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Abstract: A long-standing practice in the treatment of cancer is that of hitting hard with the1

maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for2

resistant cells, leading to the failure of the treatment. A different type of treatment strategy,3

adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft4

experiments and clinical trials. Adaptive therapy is used to maintain a tumor’s volume by5

exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective6

drug doses or timed drug holidays. To further understand the role of competition in the outcomes7

of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that8

the superiority of the adaptive strategy over continuous therapy depends on the local competition9

shaped by the spatial distribution of resistant cells. Cancer cell migration and increased carrying10

capacity accelerate the progression of the tumor under both types of treatments by reducing the11

spatial competition. Intratumor competition can also be affected by fibroblasts, which produce12

microenvironmental factors that promote cancer cell growth. Our simulations show that the13

spatial architecture of fibroblasts modulates the benefits of adaptive therapy. Finally, as a proof of14

concept, we simulated the outcomes of adaptive therapy in multiple metastatic sites composed of15

different spatial distributions of fibroblasts and drug-resistant cell populations.16

Keywords: spatial structure; fibroblasts; treatment resistance; adaptive therapy; metastases;17

undetected metastases18

1. Introduction19

The current standard of care for the treatment of cancer patients is based on con-20

tinuous therapy (CT) using the maximum tolerated dose of cancer drugs with the aim21

of eradicating tumors by killing the maximum number of drug-sensitive cancer cells.22

Despite the impressive initial tumor responses under CT, drug resistance inevitably23

develops in advanced metastatic solid cancers because CT often selects for drug-resistant24

cell populations [1,2]. For example, a majority of patients with metastatic melanomas25

treated continuously with BRAF-MEK inhibitor experienced a progression of the disease26

over 11–15 months [3,4]. The development of resistance is known to be a combined conse-27

quence of the responses from factors that include intratumor heterogeneity [5,6], limited28

drug penetration due to physical barriers [7], and the tumor microenvironment [8–10].29

Thus, the exploitation of the intratumor competition between heterogeneous cancer30

cells and the modulation of the tumor microenvironment to bias the selective pressure31

towards the sensitive cells have the potential to delay the emergence of resistance.32

From an ecological and evolutionary perspective, the net growth rate of a population33

composed of multiple species is determined by the intrinsic growth rate, death rate, and34

density-dependent limitations—when multiple species compete for the same resources35

in a closed environment [11]. This ecological principle implies that the net growth of36

a tumor cell population can be modulated by inhibiting the intrinsic growth rate of37

drug-sensitive cells, by increasing sensitive cell deaths, and by modulating the density-38

dependent growth limitations of drug-resistant cell populations. Because drug resistance39
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often comes with a fitness cost [12,13], treatment breaks may provide sensitive cells with40

a higher net growth rate than the resistant cell population. When the intrinsic growth41

rates of both cell populations are same, the only way to modulate the growth of resistant42

cells is to increase density-dependent limitations. Adaptive therapy (AT) is based on43

this ecological principle of competition between tumor cells to limit their growth [14]. If44

kept in a tolerable range, tumor burden is not always lethal [14,15]. Thus, the objective45

of AT is to maintain a tolerable tumor burden as long as possible by using treatment46

holidays and reduced dosing [14]. For example, under AT, a patient is treated with47

therapy from the diagnosis until the tumor burden falls to a fraction of the initial cell48

population (e.g., 50% of the initial burden [16]). The goal is to reduce the cell population49

to an acceptable level that has sufficient sensitive cells to maintain density-dependent50

competitive stress on the growth of resistant cells. Then, a treatment break is scheduled51

to allow the remaining sensitive cells to grow and to limit the growth of the resistant cell52

population by leveraging competition. Once the total cell population is back to the initial53

level, a treatment is administered again. This on–off treatment cycle is repeated until the54

tumor progresses. This adaptive therapy strategy has been shown to have some degree55

of success in both preclinical experiments [17,18] and a clinical trial [16]. In particular, a56

clinical trial for prostate cancer therapy showed that adaptive therapy can delay disease57

progression for 27 months by using only a 53% cumulative drug rate compared to CT58

[16].59

Several mathematical and computational models have been developed to compare60

AT with CT in various scenarios. Two key terms in this regard are time to relapse61

and tumor progression (TTP), which is the time at which the tumor volume exceeds62

120% of the the initial volume; time gain (TG) which is defined as: TG = TTP in AT63

– TTP in CT. Gallaher et al. developed an off-lattice agent-based model to simulate64

the impact of heterogeneity and space on AT outcomes. They reported an extension65

of TTP of about one year under AT compared to CT (CT: 400 days vs. 700 days) [19].66

Gatenby et al. developed a model consisting of five types of cells with differential drug67

responses and showed that tumor cells under CT grow to a carrying capacity by about68

2400 days, while under AT, the tumor burden was kept under control at 20% of the69

carrying capacity [14]. A mathematical model in [16] showed that the on–off cycling70

rate of treatments depends on cell–cell competition and initial tumor cell population71

composition [16], where the threshold for treatment breaks was 50% of the initial tumor72

burden. A different threshold for treatment breaks was considered by Hansen and73

Read [20]. This study further demonstrated that a 20% reduction threshold resulted in74

more delayed progression than a 50% reduction for different degrees of initial resistance75

[20]. Some studies identified critical factors that determined the TG of AT. In the case76

of melanoma, the initial tumor burden, growth rate, switching rate, and competition77

coefficient were identified as crucial parameters for deciding the TG of AT by using78

CT [21]. The initial proportion of resistance is another contributing factor. Strobel et79

al. showed that a 1% initial resistance delayed the progression by up to 211 days for80

an initial burden of 75%, while 10% resulted in almost no TG [22]. A game-theoretical81

model was used to propose a combination of strategies for AT [23,24]. Recently, Viossat82

and Roble [25] provided theoretical conditions for the maximization of the benefits of83

AT. In particular, they provided an explicit formula for TG under AT, which included84

the intensity of competition between drug-sensitive and drug-resistant cells, the most85

critical factor.86

Because the competitive stress experienced by each cell depends on its neighbor-87

hood in solid tumors, spatial models would be more suitable for exploring the conse-88

quences of spatial heterogeneity and treatment for tumor growth [26]. Agent-based89

models have shown that even lower doses can limit tumor growth if resistant cells90

are spatially restricted by sensitive cells [19,27]. In tumors with cells of a varied range91

of sensitivity, AT resulted in trapping of the resistant cells by the sensitive cells, thus92

limiting the growth of the tumor [19]. Tumors with spread randomly resistant cells93
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were reported to grow much faster than tumors with resistant cells that were clustered94

together [27,28]. AT has even been found to delay progression in the absence of fitness95

costs [27,28], which, however, are assumed to be a key element for the success of AT96

