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In the evolutionary paths of plants, variations of the cis-regulatory elements (CREs) resulting
in expression diversification have played a central role in driving the establishment of lineage-specific
traits. However, it is difficult to predict expression behaviors from the CRE patterns to properly harness
them, mainly because the biological processes are complex. In this study, we used cistrome datasets
and explainable convolutional neural network (CNN) frameworks to predict genome-wide expression
patterns in tomato fruits from the DNA sequences in gene regulatory regions. By fixing the effects of
trans-elements using single cell-type spatiotemporal transcriptome data for the response variables,
we developed a prediction model of a key expression pattern for the initiation of tomato fruit ripening.
Feature visualization of the CNNs identified nucleotide residues critical to the objective expression
pattern in each gene and their effects, were validated experimentally in ripening tomato fruits. This
cis-decoding framework will not only contribute to understanding the regulatory networks derived from
CREs and transcription factor interactions, but also provide a flexible way of designing alleles with
optimized expression.

MAIN TEXT
Cis-regulatory elements (CREs) are noncoding short DNA sequences that are recognized by
transcription factors (TFs, or frans-element). CREs play a central role in the regulation of gene
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expression. In the diversification of plants, including whole-genome duplication events, the evolution
of CREs has made more rapid and substantial contributions to lineage-specific acquisition of
representative traits than that of trans-elements’3. This role of CREs also has been reported in
animals**®. Variation of gene regulatory regions or CREs also have had major impacts on the evolution
of crops’®, and a next-generation breeding platform with cis-editing has been proposed to allow
expression fine-tuning'®"!. However, unlike trans-elements, which have been studied extensively, little
is known about the functions of CREs to properly harness them. This is mainly because of the
structural complexity of the biological processes involved. ATF can bind to multiple and plastic motifs
(or CREs)'%"3, which makes it difficult to define the uniform motif sequences. Furthermore, even if the
effects of trans-elements can be fixed, the gene expression pattern will be determined by a flexible
combination of multiple CREs', depending on their positional relationships.

Deep learning (DL) techniques that utilize convolutional neural networks (CNNs) have
contributed to breakthroughs mainly in image diagnosis and natural language processing'. Unlike
conventional machine learning, DL algorithms can automatically find flexible and complicated features.
Although DL predictions had been a black box and difficult to explain, methods for feature visualization
of DL predictions (often referred to as explainable Al) have been recently developed'®'”. These
methods have allowed the biological interpretation of DL predictions, thereby accelerating the
application of DL techniques in plant biology'®'°. DL methods also have been used to predict transcript
regulatory regions?®?2 and epigenetic marks, such as DNA methylation levels?®, in genomic
sequences. Importantly, the combination of explainable DL predications and high-throughput
enrichment of TF-bound DNAs (e.g., by ChIP sequencing) has successfully produced high-quality
predictions of CREs and enabled the identification of the nucleotide sequence motifs responsible for
TF binding?*. These findings suggested that, with a trained explainable DL model, DNA sequences
could be encoded into CREs for each TF, and CREs could be decoded into the residues responsible
for binding.

