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 In the evolutionary paths of plants, variations of the cis-regulatory elements (CREs) resulting 

in expression diversification have played a central role in driving the establishment of lineage-specific 

traits. However, it is difficult to predict expression behaviors from the CRE patterns to properly harness 

them, mainly because the biological processes are complex. In this study, we used cistrome datasets 

and explainable convolutional neural network (CNN) frameworks to predict genome-wide expression 

patterns in tomato fruits from the DNA sequences in gene regulatory regions. By fixing the effects of 

trans-elements using single cell-type spatiotemporal transcriptome data for the response variables, 

we developed a prediction model of a key expression pattern for the initiation of tomato fruit ripening. 

Feature visualization of the CNNs identified nucleotide residues critical to the objective expression 

pattern in each gene and their effects, were validated experimentally in ripening tomato fruits. This 

cis-decoding framework will not only contribute to understanding the regulatory networks derived from 

CREs and transcription factor interactions, but also provide a flexible way of designing alleles with 

optimized expression. 

 

MAIN TEXT 

Cis-regulatory elements (CREs) are noncoding short DNA sequences that are recognized by 

transcription factors (TFs, or trans-element). CREs play a central role in the regulation of gene 
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expression. In the diversification of plants, including whole-genome duplication events, the evolution 

of CREs has made more rapid and substantial contributions to lineage-specific acquisition of 

representative traits than that of trans-elements1-3. This role of CREs also has been reported in 

animals4-6. Variation of gene regulatory regions or CREs also have had major impacts on the evolution 

of crops7-9, and a next-generation breeding platform with cis-editing has been proposed to allow 

expression fine-tuning10-11. However, unlike trans-elements, which have been studied extensively, little 

is known about the functions of CREs to properly harness them. This is mainly because of the 

structural complexity of the biological processes involved. A TF can bind to multiple and plastic motifs 

(or CREs)12-13, which makes it difficult to define the uniform motif sequences. Furthermore, even if the 

effects of trans-elements can be fixed, the gene expression pattern will be determined by a flexible 

combination of multiple CREs14, depending on their positional relationships. 

Deep learning (DL) techniques that utilize convolutional neural networks (CNNs) have 

contributed to breakthroughs mainly in image diagnosis and natural language processing15. Unlike 

conventional machine learning, DL algorithms can automatically find flexible and complicated features. 

Although DL predictions had been a black box and difficult to explain, methods for feature visualization 

of DL predictions (often referred to as explainable AI) have been recently developed16-17. These 

methods have allowed the biological interpretation of DL predictions, thereby accelerating the 

application of DL techniques in plant biology18-19. DL methods also have been used to predict transcript 

regulatory regions20-22 and epigenetic marks, such as DNA methylation levels23, in genomic 

sequences. Importantly, the combination of explainable DL predications and high-throughput 

enrichment of TF-bound DNAs (e.g., by ChIP sequencing) has successfully produced high-quality 

predictions of CREs and enabled the identification of the nucleotide sequence motifs responsible for 

TF binding24. These findings suggested that, with a trained explainable DL model, DNA sequences 

could be encoded into CREs for each TF, and CREs could be decoded into the residues responsible 

for binding. 

Cistrome databases constructed using protein binding microarray, and ChIP or DAP 

sequencing data have comprehensively accumulated short sequences that contain CREs. These 

databases cover most TF families in eukaryotes12, including Arabidopsis13 and other plant species25. 

The affinities of TF DNA binding domains nested into the same TF family are highly conserved across 

species12,25, which enabled interspecific annotation of the CREs in some CRE databases25-26. On the 

basis of these findings, we aimed to develop a DL framework to predict gene expression patterns 

from their promoter sequences (Fig. 1), (i) by predicting CREs in new promoter sequences using the 

large cistrome datasets from model plants, (ii) by constructing models to predict expression patterns 

from CRE arrays, and (iii) by identifying the key nucleotide residues responsible to the predicted 

expression patterns. We exemplified differential expressions in ripening tomato fruit to fine-tuning the 

gene expression patterns related to maturation/softening patterns, which has been a key issue since 

