

1 Title:

Arousal-dependent auditory responses in the brain of Bengalese finches measured by gene expression

4

5

6

7 T-1--f₁₁

8 Child Abuse

Chinno Mori

9 Kazuo Okanoya

10

11

12

13 Tokyo, Japan

14 ² Faculty

15

16

17

10

1

15

Corresponding author*

19

E-mail: cokanoya@mail.ecc.u-tokyo.ac.jp

21 **Abstract**

22 Songbirds use auditory feedback to maintain their own songs. Juveniles also memorize a tutor
23 song and use memory as a template to make up their own songs through auditory feedback. A recent
24 electrophysiological study revealed that HVC neurons respond to BOS playback only in low arousal,
25 sleeping, or anesthetized conditions. One outstanding question is how does auditory suppression occur
26 in the brain? Here, we determined how arousal affects auditory responses simultaneously in the whole
27 brain and over the song neural circuit in Bengalese finches, using the immediate early gene *egr-1* as a
28 marker of neural activity. Our results showed that auditory responses in the low-arousal state were less
29 susceptible to gating, which was also confirmed by gene expression, and that the suppression may be
30 weaker than observed in previous zebra finch studies. This may be because the Bengalese finch is a
31 domesticated species. In addition, our results suggest that information may flow from the MLd.I of
32 the midbrain to higher auditory regions. Altogether, this study presents a new attempt to explore the
33 auditory suppression network by simultaneously investigating the whole brain using molecular
34 biology methods.

35

36 **1. Introduction**

37 Songbirds use auditory feedback to maintain their songs. Juveniles also memorize a tutor song
38 and use memory as a template to make up their own songs through auditory feedback (Okanoya &
39 Yamaguchi, 1997; Turner & Brainard, 2007). A recent electrophysiological study revealed that HVC
40 (proper name) neurons only respond to Bird's own songs (BOS) playback in low arousal, sleeping, or
41 anesthetized conditions. The gating phenomenon, in which neurons respond to BOS playback only
42 during sleep or under anesthesia, is the sole known evidence for controlling auditory input into the
43 song system (Cardin & Schmidt, 2003, 2004; McCasland & Konishi, 1981; T. A. Nick & Konishi,
44 2001; Teresa A. Nick & Konishi, 2005; Rauske, Shea, & Margoliash, 2003; Schmidt & Konishi, 1998).
45 In the songbird, the auditory input is transmitted from the inner ear to the primary auditory regions,
46 such as MLd (dorsal part of the lateral mesencephalic nucleus) and Ov (nucleus ovoidalis) in the
47 midbrain; to the lower auditory regions, such as field L; higher auditory regions, such as NCM
48 (caudomedial nidopallium) and CMM (caudal medial mesopallium) in the cerebrum; and finally to
49 the HVC. Although the mechanism of auditory suppression remains unclear, it is generally believed
50 that auditory input suppression is necessary to prevent information overload (Cromwell, Mears, Wan,
51 & Boutros, 2008; Freedman et al., 1987). Auditory input suppression in songbirds has received much
52 attention because it may be involved in the control of auditory feedback that is required for vocal
53 learning and song maintenance (Schmidt & Konishi, 1998).

54 When an action potential is generated in a neuron, voltage-gated calcium channels open, and
55 calcium ions flow into the cell. The influx of calcium ions activates intracellular proteins and other
56 signals and induces gene expression in the nucleus. In particular, the expression of immediate early
57 genes is induced within a very short time after the action potential is generated, and the level of
58 immediate early gene expression reflects the neural activity observed in electrophysiological
59 experiments (Jarvis & Nottebohm, 1997; Mello, Vicario, & Clayton, 1992). Therefore, gene
60 expression has been used as a marker of neural activity. Early growth response protein 1 (*EGR-1*), the
61 first gene evaluated in this study, is expressed in the nucleus 5 min after the onset of an action potential
62 and is transferred to the cytoplasm 30 min later (Velho, Pinaud, Rodrigues, & Mello, 2005). Here, we
63 investigated the relationship between gating and arousal conditions, with a focus on the immediate
64 early gene expression that is dependent on neural activity in the whole brain of songbirds. Our findings
65 verify the relationship between auditory information flow and auditory suppression.

