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Abstract
Background

Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past
decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal
virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone
caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla)
population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the

Ebola outbreak in the western lowland gorilla population.

Results

Associations with survivorship were evaluated by utilizing DNA obtained from fecal
samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15
individuals observed before and after the epidemic (survivors). We used a target enrichment
approach to capture the sequences of 123 genes previously associated with immunology and
Ebola virus resistance and additionally analyzed the gut microbiome which could influence the
survival after an infection. Our results indicate no changes in the population genetic diversity
before and after the Ebola outbreak, and no significant differences in microbial community
composition between survivors and non-survivors. However, and despite the low power for an
association analysis, we do detect six nominally significant missense mutations in four genes

that might be candidate variants associated with an increased chance of survival.

Conclusion

This study offers the first insight to the genetics of a wild great ape population before
and after an Ebola outbreak using target capture experiments from fecal samples, and presents

a list of candidate loci that may have facilitated their survival.
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Background

The Ebola virus (EBOV), discovered in 1976, causes a severe disease and often fatal
hemorrhagic fever for which numerous human outbreaks have been reported throughout
Africa [1]. The most virulent outbreak reported to date was in West Africa in December 2013
and lasted until 2016 with more than 28,000 confirmed or suspected human cases and more
than 11,000 human deaths [2]. Since then, other outbreaks of Ebola have been observed. In
June 2020, when the 2018 outbreak was declared over by the World Health Organization

(WHO), 3,470 cases had been reported with 2,287 deaths (fatality rate of 66%) [3].

EBOV belongs to the single-stranded RNA virus family Filoviridae [4] with five distinct
strains in the Ebola genus: Zaire, Sudan, Budibugyo, Tai Forest and Reston. The first three are
responsible for the majority of human infections [5, 6]. The virus is highly infectious and can
enter the body through direct contact of broken skin or mucous membranes with infected blood
or body fluids, causing symptoms including fever, vomiting, diarrhea, internal and external
bleeding. Ebola hemorrhagic fever or Ebola virus disease (EVD) is an acute and severe disease

with a fatality rate in humans around 50% [5-7].

Infectious diseases such as Ebola are considered to be a threat to the survival of African
great apes [8], together with other threats such as habitat loss, climate change and poaching
[9]. In some cases, the human outbreaks have been linked to contact with infected bushmeat
from gorillas or chimpanzees [10] and several surveys have reported dramatic declines in
populations of great apes in parallel with human EVD outbreaks with laboratory confirmation of
Ebola virus infection in some carcasses [10-12]. Gorilla populations from the Republic of Congo
suffered severe die-offs during a chuman EVD outbreak near the Lossi sanctuary in 2002-2003

[12] and Odzala-Kokoua National Park in 2004 [13] with reported mortality rates as high as
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78  95%. In Lossi sanctuary alone, it was estimated that the Ebola virus killed 5,000 wild gorillas
79  [12]. The severe population decline has contributed to the 2007 shift of the conservation status
80  of western gorillas from “endangered” to “critically endangered” by the International Union for
81  Conservation of Nature (IUCN) [14]. Furthermore, the recent outbreak of human EVD in North
82  Kivu (Democratic Republic Congo) [3] was in close proximity to the remnant populations of
83  eastern gorilla species, hence a human to ape transmission of the virus could potentially mark

84  the end of existence for this critically endangered species.

85 Threats such as infectious diseases are relevant for conservation efforts, and efficient
86  strategies are needed to reduce the effects of EVD on wild great ape populations [15].
87  Understanding any genetic impact that EBOV outbreaks might have on wild populations is vital,
88 as EVD contributes to the fragmentation of gorilla populations due to a heterogeneous spatial
89 influence of the outbreak [16]. Social dynamics in gorillas are rapidly affected by Ebola through
90 a decrease in social cohesion, although recovery after the outbreak has been observed [17,
91 18]. One study reported that solitary individuals were less affected than individuals living in
92  groups, marking the relevance of social dynamics for transmission [13]. A previous study using
93 17 microsatellites found no loss of genetic diversity after one EBOV outbreak in Lossi sanctuary
94  and Odzala-Kokoua National Park, which could be explained by post-epidemic immigration,
95 sufficiently large remnant effective population size or a short period of time after the decline
96 [18]. The present study represents a continuation of this aforementioned research since many
97  aspects of EBOV infection in wild gorilla populations are not yet explored, such as genetic
98 variants in survivors that might contribute to resistance or higher chance of survival to EVD. In
99  humans, such an approach was used during the 2014 EBOV outbreak, although no evidence

100 of adaptation was found in the survivors [19].

101 Furthermore, microbial organisms inhabiting the gut also play a potentially crucial role
102  intraining and maintaining the immune system [20-22]. Where some commensal microbes are

103  associated with priming the immune response or activating antiviral responses, others facilitate
4
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104  the development of the infection or suppress the immune response [23]. For instance, a recent
105 study reported a link between the gastrointestinal microbiome of healthy humans and a
106  predisposition to severe COVID-19 [24], with an abundance of Klebsiella, Streptococcus, and
107  Ruminococcus being correlated with elevated levels of proinflammatory cytokine. The
108  association between infectious diseases and the gut microbiome of nonhuman primates is less
109 well understood. While the gut microbiome of SIVgor-infected (gorilla Simian
110  Immunodeficiency virus) wild gorillas seems to be more robust to dysbiosis than those of
111 chimpanzees and humans [25], it is unclear how shifts in the gorilla gut microbiome can impact

112 the severity of viral infections, and in particular the immune response to Ebola virus infection.

113 Long-term monitoring of a western lowland gorilla (Gorilla gorilla gorilla) population in
114  Odzala-Kokoua National Park (Republic of Congo) has been ongoing since 2001 until 2017
115  encompassing the Ebola outbreak of 2004 [16-18, 26] which resulted in a mortality rate of 95%
116  [13]. Population monitoring involved the recording of individual histories of hundreds of
117  identified individuals, the determination of sex, age and social status and the collection of fecal
118 samples in different time periods. This close monitoring through time was fundamental to
119  determine which individuals were either not affected or survived the Ebola outbreak and which

120  went missing with their cause of death assumed to be EVD.

