoA was removed
1023 using a gravity flow PD-10 column. p110 γ /Dy647-ybbr-p101 (or Dy647-ybbr-p110 γ) was
1024 concentrated in a 50 kDa MWCO Amicon centrifuge tube and loaded on a Superdex 200
1025 gel filtration column equilibrated in 20 mM Tris [pH 8], 150 mM NaCl, 10% glycerol, 1 mM
1026 TCEP, 0.05% CHAPS. Peak fractions were pooled and concentrated to 5-10 μ M before
1027 flash freezing with liquid nitrogen.

1028

1029 **Preparation of supported lipid bilayers**

1030 The following lipids were used to generated small unilamellar vesicles (SUVs) and
1031 subsequently supported lipid bilayers: 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1
1032 DOPC, Avanti # 850375C) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (18:1 DOPS,
1033 Avanti # 840035C). To make liposomes, 2 μ moles total lipids are combined in a 35 mL
1034 glass round bottom flask containing 2 mL of chloroform. Lipids are dried to a thin film
1035 using rotary evaporation with the glass round-bottom flask submerged in a 42°C water
1036 bath. After evaporating all the chloroform, the round bottom flask was flushed with

1037 nitrogen gas for at least 30 minutes. Resuspend lipid film in 2 mL of PBS [pH 7.2], making
1038 a final concentration of 1 mM total lipids. All lipid mixtures expressed as percentages (e.g.
1039 95% DOPC, 5% DOPS) are equivalent to molar fractions. To generate 30-50 nm SUVs,
1040 1 mM total lipid mixtures were extruded through a 0.03 μ m pore size 19 mm polycarbonate
1041 membrane (Avanti #610002) with filter supports (Avanti #610014) on both sides of the PC
1042 membrane.

1043 Supported lipid bilayers are formed on 25x75 mm coverglass (IBIDI, #10812).
1044 Coverglass was first cleaned with 2% Hellmanex III (Fisher, Cat#14-385-864) heated to
1045 60-70°C in a glass coplin jar. Incubate for at least 30 minutes. Wash coverglass
1046 extensively with MilliQ water and then etched with Pirahna solution (1:3, hydrogen
1047 peroxide:sulfuric acid) for 10-15 minutes the same day SLBs were formed. Etched
1048 coverglass, in water, is rapidly dried with nitrogen gas before adhering to a 6-well sticky-
1049 side chamber (IBIDI, Cat# 80608). Form SLBs by flowing 30 nm SUVs diluted in PBS
1050 [pH 7.2] to a total lipid concentration of 0.25 mM. After 30 minutes, IBIDI chambers are
1051 washed with 5 mL of PBS [pH 7.2] to remove non-absorbed SUVs. Membrane defects
1052 are blocked for 15 minutes with a 1 mg/mL beta casein (Thermo FisherSci, Cat# 37528)
1053 diluted in 1x PBS [pH 7.4]. Before use as a blocking protein, frozen 10 mg/mL beta casein
1054 stocks were thawed, centrifuged for 30 minutes at 21370 x g, and 0.22 μ m syringe filtered.
1055 After blocking SLBs with beta casein, membranes were washed again with 1mL of PBS,
1056 followed by 1 mL of TIRF-M imaging buffer before TIRF-M.

1057

1058 **Single molecule TIRF microscopy**

1059 All supported membrane TIRF-M experiments were performed using the following
1060 reaction buffer: 20 mM HEPES [pH 7.0], 150 mM NaCl, 1 mM ATP, 5 mM MgCl₂, 0.5 mM
1061 EGTA, 20 mM glucose, 200 µg/mL beta casein (ThermoScientific, Cat# 37528), 20 mM
1062 BME, 320 µg/mL glucose oxidase (Serva, #22780.01 *Aspergillus niger*), 50 µg/mL
1063 catalase (Sigma, #C40-100MG Bovine Liver), and 2 mM Trolox (76). Perishable reagents
1064 (i.e. glucose oxidase, catalase, and Trolox) were added 5-10 minutes before image
1065 acquisition.

1066 Single-molecule imaging experiments were performed on an inverted Nikon Ti2
1067 microscope using a 100x Nikon objective (1.49 NA) oil immersion TIRF objective. We
1068 manually control the x-axis and y-axis positions using an Nikon motorized stage and
1069 joystick. Fluorescently labelled proteins were excited with either a 488 nm or 637 nm
1070 diode laser (OBIS laser diode, Coherent Inc. Santa Clara, CA) controlled with a Vortran
1071 laser drive with acousto-optic tuneable filters (AOTF) control. The power output measured
1072 through the objective for single particle imaging was 1-3 mW. Excitation light was passed
1073 through the following dichroic filter cubes before illuminating the sample: (1)
1074 ZT488/647rpc and (2) ZT561rdc (ET575LP) (Semrock). Fluorescence emission was
1075 detected on an iXion Life 897 EMCCD camera (Andor Technology Ltd., UK) after passing
1076 through a Nikon Ti2 emission filter wheel containing the following 25 mm emission filters:
1077 ET525/50M, ET600/50M, ET700/75M (Semrock). All experiments were performed at
1078 room temperature (21-23°C). Microscope hardware was controlled with Nikon NIS
1079 elements.

1080

1081 **Single particle tracking**

1082 After the 16-bit .tif images were cropped down to 400x400 to minimize differences in field
1083 illumination. Upon starting the TrackMate plugin (79) on ImageJ/Fiji, the initial calibration
1084 settings were default and enter 'YES' for allow swapping of Z or T (depth or time). Select
1085 the LoG detector and enter the appropriate protein-related dimensions. Check the boxes
1086 applying median filter and sub-pixel localization. Apply default settings for initial
1087 thresholding, run hyperstack display, and then filter particles based on mean intensity.
1088 Choose a tracker (simple LAP tracker was used in this paper, but LAP tracker also
1089 works). Set the following filters on the tracks: Track Start (remove particles at start of
1090 movie); Track End (remove particles at end of movie); Track displacement; X - Y location
1091 (above and below totaling 4 filters). Continue running program and display options
1092 according to one's preference. From the generated files, the dwell times were extracted
1093 using a custom MATLAB script. A histogram and cumulative frequency distributions were
1094 generated for each data set. To calculate the dwell times for membrane bound lipid
1095 kinases we sorted into a cumulative distribution frequency (CDF) plot with the frame
1096 interval as the bin (e.g. 28 ms). A typical histogram contains dwell time from n = 2000-
1097 3000 tracked particles from n = 3 movies. The $\log_{10}(1-CDF)$ is then plotted against the
1098 dwell time and fit to a single or double exponential. For double exponential fit, alpha
1099 represents the percentage of the fast dissociating molecules characterized by τ_1 .

1100

1101 Single exponential model:

1102
$$f(t) = e^{(-x/\tau)}$$

1103

1104 Two exponential model:

1105
$$f(t) = \alpha * e^{(-x/\tau_1)} + (1 - \alpha) * e^{(-x/\tau_2)}$$

1106

1107 **Data availability statement**

1108 The electron microscopy data has been deposited in the electron microscopy data bank
1109 with accession numbers (EMDB: [23808](#) [p110 γ -p101-NB1-PIK3R5] and [23812](#) [p110 γ -
1110 p101]) and associated structural models have been deposited to the protein data bank
1111 with accession numbers (PDB: [7MEZ](#)). The mass spectrometry proteomics data have
1112 been deposited to the ProteomeXchange Consortium via the PRIDE (74) partner
1113 repository with the dataset identifier [PXD025209](#). All raw data in all figures are available
1114 in the source data.

1115

1116 **References**

1117 1. R. R. Madsen, B. Vanhaesebrouck, Cracking the context-specific PI3K signaling
1118 code. *Sci Signal.* **13**, eaay2940 (2020).

1119 2. D. A. Fruman *et al.*, The PI3K Pathway in Human Disease. *Cell.* **170**, 605–635
1120 (2017).

1121 3. J. E. Burke, R. L. Williams, Synergy in activating class I PI3Ks. *Trends in
1122 Biochemical Sciences.* **40**, 88–100 (2015).

1123 4. S. Suire *et al.*, p84, a new Gbetagamma-activated regulatory subunit of the type
1124 IB phosphoinositide 3-kinase p110gamma. *Curr. Biol.* **15**, 566–570 (2005).

1125 5. L. R. Stephens *et al.*, The G beta gamma sensitivity of a PI3K is dependent upon
1126 a tightly associated adaptor, p101. *Cell.* **89**, 105–114 (1997).

1127 6. K. Okkenhaug, Signaling by the phosphoinositide 3-kinase family in immune cells.
1128 *Annu. Rev. Immunol.* **31**, 675–704 (2013).

1129 7. Z. Li *et al.*, Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-
1130 mediated signal transduction. *Science.* **287**, 1046–1049 (2000).

1131 8. M. Laffargue *et al.*, Phosphoinositide 3-kinase gamma is an essential amplifier of
1132 mast cell function. *Immunity.* **16**, 441–451 (2002).

1133 9. E. Hirsch *et al.*, Central role for G protein-coupled phosphoinositide 3-kinase
1134 gamma in inflammation. *Science.* **287**, 1049–1053 (2000).

1135 10. M. Camps *et al.*, Blockade of PI3Kgamma suppresses joint inflammation and
1136 damage in mouse models of rheumatoid arthritis. *Nat. Med.* **11**, 936–943 (2005).

1137 11. A. Fougerat *et al.*, Genetic and pharmacological targeting of phosphoinositide 3-
1138 kinase-gamma reduces atherosclerosis and favors plaque stability by modulating
1139 inflammatory processes. *Circulation.* **117**, 1310–1317 (2008).

1140 12. D. Barber *et al.*, PI3Kgamma inhibition blocks glomerulonephritis and extends
1141 lifespan in a mouse model of systemic lupus. *Nat. Med.* **11**, 933–935 (2005).