[12,13].97

Furthermore, the tumor microenvironment can be used to modulate tumor growth98

and competition. For example, fibroblasts are known to act as a local moderator of99

individual cancer cells’ growth and migration by producing growth factors and an100

extracellular matrix [29–34]. The spatial heterogeneity in tumor growth could be affected101

by fibroblast locations in the tumor [31]. It was demonstrated that physical proximity to102

fibroblasts determines tumor cell survival under therapy. Tumor cells that are close to103

fibroblasts can survive longer under therapy due to the fibroblast-mediated elevation of104

the threshold of drug concentration required for cell death and the lower rate of drug105

activity due to the physical barrier against drug penetration (i.e., collagen) generated by106

fibroblasts.107

Our study aims to investigate the impacts of the spatial distributions of both re-108

sistant cells and fibroblasts on therapeutic outcomes. We developed a 2D on-lattice109

agent-based model (ABM) and inspected tumor growth subject to three different initial110

resistant cell configurations—namely, clumped, random, and uniform—to explore the111

impact of the spatial arrangement of cells. We simulated both AT and CT and compared112

the TTP. Furthermore, we explored the impact of the carrying capacity and cell migration113

rate on cell–cell competition and treatment outcomes. For the fibroblast locations, we114

considered two different proximities to resistant cells: overlapping with resistant cells115

and close to resistant cells. Finally, we simulated tumor growth in a virtual patient with116

four metastatic sites composed of different migration rates and different spatial distribu-117

tions of fibroblasts and resistant cell populations. In these simulations, we assumed that118

one of the metastatic sites was not detected at the beginning of the treatment. The tumor119

progression was determined by utilizing two criteria: the sum of tumor burden and the120

emergence of a new metastatic lesion driven by the growth of an initially undetected121

metastatic lesion.122

2. Materials and Methods123

To study how a resistant cell population modulates treatment response, we con-124

sidered a 2D on-lattice agent-based model of a small primary tumor or a metastatic125

lesion. For simplicity, we assume that a tumor cell population can be classified into two126

types of cells: drug-sensitive (S-cell) and drug-resistant (R-cell). We denote the total cell127

population, S-cell population, and R-cell population at time t with N(t), S(t), and R(t),128

where N(t) = S(t) + R(t).129

0
50

0
10

00
15

00
20

00
T

im
e(

D
ay

s)

0

50
00

Population

(b
)

C
lu

m
pe

d

0
50

0
10

00
15

00
20

00
T

im
e(

D
ay

s)

0

50
00

10
00

0

Population

R
an

do
m

0
50

0
10

00
15

00
20

00
T

im
e(

D
ay

s)

0

50
00

10
00

0

Population

U
ni

fo
rm

(a
)

Clumped Random

D
ay

 1

Uniform

D
ay

 1
20

 D
ay

 2
00

0

1
60

30
0

T
im

e(
D

ay
s)

0

0.
51

1.
52

2.
53

3.
5

(d
)

1
60

30
0

T
im

e(
D

ay
s)

0.
51

1.
52

2.
5

(c
)

i=
c

i=
r

i=
u

Figure 1. Initial cell configurations (clumped, random, and uniform, respectively). The red, blue,
and white dots are the R-cells, S-cells, and empty sites, respectively.

2.1. Initial and Boundary Conditions130

We assume that a percentage fR of the initial cells (N(0)) are resistant
(

i.e., R(0) =131

fR
100 N(0) and S(0) =

(
1− fR

100

)
N(0)

)
. Initially, a total of S(0) cells are randomly dis-132

persed over the domain, while a total of R(0) cells were placed in three different dis-133
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persion patterns—random, uniform, or clumped—in the domain.[35]. In the clumped134

case, all of the R-cells were randomly dispersed in a square centered in the middle of the135

domain, where the same number of R-cells were randomly dispersed over the whole136

domain in the random case. On the other hand, in the uniform case, all of the R-cells137

were manually placed to maximize the distance between R-cells over the whole domain.138

Please refer to the Figure 1 for the three types of cell configurations.139

2.2. Cell-Cycle Decision140

Each cell occupies a lattice point in a square domain of size l × l. In every time141

step, each cell may stay stationary, or it can move, divide, or die. The S-cells and R-cells142

divide at rate rS and rR, respectively. The S-cells and R-cells divide at a constant rate143

of rS or rR, respectively. In this study, we considered the von Neumann neighborhood144

(VNHD), which comprised the sites on the east, west, south, and north of each cell. The145

death rate of both types of cells is dT . The drug concentration D(t) is homogeneous in146

the domain, and a drug-induced death rate (δD) is applicable for S-cells only. A sensitive147

cell undergoing mitosis can be killed by a drug with a probability of δDD(t). Both S-cells148

and R-cells follow the rules described in the flow chart in Figure 2. A brief explanation149

of the flow chart (Figure 2) is provided in the following.150
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Figure 2. Flow chart of the cells’ life cycle. In each time step, all of the cells follow the steps in the
flow chart.

• Step 1: If t < T, where T is the end time, go to Step 2; otherwise, go to Step 12.151

• Step 2: Decide whether the cell will move. Pick a random number from a uniform152

distribution (xm ∼ U[0, 1]). If xm < m, where m is the probability of cell migration,153

then go to Step 3. If not, go to Step 5.154

• Step 3: Is one of its VNHDs empty? If yes, go to Step 4. If not, go to Step 11.155

• Step 4: Randomy move the cell to one of the empty sites in the VNHD. Go to Step156

11.157

• Step 5: Decide whether the cell will divide or die. Pick a random number from a158

uniform distribution (xpd ∼ U[0, 1]). If xpd < rj + dT with j ∈ {S, R}, where rj is159

the j-cell proliferation rate and dT is the normal cell death rate, then go to Step 6. If160

not, go to Step 11.161

• Step 6: Decide whether the cell will divide. Pick a random number from a uniform162

distribution (xp ∼ U[0, 1]). If xp <
rj

rj+dT
, then go to Step 7. If not, go to Step 8.163
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• Step 7: Decide whether the cell will die due to the drug. If (xd ∼ U[0, 1]) and if164

x < δDD(t), where δD is the probability of cell death (for R-cells, δD = 0 ), go to165

Step 8. If not, go to Step 9.166

• Step 8: Remove the cell, make the site empty, and go to Step 11.167

• Step 9: Is one of its VNHDs empty? If yes, go to Step 10. If not, go to Step 11.168

• Step 10: Randomly put a new cell of the same type in VNHD. Go to Step 11.169

• Step11: t← t + 1. Go to Step 1.170

• Step12: The simulation ends.171

2.3. Number of cells in the neighborhood172

To quantify local cell–cell competition, we introduce the following notation.

N i
jk(t) = number of j-cell around a k-cell at time t with i initial cell configuration (1)

where j ∈ {R(R-cells), S(S-cells), E(Empty site)}, k ∈ {R, S} and i ∈ {c(Clumped),173

r(Random), u(Uniform)}. To denote the mean over all of the k-cells in the domain at174

time t, we write N i
jk
(t).175

We denote the number of empty sites by N i
Ek ( 0 ≤ N i

Ek ≤ 4). A cell can move to176

any unoccupied sites in its VNHD provided that 1 ≤ N i
Ek ≤ 4. During cell proliferation,177

one parent cell divides into two daughter cells of the same type. To accommodate the178

daughter cell, at least one empty site is required (1 ≤ N i
Ek ≤ 4) in the parent cell’s179

von Neumann neighborhood. If N i
Ek = 0, the proliferation was not executed. Upon180

cell division, one daughter cell is placed in the parent cell’s location, and the other is181

randomly placed in one of the empty sites in the VNHD. Upon the availability of an182

empty site in the VNHD (i.e., 1 ≤ N i
Ek ≤ 4), while attempting to divide, the mother183

S-cell may die with a probability of dD due to the drug, but the R-cells do not experience184

drug-induced death. Dead cells are immediately removed from the respective sites.185

2.4. Model Parameters186

As a representative structure, we assume a square domain of 100× 100 lattice points.187

We start our simulation with a tumor of N(0) = 5, 000 cells. The S-cells are assumed188

to be randomly dispersed over the domain. We assume that fR = 10% of the cells are189

resistant. In the clumped case, all of the R-cells are randomly dispersed in a 40× 40190

clump. The parameters are summarized in Table 1.191

Table 1. The parameter values are listed in the following table.