121 Here, we have obtained genetic data from gorilla fecal samples pre- and post-outbreak
122  to explore potential associations to survivorship. Particularly, we compare the genetic variation
123  at the single nucleotide level in 123 autosomal target-captured genes with putative roles in
124  virus immune response and the gut microbiome composition in a reduced panel of survivors
125  and non-survivors of this Zaire EBOV outbreak. With that we show that targeted capture on
126  non-invasive fecal samples and next-generation sequencing can be used to study the impact

127  of this severe disease in a natural population.
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128 Results

129 A total of 31 non-invasive fecal samples from identified western lowland gorillas were
130 collected between 2001 and 2014 in Odzala-Kokoua National Park, Congo [18] (Fig. 1A).
131  Sixteen of these were from individuals declared missing after the Zaire Ebola virus outbreak in
132 2004, and suspected to have died because of the infection, here termed ‘non-survivors’. These
133  samples were collected between 2001 and 2004. The remaining 15 samples were from gorillas
134 identified before the epidemic and still observed after the epidemic, and will be identified
135 henceforth as ‘survivors’ [17]. These 15 samples were collected between 2005 and 2014
136  (Supplementary Table S1). We used target capture enrichment to sequence the genomic
137  regions of 123 genes, which had previous evidence of putative roles in immune response to
138 EBOV or other viruses (Supplementary Table S2). In addition, 15 neutral regions previously
139  studied in other human and non-human primate studies were also targeted [27, 28]
140 (Supplementary Table S2). Target design and all analyses were performed using the human
141  reference genome due to the higher quality of annotations compared to the gorilla reference
142  genome. We sequenced an average of 73 million paired reads per individual, 12% of which
143  were unique (Supplementary Table S3). On average, 0.38% of the data mapped to the target
144  space, representing an on-target effective coverage of 53.89-fold (range: 2.52-fold to 230.70-
145  fold; Fig. 1B, Supplementary Table S3), with 72% of the target space covered by at least 4
146  reads per individual. Samples G282, G1392 and G638 performed poorly, with <50% of the
147  target space covered at a minimum depth of 4 reads (Supplementary Fig. S1). Overall
148 performance can be assessed by calculating how well the capture resequencing experiment
149  went relative to expectations had we performed random shotgun sequencing. In that regard,
150 we observe an average enrichment of 125-fold (88 - 346-fold) (Supplementary Table S3).
151  Individuals with extremely low proportions of target space covered by at least 4 reads (<30%)

152 (G638 and G282) and high heterozygosity and high levels of human contamination were
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153  removed from further analysis (individuals G374 and G1392, Fig. 1C and Supplementary Fig.

154  S2, Table S3).

155 With the final dataset of 13 survivors and 14 non-survivors, we validated that the
156  genotype information obtained was in concordance with previously published gorilla whole-
157  genomes, as determined by a principal component analysis (PCA) (Supplementary Fig. S3).
158  We estimated kinship for each pair of individuals, identifying a single case of close relatedness
159 (1% degree) among them (non-survivor G374 and survivor G739; kinship coefficient = 0.4)
160 (Supplementary Fig. S4). In addition, we observed no stratification correlating with
161 survivor/non-survivor classification. Individuals appear to be dispersed randomly across a
162  dendrogram derived from shared genotype likelihood dosage states (Fig. 2A), and a univariate
163 linear regression of survivorship on the top 5 PCs identified no significant structure associated
164  to survivorship (P-value > 0.1; Supplementary Fig. S5). Hence, we determined no genome-
165  wide group structure differences between survivors and non-survivors. The overall level of
166  genetic diversity within the target space of the studied gorillas was, on average, lower than that
167  of western lowland gorillas obtained from whole-genome sequencing (Supplementary Fig. S6)
168  [29, 30], an expected outcome following the target capture procedure. Moreover, there are no
169  statistically significant differences in heterozygosity between survivors and non-survivors

170  (Student’s t-test, p-value=0.34; Fig. 2B).

171 In order to determine genetic differences between the groups, we calculated three
172  summary statistics on a dataset of 6,852 high-quality variants: (1) the difference in allele
173  frequency (AFrequency), (2) the fixation index (Fsr), and (3) the significance level (a) of each
174  variant for its association with the binary trait survivor/non-survivor (Fig. 3). We found 118 SNPs
175  within the target space that surpassed our a threshold in the association test, and we also
176  reported their AFrequency and Fsr values. However, after controlling for type | error none of
177  these remained significant. Out of these, seven genes have multiple nominally significant SNPs

178 (CD1B, IGKV4-1, HLA-A, ACTB, LYN, CD68 and MX1), while 10 neutral regions (~10kb each)
7
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179 have at least 1 nominally significant variant (Supplementary Table S4). For comparative
180 validation, we repeated the association analysis using ANGSD [31], a software explicitly built
181  to work with low coverage data that relies on genotype likelihoods. With this method, we were
182  able to recover the majority of the genes found above (30 out of 36). However, ANGSD
183  returned more hits and thus more genes (Supplementary Figs. S7, S8 and Table S5), rendering

184  the above approach more conservative.

185 Next, we explored the potential functional impact of the variants in the nominally
186  significant candidate loci that differentiate survivors from non-survivors. While we found no
187  significant associations with gene ontology categories, the analysis of predictions of functional
188  consequences pinpointed six missense mutations which differed in frequency between the two
189  groups (Supplementary Table S6), one each in the ATM, IGKV4-1 and RNF167 genes (all lower
190 in survivors) and three in the ACTB (Actin Beta) gene (one unique to survivors, two lower in
191  survivors, Supplementary Table S4). All three missense variants in ACTB are predicted as
192  deleterious by both the PolyPhen [32] and SIFT [33] algorithms. Furthermore, the derived
193  variant in survivors in the immunoglobuline-encoding IGKV4-1 might be deleterious (C-score
194 > 20 [34]), hence potentially functionally relevant. Since we used the human genome for target
195 design, mapping and variant calling, we caution that differences in exon usage or
196  pseudogenization on the gorilla lineage might confound these inferences of protein-coding
197 changes. In order to confirm the expression of these genes, and specifically the exons of
198 interest, we mapped transcriptome data from six tissues in gorillas [35] to the same reference
199 genome, and quantified expression levels. We confirmed the expression of these genes and
200 found high transcript abundance (log2-value of counts >=9) for ACTB, RNF167 and ATM, while
201  IGKV4-1 was only detected at low levels in these tissues (log2-value of counts = 5.84). We
202 found ~10,000 RNA sequencing reads overlapping the three loci of interest in ACTB, 437 in
203 RNF167, and 96 in IGKV4-1, supporting the expression of these specific loci in gorilla tissues,
204  while for ATM only 10 reads overlapped (Supplementary Table S6).

8
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205 Among the 118 significant SNPs, we found no direct overlap with loci associated to
206 2,385 traits in genome-wide association studies (GWAS) for humans [36]. However, we found
207 49 associated loci within close proximity (5,000 bp) to GWAS loci (Supplementary Table S7),
208 among which the locus 19:1104078 near GPX4 stands out for its association with five blood
209 cell traits (counts and percentages of leukocyte cell types). Furthermore, 6:29916885 in the
210 HLA is associated to hemoglobin levels. Five loci in HLA-DRA are associated with different
211 autoimmune diseases like systemic lupus erythematosus or multiple sclerosis (Supplementary
212  Table S7). Furthermore, nine loci in this region (HLA-DRB5 and HLA-A) are associated with

213  schizophrenia or autism spectrum disorder (Supplementary Table S7).