1142 13. T. Bohnacker *et al.*, PI3Kgamma adaptor subunits define coupling to
1143 degranulation and cell motility by distinct PtdIns(3,4,5)P3 pools in mast cells. *Sci
1144 Signal.* **2**, ra27 (2009).

1145 14. E. Collmann *et al.*, Transient targeting of phosphoinositide 3-kinase acts as a
1146 roadblock in mast cells' route to allergy. *J. Allergy Clin. Immunol.* **132**, 959–968
1147 (2013).

1148 15. E. Patrucco *et al.*, PI3Kgamma modulates the cardiac response to chronic
1149 pressure overload by distinct kinase-dependent and -independent effects. *Cell.*
1150 **118**, 375–387 (2004).

1151 16. L. Breasson *et al.*, PI3K γ activity in leukocytes promotes adipose tissue
1152 inflammation and early-onset insulin resistance during obesity. *Sci Signal.* **10**,
1153 eaaf2969 (2017).

1154 17. C. C. Campa *et al.*, Inhalation of the prodrug PI3K inhibitor CL27c improves lung
1155 function in asthma and fibrosis. *Nat Commun.* **9**, 5232–16 (2018).

1156 18. M. M. Kaneda *et al.*, Macrophage PI3K γ Drives Pancreatic Ductal
1157 Adenocarcinoma Progression. *Cancer Discov.* **6**, 870–885 (2016).

1158 19. O. De Henau *et al.*, Overcoming resistance to checkpoint blockade therapy by
1159 targeting PI3K γ in myeloid cells. *Nature* (2016), doi:10.1038/nature20554.

1160 20. M. M. Kaneda *et al.*, PI3K γ is a molecular switch that controls immune
1161 suppression. *Nature*. **539**, 437–442 (2016).

1162 21. B. Stoyanov *et al.*, Cloning and characterization of a G protein-activated human
1163 phosphoinositide-3 kinase. *Science*. **269**, 690–693 (1995).

1164 22. M. C. Schmid *et al.*, Receptor tyrosine kinases and TLR/IL1Rs unexpectedly
1165 activate myeloid cell PI3K γ , a single convergent point promoting tumor
1166 inflammation and progression. *Cancer Cell*. **19**, 715–727 (2011).

1167 23. L. Luo *et al.*, TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3K γ for
1168 Suppression of Inflammatory Responses. *Cell Rep.* **24**, 3033–3044 (2018).

1169 24. L. Luo *et al.*, Rab8a interacts directly with PI3K γ to modulate TLR4-driven PI3K
1170 and mTOR signalling. *Nat Commun.* **5**, 4407 (2014).

1171 25. M. E. Pacold *et al.*, Crystal structure and functional analysis of Ras binding to its
1172 effector phosphoinositide 3-kinase gamma. *Cell.* **103**, 931–943 (2000).

1173 26. E. H. Walker, O. Perisic, C. Ried, L. Stephens, R. L. Williams, Structural insights
1174 into phosphoinositide 3-kinase catalysis and signalling. *Nature.* **402**, 313–320
1175 (1999).

1176 27. L. R. Stephens *et al.*, The Gbg sensitivity of a PI3K is dependent upon a tightly
1177 associated adaptor, p101. *Cell.* **89**, 105–114 (1997).

1178 28. G. L. Dornan, J. E. Burke, Molecular Mechanisms of Human Disease Mediated by
1179 Oncogenic and Primary Immunodeficiency Mutations in Class IA
1180 Phosphoinositide 3-Kinases. *Front Immunol.* **9**, 575 (2018).

1181 29. Y. Samuels *et al.*, High frequency of mutations of the PIK3CA gene in human
1182 cancers. *Science.* **304**, 554 (2004).

1183 30. M. S. Lawrence *et al.*, Discovery and saturation analysis of cancer genes across
1184 21 tumour types. *Nature.* **505**, 495–501 (2014).

1185 31. S. Kang, A. Denley, B. Vanhaesebroeck, P. K. Vogt, Oncogenic transformation
1186 induced by the p110 β , - γ , and - δ isoforms of class I phosphoinositide
1187 3-kinase. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 1289–1294 (2006).

1188 32. J. Wang *et al.*, MiR-1976 knockdown promotes epithelial-mesenchymal transition
1189 and cancer stem cell properties inducing triple-negative breast cancer metastasis.
1190 *Cell Death Dis.* **11**, 500–12 (2020).

1191 33. C. Torres *et al.*, p110 γ deficiency protects against pancreatic carcinogenesis yet
1192 predisposes to diet-induced hepatotoxicity. *Proc. Natl. Acad. Sci. U.S.A.* **116**,
1193 14724–14733 (2019).

1194 34. S. Zhang *et al.*, Manic fringe promotes a claudin-low breast cancer phenotype
1195 through notch-mediated PIK3CG induction. *Cancer Res.* **75**, 1936–1943 (2015).

1196 35. A. Shymanets *et al.*, p87 and p101 subunits are distinct regulators determining
1197 class IB PI3K specificity. *J. Biol. Chem.* (2013), doi:10.1074/jbc.M113.508234.

1198 36. N. K. Rynkiewicz *et al.*, G β γ is a direct regulator of endogenous p101/p110 γ and
1199 p84/p110 γ PI3K γ complexes in mouse neutrophils. *Sci Signal.* **13** (2020),
1200 doi:10.1126/scisignal.aaz4003.

1201 37. A. Deladeriere *et al.*, The regulatory subunits of PI3K γ control distinct neutrophil
1202 responses. *Sci Signal.* **8**, ra8 (2015).

1203 38. O. Vadas *et al.*, Molecular determinants of PI3K γ -mediated activation
1204 downstream of G-protein-coupled receptors (GPCRs). *Proc. Natl. Acad. Sci.*
1205 *U.S.A.* **110**, 18862–18867 (2013).

1206 39. B. Kurig *et al.*, Ras is an indispensable coregulator of the class IB
1207 phosphoinositide 3-kinase p87/p110gamma. *Proc. Natl. Acad. Sci. U.S.A.* **106**,
1208 20312–20317 (2009).

1209 40. E. H. Walker *et al.*, Structural determinants of phosphoinositide 3-kinase inhibition
1210 by wortmannin, LY294002, quercetin, myricetin, and staurosporine. *Mol. Cell.* **6**,
1211 909–919 (2000).

1212 41. R. Y.-R. Wang *et al.*, Automated structure refinement of macromolecular
1213 assemblies from cryo-EM maps using Rosetta. *eLife*. **5** (2016),
1214 doi:10.7554/eLife.17219.

1215 42. J. Yang *et al.*, Improved protein structure prediction using predicted interresidue
1216 orientations. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 1496–1503 (2020).

1217 43. Y. Song *et al.*, High-resolution comparative modeling with RosettaCM. *Structure*.
1218 **21**, 1735–1742 (2013).

1219 44. L. Holm, DALI and the persistence of protein shape. *Protein Science*. **29**, 128–
1220 140 (2020).

1221 45. M. J. Pulkoski-Gross *et al.*, An intrinsic lipid-binding interface controls sphingosine
1222 kinase 1 function. *J. Lipid Res.*, jlr.M081307 (2018).

1223 46. A. Shymanets *et al.*, Different inhibition of G $\beta\gamma$ -stimulated class IB
1224 phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific
1225 function of p101 as a G $\beta\gamma$ -dependent regulator of PI3K γ enzymatic activity.
1226 *Biochem. J.* **469**, 59–69 (2015).

1227 47. R. Walser *et al.*, PKC β phosphorylates PI3K γ to activate it and release it from
1228 GPCR control. *PLoS Biol.* **11**, e1001587 (2013).

1229 48. O. Vadas, J. E. Burke, X. Zhang, A. Berndt, R. L. Williams, Structural basis for
1230 activation and inhibition of class I phosphoinositide 3-kinases. *Sci Signal.* **4**, 1–13
1231 (2011).

1232 49. J. G. Tate *et al.*, COSMIC: the Catalogue Of Somatic Mutations In Cancer.
1233 *Nucleic Acids Res.* **47**, D941–D947 (2019).

1234 50. J. K. Chung *et al.*, Switch-like activation of Bruton's tyrosine kinase by membrane-
1235 mediated dimerization. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 10798–10803 (2019).

1236 51. P. T. Hawkins, L. R. Stephens, PI3K signalling in inflammation. *Biochim. Biophys.*
1237 *Acta.* **1851**, 882–897 (2015).

1238 52. C. Huang *et al.*, The structure of a human p110alpha/p85alpha complex
1239 elucidates the effects of oncogenic PI3Kalpha mutations. *Science.* **318**, 1744–
1240 1748 (2007).

1241 53. N. Miled *et al.*, Mechanism of two classes of cancer mutations in the
1242 phosphoinositide 3-kinase catalytic subunit. *Science.* **317**, 239–242 (2007).

1243 54. U. Maier, A. Babich, B. Nurnberg, Roles of non-catalytic subunits in gbetagamma-
1244 induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma.
1245 *J. Biol. Chem.* **274**, 29311–29317 (1999).

1246 55. C. Brock *et al.*, Roles of G beta gamma in membrane recruitment and activation
1247 of p110 gamma/p101 phosphoinositide 3-kinase gamma. *J. Cell Biol.* **160**, 89–99
1248 (2003).

1249 56. A. A. Wall *et al.*, Small GTPase Rab8a-recruited Phosphatidylinositol 3-Kinase γ
1250 Regulates Signaling and Cytokine Outputs from Endosomal Toll-like Receptors. *J.*
1251 *Biol. Chem.* **292**, 4411–4422 (2017).

1252 57. J. E. Burke, O. Perisic, G. R. Masson, O. Vadas, R. L. Williams, Oncogenic
1253 mutations mimic and enhance dynamic events in the natural activation of
1254 phosphoinositide 3-kinase p110 α (PIK3CA). *Proc. Natl. Acad. Sci. U.S.A.* **109**,
1255 15259–15264 (2012).

