

1 The genetic impact of an Ebola outbreak on a wild gorilla 2 population

3

4 Claudia Fontseré^{1*}, Peter Frandsen^{2,3*}, Jessica Hernandez-Rodriguez¹, Jonas Niemann⁴,

5 Camilla Hjorth Scharff-Olsen⁴, Dominique Vallet⁵, Pascaline Le Gouar⁵, Nelly Ménard⁵, Arcadi

6 Navarro^{1,6,7}, Hans R. Siegismund², Christina Hvilsom³, M. Thomas P. Gilbert^{4,8}, Martin

7 Kuhlwilm^{1,†}, David Hughes^{1,9,10,†}, Tomas Marques-Bonet^{1,6,7,11,†}

8 ¹Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88,
9 Barcelona, Catalonia 08003, Spain.

10 ²Department of Biology, Section for Computational and RNA Biology, University of
11 Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.

12 ³Research and Conservation, Copenhagen Zoo, 2000 Frederiksberg, Denmark.

13 ⁴Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353
14 Copenhagen, Denmark

15 ⁵UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1,
16 Station Biologique de Paimpont, 35380 Paimpont, France.

17 ⁶CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and
18 Technology (BIST), Baldíri i Reixac 4, 08028 Barcelona, Spain.

19 ⁷Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.

20 ⁸University Museum, NTNU, Trondheim, Norway

21 ⁹Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

22 ¹⁰MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK

23 ¹¹Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici
24 ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain

25

26 * These authors contributed equally to this work

27 † These authors share co-last authorship.

28 **Authors for correspondence:** Claudia Fontseré (claudia.fontseré@upf.edu), Tomas Marques

29 (tomas.marques@upf.edu), Martin Kuhlwilm (martin.kuhlwilm@upf.edu)

30 **Abstract**

31 **Background**

32 Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past
33 decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal
34 virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone
35 caused a severe decline in the resident western lowland gorilla (*Gorilla gorilla gorilla*)
36 population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the
37 Ebola outbreak in the western lowland gorilla population.

38 **Results**

39 Associations with survivorship were evaluated by utilizing DNA obtained from fecal
40 samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15
41 individuals observed before and after the epidemic (survivors). We used a target enrichment
42 approach to capture the sequences of 123 genes previously associated with immunology and
43 Ebola virus resistance and additionally analyzed the gut microbiome which could influence the
44 survival after an infection. Our results indicate no changes in the population genetic diversity
45 before and after the Ebola outbreak, and no significant differences in microbial community
46 composition between survivors and non-survivors. However, and despite the low power for an
47 association analysis, we do detect six nominally significant missense mutations in four genes
48 that might be candidate variants associated with an increased chance of survival.

49 **Conclusion**

50 This study offers the first insight to the genetics of a wild great ape population before
51 and after an Ebola outbreak using target capture experiments from fecal samples, and presents
52 a list of candidate loci that may have facilitated their survival.

53 **Keywords**

54 Ebola; gorilla; non-invasive samples; candidate genes

55 **Background**

56 The Ebola virus (EBOV), discovered in 1976, causes a severe disease and often fatal
57 hemorrhagic fever for which numerous human outbreaks have been reported throughout
58 Africa [1]. The most virulent outbreak reported to date was in West Africa in December 2013
59 and lasted until 2016 with more than 28,000 confirmed or suspected human cases and more
60 than 11,000 human deaths [2]. Since then, other outbreaks of Ebola have been observed. In
61 June 2020, when the 2018 outbreak was declared over by the World Health Organization
62 (WHO), 3,470 cases had been reported with 2,287 deaths (fatality rate of 66%) [3].

63 EBOV belongs to the single-stranded RNA virus family *Filoviridae* [4] with five distinct
64 strains in the Ebola genus: *Zaire*, *Sudan*, *Budibugyo*, *Taï Forest* and *Reston*. The first three are
65 responsible for the majority of human infections [5, 6]. The virus is highly infectious and can
66 enter the body through direct contact of broken skin or mucous membranes with infected blood
67 or body fluids, causing symptoms including fever, vomiting, diarrhea, internal and external
68 bleeding. Ebola hemorrhagic fever or Ebola virus disease (EVD) is an acute and severe disease
69 with a fatality rate in humans around 50% [5–7].

70 Infectious diseases such as Ebola are considered to be a threat to the survival of African
71 great apes [8], together with other threats such as habitat loss, climate change and poaching
72 [9]. In some cases, the human outbreaks have been linked to contact with infected bushmeat
73 from gorillas or chimpanzees [10] and several surveys have reported dramatic declines in
74 populations of great apes in parallel with human EVD outbreaks with laboratory confirmation of
75 Ebola virus infection in some carcasses [10–12]. Gorilla populations from the Republic of Congo
76 suffered severe die-offs during a chuman EVD outbreak near the Lossi sanctuary in 2002–2003
77 [12] and Odzala-Kokoua National Park in 2004 [13] with reported mortality rates as high as

78 95%. In Lossi sanctuary alone, it was estimated that the Ebola virus killed 5,000 wild gorillas
79 [12]. The severe population decline has contributed to the 2007 shift of the conservation status
80 of western gorillas from “endangered” to “critically endangered” by the International Union for
81 Conservation of Nature (IUCN) [14]. Furthermore, the recent outbreak of human EVD in North
82 Kivu (Democratic Republic Congo) [3] was in close proximity to the remnant populations of
83 eastern gorilla species, hence a human to ape transmission of the virus could potentially mark
84 the end of existence for this critically endangered species.

