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Abstract: A long-standing practice in the treatment of cancer is that of hitting hard with the
maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for
resistant cells, leading to the failure of the treatment. A different type of treatment strategy,
adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft
experiments and clinical trials. Adaptive therapy is used to maintain a tumor’s volume by
exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective
drug doses or timed drug holidays. To further understand the role of competition in the outcomes
of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that
the superiority of the adaptive strategy over continuous therapy depends on the local competition
shaped by the spatial distribution of resistant cells. Cancer cell migration and increased carrying
capacity accelerate the progression of the tumor under both types of treatments by reducing the
spatial competition. Intratumor competition can also be affected by fibroblasts, which produce
microenvironmental factors that promote cancer cell growth. Our simulations show that the
spatial architecture of fibroblasts modulates the benefits of adaptive therapy. Finally, as a proof of
concept, we simulated the outcomes of adaptive therapy in multiple metastatic sites composed of
different spatial distributions of fibroblasts and drug-resistant cell populations.

Keywords: spatial structure; fibroblasts; treatment resistance; adaptive therapy; metastases;
undetected metastases

1. Introduction

The current standard of care for the treatment of cancer patients is based on con-
tinuous therapy (CT) using the maximum tolerated dose of cancer drugs with the aim
of eradicating tumors by killing the maximum number of drug-sensitive cancer cells.
Despite the impressive initial tumor responses under CT, drug resistance inevitably
develops in advanced metastatic solid cancers because CT often selects for drug-resistant
cell populations [1,2]. For example, a majority of patients with metastatic melanomas
treated continuously with BRAF-MEK inhibitor experienced a progression of the disease
over 11-15 months [3,4]. The development of resistance is known to be a combined conse-
quence of the responses from factors that include intratumor heterogeneity [5,6], limited
drug penetration due to physical barriers [7], and the tumor microenvironment [8-10].
Thus, the exploitation of the intratumor competition between heterogeneous cancer
cells and the modulation of the tumor microenvironment to bias the selective pressure
towards the sensitive cells have the potential to delay the emergence of resistance.

From an ecological and evolutionary perspective, the net growth rate of a population
composed of multiple species is determined by the intrinsic growth rate, death rate, and
density-dependent limitations—when multiple species compete for the same resources
in a closed environment [11]. This ecological principle implies that the net growth of
a tumor cell population can be modulated by inhibiting the intrinsic growth rate of
drug-sensitive cells, by increasing sensitive cell deaths, and by modulating the density-
dependent growth limitations of drug-resistant cell populations. Because drug resistance
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often comes with a fitness cost [12,13], treatment breaks may provide sensitive cells with
a higher net growth rate than the resistant cell population. When the intrinsic growth
rates of both cell populations are same, the only way to modulate the growth of resistant
cells is to increase density-dependent limitations. Adaptive therapy (AT) is based on
this ecological principle of competition between tumor cells to limit their growth [14]. If
kept in a tolerable range, tumor burden is not always lethal [14,15]. Thus, the objective
of AT is to maintain a tolerable tumor burden as long as possible by using treatment
holidays and reduced dosing [14]. For example, under AT, a patient is treated with
therapy from the diagnosis until the tumor burden falls to a fraction of the initial cell
population (e.g., 50% of the initial burden [16]). The goal is to reduce the cell population
to an acceptable level that has sufficient sensitive cells to maintain density-dependent
competitive stress on the growth of resistant cells. Then, a treatment break is scheduled
to allow the remaining sensitive cells to grow and to limit the growth of the resistant cell
population by leveraging competition. Once the total cell population is back to the initial
level, a treatment is administered again. This on—off treatment cycle is repeated until the
tumor progresses. This adaptive therapy strategy has been shown to have some degree
of success in both preclinical experiments [17,18] and a clinical trial [16]. In particular, a
clinical trial for prostate cancer therapy showed that adaptive therapy can delay disease
progression for 27 months by using only a 53% cumulative drug rate compared to CT
[16].

Several mathematical and computational models have been developed to compare
AT with CT in various scenarios. Two key terms in this regard are time to relapse
and tumor progression (TTP), which is the time at which the tumor volume exceeds
120% of the the initial volume; time gain (TG) which is defined as: TG = TTP in AT
— TTP in CT. Gallaher et al. developed an off-lattice agent-based model to simulate
the impact of heterogeneity and space on AT outcomes. They reported an extension
of TTP of about one year under AT compared to CT (CT: 400 days vs. 700 days) [19].
Gatenby et al. developed a model consisting of five types of cells with differential drug
responses and showed that tumor cells under CT grow to a carrying capacity by about
2400 days, while under AT, the tumor burden was kept under control at 20% of the
carrying capacity [14]. A mathematical model in [16] showed that the on—off cycling
rate of treatments depends on cell—cell competition and initial tumor cell population
composition [16], where the threshold for treatment breaks was 50% of the initial tumor
burden. A different threshold for treatment breaks was considered by Hansen and
Read [20]. This study further demonstrated that a 20% reduction threshold resulted in
more delayed progression than a 50% reduction for different degrees of initial resistance
[20]. Some studies identified critical factors that determined the TG of AT. In the case
of melanoma, the initial tumor burden, growth rate, switching rate, and competition
coefficient were identified as crucial parameters for deciding the TG of AT by using
CT [21]. The initial proportion of resistance is another contributing factor. Strobel et
al. showed that a 1% initial resistance delayed the progression by up to 211 days for
an initial burden of 75%, while 10% resulted in almost no TG [22]. A game-theoretical
model was used to propose a combination of strategies for AT [23,24]. Recently, Viossat
and Roble [25] provided theoretical conditions for the maximization of the benefits of
AT. In particular, they provided an explicit formula for TG under AT, which included
the intensity of competition between drug-sensitive and drug-resistant cells, the most
critical factor.

Because the competitive stress experienced by each cell depends on its neighbor-
hood in solid tumors, spatial models would be more suitable for exploring the conse-
quences of spatial heterogeneity and treatment for tumor growth [26]. Agent-based
models have shown that even lower doses can limit tumor growth if resistant cells
are spatially restricted by sensitive cells [19,27]. In tumors with cells of a varied range
of sensitivity, AT resulted in trapping of the resistant cells by the sensitive cells, thus
limiting the growth of the tumor [19]. Tumors with spread randomly resistant cells
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were reported to grow much faster than tumors with resistant cells that were clustered
together [27,28]. AT has even been found to delay progression in the absence of fitness
costs [27,28], which, however, are assumed to be a key element for the success of AT
[12,13].

Furthermore, the tumor microenvironment can be used to modulate tumor growth
and competition. For example, fibroblasts are known to act as a local moderator of
individual cancer cells” growth and migration by producing growth factors and an
extracellular matrix [29-34]. The spatial heterogeneity in tumor growth could be affected
by fibroblast locations in the tumor [31]. It was demonstrated that physical proximity to
fibroblasts determines tumor cell survival under therapy. Tumor cells that are close to
fibroblasts can survive longer under therapy due to the fibroblast-mediated elevation of
the threshold of drug concentration required for cell death and the lower rate of drug
activity due to the physical barrier against drug penetration (i.e., collagen) generated by
fibroblasts.