66

67 **2. Materials and Methods**

68 **2.1 Subjects**

69 Most male Bengalese finches (BFs, *Lonchura striata* var. *domestica*) were obtained from a local
70 breeder (n = 21), while others were laboratory bred (N = 5). The photoperiod was maintained at a 14:10
71 h light/dark cycle, with food and water provided ad libitum. The original research reported herein was
72 performed under the guidelines established by the Institutional Animal Care and Use Committee of
73 the University of Tokyo.

74 **2.2 Stimuli**

75 BOS were presented to each bird. Before the experiments, bird vocalizations were recorded to
76 generate auditory stimuli. Recordings were conducted in sound-proof chamber (11.0 cm × 11.0
77 cm × 12.0 cm) using a microphone (PRO 35, Audio-Technica, China) connected with an audio-interface
78 (Octo-capture Ex, Roland, Japan), with a sampling rate of 44.1 kHz. To create BOS playback, we
79 chose one segment of each bird's song from the entire series of recorded vocalizations. The segment
80 chosen was approximately 15 s and contained all song notes. Songs were automatically saved using
81 Avisoft SASLab Pro software (Avisoft Bioacoustics, Germany).

82 **2.3 Experiment**

83 The arousal level was defined by the experimental treatments. Three conditions: awake
84 condition; immediately after lightning, sleep condition; 2h after turning light off, and anesthetized
85 condition; after anesthetization, were evaluated. Song stimuli (pseudorandom sequence) were
86 presented to birds for 15 s, and the inter-onset interval (IOI) was 1 min. The BOS was played 30 times
87 at about 65 dB from a speaker before ending. Silent controls were also performed under the three
88 conditions. In anesthetized conditions, a 20% urethane solution of about 70 uL was injected
89 intraperitoneally 10 min before the experiment began. We confirmed the bird's breathing stability and
90 closed eyes at the beginning and end of the experiment.

91 **2.4 History**

92 For brain sampling, the birds were euthanized by decapitation. Brains were removed and
93 immediately embedded in OCT compound (Sakura Fine Tech, Tokyo, Japan) inside tissue block
94 mounds, frozen on dry ice, and stored at -80 °C until use. Frozen sections (12-μm thick) were cut in
95 the sagittal plane using a cryostat (Leica, Germany).

96 **2.5 In-situ hybridization**

97 The experimental operation was based on the protocol described by Wada *et al.* 2013 *Eur J*
98 *Neurosci*, using the same *egr-1* RNA probe as used by Hayase *et al.* 2018 *PLOS Biol* (Hayase et al.,
99 2018), which was labeled with digoxigenin (DIG). Brain sections were fixed in 4% paraformaldehyde/

100 1×PBS (pH 7.4), washed in 1×PBS, acetylated, dehydrated in an ascending ethanol concentration
101 series, air-dried, and processed for *in situ* hybridization with antisense DIG-labeled *egr-1* riboprobes.
102 A total of 265 ± 44.83 (mean \pm SD) ng of the *egr-1* probe was added to a hybridization solution (50%
103 formamide, 10% dextran, 300 mM NaCl, 10 mM Tris-HCl (pH 8.0), 12 mM EDTA (pH8.0), 0.1% N-
104 Lauroylsarcosone, 0.2 mg/mL tRNA, 10 mM dithiothreitol and 1×Denhardt's solution). Hybridization
105 was performed at 70 °C for 13 h. The slides were washed in 5×SSC at 65 °C for 30 min, 4×SSC and
106 50% formamide at 65 °C for 40 min, 2×SSC and 50% formamide at 65 °C for 40 min, 0.1×SSC at
107 65 °C for 15 min twice, 0.1×SSC at room temperature for 15 min, NTE buffer at room temperature
108 for 20 min, and 1×TNT buffer at room temperature for 5 min. To remove endogenous alkaline
109 phosphatase, the slides were washed in 0.6% H₂O₂ and 1×TNT buffer at room temperature for 30 min.
110 The slides were then washed three times with 1×TNT buffer at room temperature for 5 min. To prevent
111 non-specific binding, the slides were treated with 120 uL of DIG blocking solution at room
112 temperature for 30 min, followed by a wash with 1×TNT buffer for 1 s. Slides were then treated with
113 peroxidase-conjugated anti-DIG antibody/ DIG blocking solution (1:500) at 4 °C for 20 h and then
114 washed three times with 1×TNT buffer, at room temperature for 5 min. The slides were then treated
115 with fluorescein/ 1×plus amplification diluent (1:200) at room temperature for 10 min and washed
116 twice in 1×TNT buffer for 5 min, 1×TNT buffer for 20 min, and 1×TNT buffer for 5 min. The slides
117 were dipped into milliQ water for 1 s and mounted with VECTASHIELD Mounting Medium
118 containing DAPI.