85 Threats such as infectious diseases are relevant for conservation efforts, and efficient
86 strategies are needed to reduce the effects of EVD on wild great ape populations [15].
87 Understanding any genetic impact that EBOV outbreaks might have on wild populations is vital,
88 as EVD contributes to the fragmentation of gorilla populations due to a heterogeneous spatial
89 influence of the outbreak [16]. Social dynamics in gorillas are rapidly affected by Ebola through
90 a decrease in social cohesion, although recovery after the outbreak has been observed [17,
91 18]. One study reported that solitary individuals were less affected than individuals living in
92 groups, marking the relevance of social dynamics for transmission [13]. A previous study using
93 17 microsatellites found no loss of genetic diversity after one EBOV outbreak in Lossi sanctuary
94 and Odzala-Kokoua National Park, which could be explained by post-epidemic immigration,
95 sufficiently large remnant effective population size or a short period of time after the decline
96 [18]. The present study represents a continuation of this aforementioned research since many
97 aspects of EBOV infection in wild gorilla populations are not yet explored, such as genetic
98 variants in survivors that might contribute to resistance or higher chance of survival to EVD. In
99 humans, such an approach was used during the 2014 EBOV outbreak, although no evidence
100 of adaptation was found in the survivors [19].

101 Furthermore, microbial organisms inhabiting the gut also play a potentially crucial role
102 in training and maintaining the immune system [20–22]. Where some commensal microbes are
103 associated with priming the immune response or activating antiviral responses, others facilitate

104 the development of the infection or suppress the immune response [23]. For instance, a recent
105 study reported a link between the gastrointestinal microbiome of healthy humans and a
106 predisposition to severe COVID-19 [24], with an abundance of *Klebsiella*, *Streptococcus*, and
107 *Ruminococcus* being correlated with elevated levels of proinflammatory cytokine. The
108 association between infectious diseases and the gut microbiome of nonhuman primates is less
109 well understood. While the gut microbiome of SIVgor-infected (gorilla Simian
110 Immunodeficiency virus) wild gorillas seems to be more robust to dysbiosis than those of
111 chimpanzees and humans [25], it is unclear how shifts in the gorilla gut microbiome can impact
112 the severity of viral infections, and in particular the immune response to Ebola virus infection.

113 Long-term monitoring of a western lowland gorilla (*Gorilla gorilla gorilla*) population in
114 Odzala-Kokoua National Park (Republic of Congo) has been ongoing since 2001 until 2017
115 encompassing the Ebola outbreak of 2004 [16–18, 26] which resulted in a mortality rate of 95%
116 [13]. Population monitoring involved the recording of individual histories of hundreds of
117 identified individuals, the determination of sex, age and social status and the collection of fecal
118 samples in different time periods. This close monitoring through time was fundamental to
119 determine which individuals were either not affected or survived the Ebola outbreak and which
120 went missing with their cause of death assumed to be EVD.

121 Here, we have obtained genetic data from gorilla fecal samples pre- and post-outbreak
122 to explore potential associations to survivorship. Particularly, we compare the genetic variation
123 at the single nucleotide level in 123 autosomal target-captured genes with putative roles in
124 virus immune response and the gut microbiome composition in a reduced panel of survivors
125 and non-survivors of this Zaire EBOV outbreak. With that we show that targeted capture on
126 non-invasive fecal samples and next-generation sequencing can be used to study the impact
127 of this severe disease in a natural population.

128 Results

129 A total of 31 non-invasive fecal samples from identified western lowland gorillas were
130 collected between 2001 and 2014 in Odzala-Kokoua National Park, Congo [18] (Fig. 1A).
131 Sixteen of these were from individuals declared missing after the Zaire Ebola virus outbreak in
132 2004, and suspected to have died because of the infection, here termed 'non-survivors'. These
133 samples were collected between 2001 and 2004. The remaining 15 samples were from gorillas
134 identified before the epidemic and still observed after the epidemic, and will be identified
135 henceforth as 'survivors' [17]. These 15 samples were collected between 2005 and 2014
136 (Supplementary Table S1). We used target capture enrichment to sequence the genomic
137 regions of 123 genes, which had previous evidence of putative roles in immune response to
138 EBOV or other viruses (Supplementary Table S2). In addition, 15 neutral regions previously
139 studied in other human and non-human primate studies were also targeted [27, 28]
140 (Supplementary Table S2). Target design and all analyses were performed using the human
141 reference genome due to the higher quality of annotations compared to the gorilla reference
142 genome. We sequenced an average of 73 million paired reads per individual, 12% of which
143 were unique (Supplementary Table S3). On average, 0.38% of the data mapped to the target
144 space, representing an on-target effective coverage of 53.89-fold (range: 2.52-fold to 230.70-
145 fold; Fig. 1B, Supplementary Table S3), with 72% of the target space covered by at least 4
146 reads per individual. Samples G282, G1392 and G638 performed poorly, with <50% of the
147 target space covered at a minimum depth of 4 reads (Supplementary Fig. S1). Overall
148 performance can be assessed by calculating how well the capture resequencing experiment
149 went relative to expectations had we performed random shotgun sequencing. In that regard,
150 we observe an average enrichment of 125-fold (88 - 346-fold) (Supplementary Table S3).
151 Individuals with extremely low proportions of target space covered by at least 4 reads (<30%)
152 (G638 and G282) and high heterozygosity and high levels of human contamination were

153 removed from further analysis (individuals G374 and G1392, Fig. 1C and Supplementary Fig.
154 S2, Table S3).