Parameter Description Value Reference

t Time in days
T Simulation end time

S(t) Number of sensitive cells
R(t) Number of resistant cells
N(t) Total number of cells

K Carrying capacity of each lattice point 1, 2 Assumed
fR Initial percentage of the resistant cell population (R(0)/N(0)) 10% [36]
rS Sensitive cell proliferation rate 0.027 per day [16]
rR Resistant cell proliferation rate (1-0.3)rS [19]
dT Cell death rate 0.3rS [22]
m Migration rate 0 to 100% of rS Assumed

D(t) Drug concentration at time t 0, 1
δD Drug-induced death rate of S-cells 0.75 [23]
ρ AT threshold for treatment break 0.5 [16]

rSF Fibroblast-mediated sensitive cell proliferation rate 200% of rS Assumed
rRF Fibroblast-mediated resistant cell proliferation rate 200% of rR Assumed
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2.5. Treatment Schedules192

We consider two treatment strategies: continuous therapy (CT) and adaptive ther-193

apy (AT). In CT, the maximum tolerated dose (MTD) is applied to the domain over the194

entire simulation time. On the other hand, in AT, the treatment is provided from the195

beginning of the simulation until the cell population is reduced to ρN(0). The treatment196

is stopped until the total population, N(t), reaches N(0) again. Then, the treatment is197

re-applied. In this study, we assume that the MTD is applied during the treatment cycle198

and that ρ = 0.5 [16]. In mathematical notation, drug concentration can be written as199

follows. We consider the time when the total population reaches 120% of N(0) as the200

time to tumor progression (TTP).201

CT : D(t) = MTD for t ≥ 0 (2)

AT : D(t) =
{

MTD until N(t) < ρN(0), ρ = 0.5,
0 until N(t) ≥ N(0)

(3)

2.6. Simulation202

The model was implemented on the JAVA platform using the Hybrid Automata203

Library (HAL) [37]. The generation of the initial cell configuration, the data analysis,204

and the visualization were performed by using MATLAB. To keep the results unbiased,205

the sequence of cells in the simulation was shuffled at the beginning of every time206

step. For each simulation scenario, we simulated 30 virtual tumors (i.e., 30 realizations207

of the model simulation), unless otherwise noted. To denote the average over the 30208

simulations, we used over-bars, such as N(t) and N i
jk(t).209

2.7. Statistical Analysis and Progression Probability210

To investigate the consequences of a parameter change in the results of the 30211

realizations, we used a two-sample t-test. Significant differences with p − value <212

0.001, 0.01, and 0.05 are represented by ∗ ∗ ∗, ∗∗, and ∗, respectively. For non-significant213

differences, we use “n.s.”. We also used a Kaplan–Meier survival curve to illustrate the214

approximate progression probability (PPr), which is defined as the relative frequency215

of tumor relapses among the 30 virtual tumors. Our results show an approximation of216

the PPr with respect to TTP. The Kaplan–Meier survival analysis was performed using217

MATLAB.218

3. Results219

3.1. Impact of the initial R-cell configuration on the time to progression under continuous220

therapy221

First, we simulated CT on the three types of initial cell configurations for a time span222

of 2000 days. In this simulation, we assumed the carrying capacity of each lattice point to223

be K = 1 and the cell migration rate to be m = 0. Under CT, the S-cells died out quickly,224

and the remaining R-cells started to grow and fill the model domain. The representative225

spatial distributions of the tumor cells are shown in Figure 3(a) under CT on the 1st, 120th,226

and 2000th day. The cell configuration in the clumped case was significantly different227

from those in the random and uniform cases, between which the difference seemed to228

be negligible. On the 120th day, slightly larger patches of resistant cells are observed229

in the random case than in the uniform case. By the end of the simulation, the whole230

domain was captured by R-cells in both cases. On the other hand, in the clumped case,231

the R-cells grew in a patch in the center. By the end of the 2000 days, a huge clump of232

R-cells captured almost the entire domain.233

The temporal dynamics of different types of cells are presented in Figure 3(b). The234

TTP values in the three cases were 1662, 372, and 345, respectively. In Figure 3(b), the235

cyan horizontal line shows the 120% level of the initial tumor volume. The dynamics of236

the S-cells were almost same for all three types of initial configurations (Figure A1(a)),237
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as they were initially similarly sparse and had the same growth parameters in all cases.238

Although the S-cell population dynamics were similar in all three cases, they affected239

the total cell growth by modulating the R-cells’ dynamics differently. To examine the240

reason for why the TTP was significantly different in the clumped case compared to the241

random and uniform cases, we investigated the local R–S and R–R spatial competition.242

Specifically, we calculated the numbers of S cells, R cells, and empty sites of each R-cell243

VNHD in the three spatial patterns.244
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Figure 3. Effects of initial R-cell distribution on the TTP under CT. (a) The cell configurations on
days 1, 120, and 2000 are shown. The blue, red, and white dots are S-cells, R-cells, and empty
sites, respectively. (b) The average temporal evolution of the average number of S-cell and R-cell
populations over 30 realizations with clumped (upper panel), random (middle panel), and uniform
(bottom panel) initial cell configurations (blue: S-cell, red: R-cell). Black solid line: average total
cell population (N(t) = S(t) + R(t)). Vertical cyan line: TTP in each case; horizontal cyan line: the
120% level of the initial tumor volume (tumor progression threshold). The average numbers of
empty sites (N i

ER
) and R-cells (N i

RR
) in the VNHD of an R-cell in the 30 realizations are shown

as boxplots in (c) and (d), respectively, for i = c, r, u. The blue, red, and yellow boxes are for the
clumped (c), random (r), and uniform (u) cases, respectively.

To compare the local growth potential of R-cells in the three spatial patterns, we245

calculated the number of empty sites in the VNHD of each R-cell. The average number246

of empty sites in the neighborhood of an R-cell was lower in the clumped case than247

in both the random and uniform cases (N c
ER

< N r
ER

,N u
ER

) (Figure 3(c)). Figure 3(c)248

shows that the number of empty sites around each R-cell increased from day 1 to day249

60 in the random and uniform cases (N r
ER

and N u
ER

increased from day 1 to 60) because250

the treatment-induced deaths of S-cells freed up space in the neighborhood of each251
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R-cell, leading to a reduction in R–S spatial competition. In the clumped case, however,252

the neighborhoods of the R-cells were mostly occupied with R-cells (Figure 3(a)), and253

thus, the number of empty sites in the VNHD of each R-cell (N c
ER

) did not significantly254

increase (Figure 3(c)), blue boxes) after drug administration.255

We next compared the R–R spatial competition by quantifying the average number256

of R-cells in the VNHD of each R-cell. In the clumped case, the number of R-cells257

in the neighborhood of each R-cell was significantly higher than in the random or258

uniform case (N c
RR

> N r
RR

,N u
RR

) (Figure 3(d); blue boxes vs. yellow and orange boxes).259

The R–R competition increased over time in all of the cases; by the 300th day, about260

three R-cells were located in the neighborhood of each R cell, competing for a space261

to divide. Thus, each R-cell in the clumped case experienced, on average, greater262

spatial competition with R cells, leading to slow tumor progression. Taken together, our263

simulations demonstrate that the initial distribution of R-cells can modulate the time to264

progression under continuous therapy.265

3.2. Impact of the initial R-cell configuration on the time to progression under adaptive therapy266
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Figure 4. Effect of the initial R-cell distribution on the time to progression under AT. (a) Cell
configurations on days 1, 120, and 2000. The square signifies the domain representative of the
tumor. The blue, red, and white dots are S-cells, R-cells, and empty sites, respectively. (b) Average
temporal evolution of the S-cell and R-cell populations for the clumped (upper panel), random
(middle panel), and uniform (bottom panel) cases of the initial cell configurations (blue dots:
S-cells, red dots: R-cells). Black solid line: the total population (N(t) = S(t) + R(t)). Vertical solid
cyan line: TTP; horizontal solid cyan line: 120% level of the initial tumor volume. Vertical dotted
cyan line: time for the R-cells to reach 50% of the initial tumor volume (TR50); horizontal dotted
cyan line: 50% level of the initial tumor volume. The average numbers of empty sites (N i