119 **2.6 Analysis**

120 To quantify the *egr-1* mRNA signal, brain fluorescence images were taken with a microscope
121 (BZ-X700, KEYENCE, Osaka, Japan) with a 40X/0.95NA objective lens (PlanApoλ, Nikon, Tokyo,
122 Japan), GFP and DAPI filters, and a monochromatic cooled-CCD camera. The images were quantified
123 using the macro-cell-count function of the BZ-X analysis application.

124 **2.7 Statistical analysis**

125 A statistical analysis of the effects of auditory stimulation and arousal manipulation on *egr-1*
126 expression was performed using two-way analysis of variance. In addition, a correlation analysis of
127 regional activities was performed using the Spearman's rank correlation test.

128

129 **3. Results**

130 We found significant treatment effects in certain brain regions. *egr-1* expression significantly
131 increased upon receiving auditory stimuli in HVC ($F = 52.04$, $p = 2.85 \times 10^{-8}$, $\eta^2 = 0.61$), NCM ($F =$
132 8.27 , $p = 9.69 \times 10^{-3}$, $\eta^2 = 0.30$), MLd.O ($F = 5.7$, $p = 0.024$, $\eta^2 = 0.12$), MLd.I ($F = 10.79$, $p = 2.91 \times 10^{-3}$,
133 $\eta^2 = 0.21$), and there was an arousal effect in MLd.O ($F = 11.71$, $p = 0.002$, $\eta^2 = 0.25$), MLd.I ($F =$
134 13.71 , $p = 1.01 \times 10^{-3}$, $\eta^2 = 0.27$).

135 There were also correlations between HVC and NCM in the awake condition ($r = 0.886$, $p = 0.033$),
136 HVC and MLd.O in the sleep condition ($r = 0.708$, $p = 0.050$), HVC and MLd.I during sleep ($r = 0.781$,
137 $p = 0.022$) and awake ($r = 0.886$, $p = 0.033$) conditions, NCM and X in sleep condition ($r = 0.874$, p
138 $= 0.0045$), NCM and MLd.I in sleep condition ($r = 0.884$, $p = 0.0036$), MLd.I in sleep condition ($r =$
139 0.756 , $p = 0.030$), and MLd.O and MLd.I in sleep ($r = 0.775$, $p = 0.024$) and awake ($r = 0.886$, $p =$
140 0.033) conditions. In addition, there was a significant correlation between HVC and NCM in the sleep
141 condition ($r = 0.695$, $p = 0.056$), HVC and X in the sleep condition ($r = 0.714$, $p = 0.058$), HVC and
142 MLd.O in the awake condition ($r = 0.829$, $p = 0.058$), and NCM and MLd.I in the awake condition (r
143 $= 0.829$, $p = 0.058$).

144

145 **4. Discussion**

146 There were significant changes in gene expression in response to auditory stimuli, but no
147 difference was observed in response to arousal manipulation in the HVC and NCM. In the HVC,
148 arousal might be absent in the Bengalese finch compared with a sleeping zebra finch. In X, no auditory
149 response was observed, regardless of the condition. The Bengalese finch is a domesticated songbird
150 that may have weaker gating than zebra finches, as suggested by the results of other
151 electrophysiological experiments (Prather et al., 2008). Both the inner and outer sides of the MLD are
152 affected by arousal manipulation, with higher activity during wakefulness than during sleeping. In the
153 lower auditory cortex, the higher activity during wakefulness may be due to the lack of upstream
154 auditory information gating. These results are consistent with recent research on electrophysiological
155 gating techniques in songbirds (Cardin & Schmidt, 2003, 2004; McCasland & Konishi, 1981; T. A.
156 Nick & Konishi, 2001; Teresa A. Nick & Konishi, 2005; Rauske et al., 2003; Schmidt & Konishi,
157 1998).