1256 58. C. E. Edling *et al.*, Key role of phosphoinositide 3-kinase class IB in pancreatic
1257 cancer. *Clin. Cancer Res.* **16**, 4928–4937 (2010).

1258 59. P. Zhang *et al.*, Genomic sequencing and editing revealed the GRM8 signaling
1259 pathway as potential therapeutic targets of squamous cell lung cancer. *Cancer*
1260 *Lett.* **442**, 53–67 (2019).

1261 60. D. Nava Rodrigues *et al.*, Immunogenomic analyses associate immunological
1262 alterations with mismatch repair defects in prostate cancer. *J. Clin. Invest.* **128**,
1263 4441–4453 (2018).

1264 61. X. Shu *et al.*, Germline genetic variants in somatically significantly mutated genes
1265 in tumors are associated with renal cell carcinoma risk and outcome.
1266 *Carcinogenesis.* **39**, 752–757 (2018).

1267 62. M. K. Rathinaswamy *et al.*, Disease related mutations in PI3K γ disrupt regulatory
1268 C-terminal dynamics and reveal a path to selective inhibitors. *eLife.* **10** (2021),
1269 doi:10.7554/eLife.64691.

1270 63. A. J. Takeda *et al.*, Human PI3K γ deficiency and its microbiota-dependent mouse
1271 model reveal immunodeficiency and tissue immunopathology. *Nat Commun.* **10**,
1272 4364–12 (2019).

1273 64. A. B. Hunker, V. Kaklamani, C. L. Arteaga, Challenges for the Clinical
1274 Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid
1275 Tumors. *Cancer Discov.* **9**, 482–491 (2019).

1276 65. C. J. Dwyer *et al.*, Ex vivo blockade of PI3K gamma or delta signaling enhances
1277 the antitumor potency of adoptively transferred CD8+ T cells. *Eur. J. Immunol.* **2**,
1278 1031 (2020).

1279 66. A. Perino *et al.*, Integrating Cardiac PIP(3) and cAMP Signaling through a PKA
1280 Anchoring Function of p110gamma. *Mol. Cell.* **42**, 84–95 (2011).

1281 67. B. H. F. Lima *et al.*, Converging TLR9 and PI3Kgamma signaling induces sterile
1282 inflammation and organ damage. *Sci Rep.* **9**, 19085 (2019).

1283 68. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of
1284 Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486–501 (2010).

1285 69. D. Liebschner *et al.*, Macromolecular structure determination using X-rays,
1286 neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D Struct
1287 Biol.* **75**, 861–877 (2019).

1288 70. T. Kozasa, A. G. Gilman, Purification of recombinant G proteins from Sf9 cells by
1289 hexahistidine tagging of associated subunits. Characterization of alpha 12 and
1290 inhibition of adenylyl cyclase by alpha z. *J. Biol. Chem.* **270**, 1734–1741 (1995).

1291 71. J. T. B. Stariha, R. M. Hoffmann, D. J. Hamelin, J. E. Burke, Probing Protein-
1292 Membrane Interactions and Dynamics Using Hydrogen-Deuterium Exchange
1293 Mass Spectrometry (HDX-MS). *Methods Mol. Biol.* **2263**, 465–485 (2021).

1294 72. J. M. Dobbs, M. L. Jenkins, J. E. Burke, Escherichia coli and Sf9 Contaminant
1295 Databases to Increase Efficiency of Tandem Mass Spectrometry Peptide
1296 Identification in Structural Mass Spectrometry Experiments. *J. Am. Soc. Mass
1297 Spectrom.* **31**, 2202–2209 (2020).

1298 73. G. R. Masson *et al.*, Recommendations for performing, interpreting and reporting
1299 hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. *Nat.
1300 Methods.* **16**, 595–602 (2019).

1301 74. Y. Perez-Riverol *et al.*, The PRIDE database and related tools and resources in
1302 2019: improving support for quantification data. *Nucleic Acids Res.* **47**, D442–
1303 D450 (2019).

1304 75. D. K. Saini, V. Kalyanaraman, M. Chisari, N. Gautam, A family of G protein $\beta\gamma$
1305 subunits translocate reversibly from the plasma membrane to endomembranes on
1306 receptor activation. *J. Biol. Chem.* **282**, 24099–24108 (2007).

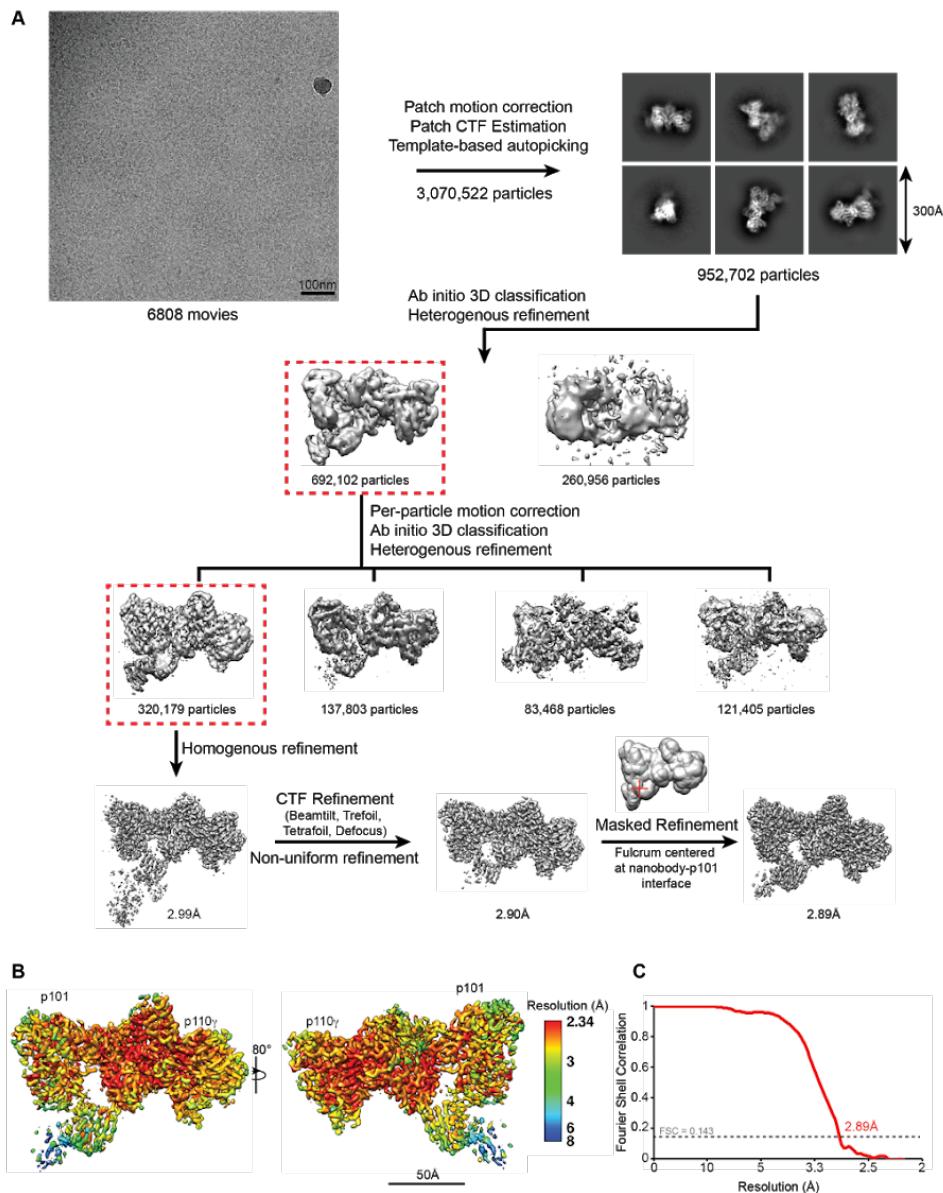
1307 76. S. D. Hansen *et al.*, Stochastic geometry sensing and polarization in a lipid
1308 kinase-phosphatase competitive reaction. *Proc. Natl. Acad. Sci. U.S.A.* **116**,
1309 15013–15022 (2019).

1310 77. H. A. Dbouk *et al.*, G protein-coupled receptor-mediated activation of p110 β by
1311 G $\beta\gamma$ is required for cellular transformation and invasiveness. *Sci Signal.* **5**, ra89–
1312 ra89 (2012).

1313 78. J. Yin, A. J. Lin, D. E. Golan, C. T. Walsh, Site-specific protein labeling by Sfp
1314 phosphopantetheinyl transferase. *Nat Protoc.* **1**, 280–285 (2006).

1315 79. Robust single-particle tracking in live-cell time-lapse sequences. *Nat. Methods.* **5**,
1316 695–702 (2008).

1317


1318 **Acknowledgements**

1319 J.E.B. is supported the Canadian Institute of Health Research (CIHR, 168998), a Michael
1320 Smith Foundation for Health Research (MSFHR, scholar 17686), and the Cancer
1321 Research Society (CRS-24368). C.K.Y. is supported by CIHR (FDN-143228) and the
1322 Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-03951).
1323 S.D.H. is supported by a NSF CAREER Award (MCB-2048060). F.D. is supported by
1324 NIH-GM123089. JS and EP acknowledge the support and the use of resources of
1325 Instruct-ERIC, part of the European Strategy Forum on Research Infrastructures
1326 (ESFRI), and the Research Foundation - Flanders (FWO). This research project was
1327 supported in part by the UBC High Resolution Macromolecular Cryo-Electron Microscopy
1328 Facility (HRMEM). A portion of this research was supported by NIH grant U24GM129547
1329 and performed at the PNCC at OHSU and accessed through EMSL (grid.436923.9), a
1330 DOE Office of Science User Facility sponsored by the Office of Biological and
1331 Environmental Research. We appreciate help from Theo Humphreys and Rose Marie
1332 Haynes with data collection at PNCC.

