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Abstract 30 

Background 31 

Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past 32 

decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal 33 

virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone 34 

caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla) 35 

population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the 36 

Ebola outbreak in the western lowland gorilla population.  37 

Results 38 

Associations with survivorship were evaluated by utilizing DNA obtained from fecal 39 

samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15 40 

individuals observed before and after the epidemic (survivors). We used a target enrichment 41 

approach to capture the sequences of 123 genes previously associated with immunology and 42 

Ebola virus resistance and additionally analyzed the gut microbiome which could influence the 43 

survival after an infection. Our results indicate no changes in the population genetic diversity 44 

before and after the Ebola outbreak, and no significant differences in microbial community 45 

composition between survivors and non-survivors. However, and despite the low power for an 46 

association analysis, we do detect six nominally significant missense mutations in four genes 47 

that might be candidate variants associated with an increased chance of survival. 48 

Conclusion 49 

This study offers the first insight to the genetics of a wild great ape population before 50 

and after an Ebola outbreak using target capture experiments from fecal samples, and presents 51 

a list of candidate loci that may have facilitated their survival. 52 
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Background 55 

The Ebola virus (EBOV), discovered in 1976, causes a severe disease and often fatal 56 

hemorrhagic fever for which numerous human outbreaks have been reported throughout 57 

Africa [1]. The most virulent outbreak reported to date was in West Africa in December 2013 58 

and lasted until 2016 with more than 28,000 confirmed or suspected human cases and more 59 

than 11,000 human deaths [2]. Since then, other outbreaks of Ebola have been observed. In 60 

June 2020, when the 2018 outbreak was declared over by the World Health Organization 61 

(WHO), 3,470 cases had been reported with 2,287 deaths (fatality rate of 66%) [3].  62 

EBOV belongs to the single-stranded RNA virus family Filoviridae [4] with five distinct 63 

strains in the Ebola genus: Zaire, Sudan, Budibugyo, Taï Forest and Reston. The first three are 64 

responsible for the majority of human infections [5, 6]. The virus is highly infectious and can 65 

enter the body through direct contact of broken skin or mucous membranes with infected blood 66 

or body fluids, causing symptoms including fever, vomiting, diarrhea, internal and external 67 

bleeding. Ebola hemorrhagic fever or Ebola virus disease (EVD) is an acute and severe disease 68 

with a fatality rate in humans around 50% [5–7]. 69 

Infectious diseases such as Ebola are considered to be a threat to the survival of African 70 

great apes [8], together with other threats such as habitat loss, climate change and poaching 71 

[9]. In some cases, the human outbreaks have been linked to contact with infected bushmeat 72 

from gorillas or chimpanzees [10] and several surveys have reported dramatic declines in 73 

populations of great apes in parallel with human EVD outbreaks with laboratory confirmation of 74 

Ebola virus infection in some carcasses [10–12]. Gorilla populations from the Republic of Congo 75 

suffered severe die-offs during a chuman EVD outbreak near the Lossi sanctuary in 2002-2003 76 

[12] and Odzala-Kokoua National Park in 2004 [13] with reported mortality rates as high as 77 
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95%. In Lossi sanctuary alone, it was estimated that the Ebola virus killed 5,000 wild gorillas 78 

[12]. The severe population decline has contributed to the 2007 shift of the conservation status 79 

of western gorillas from “endangered” to “critically endangered” by the International Union for 80 

Conservation of Nature (IUCN) [14]. Furthermore, the recent outbreak of human EVD in North 81 

Kivu (Democratic Republic Congo) [3] was in close proximity to the remnant populations of 82 

eastern gorilla species, hence a human to ape transmission of the virus could potentially mark 83 

the end of existence for this critically endangered species. 84 

Threats such as infectious diseases are relevant for conservation efforts, and efficient 85 

strategies are needed to reduce the effects of EVD on wild great ape populations [15]. 86 

Understanding any genetic impact that EBOV outbreaks might have on wild populations is vital, 87 

as EVD contributes to the fragmentation of gorilla populations due to a heterogeneous spatial 88 

influence of the outbreak [16]. Social dynamics in gorillas are rapidly affected by Ebola through 89 

a decrease in social cohesion, although recovery after the outbreak has been observed [17, 90 

18]. One study reported that solitary individuals were less affected than individuals living in 91 

groups, marking the relevance of social dynamics for transmission [13]. A previous study using 92 

17 microsatellites found no loss of genetic diversity after one EBOV outbreak in Lossi sanctuary 93 

and Odzala-Kokoua National Park, which could be explained by post-epidemic immigration, 94 

sufficiently large remnant effective population size or a short period of time after the decline 95 