158 There was also a correlation between MLD.O and MLD.I, regardless of arousal manipulation
159 and activities. In contrast, there was no correlation or correlative trend between the HVC and X in the
160 awake condition. This means that auditory information activities are linked in other regions, up to X,
161 which includes the correlative trend in the sleep condition. In addition, in the awake condition,
162 auditory information activities are linked up to the HVC. Thus, gating occurs in the song nucleus under
163 awake conditions. This correlation trend has been confirmed by an increasing the number of
164 individuals.

165 The inner and outer properties and projection relationships have been determined from sound
166 source localization experiments using barn owls (Takahashi & Konishi, 1988) and are used in different
167 paths. On the other hand, there might not be a strict separation between the inner and outer projection
168 in the zebra finch because they overlapped significantly (Krützfeldt, Logerot, Kubke, & Wild, 2010;
169 Logerot, Krützfeldt, Wild, & Kubke, 2011; Martin Wild, Krützfeldt, & Fabiana Kubke, 2010). In
170 addition, electrophysiological experiments have shown dorsoventral tonotopy, with low frequencies
171 being expressed dorsally and high frequencies ventrally (Woolley & Casseday, 2004). MLD inner and
172 outer differences remain unknown in songbirds, but in this study, auditory responses were higher
173 during wakefulness than during sleeping, and there was a correlation between regions in both
174 conditions, suggesting that auditory responses may interact with MLD. On the other hand, there was
175 no correlation between MLD.O and NCM, regardless of the condition, suggesting that auditory
176 information flows from MLD.I to the higher auditory cortex.

177 This study suggests that auditory information flows from the lower auditory cortex to the higher

178 differs under arousal, sleep, and awake conditions, based on our gene expression analysis of the whole
179 brain. This method is useful for detecting many neural activities simultaneously. Here, we confirmed
180 that the gating phenomenon could be detected by using neural markers in an electrophysiological and
181 biological approach.

182

183 **5. References**

184 Cardin, J. A., & Schmidt, M. F. (2003). Song System Auditory Responses Are Stable and Highly Tuned
185 during Sedation, Rapidly Modulated and Unselective during Wakefulness, and Suppressed by
186 Arousal. *Journal of Neurophysiology*, 90(5), 2884–2899. <https://doi.org/10.1152/jn.00391.2003>

187 Cardin, J. A., & Schmidt, M. F. (2004). Noradrenergic inputs mediate state dependence of auditory
188 responses in the avian song system. *Journal of Neuroscience*, 24(35), 7745–7753.
189 <https://doi.org/10.1523/JNEUROSCI.1951-04.2004>

190 Cromwell, H. C., Mears, R. P., Wan, L., & Boutros, N. N. (2008). Sensory gating: a translational effort
191 from basic to clinical science. *Clinical EEG and Neuroscience*, 39(2), 69–72.
192 <https://doi.org/10.1177/155005940803900209>

193 Freedman, R., Adler, L. E., Gerhardt, G. A., Waldo, M., Baker, N., Rose, G. M., ... Franks, R. (1987).
194 Neurobiological studies of sensory gating in schizophrenia. *Schizophrenia Bulletin*, 13(4), 669–678.
195 <https://doi.org/10.1093/schbul/13.4.669>

196 Hayase, S., Wang, H., Ohgushi, E., Kobayashi, M., Mori, C., Horita, H., ... Wada, K. (2018). Vocal
197 practice regulates singing activity-dependent genes underlying age-independent vocal learning in
198 songbirds. *PLoS Biology*, 16(9), 1–25. <https://doi.org/10.1371/journal.pbio.2006537>

199 Jarvis, E. D., & Nottebohm, F. (1997). Motor-driven gene expression. *Proceedings of the National
200 Academy of Sciences*, 94(8), 4097–4102. <https://doi.org/10.1073/PNAS.94.8.4097>

201 Krützfeldt, N. O. E., Logerot, P., Kubke, M. F., & Wild, J. M. (2010). Connections of the auditory
202 brainstem in a songbird, *Taeniopygia guttata*. I. projections of nucleus angularis and nucleus
203 laminaris to the auditory torus. *Journal of Comparative Neurology*, 518(11), 2109–2134.
204 <https://doi.org/10.1002/cne.22334>

205 Logerot, P., Krützfeldt, N. O. E., Wild, J. M., & Kubke, M. F. (2011). Subdivisions of the auditory
206 midbrain (N. mesencephalicus lateralis, pars dorsalis) in Zebra finches using Calcium-binding
207 protein immunocytochemistry. *PLoS ONE*, 6(6). <https://doi.org/10.1371/journal.pone.0020686>