Cistrome databases constructed using protein binding microarray, and ChIP or DAP
sequencing data have comprehensively accumulated short sequences that contain CREs. These
databases cover most TF families in eukaryotes', including Arabidopsis'® and other plant species?.
The affinities of TF DNA binding domains nested into the same TF family are highly conserved across
species'®?5, which enabled interspecific annotation of the CREs in some CRE databases?®?¢. On the
basis of these findings, we aimed to develop a DL framework to predict gene expression patterns
from their promoter sequences (Fig. 1), (i) by predicting CREs in new promoter sequences using the
large cistrome datasets from model plants, (ii) by constructing models to predict expression patterns
from CRE arrays, and (iii) by identifying the key nucleotide residues responsible to the predicted
expression patterns. We exemplified differential expressions in ripening tomato fruit to fine-tuning the
gene expression patterns related to maturation/softening patterns, which has been a key issue since
the 1980s27-30
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From the Arabidopsis DAP-seq (cistrome) dataset for 529 TFs, which covers most plant TF
families™®, bilateral 15-bp nucleotide sequences were extracted from the TF-binding peak summit as
the positive tiles, and same length (31-bp) nucleotide sequences were randomly extracted out of the
peak area as the negative tiles (Fig. 1b). We used only the high-confidence DAP-seq data with fraction
of reads in peaks >0.05", covering 370 TFs (Supplementary Table S1). The 31-bp sequences were
converted into a one-hot array with four A/T/G/C channels®'. There have been many powerful tools
for motif discovery, such as MEME?? or deep learning (DL)-based techniques?*, while we adopted a
simple in-house fully connected DL model (see Methods for details), to rapidly find the residues
relevant to the prediction by feature visualizations, and to directly connect to the following in-house
2" DL model which predicts expression behaviors, as discussed later. Most of the 370 TFs datasets
had high classification abilities as indicated by the ROC (Receiver Operating Characteristic) curves
(Fig. 2a, area under the curve (AUC) values = 0.956 + 0.0022 on average, Supplementary Table S2).
Their classification abilities were mostly comparable to those with the popular MEME motif discovery
tool®?, in recall, precision, and F1 scores on the same train/test sample sets (Fig. 2b). These methods
showed high correlations in their classification abilities among the TFs, suggesting their performances
depended substantially on the characteristics of the TFs and/or the quality of the cistrome data
(Supplementary Fig. S1, Table S3). Two distinct feature visualization methods, Guided Grad-CAM
and Layer-wise relevance propagation (LRP), consistently detected not only representative motifs as
relevant residues, which have been well characterized in previous studies and registered in the
databases'®, but also motif variants that showed significant peaks in the DAP-seq, which were quite
similar to the representative ones but contained minor substitutions or gaps (Fig. 2c, representing
ABF2 as a bZIP TF to bind to G-box: (C)ACGT(G), Supplementary Fig. S2 for three other TF families).
An advantage of using DL models is their flexibility in accepting these small variations. We applied
the 370 trained DL models to the 1-kb promoter regions of all the genes in the tomato genome (ITAG
4.0%, N = 34,066 with qualified promoter sequences) to predict the CREs for each TF. The predicted
CRE transitions were converted into binary arrays with a 0.8 confidence threshold per 10-50-bp bin,
and used to cluster the TFs with K-means** (Supplementary Table S4), to avoid the multicollinearity
problems in the assessments. With K=50, which is a hypothetically optimal cluster number
(Supplementary Fig. S3), 42 clusters contained mostly a single TF family (these clusters were named
with the predominant TFs); the other eight clusters contained a variety of different TFs (Fig. 2d,
Supplementary Table S5). For the subsequent analyses, the CRE arrays of the 50 TFs that were
closest to the center pattern in each cluster, were used as representatives for the 50 clusters.

We used a high-resolution spatiotemporal expression map of tomato fruit®>® and focused on
the gene expression patterns only in the pericarp, from “mature green (MG)” to “breaker (BR)” stages,
which is a key transition for ripening initiation. In a transcriptome with heterogeneous cell lines, such
as flower or leaf, the output is a mixture of multiple expression patterns derived from the expression
of heterogeneous frans-elements (Supplementary Fig. S4). Instead, the extracted transcriptomes
derived from a single (or homogeneous) cell type can fix the effect from trans-elements, thereby
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facilitating the construction of a precise model between CREs and genomic expression patterns (Fig.
1a). We focused on genes that were significantly upregulated or downregulated from MG to BR
(defined as BRup and BRdown, respectively) (Fig. 3a, FDR <0.1 with DESeq2 analysis, >1.7-fold
changes, RPKM >1). Total 34,066 arrays for all the genes in the tomato genome with the 50 described
TF channels (refer to Fig. 1b), were trained with in-house one-dimensional CNN models (see the
Methods for the detailed setting) to classify the expression patterns into the binary categories. The
models for classification of the BRup and BRdown achieved averaged ROC-AUC values of 0.702 and
0.636, respectively (Fig. 3b, with four-fold cross-validation, Supplementary Fig. S5 for ROC and
learning curves). Notably, these would be still far from perfect prediction, while the gene expression
patterns in tomato fruit are affected not only by DNA sequence-based CRE variables but also by many
kinds of epigenetic marks or chromatin folding®+36, even when the trans-elemental effects are fixed.
Furthermore, indirect TFs binding, which depends on interactions between TFs, would have
substantial effects on expression pattern'®. Thus, future implementation of a multiple-inputs model
that can consider also the epigenetic variables and TFs interactions may improve the performance.
In the classification model for BRup, with the higher prediction performance than BRdown, the
confidence distributions of the positive (or upregulated in BR) and the negative (control) genes were
statistically separated (Fig. 3c, P <2.2e-16), whereas they were not significantly correlated to the
expression levels (RPKM) or biases between MG and BR (Supplementary Fig. S6). The positive
genes with the highest 10% confidence (N = 297), were significantly enriched with gene ontology
(GO) terms involved in ethylene signals compared with those of all the positive genes (Fig. 3d). In
climacteric fruit crops, including tomato, ethylene signals are thought to be the key pathway for
ripening, suggesting that this model would be competent for designing the expression profile to tune
the ripening process.