Our study aims to investigate the impacts of the spatial distributions of both re-
sistant cells and fibroblasts on therapeutic outcomes. We developed a 2D on-lattice
agent-based model (ABM) and inspected tumor growth subject to three different initial
resistant cell configurations—namely, clumped, random, and uniform—to explore the
impact of the spatial arrangement of cells. We simulated both AT and CT and compared
the TTP. Furthermore, we explored the impact of the carrying capacity and cell migration
rate on cell-cell competition and treatment outcomes. For the fibroblast locations, we
considered two different proximities to resistant cells: overlapping with resistant cells
and close to resistant cells. Finally, we simulated tumor growth in a virtual patient with
four metastatic sites composed of different migration rates and different spatial distribu-
tions of fibroblasts and resistant cell populations. In these simulations, we assumed that
one of the metastatic sites was not detected at the beginning of the treatment. The tumor
progression was determined by utilizing two criteria: the sum of tumor burden and the
emergence of a new metastatic lesion driven by the growth of an initially undetected
metastatic lesion.

2. Materials and Methods

To study how a resistant cell population modulates treatment response, we con-
sidered a 2D on-lattice agent-based model of a small primary tumor or a metastatic
lesion. For simplicity, we assume that a tumor cell population can be classified into two
types of cells: drug-sensitive (S-cell) and drug-resistant (R-cell). We denote the total cell
population, S-cell population, and R-cell population at time ¢ with N(t),S(t), and R(t),
where N(t) = S(t) + R(t).

]
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Figure 1. Initial cell configurations (clumped, random, and uniform, respectively). The red, blue,
and white dots are the R-cells, S-cells, and empty sites, respectively.

2.1. Initial and Boundary Conditions
We assume that a percentage fr of the initial cells (N(0)) are resistant (i.e., R(0) =

{TRON(O) and S(0) = <1 - %)N(O)). Initially, a total of S(0) cells are randomly dis-
persed over the domain, while a total of R(0) cells were placed in three different dis-
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persion patterns—random, uniform, or clumped—in the domain.[35]. In the clumped
case, all of the R-cells were randomly dispersed in a square centered in the middle of the
domain, where the same number of R-cells were randomly dispersed over the whole
domain in the random case. On the other hand, in the uniform case, all of the R-cells
were manually placed to maximize the distance between R-cells over the whole domain.
Please refer to the Figure 1 for the three types of cell configurations.

2.2. Cell-Cycle Decision

Each cell occupies a lattice point in a square domain of size [ x [. In every time
step, each cell may stay stationary, or it can move, divide, or die. The S-cells and R-cells
divide at rate rs and rg, respectively. The S-cells and R-cells divide at a constant rate
of rg or rg, respectively. In this study, we considered the von Neumann neighborhood
(VNHD), which comprised the sites on the east, west, south, and north of each cell. The
death rate of both types of cells is dr. The drug concentration D(t) is homogeneous in
the domain, and a drug-induced death rate (p) is applicable for S-cells only. A sensitive
cell undergoing mitosis can be killed by a drug with a probability of 6p D(t). Both S-cells
and R-cells follow the rules described in the flow chart in Figure 2. A brief explanation

of the flow chart (Figure 2) is provided in the following.
Drug induced
death?
yes
no
yes

"o Remove the cell

no -
Empty site
available?

| tet+1 yes

Move to any of the Put a new cell in
empty sites any of the empty no
A sites
) Zm
I () ]

end H

Figure 2. Flow chart of the cells’ life cycle. In each time step, all of the cells follow the steps in the

flow chart.

o Step 1:If t < T, where T is the end time, go to Step 2; otherwise, go to Step 12.

e  Step 2: Decide whether the cell will move. Pick a random number from a uniform
distribution (x,, ~ UJ0, 1]). If x,,, < m, where m is the probability of cell migration,
then go to Step 3. If not, go to Step 5.

*  Step 3: Is one of its VNHDs empty? If yes, go to Step 4. If not, go to Step 11.

¢  Step 4: Randomy move the cell to one of the empty sites in the VNHD. Go to Step
11.

e  Step 5: Decide whether the cell will divide or die. Pick a random number from a
uniform distribution (x,4 ~ U0, 1]). If x,y < r; +dr with j € {S, R}, where r; is
the j-cell proliferation rate and dr is the normal cell death rate, then go to Step 6. If
not, go to Step 11.

*  Step 6: Decide whether the cell will divide. Pick a random number from a uniform

’j

distribution (x, ~ U[0, 1)). If x, < ;—, then go to Step 7. If not, go to Step 8.
]
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e Step 7: Decide whether the cell will die due to the drug. If (x; ~ UJ0, 1]) and if
x < 6pD(t), where dp is the probability of cell death (for R-cells, 6p = 0), go to
Step 8. If not, go to Step 9.

e  Step 8: Remove the cell, make the site empty, and go to Step 11.

e Step 9: Is one of its VNHDs empty? If yes, go to Step 10. If not, go to Step 11.

e  Step 10: Randomly put a new cell of the same type in VNHD. Go to Step 11.

e Stepll:t <+ t+ 1. Goto Step 1.

e Stepl2: The simulation ends.

2.3. Number of cells in the neighborhood

To quantify local cell-cell competition, we introduce the following notation.
]-"k(t) = number of j-cell around a k-cell at time ¢ with i initial cell configuration (1)

where j € {R(R-cells), S(S-cells), E(Empty site)}, k € {R,S} and i € {c(Clumped),
r(Random), u(Uniform) }. To denote the mean over all of the k-cells in the domain at
time t, we write ]\/'],’E(t).

We denote the number of empty sites by Nf, (0 < N, < 4). A cell can move to
any unoccupied sites in its VNHD provided that 1 < N, ék < 4. During cell proliferation,
one parent cell divides into two daughter cells of the same type. To accommodate the
daughter cell, at least one empty site is required (1 < N, ék < 4) in the parent cell’s
von Neumann neighborhood. If N}, = 0, the proliferation was not executed. Upon
cell division, one daughter cell is placed in the parent cell’s location, and the other is
randomly placed in one of the empty sites in the VNHD. Upon the availability of an
empty site in the VNHD (i.e., 1 < N, ék < 4), while attempting to divide, the mother
S-cell may die with a probability of dp due to the drug, but the R-cells do not experience
drug-induced death. Dead cells are immediately removed from the respective sites.

2.4. Model Parameters

As a representative structure, we assume a square domain of 100 x 100 lattice points.
We start our simulation with a tumor of N(0) = 5,000 cells. The S-cells are assumed
to be randomly dispersed over the domain. We assume that fr = 10% of the cells are
resistant. In the clumped case, all of the R-cells are randomly dispersed in a 40 x 40
clump. The parameters are summarized in Table 1.

Table 1. The parameter values are listed in the following table.

Parameter Description Value Reference
t Time in days
T Simulation end time
S(t) Number of sensitive cells
R(t) Number of resistant cells
N(t) Total number of cells
K Carrying capacity of each lattice point 1,2 Assumed
fr Initial percentage of the resistant cell population (R(0)/N(0)) 10% [36]
rs Sensitive cell proliferation rate 0.027 per day [16]
R Resistant cell proliferation rate (1-0.3)rg [19]
dr Cell death rate 0.3rg [22]
m Migration rate 0to100% of rg  Assumed
D(t) Drug concentration at time ¢ 0,1
op Drug-induced death rate of S-cells 0.75 [23]
0 AT threshold for treatment break 0.5 [16]
rSE Fibroblast-mediated sensitive cell proliferation rate 200% of rg Assumed
TRE Fibroblast-mediated resistant cell proliferation rate 200% of rg Assumed
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2.5. Treatment Schedules

We consider two treatment strategies: continuous therapy (CT) and adaptive ther-
apy (AT). In CT, the maximum tolerated dose (MTD) is applied to the domain over the
entire simulation time. On the other hand, in AT, the treatment is provided from the
beginning of the simulation until the cell population is reduced to pN(0). The treatment
is stopped until the total population, N(t), reaches N(0) again. Then, the treatment is
re-applied. In this study, we assume that the MTD is applied during the treatment cycle
and that p = 0.5 [16]. In mathematical notation, drug concentration can be written as
follows. We consider the time when the total population reaches 120% of N(0) as the
time to tumor progression (TTP).