208 Martin Wild, J., Krützfeldt, N. O. E., & Fabiana Kubke, M. (2010). Connections of the auditory
209 brainstem in a songbird, *taeniopygia guttata*. III. projections of the superior olive and lateral
210 lemniscal nuclei. *Journal of Comparative Neurology*, 518(11), 2149–2167.
211 <https://doi.org/10.1002/cne.22325>

212 McCasland, J. S., & Konishi, M. (1981). Interaction between auditory and motor activities in an avian
213 song control nucleus. *Proceedings of the National Academy of Sciences of the United States of
214 America*, 78(12 II), 7815–7819.

215 Mello, C. V., Vicario, D. S., & Clayton, D. F. (1992). Song presentation induces gene expression in the

216 songbird forebrain. *Proceedings of the National Academy of Sciences of the United States of*
217 *America*, 89(15), 6818–6822. <https://doi.org/10.1073/pnas.89.15.6818>

218 Nick, T. A., & Konishi, M. (2001). Dynamic control of auditory activity during sleep: Correlation
219 between song response and EEG. *Proceedings of the National Academy of Sciences of the United*
220 *States of America*, 98(24), 14012–14016. <https://doi.org/10.1073/pnas.251525298>

221 Nick, Teresa A., & Konishi, M. (2005). Neural song preference during vocal learning in the zebra finch
222 depends on age and state. *Journal of Neurobiology*, 62(2), 231–242.
223 <https://doi.org/10.1002/neu.20087>

224 Okanoya, K., & Yamaguchi, A. (1997). Adult Bengalese finches (*Lonchura striata* var. *domestica*) require
225 real- time auditory feedback to produce normal song syntax. *Journal of Neurobiology*, 33(4), 343–
226 356. [https://doi.org/10.1002/\(SICI\)1097-4695\(199710\)33:4<343::AID-NEU1>3.0.CO;2-A](https://doi.org/10.1002/(SICI)1097-4695(199710)33:4<343::AID-NEU1>3.0.CO;2-A)

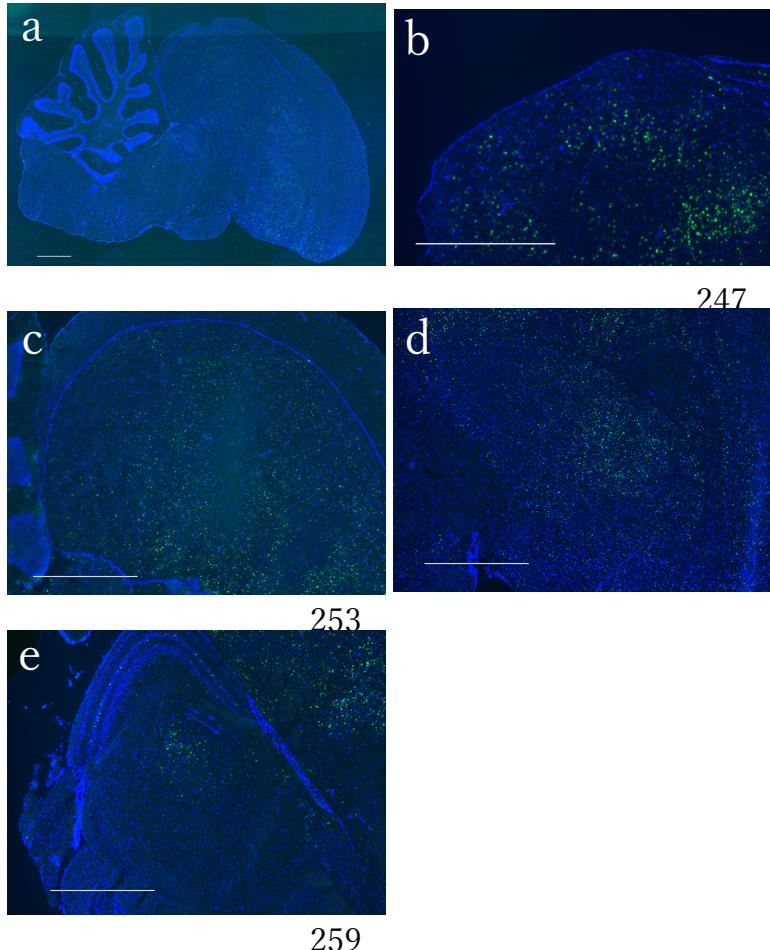
227 Rauske, P. L., Shea, S. D., & Margoliash, D. (2003). State and neuronal class-dependent reconfiguration
228 in the avian song system. *Journal of Neurophysiology*, 89(3), 1688–1701.
229 <https://doi.org/10.1152/jn.00655.2002>