To identify CREs relevant to the prediction of upregulation in BR, we applied a feature
visualization method, Guided backpropagation, to the 297 high-confidence genes. Cumulative
relevance levels were enriched in the channels recognized by NAC, C2H2, MADS-box, G2-like, and
ERF TF clusters (Fig. 3e-f). This result was supported by the conventional multiple regression test
and LAMP analysis (http://a-terada.github.io/lamp/), which can detect combinations of CREs that
contribute to differential expression’™ based on CRE numbers (Supplementary Table S8 and S9),
although the CRE positions were not considered in these methods. Importantly, these high-relevance
5 TF families included key genes for the initiation of tomato fruit ripening, such as NON-RIPENING®"
(NOR, NAC family), SIZFP2% (C2H2 family), RIPENING-INHIBITOR? (RIN, MADS-box family), and
some ETHYLENE RESPONSE FACTORs (ERFs)***!. This suggested that our in silico feature
prediction properly reflected the actual physiological relationships, and may be applicable to estimate
trans-factors (or upstream regulatory networks) directly involved in the objective expression patterns.
In exemplifying key ethylene-producing enzymatic genes, the aminocyclopropane-1-carboxylic acid
synthase 2 gene (ACS2) from the ethylene signal-related genes with high confidence (Supplementary
Table S10), relatively higher relevance was localized in the channels recognized by three TF clusters,
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NAC (NAC Clusters 5, 7, 9), MADS-box (MADS Cluster), and a miscellaneous (misc Cluster 6) (Fig.
3g). Tomato NOR TF, which potentially controls the upregulation of ACS2 in BR fruit*?, was
phylogenetically nested into the NAC Cluster 7 (Supplementary Fig. S7). NAC Cluster 7 had two high-
confidence binding peaks in ACS2, with positions that were consistent with the high relevance bins
(Fig. 3h). Further feature visualization with Guided backpropagation in the first DL model, which
predicted CREs from the DNA sequence tiles (see Fig. 1b), localized high relevance on a few
nucleotide residues, consistent with the hypothetical NAC-binding sequences (Fig. 3i).

To experimentally validate the prediction of the DL models, we artificially mutated the
nucleotide residues relevant to the upregulation in BR (pACS2mut). The pACS2mut promoter
sequences showed a substantial reduction in confidence for the two NAC Cluster 7 binding peaks
(Fig. 4a), resulting in low confidence for upregulation in BR (Fig. 4b, from 69% for the intact pACS2
to 17% for pACS2mut). A transient reporter assays in tomato fruits in MG, BR, and further ripened
light red (LR) stages, with the luciferase reporter under the control of the pACS2 or pACS2mut (Fig.
4c¢ for the constructs), showed that the pACS2mut was significantly less upregulated than the intact
pPACS2 in a BR stage-specific manner (Fig. 4d, P =1.1e-5 for BR, 0.98 for MG and 0.64 for LR,
Student's t-test). This result suggested that the targeted (or mutated) nucleotide residues would be
critical for upregulation of ACS2 from MG to BR, which was consistent with the prediction of the DL
model. To further test the activation ability of pACS2 and pACS2mut by NAC Cluster 7 TF, transient
reporter assay in Nicotiana benthamiana leaf was conducted with luciferase reporters under the
control of the pACS2 or pACS2mut and the effector of constitutively expressed tomato NOR (p35S-
NOR, see Fig. 4d). The mutations in pACS2 abolished activation by NOR (Fig. 4f, P =4.0e-6). The
consistent results were obtained also with GFP reporters in N. benthamiana (Supplementary Fig. S8),
and in previous reports focusing on NOR- and NOR-like TFs functions in ripening tomato*?43. Together,
all the wet experimental results were consistent with the predictions from the DL models.

In this study, ACS2 was exemplified, while other representative genes involving fruit ripening
initiation, such as ACS4, Polygaracturonase (PG), and Pectin lyase (PL), also exhibited high
confidence for the BRup prediction (Table S10), in which visualized responsible CREs are consistent
with previous studies (Supplementary Fig. 9). This cis-decoding framework will not only be applicable
to characterization of the regulatory networks derived from CREs and transcription factor interactions,
but also to designing alleles with optimized expression (Fig. 5). Once a good model for predicting
expressions from the CRE array is constructed, feature visualization steps would find nucleotide
residues responsible for objective expression. Artificial mutation or modification of the responsible
residues would efficiently invent a new expression pattern, which can be predicted using the two-step
DL models in silico. If an optimized expression is predicted, the flexible genome-editing system with
CRISPR-Cas9* can be used to design the allele for optic expression, as was partially shown in our
modification of the ACS2 promoter. In crops such as rice, tomato, grape, and apple, natural variations
in the CREs have had major impacts on the development of the novel traits and phenotypic diversity
that are critical for their qualities”®45 (summarized in Li et al. 2020""). Learned from their historical
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blueprints, multi-aspect cis-engineering, which unlocks the current breeding limitations and finely
tunes the traits sensitive to the expression balances, has been proposed in some crops' and has
been attempted based on random mutations with the CRISPR-Cas9 system™. Our cis-decoding
methods with explainable DLs will contribute to the further development of these possibilities and

accelerate their implementation.
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METHODS