CT:D(t) = MTD fort > 0 2)
) [ MTD until N(t) < pN(0),p =0.5,
AT:D(t) = { 0 until N(t) > N(0) ®)

2.6. Simulation

The model was implemented on the JAVA platform using the Hybrid Automata
Library (HAL) [37]. The generation of the initial cell configuration, the data analysis,
and the visualization were performed by using MATLAB. To keep the results unbiased,
the sequence of cells in the simulation was shuffled at the beginning of every time
step. For each simulation scenario, we simulated 30 virtual tumors (i.e., 30 realizations
of the model simulation), unless otherwise noted. To denote the average over the 30

simulations, we used over-bars, such as N(t) and N}k (t).

2.7. Statistical Analysis and Progression Probability

To investigate the consequences of a parameter change in the results of the 30
realizations, we used a two-sample t-test. Significant differences with p — value <
0.001,0.01, and 0.05 are represented by * * %, *x*, and *, respectively. For non-significant
differences, we use “n.s.”. We also used a Kaplan-Meier survival curve to illustrate the
approximate progression probability (PPr), which is defined as the relative frequency
of tumor relapses among the 30 virtual tumors. Our results show an approximation of
the PPr with respect to TTP. The Kaplan—-Meier survival analysis was performed using
MATLAB.

3. Results
3.1. Impact of the initial R-cell configuration on the time to progression under continuous
therapy

First, we simulated CT on the three types of initial cell configurations for a time span
of 2000 days. In this simulation, we assumed the carrying capacity of each lattice point to
be K = 1 and the cell migration rate to be m = 0. Under CT, the S-cells died out quickly,
and the remaining R-cells started to grow and fill the model domain. The representative
spatial distributions of the tumor cells are shown in Figure 3(a) under CT on the 15¢, 120”’,
and 2000" day. The cell configuration in the clumped case was significantly different
from those in the random and uniform cases, between which the difference seemed to
be negligible. On the 120" day, slightly larger patches of resistant cells are observed
in the random case than in the uniform case. By the end of the simulation, the whole
domain was captured by R-cells in both cases. On the other hand, in the clumped case,
the R-cells grew in a patch in the center. By the end of the 2000 days, a huge clump of
R-cells captured almost the entire domain.

The temporal dynamics of different types of cells are presented in Figure 3(b). The
TTP values in the three cases were 1662, 372, and 345, respectively. In Figure 3(b), the
cyan horizontal line shows the 120% level of the initial tumor volume. The dynamics of
the S-cells were almost same for all three types of initial configurations (Figure Al(a)),
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as they were initially similarly sparse and had the same growth parameters in all cases.
Although the S-cell population dynamics were similar in all three cases, they affected
the total cell growth by modulating the R-cells” dynamics differently. To examine the
reason for why the TTP was significantly different in the clumped case compared to the
random and uniform cases, we investigated the local R-S and R-R spatial competition.
Specifically, we calculated the numbers of S cells, R cells, and empty sites of each R-cell
VNHD in the three spatial patterns.

(b) ,
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Figure 3. Effects of initial R-cell distribution on the TTP under CT. (a) The cell configurations on
days 1, 120, and 2000 are shown. The blue, red, and white dots are S-cells, R-cells, and empty
sites, respectively. (b) The average temporal evolution of the average number of S-cell and R-cell
populations over 30 realizations with clumped (upper panel), random (middle panel), and uniform
(bottom panel) initial cell configurations (blue: S-cell, red: R-cell). Black solid line: average total
cell population (N (t) = S(t) 4+ R(t)). Vertical cyan line: TTP in each case; horizontal cyan line: the
120% level of the initial tumor volume (tumor progression threshold). The average numbers of
empty sites (N éﬁ) and R-cells (N lizi) in the VNHD of an R-cell in the 30 realizations are shown
as boxplots in (¢) and (d), respectively, for i = ¢, r, u. The blue, red, and yellow boxes are for the
clumped (c), random (r), and uniform (u) cases, respectively.

To compare the local growth potential of R-cells in the three spatial patterns, we
calculated the number of empty sites in the VNHD of each R-cell. The average number
of empty sites in the neighborhood of an R-cell was lower in the clumped case than
in both the random and uniform cases (N7 < N[z, Nf%) (Figure 3(c)). Figure 3(c)
shows that the number of empty sites around each R-cell increased from day 1 to day
60 in the random and uniform cases (N’ and N increased from day 1 to 60) because

the treatment-induced deaths of S-cells freed up space in the neighborhood of each
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R-cell, leading to a reduction in R-S spatial competition. In the clumped case, however,
the neighborhoods of the R-cells were mostly occupied with R-cells (Figure 3(a)), and
thus, the number of empty sites in the VNHD of each R-cell (V ) did not significantly
increase (Figure 3(c)), blue boxes) after drug administration.

We next compared the R-R spatial competition by quantifying the average number
of R-cells in the VNHD of each R-cell. In the clumped case, the number of R-cells
in the neighborhood of each R-cell was significantly higher than in the random or
uniform case (N EK > N Irzi’ N, ER) (Figure 3(d); blue boxes vs. yellow and orange boxes).
The R-R competition increased over time in all of the cases; by the 300th day, about
three R-cells were located in the neighborhood of each R cell, competing for a space
to divide. Thus, each R-cell in the clumped case experienced, on average, greater
spatial competition with R cells, leading to slow tumor progression. Taken together, our
simulations demonstrate that the initial distribution of R-cells can modulate the time to
progression under continuous therapy.

3.2. Impact of the initial R-cell configuration on the time to progression under adaptive therapy
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Figure 4. Effect of the initial R-cell distribution on the time to progression under AT. (a) Cell
configurations on days 1, 120, and 2000. The square signifies the domain representative of the
tumor. The blue, red, and white dots are S-cells, R-cells, and empty sites, respectively. (b) Average
temporal evolution of the S-cell and R-cell populations for the clumped (upper panel), random
(middle panel), and uniform (bottom panel) cases of the initial cell configurations (blue dots:
S-cells, red dots: R-cells). Black solid line: the total population (N (t) = S(t) + R(#)). Vertical solid
cyan line: TTP; horizontal solid cyan line: 120% level of the initial tumor volume. Vertical dotted
cyan line: time for the R-cells to reach 50% of the initial tumor volume (TR50); horizontal dotted
cyan line: 50% level oflthe initial tumor volume. The average numbers of empty sites (N éﬁ), S-cells
(N éﬁ)' and R-cells (N Il@) in the VNHD of an R-cell in the 30 realizations are shown as boxplots in
(c), (d), and (e), respectively, for i = c,r, u. The blue, red, and yellow boxes are for the clumped (c),
random (r), and uniform (u) cases, respectively.
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Next, we investigated the effect of the initial R-cell distribution on the AT responses.
Figure 4(a) shows a representative cell configuration at different times for AT with three
different initial R-cell distributions. The cell population growth presented in Figure
4(b) shows that the TTP values were 1776, 392, and 362 days in the clumped, random,
and uniform cases, respectively (vertical cyan lines). The total cell population went
through four on-off treatment cycles until the TTP in the clumped case. In the other
two cases, only one on-off treatment cycle was allowed until the TTP. To understand the
mechanism by which AT caused a more delayed TTP in the clumped case compared to
the random or uniform case, we first investigated the local growth potential on days 1,
35, and 95. We chose the 35th day (when the first cycle had yet to finish) and the 95th day
(after which the second cycle started) for all the cases. The average numbers of empty
sites (4(c)) and S-cells (4(d)) in the neighborhood were lower in the clumped case than in
the other two cases (N (1) <Nz (t) N} (t) (Figure 4(c)). The number of empty sites in
the neighborhood of a each R-cell (M £x) did not significantly change from day 1 to day
35, though the numbers in both the random and uniform cases (N, EE and NV, é‘ﬁ) increased
remarkably. During the first treatment break (from day 35 to day 95), the S-cells divided,
filling up empty sites in the neighborhoods. This resulted in a reduction of Ny ()"
(Figure 4(c): boxplots on day 95 vs. boxplots on day 35).