ER
), S-cells

(N i
SR

), and R-cells (N i
RR

) in the VNHD of an R-cell in the 30 realizations are shown as boxplots in
(c), (d), and (e), respectively, for i = c, r, u. The blue, red, and yellow boxes are for the clumped (c),
random (r), and uniform (u) cases, respectively.
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Next, we investigated the effect of the initial R-cell distribution on the AT responses.267

Figure 4(a) shows a representative cell configuration at different times for AT with three268

different initial R-cell distributions. The cell population growth presented in Figure269

4(b) shows that the TTP values were 1776, 392, and 362 days in the clumped, random,270

and uniform cases, respectively (vertical cyan lines). The total cell population went271

through four on–off treatment cycles until the TTP in the clumped case. In the other272

two cases, only one on–off treatment cycle was allowed until the TTP. To understand the273

mechanism by which AT caused a more delayed TTP in the clumped case compared to274

the random or uniform case, we first investigated the local growth potential on days 1,275

35, and 95. We chose the 35th day (when the first cycle had yet to finish) and the 95th day276

(after which the second cycle started) for all the cases. The average numbers of empty277

sites (4(c)) and S-cells (4(d)) in the neighborhood were lower in the clumped case than in278

the other two cases (NER(t)
c<N r

ER
(t),N u

ER
(t) (Figure 4(c)). The number of empty sites in279

the neighborhood of a each R-cell (N c
ER

) did not significantly change from day 1 to day280

35, though the numbers in both the random and uniform cases (N r
ER

andN u
ER

) increased281

remarkably. During the first treatment break (from day 35 to day 95), the S-cells divided,282

filling up empty sites in the neighborhoods. This resulted in a reduction of NER(t)
c,r,u

283

(Figure 4(c): boxplots on day 95 vs. boxplots on day 35).284

Next, we compared the intensity of the spatial competition between the S-cells and285

R-cells. The average number of S-cells in each R-cell neighborhood was higher in the286

random and uniform cases than in the clumped case (NSR(t)
c<N r

SR
(t),N u

SR
(t)) (Figure287

4(d): yellow/orange boxplots vs. blue boxplots). The difference between the average288

number of S-cells in a neighborhood in the clumped case and those in the other two289

cases decreased from the 1st day to the 35th day (i,e., N c
SR
(1) ∼ N r

SR
(1) > N c

SR
(35) ∼290

N r
SR
(35),N c

SR
(1) ∼ N u

SR
(1) > N c

SR
(35) ∼ N u

SR
(35) ). The higher number of S-cells in291

the VNHDs of the R-cells allowed the drug to free up sites more in the random and292

uniform cases than in the clumped case. In the first treatment break (from day 35 to day293

95), the number of S-cells in the neighborhoods increased in all three cases due to the294

proliferation of S-cells during the “off” part of the treatment cycle (Figure 4(d)). Thus,295

the inhibition of growth of R-cells by S-cells was higher in the random and uniform cases296

than in the clumped case.297

Finally, we quantified the strength of inter-species spatial competition (i.e., com-298

petition between R-cells). The average number of R-cells in a neighborhood in the299

clumped case was always higher than the numbers in the random and uniform cases300

(NRR(t)
c>N r

RR
(t),N u

RR
(t)) (Figure 4(e)). Interestingly, the number of R-cells in each R-301

cell neighborhood in all three cases increased irrespective of drug administration because302

R-cells can proliferate regardless of drug administration. A greater number of R-cells in303

the neighborhood implies a stronger inhibition of R-cell growth by R-cells, leading to a304

slower rate of cell population growth (Figure 4b: slope of the total population growth305

in the clumped case < slope of the total population growth in the random and uniform306

cases) .307

In summary, in the random and uniform cases, the the number of R-cells increased308

more quickly due to the space available in the neighborhoods, and it reached the level of309

50% of the initial total cell population during the end of the second drug administration310

after the first “off” part of the treatment cycle (Figure 4b: dotted cyan line). Once the311

number of R-cells reached the level of 50% of the initial cell population, the ongoing312

(additional) cycle of treatment could not reduce the total population below the 50%313

level, leading to continuous treatment and a quicker progression (Figure 4b). Under CT,314

inter-species competition (R–R competition) was solely responsible for determining the315

TTP (higher competition leading to delayed TTP). Under AT, however, a combination of316

R–R competition and R–S competition seemed to determine the TTP. In other words, a317

more significant reduction in the growth inhibition of S-cells by R-cells combined with318

the increase in R–R competition drove a faster TTP in the random and uniform cases. In319

the clumped case, the R–R competition is the main determining factor of TTP.320
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3.3. Clumped initial distribution results in higher clinical time gain (TG)321

So far, we explored the impact of the initial R cell distribution on the AT and CT322

outcomes and investigated how the treatments modulate the inter- and intra-species323

competition (R–S and R–R, respectively), resulting in different treatment outcomes.324

During CT, the drug is supplied consistently without considering the response, which325

causes a prompt decline in the S-cell population and facilitates R-cell growth by lowering326

the local R–S spatial competition. On the other hand, during AT, the drug is supplied in327

short cycles to keep a tolerable number of S-cells, which are required in order to limit328

the R-cells’ growth by maintaining spatial competition. Therefore, AT is expected to329

maintain total cell growth for longer than CT. We quantified the benefits of AT over330

CT in terms of the TG (= TTP in AT - TTP in CT). The TG is a consequence of spatial331

competition, which depends on the distribution of R-cells and their neighborhoods’332

occupancies. Our results show that TG was significantly higher in the clumped case than333

in the other two cases (Figure 5(a), p-value < 0.001). Furthermore, an even higher TG334

could be observed if the initial fraction of R-cells was smaller (Figure 5(b) f0 = 1%). In335

Figure 5 (a) and (b), the random and uniform cases do not show significant differences.336

Figure 5. Role of the initial R-cell distribution on the benefit of AT over CT. (a) The boxplot shows
the TG in the 30 realizations for the clumped, random, and uniform initial cell configurations
for f0 = 10% (∗ ∗ ∗: p− value < 0.001; n.s.: not significant). (b) Similar results to those in (a)
are shown for f0 = 1%. (c) The time evolution of the mean of the average number of S-cells in

the VNHD of an R-cell in the 30 realizations (N i
SR(t)) is shown for both CT (solid lines) and AT

(dashed lines); c: clumped, r: random, u: uniform. The solid lines overlap, but the blue dashed line
(AT, i = c) shows the longer existence of S-cells in the VNHD of an R-cell in the case of the clumped
initial cell configuration under AT. (d) Similar results to those in (c) are shown for f0 = 1%.