Mining of cistrome datasets

We downloaded the transcription factor (TF)-binding peaks in narrowPeak format (fraction of reads in
peak  >5%)  from the  Arabidopsis DAP-seq datasets for 529  TFs'
(http://neomorph.salk.edu/dev/pages/shhuang/dap_web/pages/index.php). Bilateral 15-bp
sequences from the peak summits (and their reverse complementary sequences) were extracted as
the DNA tiles that included TF-binding sites (positive tiles for the DL classification). The 31-bp tiles
out of the peak area were randomly extracted as the negative control tiles that included no TF-binding
sites. The numbers of the positive/negative tiles applied to the DL classification are summarized in
Supplementary Table S1.

Mining of transcriptomic datasets of ripening tomato fruit

We downloaded mRNA-seq datasets of pericarp at the five typical ripening stages (mature green
(MG), breaker (BR), pink, light red, and ripening red) in fastq format from the spatiotemporal
expression map of tomato fruit®®. The mRNA reads were mapped to the tomato reference protein-
coding sequences (CDS) set (ITAG4.0,
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG4.0_release/) using BWA with the default
settings. The mapped reads were counted to calculate the RPKM (reads per kilobase per million
mapped reads). Differentially expressed genes between MG and BR were detected using DESeq?2.
Genes that were upregulated or downregulated from MG to BR (BRup and BRdown genes,
respectively) with FDR <0.1 and RPKM >1.0 (Supplementary Table S6-7), were used for the DL
classification analyses.

Deep learning models for predicting the cis-regulatory elements (CREs) from cistrome
datasets

For each TF, we randomly selected 20% of the positive and negative 31-bp tiles from the cistrome
datasets for the test dataset. We allocated 70% and 30% of the remaining tiles to the training and
validation datasets, respectively. These two datasets were used in a fully-connection model that had
three layers (see “FC-DNA_H5-ROC_ConfMatrix.py” in https://github.com/Takeshiddd/Genome-
wide-cis-decoding-for-expression-designing-in-tomato-with-cistrome-and-explainable-deep-lear) and
was constructed with the sequential APl model of Keras 2.2.4 (https://keras.io/). We set the class
weight option (“class_weight” in Keras) with the bias in the sample numbers in the two classes. We
uniformly set the epoch = 15, the learning rate = 0.001, and used the Adaptive Moment Estimation
(Adam) optimizer among the 370 TFs datasets. The performances of the trained models were
evaluated by calculating the precision, recall, F1-score, and ROC-AUC values in the test dataset. All
of the procedures were run on Ubuntu 18.04 (DeepStation DK1000, 16 GB RAM, GPU=1).

Construction of CRE arrays in the tomato genome
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The constructed DL model was applied to the 1-kb promoter sequences from the transcription start
sites of all the genes in the tomato genome (N = 34,066, ITAG4.0;
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG4.0_release/). We extracted sequence tiles
from the promoter region with a sliding window (31-bp bin, and 2-bp step) and input them to the
prediction model. The confidence for the prediction was binalized with the threshold = 0.8, then
summarized in a 10-50-bp bin to make a one-dimensional binary CRE array per gene for each TF.
The resultant CRE arrays on 2,000 randomly selected genes in the tomato genome (Supplementary
Table S4) were clustered (or regularized) using a K-means™ clustering algorithm (kmeanspp in R)
with K = 1-150. On the basis of the transition of the sum of squared errors of prediction
(Supplementary Fig. S3), we adopted K = 50 as the putatively optimized cluster number. The CRE
arrays (named by binding TF) with the highest Pearson correlation coefficient to the center array of
each cluster, were used for the following expression pattern predictions.

Deep learning models for predicting expression patterns from CRE arrays

Total 34,066 CREs arrays were annotated with the binary categories in the gene expression pattern
in the two criteria (BRup and BRdown). We made a four-fold cross-validation set from all the genes
in the tomato genome, allocating 25% for testing and 75% for training/validating samples. For the
training/validating samples, we randomly selected 70% for training and 30% for validating. These
training/validating sets were applied to one-dimensional convolutional neural network (CNN) models
(https://github.com/Takeshiddd/Genome-wide-cis-decoding-for-expression-designing-in-tomato-with-
cistrome-and-explainable-deep-lear), which were constructed with the sequential APl model of Keras
2.2.4 (https://keras.iof). We examined kernel size (3-20), layer depth (3-16 conv. layers), epoch
numbers (5-200), learning rates (0.01-0.000001), optimizers (NAdam, Adam, RMSProp, and SGD),
and decay, to optimize the performance in each classification task for at least 40 times. The optimized
epoch numbers were defined as the point where additional 10 epochs made no significant reductions
in the validation loss. The class weight option (“class_weight” in Keras) was set with the bias in the
sample numbers in the two classes. The performances of the trained models were evaluated with the
ROC-AUC values in the testing samples.