[18]. The present study represents a continuation of this aforementioned research since many 96 

aspects of EBOV infection in wild gorilla populations are not yet explored, such as genetic 97 

variants in survivors that might contribute to resistance or higher chance of survival to EVD. In 98 

humans, such an approach was used during the 2014 EBOV outbreak, although no evidence 99 

of adaptation was found in the survivors [19].  100 

Furthermore, microbial organisms inhabiting the gut also play a potentially crucial role 101 

in training and maintaining the immune system [20–22]. Where some commensal microbes are 102 

associated with priming the immune response or activating antiviral responses, others facilitate 103 
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the development of the infection or suppress the immune response [23]. For instance, a recent 104 

study reported a link between the gastrointestinal microbiome of healthy humans and a 105 

predisposition to severe COVID-19 [24], with an abundance of Klebsiella, Streptococcus, and 106 

Ruminococcus being correlated with elevated levels of proinflammatory cytokine. The 107 

association between infectious diseases and the gut microbiome of nonhuman primates is less 108 

well understood. While the gut microbiome of SIVgor-infected (gorilla Simian 109 

Immunodeficiency virus) wild gorillas seems to be more robust to dysbiosis than those of 110 

chimpanzees and humans [25], it is unclear how shifts in the gorilla gut microbiome can impact 111 

the severity of viral infections, and in particular the immune response to Ebola virus infection. 112 

Long-term monitoring of a western lowland gorilla (Gorilla gorilla gorilla) population in 113 

Odzala-Kokoua National Park (Republic of Congo) has been ongoing since 2001 until 2017 114 

encompassing the Ebola outbreak of 2004 [16–18, 26] which resulted in a mortality rate of 95% 115 

[13]. Population monitoring involved the recording of individual histories of hundreds of 116 

identified individuals, the determination of sex, age and social status and the collection of fecal 117 

samples in different time periods. This close monitoring through time was fundamental to 118 

determine which individuals were either not affected or survived the Ebola outbreak and which 119 

went missing with their cause of death assumed to be EVD.  120 

Here, we have obtained genetic data from gorilla fecal samples pre- and post-outbreak 121 

to explore potential associations to survivorship. Particularly, we compare the genetic variation 122 

at the single nucleotide level in 123 autosomal target-captured genes with putative roles in 123 

virus immune response and the gut microbiome composition in a reduced panel of survivors 124 

and non-survivors of this Zaire EBOV outbreak. With that we show that targeted capture on 125 

non-invasive fecal samples and next-generation sequencing can be used to study the impact 126 

of this severe disease in a natural population.  127 
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Results 128 

A total of 31 non-invasive fecal samples from identified western lowland gorillas were 129 

collected between 2001 and 2014 in Odzala-Kokoua National Park, Congo [18] (Fig. 1A). 130 

Sixteen of these were from individuals declared missing after the Zaire Ebola virus outbreak in 131 

2004, and suspected to have died because of the infection, here termed ‘non-survivors’. These 132 

samples were collected between 2001 and 2004. The remaining 15 samples were from gorillas 133 

identified before the epidemic and still observed after the epidemic, and will be identified 134 

henceforth as ‘survivors’ [17]. These 15 samples were collected between 2005 and 2014 135 

(Supplementary Table S1). We used target capture enrichment to sequence the genomic 136 

regions of 123 genes, which had previous evidence of putative roles in immune response to 137 

EBOV or other viruses (Supplementary Table S2). In addition, 15 neutral regions previously 138 

studied in other human and non-human primate studies were also targeted [27, 28] 139 

(Supplementary Table S2). Target design and all analyses were performed using the human 140 

reference genome due to the higher quality of annotations compared to the gorilla reference 141 

genome. We sequenced an average of 73 million paired reads per individual, 12% of which 142 

were unique (Supplementary Table S3). On average, 0.38% of the data mapped to the target 143 

space, representing an on-target effective coverage of 53.89-fold (range: 2.52-fold to 230.70-144 

fold; Fig. 1B, Supplementary Table S3), with 72% of the target space covered by at least 4 145 

reads per individual. Samples G282, G1392 and G638 performed poorly, with <50% of the 146 

target space covered at a minimum depth of 4 reads (Supplementary Fig. S1). Overall 147 

performance can be assessed by calculating how well the capture resequencing experiment 148 

went relative to expectations had we performed random shotgun sequencing. In that regard, 149 

we observe an average enrichment of 125-fold (88 - 346-fold) (Supplementary Table S3). 150 

Individuals with extremely low proportions of target space covered by at least 4 reads (<30%) 151 

(G638 and G282) and high heterozygosity and high levels of human contamination were 152 
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removed from further analysis (individuals G374 and G1392, Fig. 1C and Supplementary Fig. 153 

S2, Table S3). 154 

With the final dataset of 13 survivors and 14 non-survivors, we validated that the 155 

genotype information obtained was in concordance with previously published gorilla whole-156 

genomes, as determined by a principal component analysis (PCA) (Supplementary Fig. S3). 157 

We estimated kinship for each pair of individuals, identifying a single case of close relatedness 158 

(1st degree) among them (non-survivor G374 and survivor G739; kinship coefficient = 0.4) 159 