To understand the role of sustained S-cells, we plotted the mean of 30 realizations337

of the average number of S-cells in each R-cell’s neighborhood (N i
SR(t)) against time.338

Figure 5 (c–d) shows that in the clumped case, S-cells are maintained for longer in the339

neighborhood than in the random and uniform cases. This longer existence of the S-cells340

in the clumped case allowed the AT therapy to significantly increase the TG compared341

to the TG achieved with CT. Furthermore, we observed that there was a slight chance342

of attaining a negative TG. For the clumped, random, and uniform cases, this was 0.03,343
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0.13, and 0.17, respectively, for f0 = 10%, or 0, 0.07, and 0.1 for f0 = 1%. This shows that344

a clumped distribution of resistant cells increases the preference for AT over CT.345

The uniform and random cases did not show significant differences in terms of TG.346

Furthermore, the clumped case and random case were two extreme versions of similar347

types of distributions. Thus, we focused on the case of clumped R-cell distribution in348

our further simulations.349

3.4. Increased carrying capacity reduces the benefit of adaptive therapy by reducing spatial350

competition351
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Figure 6. Effect of carrying capacity on the time gain (TG). (a) The blue and red boxplots show
the TG from the 30 couple realizations (for both AT and CT) with respect to carrying capacities of
K = 1 and 2, respectively. The triple asterisk (∗ ∗ ∗) signifies that increasing the carrying capacity
significantly reduced the TG (p− value < 0.001). (b) The time evolution of the mean of the average

number of empty sites in the VNHD of each R-cell in the 30 realizations (N i
ER(t)) is shown for

both CT (solid lines) and AT (dashed lines); K = 1 (blue) and 2 (red). K = 2 offers a greater number
of empty sites in the VNHDs of R-cells than K = 1.

For the clumped initial cell distribution, we investigated the effect of the spatial352

carrying capacity on the TG. The spatial carrying capacity was characterized as K = 1353

(each lattice point could hold one cell) or K = 2 (each lattice point could hold, at most,354

two cells, regardless of their sensitivity or resistance). When K = 1 was used, a total355

of four cells could occupy the VNHD of each cell (i.e., N c
Sk(t) +N

c
Rk(t) +N

c
Ek(t) = 4).356

For each cell in K = 2, a total of eight cells could occupy a VNHD, and one additional357

cell could be located in the respective cell’s site (i.e., N c
Sk(t) +N

c
Rk(t) +N

c
Ek(t) = 9).358

Figure 6(a) shows that increasing the carrying capacity significantly decreased the TG359

(p− value < 0.001) from a median of 139 days to a median of 7 days. Increasing the360

carrying capacity provided additional room for accommodation of the daughter cells,361

which is observed in Figure 6(b). Initially, the number of empty sites in each R-cell362

N c
ER(t) was above 5 for K = 2, whereas it was below 2 for K = 1. Due to this ample363

space in their neighborhoods, R-cells hardly experienced any spatial competition and364

grew at a higher pace when K = 2 under both AT and CT. As the total cell population365

grew, N c
ER(t) decreased abruptly and tended to settle below 1. For K = 1, a similar366

trend was observed; however, the number of empty sites was lower than that for K = 2367

(N c
ER,K=1(t) < N c

ER,K=2(t)). Comparing the number of empty sites in each R-cell’s368

VNHD (N c
ER(t)) for AT in the case of K = 1 with that in the case of K = 2 (Figure 6(b),369

dotted lines)), we observed that, for K = 1,N c
ER(t) went through ups and downs several370

times, which suggested spatial competition with neighboring cells. On the other hand,371

for K = 2, this value monotonically decreased, and there was a very slight difference372

due to AT and CT. Therefore, we concluded that the short TG with K = 2 was due to373

the lack of spatial competition. We observed that the probabilities of having a negative374
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TG were 0.03 and 0.4 for K = 1 and 2, respectively, i.e., an increase in carrying capacity375

reduces the benefit of AT over CT.376

3.5. Increased cell migration rate reduces the time gain of AT compared to CT377

To investigate the impact of cell migration on therapeutic responses, we simulated378

a model of the migration rate m = 0%, 50%, and 100% of the birth rate (of the respective379

types of cells (Table 1)). Under both AT and CT, an increased cell migration rate pro-380

moted faster cell population growth, leading to a shorter TTP (Figure 7(a)). The time381

to progression without cell migration was 1667 under CT. The TTP decreased to 1282382

when the cell migration rate increased to 50%, and further increased to 1075 when the383

rate was 100%. On the other hand, the time to progression without cell migration was384

1803 under AT. The TTP decreased to 1376 when the cell migration rate increased to 50%,385

and further increased to 1152 when the rate was 100%.386
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Figure 7. Effects of cell migration on TG. (a) The time evolution of the mean of the total cell
population (N(t)) in the 30 simulations is shown for m = 0 (blue), 50% (red), and 100% (yellow)
under AT (dashed line) and CT (solid line). The vertical solid lines show the time to tumor
progression (TTP) under CT. The vertical dashed line shows the TTP under AT. (b) The time
evolution of the mean of the average number of empty sites in the VNHD of each R-cell in the 30

realizations (N i
ER(t)) is shown with the same line styles as in (a). (c) The blue, red, and yellow

boxes show the boxplots of the TG for m = 0%, 50%, and 100%, respectively. ∗ : p-value < 0.05.

To understand the mechanism by which migration causes a faster relapse, we387

investigated the temporal evolution of the local growth capacity (number of empty sites388

in the VNHD of each R-cell; N c
ER(t)) (Figure 7(b)). The figure shows that N c

ER(t) was389

smaller for m = 0 than for m = 50% and 100% under CT. We observed a similar impact390

of cell migration on the AT response. During the “on” period of the treatment, the391

S-cells died, resulting in an increase in the number of empty sites in the VNHD of each392

R-cell in all of the migration rate cases. The lowest increase, however, was observed in393
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the absence of migration. This increase in empty sites in each R-cell’s neighborhood394

as a result of cell migration implies a higher growth potential for each R-cell, leading395

to a faster treatment failure. Therefore, cell migration reduces the local spatial R–R396

competition, leading to a rapid increase in the total cell population. Furthermore, the397

average number of empty sites is lower under AT than under CT; i.e., competition is398

higher under AT. Therefore, migration relaxes competition and increases the growth rate399

under AT more than under CT, which results in a significant reduction in the time gain400

due to migration (p− value < 0.05).401

3.6. Fibroblast-mediated drug resistance402
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Figure 8. Consequences of fibroblast-mediated resistance in the clumped R-cell distribution. (a)
The time evolution of the mean of the total cell population (N(t)) in the 30 simulations is shown
for CT for three types of fibroblast configurations—no fibroblast (NoF), fibroblasts overlapping
with clumped R-cells in the center (FC), and fibroblasts encapsulating the clumped R-cells in the
center (FSq); these are shown with blue, red, and yellow lines, respectively. (b) Boxplot of the
time to progression (TTP) in the 30 realizations under CT, along with the progression probability
(PPr) for the three types of fibroblast configurations (NoF (blue), FC (red), and FSq (yellow)).
(c) The time evolution of the mean of the total cell population (N(t)), R-cells (R(t)), and S-cells
(S(t)) is shown with dashed, solid, and dotted lines for the 30 simulations under AT for the
three types of fibroblast configurations (NoF, FC, and FSq—shown by blue, red, and yellow lines,
respectively). (d) Boxplot of the time to progression (TTP) in the 30 realizations under AT, along
with the progression probability (PPr) for the three types of fibroblast configurations (NoF (blue),
FC (red), and FSq (yellow)). (e) The blue, red, and yellow boxplots show the time gain (TG) under
AT compared to CT for the three types of fibroblast configurations (NoF, FC, and FSq, respectively).
Though with the FSq configuration, a reduction in TG was observed under both CT (in (b)) and
AT (in (d)), no significant differences were observed in the TG.
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So far, we investigated the role of initial R-cell distribution, carrying capacity, and403

cell migration on the therapeutic response. Fibroblasts are known to promote cancer404

cell growth and drug resistance [30–34]. In particular, a recent paper by Marusky et al.405

revealed the impact of fibroblast location on the outcomes of continuous therapy [6]. To406

understand the impact of fibroblast distribution on the outcomes of adaptive therapy,407

we considered three types of fibroblast configurations: (i) in the absence of fibroblasts408

(NoF), (ii) in the presence of fibroblasts that overlap with clumped R-cells at the center409

(FC), and (iii) in the presence of fibroblasts around the initial clump of R-cells (FSq).410