214 It has been reported that intestinal microbiota play a critical role in immune response
215 toinfectious diseases [20-22]. Thus, the microbiome might be relevant for the survival of wild
216  gorilla populations experiencing an Ebola outbreak. Taking advantage of the nature of the
217  samples, we first analyzed the microbiota present in each fecal extraction using a 16S rRNA
218 library (Methods). We obtained a total of 96,928,400 reads with an average sequencing depth
219  0of 1,101,459 (SD % 418,989) reads per gorilla fecal extraction (Supplementary Table S8), and
220 determined the abundance of taxa (Supplementary Figs. S9 and S10). Firmicutes (53.79%),
221 Bacteroidetes (12.02%) and Chloroflexi (11.11%) were the predominant phyla (Supplementary
222  Fig. S9 and Table S9), that include the following most abundant orders: Clostridiales (39.37%),
223  Bacillales (11.24%), Bacteroidales (10.87%) and Anaerolineales (11.11%) (Supplementary Fig.
224  S10 and Table S10), concordant with previous findings [37, 38]. We found no taxa significantly
225  differing in relative abundance between survivor and non-survivor gorillas (Bonferroni-
226  corrected p-values > 0.05; Supplementary Fig. S11 and Table S11), and sample groups were

227  not separated in a clustering analysis (Fig. S12).

228 Since these results on the gut microbiome diversity did not support differences
229  between both gorilla groups, we decided to perform deep sequencing on the fecal libraries.

230 We generated a total of 801,132,281 sequences from DNA libraries (4,025,054-25,593,317
9
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231 reads per sample; Supplementary Table S8) and used MALT (MEGAN Alignment Tool) [39] for
232  analternative characterization of the microbial profile of the samples (Supplementary Fig. S13).
233 We find that the majority of the identified taxa are associated with the gut microbiome
234  (Supplementary Table S12 and S13). By far the most abundant taxon is the gut bacterium
235  Escherichia coli, which could be detected in all samples, and makes up more than 50% of all
236  assigned sequences in nine of the samples. Also in high abundance are species of the
237 Bacteroidales order, such as Bacteroides cellulosilyticus and Prevotella spp., as well as
238 members of the Clostridiales, Lactobacillales, and Bacillales orders, corroborating previous
239  reports on the composition of western lowland gorilla gut microbiomes [40, 41]. Furthermore,
240 we detected pathogenic taxa in high abundance in some of the samples, such as Clostridium
241  botulinum, Acinetobacter baumannii, and Klebsiella pneumoniae, which have been previously
242  found in the gorilla gut [42]. However, the microbial profiles of survivors and non-survivors do
243  not differ significantly from each other in this analysis either (Bonferroni-corrected p-values >
244  0.05, two-sided t-test, Supplementary Table S11), and the two groups do not form separate
245  clusters in a Principal Coordinate analysis or a Neighbor Joining Tree (Supplementary Figs.

246  S14 and S15).

247

248 Discussion

249 We investigated non-invasive fecal samples from a long-term monitored population of
250 western lowland gorillas in the Republic of Congo, including individuals that most likely
251  succumbed to the Zaire Ebola virus outbreak in 2004, as well as surviving individuals [17, 18].
252  We used targeted capture of 123 autosomal genes with putative roles in immune response to
253 EBOV or other viruses (Supplementary Table S2) from fecal samples. This yielded an
254  enrichment of more than 100-fold across samples, and a medium to high coverage of the target
255  space across most individuals (Supplementary Fig. S1 and Table S3). Although a large

256  proportion of reads were duplicates, the overall performance was high and these results

10
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257 demonstrate the great potential of capture experiments for obtaining genotypes from fecal
258 samples of wild great ape populations [43, 44], for which high-coverage sequencing would be
259  prohibitively expensive. We determined that the studied individuals were not closely related,
260 hence most likely representing a random sampling of the wild gorilla population before and
261  after the outbreak. We also investigated the microbial community composition of survivors and
262  non-survivors, finding no significant differences in taxa abundance, neither using 16S rRNA or
263  deep sequencing data (Supplementary Figs. S11, S13 and Table S11). Hence, we find no
264  evidence that the gut microbiome of individuals has an influence on the survival rate of wild
265  gorillas exposed to Ebola. However, these observations are limited by (1) the sample size, and
266 (2) the broad range of collection dates (Supplementary Table 1). The latter is particularly true
267  (2a) relative to the timing of any exposure, but also in respect to the (2b) dynamic nature of the

268  gut microbiome [38].

269 Given the limited sample size, we developed an approach using differences in allele
270 frequency, the fixation index and the effect size to determine variants most strongly associated
271  tosurvivability in the studied population, generally replicable using an association analysis with
272  ANGSD. While 44 of the 118 nominally significant SNPs (Supplementary Table S4) do fall within
273 10 of the 15 neutral regions included in the study, some SNPs might be functionally relevant
274  for surviving the EBOV outbreak. The non-synonymous variants in ACTB, RNF167 and IGKV4-
275 1 genes are obvious candidate loci, and particularly the three deleterious missense mutations
276 in Actin Beta appear to be strong candidates for a higher survival rate. The actin cytoskeleton
277 is important for virus assembly [45], and a disturbed assembly process could have influenced
278 the viral load in individuals with changes in this protein. As expected for a gene encoding a
279  structural protein, ACTB is highly expressed in gorilla tissues. Furthermore, the variant in
280 IGKV4-1 might improve the immune response to viral infection through antigen recognition

281 [46]. The missense mutation in ATM, which belongs to the PI3-kinase family, could interfere

11
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282  with the cellular entry specifically of the Ebola virus [47], although we could not confirm

283  expression of this locus in vivo in the available tissues.

284 We find other potentially relevant non-coding variants, 49 of which are in close proximity
285 to SNPs associated to GWAS traits in humans, suggesting possible regulatory functions
286  (Supplementary Table S7). Among those, the association of GPX4 with leukocyte cell type
287  count might reflect differences in leukocyte composition after viral infection. Differences in
288 hematocrit or hemoglobin levels might have contributed to the survival of wild gorillas
289  considering that hemorrhage and internal bleeding are symptoms of Ebola infection. Since
290 eight loci are associated to the HLA-DRB gene, a direct involvement in the adaptive immune
291  system might cause the signature observed at this locus, particularly given that human

292  survivors of EVD show a lower frequency of HLA-DR-positive T cells [48].

203 Conclusion

294 By using fecal samples and targeted capture enrichment, non-invasive assessment of
295 numerous individuals from wild populations is possible. Here, we demonstrate that this
296  approach can be used to analyze temporal genetic changes in wild great ape populations in
297 response to environmental factors. Additionally, we present candidate loci that may have
298 facilitated the survival of gorilla individuals or groups after an outbreak of the Zaire Ebola virus.
299  Understanding putative adaptive responses to this pathogen in wild populations can help to
300 advance our knowledge on the natural dynamics of this severe disease. Such a strategy might
301 be useful in a broader context, since these and other primates are susceptible to other

302 infectious diseases such as Covid-19 [49].