the 1980s27-30. 
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From the Arabidopsis DAP-seq (cistrome) dataset for 529 TFs, which covers most plant TF 

families13, bilateral 15-bp nucleotide sequences were extracted from the TF-binding peak summit as 

the positive tiles, and same length (31-bp) nucleotide sequences were randomly extracted out of the 

peak area as the negative tiles (Fig. 1b). We used only the high-confidence DAP-seq data with fraction 

of reads in peaks >0.0513, covering 370 TFs (Supplementary Table S1). The 31-bp sequences were 

converted into a one-hot array with four A/T/G/C channels31. There have been many powerful tools 

for motif discovery, such as MEME32 or deep learning (DL)-based techniques24, while we adopted a 

simple in-house fully connected DL model (see Methods for details), to rapidly find the residues 

relevant to the prediction by feature visualizations, and to directly connect to the following in-house 

2nd DL model which predicts expression behaviors, as discussed later. Most of the 370 TFs datasets 

had high classification abilities as indicated by the ROC (Receiver Operating Characteristic) curves 

(Fig. 2a, area under the curve (AUC) values = 0.956 ± 0.0022 on average, Supplementary Table S2). 

Their classification abilities were mostly comparable to those with the popular MEME motif discovery 

tool32, in recall, precision, and F1 scores on the same train/test sample sets (Fig. 2b). These methods 

showed high correlations in their classification abilities among the TFs, suggesting their performances 

depended substantially on the characteristics of the TFs and/or the quality of the cistrome data 

(Supplementary Fig. S1, Table S3). Two distinct feature visualization methods, Guided Grad-CAM 

and Layer-wise relevance propagation (LRP), consistently detected not only representative motifs as 

relevant residues, which have been well characterized in previous studies and registered in the 

databases13, but also motif variants that showed significant peaks in the DAP-seq, which were quite 

similar to the representative ones but contained minor substitutions or gaps (Fig. 2c, representing 

ABF2 as a bZIP TF to bind to G-box: (C)ACGT(G), Supplementary Fig. S2 for three other TF families). 

An advantage of using DL models is their flexibility in accepting these small variations. We applied 

the 370 trained DL models to the 1-kb promoter regions of all the genes in the tomato genome (ITAG 

4.02, N = 34,066 with qualified promoter sequences) to predict the CREs for each TF. The predicted 

CRE transitions were converted into binary arrays with a 0.8 confidence threshold per 10–50-bp bin, 

and used to cluster the TFs with K-means++ (Supplementary Table S4), to avoid the multicollinearity 

problems in the assessments. With K=50, which is a hypothetically optimal cluster number 

(Supplementary Fig. S3), 42 clusters contained mostly a single TF family (these clusters were named 

with the predominant TFs); the other eight clusters contained a variety of different TFs (Fig. 2d, 

Supplementary Table S5). For the subsequent analyses, the CRE arrays of the 50 TFs that were 

closest to the center pattern in each cluster, were used as representatives for the 50 clusters. 

We used a high-resolution spatiotemporal expression map of tomato fruit33 and focused on 

the gene expression patterns only in the pericarp, from “mature green (MG)” to “breaker (BR)” stages, 

which is a key transition for ripening initiation. In a transcriptome with heterogeneous cell lines, such 

as flower or leaf, the output is a mixture of multiple expression patterns derived from the expression 

of heterogeneous trans-elements (Supplementary Fig. S4). Instead, the extracted transcriptomes 

derived from a single (or homogeneous) cell type can fix the effect from trans-elements, thereby 
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facilitating the construction of a precise model between CREs and genomic expression patterns (Fig. 

1a). We focused on genes that were significantly upregulated or downregulated from MG to BR 

(defined as BRup and BRdown, respectively) (Fig. 3a, FDR <0.1 with DESeq2 analysis, >1.7-fold 

changes, RPKM >1). Total 34,066 arrays for all the genes in the tomato genome with the 50 described 

TF channels (refer to Fig. 1b), were trained with in-house one-dimensional CNN models (see the 

Methods for the detailed setting) to classify the expression patterns into the binary categories. The 

models for classification of the BRup and BRdown achieved averaged ROC-AUC values of 0.702 and 

0.636, respectively (Fig. 3b, with four-fold cross-validation, Supplementary Fig. S5 for ROC and 

learning curves). Notably, these would be still far from perfect prediction, while the gene expression 

patterns in tomato fruit are affected not only by DNA sequence-based CRE variables but also by many 

kinds of epigenetic marks or chromatin folding34-36, even when the trans-elemental effects are fixed. 