In the case of FC, we assumed the existence of a fibroblast as a 32× 32 square at the411

center, and in the case of FSq, we considered the fibroblast region as a hollow square412

with an outer dimension of 55 and inner dimension of 45, diagonally situated between413

the sites (23, 23) and (77, 77), with a wall thickness of five lattices. Figure A2 shows a414

graphical illustration of the three fibroblast configurations. We assumed that fibroblasts415

comprised about 10% of the domain. Although fibroblasts are known to promote cancer416

cell growth at varying rates [33,34], for simplicity, we assumed that fibroblasts could417

increase the growth of both R- and S-cells by 200% (doubling their respective cell growth418

rates: rSF = 200% of rS and rRF = 200% of rR) [33]. Under CT, the total cell population419

decrease until about day 125, 144, or 176 in the cases of FSq, NoF, and FC, respectively420

(Figure 8). Though it is decreasing, the less stiff red line shows a smaller reduction rate421

in the case of FC than for the other two configurations (blue (NoF) and yellow (FSq)).422

For FC, the locations of all of the R-cells initially belong to the locations of the fibroblast423

(Figure A2: the fourth row). Thus, the growth of all R-cells is promoted by the fibroblasts.424

In the other configurations, none of the R-cells initially belonged to the fibroblast region425

and did not gain fibroblast-mediated increases in their growth rates. The net growth rate426

of R-cells for FC was higher than that in the other two cases. As a result, at the minima,427

the total cell population in the case of FC remained the highest among the three types428

of configurations (1416, 1423, and 1681 cells for FSq, NoF, and FC respectively). Once429

all of the sensitive cells are eradicated by CT and the clump of the resistant cells was430

saturated with cells, the growth dynamics of the total cell population in NoF and FC431

became similar because the elevated growth rate due to the presence of the fibroblast at432

the center had no impact, spatial competition near the center was already higher (Figure433

A2: column 3). On the other hand, in the case of FSq, R-cells grew remarkably faster than434

in the other two cases when the R-cells reached the fibroblast region (Figure A2: columns435

2 and 3, row 6). From about the 500th day onward, the cells on the circumference of the436

clump exceeded the fibroblast region, and the fibroblast region became saturated with437

R-cells (Figure A2: column 4, row 6). Thus, all of the configurations exhibited similar438

growth rates, which are represented by the parallel-looking growth curves (Figure439

8(a); day 500 onward). Boxplots of the corresponding TTP values accompanied by the440

Kaplan–Meier plots of the PPr are shown in Figure 8(b) for the 30 realizations. The tumor441

progression in FSq was significantly faster than in both NoF and FC (p− value < 0.001).442

A similar type of scenario was observed for the growth of R-cells under AT. The443

growth of R-cells under AT with the clumped initial condition is shown in Figure 8(c)444

(solid lines) for the three different fibroblast configurations. During the first “on” treat-445

ment, R-cells initially grew the fastest with FC due to overlapping-fibroblast-mediated446

growth promotion (Figure A2). After about the 90th day, the growth rates for all of447

the fibroblast configurations were similar until about the 210th day. After the 210th448

day, the R-cells grew faster for FSq than for the other two configurations because, by449

this time, the R-cells reached the fibroblast region (Figure A2), and the R-cells on the450

circumferential area of the clump exploited the fibroblast-mediated growth, as well as451

the absence of spatial competition with other R-cells. The corresponding TTP values are452

shown in Figure 8(d) as boxplots, which are accompanied by Kaplan–Meier plots of the453

PPr. The disease progression was significantly faster in Fsq than in the other two cases.454

Interestingly, there were no significant differences in the benefits of AT (time gain; TG)455
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because in our simulation, fibroblast-mediated protection of S-cells was negligible, while456

its promotion of R-cell growth was far more significant (Figure 8(e)).457
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Figure 9. Effect of fibroblast location on tumor progression and the benefit of adaptive ther-
apy compared to continuous therapy. (a) The time evolution of the average of the total cell
population (N(t)) under CT in the 30 simulations is shown for the three types of fibroblast
configurations—no-fibroblast (NoF), fibroblast center overlapping with clumped R-cells (FC), and
fibroblast encapsulating clumped R-cells (FSq)—with blue, red, and yellow lines, respectively. (b)
Boxplot of the time gain under CT in the 30 realizations, along with the progression probability
(PPr) for the three types of fibroblast configurations: NoF (blue), FC (red), and FSq (yellow). (c)
The temporal evolution of the averages of the total cell population (N(t)), R-cells (R(t)), and
S-cells (S(t)) under AT in the 30 simulations is shown with dashed, solid, and dotted lines for the
three types of fibroblast configurations—NoF, FC, and FSq, which are represented by blue, red,
and yellow lines, respectively. (d) Boxplot of the time gain under AT in the 30 realizations, along
with the progression probability (PPr) for the three types of fibroblast configurations: NoF (blue),
FC (red), and FSq (yellow). (e) The blue, red, and yellow box plots show the time gain under AT
compared to CT for the three types of fibroblast configurations: NoF, FC, and FSq, respectively.
No significant differences in the TG were observed.

We also simulated the effect of fibroblast location on the random initial R-cell458

distribution. We observed that both FC and FSq showed quicker progression than459

NoF under both CT and AT (Figure 9(a–d)). Although both the FC and FSq fibroblast460

configurations had almost the same surface area (i.e., the same number of sites with461

fibroblasts), FSq had a greater perimeter (both outer and inner) than FC. With FC, the462

R-cells with higher growth rates were closely located to the same kinds (i.e., fibroblasts463

promoted R-cells), leading to even a higher spatial competition between R-cells. In FSq, a464

good number of cells with higher growth rates competed with cells with normal growth465

rates. As a result, FSq elevated the net growth rate of more cells than FC although they466

had almost the same number of fibroblasts, leading to quicker progression than that467
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in NoF and FC. The time to progression was significantly different in all cases (Figure468

9(b,d), p− value < 0.001 in all cases). However, in terms of TG, we again observed no469

significant differences (Figure 9(e)).470

To explore the impacts of both cell migration and fibroblast location on therapeutic471

outcomes, we additionally simulated the model with the clumped R-cell distribution472

and a cell migration rate of m = 50% (Figure A3). The result was similar to that of473

the case with the clumped initial distribution and m = 0% (Figure 8). However, as we474

observed before (Figure 7), due to the reduction in R–R competition as a result of cell475

migration, tumor progression occurred earlier for all types of fibroblast configurations476

and treatment strategies (AT and CT).477

3.7. Adaptive therapy on a virtual patient with multiple metastatic lesions: three detected lesions478

and one undetected lesion at the beginning of therapy479

Figure 10. Combinations of the four metastasis scenarios. The green and red colors correspond
to detected and undetected metastases, respectively. F and NF correspond to the existence and
absence of fibroblasts, respectively.