303

304 Methods

305 Samples, DNA extraction, library preparation. Non-invasive fecal samples from
306  western lowland gorillas were collected between 2001 and 2014 in Odzala-Kokoua National

12
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307  Park, Republic of Congo [18]. Among them, we selected 31 samples from previously identified
308 individuals. Sixteen of those individuals were declared missing after the epidemic in 2004 [13].
309 They died during the time span of the epidemic and were identified here as non-survivors.
310  Fifteen individuals were observed before and after the epidemic, and were described here as
311 survivors (Fig. 1A and Supplementary Table S1) [17]. Samples were collected by field
312  investigators wearing masks and gloves, and were dried with silica beads and then stored at

313  room temperature until arrival in a laboratory where they were stored at 4°C until extraction.

314 DNA was extracted from 10mg of dried sample using the 2CTAB/PCI protocol [50] using
315  negative controls that were checked for contamination before subsequent experiment. Three
316  different extractions were carried out, except for samples G778, G374, G344, G498 and G372,
317  where only two extractions were performed (Supplementary Table S1). A DNA library [51-53]
318 and a 16S rRNA library [54-56] were prepared for each extract. Isolated DNA samples were
319  quantified with Qubit with a mean estimated concentration of 13.3 ng/ul (range: 0.90-74.7).
320 Whenever possible, a total of 250 ng of DNA was used to construct DNA libraries, but never
321 more than a total volume of 33 pl was taken from any single sample. DNA was sheared with a
322  Covaris S2 instrument and 88 fecal DNA (fDNA) libraries were prepared following a custom
323  dual-indexing protocol with 25 cycles of amplification [51, 52]. Subsequent to DNA library
324  preparation, 88 16S rRNA libraries were prepared using 1 ul of total DNA. The V3 and V4
325  regions of 16S rRNA were target amplified using modified 341F and 806Rb primers [54, 55,
326  57], incorporated into the dual-indexing protocol [52]. The forward primer (IS1_P5_16S_341f:
327 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCTACGGGNGGCWGCAG), and
328 reverse primer (1S2_P7_16S_806rB:
329 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT) include
330 the complementary sequences necessary for the final indexing step [52]. Protocols are

331 provided in [53].
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332 Target Design, Capture and Sequencing. RNA baits covering the target space were
333 designed and synthesized by Agilent with a minimum of 3x bait coverage. The target space
334 included specific autosomal genes (123 genes) and 15 neutral regions (~10kb each)
335 (Supplementary Table S2). For target enrichment, the fDNA libraries were pooled into one
336  equimolar batch and subjected to two consecutive rounds of DNA capture with the RNA baits
337 in 8 hybridizations. Captured fDNA libraries were sequenced on the lllumina system in four
338  HiSeq 2500 2x125 lanes and one HiSeq 2500 rapid run at 2x250 bp. The 16S libraries were
339 sequenced on one HiSeq 2500 rapid run 2x250 bp lane. In addition, we generated paired-end
340 sequences from the fDNA libraries on four HiSeq 4000 lanes (2x150bp) to study the whole

341 microbiome composition (Table S8).

342 Mapping and Variant Discovery. Prior to mapping, paired-end reads belonging to the
343 same library but sequenced in different lanes were merged into a single FASTQ file. PCR
344  duplicates were directly removed from FASTQ files using FASTuniq (v1.1) [58]. Overlapping
345 reads were merged (minimum overlap of 10 bp, minimum length of final read to 50 bp) using
346  PEAR (v0.9.6) [59]. Reads were mapped using BWA mem (v0.7.12) [60] to the human reference
347 genome Hg19 (GRCh37 from the UCSC database). Assembled reads were mapped
348 considering single-end specifications and unassembled reads considering paired-end
349  specifications. Any remaining PCR duplicates were removed using PicardTools
350 MarkDuplicates (v1.95) (http://broadinstitute.github.io/picard/). Non-primary alignments and
351  reads with quality below 30 were filtered from the dataset with samtools (v1.5) [61]. Finally,
352  single-end and paired-end reads were merged into a single BAM file using PicardTools

353  MergeSamFiles (http://broadinstitute.github.io/picard/). The percentage of aligned reads for

354  each DNA extraction and sample was calculated by dividing the number of uniquely and high-
355 quality mapped reads (without duplicates) by the total number of sequenced reads. The
356  percentage of on-target aligned reads was calculated for each sample by dividing the number

357  of on-target filtered reads by the number of sequenced reads. The average target effective

14
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358 coverage was calculated dividing the number of aligned bases by the total length of the
359 targeted genomic space. Finally, the enrichment factor (ER) of the capture performance was
360 calculated using the ratio between the on-target reads by the total mapped reads over the
361  targeted size by genomic size (ER = (On-Target Reads/Mapped Reads)/(Target Size/Genome

362  Size) ). The coverage for each target region was retrieved using SAMtools bedcov [61].

363 For variant calling, all BAM files belonging to the same sample were merged into a
364  single BAM file using PicardTools MergeSamFiles (v1.95)
365  (http://broadinstitute.github.io/picard/). Variant discovery was performed using GATK ‘Unified
366  Genotyper’ [62] for each sample independently with the following parameters -out_mode
367 EMIT_ALL_SITES -stand_call_conf 5.0 -stand_emit_conf 5.0 -A BaseCounts -A GCContent -A
368 RMSMappingQuality -A BaseQualityRankSumTest. Afterwards, we merged each sample gvcf
369 to a single one using GATK ‘CombineVariants’ [62] with the following parameters -
370  genotypeMergeOptions UNIQUIFY —excludeNonVariant. We also included in the gvcf the
371 genotype information of available whole genome data of six Gorilla beringei beringei, eight
372  Gorilla beringei graueri, one Gorilla gorilla dielhi, and twenty-three Gorilla gorilla gorilla samples
373  [29, 30]. The VCF was filtered with VCFtools [63] to keep only biallelic positions with DP >3 and

374  quality > 30 and without indels.

375 Genotype likelihoods were directly obtained from BAM files with ANGSD [31] including
376  four Gorilla beringei beringei, four Gorilla beringei graueri, one Gorilla gorilla dielhi, and four
377  Gorilla gorilla gorilla, with the following parameters and only in the target space: -uniqueOnly
378 1 -remove_bads 1 -only_proper_pairs 1 -trim 0 -C 50 -baq 1 -minind 21 -skipTriallelic 1 -GL 2

379  -minMapQ 30 -doGlf 2 -doMajorMinor 1 -doMaf 2 -minMaf 0.05 -SNP_pval 1e-6.