Next, we compared the intensity of the spatial competition between the S-cells and
R-cells. The average number of S-cells in each R-cell neighborhood was higher in the
random and uniform cases than in the clumped case (Mg (t) <N () N (1)) (Figure
4(d): yellow/orange boxplots vs. blue boxplots). The difference between the average
number of S-cells in a neighborhood in the clumped case and those in the other two
cases decreased from the 1st day to the 35th day (i,e., Nx(1) ~ Nip(1) > N (35) ~
NGB N (1) ~ N (1) > Np(35) ~ N¢o(35) ). The higher number of S-cells in
the VNHD:s of the R-cells allowed the drug to free up sites more in the random and
uniform cases than in the clumped case. In the first treatment break (from day 35 to day
95), the number of S-cells in the neighborhoods increased in all three cases due to the
proliferation of S-cells during the “off” part of the treatment cycle (Figure 4(d)). Thus,
the inhibition of growth of R-cells by S-cells was higher in the random and uniform cases
than in the clumped case.

Finally, we quantified the strength of inter-species spatial competition (i.e., com-
petition between R-cells). The average number of R-cells in a neighborhood in the
clumped case was always higher than the numbers in the random and uniform cases
Nrr(H)>N Igﬁ(t),J\/' 1z (1)) (Figure 4(e)). Interestingly, the number of R-cells in each R-
cell neighborhood in all three cases increased irrespective of drug administration because
R-cells can proliferate regardless of drug administration. A greater number of R-cells in
the neighborhood implies a stronger inhibition of R-cell growth by R-cells, leading to a
slower rate of cell population growth (Figure 4b: slope of the total population growth
in the clumped case < slope of the total population growth in the random and uniform
cases) .

In summary, in the random and uniform cases, the the number of R-cells increased
more quickly due to the space available in the neighborhoods, and it reached the level of
50% of the initial total cell population during the end of the second drug administration
after the first “off” part of the treatment cycle (Figure 4b: dotted cyan line). Once the
number of R-cells reached the level of 50% of the initial cell population, the ongoing
(additional) cycle of treatment could not reduce the total population below the 50%
level, leading to continuous treatment and a quicker progression (Figure 4b). Under CT,
inter-species competition (R-R competition) was solely responsible for determining the
TTP (higher competition leading to delayed TTP). Under AT, however, a combination of
R-R competition and R-S competition seemed to determine the TTP. In other words, a
more significant reduction in the growth inhibition of S-cells by R-cells combined with
the increase in R-R competition drove a faster TTP in the random and uniform cases. In
the clumped case, the R-R competition is the main determining factor of TTP.
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3.3. Clumped initial distribution results in higher clinical time gain (TG)

So far, we explored the impact of the initial R cell distribution on the AT and CT
outcomes and investigated how the treatments modulate the inter- and intra-species
competition (R-S and R-R, respectively), resulting in different treatment outcomes.
During CT, the drug is supplied consistently without considering the response, which
causes a prompt decline in the S-cell population and facilitates R-cell growth by lowering
the local R-S spatial competition. On the other hand, during AT, the drug is supplied in
short cycles to keep a tolerable number of S-cells, which are required in order to limit
the R-cells” growth by maintaining spatial competition. Therefore, AT is expected to
maintain total cell growth for longer than CT. We quantified the benefits of AT over
CT in terms of the TG (= TTP in AT - TTP in CT). The TG is a consequence of spatial
competition, which depends on the distribution of R-cells and their neighborhoods’
occupancies. Our results show that TG was significantly higher in the clumped case than
in the other two cases (Figure 5(a), p-value < 0.001). Furthermore, an even higher TG
could be observed if the initial fraction of R-cells was smaller (Figure 5(b) fo = 1%). In
Figure 5 (a) and (b), the random and uniform cases do not show significant differences.
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Figure 5. Role of the initial R-cell distribution on the benefit of AT over CT. (a) The boxplot shows
the TG in the 30 realizations for the clumped, random, and uniform initial cell configurations
for fo = 10% (* * *: p —value < 0.001; n.s.: not significant). (b) Similar results to those in (a)
are shown for fo = 1%. (c) The time evolution of the mean of the average number of S-cells in
the VNHD of an R-cell in the 30 realizations (N'sg (t)) is shown for both CT (solid lines) and AT
(dashed lines); c: clumped, r: random, u: uniform. The solid lines overlap, but the blue dashed line
(AT, i = c) shows the longer existence of S-cells in the VNHD of an R-cell in the case of the clumped
initial cell configuration under AT. (d) Similar results to those in (c) are shown for fy = 1%.

To understand the role of sustained S-cells, we plotted the mean of 30 realizations

of the average number of S-cells in each R-cell’s neighborhood (N sz (1)) against time.
Figure 5 (c—d) shows that in the clumped case, S-cells are maintained for longer in the
neighborhood than in the random and uniform cases. This longer existence of the S-cells
in the clumped case allowed the AT therapy to significantly increase the TG compared
to the TG achieved with CT. Furthermore, we observed that there was a slight chance
of attaining a negative TG. For the clumped, random, and uniform cases, this was 0.03,
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0.13, and 0.17, respectively, for fy = 10%, or 0,0.07, and 0.1 for fo = 1%. This shows that
a clumped distribution of resistant cells increases the preference for AT over CT.

The uniform and random cases did not show significant differences in terms of TG.
Furthermore, the clumped case and random case were two extreme versions of similar
types of distributions. Thus, we focused on the case of clumped R-cell distribution in
our further simulations.

3.4. Increased carrying capacity reduces the benefit of adaptive therapy by reducing spatial
competition
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Figure 6. Effect of carrying capacity on the time gain (TG). (a) The blue and red boxplots show
the TG from the 30 couple realizations (for both AT and CT) with respect to carrying capacities of
K =1 and 2, respectively. The triple asterisk (* * ) signifies that increasing the carrying capacity
significantly reduced the TG (p — value < 0.001). (b) The time evolution of the mean of the average
number of empty sites in the VNHD of each R-cell in the 30 realizations (N e (1)) is shown for
both CT (solid lines) and AT (dashed lines); K = 1 (blue) and 2 (red). K = 2 offers a greater number
of empty sites in the VNHDs of R-cells than K = 1.