(Supplementary Fig. S4). In addition, we observed no stratification correlating with 160 

survivor/non-survivor classification. Individuals appear to be dispersed randomly across a 161 

dendrogram derived from shared genotype likelihood dosage states (Fig. 2A), and a univariate 162 

linear regression of survivorship on the top 5 PCs identified no significant structure associated 163 

to survivorship (P-value > 0.1; Supplementary Fig. S5). Hence, we determined no genome-164 

wide group structure differences between survivors and non-survivors. The overall level of 165 

genetic diversity within the target space of the studied gorillas was, on average, lower than that 166 

of western lowland gorillas obtained from whole-genome sequencing (Supplementary Fig. S6) 167 

[29, 30], an expected outcome following the target capture procedure. Moreover, there are no 168 

statistically significant differences in heterozygosity between survivors and non-survivors 169 

(Student’s t-test, p-value=0.34; Fig. 2B). 170 

In order to determine genetic differences between the groups, we calculated three 171 

summary statistics on a dataset of 6,852 high-quality variants: (1) the difference in allele 172 

frequency (ΔFrequency), (2) the fixation index (FST), and (3) the significance level (α) of each 173 

variant for its association with the binary trait survivor/non-survivor (Fig. 3). We found 118 SNPs 174 

within the target space that surpassed our α threshold in the association test, and we also 175 

reported their ΔFrequency and FST values. However, after controlling for type I error none of 176 

these remained significant. Out of these, seven genes have multiple nominally significant SNPs 177 

(CD1B, IGKV4-1, HLA-A, ACTB, LYN, CD68 and MX1), while 10 neutral regions (~10kb each) 178 
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have at least 1 nominally significant variant (Supplementary Table S4). For comparative 179 

validation, we repeated the association analysis using ANGSD [31], a software explicitly built 180 

to work with low coverage data that relies on genotype likelihoods. With this method, we were 181 

able to recover the majority of the genes found above (30 out of 36). However, ANGSD 182 

returned more hits and thus more genes (Supplementary Figs. S7, S8 and Table S5), rendering 183 

the above approach more conservative. 184 

Next, we explored the potential functional impact of the variants in the nominally 185 

significant candidate loci that differentiate survivors from non-survivors. While we found no 186 

significant associations with gene ontology categories, the analysis of predictions of functional 187 

consequences pinpointed six missense mutations which differed in frequency between the two 188 

groups (Supplementary Table S6), one each in the ATM, IGKV4-1 and RNF167 genes (all lower 189 

in survivors) and three in the ACTB (Actin Beta) gene (one unique to survivors, two lower in 190 

survivors, Supplementary Table S4). All three missense variants in ACTB are predicted as 191 

deleterious by both the PolyPhen [32] and SIFT [33] algorithms. Furthermore, the derived 192 

variant in survivors in the immunoglobuline-encoding IGKV4-1 might be deleterious (C-score 193 

> 20 [34]), hence potentially functionally relevant. Since we used the human genome for target 194 

design, mapping and variant calling, we caution that differences in exon usage or 195 

pseudogenization on the gorilla lineage might confound these inferences of protein-coding 196 

changes. In order to confirm the expression of these genes, and specifically the exons of 197 

interest, we mapped transcriptome data from six tissues in gorillas [35] to the same reference 198 

genome, and quantified expression levels. We confirmed the expression of these genes and 199 

found high transcript abundance (log2-value of counts >=9) for ACTB, RNF167 and ATM, while 200 

IGKV4-1 was only detected at low levels in these tissues (log2-value of counts = 5.84). We 201 

found ~10,000 RNA sequencing reads overlapping the three loci of interest in ACTB, 437 in 202 

RNF167, and 96 in IGKV4-1, supporting the expression of these specific loci in gorilla tissues, 203 

while for ATM only 10 reads overlapped (Supplementary Table S6). 204 
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Among the 118 significant SNPs, we found no direct overlap with loci associated to 205 

2,385 traits in genome-wide association studies (GWAS) for humans [36]. However, we found 206 

49 associated loci within close proximity (5,000 bp) to GWAS loci (Supplementary Table S7), 207 

among which the locus 19:1104078 near GPX4 stands out for its association with five blood 208 

cell traits (counts and percentages of leukocyte cell types). Furthermore, 6:29916885 in the 209 

HLA is associated to hemoglobin levels. Five loci in HLA-DRA are associated with different 210 

autoimmune diseases like systemic lupus erythematosus or multiple sclerosis (Supplementary 211 