380 Quality control. We evaluated the amount of human contamination in each fecal library
381 using the HuConTest script [64], as described previously [65]. The majority of samples have

382  less than 2% of human contamination, but samples G348 and G1392 have estimates of human
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383  contamination of 6.7% and 25.1%, respectively (Supplementary Table S3). These two samples
384  also show extreme values of heterozygosity (deviating >1s.d. from mean heterozygosity; Figure
385  S2). For the identification of individuals and markers with elevated missing data rates we used
386  the proportion of the target space covered by at least 4 reads. Individuals with less than 30%

387  of covered target space (4 reads) were not used for further analysis (G638 and G282).

388 A principal component analysis (PCA) was performed to validate that the genotype
389 information obtained for the case study gorillas was in concordance with previously published
390 data. We used PCANgsd [66] with the genotype likelihoods obtained with ANGSD (N=6,484),
391 including 13 previously published whole-genomes representative of each know gorilla
392  subspecies [29, 30]. We also obtained a PCA using the GATK genotype calls after keeping only

393  variants with minor allele frequency of 0.02 with plink --pca option (N=6051) [67].

394 Genetic distance, relatedness and heterozygosity. We used the genotype likelihood
395 information for the studied individuals to obtain the genetic distance by running ngsDist in
396 ANGSD [68] with the following parameters: --n_sites 5477 --probs TRUE --pairwise_del. Then,
397 we constructed an Euclidean distance matrix based on the genotypes and performed a
398 hierarchical clustering using the R package ape [69]. We also run PCAngsd [66] considering

399 only the study gorillas to discard any possible intra-group structure.

400 The theta coefficients of kinship (probability of a pair of randomly sampled homologous
401 alleles are identical by descent) were calculated using the NgsrelateV2 [70, 71] on the
402  genotype likelihood obtained with ANGSD [31]. Note that all possible genotype likelihoods,
403 even outside the target space (N=226,094), were used since the coverage of the kinship

404 markers was insufficient.

405 To assess global levels of heterozygosity, the unfolded SFS was calculated for each
406 sample separately, including thirteen gorilla whole-genomes representative of all gorilla

407  subspecies [29, 30], using ANGSD [31] and realSFS [72] only in the target space with the
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408 following quality filter parameters: -uniqueOnly 1 -remove_bads 1 -only_proper_pairs 1 -trim 0
409 -C 50 -bag 1 -minMapQ 20 -minQ 20 -setMaxDepth 200 -doCounts 1 -GL 1 -doSaf 1. We used

410  the human genome (Hg19) to determine the ancestral state.

411 Association analysis. The genotype calls obtained with GATK were further filtered with
412  Plink [67] to exclude variants considering their missing rate (--geno 0.05), minor allele
413  frequency (--maf 0.01) and Hardy-Weinberg equilibrium (--hwe 0.00001). The final dataset
414  consists of 27 samples (13 survivors and 14 non-survivors) and 6,852 high-quality variants.
415  Nominal significance was set at an alpha of 0.05 and a Bonferroni corrected alpha threshold of
416  7.3x10-6 (0.05/6,852) was defined to account for familywise error. Associations were tested for
417 by a chi-square allelic test with one degree of freedom and p-values were estimated by
418  permutation in plink (plink —assoc —mperm 10000). [73]. The p-values were plotted in a

419  Manhattan plot in R (v3.4.1).

420 The allele frequency for each group (survivors and non-survivors) was obtained using
421  the -freg2 option in VCFtools [63]. Then, we calculated the allele frequency difference per SNP
422 by subtracting the allele frequency in non-survivors from the allele frequency in survivors
423  (AFrequency). We chose a threshold of + 0.2, and plotted the allele frequencies using R. The
424  fixation index (Fsr) between both groups was calculated using VCFtools —weir-fst-pop option
425  (Weir and Cockerham) [63] with a threshold at 0.15, and results were plotted in R. We retrieved
426  markers with a < 0.05 in the association test and a p-value < 0.05 in the permutation test. The
427  ANGSD software [31] was used to perform a replication of the association analysis using the
428 following parameters -minQ 20 -minMapQ 30 -doAsso 1 -GL 1 -out assocGQ_filter -
429  doMajorMinor 1 -doMaf 1 -SNP_pval 1e-6 -minind 22 -minMaf 0.02. The output of the
430 association analysis are LRT values (Likelihood Ratio Test), which are chi square distributed
431  with one degree of freedom. Since we set a threshold of significance at 95% confidence, the
432  minimum score to be significant is LRT = 3.84. In both association analyses, we linked the

433 nominally significant SNPs with their genes (Supplementary Table S4 and S5). Genes with
17
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434  multiple nominally significant SNPs were considered to be potentially more relevant.
435  Subsequently, we compared the overlap of discovered genes between the datasets (Unified
436  Genotyper and ANGSD) in a Venn diagram (Supplementary Fig. S8) using the R package

437  VennDiagram [74].

438 Prediction of functional consequences of the significant markers. We used VEP
439  (v91) [75] for the functional annotation of the associated SNPs. We retrieved the predicted
440 consequence of each significant marker found in the potentially related genes to Ebola immune
441 response, as well as PolyPhen-2 [32], Sift [76] and C-scores [77]. Associated loci were
442  intersected with hits in the GWAS catalogue [78] within 5,000 bp. We also performed an
443  overrepresentation test using Panther [79] to test whether any of the potentially related genes
444  are overrepresented in biological or functional categories compared to the rest of targeted
445  genes with no apparent association with Ebola. In addition, we mapped previously published
446  RNA sequencing data from six tissues (brain, cerebellum, heart, kidney, liver, testis) in two
447  gorilla individuals [35] to the annotated genes in the human reference genome (using the
448 Ensembl Release 75 gene models) using Tophat2 [80], and estimated the gene expression with
449  htseqg-count [81]. Gene expression is reported log2-normalized, and we counted the number
450 of reads overlapping the candidate missense mutations to confirm their transcriptional activity
451 in gorillas. Values presented are the cumulative sums of RNA sequencing reads across

452 individuals and tissues.

453 Microbiome sequencing. 16S RNA sequencing reads were processed using QIIME
454  (v1) (Quantitative Insights Into Microbial Ecology) [82] to analyze the 16S rRNA. First, paired-
455 end raw reads were merged using fastg-join from ea-utils package [83]. Then, with usearch
456  software [84], merged FASTQ reads were filtered (-fastq_trunclen 253 and —fastq_maxee 0.5).
457 Using QIIME environment, the metadata mapping file was constructed and validated
458  (validate_mapping_file.py) and QIIME labels were added (add_giime_labels.py). We applied

459  open-reference OTUs picking (pick_open_reference_otus.py). Summary statistics were
18
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460 computed using biom summarize-table. The resulting dataset was rarefied to an even depth of
461 10,000 sequences per extract (6 extracts were excluded in diversity analysis: G191_5782,
462 (3445827, G314_5824, G489_5834, G489_5835, G344_5828). Finally, we ran diversity
463 analysis with a sequence depth of 10,000 (core_diversity_analysis.py). Taxa abundance
464  quantification and significance or relative taxa abundance (T-test and p-values adjusted for

465 multiple testing with Bonferroni-correction) were computed in R.