In the sections above, we investigated the treatment response with a single tumor480

lesion (either a primary or metastatic site). Patients with advanced cancers who undergo481

the systematic therapy that we consider in this study typically present with multiple482

metastases. To understand the impact of the spatial heterogeneity of R-cells and fibrob-483

lasts on treatment outcomes, we simulated AT and CT in a virtual patient with four484

metastatic lesions, each of size 200× 200 (we increased the metastasis size here to comply485

with the fibroblasts). Each metastatic lesion had its own independent domain, in which486

the cells were subject to space constraints. However, all metastatic lesions were subjected487

to the same systemic treatment, which was guided by a systematic biomarker that was488

represented by the total number of cells in all metastatic lesions. The characteristics489

of the local microenvironments were significantly different. For instance, the numbers490

of fibroblasts were different among the metastatic sites. Due to the different composi-491

tions and densities of extracellular matrixes, tumor cell migration can be different. We492

considered four combinations, which are shown in Figure 10, and considered a tumor493

consisting of four metastases that held the four different biological combinations. In494

addition, we assumed that one of the metastases was invisible (contained too few cells495

to be detected initially). We assumed that the number of tumor cells in the invisible496

metastatic site was 10% of number of cells in the other metastases. Therefore, we mod-497

eled four different cases of tumors with four metastases, of which one metastatic lesion498

was invisible (presented by the red color in Figure 10). For the visible metastases, we499

assumed a clumped initial R-cell distribution. We also assumed that the total number of500

cells was 10 times the number of R-cells (N(0) = 10R(0)) in each of the metastases. The501

S-cells were randomly distributed over each metastatic lesion’s domain. The locations of502

the fibroblasts were assumed to be scattered. We simulated these four metastatic tumor503

models for two types of invisible metastases: (i) All the tumor cells belonged to a 60× 60504

grid centered with the metastases (clumped), or (ii) all of the tumor cells were sparse505

over the all of the metastases (random). In both cases, the R-cells made up 10% of the506
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total cell population and were dispersed randomly over the respective areas. Figures 11507

and 12 show the initial cell configurations of the four metastatic lesions in the four cases508

mentioned above (in Figure 10) for the clumped and random invisible metastases.509

In these simulations, we use two different criteria for tumor progression: emergence510

time (ET) and TTP. ET was defined as the time for a new metastatic site to be detected,511

which was assumed to be the time when the total cell population was 50% of the overall512

domain’s carrying capacity in the respective metastasis. The TTP was defined as the time513

when the total cell population of the four metastases reached 120% of the total initial cell514

population.515
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Figure 11. Initial cell configurations for the four cases with an invisible clumped metastasis. The
red, blue, and white dots correspond to R-cells, S-cells, and empty sites. The gray dots shows the
sites accompanied by fibroblasts.

We observed that both cell migration and fibroblasts can promote faster relapses516

(shorter TTP) in Sections 3.5 and 3.6. Similar consequences were observed here. For517

instance, in case I with the clumped invisible metastatic lesion (Figure 13, first graphs518

in the left column), the total cell population grew faster in metastatic lesion 2 than in519

metastatic lesion 1 (Figure 14) due to the higher cell migration probability in metastasis520

2. The total cell population grew faster in metastasis 1 than in metastasis 3 (Figure 14)521

due to the fibroblasts in metastasis 1. The invisible metastasis (metastasis 4) become522

noticeable on day 2632 under CT and on day 2633 under AT (Figure 14, rows 2 and523

3, respectively) when the total number of cells in the fourth lesion reached 50% of the524

domain carrying capacities of those specific metastases. The ET was almost the same525

for CT and AT (vertical solid cyan line vs. vertical dashed cyan line), but the TTP in526

CT was shorter than that in AT (solid (CT, 2076 days) and dashed (AT, 2302 days) red527

lines). The cell configurations are shown in the fourth and fifth rows of Figure 14. Most528

importantly, when tumor progression had already occurred, the invisible metastasis529

had not yet reached a detectable tumor size. We observed a similar order in the growth530

of the tumor cell population in metastases 1 to 3 in Case I, as well as with the random531

invisible metastasis (Figure 13, left vs. right figures). The cell configurations at crucial532

times are shown in Figure 15. The cell growth in the random invisible metastasis was533
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much faster than in all other metastases, in agreement with the results in Sections 3.1534

and 3.2. Importantly, the resistant cell populations in this metastatic lesion experienced535

less competition with the sensitive cell population because the duration of the systematic536

therapy determined by the sum of all metastatic lesions was so long that most sensitive537

cells in the lesion were killed off by the first cycles. The random distribution imposed538

less competition between the resistant cell populations, resulting in the rapid growth of539

resistant cells. The fourth invisible metastasis became the largest on day 399 under CT540

and on day 574 under AT.541
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Figure 12. Initial cell configurations for the four cases with a random invisible metastasis. The red,
blue, and white dots correspond to R-cells, S-cells, and empty sites. The gray dots show the sites
that are accompanied by fibroblasts.

For Cases II, III, and IV, similar results were obtained (Figure A4). A comparison of542

the ET and TTP in the four cases is shown in Figure 16 The ET was more delayed in Case543

II than in Case I, as the higher cell migration in Case I led to a faster expansion of the544

tumor. The growth of the invisible metastasis was the fastest in Case III due to presence545

of fibroblasts and the higher cell migration rate. The growth of the invisible metastasis546

in Case IV was slower than in Case III due to the lack of migration. However, the TTP547

did not follow this ordering, as the TTP depends on the total number of cells in all of the548

metastatic sites.549
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Figure 13. Complex dynamics of multiple metastases under AT and CT. The time evolution of the
total cell population in the four metastases is shown in the sub-figures. The first, second, third,
and fourth rows show the results for Case I. The first and second columns show the results for the
initial clumped and random cell configurations in the invisible metastasis, respectively. In each
sub-figure, the blue, red, yellow, and black colors show the total cell populations in metastasis
1, metastasis 2, metastasis 3, and metastasis 4, respectively; the vertical cyan lines show the
emergence time (ET) of the invisible metastasis, and the red line shows the TTP. The solid and
dashed lines show results under CT and AT, respectively.
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Figure 14. Cell configurations at the ET and TTP under CT and AT for Case I with the clumped
invisible metastasis. The red, blue, and white dots correspond to R-cells, S-cells, and empty sites.
The gray dots show the sites that are accompanied by fibroblasts.
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Figure 15. Cell configurations at the ET and TTP under CT and AT for Case I with the random
invisible metastasis. The red, blue, and white dots correspond to R-cells, S-cells, and empty sites.
The gray dots show the sites that are accompanied by fibroblasts.
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Figure 16. Bar chart of the ET and TTP under CT and AT for Cases I to IV with (a) clumped or (b)
random invisible metastases.

4. Discussion550

Adaptive therapy has been shown to offer delayed progression with a lower cumu-551

lative dose rate by exploiting competition between tumor cells [16]. Within tumorous552

tissues and throughout normal tissues, cells compete for space and survival with their553

neighbors. As recent studies have demonstrated, the spatial structure can shape a554

tumor’s evolution [19,27,28,38]. This spatial competitive aspect has been further experi-555

mentally investigated [27,39], but more work needs to be done to better understand how556
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pre-existing tumor resistance emerges and is maintained in different spatial structures557

of tumors and under different treatment strategies. Different initial distributions of558

resistant cell populations can cause different outcomes. Depending on the locations of559

fibroblasts, some cancer cells can survive under therapy. To examine how the effects560

of the spatial structures are governed by these factors, we developed a 2D agent-based561

model in which the sensitive cells were randomly distributed over the domain and the562

resistant cells were clumped near the center of the domain, randomly distributed over563

the domain, or uniformly distributed over the domain. Our simulations showed that564

a clumped distribution of resistant cells forces high intra-species competition (R–R),565

leading to delayed tumor progression under therapy. The combination of high R–R566

competition and sustained R–S competition under adaptive therapy leads to an even567

longer time gain under adaptive therapy compared to continuous therapy. A reduction568

in R–R competition through an increase in the local carrying capacity and cell migration569

promotes a faster relapse.570

Our analysis of the effects of the distribution of fibroblasts on resistance suggested571

that there may be an optimal proximity to fibroblasts for maximal tumor cell growth572

advantage. For resistant cells that are already competing (overlapping R-cells and573

fibroblasts), the fibroblast-mediated advantages of tumor progression are not significant.574