Table S7). Furthermore, nine loci in this region (HLA-DRB5 and HLA-A) are associated with 212 

schizophrenia or autism spectrum disorder (Supplementary Table S7). 213 

It has been reported that intestinal microbiota play a critical role in immune response 214 

to infectious diseases [20–22]. Thus, the microbiome might be relevant for the survival of wild 215 

gorilla populations experiencing an Ebola outbreak. Taking advantage of the nature of the 216 

samples, we first analyzed the microbiota present in each fecal extraction using a 16S rRNA 217 

library (Methods). We obtained a total of 96,928,400 reads with an average sequencing depth 218 

of 1,101,459 (SD ± 418,989) reads per gorilla fecal extraction (Supplementary Table S8), and 219 

determined the abundance of taxa (Supplementary Figs. S9 and S10). Firmicutes (53.79%), 220 

Bacteroidetes (12.02%) and Chloroflexi (11.11%) were the predominant phyla (Supplementary 221 

Fig. S9 and Table S9), that include the following most abundant orders: Clostridiales (39.37%), 222 

Bacillales (11.24%), Bacteroidales (10.87%) and Anaerolineales (11.11%) (Supplementary Fig. 223 

S10 and Table S10), concordant with previous findings [37, 38]. We found no taxa significantly 224 

differing in relative abundance between survivor and non-survivor gorillas (Bonferroni-225 

corrected p-values > 0.05; Supplementary Fig. S11 and Table S11), and sample groups were 226 

not separated in a clustering analysis (Fig. S12). 227 

Since these results on the gut microbiome diversity did not support differences 228 

between both gorilla groups, we decided to perform deep sequencing on the fecal libraries. 229 

We generated a total of 801,132,281 sequences from DNA libraries (4,025,054-25,593,317 230 
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reads per sample; Supplementary Table S8) and used MALT (MEGAN Alignment Tool) [39] for 231 

an alternative characterization of the microbial profile of the samples (Supplementary Fig. S13). 232 

We find that the majority of the identified taxa are associated with the gut microbiome 233 

(Supplementary Table S12 and S13). By far the most abundant taxon is the gut bacterium 234 

Escherichia coli, which could be detected in all samples, and makes up more than 50% of all 235 

assigned sequences in nine of the samples. Also in high abundance are species of the 236 

Bacteroidales order, such as Bacteroides cellulosilyticus and Prevotella spp., as well as 237 

members of the Clostridiales, Lactobacillales, and Bacillales orders, corroborating previous 238 

reports on the composition of western lowland gorilla gut microbiomes [40, 41]. Furthermore, 239 

we detected pathogenic taxa in high abundance in some of the samples, such as Clostridium 240 

botulinum, Acinetobacter baumannii, and Klebsiella pneumoniae, which have been previously 241 

found in the gorilla gut [42]. However, the microbial profiles of survivors and non-survivors do 242 

not differ significantly from each other in this analysis either (Bonferroni-corrected p-values > 243 

0.05, two-sided t-test, Supplementary Table S11), and the two groups do not form separate 244 

clusters in a Principal Coordinate analysis or a Neighbor Joining Tree (Supplementary Figs. 245 

S14 and S15). 246 

 247 

Discussion 248 

We investigated non-invasive fecal samples from a long-term monitored population of 249 

western lowland gorillas in the Republic of Congo, including individuals that most likely 250 

succumbed to the Zaire Ebola virus outbreak in 2004, as well as surviving individuals [17, 18]. 251 

We used targeted capture of 123 autosomal genes with putative roles in immune response to 252 

EBOV or other viruses (Supplementary Table S2) from fecal samples. This yielded an 253 

enrichment of more than 100-fold across samples, and a medium to high coverage of the target 254 

space across most individuals (Supplementary Fig. S1 and Table S3). Although a large 255 

proportion of reads were duplicates, the overall performance was high and these results 256 
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demonstrate the great potential of capture experiments for obtaining genotypes from fecal 257 

samples of wild great ape populations [43, 44], for which high-coverage sequencing would be 258 

prohibitively expensive. We determined that the studied individuals were not closely related, 259 

hence most likely representing a random sampling of the wild gorilla population before and 260 

after the outbreak. We also investigated the microbial community composition of survivors and 261 

non-survivors, finding no significant differences in taxa abundance, neither using 16S rRNA or 262 

deep sequencing data (Supplementary Figs. S11, S13 and Table S11). Hence, we find no 263 

evidence that the gut microbiome of individuals has an influence on the survival rate of wild 264 

gorillas exposed to Ebola. However, these observations are limited by (1) the sample size, and 265 

(2) the broad range of collection dates (Supplementary Table 1). The latter is particularly true 266 

(2a) relative to the timing of any exposure, but also in respect to the (2b) dynamic nature of the 267 

gut microbiome [38].  268 

Given the limited sample size, we developed an approach using differences in allele 269 

frequency, the fixation index and the effect size to determine variants most strongly associated 270 

to survivability in the studied population, generally replicable using an association analysis with 271 

ANGSD. While 44 of the 118 nominally significant SNPs (Supplementary Table S4) do fall within 272 

10 of the 15 neutral regions included in the study, some SNPs might be functionally relevant 273 

for surviving the EBOV outbreak. The non-synonymous variants in ACTB, RNF167 and IGKV4-274 