For the clumped initial cell distribution, we investigated the effect of the spatial
carrying capacity on the TG. The spatial carrying capacity was characterized as K =1
(each lattice point could hold one cell) or K = 2 (each lattice point could hold, at most,
two cells, regardless of their sensitivity or resistance). When K = 1 was used, a total
of four cells could occupy the VNHD of each cell (i.e., N§ (t) + Ny, (t) + N (1) = 4).
For each cell in K = 2, a total of eight cells could occupy a VNHD, and one additional
cell could be located in the respective cell’s site (i.e., N§ (t) + Ny, (t) + N§ () = 9).
Figure 6(a) shows that increasing the carrying capacity significantly decreased the TG
(p — value < 0.001) from a median of 139 days to a median of 7 days. Increasing the
carrying capacity provided additional room for accommodation of the daughter cells,
which is observed in Figure 6(b). Initially, the number of empty sites in each R-cell
N:x(t) was above 5 for K = 2, whereas it was below 2 for K = 1. Due to this ample
space in their neighborhoods, R-cells hardly experienced any spatial competition and
grew at a higher pace when K = 2 under both AT and CT. As the total cell population
grew, Nex(t) decreased abruptly and tended to settle below 1. For K = 1, a similar
trend was observed; however, the number of empty sites was lower than that for K = 2
N CEKKzl(t) < NCERKZZ(t)). Comparing the number of empty sites in each R-cell’s
VNHD (N':x(t)) for AT in the case of K = 1 with that in the case of K = 2 (Figure 6(b),
dotted lines)), we observed that, for K =1, N%K(t) went through ups and downs several
times, which suggested spatial competition with neighboring cells. On the other hand,
for K = 2, this value monotonically decreased, and there was a very slight difference
due to AT and CT. Therefore, we concluded that the short TG with K = 2 was due to
the lack of spatial competition. We observed that the probabilities of having a negative
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TG were 0.03 and 0.4 for K = 1 and 2, respectively, i.e., an increase in carrying capacity
reduces the benefit of AT over CT.

3.5. Increased cell migration rate reduces the time gain of AT compared to CT

To investigate the impact of cell migration on therapeutic responses, we simulated
a model of the migration rate m = 0%, 50%, and 100% of the birth rate (of the respective
types of cells (Table 1)). Under both AT and CT, an increased cell migration rate pro-
moted faster cell population growth, leading to a shorter TTP (Figure 7(a)). The time
to progression without cell migration was 1667 under CT. The TTP decreased to 1282
when the cell migration rate increased to 50%, and further increased to 1075 when the
rate was 100%. On the other hand, the time to progression without cell migration was
1803 under AT. The TTP decreased to 1376 when the cell migration rate increased to 50%,
and further increased to 1152 when the rate was 100%.
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Figure 7. Effects of cell migration on TG. (a) The time evolution of the mean of the total cell
population (N(t)) in the 30 simulations is shown for m = 0 (blue), 50% (red), and 100% (yellow)
under AT (dashed line) and CT (solid line). The vertical solid lines show the time to tumor
progression (TTP) under CT. The vertical dashed line shows the TTP under AT. (b) The time
evolution of the mean of the average number of empty sites in the VNHD of each R-cell in the 30
realizations (N;;ﬁ(t)) is shown with the same line styles as in (a). (c) The blue, red, and yellow
boxes show the boxplots of the TG for m = 0%, 50%, and 100%, respectively. * : p-value < 0.05.

To understand the mechanism by which migration causes a faster relapse, we
investigated the temporal evolution of the local growth capacity (number of empty sites
in the VNHD of each R-cell; Nz (t)) (Figure 7(b)). The figure shows that N'zx (t) was
smaller for m = 0 than for m = 50% and 100% under CT. We observed a similar impact
of cell migration on the AT response. During the “on” period of the treatment, the
S-cells died, resulting in an increase in the number of empty sites in the VNHD of each
R-cell in all of the migration rate cases. The lowest increase, however, was observed in
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the absence of migration. This increase in empty sites in each R-cell’s neighborhood
as a result of cell migration implies a higher growth potential for each R-cell, leading
to a faster treatment failure. Therefore, cell migration reduces the local spatial R-R
competition, leading to a rapid increase in the total cell population. Furthermore, the
average number of empty sites is lower under AT than under CT; i.e., competition is
higher under AT. Therefore, migration relaxes competition and increases the growth rate
under AT more than under CT, which results in a significant reduction in the time gain
due to migration (p — value < 0.05).

3.6. Fibroblast-mediated drug resistance
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Figure 8. Consequences of fibroblast-mediated resistance in the clumped R-cell distribution. (a)
The time evolution of the mean of the total cell population (N(t)) in the 30 simulations is shown
for CT for three types of fibroblast configurations—no fibroblast (NoF), fibroblasts overlapping
with clumped R-cells in the center (FC), and fibroblasts encapsulating the clumped R-cells in the
center (FSq); these are shown with blue, red, and yellow lines, respectively. (b) Boxplot of the
time to progression (TTP) in the 30 realizations under CT, along with the progression probability
(PPr) for the three types of fibroblast configurations (NoF (blue), FC (red), and FSq (yellow)).
(c) The time evolution of the mean of the total cell population (N(#)), R-cells (R(t)), and S-cells
(§(t)) is shown with dashed, solid, and dotted lines for the 30 simulations under AT for the
three types of fibroblast configurations (NoF, FC, and FSq—shown by blue, red, and yellow lines,
respectively). (d) Boxplot of the time to progression (TTP) in the 30 realizations under AT, along
with the progression probability (PPr) for the three types of fibroblast configurations (NoF (blue),
FC (red), and FSq (yellow)). (e) The blue, red, and yellow boxplots show the time gain (TG) under
AT compared to CT for the three types of fibroblast configurations (NoF, FC, and FSq, respectively).
Though with the FSq configuration, a reduction in TG was observed under both CT (in (b)) and
AT (in (d)), no significant differences were observed in the TG.
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So far, we investigated the role of initial R-cell distribution, carrying capacity, and
cell migration on the therapeutic response. Fibroblasts are known to promote cancer
cell growth and drug resistance [30-34]. In particular, a recent paper by Marusky et al.
revealed the impact of fibroblast location on the outcomes of continuous therapy [6]. To
understand the impact of fibroblast distribution on the outcomes of adaptive therapy,
we considered three types of fibroblast configurations: (i) in the absence of fibroblasts
(NoF), (ii) in the presence of fibroblasts that overlap with clumped R-cells at the center
(FC), and (iii) in the presence of fibroblasts around the initial clump of R-cells (FSq).
In the case of FC, we assumed the existence of a fibroblast as a 32 x 32 square at the
center, and in the case of FSq, we considered the fibroblast region as a hollow square
with an outer dimension of 55 and inner dimension of 45, diagonally situated between
the sites (23,23) and (77,77), with a wall thickness of five lattices. Figure A2 shows a
graphical illustration of the three fibroblast configurations. We assumed that fibroblasts
comprised about 10% of the domain. Although fibroblasts are known to promote cancer
cell growth at varying rates [33,34], for simplicity, we assumed that fibroblasts could
increase the growth of both R- and S-cells by 200% (doubling their respective cell growth
rates: rgp = 200% of rs and rgr = 200% of rg) [33]. Under CT, the total cell population
decrease until about day 125, 144, or 176 in the cases of FSq, NoF, and FC, respectively
(Figure 8). Though it is decreasing, the less stiff red line shows a smaller reduction rate
in the case of FC than for the other two configurations (blue (NoF) and yellow (FSq)).
For FC, the locations of all of the R-cells initially belong to the locations of the fibroblast
(Figure A2: the fourth row). Thus, the growth of all R-cells is promoted by the fibroblasts.
In the other configurations, none of the R-cells initially belonged to the fibroblast region
and did not gain fibroblast-mediated increases in their growth rates. The net growth rate
of R-cells for FC was higher than that in the other two cases. As a result, at the minima,
the total cell population in the case of FC remained the highest among the three types
of configurations (1416, 1423, and 1681 cells for FSq, NoF, and FC respectively). Once
all of the sensitive cells are eradicated by CT and the clump of the resistant cells was
saturated with cells, the growth dynamics of the total cell population in NoF and FC
became similar because the elevated growth rate due to the presence of the fibroblast at
the center had no impact, spatial competition near the center was already higher (Figure
A2: column 3). On the other hand, in the case of FSq, R-cells grew remarkably faster than
in the other two cases when the R-cells reached the fibroblast region (Figure A2: columns
2 and 3, row 6). From about the 500th day onward, the cells on the circumference of the
clump exceeded the fibroblast region, and the fibroblast region became saturated with
R-cells (Figure A2: column 4, row 6). Thus, all of the configurations exhibited similar
growth rates, which are represented by the parallel-looking growth curves (Figure
8(a); day 500 onward). Boxplots of the corresponding TTP values accompanied by the
Kaplan—Meier plots of the PPr are shown in Figure 8(b) for the 30 realizations. The tumor
progression in FSq was significantly faster than in both NoF and FC (p — value < 0.001).