230 Schmidt, M. F., & Konishi, M. (1998). Gating of auditory responses in the vocal control system of awake
231 songbirds. *Nature Neuroscience*, 1(6), 513–518. <https://doi.org/10.1038/2232>

232 Takahashi, T. T., & Konishi, M. (1988). Projections of nucleus angularis and nucleus laminaris to the
233 lateral lemniscal nuclear complex of the barn owl. *Journal of Comparative Neurology*, 274(2), 212–
234 238. <https://doi.org/10.1002/cne.902740207>

235 Turner, E. C., & Brainard, M. S. (2007). Performance variability enables adaptive plasticity of
236 “crystallized” adult birdsong. *Nature*, 450(7173), 1240–1244. <https://doi.org/10.1038/nature06390>

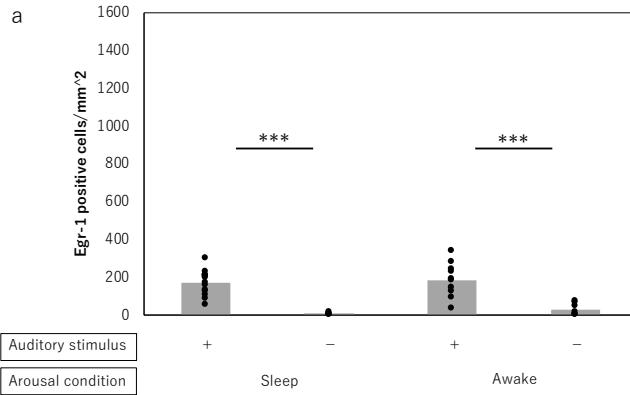
237 Velho, T. A. F., Pinaud, R., Rodrigues, P. V., & Mello, C. V. (2005). Co-induction of activity-dependent
238 genes in songbirds. *European Journal of Neuroscience*, 22(7), 1667–1678.
239 <https://doi.org/10.1111/j.1460-9568.2005.04369.x>


240 Woolley, S. M. N., & Casseday, J. H. (2004). Response Properties of Single Neurons in the Zebra Finch
241 Auditory Midbrain: Response Patterns, Frequency Coding, Intensity Coding, and Spike Latencies.
242 *Journal of Neurophysiology*, 91(1), 136–151. <https://doi.org/10.1152/jn.00633.2003>