On the other hand, if fibroblasts are close—but not too close—to resistant cells (e.g.,575

when Fsq encapsulates resistant cells), resistant cells on the leading edge that experience576

less competition can exploit fibroblast-mediated growth, leading to much faster tumor577

progression in both continuous and adaptive therapy. In our simulations, fibroblasts578

promoted sensitive cell proliferation, which unexpectedly increased the chance of drug-579

induced cell death because only proliferating sensitive cells can engage in cell death.580

During the “off” treatment in the adaptive therapy cycles, both cell types gained the581

same promotion promotion of by fibroblasts. Thus, the competition between the resistant582

cells and sensitive cells was unexpectedly reduced, resulting in a negligible benefit of583

adaptive therapy compared to continuous therapy.584

The differential characteristics of metastatic lesions drive the evolution of tumors585

and the success of treatments [40–43]. A new metastatic lesion can be detected in586

spite of the administration of therapy. Our simulation on a virtual patient with four587

metastatic lesions—with one being initially undetected—predicted complex interactions588

between the tumor cells and fibroblasts within each metastatic lesion. Surprisingly, we589

demonstrated that invisible metastatic lesions can cause a rapid failure of treatments,590

highlighting the importance of tracking metastatic lesions during therapy. The release of591

a serological marker for monitoring advanced tumors, such as LDH (lactate dehydroge-592

nase for melanoma) [44] or PSA (prostate-specific antigen for prostate cancer) [45], may593

be different between primary and metastatic sites or between metastatic sites [46]. Novel594

imaging technologies need to be developed in order to allow for frequent non-invasive595

monitoring of tumor burdens. Such new technologies could offer the opportunity to596

better understand tumors’ spatial structures.597

The model presented here is an abstract representation of what might be happening598

in actual tumors; it focuses on spatial variations, but not how the variations arise. For599

example, we did not consider different microenvironmental factors, such as oxygen600

levels, or growth factors. The model rests on the assumption that two key tumor cell601

populations—drug-sensitive and drug-resistant cell populations—compete. We also602

assumed a uniform drug distribution, but in reality, the diffusion of a drug through a603

tumor tissue could result in a spatially heterogeneous drug response [7]. The adaptive604

strategy for the therapy used in this study considers the initial tumor volume and605

one threshold for stopping treatment in order to determine the on–off cycles of the606

treatment. However, in several studies, the maintenance and reduction of the critical607

volume (not necessarily the initial volume) at different levels have been reported to be608

beneficial [20,21,25]. We chose our modeling approach as a starting point in order to609
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better understand how the spatial distributions of resistant cells and fibroblasts impact610

the outcomes of adaptive therapy.611

In future studies, a few other dimensions, such as sequential dosing, alternating dos-612

ing, or fibroblast inhibitors, could be incorporated into adaptive treatment strategies [47].613

Multidrug therapy was recently found to be promising by West and colleagues [23,24],614

but they did not consider the spatial aspects of tumors. Our simulations demonstrated615

that fibroblasts can cause a faster failure of adaptive therapy. In tumors, fibroblasts616

influence the growth of the tumor cells in a spectrum of ways [48–51]. For example,617

in breast cancer, fibroblasts increase the growth by secreting epidermal growth factor618

(EGF); furthermore, the transforming growth factor-β (TGF-β) produced by the tumor619

cells converts fibroblasts into myofibriblasts, which increase the secretion of EGF and620

thus cause even more rapid tumor progression [52]. In colon cancer, TGF-β1 was found621

to promote tumor growth by helping fibroblasts to influence tumor cells [53]. Therapies622

designed to target fibroblasts have been proven to be successful in cases such as liver623

cancer [54] and prostate cancer [55]. An adaptive therapy that combines these drugs624

may prolong survival with lower cumulative dose rates.625
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The following abbreviations are used in this manuscript:635

636

CT Continuous therapy
AT Adaptive therapy
VNHD Von Neumann neighborhood
TTP Time to tumor progression
TR50 Time for resistant cells to grow to 50% of the initial tumor volume
ET Emergence time
TG Time gain
PPr Progression probability
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Appendix A638

Appendix A.1639
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Figure A1. (a) The temporal evolution of the mean number of S-cell (S(t)) populations under
continuous therapy with initial clumped, random, and uniform cell configurations is shown in a
log plot, which shows very similar growth patterns among the different cases. (b)The average
numbers of S-cells in the VNHD of an R-cell in the 30 realizations are shown as boxplots.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.06.01.446525doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446525
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 of 28

A
T

C
T

A
T

C
T

A
T

Day 60

C
T

Day 165 Day 250 Day 550

Figure A2. Cell configurations for fibroblast-mediated growth. The above figures show the cell
configurations at different times under both AT (odd rows) and CT (even rows) for the fibroblast
configurations of NoF (rows 1 and 2), FC (rows 3 and 4), and FSq (rows 5 and 6). In row 4, we see
that most of the R-cells belong to the fibroblast region and, hence, experience a fibroblast-mediated
increase in growth rate until the local carrying capacity is reached. In row 6, initially, none of
the R-cells belong to the fibroblast region; hence, they grow at a normal growth rate. However,
with time, the S-cells become sparse due to the administration of drugs, and the clump grows
to reach the fibroblast region (days 165 and 250). During this time, the outer cells grow at faster
rate due to the fibroblast-mediated advantages and the lower competition. When the outer cells
expand past the fibroblast region (day 550) and the fibroblast region reaches its carrying capacity,
the fibroblast-mediated advantages do not have an impact because of the local carrying capacity.
Similarly, under AT, the R-cells mostly take advantage of the fibroblast-mediated growth in the FC
configuration. However, in the FSq configuration, only a few S-cells obtain similar advantages,
but no R-cells do. When the clump grows enough for the outer cells to reach the fibroblast region,
the R-cell population experiences fibroblast-mediated growth.
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Figure A3. Consequences of fibroblast-mediated growth for the time to progrssion and the time
gain of adaptive therapy compared to continuous therapy with a cell migration rate of m = 50%
of the cell growth rate. (a) The time evolution of the mean of the total cell population (N(t))
under CT in the 30 simulations is shown for the three types of fibroblast configurations—NoF,
FC, and FSq—with blue, red, and yellow lines, respectively. (b) Boxplot of the time gain under
CT in the 30 realizations, along with the progression probability (PPr) for the three types of
fibroblast configurations—NoF (blue), FC (red), and FSq (yellow). (c) The time evolution of the
average numbers of the total cell population (N(t)), R-cells (R(t)), and S-cell (S(t)) under AT in
the 30 simulations are shown with dashed, solid, and dotted lines for the three types of fibroblast
configurations—NoF, FC, and FSq—with blue, red, and yellow lines, respectively. (d) Boxplot of
the time gain under AT in the 30 realizations, along with the progression probability (PPr) for the
three types of fibroblast configurations—NoF (blue), FC (red), and FSq (yellow). (e) The blue, red,
and yellow boxplots show the time gain for the three types of fibroblast configurations—NoF, FC,
and , respectively. Though in the FSq configuration, a reduction in TG was observed under both
CT (in (b)) and AT (in (d)), no significant differences were observed in the TG.
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Figure A4. Complex dynamics of multiple metastases under AT and CT. The time evolution of the
total cell population in the four metastases is shown in the sub-figures. The first, second, and third
rows show the results for Cases II, III, and IV, respectively. The first and second columns show the
results for clumped and random initial cell configurations in the invisible metastasis, respectively.
In each sub-figure, the blue, red, yellow, and black colors show the total cell populations in
metastasis 1, metastasis 2, metastasis 3, and metastasis 4, respectively; the vertical cyan lines show
the emergence time (ET) of the invisible metastasis, and the red line shows the TTP. The solid and
dashed lines show the results under CT and AT, respectively.
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