Supplemental Figures and Tables for:

Structure of the phosphoinositide 3-kinase p110 γ -p101 complex reveals molecular mechanism of GPCR activation

Manoj K Rathinaswamy^{1*}, Udit Dalwadi^{2*}, Kaelin D Fleming¹, Carson Adams^{3,4}, Jordan TB Stariha¹, Els Pardon^{5,6}, Minkyung Baek^{3,4}, Oscar Vadas⁷, Frank DiMaio^{3,4}, Jan Steyaert^{5,6}, Scott D Hansen⁸, Calvin K Yip^{2%}, John E Burke^{1,2%}

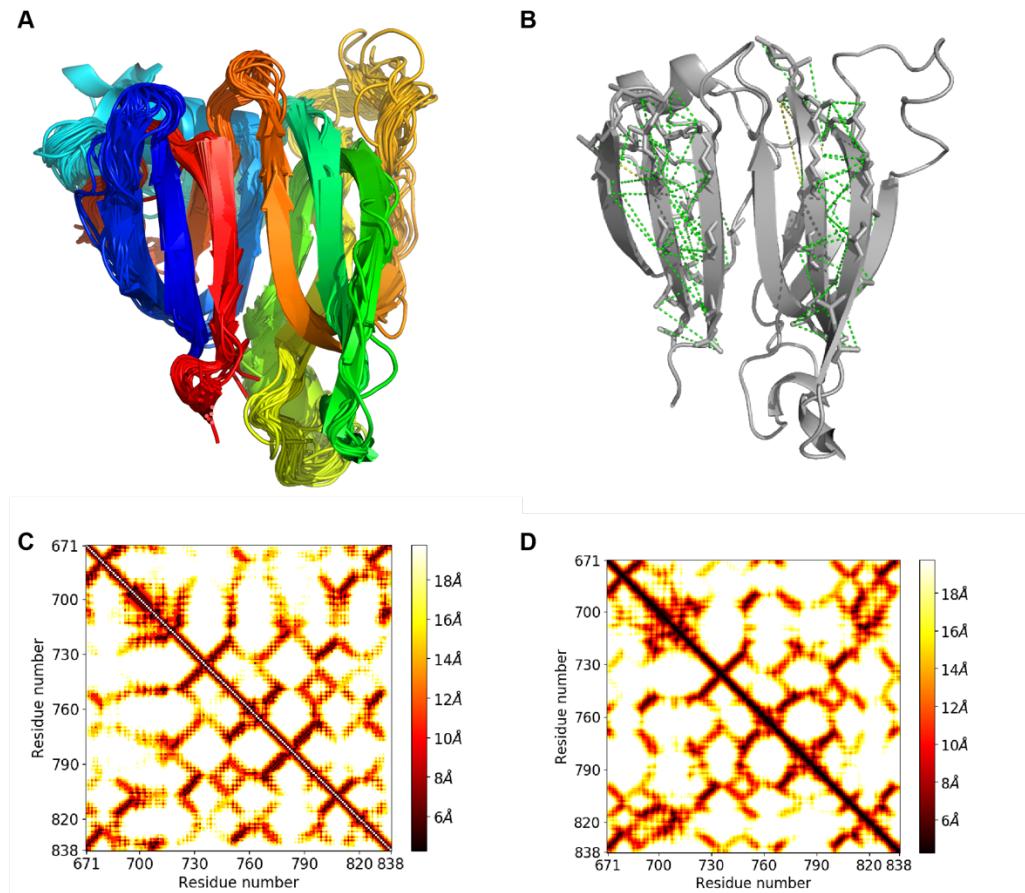


Fig S1. Cryo-EM analysis for the p110 γ -p101-nanobody complex

A. Cryo-EM analysis workflow showing a representative micrograph, representative 2D class averages and image processing strategy used for the 3D reconstruction of the p110 γ -p101 nanobody complex.

B. p110 γ -p101 reconstruction coloured according to local resolution as estimated using cryoSPARC v3.1.

C. Gold-standard fourier shell correlation (FSC) curve after auto-tightening by cryoSPARC for the final p110 γ -p101 map.

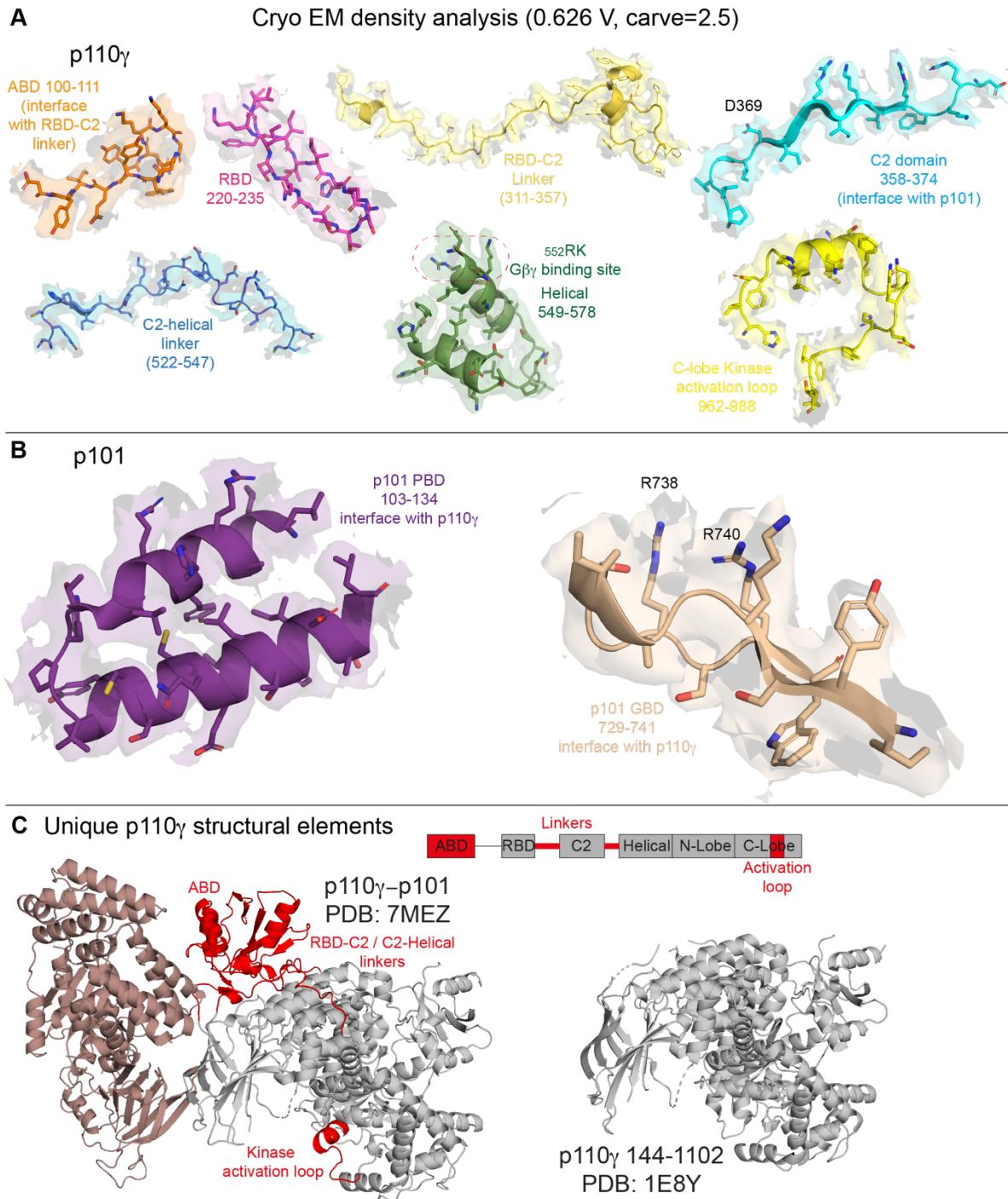
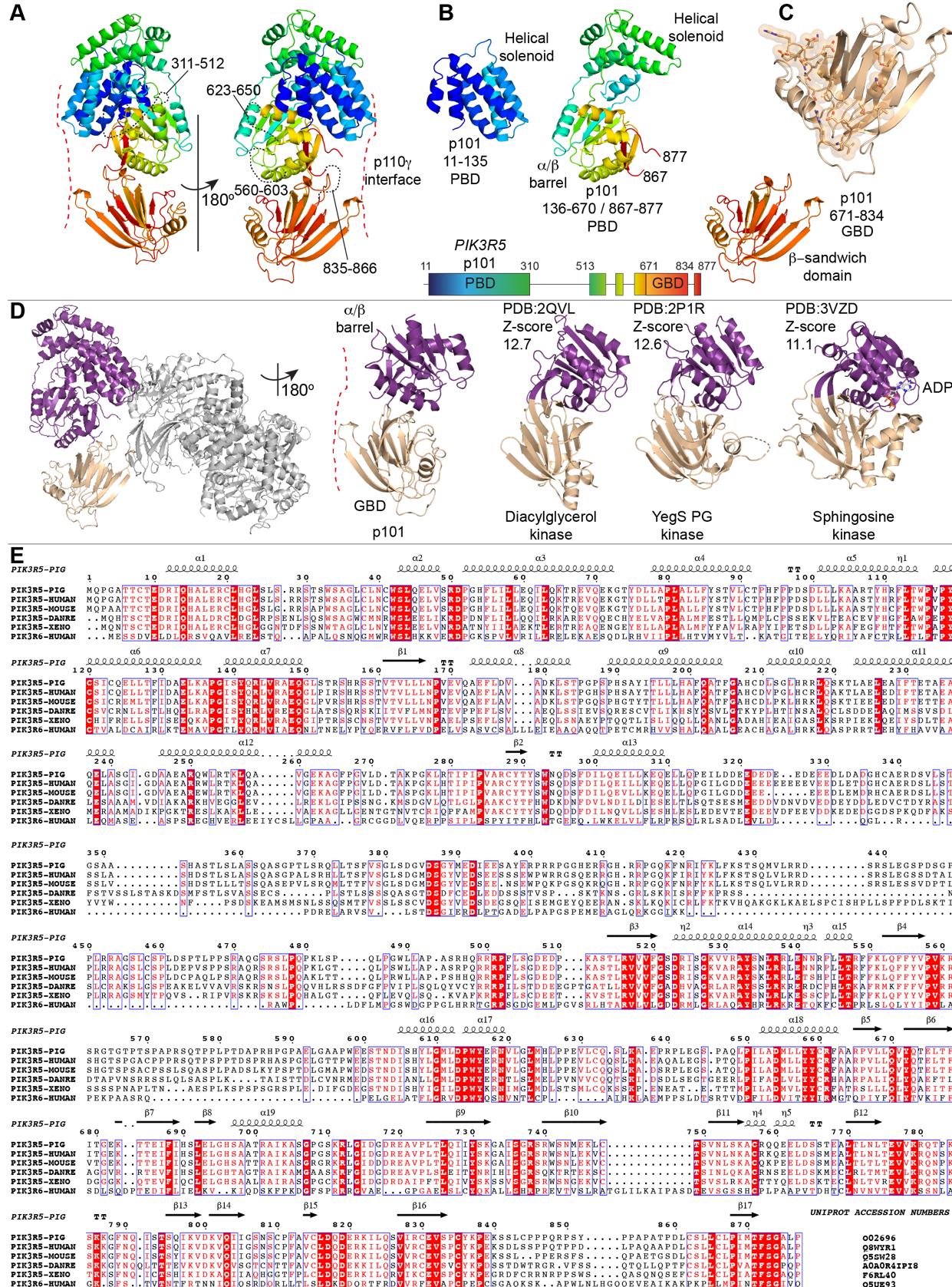