243

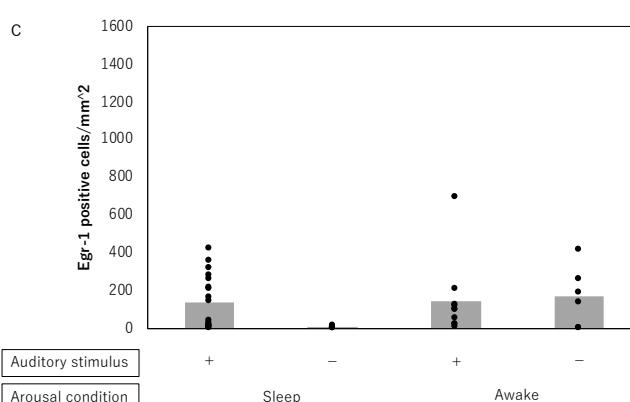
244

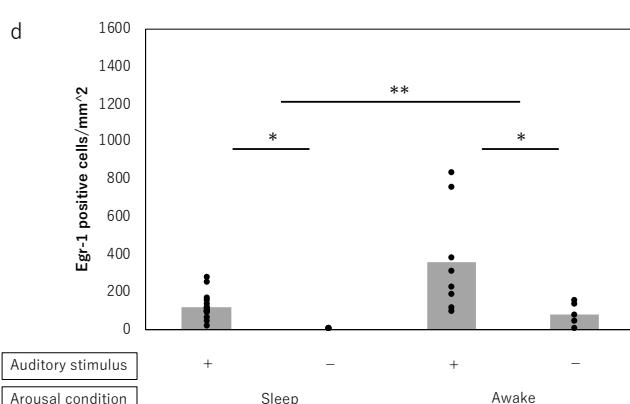
245 6. Figure

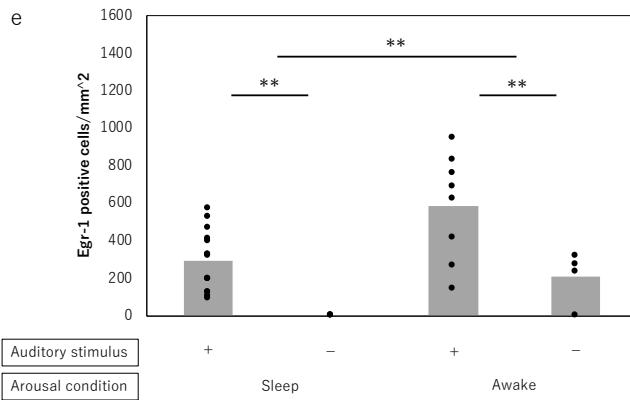

246

259

260 Figure 1 Representative fluorescence *in-situ* hybridization result of *egr-1* expression in the Bengalese
261 finch's brain.
262 Sagittal sections of the whole brain following *in situ* hybridization are shown. Green signals
263 (fluorescein) indicate *egr-1* mRNA localization and blue signals (DAPI) indicate nuclei. (a) Whole
264 brain, (b) HVC, (c) NCM and other higher auditory cortex, (d) X and the surrounding striatum, (e)
265 MLd and the surrounding midbrain; scale bar = 1 mm.


266


267



268

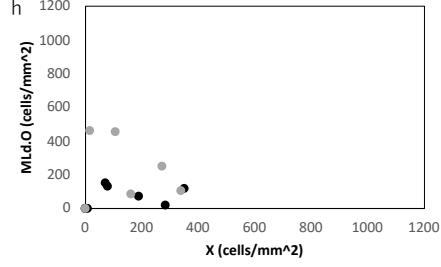
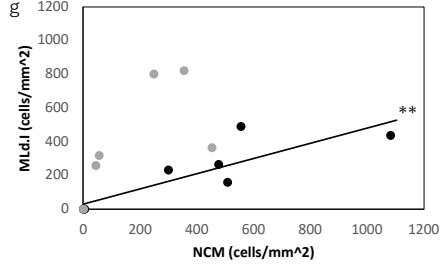
269

270

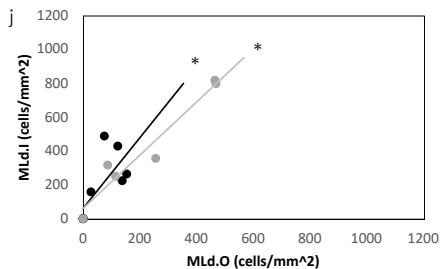
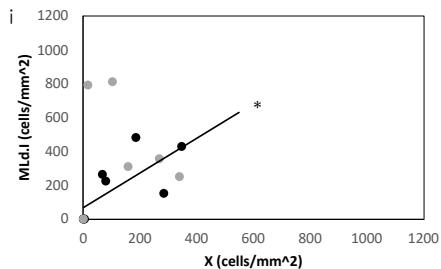
271 Figure 2 *egr-1* expression following auditory stimuli and arousal conditions.

272 The density of positive cells is presented. Each plot shows the individual data, and each bar represents
273 the average. (a) HVC (properly named), (b) NCM (caudomedial mesopallium), auditory cortex, (c) X,
274 striatum, (d) MLD.O (dorsal part of the lateral mesencephalic nucleus, outer), (e) MLD.I (dorsal part
275 of the lateral mesencephalic nucleus, inner). Data are means; *** p < 0.001, ** p < 0.01, * p < 0.05,
276 ANOVA.

277

278

279

280

281

282

● — Sleep
● — Awake

283

Figure.3 Quantification of *egr-1* expression correlation in two song nuclei (area X and HVC) and two auditory relays (NCM and MLd).

284

A closed circle indicates sleep condition, and a grey circle indicates awake condition. These plots show the correlation between *egr-1* expression in certain brain areas.

285

286

287