155 With the final dataset of 13 survivors and 14 non-survivors, we validated that the
156 genotype information obtained was in concordance with previously published gorilla whole-
157 genomes, as determined by a principal component analysis (PCA) (Supplementary Fig. S3).
158 We estimated kinship for each pair of individuals, identifying a single case of close relatedness
159 (1st degree) among them (non-survivor G374 and survivor G739; kinship coefficient = 0.4)
160 (Supplementary Fig. S4). In addition, we observed no stratification correlating with
161 survivor/non-survivor classification. Individuals appear to be dispersed randomly across a
162 dendrogram derived from shared genotype likelihood dosage states (Fig. 2A), and a univariate
163 linear regression of survivorship on the top 5 PCs identified no significant structure associated
164 to survivorship (P-value > 0.1; Supplementary Fig. S5). Hence, we determined no genome-
165 wide group structure differences between survivors and non-survivors. The overall level of
166 genetic diversity within the target space of the studied gorillas was, on average, lower than that
167 of western lowland gorillas obtained from whole-genome sequencing (Supplementary Fig. S6)
168 [29, 30], an expected outcome following the target capture procedure. Moreover, there are no
169 statistically significant differences in heterozygosity between survivors and non-survivors
170 (Student's t-test, p-value=0.34; Fig. 2B).

171 In order to determine genetic differences between the groups, we calculated three
172 summary statistics on a dataset of 6,852 high-quality variants: (1) the difference in allele
173 frequency (Δ Frequency), (2) the fixation index (F_{ST}), and (3) the significance level (α) of each
174 variant for its association with the binary trait survivor/non-survivor (Fig. 3). We found 118 SNPs
175 within the target space that surpassed our α threshold in the association test, and we also
176 reported their Δ Frequency and F_{ST} values. However, after controlling for type I error none of
177 these remained significant. Out of these, seven genes have multiple nominally significant SNPs
178 (CD1B, IGKV4-1, HLA-A, ACTB, LYN, CD68 and MX1), while 10 neutral regions (~10kb each)

179 have at least 1 nominally significant variant (Supplementary Table S4). For comparative
180 validation, we repeated the association analysis using ANGSD [31], a software explicitly built
181 to work with low coverage data that relies on genotype likelihoods. With this method, we were
182 able to recover the majority of the genes found above (30 out of 36). However, ANGSD
183 returned more hits and thus more genes (Supplementary Figs. S7, S8 and Table S5), rendering
184 the above approach more conservative.

185 Next, we explored the potential functional impact of the variants in the nominally
186 significant candidate loci that differentiate survivors from non-survivors. While we found no
187 significant associations with gene ontology categories, the analysis of predictions of functional
188 consequences pinpointed six missense mutations which differed in frequency between the two
189 groups (Supplementary Table S6), one each in the *ATM*, *IGKV4-1* and *RNF167* genes (all lower
190 in survivors) and three in the *ACTB* (Actin Beta) gene (one unique to survivors, two lower in
191 survivors, Supplementary Table S4). All three missense variants in *ACTB* are predicted as
192 deleterious by both the PolyPhen [32] and SIFT [33] algorithms. Furthermore, the derived
193 variant in survivors in the immunoglobuline-encoding *IGKV4-1* might be deleterious (C-score
194 > 20 [34]), hence potentially functionally relevant. Since we used the human genome for target
195 design, mapping and variant calling, we caution that differences in exon usage or
196 pseudogenization on the gorilla lineage might confound these inferences of protein-coding
197 changes. In order to confirm the expression of these genes, and specifically the exons of
198 interest, we mapped transcriptome data from six tissues in gorillas [35] to the same reference
199 genome, and quantified expression levels. We confirmed the expression of these genes and
200 found high transcript abundance (log2-value of counts ≥ 9) for *ACTB*, *RNF167* and *ATM*, while
201 *IGKV4-1* was only detected at low levels in these tissues (log2-value of counts = 5.84). We
202 found ~10,000 RNA sequencing reads overlapping the three loci of interest in *ACTB*, 437 in
203 *RNF167*, and 96 in *IGKV4-1*, supporting the expression of these specific loci in gorilla tissues,
204 while for *ATM* only 10 reads overlapped (Supplementary Table S6).

205 Among the 118 significant SNPs, we found no direct overlap with loci associated to
206 2,385 traits in genome-wide association studies (GWAS) for humans [36]. However, we found
207 49 associated loci within close proximity (5,000 bp) to GWAS loci (Supplementary Table S7),
208 among which the locus 19:1104078 near GPX4 stands out for its association with five blood
209 cell traits (counts and percentages of leukocyte cell types). Furthermore, 6:29916885 in the
210 *HLA* is associated to hemoglobin levels. Five loci in *HLA-DRA* are associated with different
211 autoimmune diseases like systemic lupus erythematosus or multiple sclerosis (Supplementary
212 Table S7). Furthermore, nine loci in this region (*HLA-DRB5* and *HLA-A*) are associated with
213 schizophrenia or autism spectrum disorder (Supplementary Table S7).