1 genes are obvious candidate loci, and particularly the three deleterious missense mutations 275 

in Actin Beta appear to be strong candidates for a higher survival rate. The actin cytoskeleton 276 

is important for virus assembly [45], and a disturbed assembly process could have influenced 277 

the viral load in individuals with changes in this protein. As expected for a gene encoding a 278 

structural protein, ACTB is highly expressed in gorilla tissues. Furthermore, the variant in 279 

IGKV4-1 might improve the immune response to viral infection through antigen recognition 280 

[46]. The missense mutation in ATM, which belongs to the PI3-kinase family, could interfere 281 
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with the cellular entry specifically of the Ebola virus [47], although we could not confirm 282 

expression of this locus in vivo in the available tissues. 283 

We find other potentially relevant non-coding variants, 49 of which are in close proximity 284 

to SNPs associated to GWAS traits in humans, suggesting possible regulatory functions 285 

(Supplementary Table S7). Among those, the association of GPX4 with leukocyte cell type 286 

count might reflect differences in leukocyte composition after viral infection. Differences in 287 

hematocrit or hemoglobin levels might have contributed to the survival of wild gorillas 288 

considering that hemorrhage and internal bleeding are symptoms of Ebola infection. Since 289 

eight loci are associated to the HLA-DRB gene, a direct involvement in the adaptive immune 290 

system might cause the signature observed at this locus, particularly given that human 291 

survivors of EVD show a lower frequency of HLA-DR-positive T cells [48]. 292 

Conclusion 293 

By using fecal samples and targeted capture enrichment, non-invasive assessment of 294 

numerous individuals from wild populations is possible. Here, we demonstrate that this 295 

approach can be used to analyze temporal genetic changes in wild great ape populations in 296 

response to environmental factors. Additionally, we present candidate loci that may have 297 

facilitated the survival of gorilla individuals or groups after an outbreak of the Zaire Ebola virus. 298 

Understanding putative adaptive responses to this pathogen in wild populations can help to 299 

advance our knowledge on the natural dynamics of this severe disease. Such a strategy might 300 

be useful in a broader context, since these and other primates are susceptible to other 301 

infectious diseases such as Covid-19 [49]. 302 

 303 

Methods 304 

Samples, DNA extraction, library preparation. Non-invasive fecal samples from 305 

western lowland gorillas were collected between 2001 and 2014 in Odzala-Kokoua National 306 
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Park, Republic of Congo [18]. Among them, we selected 31 samples from previously identified 307 

individuals. Sixteen of those individuals were declared missing after the epidemic in 2004 [13]. 308 

They died during the time span of the epidemic and were identified here as non-survivors. 309 

Fifteen individuals were observed before and after the epidemic, and were described here as 310 

survivors (Fig. 1A and Supplementary Table S1) [17]. Samples were collected by field 311 

investigators wearing masks and gloves, and were dried with silica beads and then stored at 312 

room temperature until arrival in a laboratory where they were stored at 4oC until extraction.  313 

DNA was extracted from 10mg of dried sample using the 2CTAB/PCI protocol [50] using 314 

negative controls that were checked for contamination before subsequent experiment. Three 315 

different extractions were carried out, except for samples G778, G374, G344, G498 and G372, 316 

where only two extractions were performed (Supplementary Table S1). A DNA library [51–53] 317 

and a 16S rRNA library [54–56] were prepared for each extract. Isolated DNA samples were 318 

quantified with Qubit with a mean estimated concentration of 13.3 ng/µl (range: 0.90-74.7). 319 

Whenever possible, a total of 250 ng of DNA was used to construct DNA libraries, but never 320 

more than a total volume of 33 µl was taken from any single sample. DNA was sheared with a 321 

Covaris S2 instrument and 88 fecal DNA (fDNA) libraries were prepared following a custom 322 

dual-indexing protocol with 25 cycles of amplification [51, 52]. Subsequent to DNA library 323 

preparation, 88 16S rRNA libraries were prepared using 1 µl of total DNA. The V3 and V4 324 

regions of 16S rRNA were target amplified using modified 341F and 806Rb primers [54, 55, 325 

57], incorporated into the dual-indexing protocol [52]. The forward primer (IS1_P5_16S_341f: 326 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCTACGGGNGGCWGCAG), and 327 

reverse primer (IS2_P7_16S_806rB: 328 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT) include 329 

the complementary sequences necessary for the final indexing step [52]. Protocols are 330 

provided in [53]. 331 
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Target Design, Capture and Sequencing. RNA baits covering the target space were 332 

designed and synthesized by Agilent with a minimum of 3x bait coverage. The target space 333 

included specific autosomal genes (123 genes) and 15 neutral regions (~10kb each) 334 

(Supplementary Table S2). For target enrichment, the fDNA libraries were pooled into one 335 

equimolar batch and subjected to two consecutive rounds of DNA capture with the RNA baits 336 

in 8 hybridizations. Captured fDNA libraries were sequenced on the Illumina system in four 337 