Furthermore, indirect TFs binding, which depends on interactions between TFs, would have 

substantial effects on expression pattern13. Thus, future implementation of a multiple-inputs model 

that can consider also the epigenetic variables and TFs interactions may improve the performance. 

In the classification model for BRup, with the higher prediction performance than BRdown, the 

confidence distributions of the positive (or upregulated in BR) and the negative (control) genes were 

statistically separated (Fig. 3c, P <2.2e−16), whereas they were not significantly correlated to the 

expression levels (RPKM) or biases between MG and BR (Supplementary Fig. S6). The positive 

genes with the highest 10% confidence (N = 297), were significantly enriched with gene ontology 

(GO) terms involved in ethylene signals compared with those of all the positive genes (Fig. 3d). In 

climacteric fruit crops, including tomato, ethylene signals are thought to be the key pathway for 

ripening, suggesting that this model would be competent for designing the expression profile to tune 

the ripening process. 

To identify CREs relevant to the prediction of upregulation in BR, we applied a feature 

visualization method, Guided backpropagation, to the 297 high-confidence genes. Cumulative 

relevance levels were enriched in the channels recognized by NAC, C2H2, MADS-box, G2-like, and 

ERF TF clusters (Fig. 3e-f). This result was supported by the conventional multiple regression test 

and LAMP analysis (http://a-terada.github.io/lamp/), which can detect combinations of CREs that 

contribute to differential expression14 based on CRE numbers (Supplementary Table S8 and S9), 

although the CRE positions were not considered in these methods. Importantly, these high-relevance 

5 TF families included key genes for the initiation of tomato fruit ripening, such as NON-RIPENING37 

(NOR, NAC family), SlZFP238 (C2H2 family), RIPENING-INHIBITOR29 (RIN, MADS-box family), and 

some ETHYLENE RESPONSE FACTORs (ERFs)39-41. This suggested that our in silico feature 

prediction properly reflected the actual physiological relationships, and may be applicable to estimate 

trans-factors (or upstream regulatory networks) directly involved in the objective expression patterns. 

In exemplifying key ethylene-producing enzymatic genes, the aminocyclopropane-1-carboxylic acid 

synthase 2 gene (ACS2) from the ethylene signal-related genes with high confidence (Supplementary 

Table S10), relatively higher relevance was localized in the channels recognized by three TF clusters, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.06.01.446518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/


NAC (NAC Clusters 5, 7, 9), MADS-box (MADS Cluster), and a miscellaneous (misc Cluster 6) (Fig. 

3g). Tomato NOR TF, which potentially controls the upregulation of ACS2 in BR fruit42, was 

phylogenetically nested into the NAC Cluster 7 (Supplementary Fig. S7). NAC Cluster 7 had two high-

confidence binding peaks in ACS2, with positions that were consistent with the high relevance bins 

(Fig. 3h). Further feature visualization with Guided backpropagation in the first DL model, which 

predicted CREs from the DNA sequence tiles (see Fig. 1b), localized high relevance on a few 

nucleotide residues, consistent with the hypothetical NAC-binding sequences (Fig. 3i).  

To experimentally validate the prediction of the DL models, we artificially mutated the 

nucleotide residues relevant to the upregulation in BR (pACS2mut). The pACS2mut promoter 

sequences showed a substantial reduction in confidence for the two NAC Cluster 7 binding peaks 

(Fig. 4a), resulting in low confidence for upregulation in BR (Fig. 4b, from 69% for the intact pACS2 

to 17% for pACS2mut). A transient reporter assays in tomato fruits in MG, BR, and further ripened 

light red (LR) stages, with the luciferase reporter under the control of the pACS2 or pACS2mut (Fig. 