A similar type of scenario was observed for the growth of R-cells under AT. The
growth of R-cells under AT with the clumped initial condition is shown in Figure 8(c)
(solid lines) for the three different fibroblast configurations. During the first “on” treat-
ment, R-cells initially grew the fastest with FC due to overlapping-fibroblast-mediated
growth promotion (Figure A2). After about the 90th day, the growth rates for all of
the fibroblast configurations were similar until about the 210th day. After the 210th
day, the R-cells grew faster for FSq than for the other two configurations because, by
this time, the R-cells reached the fibroblast region (Figure A2), and the R-cells on the
circumferential area of the clump exploited the fibroblast-mediated growth, as well as
the absence of spatial competition with other R-cells. The corresponding TTP values are
shown in Figure 8(d) as boxplots, which are accompanied by Kaplan—Meier plots of the
PPr. The disease progression was significantly faster in Fsq than in the other two cases.
Interestingly, there were no significant differences in the benefits of AT (time gain; TG)
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because in our simulation, fibroblast-mediated protection of S-cells was negligible, while
its promotion of R-cell growth was far more significant (Figure 8(e)).
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Figure 9. Effect of fibroblast location on tumor progression and the benefit of adaptive ther-
apy compared to continuous therapy. (a) The time evolution of the average of the total cell
population (N(#)) under CT in the 30 simulations is shown for the three types of fibroblast
configurations—no-fibroblast (NoF), fibroblast center overlapping with clumped R-cells (FC), and
fibroblast encapsulating clumped R-cells (FSq)—with blue, red, and yellow lines, respectively. (b)
Boxplot of the time gain under CT in the 30 realizations, along with the progression probability
(PPr) for the three types of fibroblast configurations: NoF (blue), FC (red), and FSq (yellow). (c)
The temporal evolution of the averages of the total cell population (N(t)), R-cells (R(¢)), and
S-cells (S(t)) under AT in the 30 simulations is shown with dashed, solid, and dotted lines for the
three types of fibroblast configurations—NOoF, FC, and FSq, which are represented by blue, red,
and yellow lines, respectively. (d) Boxplot of the time gain under AT in the 30 realizations, along
with the progression probability (PPr) for the three types of fibroblast configurations: NoF (blue),
FC (red), and FSq (yellow). (e) The blue, red, and yellow box plots show the time gain under AT
compared to CT for the three types of fibroblast configurations: NoF, FC, and FSq, respectively.
No significant differences in the TG were observed.

We also simulated the effect of fibroblast location on the random initial R-cell
distribution. We observed that both FC and FSq showed quicker progression than
NoF under both CT and AT (Figure 9(a—d)). Although both the FC and FSq fibroblast
configurations had almost the same surface area (i.e., the same number of sites with
fibroblasts), FSq had a greater perimeter (both outer and inner) than FC. With FC, the
R-cells with higher growth rates were closely located to the same kinds (i.e., fibroblasts
promoted R-cells), leading to even a higher spatial competition between R-cells. In FSq, a
good number of cells with higher growth rates competed with cells with normal growth
rates. As a result, FSq elevated the net growth rate of more cells than FC although they
had almost the same number of fibroblasts, leading to quicker progression than that
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in NoF and FC. The time to progression was significantly different in all cases (Figure
9(b,d), p — value < 0.001 in all cases). However, in terms of TG, we again observed no
significant differences (Figure 9(e)).

To explore the impacts of both cell migration and fibroblast location on therapeutic
outcomes, we additionally simulated the model with the clumped R-cell distribution
and a cell migration rate of m = 50% (Figure A3). The result was similar to that of
the case with the clumped initial distribution and m = 0% (Figure 8). However, as we
observed before (Figure 7), due to the reduction in R-R competition as a result of cell
migration, tumor progression occurred earlier for all types of fibroblast configurations
and treatment strategies (AT and CT).

3.7. Adaptive therapy on a virtual patient with multiple metastatic lesions: three detected lesions
and one undetected lesion at the beginning of therapy

Metastases 1 Metastases 2 Metastases 3 Metastases 4
Casel F.m=0 F.m=0.5 NF.m=0 MNF.m=0.5
ase Clump Clump Clump (Invisible)
c I F.m=0 F.m=0.5 NF.m=0 NF.m=0.5
ase Clumnp Clump {Inwisible) Clurnp
Casell F.m=0 F.m=0.5 NF.m=0 MNF.m=0.5
ase Clurnp (Imvisible) Clump Clurnp
c v F.m=0 F.m=0.5 NF.m=0 MNF.m=0.5
ase (Invisible) Clump Clump Clump

Figure 10. Combinations of the four metastasis scenarios. The green and red colors correspond
to detected and undetected metastases, respectively. F and NF correspond to the existence and
absence of fibroblasts, respectively.

In the sections above, we investigated the treatment response with a single tumor
lesion (either a primary or metastatic site). Patients with advanced cancers who undergo
the systematic therapy that we consider in this study typically present with multiple
metastases. To understand the impact of the spatial heterogeneity of R-cells and fibrob-
lasts on treatment outcomes, we simulated AT and CT in a virtual patient with four
metastatic lesions, each of size 200 x 200 (we increased the metastasis size here to comply
with the fibroblasts). Each metastatic lesion had its own independent domain, in which
the cells were subject to space constraints. However, all metastatic lesions were subjected
to the same systemic treatment, which was guided by a systematic biomarker that was
represented by the total number of cells in all metastatic lesions. The characteristics
of the local microenvironments were significantly different. For instance, the numbers
of fibroblasts were different among the metastatic sites. Due to the different composi-
tions and densities of extracellular matrixes, tumor cell migration can be different. We
considered four combinations, which are shown in Figure 10, and considered a tumor
consisting of four metastases that held the four different biological combinations. In
addition, we assumed that one of the metastases was invisible (contained too few cells
to be detected initially). We assumed that the number of tumor cells in the invisible
metastatic site was 10% of number of cells in the other metastases. Therefore, we mod-
eled four different cases of tumors with four metastases, of which one metastatic lesion
was invisible (presented by the red color in Figure 10). For the visible metastases, we
assumed a clumped initial R-cell distribution. We also assumed that the total number of
cells was 10 times the number of R-cells (N(0) = 10R(0)) in each of the metastases. The
S-cells were randomly distributed over each metastatic lesion’s domain. The locations of
the fibroblasts were assumed to be scattered. We simulated these four metastatic tumor
models for two types of invisible metastases: (i) All the tumor cells belonged to a 60 x 60
grid centered with the metastases (clumped), or (ii) all of the tumor cells were sparse
over the all of the metastases (random). In both cases, the R-cells made up 10% of the
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total cell population and were dispersed randomly over the respective areas. Figures 11
and 12 show the initial cell configurations of the four metastatic lesions in the four cases
mentioned above (in Figure 10) for the clumped and random invisible metastases.