Fig. S2. trRosetta modelling of the GBD of p101

A. An overlay of the ensemble of 100 models from our final model building in RosettaCM. A majority of positions show tightly overlapping chain trace, with all models converging on the same overall topology.

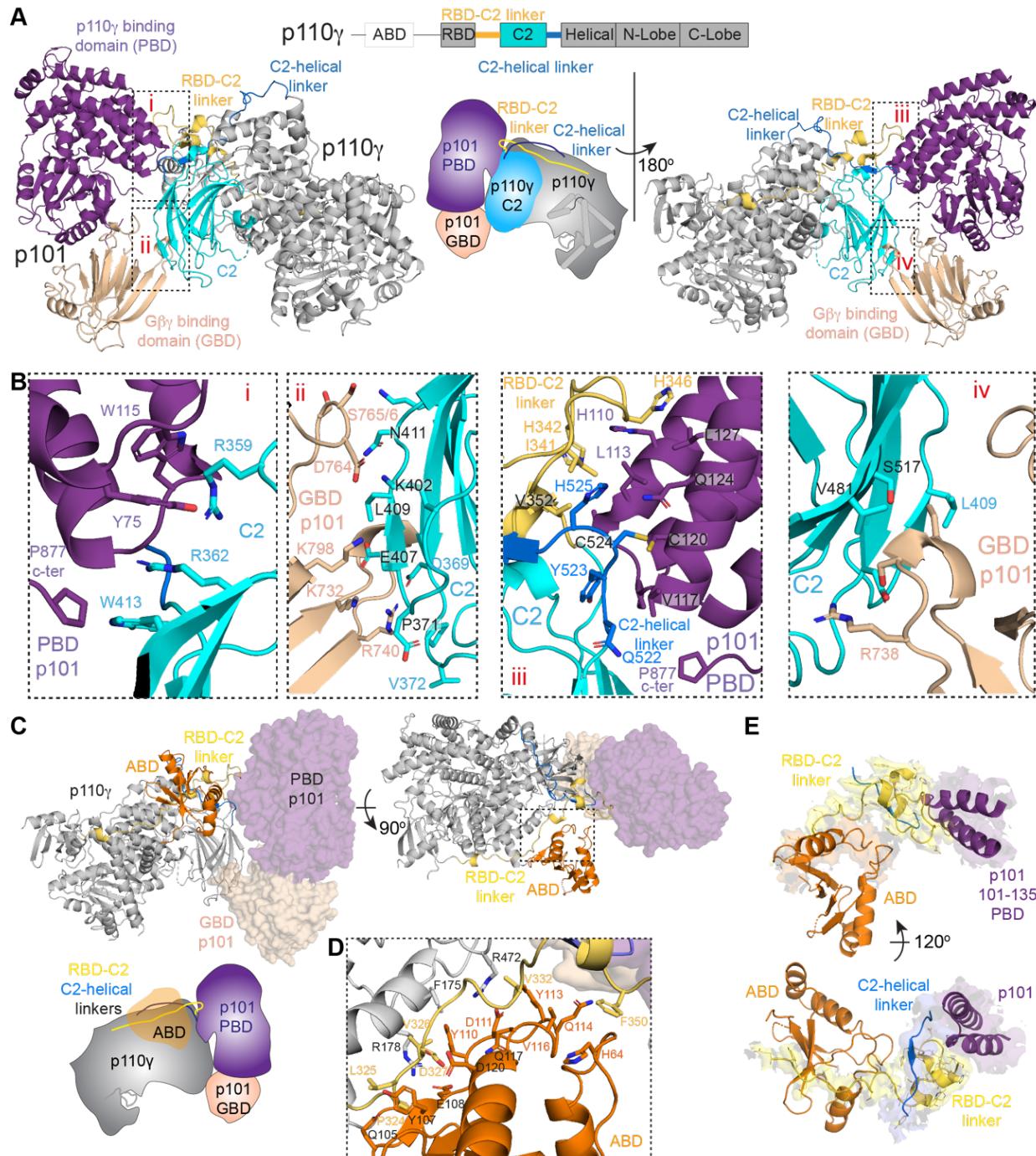

B. Residues predicted by trRosetta with >99% probability to have CB atoms within 10 angstroms distance, mapped onto the final model. Green indicates that the actual distance is within 10 angstroms, yellow within 12 angstroms, and red for >12 angstroms.

C. and D. The predicted and actual distances between beta-carbons of residues in the p101 nanobody-interacting region. The colour of each pixel corresponds to the distance in angstroms between these atoms. Plotted on the left is the least distance predicted by our improved trRosetta pipeline with >95% probability for each pair of CB atoms. On the right are the actual distances between these atoms. Our improved trRosetta pipeline correctly predicts beta-strand interactions between residues 720 and 740, 750 and 770, as well as 770 and 800, among others.

Figure S3. Structural analysis of the p110 γ -p101 model

- Electron density in select regions covering all five domains of p110 γ
- Electron density in select regions of the PBD and GBD of p101
- Novel structural features in the p110 subunit (in red) that were previously absent in the structure of p110 γ (144-1102).

Fig S4. p101 (*PIK3R5*) protein: Structure, structural conservation with DGKs, evolutionary conservation of p101, and comparison with p84 (*PIK3R6*)


A. Domain map and model of p101 coloured from N- to C-terminus in the rainbow spectrum from blue through red.

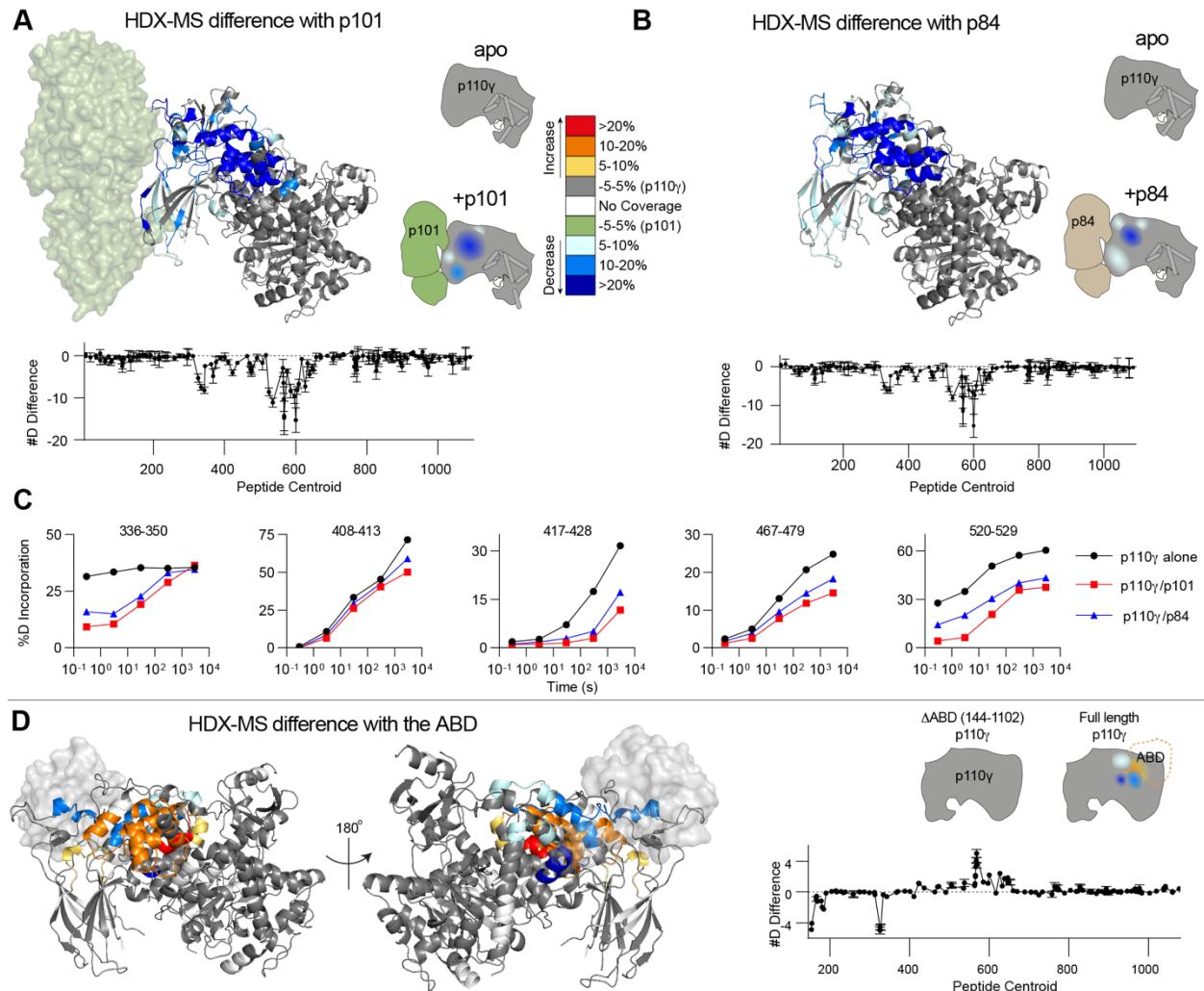
B. Representation of different regions of the model in panel A showing various protein folds in the PBD and GBD domains of p101.