4c for the constructs), showed that the pACS2mut was significantly less upregulated than the intact 

pACS2 in a BR stage-specific manner (Fig. 4d, P =1.1e-5 for BR, 0.98 for MG and 0.64 for LR, 

Student's t-test). This result suggested that the targeted (or mutated) nucleotide residues would be 

critical for upregulation of ACS2 from MG to BR, which was consistent with the prediction of the DL 

model. To further test the activation ability of pACS2 and pACS2mut by NAC Cluster 7 TF, transient 

reporter assay in Nicotiana benthamiana leaf was conducted with luciferase reporters under the 

control of the pACS2 or pACS2mut and the effector of constitutively expressed tomato NOR (p35S-

NOR, see Fig. 4d). The mutations in pACS2 abolished activation by NOR (Fig. 4f, P =4.0e-6). The 

consistent results were obtained also with GFP reporters in N. benthamiana (Supplementary Fig. S8), 

and in previous reports focusing on NOR- and NOR-like TFs functions in ripening tomato42,43. Together, 

all the wet experimental results were consistent with the predictions from the DL models. 

In this study, ACS2 was exemplified, while other representative genes involving fruit ripening 

initiation, such as ACS4, Polygaracturonase (PG), and Pectin lyase (PL), also exhibited high 

confidence for the BRup prediction (Table S10), in which visualized responsible CREs are consistent 

with previous studies (Supplementary Fig. 9). This cis-decoding framework will not only be applicable 

to characterization of the regulatory networks derived from CREs and transcription factor interactions, 

but also to designing alleles with optimized expression (Fig. 5). Once a good model for predicting 

expressions from the CRE array is constructed, feature visualization steps would find nucleotide 

residues responsible for objective expression. Artificial mutation or modification of the responsible 

residues would efficiently invent a new expression pattern, which can be predicted using the two-step 

DL models in silico. If an optimized expression is predicted, the flexible genome-editing system with 

CRISPR-Cas944 can be used to design the allele for optic expression, as was partially shown in our 

modification of the ACS2 promoter. In crops such as rice, tomato, grape, and apple, natural variations 

in the CREs have had major impacts on the development of the novel traits and phenotypic diversity 

that are critical for their qualities7-9,45 (summarized in Li et al. 202011). Learned from their historical 
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blueprints, multi-aspect cis-engineering, which unlocks the current breeding limitations and finely 

tunes the traits sensitive to the expression balances, has been proposed in some crops11 and has 

been attempted based on random mutations with the CRISPR-Cas9 system10. Our cis-decoding 

methods with explainable DLs will contribute to the further development of these possibilities and 

accelerate their implementation. 
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METHODS 

Mining of cistrome datasets 

We downloaded the transcription factor (TF)-binding peaks in narrowPeak format (fraction of reads in 

peak ≥5%) from the Arabidopsis DAP-seq datasets for 529 TFs12 

(http://neomorph.salk.edu/dev/pages/shhuang/dap_web/pages/index.php). Bilateral 15-bp 

sequences from the peak summits (and their reverse complementary sequences) were extracted as 

the DNA tiles that included TF-binding sites (positive tiles for the DL classification). The 31-bp tiles 

out of the peak area were randomly extracted as the negative control tiles that included no TF-binding 

sites. The numbers of the positive/negative tiles applied to the DL classification are summarized in 

Supplementary Table S1. 

 

Mining of transcriptomic datasets of ripening tomato fruit 

We downloaded mRNA-seq datasets of pericarp at the five typical ripening stages (mature green 

(MG), breaker (BR), pink, light red, and ripening red) in fastq format from the spatiotemporal 

expression map of tomato fruit33. The mRNA reads were mapped to the tomato reference protein-

coding sequences (CDS) set (ITAG4.0, 

ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG4.0_release/) using BWA with the default 

settings. The mapped reads were counted to calculate the RPKM (reads per kilobase per million 

mapped reads). Differentially expressed genes between MG and BR were detected using DESeq2. 

Genes that were upregulated or downregulated from MG to BR (BRup and BRdown genes, 

respectively) with FDR <0.1 and RPKM >1.0 (Supplementary Table S6-7), were used for the DL 

classification analyses. 