466 Deep sequencing of the DNA library (pre-capture) was performed as stated above. To
467  remove sequencing adapters and merge the read pairs, we used AdapterRemoval v2.2.4 with
468  default settings [85]. We then aligned the merged sequences to the gorilla reference genome
469  Kamilah_GGO_v0 using bwa mem [60] to remove host DNA. Subsequently we filtered out
470 potential human contaminant DNA by aligning the unmapped sequences to the human
471  reference genome hg19, resulting in 724,738,878 filtered sequences. MALT v0.4.1 (MEGAN
472  Alignment Tool) [39] was used to characterize the microbial profile, using all archaeal, viral,
473 and bacterial reference sequences downloaded from NCBI on 06.05.2019. These were
474  indexed using malt-build to build a custom database. Malt-run was then used with minimum
475 percent identity (--minPercentldentity) set to 95, the minimum support (--minSupport)
476  parameter set to 10, and the top percent value (--topPercent) set as 1, other parameters were
477  set to default. The resulting rma6 files were visualized with MEGANG [86] and clustered in a
478  Principal Coordinate analysis (PCoA) and Neighbor Joining Tree analysis according to

479  microbial composition on the species level (Supplementary Figs. S14 and S15).

480
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482  Fig. 1. Sample description. A) Geographical map of the extant range of gorillas and the
483  Odzala-Kokoua National Park (Republic of Congo) where fecal samples were collected
484  between 2001 and 2014, overlapping the Ebola outbreak in 2004. B) Average coverage
485 reached in the target space per sample in both studied groups. C) Percentage of human

486  contamination in each fecal sample.
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Fig. 2. Genetic distance dendrogram and heterozygosity among non-survivor and
survivor gorilla groups. A) Clustering dendrogram of pairwise genetic distance derived from
genotype likelihoods (N=5,477). B) Mean heterozygosity (bp™) in non-survivors and survivors;

not significantly different (Student t-test, p-value=0.34).
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Fig. 3. Association analysis to detect SNPs and candidate genes related to survivorship
to EBOV outbreak. A) Significance level (threshold set at a=0.05, -log10(P-value)=1.30). B)
Difference in allele frequency (threshold set at +0.2). C) Fixation index (threshold set at

Fsr=0.15). Dashed lines delineate the thresholds used.
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500 Availability of data and materials

501 The dataset generated during the current study will be made publicly available upon
502 acceptance (raw sequencing data to ENA, project ID: PRJEB43265). It will be available to

503 reviewers from the corresponding author on request.
504  Abbreviations

505 EBOV: Ebola virus

506 EVD: Ebola virus Disease

507 GWAS: Genome-Wide Association Study

508 IUCN: International Union for Conservation of Nature
509  PCA: Principal Component Analysis

510  SNP: Single Nucleotide Polymorphism

511 References

512 1. Centers for Disease Control and Prevention. History of Ebola Virus Disease. U.S.
513  Department of Health & Human Services. 2018.

514 2. World Health Organization. Situation Report - Ebola Virus Disease. 2016.

515 3. World Health Organization. External Situation Report 98 - Ebola Virus Disease. 2020.
516  https://www.who.int/publications/i/item/10665-332654.

517 4. Kuhn JH, Becker S, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, et al. Proposal

518 for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and
519  virus abbreviations. 2010;155:2083-103.

520 5. Centers of Disease Control and Prevention. What is Ebola Virus Disease? 2018.

521 6. World Health Organization. Ebola virus disease. 2018.

522 7. Feldmann H. Ebola haemorrhagic fever. Lancet. 2011;377:849-62.

523 8. Smith KF, Acevedo-Whitehouse K, Pedersen AB. The role of infectious diseases in
524  biological conservation. Anim Conserv. 2009;12:1-12.

525 9. Walsh PD, Abernethy KA, Bermejo M, Beyers R, De Wachter P, Akou ME, et al. Letters
526  To Nature. Nature. 2003;422 April:611-4.

527 10. Rouquet P, Froment J-M, Bermejo M, Kilbourn A, Karesh W, Reed P, et al. Wild

528  Animal Mortality Monitoring and Human Ebola Outbreaks, Gabon and Republic of Congo,
529  2001-2003. Emerg Infect Dis. 2005;11:283-90.
530 11. Leroy EM, Rouquet P, Formenty P, Kilbourne A, Froment J, Bermejo M, et al.
531 Mulitple Ebola Virus Transmission Events and Rapid Decline of Central African Wildlife. Science
532  (80-).2004;303 January:387-90.
533 12. Bermejo M, Rodriguez-teijeiro JD, lllera G, Barroso A, Vila C, Walsh PD. Ebola
534  Outbreak Killed 5000 Gorillas. 2006;314 December.

23


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

535 13. Caillaud D, Levréro F, Cristescu R, Gatti S, Dewas M, Douadi M, et al. Gorilla
536  susceptibility to Ebola virus: the cost of sociality. Curr Biol. 2006;16:489-91.

537 14. Maisels F, Bergl R, Williamson E. Gorilla gorilla (errata version published in 2016).
538 The IUCN Red List of Threatened Species. 2016.

539 15. Leendertz SAJ, Wich SA, Ancrenaz M, Bergl RA, Gonder MK, Humle T, et al. Ebola

540 in great apes - current knowledge, possibilities for vaccination, and implications for
541 conservation and human health. Mamm Rev. 2017;47:98-111.

542 16. Genton C, Cristescu R, Gatti S, Levréro F, Bigot E, Motsch P, et al. Using
543  demographic characteristics of populations to detect spatial fragmentation following suspected
544  ebola outbreaks in great apes. Am J Phys Anthropol. 2017;164:3-10.

545 17. Genton C, Cristescu R, Gatti S, Levréro F, Bigot E, Caillaud D, et al. Recovery
546  Potential of a Western Lowland Gorilla Population following a Major Ebola Outbreak: Results
547  from a Ten Year Study. PLoS One. 2012;7:e37106.

548 18. Le Gouar PJ, Vallet D, David L, Bermejo M, Gatti S, Levréro F, et al. How Ebola
549  impacts genetics of Western lowland gorilla populations. PLoS One. 2009;4:€8375.
550 19. Li X, Zai J, Liu H, Feng Y, Li F, Wei J, et al. The 2014 Ebola virus outbreak in West

551  Africa highlights no evidence of rapid evolution or adaptation to humans. Nat Publ Gr. 2016;
552  June:1-9.

553 20. Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu
554  Rev Immunol. 2012;30:759-95.
555 21. Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the interplay between intestinal

556  microbiota and host immunity in health and disease: Lessons learned from germfree and
557  gnotobiotic animal models. Eur J Microbiol Immunol. 2016;6:253-71.