Multiple regression and LAMP analyses

Quantitative (or TF-biding site numbers) or binary (or presence/absence of TF-biding sites, with
various thresholds) CREs arrays were annotated with the binary categories in the gene expression
pattern. Multiple regression test was performed with generalized linear model in R. Limitless-Arity
Multiple-testing Procedure (LAMP)'* analysis, which is a code for listing up significant combinations
of the TFs without an arity limit, was performed to according to the developers instruction (http:/a-
terada.github.io/lamp/), with Fisher’s exact test.

Feature visualization in deep learning predictions
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An implementation of the feature visualization methods using the iNNvestigate library*” has been
deposited at https://github.com/uchidalab/softmaxgradient-Irp and
https://github.com/Takeshiddd/Genome-wide-cis-decoding-for-expression-designing-in-tomato-with-
cistrome-and-explainable-deep-lear. Guided Grad-CAM'" and LRP and its variants*®*° were
implemented to find the important nucleotide residues in CREs. Guided backpropagation® was
implemented to reveal the CRE bins relevant to the prediction of expression patterns.

Vector constructions

To construct the reporter vectors for the transient reporter assay, the intact 1-kb promoter region of
the aminocyclopropane-1-carboxylic acid synthase 2 gene (ACS2) in the tomato genome
(Solyc01g095080) was amplified by PCR from genomic DNA of cv. Micro-Tom using PrimeSTAR GXL
DNA Polymerase (TaKaRa) and two primer sets, SIACS2-prom1k-pPLV-F/R or SIACS2-prom1k-
TOPO-F/R (Supplementary Table S11). The point-mutated ACS2mut allele was artificially synthesized
by Eurofins Genomics (Tokyo, Japan), then amplified with the same primer sets. The amplicons from
SIACS2-prom1k-pPLV-F/R were cloned into pPLV4°" using an In-Fusion HD Cloning kit (Clontech), to
construct pACS2-GFPx3 and pACS2mut-GFPx3, where the ftriplicated green fluorescent proteins
(GFPs) were under the control of the ACS2 or ACS2mut promoters, respectively (Supplementary
Table S11). The amplicons from SIACS2-prom1k-TOPO-F/R were cloned into the pENTR/D-TOPO
cloning vector (Thermo Fisher Scientific) and then cloned into pGWB35° using Gateway LR clonase
Il (Thermo Fisher Scientific), to construct pACS2-Luc and pACS2mut-Luc, where the firefly luciferase
was under the control of the ACS2 or ACS2mut promoters, respectively.

To construct the effector and reference vectors, total RNA was extracted from a ripening fruit pericarp
in cv. Eco Sweet, with PureLink Plant RNA Reagent (Thermo Fisher Scientific). The CDS of the NON-
RIPENING gene (NOR, Solyc10g006880) was amplified from the synthesized cDNA by PCR using
PrimeSTAR GXL DNA Polymerase (TaKaRa) and the primer set SINOR-pPLV26-F/R (Supplementary
Table S11). The Renilla luciferase CDS was amplified from a pRL-null vector (Promega) by PCR using
PrimeSTAR GXL DNA Polymerase (TaKaRa) and the primer set RenLuc-pPLV26-F/R
(Supplementary Table S11). The amplicons were cloned into pPLV26°° using an In-Fusion HD Cloning
kit (Clontech) to design p35S-NOR and p35S-RenLuc, where the NOR and Renilla luciferase CDSs
were under the control of CaMV35S promoters.

Transient reporter assay

To assess the activation ability of the ACS2 and ACS2mut promoters in ripening tomato pericarp, we
conducted transient dual-luciferase assays with pACS2-Luc, pACS2mut-Luc, pMock-Luc and p35S-
RenLuc, which were introduced into A. tumefaciens strain EHA105 using the helper vector pSOUP.
The transformed agrobacterium was cultured at 28°C for 32 hours, then suspended in Murashige and
Skoog (MS) medium (pH 5.3) that contained 20 pug/mL acetosyringone. The concentration was
adjusted to OD600 = 2.0. Agrobacterium suspension for the negative control (pMock-Luc + p35S-
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RenLuc), the positive case (pACS2-Luc + p35S-RenLuc), and the mutated case (pACS2mut-Luc +
p35S-RenLuc), were inoculated directly into tomato (cv. Eco Sweet) fruit pericarp at the MG, BR and
LR stages (6, 12, and 5 biological replicates, respectively) with a 1-ml syringe. Two days after infection,
a 10 mm x 10 mm piece of tissue surrounding the inoculation point was applied to the Dual-Luciferase
Reporter Assay System (Promega), to detect the firefly luciferase activity (or activation of the ACS2
and ACS2mut promoters), with standardization of the over-expressed Renilla luciferase activity. The
luciferase luminescence was detected using a ChemiDoc Imaging system (BioRad) and analyzed
using Image Lab (BioRad).