 

Deep learning models for predicting the cis-regulatory elements (CREs) from cistrome 

datasets 

For each TF, we randomly selected 20% of the positive and negative 31-bp tiles from the cistrome 

datasets for the test dataset. We allocated 70% and 30% of the remaining tiles to the training and 

validation datasets, respectively. These two datasets were used in a fully-connection model that had 

three layers (see “FC-DNA_H5-ROC_ConfMatrix.py” in https://github.com/Takeshiddd/Genome-

wide-cis-decoding-for-expression-designing-in-tomato-with-cistrome-and-explainable-deep-lear) and 

was constructed with the sequential API model of Keras 2.2.4 (https://keras.io/). We set the class 

weight option (“class_weight” in Keras) with the bias in the sample numbers in the two classes. We 

uniformly set the epoch = 15, the learning rate = 0.001, and used the Adaptive Moment Estimation 

(Adam) optimizer among the 370 TFs datasets. The performances of the trained models were 

evaluated by calculating the precision, recall, F1-score, and ROC-AUC values in the test dataset. All 

of the procedures were run on Ubuntu 18.04 (DeepStation DK1000, 16 GB RAM, GPU=1). 

 

Construction of CRE arrays in the tomato genome 
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The constructed DL model was applied to the 1-kb promoter sequences from the transcription start 

sites of all the genes in the tomato genome (N = 34,066, ITAG4.0; 

ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG4.0_release/). We extracted sequence tiles 

from the promoter region with a sliding window (31-bp bin, and 2-bp step) and input them to the 

prediction model. The confidence for the prediction was binalized with the threshold = 0.8, then 

summarized in a 10–50-bp bin to make a one-dimensional binary CRE array per gene for each TF. 

The resultant CRE arrays on 2,000 randomly selected genes in the tomato genome (Supplementary 

Table S4) were clustered (or regularized) using a K-means++ clustering algorithm (kmeanspp in R) 

with K = 1–150. On the basis of the transition of the sum of squared errors of prediction 

(Supplementary Fig. S3), we adopted K = 50 as the putatively optimized cluster number. The CRE 

arrays (named by binding TF) with the highest Pearson correlation coefficient to the center array of 

each cluster, were used for the following expression pattern predictions. 

 

Deep learning models for predicting expression patterns from CRE arrays 

Total 34,066 CREs arrays were annotated with the binary categories in the gene expression pattern 

in the two criteria (BRup and BRdown). We made a four-fold cross-validation set from all the genes 

in the tomato genome, allocating 25% for testing and 75% for training/validating samples. For the 

training/validating samples, we randomly selected 70% for training and 30% for validating. These 

training/validating sets were applied to one-dimensional convolutional neural network (CNN) models 

(https://github.com/Takeshiddd/Genome-wide-cis-decoding-for-expression-designing-in-tomato-with-

cistrome-and-explainable-deep-lear), which were constructed with the sequential API model of Keras 

2.2.4 (https://keras.io/). We examined kernel size (3-20), layer depth (3-16 conv. layers), epoch 

numbers (5–200), learning rates (0.01–0.000001), optimizers (NAdam, Adam, RMSProp, and SGD), 

and decay, to optimize the performance in each classification task for at least 40 times. The optimized 

epoch numbers were defined as the point where additional 10 epochs made no significant reductions 

in the validation loss. The class weight option (“class_weight” in Keras) was set with the bias in the 

sample numbers in the two classes. The performances of the trained models were evaluated with the 

ROC-AUC values in the testing samples. 

 

Multiple regression and LAMP analyses 

Quantitative (or TF-biding site numbers) or binary (or presence/absence of TF-biding sites, with 

various thresholds) CREs arrays were annotated with the binary categories in the gene expression 

pattern. Multiple regression test was performed with generalized linear model in R. Limitless-Arity 

Multiple-testing Procedure (LAMP)14 analysis, which is a code for listing up significant combinations 

of the TFs without an arity limit, was performed to according to the developers instruction  (http://a-

terada.github.io/lamp/), with Fisher’s exact test. 