558 22. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health
559 and disease. Cell Res. 2020;30:492-506.
560 23. Dominguez-Diaz C, Garcia-Orozco A, Riera-Leal A, Padilla-Arellano JR, Fafutis-

561 Morris M. Microbiota and its role on viral evasion: Is it with us or against us? Front Cell Infect
562  Microbiol. 2019;9 JUL:256.

563 24. Gou W, Fu Y, Yue L, Chen GD, Cai X, Shuai M, et al. Gut microbiota may underlie
564  the predisposition of healthy individuals to COVID-19. medRxiv. 2020.
565 25. Moeller AH, Peeters M, Ayouba A, Ngole EM, Esteban A, Hahn BH, et al. Stability of

566 the gorilla microbiome despite simian immunodeficiency virus infection. Mol Ecol.
567  2015;24:690-7.
568 26. Genton C, Pierre A, Cristescu R, Lévréro F, Gatti S, Pierre J-S, et al. How Ebola
569 impacts social dynamics in gorillas: a multistate modelling approach. J Anim Ecol.
570 2015;84:166-76.

571 27. Fischer A, Prifer K, Good JM, Halbwax M, Wiebe V, André C, et al. Bonobos fall
572  within the genomic variation of Chimpanzees. PLoS One. 2011;6:1-10.
573 28. Voight BF, Adams AM, Frisse LA, Qian Y, Hudson RR, Di Rienzo A. Interrogating

574  multiple aspects of variation in a full resequencing data set to infer human population size
575  changes. Proc Natl Acad Sci U S A. 2005;102:18508-13.

576 29. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, et al.
577 Great ape genetic diversity and population history. Nature. 2013;499:471-5.
578  doi:10.1038/nature12228.

579 30. Xue Y, Prado-martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, et al.
580 Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding.
581  Science (80-). 2015;348:242-5.

582 31. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation
583  Sequencing Data. BMC Bioinformatics. 2014.

584 32. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A
585 method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248-9.
586 33. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for

24


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

587  genomes. Nat Protoc. 2016;11:1-9.

588 34. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general
589 framework for estimating the relative pathogenicity of human genetic variants. Nat Genet.
590 2014;46:310-5.

591 35. Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, et al. The
592  evolution of gene expression levels in mammalian organs. Nature. 2011;478.
593 36. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-

594  EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids
595 Res. 2017;45 Database issue:D896-901. doi:10.1093/nar/gkw1133.

596 37. Gomez A, Petrzelkova K, Yeoman CJ, Vickova K, Koppova I, Carbonero F, et al. Gut
597  microbiome composition and metabolomic profiles of wild western lowland gorillas ( Gorilla
598  gorilla gorilla ) reflect host ecology. 2015; September 2014:2551-65.

599 38. Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut
600 microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun.
601  2018;9:1786.

602 39. Vagene AJ, Herbig A, Campana MG, Robles Garcia NM, Warinner C, Sabin S, et al.
603  Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico.
604  Nat Ecol Evol. 2018;2:520-8. doi:10.1038/s41559-017-0446-6.

605 40. Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vickova K, Umana JD, et al.
606  Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME
607 J.2016;10:514-26. doi:10.1038/ismej.2015.146.

608 41. Gomez A, Petrzelkova K, Yeoman CJ, Vickova K, Mrazek J, Koppova |, et al. Gut
609 microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla
610  gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551-65.

611 42. Bittar F, Keita MB, Lagier J-C, Peeters M, Delaporte E, Raoult D. Gorilla gorilla gorilla
612  gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular
613  tools. Sci Rep. 2014;4:7174. doi:10.1038/srep07174.

614 43. Hernandez-Rodriguez J, Arandjelovic M, Lester J, de Filippo C, Weihmann A, Meyer
615 M, et al. The impact of endogenous content, replicates and pooling on genome capture from
616  faecal samples. Mol Ecol Resour. 2017. doi:10.1111/1755-0998.12728.

617 44. Fontsere C, Alvarez-Estape M, Lester J, Arandjelovic M, Kuhlwilm M, Dieguez P, et
618  al. Maximizing the acquisition of unique reads in non-invasive capture sequencing experiments.
619 Mol Ecol Resour. 2020;n/a n/a. doi:https://doi.org/10.1111/1755-0998.13300.

620 45. Kerviel A, Thomas A, Chaloin L, Favard C, Muriaux D. Virus assembly and plasma
621 membrane domains: Which came first? Virus Res. 2013;171:332—40.

622 46. Lefranc M-P. Immunoglobulin and T Cell Receptor Genes: IMGT® and the Birth and
623  Rise of Immunoinformatics. Front Immunol. 2014;5:22.

624 47. Saeed MF, Kolokoltsov AA, Freiberg AN, Holbrook MR, Davey RA.

625 Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus. PLoS Pathog.
626 2008;4:21000141.

627 48. Ruibal P, Oestereich L, Ludtke A, Becker-Ziaja B, Wozniak DM, Kerber R, et al.
628 Unigue human immune signature of Ebola virus disease in Guinea. Nat 2016 5337601.
629 2016;533:100.

630 49. Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation
631 and primate COVID-19 risk. Commun Biol. 2020;3:641. doi:10.1038/s42003-020-01370-w.
632 50. Vallet D, Petit EJ, Gatti S, Levréro F, Ménard N. A new 2CTAB/PCI method improves

633  DNA amplification success from faeces of Mediterranean (Barbary macaques) and tropical
634  (lowland gorillas) primates. Conserv Genet. 2008;9:677-80.

635 51. Meyer M, Kircher M. lllumina Sequencing Library Preparation for Highly Multiplexed
636 Target Capture and Sequencing. Cold Spring Harb Protoc. 2010;2010:pdb.prot5448-
637  pdb.prot5448.

638 52. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in

25


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

639  multiplex sequencing on the lllumina platform. Nucleic Acids Res. 2012;40.

640 53. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for
641 multiplexed target capture. Genome Res. 2012;22:939-46.
642 54. Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, et al.

643 DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in
644  microbial ecology studies. Appl Environ Microbiol. 2014;80:5116-23.

645 55. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation
646  of general 16S ribosomal RNA gene PCR primers for classical and next-generation
647  sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1-e1.

648 56. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
649  Ultra-high-throughput microbial community analysis on the lllumina HiSeq and MiSeq
650 platforms. ISME J. 2012;6:1621-4.

651 57. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
652  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
653 platforms. ISME J. 2012;6:1621-4.

654 58. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, et al. FastUniq: A Fast De Novo
655  Duplicates Removal Tool for Paired Short Reads. PLoS One. 2012;7:1-6.

656 59. Stamatakis A, Zhang J, Kobert K. Genome analysis PEAR: a fast and accurate
657  Illlumina Paired-End reAd mergeR. 2014;30:614-20.

658 60. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
659  transform. Bioinformatics. 2009;25:1754-60.

660 61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
661 Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078-9.

662 62. Depristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, et al. A

663  framework for variation discovery and genotyping using next-generation DNA sequencing data.
664  Nat Genet. 2011;43:491-8.