214 It has been reported that intestinal microbiota play a critical role in immune response
215 to infectious diseases [20–22]. Thus, the microbiome might be relevant for the survival of wild
216 gorilla populations experiencing an Ebola outbreak. Taking advantage of the nature of the
217 samples, we first analyzed the microbiota present in each fecal extraction using a 16S rRNA
218 library (Methods). We obtained a total of 96,928,400 reads with an average sequencing depth
219 of 1,101,459 (SD \pm 418,989) reads per gorilla fecal extraction (Supplementary Table S8), and
220 determined the abundance of taxa (Supplementary Figs. S9 and S10). Firmicutes (53.79%),
221 Bacteroidetes (12.02%) and Chloroflexi (11.11%) were the predominant phyla (Supplementary
222 Fig. S9 and Table S9), that include the following most abundant orders: Clostridiales (39.37%),
223 Bacillales (11.24%), Bacteroidales (10.87%) and Anaerolineales (11.11%) (Supplementary Fig.
224 S10 and Table S10), concordant with previous findings [37, 38]. We found no taxa significantly
225 differing in relative abundance between survivor and non-survivor gorillas (Bonferroni-
226 corrected p-values > 0.05 ; Supplementary Fig. S11 and Table S11), and sample groups were
227 not separated in a clustering analysis (Fig. S12).

228 Since these results on the gut microbiome diversity did not support differences
229 between both gorilla groups, we decided to perform deep sequencing on the fecal libraries.
230 We generated a total of 801,132,281 sequences from DNA libraries (4,025,054-25,593,317

231 reads per sample; Supplementary Table S8) and used MALT (MEGAN Alignment Tool) [39] for
232 an alternative characterization of the microbial profile of the samples (Supplementary Fig. S13).
233 We find that the majority of the identified taxa are associated with the gut microbiome
234 (Supplementary Table S12 and S13). By far the most abundant taxon is the gut bacterium
235 *Escherichia coli*, which could be detected in all samples, and makes up more than 50% of all
236 assigned sequences in nine of the samples. Also in high abundance are species of the
237 Bacteroidales order, such as *Bacteroides cellulosilyticus* and *Prevotella spp.*, as well as
238 members of the Clostridiales, Lactobacillales, and Bacillales orders, corroborating previous
239 reports on the composition of western lowland gorilla gut microbiomes [40, 41]. Furthermore,
240 we detected pathogenic taxa in high abundance in some of the samples, such as *Clostridium*
241 *botulinum*, *Acinetobacter baumannii*, and *Klebsiella pneumoniae*, which have been previously
242 found in the gorilla gut [42]. However, the microbial profiles of survivors and non-survivors do
243 not differ significantly from each other in this analysis either (Bonferroni-corrected p-values >
244 0.05, two-sided t-test, Supplementary Table S11), and the two groups do not form separate
245 clusters in a Principal Coordinate analysis or a Neighbor Joining Tree (Supplementary Figs.
246 S14 and S15).

247

248 Discussion

249 We investigated non-invasive fecal samples from a long-term monitored population of
250 western lowland gorillas in the Republic of Congo, including individuals that most likely
251 succumbed to the Zaire Ebola virus outbreak in 2004, as well as surviving individuals [17, 18].
252 We used targeted capture of 123 autosomal genes with putative roles in immune response to
253 EBOV or other viruses (Supplementary Table S2) from fecal samples. This yielded an
254 enrichment of more than 100-fold across samples, and a medium to high coverage of the target
255 space across most individuals (Supplementary Fig. S1 and Table S3). Although a large
256 proportion of reads were duplicates, the overall performance was high and these results

257 demonstrate the great potential of capture experiments for obtaining genotypes from fecal
258 samples of wild great ape populations [43, 44], for which high-coverage sequencing would be
259 prohibitively expensive. We determined that the studied individuals were not closely related,
260 hence most likely representing a random sampling of the wild gorilla population before and
261 after the outbreak. We also investigated the microbial community composition of survivors and
262 non-survivors, finding no significant differences in taxa abundance, neither using 16S rRNA or
263 deep sequencing data (Supplementary Figs. S11, S13 and Table S11). Hence, we find no
264 evidence that the gut microbiome of individuals has an influence on the survival rate of wild
265 gorillas exposed to Ebola. However, these observations are limited by (1) the sample size, and
266 (2) the broad range of collection dates (Supplementary Table 1). The latter is particularly true
267 (2a) relative to the timing of any exposure, but also in respect to the (2b) dynamic nature of the
268 gut microbiome [38].

269 Given the limited sample size, we developed an approach using differences in allele
270 frequency, the fixation index and the effect size to determine variants most strongly associated
271 to survivability in the studied population, generally replicable using an association analysis with
272 ANGSD. While 44 of the 118 nominally significant SNPs (Supplementary Table S4) do fall within
273 10 of the 15 neutral regions included in the study, some SNPs might be functionally relevant
274 for surviving the EBOV outbreak. The non-synonymous variants in *ACTB*, *RNF167* and *IGKV4-1*
275 genes are obvious candidate loci, and particularly the three deleterious missense mutations
276 in Actin Beta appear to be strong candidates for a higher survival rate. The actin cytoskeleton
277 is important for virus assembly [45], and a disturbed assembly process could have influenced
278 the viral load in individuals with changes in this protein. As expected for a gene encoding a
279 structural protein, *ACTB* is highly expressed in gorilla tissues. Furthermore, the variant in
280 *IGKV4-1* might improve the immune response to viral infection through antigen recognition
281 [46]. The missense mutation in ATM, which belongs to the PI3-kinase family, could interfere

282 with the cellular entry specifically of the Ebola virus [47], although we could not confirm
283 expression of this locus *in vivo* in the available tissues.