To assess the activation ability of the ACS2 and ACS2mut promoters by NOR, we conducted transient
reporter assays in Nicotiana benthamiana leaves with GFP or luciferase as the reporters. For the
assay with the GFP reporter, p35S-NOR, pACS2-GFPx3, and pACS2mut-GFPx3 were introduced
into Agrobacterium tumefaciens strain EHA105, as described, and then transiently introduced to the
fourth and fifth leaves of N. benthamiana plants carrying 8—10 leaves by agrobacterium infiltration.
Agrobacterium suspension for the control with no effector (p35S-Mock + pACS2-GFPx3), the positive
case (p35S-NOR + pACS2-GFPx3), or the mutated case (p35S-NOR + pACS2mut-GFPx3) were
inoculated into the same leaves, with 16 biological replicates. Their relative GFP activities on
microscope images were compared under fixed exposure (383 ms) with excitation by the filtered 470—
495 nm laser line. For the dual luciferase assay, p35S-NOR, pACS2-Luc, pACS2mut-Luc, and p35S-
RenLuc were introduced into A. tumefaciens strain EHA105. The transient transformation was
conducted as described, with 18 biological replicates. The N. benthamiana leaves were harvested 2-
days after infection and then applied to a Dual-Luciferase Reporter Assay System (Promega) to detect
the activation of the ACS2 and ACS2mut promoters by NOR, with standardization of the over-
expressed Renilla luciferase activity.
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FIGURE LEGENDS

Figure 1 Prediction of gene expression patterns in a genome from cis-regulatory elements
(CREs).

a. Schematic model for the prediction of the expression patterns among all the genes in a genome.
In a homogeneous cell line, the effects from trans-elements can be fixed among the genes. Then,
expression patterns can be explained from flexible combinations of CREs (and potential epigenetic
marks). b. Construction of the prediction model with two-step deep learning (DL) frameworks. Large
Arabidopsis cistrome datasets'®, which provide genome-wide transcription factor (TF)-binding peaks,
were used in the first step (15! deep learning) to predict CRE patterns for each TF. The resultant model
was applied to the tomato genome sequences to predict CREs in the promoters of all the genes, to
derive CRE arrays. For each gene, the CRE array was annotated with an expression pattern that was
applied to the second step (2™ deep learning) and also used for the multiple regression and LAMP
analyses'™. c. In the 2" deep learning step, the CRE arrays were trained with a one-dimensional
convolutional neural network (1d-CNN) with the clustered TF channels to make a binary classification.
With backpropagation of the CNN (explainable DL), the CREs or other nucleotide residues relevant

to the objective expression class were visualized.

Figure 2 High-confidence prediction of variable cis-regulatory elements (CREs) and key
nucleotide residues by deep learning (DL)

a. Receiver Operating Characteristic (ROC) curves for the binary classification of transcription factor
(TF)-binding and control sequences, for 370 TFs. The area under the curve (AUC) values ranged
from 0.708 to 0.998 (average of 0.956). b. Prediction performance of the fully-connected deep
learning model (FC-DL) and MEME (as used in O’Malley et al. 2016'3). ¢. Nucleotide residues relevant
to the prediction of CREs by the DL model, determined using two distinct feature visualization methods,
Guided GradCAM and LRP. Relevance levels in the putative CREs (in the pink dotted squares) are
reflected in the height of the nucleotide logos. ABF2-binding sequence tiles with high-confidence
(>0.95) for the prediction are represented. The prediction model properly highlighted the residues
consistent with the physiologically validated representative motif (C)ACGT(G), which is a bZIP-
binding G-box core motif*¢. Furthermore, the same model detected motif variants, including minor
gaps or substitutions. d. Correlation matrix for the CREs of the 370 TFs, with clustering by K-means*™*
(K=50). Each cluster was constituted mostly of TFs from the same family (see Supplementary Table
S5 for detail).