In these simulations, we use two different criteria for tumor progression: emergence
time (ET) and TTP. ET was defined as the time for a new metastatic site to be detected,
which was assumed to be the time when the total cell population was 50% of the overall
domain’s carrying capacity in the respective metastasis. The TTP was defined as the time
when the total cell population of the four metastases reached 120% of the total initial cell
population.

Case |

Case lll Case Il

Case IV

Figure 11. Initial cell configurations for the four cases with an invisible clumped metastasis. The
red, blue, and white dots correspond to R-cells, S-cells, and empty sites. The gray dots shows the
sites accompanied by fibroblasts.

We observed that both cell migration and fibroblasts can promote faster relapses
(shorter TTP) in Sections 3.5 and 3.6. Similar consequences were observed here. For
instance, in case I with the clumped invisible metastatic lesion (Figure 13, first graphs
in the left column), the total cell population grew faster in metastatic lesion 2 than in
metastatic lesion 1 (Figure 14) due to the higher cell migration probability in metastasis
2. The total cell population grew faster in metastasis 1 than in metastasis 3 (Figure 14)
due to the fibroblasts in metastasis 1. The invisible metastasis (metastasis 4) become
noticeable on day 2632 under CT and on day 2633 under AT (Figure 14, rows 2 and
3, respectively) when the total number of cells in the fourth lesion reached 50% of the
domain carrying capacities of those specific metastases. The ET was almost the same
for CT and AT (vertical solid cyan line vs. vertical dashed cyan line), but the TTP in
CT was shorter than that in AT (solid (CT, 2076 days) and dashed (AT, 2302 days) red
lines). The cell configurations are shown in the fourth and fifth rows of Figure 14. Most
importantly, when tumor progression had already occurred, the invisible metastasis
had not yet reached a detectable tumor size. We observed a similar order in the growth
of the tumor cell population in metastases 1 to 3 in Case I, as well as with the random
invisible metastasis (Figure 13, left vs. right figures). The cell configurations at crucial
times are shown in Figure 15. The cell growth in the random invisible metastasis was
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much faster than in all other metastases, in agreement with the results in Sections 3.1
and 3.2. Importantly, the resistant cell populations in this metastatic lesion experienced
less competition with the sensitive cell population because the duration of the systematic
therapy determined by the sum of all metastatic lesions was so long that most sensitive
cells in the lesion were killed off by the first cycles. The random distribution imposed
less competition between the resistant cell populations, resulting in the rapid growth of
resistant cells. The fourth invisible metastasis became the largest on day 399 under CT
and on day 574 under AT.

Case IV

Figure 12. Initial cell configurations for the four cases with a random invisible metastasis. The red,
blue, and white dots correspond to R-cells, S-cells, and empty sites. The gray dots show the sites
that are accompanied by fibroblasts.

For Cases II, III, and IV, similar results were obtained (Figure A4). A comparison of
the ET and TTP in the four cases is shown in Figure 16 The ET was more delayed in Case
II than in Case I, as the higher cell migration in Case I led to a faster expansion of the
tumor. The growth of the invisible metastasis was the fastest in Case III due to presence
of fibroblasts and the higher cell migration rate. The growth of the invisible metastasis
in Case IV was slower than in Case III due to the lack of migration. However, the TTP
did not follow this ordering, as the TTP depends on the total number of cells in all of the
metastatic sites.
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Figure 13. Complex dynamics of multiple metastases under AT and CT. The time evolution of the
total cell population in the four metastases is shown in the sub-figures. The first, second, third,
and fourth rows show the results for Case I. The first and second columns show the results for the
initial clumped and random cell configurations in the invisible metastasis, respectively. In each
sub-figure, the blue, red, yellow, and black colors show the total cell populations in metastasis
1, metastasis 2, metastasis 3, and metastasis 4, respectively; the vertical cyan lines show the
emergence time (ET) of the invisible metastasis, and the red line shows the TTP. The solid and
dashed lines show results under CT and AT, respectively.

At ET under CT
(Day 2632)

At ET under AT
(Day 2633)

(Day 2076)

At TTP under CT

At TTP under AT
(Day 2302)

Figure 14. Cell configurations at the ET and TTP under CT and AT for Case I with the clumped
invisible metastasis. The red, blue, and white dots correspond to R-cells, S-cells, and empty sites.
The gray dots show the sites that are accompanied by fibroblasts.
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Random, Case |

AtET under CT
(Day 669)

(Day 682)

At ET under AT

At TTP under CT
(Day 1440)

At TTP under AT
(Day 1557)

Figure 15. Cell configurations at the ET and TTP under CT and AT for Case I with the random
invisible metastasis. The red, blue, and white dots correspond to R-cells, S-cells, and empty sites.
The gray dots show the sites that are accompanied by fibroblasts.

[CY (b)
4000 2500
[ AT,Clump
3500 I T .Clump
[ AT Random 2000
3000 I CT Random

2500
152000
1500
1000

500
500

Casel Casell Caselll Caselv Casel Casell Caselll CaselV

Figure 16. Bar chart of the ET and TTP under CT and AT for Cases I to IV with (a) clumped or (b)
random invisible metastases.

4. Discussion

Adaptive therapy has been shown to offer delayed progression with a lower cumu-
lative dose rate by exploiting competition between tumor cells [16]. Within tumorous
tissues and throughout normal tissues, cells compete for space and survival with their
neighbors. As recent studies have demonstrated, the spatial structure can shape a
tumor’s evolution [19,27,28,38]. This spatial competitive aspect has been further experi-
mentally investigated [27,39], but more work needs to be done to better understand how
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pre-existing tumor resistance emerges and is maintained in different spatial structures
of tumors and under different treatment strategies. Different initial distributions of
resistant cell populations can cause different outcomes. Depending on the locations of
fibroblasts, some cancer cells can survive under therapy. To examine how the effects
of the spatial structures are governed by these factors, we developed a 2D agent-based
model in which the sensitive cells were randomly distributed over the domain and the
resistant cells were clumped near the center of the domain, randomly distributed over
the domain, or uniformly distributed over the domain. Our simulations showed that
a clumped distribution of resistant cells forces high intra-species competition (R-R),
leading to delayed tumor progression under therapy. The combination of high R-R
competition and sustained R-S competition under adaptive therapy leads to an even
longer time gain under adaptive therapy compared to continuous therapy. A reduction
in R-R competition through an increase in the local carrying capacity and cell migration
promotes a faster relapse.