C. Zoom in on the GBD, showing residues identified as important in $G\beta\gamma$ activation of p110 γ -p101 as sticks/spheres.

D. Structural comparison of the α/β barrel and β -sandwich in p101 compared to the corresponding regions in diacylglycerol kinase, sphingosine kinase 1, and the *Salmonella* phosphatidylglycerol kinase YegS.

E. Alignment (generated with ESPript 3.0) showing evolutionary conservation of residues in porcine p101 with p101 sequences from human, mouse, *Xenopus* and zebrafish and p84 sequence from human. The secondary structure elements of porcine p101 are shown above the alignment.

Fig S5. Interface details for p110 γ with p101 and ABD

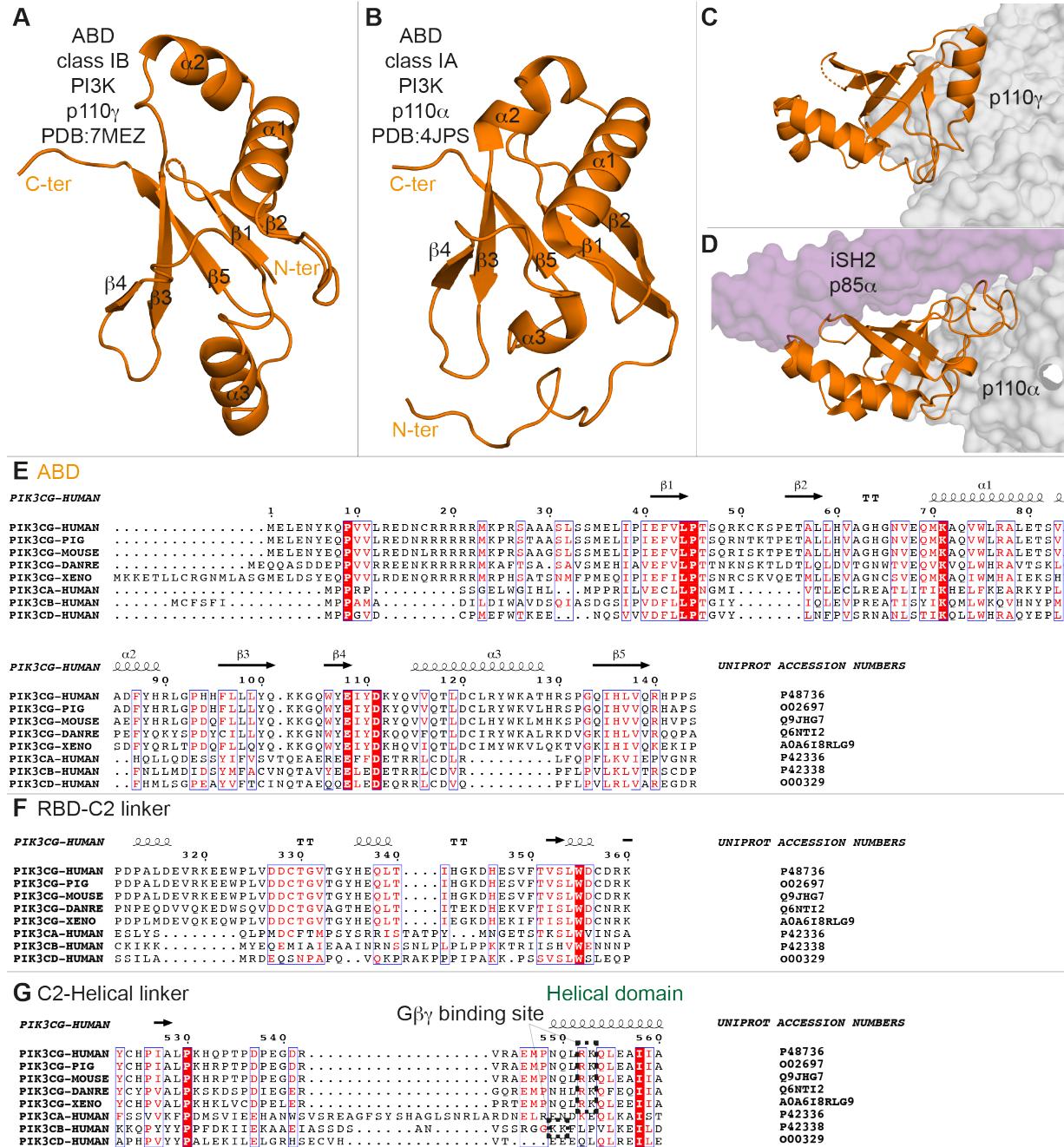

A. Cartoon representation of the p110 γ -p101 complex, with p101 colored as in Figure 1, and p110 γ colored according to the attached schematic, with p101 interacting regions (RBD-C2 linker, C2, and the C2-helical linker) indicated. Important features are shown in a cartoon schematic. Interacting regions are indicated in the boxes, and are labeled i-iv.

B. Residues that mediate the interaction between p110 γ and p101. Residues that have more than 20 Å of buried surface area are labelled and shown in a stick representation.

C. The structure of p110 γ -p101 complex, with p110 γ shown as cartoon, and p101 as a transparent surface. The different domains are colored as indicated according to the cartoon schematic.

D. Residues that mediate the interaction between the p110 γ ABD and the rest of p110 γ . Residues that have more than 20 Å of buried surface area are labelled and shown in a stick representation.

E. The ABD of p110 γ coordinates the RBD-C2 linker of p110 γ to interact with p101. The RBD-C2 linker, ABD, and the region of p101 that binds the RBD-C2 linker are shown in a cartoon representation. The electron density of the RBD-C2 linker and region of p101 that binds the RBD-C2 linker are visible (both views), with the ABD interface with the RBD-C2 linker (top view) and the N-terminus of the C2-helical linker domain (bottom view) are shown.

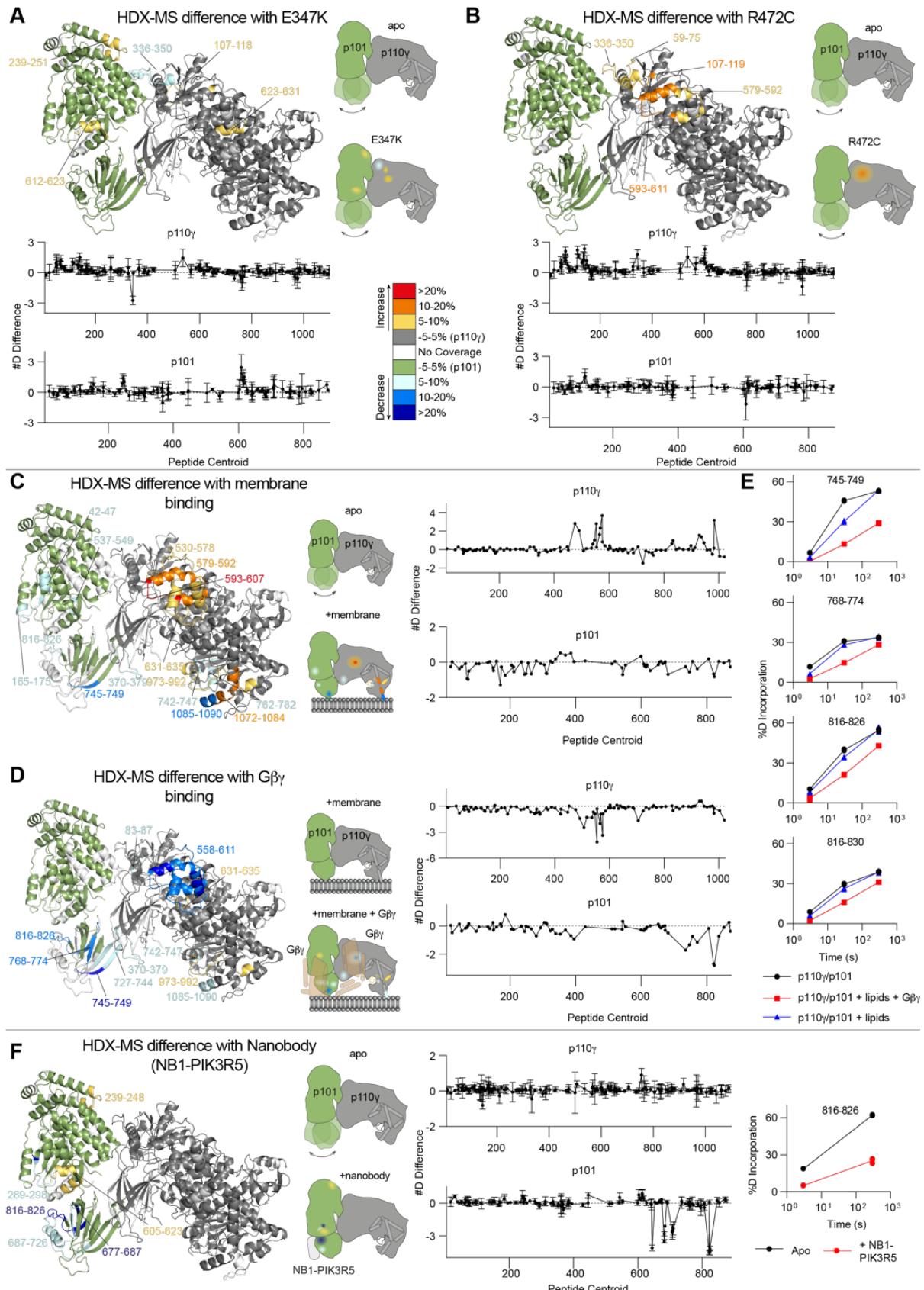

Fig S6. HDX-MS differences in p110 γ with regulatory subunits and the ABD.