 

Feature visualization in deep learning predictions 
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An implementation of the feature visualization methods using the iNNvestigate library47 has been 

deposited at https://github.com/uchidalab/softmaxgradient-lrp and 

https://github.com/Takeshiddd/Genome-wide-cis-decoding-for-expression-designing-in-tomato-with-

cistrome-and-explainable-deep-lear. Guided Grad-CAM17 and LRP and its variants48-49 were 

implemented to find the important nucleotide residues in CREs. Guided backpropagation50 was 

implemented to reveal the CRE bins relevant to the prediction of expression patterns. 

 

Vector constructions 

To construct the reporter vectors for the transient reporter assay, the intact 1-kb promoter region of 

the aminocyclopropane-1-carboxylic acid synthase 2 gene (ACS2) in the tomato genome 

(Solyc01g095080) was amplified by PCR from genomic DNA of cv. Micro-Tom using PrimeSTAR GXL 

DNA Polymerase (TaKaRa) and two primer sets, SlACS2-prom1k-pPLV-F/R or SlACS2-prom1k-

TOPO-F/R (Supplementary Table S11). The point-mutated ACS2mut allele was artificially synthesized 

by Eurofins Genomics (Tokyo, Japan), then amplified with the same primer sets. The amplicons from 

SlACS2-prom1k-pPLV-F/R were cloned into pPLV451 using an In-Fusion HD Cloning kit (Clontech), to 

construct pACS2-GFPx3 and pACS2mut-GFPx3, where the triplicated green fluorescent proteins 

(GFPs) were under the control of the ACS2 or ACS2mut promoters, respectively (Supplementary 

Table S11). The amplicons from SlACS2-prom1k-TOPO-F/R were cloned into the pENTR/D-TOPO 

cloning vector (Thermo Fisher Scientific) and then cloned into pGWB3552 using Gateway LR clonase 

II (Thermo Fisher Scientific), to construct pACS2-Luc and pACS2mut-Luc, where the firefly luciferase 

was under the control of the ACS2 or ACS2mut promoters, respectively. 

To construct the effector and reference vectors, total RNA was extracted from a ripening fruit pericarp 

in cv. Eco Sweet, with PureLink Plant RNA Reagent (Thermo Fisher Scientific). The CDS of the NON-

RIPENING gene (NOR, Solyc10g006880) was amplified from the synthesized cDNA by PCR using 

PrimeSTAR GXL DNA Polymerase (TaKaRa) and the primer set SlNOR-pPLV26-F/R (Supplementary 

Table S11). The Renilla luciferase CDS was amplified from a pRL-null vector (Promega) by PCR using 

PrimeSTAR GXL DNA Polymerase (TaKaRa) and the primer set RenLuc-pPLV26-F/R 

(Supplementary Table S11). The amplicons were cloned into pPLV2650 using an In-Fusion HD Cloning 

kit (Clontech) to design p35S-NOR and p35S-RenLuc, where the NOR and Renilla luciferase CDSs 

were under the control of CaMV35S promoters. 

 

Transient reporter assay 

To assess the activation ability of the ACS2 and ACS2mut promoters in ripening tomato pericarp, we 

conducted transient dual-luciferase assays with pACS2-Luc, pACS2mut-Luc, pMock-Luc and p35S-

RenLuc, which were introduced into A. tumefaciens strain EHA105 using the helper vector pSOUP. 

The transformed agrobacterium was cultured at 28ºC for 32 hours, then suspended in Murashige and 

Skoog (MS) medium (pH 5.3) that contained 20 μg/mL acetosyringone. The concentration was 

adjusted to OD600 = 2.0. Agrobacterium suspension for the negative control (pMock-Luc + p35S-
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RenLuc), the positive case (pACS2-Luc + p35S-RenLuc), and the mutated case (pACS2mut-Luc + 

p35S-RenLuc), were inoculated directly into tomato (cv. Eco Sweet) fruit pericarp at the MG, BR and 

LR stages (6, 12, and 5 biological replicates, respectively) with a 1-ml syringe. Two days after infection, 

a 10 mm × 10 mm piece of tissue surrounding the inoculation point was applied to the Dual-Luciferase 

Reporter Assay System (Promega), to detect the firefly luciferase activity (or activation of the ACS2 

and ACS2mut promoters), with standardization of the over-expressed Renilla luciferase activity. The 

luciferase luminescence was detected using a ChemiDoc Imaging system (BioRad) and analyzed 

using Image Lab (BioRad). 