284 We find other potentially relevant non-coding variants, 49 of which are in close proximity
285 to SNPs associated to GWAS traits in humans, suggesting possible regulatory functions
286 (Supplementary Table S7). Among those, the association of *GPX4* with leukocyte cell type
287 count might reflect differences in leukocyte composition after viral infection. Differences in
288 hematocrit or hemoglobin levels might have contributed to the survival of wild gorillas
289 considering that hemorrhage and internal bleeding are symptoms of Ebola infection. Since
290 eight loci are associated to the *HLA-DRB* gene, a direct involvement in the adaptive immune
291 system might cause the signature observed at this locus, particularly given that human
292 survivors of EVD show a lower frequency of *HLA-DR*-positive T cells [48].

293 Conclusion

294 By using fecal samples and targeted capture enrichment, non-invasive assessment of
295 numerous individuals from wild populations is possible. Here, we demonstrate that this
296 approach can be used to analyze temporal genetic changes in wild great ape populations in
297 response to environmental factors. Additionally, we present candidate loci that may have
298 facilitated the survival of gorilla individuals or groups after an outbreak of the *Zaire* Ebola virus.
299 Understanding putative adaptive responses to this pathogen in wild populations can help to
300 advance our knowledge on the natural dynamics of this severe disease. Such a strategy might
301 be useful in a broader context, since these and other primates are susceptible to other
302 infectious diseases such as Covid-19 [49].

303

304 Methods

305 **Samples, DNA extraction, library preparation.** Non-invasive fecal samples from
306 western lowland gorillas were collected between 2001 and 2014 in Odzala-Kokoua National

307 Park, Republic of Congo [18]. Among them, we selected 31 samples from previously identified
308 individuals. Sixteen of those individuals were declared missing after the epidemic in 2004 [13].
309 They died during the time span of the epidemic and were identified here as non-survivors.
310 Fifteen individuals were observed before and after the epidemic, and were described here as
311 survivors (Fig. 1A and Supplementary Table S1) [17]. Samples were collected by field
312 investigators wearing masks and gloves, and were dried with silica beads and then stored at
313 room temperature until arrival in a laboratory where they were stored at 4°C until extraction.

314 DNA was extracted from 10mg of dried sample using the 2CTAB/PCI protocol [50] using
315 negative controls that were checked for contamination before subsequent experiment. Three
316 different extractions were carried out, except for samples G778, G374, G344, G498 and G372,
317 where only two extractions were performed (Supplementary Table S1). A DNA library [51–53]
318 and a 16S rRNA library [54–56] were prepared for each extract. Isolated DNA samples were
319 quantified with Qubit with a mean estimated concentration of 13.3 ng/µl (range: 0.90–74.7).
320 Whenever possible, a total of 250 ng of DNA was used to construct DNA libraries, but never
321 more than a total volume of 33 µl was taken from any single sample. DNA was sheared with a
322 Covaris S2 instrument and 88 fecal DNA (fDNA) libraries were prepared following a custom
323 dual-indexing protocol with 25 cycles of amplification [51, 52]. Subsequent to DNA library
324 preparation, 88 16S rRNA libraries were prepared using 1 µl of total DNA. The V3 and V4
325 regions of 16S rRNA were target amplified using modified 341F and 806Rb primers [54, 55,
326 57], incorporated into the dual-indexing protocol [52]. The forward primer (IS1_P5_16S_341f:
327 ACACTTTCCCTACACGACGCTTCCGATCTNNNNCTACGGNGGCWGCAG), and
328 reverse primer (IS2_P7_16S_806rB:
329 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT) include
330 the complementary sequences necessary for the final indexing step [52]. Protocols are
331 provided in [53].

332 **Target Design, Capture and Sequencing.** RNA baits covering the target space were
333 designed and synthesized by Agilent with a minimum of 3x bait coverage. The target space
334 included specific autosomal genes (123 genes) and 15 neutral regions (~10kb each)
335 (Supplementary Table S2). For target enrichment, the fDNA libraries were pooled into one
336 equimolar batch and subjected to two consecutive rounds of DNA capture with the RNA baits
337 in 8 hybridizations. Captured fDNA libraries were sequenced on the Illumina system in four
338 HiSeq 2500 2x125 lanes and one HiSeq 2500 rapid run at 2x250 bp. The 16S libraries were
339 sequenced on one HiSeq 2500 rapid run 2x250 bp lane. In addition, we generated paired-end
340 sequences from the fDNA libraries on four HiSeq 4000 lanes (2x150bp) to study the whole
341 microbiome composition (Table S8).