HiSeq 2500 2x125 lanes and one HiSeq 2500 rapid run at 2x250 bp. The 16S libraries were 338 

sequenced on one HiSeq 2500 rapid run 2x250 bp lane. In addition, we generated paired-end 339 

sequences from the fDNA libraries on four HiSeq 4000 lanes (2x150bp) to study the whole 340 

microbiome composition (Table S8).  341 

Mapping and Variant Discovery. Prior to mapping, paired-end reads belonging to the 342 

same library but sequenced in different lanes were merged into a single FASTQ file. PCR 343 

duplicates were directly removed from FASTQ files using FASTuniq (v1.1) [58]. Overlapping 344 

reads were merged (minimum overlap of 10 bp, minimum length of final read to 50 bp) using 345 

PEAR (v0.9.6) [59]. Reads were mapped using BWA mem (v0.7.12) [60] to the human reference 346 

genome Hg19 (GRCh37 from the UCSC database). Assembled reads were mapped 347 

considering single-end specifications and unassembled reads considering paired-end 348 

specifications. Any remaining PCR duplicates were removed using PicardTools 349 

MarkDuplicates (v1.95) (http://broadinstitute.github.io/picard/). Non-primary alignments and 350 

reads with quality below 30 were filtered from the dataset with samtools (v1.5) [61]. Finally, 351 

single-end and paired-end reads were merged into a single BAM file using PicardTools 352 

MergeSamFiles (http://broadinstitute.github.io/picard/). The percentage of aligned reads for 353 

each DNA extraction and sample was calculated by dividing the number of uniquely and high-354 

quality mapped reads (without duplicates) by the total number of sequenced reads. The 355 

percentage of on-target aligned reads was calculated for each sample by dividing the number 356 

of on-target filtered reads by the number of sequenced reads. The average target effective 357 
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coverage was calculated dividing the number of aligned bases by the total length of the 358 

targeted genomic space. Finally, the enrichment factor (ER) of the capture performance was 359 

calculated using the ratio between the on-target reads by the total mapped reads over the 360 

targeted size by genomic size (ER = (On-Target Reads/Mapped Reads)/(Target Size/Genome 361 

Size) ). The coverage for each target region was retrieved using SAMtools bedcov [61]. 362 

For variant calling, all BAM files belonging to the same sample were merged into a 363 

single BAM file using PicardTools MergeSamFiles (v1.95) 364 

(http://broadinstitute.github.io/picard/). Variant discovery was performed using GATK ‘Unified 365 

Genotyper’ [62] for each sample independently with the following parameters -out_mode 366 

EMIT_ALL_SITES -stand_call_conf 5.0 -stand_emit_conf 5.0 -A BaseCounts -A GCContent -A 367 

RMSMappingQuality -A BaseQualityRankSumTest. Afterwards, we merged each sample gvcf 368 

to a single one using GATK `CombineVariants’ [62] with the following parameters -369 

genotypeMergeOptions UNIQUIFY –excludeNonVariant. We also included in the gvcf the 370 

genotype information of available whole genome data of six Gorilla beringei beringei, eight 371 

Gorilla beringei graueri, one Gorilla gorilla dielhi, and twenty-three Gorilla gorilla gorilla samples 372 

[29, 30]. The VCF was filtered with VCFtools [63] to keep only biallelic positions with DP >3 and 373 

quality > 30 and without indels. 374 

Genotype likelihoods were directly obtained from BAM files with ANGSD [31] including 375 

four Gorilla beringei beringei, four Gorilla beringei graueri, one Gorilla gorilla dielhi, and four 376 

Gorilla gorilla gorilla, with the following parameters and only in the target space: -uniqueOnly 377 

1 -remove_bads 1 -only_proper_pairs 1 -trim 0 -C 50 -baq 1 -minInd 21 -skipTriallelic 1 -GL 2 378 

-minMapQ 30 -doGlf 2 -doMajorMinor 1 -doMaf 2 -minMaf 0.05 -SNP_pval 1e-6.  379 

Quality control. We evaluated the amount of human contamination in each fecal library 380 

using the HuConTest script [64], as described previously [65]. The majority of samples have 381 

less than 2% of human contamination, but samples G348 and G1392 have estimates of human 382 
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contamination of 6.7% and 25.1%, respectively (Supplementary Table S3). These two samples 383 

also show extreme values of heterozygosity (deviating >1s.d. from mean heterozygosity; Figure 384 

S2). For the identification of individuals and markers with elevated missing data rates we used 385 

the proportion of the target space covered by at least 4 reads. Individuals with less than 30% 386 

of covered target space (4 reads) were not used for further analysis (G638 and G282). 387 