To assess the activation ability of the ACS2 and ACS2mut promoters by NOR, we conducted transient 

reporter assays in Nicotiana benthamiana leaves with GFP or luciferase as the reporters. For the 

assay with the GFP reporter, p35S-NOR, pACS2-GFPx3, and pACS2mut-GFPx3 were introduced 

into Agrobacterium tumefaciens strain EHA105, as described, and then transiently introduced to the 

fourth and fifth leaves of N. benthamiana plants carrying 8–10 leaves by agrobacterium infiltration. 

Agrobacterium suspension for the control with no effector (p35S-Mock + pACS2-GFPx3), the positive 

case (p35S-NOR + pACS2-GFPx3), or the mutated case (p35S-NOR + pACS2mut-GFPx3) were 

inoculated into the same leaves, with 16 biological replicates. Their relative GFP activities on 

microscope images were compared under fixed exposure (383 ms) with excitation by the filtered 470–

495 nm laser line. For the dual luciferase assay, p35S-NOR, pACS2-Luc, pACS2mut-Luc, and p35S-

RenLuc were introduced into A. tumefaciens strain EHA105. The transient transformation was 

conducted as described, with 18 biological replicates. The N. benthamiana leaves were harvested 2-

days after infection and then applied to a Dual-Luciferase Reporter Assay System (Promega) to detect 

the activation of the ACS2 and ACS2mut promoters by NOR, with standardization of the over-

expressed Renilla luciferase activity. 

 

DATA AVAILABILITY 
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FIGURE LEGENDS 

Figure 1 Prediction of gene expression patterns in a genome from cis-regulatory elements 

(CREs). 

a. Schematic model for the prediction of the expression patterns among all the genes in a genome. 

In a homogeneous cell line, the effects from trans-elements can be fixed among the genes. Then, 

expression patterns can be explained from flexible combinations of CREs (and potential epigenetic 

marks). b. Construction of the prediction model with two-step deep learning (DL) frameworks. Large 

Arabidopsis cistrome datasets13, which provide genome-wide transcription factor (TF)-binding peaks, 

were used in the first step (1st deep learning) to predict CRE patterns for each TF. The resultant model 

was applied to the tomato genome sequences to predict CREs in the promoters of all the genes, to 

derive CRE arrays. For each gene, the CRE array was annotated with an expression pattern that was 

applied to the second step (2nd deep learning) and also used for the multiple regression and LAMP 

analyses14. c. In the 2nd deep learning step, the CRE arrays were trained with a one-dimensional 

convolutional neural network (1d-CNN) with the clustered TF channels to make a binary classification. 

With backpropagation of the CNN (explainable DL), the CREs or other nucleotide residues relevant 

to the objective expression class were visualized. 

 

Figure 2 High-confidence prediction of variable cis-regulatory elements (CREs) and key 

nucleotide residues by deep learning (DL) 

a. Receiver Operating Characteristic (ROC) curves for the binary classification of transcription factor 

(TF)-binding and control sequences, for 370 TFs. The area under the curve (AUC) values ranged 

from 0.708 to 0.998 (average of 0.956). b. Prediction performance of the fully-connected deep 

learning model (FC-DL) and MEME (as used in O’Malley et al. 201613). c. Nucleotide residues relevant 

to the prediction of CREs by the DL model, determined using two distinct feature visualization methods, 

Guided GradCAM and LRP. Relevance levels in the putative CREs (in the pink dotted squares) are 

reflected in the height of the nucleotide logos. ABF2-binding sequence tiles with high-confidence 

(>0.95) for the prediction are represented. The prediction model properly highlighted the residues 

consistent with the physiologically validated representative motif (C)ACGT(G), which is a bZIP-

binding G-box core motif46. Furthermore, the same model detected motif variants, including minor 

gaps or substitutions. d. Correlation matrix for the CREs of the 370 TFs, with clustering by K-means++ 

(K=50). Each cluster was constituted mostly of TFs from the same family (see Supplementary Table 

S5 for detail). 