A. HDX-MS differences in p110 γ with the addition of the p101 subunit. (A+B+D) Peptides showing significant deuterium exchange differences (>5%, >0.4 kDa and $p < 0.01$ in an unpaired two-tailed t-test) between conditions are colored on a cartoon model of p110 γ -p101 or p110 γ alone. A cartoon schematic is shown indicating the two conditions compared using HDX-MS. The number of deuterium difference for p110 γ -p101 for all peptides analysed over the entire deuterium exchange time course is shown for p110 γ . Every point represents the central residue of an individual peptide. Error is shown as standard deviation ($n = 3$).

B. HDX-MS differences in p110 γ with the addition of the p84 subunit mapped on a model of p110 γ . The number of deuterium difference for p110 γ -p84 for all peptides analysed over the entire deuterium exchange time course is shown for p110 γ .

C. Selected p110 γ peptides that showed decreases and increases in exchange between p110 γ alone, p110 γ -p101, and p110 γ -p84. The HDExaminer output data and the full list of all peptides and their deuterium incorporation is shown in the source data file.

D. HDX-MS differences in p110 γ with the presence of the ABD mapped on a model of p110 γ . The number of deuterium difference for the p110 γ ABD deletion for all peptides analysed over the entire deuterium exchange time course is shown for p110 γ .


Fig S7. Key structural differences between p110y and Class IA p110s

- A. Structural model of p110 γ ABD with secondary structure elements
- B. Structural model of p110 α ABD with secondary structure elements
- C. Contacts made by p110 γ ABD (orange) with the rest of p110 γ (grey surface)
- D. Contacts made by p110 α ABD (orange) with the rest of p110 α (grey surface) and the p85 α iSH2 domain (purple surface)

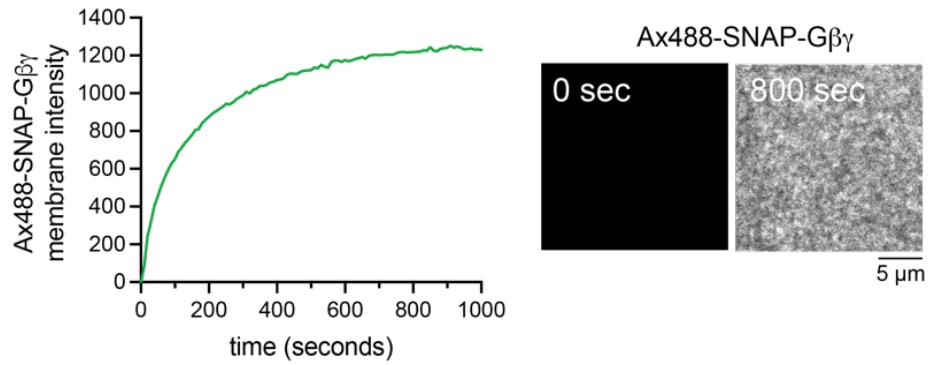
E. Alignment showing evolutionary conservation of residues in the ABD of human p110 γ with corresponding p110 γ sequences from pig, mouse, Xenopus and zebrafish and corresponding class IA p110 sequences from human. The secondary structure elements of human p110 γ are shown above the alignment.

F. Alignment showing evolutionary conservation of residues in the RBD-C2 of human p110 γ with corresponding p110 γ sequences from pig, mouse, Xenopus and zebrafish and corresponding class IA p110 sequences from human. The secondary structure elements of human p110 γ are shown above the alignment.

G. Alignment showing evolutionary conservation of residues in the C2-helical linker of human p110 γ with corresponding p110 γ sequences from pig, mouse, Xenopus and zebrafish and corresponding class IA p110 sequences from human. The secondary structure elements of human p110 γ are shown above the alignment. All alignments generated using ESPript 3.0.

Fig S8. HDX-MS differences of p110 γ oncogenic mutants and p110 γ binding to lipids, G β γ , and nanobody

A. HDX-MS differences in p110 γ -p101 between wild-type p110 γ -p101 and E347K. For panels **A-D + F**, peptides showing significant deuterium exchange differences (>5%, >0.4 kDa and $p < 0.01$ in an unpaired two-tailed t-test) between conditions are colored on a cartoon model of p110 γ -p101. A cartoon schematic is shown indicating the two conditions compared using HDX-MS. The number of deuteron difference for E357K for all peptides analysed over the entire deuterium exchange time course is shown for p110 γ and p101. For all #D graphs, every point represents the central residue of an individual peptide, with error shown as standard deviation ($n = 3$).


B. HDX-MS differences in p110 γ -p101 between wild-type p110 γ -p101 and R472C mapped on a model of p110 γ -p101. The number of deuteron difference for R472C for all peptides over the full time course of exchange is shown for p110 γ and p101.

C. HDX-MS differences in p110 γ -p101 upon binding to membrane mapped on a model of p110 γ -p101. The number of deuteron difference for all peptides analysed over the full time course of exchange is shown for p110 γ and p101.

D. HDX-MS differences in p110 γ -p101 upon binding to G β γ mapped on a model of p110 γ -p101. The number of deuteron difference for all peptides analysed over the full time course of exchange is shown for p110 γ and p101.

E. Selected p101 peptides that showed decreases and increases in exchange between p110 γ -p101 alone, p110 γ -p101 with membrane, and p110 γ -p101 with membrane and G β γ . The individual data points are shown on the graph ($n=2$). The HDExaminer output data and the full list of all peptides and their deuterium incorporation is shown in the source data file.

F. HDX-MS differences in p110 γ -p101 bound to NB1-PIK3R5 mapped on a model of p110 γ -p101. The number of deuteron difference for all peptides analysed over the entire deuterium exchange time course is shown for p110 γ and p101. A single p101 peptide showing H/D exchange data is shown. The individual data points are shown on the graph ($n=3$).

Fig S9. Absorption of lipidated G β γ on membrane surface

Trace showing absorption kinetics of 400 nM G β γ (0.5% Alexa488-SNAP-G β γ) on a supported membrane. Representative TIRF-M images of Alexa488-SNAP-G β γ membrane localization at the start and end of the absorption profile are shown.

Table S1 (resources)	SOURCE	IDENTIFIER
Bacterial and virus strains		
E.coli XL10-GOLD KanR Ultracompetent Cells	Agilent	200317
E.coli DH10EMBacY Competent Cells	Geneva Biotech	DH10EMBacY
E.coli WK6 Competent Cells	This paper	WK6
Chemicals, peptides, and recombinant proteins		
Deuterium Oxide 99.9%	Sigma	151882
Dyomics 647-P1 maleimide	Dyomics	647P1-03
Coenzyme A	Sigma	C3019
GDP	Sigma	G7127
Sodium deoxycholate	Sigma	D6750
Polyoxyethylene (10) lauryl ether	Sigma	P9769
CHAPS, Molecular Biology Grade	EMD Millipore	220201
Phosphatidylserine (Porcine Brain)	Avanti	840032C
Phosphatidylethanolamine (Egg yolk)	Sigma	P6386
Cholesterol	Sigma	47127-U
Phosphatidylcholine (Egg yolk)	Avanti	840051C
Phosphatidylinositol-4,5-bisphosphate (Porcine Brain)	Avanti	840046
Sphingomyelin (Egg yolk)	Sigma	S0756
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)	Avanti	850375C
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (18:1, DOPS)	Avanti	840035C
Hellmanex III	ThermoFisher	14-385-864
6-well sticky-side chamber	IBIDI	80608
Beta casein	ThermoFisher	37528
Glucose oxidase	Serva	22780.01
Catalase	Sigma	C40-100MG
Trolox	Calbiochem	648471-500MG
Critical commercial assays		
Transcreener ADP2 FI Assay (1,000 Assay, 384 Well)	BellBrook Labs	3013-1K
Anti-penta-His Biosensors for Octet K2 (Tray of 96 sensors)	ForteBio	His1K
Deposited data		
PDB coordinate file for p110 γ -p101 structure	PDB	7MEZ
EM density file for p110 γ -p101-NB1 complex	EMD	23808
EM density file for p110 γ -p101 complex	EMD	23812
HDX-MS proteomics data for all experiments	PRIDE	PXD025209
Full source data for all figures	Mendeley data	doi:10.17632/9gsbbpk9sk.1
Oligonucleotides		
Fwd primer for E347K mutation in p110 γ TGAGCAGCTTACCATCCACGGCAAGGACCACAAGA GTGTG	Sigma	MR43f
Rev primer for E347K mutation in p110 γ GCAGTCCCACAGGGACACGGTGAACACACTCTTGT GGTC	Sigma	MR43r