Our analysis of the effects of the distribution of fibroblasts on resistance suggested
that there may be an optimal proximity to fibroblasts for maximal tumor cell growth
advantage. For resistant cells that are already competing (overlapping R-cells and
fibroblasts), the fibroblast-mediated advantages of tumor progression are not significant.
On the other hand, if fibroblasts are close—but not too close—to resistant cells (e.g.,
when Fsq encapsulates resistant cells), resistant cells on the leading edge that experience
less competition can exploit fibroblast-mediated growth, leading to much faster tumor
progression in both continuous and adaptive therapy. In our simulations, fibroblasts
promoted sensitive cell proliferation, which unexpectedly increased the chance of drug-
induced cell death because only proliferating sensitive cells can engage in cell death.
During the “off” treatment in the adaptive therapy cycles, both cell types gained the
same promotion promotion of by fibroblasts. Thus, the competition between the resistant
cells and sensitive cells was unexpectedly reduced, resulting in a negligible benefit of
adaptive therapy compared to continuous therapy:.

The differential characteristics of metastatic lesions drive the evolution of tumors
and the success of treatments [40-43]. A new metastatic lesion can be detected in
spite of the administration of therapy. Our simulation on a virtual patient with four
metastatic lesions—with one being initially undetected—predicted complex interactions
between the tumor cells and fibroblasts within each metastatic lesion. Surprisingly, we
demonstrated that invisible metastatic lesions can cause a rapid failure of treatments,
highlighting the importance of tracking metastatic lesions during therapy. The release of
a serological marker for monitoring advanced tumors, such as LDH (lactate dehydroge-
nase for melanoma) [44] or PSA (prostate-specific antigen for prostate cancer) [45], may
be different between primary and metastatic sites or between metastatic sites [46]. Novel
imaging technologies need to be developed in order to allow for frequent non-invasive
monitoring of tumor burdens. Such new technologies could offer the opportunity to
better understand tumors’ spatial structures.

The model presented here is an abstract representation of what might be happening
in actual tumors; it focuses on spatial variations, but not how the variations arise. For
example, we did not consider different microenvironmental factors, such as oxygen
levels, or growth factors. The model rests on the assumption that two key tumor cell
populations—drug-sensitive and drug-resistant cell populations—compete. We also
assumed a uniform drug distribution, but in reality, the diffusion of a drug through a
tumor tissue could result in a spatially heterogeneous drug response [7]. The adaptive
strategy for the therapy used in this study considers the initial tumor volume and
one threshold for stopping treatment in order to determine the on—off cycles of the
treatment. However, in several studies, the maintenance and reduction of the critical
volume (not necessarily the initial volume) at different levels have been reported to be
beneficial [20,21,25]. We chose our modeling approach as a starting point in order to
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s10 better understand how the spatial distributions of resistant cells and fibroblasts impact
ez the outcomes of adaptive therapy.

612 In future studies, a few other dimensions, such as sequential dosing, alternating dos-
e13 ing, or fibroblast inhibitors, could be incorporated into adaptive treatment strategies [47].
s1e  Multidrug therapy was recently found to be promising by West and colleagues [23,24],
e1s  but they did not consider the spatial aspects of tumors. Our simulations demonstrated
e1s that fibroblasts can cause a faster failure of adaptive therapy. In tumors, fibroblasts
ez influence the growth of the tumor cells in a spectrum of ways [48-51]. For example,
e1s in breast cancer, fibroblasts increase the growth by secreting epidermal growth factor
e10  (EGF); furthermore, the transforming growth factor-g (TGF-) produced by the tumor
e20 cells converts fibroblasts into myofibriblasts, which increase the secretion of EGF and
ez thus cause even more rapid tumor progression [52]. In colon cancer, TGF-f1 was found
e22 to promote tumor growth by helping fibroblasts to influence tumor cells [53]. Therapies
e2s designed to target fibroblasts have been proven to be successful in cases such as liver
e2¢ cancer [54] and prostate cancer [55]. An adaptive therapy that combines these drugs
e2s may prolong survival with lower cumulative dose rates.
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e3a Abbreviations

e3s  The following abbreviations are used in this manuscript:

636

CT Continuous therapy
AT Adaptive therapy
VNHD  Von Neumann neighborhood
TTP Time to tumor progression
" TR50 Time for resistant cells to grow to 50% of the initial tumor volume
ET Emergence time
TG Time gain

PPr Progression probability
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e3s  Appendix A
es0  Appendix A.1
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Figure A1. (a) The temporal evolution of the mean number of S-cell (S(t)) populations under
continuous therapy with initial clumped, random, and uniform cell configurations is shown in a
log plot, which shows very similar growth patterns among the different cases. (b)The average
numbers of S-cells in the VNHD of an R-cell in the 30 realizations are shown as boxplots.
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Day 165 Day 250 Day 550

Figure A2. Cell configurations for fibroblast-mediated growth. The above figures show the cell
configurations at different times under both AT (odd rows) and CT (even rows) for the fibroblast
configurations of NoF (rows 1 and 2), FC (rows 3 and 4), and FSq (rows 5 and 6). In row 4, we see
that most of the R-cells belong to the fibroblast region and, hence, experience a fibroblast-mediated
increase in growth rate until the local carrying capacity is reached. In row 6, initially, none of
the R-cells belong to the fibroblast region; hence, they grow at a normal growth rate. However,
with time, the S-cells become sparse due to the administration of drugs, and the clump grows
to reach the fibroblast region (days 165 and 250). During this time, the outer cells grow at faster
rate due to the fibroblast-mediated advantages and the lower competition. When the outer cells
expand past the fibroblast region (day 550) and the fibroblast region reaches its carrying capacity,
the fibroblast-mediated advantages do not have an impact because of the local carrying capacity.
Similarly, under AT, the R-cells mostly take advantage of the fibroblast-mediated growth in the FC
configuration. However, in the FSq configuration, only a few S-cells obtain similar advantages,
but no R-cells do. When the clump grows enough for the outer cells to reach the fibroblast region,
the R-cell population experiences fibroblast-mediated growth.
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Figure A3. Consequences of fibroblast-mediated growth for the time to progrssion and the time
gain of adaptive therapy compared to continuous therapy with a cell migration rate of m = 50%
of the cell growth rate. (a) The time evolution of the mean of the total cell population (N(#))
under CT in the 30 simulations is shown for the three types of fibroblast configurations—NOoF,
FC, and FSq—with blue, red, and yellow lines, respectively. (b) Boxplot of the time gain under
CT in the 30 realizations, along with the progression probability (PPr) for the three types of
fibroblast configurations—NoF (blue), FC (red), and FSq (yellow). (c) The time evolution of the
average numbers of the total cell population (N(#)), R-cells (R(t)), and S-cell (S(t)) under AT in
the 30 simulations are shown with dashed, solid, and dotted lines for the three types of fibroblast
configurations—NoF, FC, and FSq—with blue, red, and yellow lines, respectively. (d) Boxplot of
the time gain under AT in the 30 realizations, along with the progression probability (PPr) for the
three types of fibroblast configurations—NoF (blue), FC (red), and FSq (yellow). (e) The blue, red,
and yellow boxplots show the time gain for the three types of fibroblast configurations—NoF, FC,
and , respectively. Though in the FSq configuration, a reduction in TG was observed under both
CT (in (b)) and AT (in (d)), no significant differences were observed in the TG.
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Figure A4. Complex dynamics of multiple metastases under AT and CT. The time evolution of the
total cell population in the four metastases is shown in the sub-figures. The first, second, and third
rows show the results for Cases II, III, and IV, respectively. The first and second columns show the
results for clumped and random initial cell configurations in the invisible metastasis, respectively.
In each sub-figure, the blue, red, yellow, and black colors show the total cell populations in
metastasis 1, metastasis 2, metastasis 3, and metastasis 4, respectively; the vertical cyan lines show
the emergence time (ET) of the invisible metastasis, and the red line shows the TTP. The solid and
dashed lines show the results under CT and AT, respectively.
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