 

Figure 3 Prediction of the gene expression patterns critical to tomato fruit ripening initiation 

by deep learning, and visualization of their key cis-elements. 

a. MA plot for the genes expressed in the mature green (MG) and breaker (BR) stages of ripening 

tomato fruit. Genes significantly upregulated in BR (N = 2,967, defined as “BRup”) and downregulated 

in BR (N =3,098, defined as “BRdown”) are shown in orange and deep green, respectively. b. 
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Performances (ROC-AUC values) for binary classification of the BRup or BRdown against the control 

category. Averaged ROC-AUC values were calculated from four-fold cross-validations. Bars indicate 

standard errors (SE). c. Confidence distribution in BRup prediction. Actual BRup genes exhibited 

substantially higher confidences than in the control genes (P < 2.2e-16). d. Gene-ontology (GO) terms 

significantly enriched in the genes with the highest 10% confidence in the BRup category. e–f. 

Predicted cumulative relevance levels for the genes with the highest 10% confidence in the BRup 

category (e) and per position in 50-bp bins (f). Of the 50 channels recognized by each TF cluster, the 

seven with high relative relevance levels (>0.7) are highlighted. The center TF for each cluster is in 

parenthesis. g–i. Identification of the CREs responsible for the BRup in the promoter region of the 

ACS2. With guided backpropagation on the model for BRup prediction, five channels showed high 

relevance levels (g). NAC Clst 7, the channel with the highest cumulative relevance level, showed 

two major relevant bins that corresponded to the high-confidence TF-binding regions, as indicated by 

the asterisks (* and **) (h). Further guided backpropagation on the model for CRE prediction from the 

promoter sequences tiles (the 1st deep learning step, see Fig. 1b), the nucleotide residues responsible 

for the two TF-binding regions were detected (i). The most relevant residues were localized on the 

hypothetical NAC-binding motifs indicated by dotted squares. 

 

Figure 4 Experimental validations for the cis-decoding by deep learning 

a. Point-mutations were artificially made on the residues with high relevance to the DL prediction (see 

Fig. 3i) in the 1-kb promoter of ACS2 (pACS2, in red), deriving the mutated allele named pACS2mut 

(in blue). b-c. pACS2mut showed a substantial reduction in the confidence for the NAC Clst 7 binding 

prediction (b), and for the BRup prediction (Conf. = 69% for pACS2, and 18% for pACS2mut) (c). d. 

Constructs for transient reporter assays. e. Dual-luciferase transient reporter assay in ripening tomato 

fruits. In the mature green (MG) stage, pACS2 and pACS2mut showed no significant differences (P 

= 0.98), and only slight activation compared with that of the mock reporter. In the breaker (BR) stage, 

pACS2 showed stronger activation than in the MG stage, whereas ACS2mut was substantially less 

activated (P =1.1e-5, Student’s t-test). In the light red (LR) stage, both pACS2 and pACS2mut were 

activated in comparison to the mock, while they showed no statistical differences (P =0.64). f. 

Transient reporter assay with Nicotiana benthamiana for activation of pACS2 and pACS2mut alleles 

by a tomato ripening key factor, NOR, nested in the NAC Clst 7. Constitutive expression of tomato 

NOR could induce pACS2 activation, while pACS2mut was not substantially activated (P =4.0e-6, 

Student’s t-test). 

 

Figure 5 Model for expression design based on explainable deep learning (DL) 

If the objective expression patterns can be well predicted from cis-regulatory element (CRE) arrays, 

two-step feature visualization in the prediction models (or the 2nd and then 1st DL models, see Fig. 1b) 

will allow identification of the nucleotide-scale factor(s) responsible for the expression pattern. 

Randomization of the responsible residues can derive potentially unlimited variations for the objective 
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expression pattern, which can be easily predicted using the 1st and 2nd DL models. Once a desirable 

expression pattern is predicted, cis-editing with the CRISPR-Cas system may realize the design of 

the optimized allele. 
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Figure 1 
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Figure 2 
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Figure 3 
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