Figure 3 Prediction of the gene expression patterns critical to tomato fruit ripening initiation
by deep learning, and visualization of their key cis-elements.

a. MA plot for the genes expressed in the mature green (MG) and breaker (BR) stages of ripening
tomato fruit. Genes significantly upregulated in BR (N = 2,967, defined as “BRup”) and downregulated
in BR (N =3,098, defined as “BRdown”) are shown in orange and deep green, respectively. b.
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Performances (ROC-AUC values) for binary classification of the BRup or BRdown against the control
category. Averaged ROC-AUC values were calculated from four-fold cross-validations. Bars indicate
standard errors (SE). ¢. Confidence distribution in BRup prediction. Actual BRup genes exhibited
substantially higher confidences than in the control genes (P < 2.2e-16). d. Gene-ontology (GO) terms
significantly enriched in the genes with the highest 10% confidence in the BRup category. e—f.
Predicted cumulative relevance levels for the genes with the highest 10% confidence in the BRup
category (e) and per position in 50-bp bins (f). Of the 50 channels recognized by each TF cluster, the
seven with high relative relevance levels (>0.7) are highlighted. The center TF for each cluster is in
parenthesis. g—i. ldentification of the CREs responsible for the BRup in the promoter region of the
ACS2. With guided backpropagation on the model for BRup prediction, five channels showed high
relevance levels (g). NAC Clst 7, the channel with the highest cumulative relevance level, showed
two major relevant bins that corresponded to the high-confidence TF-binding regions, as indicated by
the asterisks (* and **) (h). Further guided backpropagation on the model for CRE prediction from the
promoter sequences tiles (the 15 deep learning step, see Fig. 1b), the nucleotide residues responsible
for the two TF-binding regions were detected (i). The most relevant residues were localized on the
hypothetical NAC-binding motifs indicated by dotted squares.

Figure 4 Experimental validations for the cis-decoding by deep learning

a. Point-mutations were artificially made on the residues with high relevance to the DL prediction (see
Fig. 3i) in the 1-kb promoter of ACS2 (pACS2, in red), deriving the mutated allele named pACS2mut
(in blue). b-c. pACS2mut showed a substantial reduction in the confidence for the NAC Clst 7 binding
prediction (b), and for the BRup prediction (Conf. = 69% for pACS2, and 18% for pACS2muit) (c). d.
Constructs for transient reporter assays. e. Dual-luciferase transient reporter assay in ripening tomato
fruits. In the mature green (MG) stage, pACS2 and pACS2mut showed no significant differences (P
= 0.98), and only slight activation compared with that of the mock reporter. In the breaker (BR) stage,
pACS2 showed stronger activation than in the MG stage, whereas ACS2mut was substantially less
activated (P =1.1e-5, Student’s t-test). In the light red (LR) stage, both pACS2 and pACS2mut were
activated in comparison to the mock, while they showed no statistical differences (P =0.64). f.
Transient reporter assay with Nicotiana benthamiana for activation of pACS2 and pACS2mut alleles
by a tomato ripening key factor, NOR, nested in the NAC Clst 7. Constitutive expression of tomato
NOR could induce pACS2 activation, while pACS2mut was not substantially activated (P =4.0e-6,
Student’s t-test).

Figure 5 Model for expression design based on explainable deep learning (DL)

If the objective expression patterns can be well predicted from cis-regulatory element (CRE) arrays,
two-step feature visualization in the prediction models (or the 2™ and then 15t DL models, see Fig. 1b)
will allow identification of the nucleotide-scale factor(s) responsible for the expression pattern.
Randomization of the responsible residues can derive potentially unlimited variations for the objective
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expression pattern, which can be easily predicted using the 15t and 2" DL models. Once a desirable
expression pattern is predicted, cis-editing with the CRISPR-Cas system may realize the design of
the optimized allele.


https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446518; this version posted June 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 1

a

™

TFs (frans-elements) A O Hy
 fixed ¢ A

d

(" Gene-n = o1 Up-reg.

Gene-B —o A >

e

Gene-C —f— —@——GEEe]

cis motifs (CREs) expr. pattern

Whole genes
in a genome
N > 30,000

N~
Explanatory variables Response variables

b

Cistrome Peak summits
data

Integration of CREs arrays:
1. Binarization
\ 2. Clustering in TFs (kmeans**)

—> Peaks €——>
| - . ) .

) —

Positive Negative

1st deep learning
on seq. patterns bound to each TF

TF channel

Prediction of CREs for each TF
in “tomato genes”

Tomato
geneA =

LAMP &
Multiple regression

2nd deep learning
to predict expression patterns
& identify the key CREs

Backpropagation of CNN
“Explainable DL”

1-dimension
convolutional neural network (1d-CNN)



https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2

True positive rate

scores

1.0 4

0.8

0.6 ]

0.4 ]

0.2 |

0.0

1.0 ]

0.9 4

0.8 |

0.7 |

S
o
&
Ave. ROC-AUC
=0.956 + 0.0022
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
FC-DL
B MEME
i !
I 1
1 1
1 1
1 1
1 1
1 1
1 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
+f ] 1
“ 1 1
1 1
1 1
1 1
1 1
1 1
| |
recall ' precision * F1 score