342 **Mapping and Variant Discovery.** Prior to mapping, paired-end reads belonging to the
343 same library but sequenced in different lanes were merged into a single FASTQ file. PCR
344 duplicates were directly removed from FASTQ files using FASTUniq (v1.1) [58]. Overlapping
345 reads were merged (minimum overlap of 10 bp, minimum length of final read to 50 bp) using
346 PEAR (v0.9.6) [59]. Reads were mapped using BWA mem (v0.7.12) [60] to the human reference
347 genome Hg19 (GRCh37 from the UCSC database). Assembled reads were mapped
348 considering single-end specifications and unassembled reads considering paired-end
349 specifications. Any remaining PCR duplicates were removed using PicardTools
350 MarkDuplicates (v1.95) (<http://broadinstitute.github.io/picard/>). Non-primary alignments and
351 reads with quality below 30 were filtered from the dataset with samtools (v1.5) [61]. Finally,
352 single-end and paired-end reads were merged into a single BAM file using PicardTools
353 MergeSamFiles (<http://broadinstitute.github.io/picard/>). The percentage of aligned reads for
354 each DNA extraction and sample was calculated by dividing the number of uniquely and high-
355 quality mapped reads (without duplicates) by the total number of sequenced reads. The
356 percentage of on-target aligned reads was calculated for each sample by dividing the number
357 of on-target filtered reads by the number of sequenced reads. The average target effective

358 coverage was calculated dividing the number of aligned bases by the total length of the
359 targeted genomic space. Finally, the enrichment factor (ER) of the capture performance was
360 calculated using the ratio between the on-target reads by the total mapped reads over the
361 targeted size by genomic size (ER = (On-Target Reads/Mapped Reads)/(Target Size/Genome
362 Size)). The coverage for each target region was retrieved using SAMtools bedcov [61].

363 For variant calling, all BAM files belonging to the same sample were merged into a
364 single BAM file using PicardTools MergeSamFiles (v1.95)
365 (<http://broadinstitute.github.io/picard/>). Variant discovery was performed using GATK 'Unified
366 Genotyper' [62] for each sample independently with the following parameters -out_mode
367 EMIT_ALL_SITES -stand_call_conf 5.0 -stand_emit_conf 5.0 -A BaseCounts -A GCContent -A
368 RMSMappingQuality -A BaseQualityRankSumTest. Afterwards, we merged each sample gvcf
369 to a single one using GATK 'CombineVariants' [62] with the following parameters -
370 genotypeMergeOptions UNIQUIFY –excludeNonVariant. We also included in the gvcf the
371 genotype information of available whole genome data of six *Gorilla beringei beringei*, eight
372 *Gorilla beringei graueri*, one *Gorilla gorilla dielhi*, and twenty-three *Gorilla gorilla gorilla* samples
373 [29, 30]. The VCF was filtered with VCFtools [63] to keep only biallelic positions with DP >3 and
374 quality > 30 and without indels.

375 Genotype likelihoods were directly obtained from BAM files with ANGSD [31] including
376 four *Gorilla beringei beringei*, four *Gorilla beringei graueri*, one *Gorilla gorilla dielhi*, and four
377 *Gorilla gorilla gorilla*, with the following parameters and only in the target space: -uniqueOnly
378 1 -remove_bads 1 -only_proper_pairs 1 -trim 0 -C 50 -baq 1 -minInd 21 -skipTriallelic 1 -GL 2
379 -minMapQ 30 -doGlf 2 -doMajorMinor 1 -doMaf 2 -minMaf 0.05 -SNP_pval 1e-6.

380 **Quality control.** We evaluated the amount of human contamination in each fecal library
381 using the HuConTest script [64], as described previously [65]. The majority of samples have
382 less than 2% of human contamination, but samples G348 and G1392 have estimates of human

383 contamination of 6.7% and 25.1%, respectively (Supplementary Table S3). These two samples
384 also show extreme values of heterozygosity (deviating >1s.d. from mean heterozygosity; Figure
385 S2). For the identification of individuals and markers with elevated missing data rates we used
386 the proportion of the target space covered by at least 4 reads. Individuals with less than 30%
387 of covered target space (4 reads) were not used for further analysis (G638 and G282).

388 A principal component analysis (PCA) was performed to validate that the genotype
389 information obtained for the case study gorillas was in concordance with previously published
390 data. We used PCAngsd [66] with the genotype likelihoods obtained with ANGSD (N=6,484),
391 including 13 previously published whole-genomes representative of each known gorilla
392 subspecies [29, 30]. We also obtained a PCA using the GATK genotype calls after keeping only
393 variants with minor allele frequency of 0.02 with plink --pca option (N=6051) [67].

394 **Genetic distance, relatedness and heterozygosity.** We used the genotype likelihood
395 information for the studied individuals to obtain the genetic distance by running ngsDist in
396 ANGSD [68] with the following parameters: --n_sites 5477 --probs TRUE --pairwise_del. Then,
397 we constructed an Euclidean distance matrix based on the genotypes and performed a
398 hierarchical clustering using the R package *ape* [69]. We also run PCAngsd [66] considering
399 only the study gorillas to discard any possible intra-group structure.

400 The theta coefficients of kinship (probability of a pair of randomly sampled homologous
401 alleles are identical by descent) were calculated using the NgsrelateV2 [70, 71] on the
402 genotype likelihood obtained with ANGSD [31]. Note that all possible genotype likelihoods,
403 even outside the target space (N=226,094), were used since the coverage of the kinship
404 markers was insufficient.