665 63. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The
666  variant call format and VCFtools. Bioinformatics. 2011;27:2156-8.
667 64. Kuhlwilm M, Fontsere C, Han S, Alvarez-Estape M, Marques-Bonet T. HuConTest:

668  Testing human contamination in great ape samples. Genome Biology and Evolution. 2021;
669  doi: 10.1093/gbe/evab117.

670 65. Fontsere C, Alvarez-Estape M, Lester J, Arandjelovic M, Kuhlwilm M, Dieguez P, et
671 al. Maximizing the acquisition of unique reads in non-invasive capture sequencing experiments.
672 Mol Ecol Resour. 2020;:1755-0998.13300.

673 66. Meisner J, Albrechtsen A. Inferring population structure and admixture proportions
674  inlow-depth NGS data. Genetics. 2018;210:719-31.
675 67. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:

676 A tool set for whole-genome association and population-based linkage analyses. Am J Hum
677  Genet. 2007;81:559-75.

678 68. Vieira FG, Lassalle F, Korneliussen TS, Fumagalli M. Improving the estimation of
679  genetic distances from Next-Generation Sequencing data. Biol J Linn Soc. 2016;117:139-49.
680  doi:https://doi.org/10.1111/bij.12511.

681 69. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in
682 R language. Bioinformatics. 2004;20:289-90.

683 70. Korneliussen TS, Moltke I. NgsRelate: A software tool for estimating pairwise
684 relatedness from next-generation sequencing data. Bioinformatics. 2015;31:4009-11.

685 71. Hanghgj K, Moltke |, Andersen PA, Manica A, Korneliussen TS. Fast and accurate

686 relatedness estimation from high-throughput sequencing data in the presence of inbreeding.
687  Gigascience. 2019;8.

688 72. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J. SNP calling, genotype
689 calling, and sample allele frequency estimation from new-generation sequencing data. PLoS
690 One. 2012;7.

26


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

691 73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:
692 A tool set for whole-genome association and population-based linkage analyses. Am J Hum
693  Genet. 2007;81:559-75.

694 74. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
695 customizable Venn and Euler diagrams in R. 2011.

696 75. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl
697  Variant Effect Predictor. Genome Biol. 2016;17:122. doi:10.1186/s13059-016-0974-4.

698 76. Sim N, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server : predicting
699 effects of amino acid substitutions on proteins. 2012;40 June:452-7.

700 77. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general

701 framework for estimating the relative pathogenicity of human genetic variants. Nat Genet.
702  2014;46:310-5.

703 78. Macarthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-
704  EBI Catalog of published genome-wide association studies ( GWAS Catalog ). 2017;45
705  November 2016:896-901.

706 79. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al.
707  PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res.
708  2003;:2129-41.

709 80. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate
710  alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome
711 Biol. 2013;14:R36. doi:10.1186/gb-2013-14-4-r36.

712 81. Anders S, Pyl PT, Huber W. HTSeqg--a Python framework to work with high-
713  throughput sequencing data. Bioinformatics. 2015;31:166-9.
714 82. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et

715 al. QIIME allows analysis of high- throughput community sequencing data. Nat Methods.
716  2010;7:335-6.

717 83. Aronesty E. ea-utils: “Command-line tools for processing biological sequencing
718  data.” 2011.

719 84. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
720  Bioinformatics. 2017;26:2460-1.

721 85. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming,
722  identification, and read merging. BMC Res Notes. 2016;9:88. doi:10.1186/s13104-016-1900-2.
723 86. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data.
724  Genome Res . 2007;17:377-86. doi:10.1101/gr.5969107.

725

726 Declarations

727  Acknowledgments

728 We are grateful to S. Gatti, F. Levréro, C. Genton, R. Cristescu for their assistance with
729  sample collection on site. We thank the teams of the ECOFAC program (EU) and African Parks
730  Networks for logistic assistance and permission to work in Odzala-Kokoua National Park. The
731  storage and extraction of fecal samples were performed in the molecular ecology platform

732  (UMR 6553 Ecobio, CNRS/UR1) dedicated to non-invasive samples.

27


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

733 Funding

734 C.F. is supported by “la Caixa” PhD fellowship, fellowship code
735 LCF/BQ/DE15/10360006. M.K. is supported by “la Caixa” Foundation (ID 100010434),
736  fellowship code LCF/BQ/PR19/11700002. J.N is supported by the European Union's Horizon
737 2020 research and innovation programme under grant agreement no. 676154 (ArchSci2020)
738 and an EMBO short-term fellowship STF-8036. P.F. is supported by the Innovation Fund
739  Denmark. H.R.S is supported by The Danish Council for Independent Research | Natural
740  Sciences. AN. is supported by BFU2015-68649-P (MINECO/FEDER, UE). M.T.P.G. is
741 supported by the Danish Basic Research Foundation award DNRF143. T.M.-B is supported by
742  BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International
743  Early Career, Obra Social "La Caixa" and Secretaria d’Universitats i Recerca del Departament
744  d’Economia i Coneixement de la Generalitat de Catalunya. P.L.G., N.M. and D.V. are supported
745 by the French National agency for research via the ANR-11-JVS7-015 IDiPop project. D.H. is
746  supported by Wellcome Investigator Award (202802/2/16/Z) and works in the Medical
747  Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported
748 by the Medical Research Council (MC_UU_00011/1-7). This long-term research on gorillas was
749 funded by the ECOsystemes FORestiers program (Ministere de [I'Ecologie et du
750  Développement Durable France), the Espéces-Phares program (DG Environnement, UE) and

751 Lundbeck Foundation Visiting Professorship R317-2019-5 grant to T.M.-B. and M.T.P.G.

752  Contributions
753 D.H., T.M.-B,, P.L.G., N.M,, D.V., ANN. and M.T.P.G. conceived and designed the study; D.H.,

754  D.V. and C.S.O. performed experiments; C.F., M.K., D.H., J.H.R., C.H.S.O and J.N. analyzed
755  data; P.L.G.,N.M. and D.V. collected genetic and demographic data; P.F., H.R.S., C.H., provided
756  analytical support. C.F., M.K., D.H., and T.M.-B. wrote the manuscript with input and approval

757  from the other authors.

28


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.4464009; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

758 Corresponding authors

759  Correspondence to: Claudia Fontsere (claudia.fontsere@upf.edu), Tomas Marques-Bonet

760 (tomas.marques@upf.edu) or Martin Kuhlwilm (martin.kuhlwilm@upf.edu)

761 Ethics declarations

762  Ethics approval and consent to participate
763  Not applicable.

764 Consent for publication

765  Not applicable.

766 Competing interests

767  The authors declare that they have no competing interests.
768 Additional information

769  Additional File 1. Excel file with tables S1-S13.

770  Additional File 2. PDF with Figures S1-S15.

29


https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/