A principal component analysis (PCA) was performed to validate that the genotype 388 

information obtained for the case study gorillas was in concordance with previously published 389 

data. We used PCAngsd [66] with the genotype likelihoods obtained with ANGSD (N=6,484), 390 

including 13 previously published whole-genomes representative of each know gorilla 391 

subspecies [29, 30]. We also obtained a PCA using the GATK genotype calls after keeping only 392 

variants with minor allele frequency of 0.02 with plink --pca option (N=6051) [67]. 393 

Genetic distance, relatedness and heterozygosity. We used the genotype likelihood 394 

information for the studied individuals to obtain the genetic distance by running ngsDist in 395 

ANGSD [68] with the following parameters: --n_sites 5477 --probs TRUE --pairwise_del. Then, 396 

we constructed an Euclidean distance matrix based on the genotypes and performed a 397 

hierarchical clustering using the R package ape [69]. We also run PCAngsd [66] considering 398 

only the study gorillas to discard any possible intra-group structure.  399 

The theta coefficients of kinship (probability of a pair of randomly sampled homologous 400 

alleles are identical by descent) were calculated using the NgsrelateV2 [70, 71] on the 401 

genotype likelihood obtained with ANGSD [31]. Note that all possible genotype likelihoods, 402 

even outside the target space (N=226,094), were used since the coverage of the kinship 403 

markers was insufficient.  404 

To assess global levels of heterozygosity, the unfolded SFS was calculated for each 405 

sample separately, including thirteen gorilla whole-genomes representative of all gorilla 406 

subspecies [29, 30], using ANGSD [31] and realSFS [72] only in the target space with the 407 
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following quality filter parameters: -uniqueOnly 1 -remove_bads 1 -only_proper_pairs 1 -trim 0 408 

-C 50 -baq 1 -minMapQ 20 -minQ 20 -setMaxDepth 200 -doCounts 1 -GL 1 -doSaf 1. We used 409 

the human genome (Hg19) to determine the ancestral state. 410 

Association analysis. The genotype calls obtained with GATK were further filtered with 411 

Plink [67] to exclude variants considering their missing rate (--geno 0.05), minor allele 412 

frequency (--maf 0.01) and Hardy-Weinberg equilibrium (--hwe 0.00001). The final dataset 413 

consists of 27 samples (13 survivors and 14 non-survivors) and 6,852 high-quality variants. 414 

Nominal significance was set at an alpha of 0.05 and a Bonferroni corrected alpha threshold of 415 

7.3x10-6 (0.05/6,852) was defined to account for familywise error. Associations were tested for 416 

by a chi-square allelic test with one degree of freedom and p-values were estimated by 417 

permutation in plink (plink –assoc –mperm 10000). [73]. The p-values were plotted in a 418 

Manhattan plot in R (v3.4.1).  419 

The allele frequency for each group (survivors and non-survivors) was obtained using 420 

the -freq2 option in VCFtools [63]. Then, we calculated the allele frequency difference per SNP 421 

by subtracting the allele frequency in non-survivors from the allele frequency in survivors 422 

(ΔFrequency). We chose a threshold of ± 0.2, and plotted the allele frequencies using R. The 423 

fixation index (FST) between both groups was calculated using VCFtools –weir-fst-pop option 424 

(Weir and Cockerham) [63] with a threshold at 0.15, and results were plotted in R. We retrieved 425 

markers with α ≤ 0.05 in the association test and a p-value < 0.05 in the permutation test. The 426 

ANGSD software [31] was used to perform a replication of the association analysis using the 427 

following parameters -minQ 20 -minMapQ 30 -doAsso 1 -GL 1 -out assocGQ_filter -428 

doMajorMinor 1 -doMaf 1 -SNP_pval 1e-6 -minInd 22 -minMaf 0.02. The output of the 429 

association analysis are LRT values (Likelihood Ratio Test), which are chi square distributed 430 

with one degree of freedom. Since we set a threshold of significance at 95% confidence, the 431 

minimum score to be significant is LRT = 3.84. In both association analyses, we linked the 432 

nominally significant SNPs with their genes (Supplementary Table S4 and S5). Genes with 433 
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multiple nominally significant SNPs were considered to be potentially more relevant. 434 

Subsequently, we compared the overlap of discovered genes between the datasets (Unified 435 

Genotyper and ANGSD) in a Venn diagram (Supplementary Fig. S8) using the R package 436 

VennDiagram [74]. 437 

Prediction of functional consequences of the significant markers. We used VEP 438 

(v91) [75] for the functional annotation of the associated SNPs. We retrieved the predicted 439 

consequence of each significant marker found in the potentially related genes to Ebola immune 440 

response, as well as PolyPhen-2 [32], Sift [76] and C-scores [77]. Associated loci were 441 

intersected with hits in the GWAS catalogue [78] within 5,000 bp. We also performed an 442 

overrepresentation test using Panther [79] to test whether any of the potentially related genes 443 

are overrepresented in biological or functional categories compared to the rest of targeted 444 

genes with no apparent association with Ebola. In addition, we mapped previously published 445 