405 To assess global levels of heterozygosity, the unfolded SFS was calculated for each
406 sample separately, including thirteen gorilla whole-genomes representative of all gorilla
407 subspecies [29, 30], using ANGSD [31] and realSFS [72] only in the target space with the

408 following quality filter parameters: -uniqueOnly 1 -remove_bads 1 -only_proper_pairs 1 -trim 0
409 -C 50 -baq 1 -minMapQ 20 -minQ 20 -setMaxDepth 200 -doCounts 1 -GL 1 -doSaf 1. We used
410 the human genome (Hg19) to determine the ancestral state.

411 **Association analysis.** The genotype calls obtained with GATK were further filtered with
412 Plink [67] to exclude variants considering their missing rate (--geno 0.05), minor allele
413 frequency (--maf 0.01) and Hardy-Weinberg equilibrium (--hwe 0.00001). The final dataset
414 consists of 27 samples (13 survivors and 14 non-survivors) and 6,852 high-quality variants.
415 Nominal significance was set at an alpha of 0.05 and a Bonferroni corrected alpha threshold of
416 7.3×10^{-6} ($0.05/6,852$) was defined to account for familywise error. Associations were tested for
417 by a chi-square allelic test with one degree of freedom and p-values were estimated by
418 permutation in plink (plink --assoc --mperm 10000). [73]. The p-values were plotted in a
419 Manhattan plot in R (v3.4.1).

420 The allele frequency for each group (survivors and non-survivors) was obtained using
421 the -freq2 option in VCFtools [63]. Then, we calculated the allele frequency difference per SNP
422 by subtracting the allele frequency in non-survivors from the allele frequency in survivors
423 (Δ Frequency). We chose a threshold of ± 0.2 , and plotted the allele frequencies using R. The
424 fixation index (F_{ST}) between both groups was calculated using VCFtools --weir-fst-pop option
425 (Weir and Cockerham) [63] with a threshold at 0.15, and results were plotted in R. We retrieved
426 markers with $\alpha \leq 0.05$ in the association test and a p-value < 0.05 in the permutation test. The
427 ANGSD software [31] was used to perform a replication of the association analysis using the
428 following parameters -minQ 20 -minMapQ 30 -doAsso 1 -GL 1 -out assocGQ_filter -
429 doMajorMinor 1 -doMaf 1 -SNP_pval 1e-6 -minInd 22 -minMaf 0.02. The output of the
430 association analysis are LRT values (Likelihood Ratio Test), which are chi square distributed
431 with one degree of freedom. Since we set a threshold of significance at 95% confidence, the
432 minimum score to be significant is LRT = 3.84. In both association analyses, we linked the
433 nominally significant SNPs with their genes (Supplementary Table S4 and S5). Genes with

434 multiple nominally significant SNPs were considered to be potentially more relevant.
435 Subsequently, we compared the overlap of discovered genes between the datasets (Unified
436 Genotyper and ANGSD) in a Venn diagram (Supplementary Fig. S8) using the R package
437 VennDiagram [74].

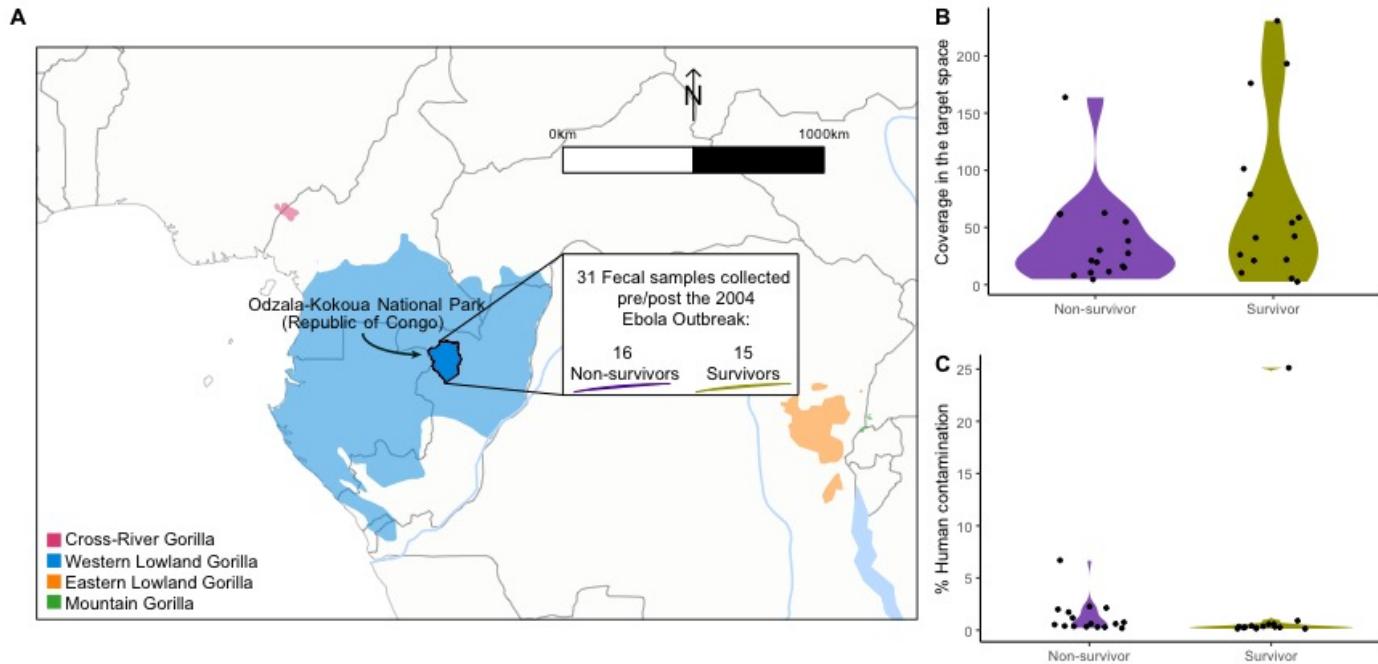
438 **Prediction of functional consequences of the significant markers.** We used VEP
439 (v91) [75] for the functional annotation of the associated SNPs. We retrieved the predicted
440 consequence of each significant marker found in the potentially related genes to Ebola immune
441 response, as well as PolyPhen-2 [32], Sift [76] and C-scores [77]. Associated loci were
442 intersected with hits in the GWAS catalogue [78] within 5,000 bp. We also performed an
443 overrepresentation test using Panther [79] to test whether any of the potentially related genes
444 are overrepresented in biological or functional categories compared to the rest of targeted
445 genes with no apparent association with Ebola. In addition, we mapped previously published
446 RNA sequencing data from six tissues (brain, cerebellum, heart, kidney, liver, testis) in two
447 gorilla individuals [35] to the annotated genes in the human reference genome (using the
448 Ensembl Release 75 gene models) using Tophat2 [80], and estimated the gene expression with
449 htseq-count [81]. Gene expression is reported log2-normalized, and we counted the number
450 of reads overlapping the candidate missense mutations to confirm their transcriptional activity
451 in gorillas. Values presented are the cumulative sums of RNA sequencing reads across
452 individuals and tissues.