Fwd primer for R472C mutation in p110 γ CTATTATGTGAAACCTGCTGCTGATAGACCACTGTTT CCTC	Sigma	MR39f
Rev primer for R472C mutation in p110 γ CGTATTCTCCACGGCGCAGGAGGAAACAGTGGTC	Sigma	MR39r
Fwd primer for D369R mutation in p110 γ TCAAGATCAGAGGCATTAGAACATCCCCGTCCTGCCTC G	Sigma	MR110f
Rev primer for D369R mutation in p110 γ AATGCCTCTGATCTGACCCCTGAAC	Sigma	MR110r
Recombinant DNA		
pMultiBac-G β 1/G γ 2	This paper	pOP737
pMultiBac-SNAP-G β 11/his6-TEV-G γ 2	This paper	pSH651
pACEBac1-p110 γ	This paper	MR30
pACEBac1-p110 γ (144-1102)	This paper	MR7
pMultiBac-p110 γ -p101	This paper	MR22
pMultiBac-p110 γ -p84	This paper	MR24
pbiGBac-p110 γ E347K-p101	This paper	MR49
pbiGBac-p110 γ R472C-p101	This paper	MR45
pbiGBac-p110 γ D369R-p101	This paper	MR136
pMYESy4 NB1-PIK3R5	This paper	101Nb20
pMultiBac-p110 γ -yBBR p101	This paper	MR38
pMultiBac-yBBR p110 γ	This paper	MR40
Software and algorithms		
CryoSparc	Structura Bio	http://cryosparc.com
Rosetta	Wang et al Elife 2016	https://new.rosettacommons.org/
trRosetta	Yang et al PNAS 2020	https://github.com/gjoni/trRosetta
COOT-0.9.4.1	CCP4	https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Phenix-1.19.1	Open source	https://www.phenix-online.org/
PDBePISA (Proteins, Interfaces, Structures and Assemblies)	EMBL-EBI	https://www.ebi.ac.uk/pdbe/pisa/pistart.html
DALI protein structure comparison server	University of Helsinki	http://ekhidna2.biocenter.helsinki.fi/dali/
ESPrift 3.0	Robert et al NAR 2014	https://escript.ibcp.fr
HDExaminer	Sierra Analytics	http://massspec.com/hdexaminer
ImageJ/Fiji	Open source	https://imagej.net/Fiji
GraphPad Prism 7	GraphPad	https://www.graphpad.com
PyMOL	Schroedinger	http://pymol.org
ChimeraX	UCSF	https://www.rbvi.ucsf.edu/chimerax/
Other		
Sf9 insect cells for expression	Expression Systems	94-001S

Table S2 Cryo-EM data collection, refinement, and validation statistics

	p110 γ -p101-NB1- PIK3R5 EMD- 23808 PDB:7MEZ	p110 γ -p101 EMD- 23812
Data collection and processing		
Magnification	75,000	75,000
Voltage (kV)	300	300
Electron exposure (e/ Å ²)	36	50
Defocus range (μM)	1.0-2.4	0.8-2.0
Pixel size (Å)	1.079	1.059
Symmetry imposed	C1	C1
Initial particle images (no.)	952,702	1,285,510
Final particle images (no.)	320,179	196,390
Map resolution (Å)	2.89	3.36
FSC threshold	0.143	0.143
Map resolution range (Å)	2.34-8	2.5-8
Refinement		
Initial model used (PDB)	1E8Y	
Model Resolution (Å)	3.1	
FSC threshold	0.5	
Map sharpening B factor	Sharpened locally	
Model composition		
Non-hydrogen atoms	12,369	
Protein residues	1,536	
Ligands	0	
<i>B</i> -factors		
Protein	67.6	
Validation		
Mol probability score	1.70	
Clashscore	8.87	
Poor rotamers (%)	0.0	
Ramachandran		
Favored	96.56	
Allowed	3.24	
Outliers	0.20	
R.m.s. deviations		
Bond lengths (Å)	0.003	
Bond angles (°)	0.563	

Table S3. HDX-MS data analysis table

Data set	Apo p110 γ	p110 γ /p101	p110 γ /p84	Apo p110 γ /p101	p110 γ /p101 + nanobody
HDX reaction details	%D ₂ O=91.7% pH _(read) =7.5 Temp=18°C	%D ₂ O=91.7% pH _(read) =7.5 Temp=18°C	%D ₂ O=91.7% pH _(read) =7.5 Temp=18°C	%D ₂ O=86.8% pH _(read) =7.5 Temp=18°C	%D ₂ O=86.8% pH _(read) =7.5 Temp=18°C
HDX time course (seconds)	3, 30, 300, 3000	3, 30, 300, 3000	3, 30, 300, 3000	3, 300	3, 300
HDX controls	N/A	N/A	N/A	N/A	N/A
Back-exchange	Corrected based on %D ₂ O	Corrected based on %D ₂ O			
Number of peptides	165	165	165	p110 γ : 181 p101: 130	p110 γ : 181 p101: 130
Sequence coverage	93.4%	93.4%	93.4%	p110 γ : 89.6% p101: 80.6%	p110 γ : 89.6% p101: 80.6%
Average peptide /redundancy	Length=12.9 Redundancy= 1.9	Length= 14.4 Redundancy= 1.9	Length= 14.4 Redundancy= 1.9	p110 γ : Length= 14.2 Redundancy= 2.3 p101: Length= 13.9 Redundancy= 2.1	p110 γ : Length= 14.2 Redundancy= 2.3 p101: Length= 13.9 Redundancy= 2.1
Replicates	3	3	3 (2 300s, 2 3000s)	3	3
Repeatability	Average StDev=0.6%	Average StDev=0.6%	Average StDev=0.6%	Average StDev p110 γ =0.5% p101=0.7%	Average StDev p110 γ =0.7% p101=0.8%
Significant differences in HDX	>5% and >0.4 Da and unpaired t-test \leq 0.01	>5% and >0.4 Da and unpaired t-test \leq 0.01	>5% and >0.4 Da and unpaired t-test \leq 0.01	>5% and >0.4 Da and unpaired t-test \leq 0.01	>5% and >0.4 Da and unpaired t-test \leq 0.01

Data set	Apo p110 γ	p110 γ ABD deletion	Apo p110 γ /p101	p110 γ /p101 R472C	p110 γ /p101 E347K
HDX reaction details	%D ₂ O=92.0% pH _(read) =7.5 Temp=18°C	%D ₂ O=92.0% pH _(read) =7.5 Temp=18°C	%D ₂ O=90.5% pH _(read) =7.5 Temp=18°C	%D ₂ O=90.5% pH _(read) =7.5 Temp=18°C	%D ₂ O=90.5% pH _(read) =7.5 Temp=18°C
HDX time course (seconds)	3, 30, 300, 3000	3, 30, 300, 3000	0.3, 3, 30, 300, 3000	0.3, 3, 30, 300, 3000	0.3, 3, 30, 300, 3000
HDX controls	N/A	N/A	N/A	N/A	N/A
Back-exchange	Corrected based on %D ₂ O	Corrected based on %D ₂ O	Corrected based on %D ₂ O	Corrected based on %D ₂ O	Corrected based on %D ₂ O
Number of peptides	150	150	p110 γ : 194 p101: 122	p110 γ : 194 p101: 122	p110 γ : 194 p101: 122
Sequence coverage	91.0%	91.0%	p110 γ : 92.1% p101: 87.5%	p110 γ : 92.1% p101: 87.5%	p110 γ : 92.1% p101: 87.5%
Average peptide /redundancy	Length= 14.4 Redundancy= 2.0	Length= 14.4 Redundancy= 2.0	p110 γ : Length= 14.3 Redundancy= 2.5 p101: Length= 14.0 Redundancy= 1.9	p110 γ : Length= 14.3 Redundancy= 2.5 p101: Length= 14.0 Redundancy= 1.9	p110 γ : Length= 14.3 Redundancy= 2.5 p101: Length= 14.0 Redundancy= 1.9
Replicates	3	3	3	3	3
Repeatability	Average StDev=0.4%	Average StDev=0.4%	Average StDev p110 γ =0.6% p101=0.9%	Average StDev p110 γ =0.6% p101=0.8%	Average StDev p110 γ =0.6% p101=0.9%
Significant differences in HDX	>5% and >0.4 Da and unpaired t-test \leq 0.01	>5% and >0.4 Da and unpaired t-test \leq 0.01	>4% and >0.4 Da and unpaired t-test \leq 0.01	>4% and >0.4 Da and unpaired t-test \leq 0.01	>4% and >0.4 Da and unpaired t-test \leq 0.01

Table S4. Single molecule dwell time data from TIRF-M experiments

protein	[DY647-PI3K]	[G β G γ]	$\tau_1 \pm \text{SE (sec)}$	$\tau_2 \pm \text{SE (sec)}$	α	n
DY647-p110 γ	100 pM	—	n.d.	—	—	—
DY647-p110 γ	100 pM	400 nM	0.022 \pm 0.008	—	—	2832
DY647-p101/p110 γ	200 pM	—	n.d.	—	—	—
DY647-p101/p110 γ	200 pM	5 nM	0.086 \pm 0.011	—	—	3634
DY647-p101/p110 γ	100 pM	10 nM	0.097 \pm 0.011	—	—	4430
DY647-p101/p110 γ	50 pM	25 nM	0.218 \pm 0.012	—	—	4082
DY647-p101/p110 γ	20 pM	50 nM	0.357 \pm 0.008	—	—	2709
DY647-p101/p110 γ	20 pM	100 nM	0.434 \pm 0.009	1.19 \pm 0.009	0.85	3715
DY647-p101/p110 γ	10 pM	200 nM	0.334 \pm 0.004	1.09 \pm 0.004	0.32	3938
DY647-p101/p110 γ	10 pM	400 nM	0.334 \pm 0.004	1.31 \pm 0.004	0.31	3996

The indicated concentration of either DY647-p101/p110 γ and DY647-p110 γ were flowed into the SLB containing sample chambers with varying concentrations of G β G γ (0.5% Alexa488-SNAP-G β G γ). The total number of single molecule binding events (n) reported is from 2-3 experiments. Alpha (α) is the fraction of molecules in the distribution with the short dwell time (τ_1). Dwell time distributions were fit with either a single or double exponential decay curves. SE is the standard error from non-linear regression. Membrane composition: 95% DOPC, 5% DOPS.