RNA sequencing data from six tissues (brain, cerebellum, heart, kidney, liver, testis) in two 446 

gorilla individuals [35] to the annotated genes in the human reference genome (using the 447 

Ensembl Release 75 gene models) using Tophat2 [80], and estimated the gene expression with 448 

htseq-count [81]. Gene expression is reported log2-normalized, and we counted the number 449 

of reads overlapping the candidate missense mutations to confirm their transcriptional activity 450 

in gorillas. Values presented are the cumulative sums of RNA sequencing reads across 451 

individuals and tissues. 452 

Microbiome sequencing. 16S RNA sequencing reads were processed using QIIME 453 

(v1) (Quantitative Insights Into Microbial Ecology) [82] to analyze the 16S rRNA. First, paired-454 

end raw reads were merged using fastq-join from ea-utils package [83]. Then, with usearch 455 

software [84], merged FASTQ reads were filtered (-fastq_trunclen 253 and –fastq_maxee 0.5). 456 

Using QIIME environment, the metadata mapping file was constructed and validated 457 

(validate_mapping_file.py) and QIIME labels were added (add_qiime_labels.py). We applied 458 

open-reference OTUs picking (pick_open_reference_otus.py). Summary statistics were 459 
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computed using biom summarize-table. The resulting dataset was rarefied to an even depth of 460 

10,000 sequences per extract (6 extracts were excluded in diversity analysis: G191_5782, 461 

G344_5827, G314_5824, G489_5834, G489_5835, G344_5828). Finally, we ran diversity 462 

analysis with a sequence depth of 10,000 (core_diversity_analysis.py). Taxa abundance 463 

quantification and significance or relative taxa abundance (T-test and p-values adjusted for 464 

multiple testing with Bonferroni-correction) were computed in R. 465 

Deep sequencing of the DNA library (pre-capture) was performed as stated above. To 466 

remove sequencing adapters and merge the read pairs, we used AdapterRemoval v2.2.4 with 467 

default settings [85]. We then aligned the merged sequences to the gorilla reference genome 468 

Kamilah_GGO_v0 using bwa mem [60] to remove host DNA. Subsequently we filtered out 469 

potential human contaminant DNA by aligning the unmapped sequences to the human 470 

reference genome hg19, resulting in 724,738,878 filtered sequences. MALT v0.4.1 (MEGAN 471 

Alignment Tool) [39] was used to characterize the microbial profile, using all archaeal, viral, 472 

and bacterial reference sequences downloaded from NCBI on 06.05.2019. These were 473 

indexed using malt-build to build a custom database. Malt-run was then used with minimum 474 

percent identity (--minPercentIdentity) set to 95, the minimum support (--minSupport) 475 

parameter set to 10, and the top percent value (--topPercent) set as 1, other parameters were 476 

set to default. The resulting rma6 files were visualized with MEGAN6 [86] and clustered in a 477 

Principal Coordinate analysis (PCoA) and Neighbor Joining Tree analysis according to 478 

microbial composition on the species level (Supplementary Figs. S14 and S15). 479 

  480 
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 481 

Fig. 1. Sample description. A) Geographical map of the extant range of gorillas and the 482 

Odzala-Kokoua National Park (Republic of Congo) where fecal samples were collected 483 

between 2001 and 2014, overlapping the Ebola outbreak in 2004. B) Average coverage 484 

reached in the target space per sample in both studied groups. C) Percentage of human 485 

contamination in each fecal sample. 486 

   487 
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 488 

Fig. 2. Genetic distance dendrogram and heterozygosity among non-survivor and 489 

survivor gorilla groups. A) Clustering dendrogram of pairwise genetic distance derived from 490 

genotype likelihoods (N=5,477). B) Mean heterozygosity (bp-1) in non-survivors and survivors; 491 

not significantly different (Student t-test, p-value=0.34). 492 

 493 

  494 
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 495 

Fig. 3. Association analysis to detect SNPs and candidate genes related to survivorship 496 

to EBOV outbreak. A) Significance level (threshold set at α=0.05, -log10(P-value)=1.30). B) 497 

Difference in allele frequency (threshold set at ±0.2). C) Fixation index (threshold set at 498 

FST=0.15). Dashed lines delineate the thresholds used.   499 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2021. ; https://doi.org/10.1101/2021.05.31.446409doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.31.446409
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Availability of data and materials 500 

The dataset generated during the current study will be made publicly available upon 501 

acceptance (raw sequencing data to ENA, project ID: PRJEB43265). It will be available to 502 

reviewers from the corresponding author on request. 503 

Abbreviations 504 

EBOV: Ebola virus 505 

EVD: Ebola virus Disease 506 

GWAS: Genome-Wide Association Study 507 

IUCN: International Union for Conservation of Nature 508 

PCA: Principal Component Analysis 509 

SNP: Single Nucleotide Polymorphism 510 
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