Cc

Representative motif (G-box): (C)ACGT(G)

i Guided
I ' GradCAM

LRP

091V 091V

> : Guided
| GradCAM
> H .
§ o m LRP
AACTGAATGGGCACGGAACATACAGTATATA

ACA T
b L Guided
8 im WS | GradCAM
2 iR
Q Pom | LRP
ATAAGTCTCGGTGACAGGTGGCAGATTATTC
E Guided
oL am | GradCAM
> H
g - | LRP
CCCGCTTCTGGCACCTGGCACTTTAAT GTTT
1.0 0.5

(E———— ] Relative relevance level

C3/C2C2 (1 clst)
T WRKY (2 clst)

1 NAC (10 clst)

Trihelix (1 clst)

MADS-box (1 clst)
C2H2 (1 clst) C2-DOF (1clst)

G2-like (2 clst)

AP2-ERF-misc (2 clst

-0.2 0 0.5 1.0
Correlation coefficient (r)


https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3

QO

M

log,[RBR +1] — log,[R™ + 1]

e
1.0

-4 . )
Upregulated in BR (BRup)
-6 ® Control
8 ® Downregulated in BR (BRdown)
0 5 10 15
Ao log,[RER+1] + log,[RE"t + 1]
B 2
1 C
b P < 2.2e-16
0.9 c 0.8 r |
— 5 ©
T 0.8 L =]
> .
c o
207" o3| T3 oa
Q 06 €50 [ B |
o] O v E
nd 05 Om y
e 0.2
chance
BRup BRdown BRup Cont.
d
GO-ID Term p-value Components
G0:0051223 regulation of protein transport 2.5E-03
G0:0016569 chromatin modification 3.7E-03
G0:0009873 ethylene-activated signaling 4.1E-03 ACS2,CTR1
GO0:0044728 DNA methylation or demethylation 4.7E-03
G0:0031399 protein modification process 5.1E-03
G0:1903827 cellular protein localization 6.6E-03
G0:0043065 positive apoptotic process 7.8E-03
G0:0051246 protein metabolic process 8.8E-03
G0:0000278 mitotic cell cycle 9.6E-03

Cumulative
Relevance lewel

Guided backpropagation in NAC Clst 7 CNN

f g
o _-1lkb TsSs 10 05 -1kb 5 promoterregion | 5O
—oam N _
Relative relevance level = Standardized
[ relevance lewel ACS2
misc Clst 6 ——— L
(AT5G60130) /
[ | misc Clst 6
[ |
[ |
[ |
[ |
[ |
ERF Clst 2~
CRF4
(CRF . MADS Clst = -
[ |
[ |
| NACCIst 7~ - ik ger
G2-like Clst - NAC Clst 9 —4 ™ i
(AT2601060)\ / R .
Bl NAC C|S’E‘5___,——" S~
MADS Clst = h A Cioro
SVP) s
( [ | = *% NAC Clst5 *
- o5 1 — NAC Clst 7
505
[ | Eun -
8 ==
= Wil
NAC Clst 7 - 0 As ! W f
(ANACO55) i -800 ___--=7" -650 >~._-500 bp
NAC Clst 9—— Distance from TSS
(ANACO05) Al “ .- s
T 3
C2H2 Cist2™ mmml G Il
(IDD7) c 5 i 1 . :
TGTTGCAGGAAACGACTETGACAATCGAATT TTCTTTTTGACAGGGY GGCGTAA}EAATAATT


https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4

a NAC Clst7 peaks d
100-bp relevant to BRup TSS PACS2-Luc mmd  pACS2 [ Firefly luciferase jm
/**\ *\ ACS?2 PACS2mut-Luc == pACS2mut M Firefly luciferase = reporters
TGTTGCAGGAAACGAC TCTGACAATCG  +veer TTGACAGGGEGCCGTAARAATAATT  PACS2 pMock-Luc I Firefly luciferase F
TGTTGCAGGTATCAACTCTGACAATCG  «+-: TTGACAGGGIGGARATAAAAATAATT PACS2mut
Nucleotide residues with high relevance (see Fig. 3i) p35S-NOR pCaMV3sS IENEINEE effector
b p35S-RenLuc —m Renilla luciferase reference
_£ op  —pACS2 e
(@]
=g 1 — PACSZmut Tomato fruit
2~ ripening stages
[T
2305
5 © o =
cQ n N |\ 40 2 i Light Red N. benthamiana
= o 4 B i (LR P =4.0e-6
-800 -650 -500 bp _ 5 —
Distance from TSS (bp) § P, i P=0.64 o
. 3.0 : 5
c , 2% s ] | ;
0.04 : c 8 P=098 i P 7o
M Cont. | BRup ; £3
c 003 & ! = ' '
= S - S T o
S ?g) ' ?‘O c 0
S 002 J : & T2
S : ‘ i o
o : €
S 001 L
O 4
0 : :
70

Confidence for prediction of BRup (%)



https://doi.org/10.1101/2021.06.01.446518
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5
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