453 **Microbiome sequencing.** 16S RNA sequencing reads were processed using QIIME
454 (v1) (Quantitative Insights Into Microbial Ecology) [82] to analyze the 16S rRNA. First, paired-
455 end raw reads were merged using fastq-join from ea-utils package [83]. Then, with usearch
456 software [84], merged FASTQ reads were filtered (-fastq_trunclen 253 and -fastq_maxee 0.5).
457 Using QIIME environment, the metadata mapping file was constructed and validated
458 (validate_mapping_file.py) and QIIME labels were added (add_qiime_labels.py). We applied
459 open-reference OTUs picking (pick_open_reference_otus.py). Summary statistics were

460 computed using *biom summarize-table*. The resulting dataset was rarefied to an even depth of
461 10,000 sequences per extract (6 extracts were excluded in diversity analysis: G191_5782,
462 G344_5827, G314_5824, G489_5834, G489_5835, G344_5828). Finally, we ran diversity
463 analysis with a sequence depth of 10,000 (core_diversity_analysis.py). Taxa abundance
464 quantification and significance of relative taxa abundance (T-test and p-values adjusted for
465 multiple testing with Bonferroni-correction) were computed in R.

466 Deep sequencing of the DNA library (pre-capture) was performed as stated above. To
467 remove sequencing adapters and merge the read pairs, we used AdapterRemoval v2.2.4 with
468 default settings [85]. We then aligned the merged sequences to the gorilla reference genome
469 Kamilah_GGO_v0 using bwa mem [60] to remove host DNA. Subsequently we filtered out
470 potential human contaminant DNA by aligning the unmapped sequences to the human
471 reference genome hg19, resulting in 724,738,878 filtered sequences. MALT v0.4.1 (MEGAN
472 Alignment Tool) [39] was used to characterize the microbial profile, using all archaeal, viral,
473 and bacterial reference sequences downloaded from NCBI on 06.05.2019. These were
474 indexed using malt-build to build a custom database. Malt-run was then used with minimum
475 percent identity (--minPercentIdentity) set to 95, the minimum support (--minSupport)
476 parameter set to 10, and the top percent value (--topPercent) set as 1, other parameters were
477 set to default. The resulting rma6 files were visualized with MEGAN6 [86] and clustered in a
478 Principal Coordinate analysis (PCoA) and Neighbor Joining Tree analysis according to
479 microbial composition on the species level (Supplementary Figs. S14 and S15).

480

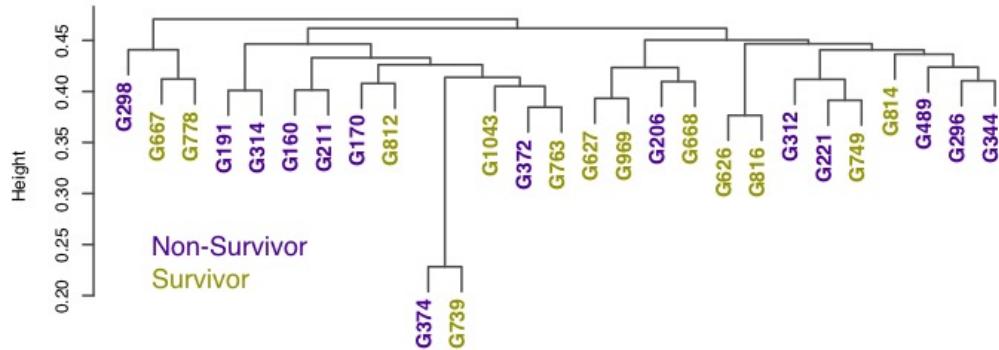


481

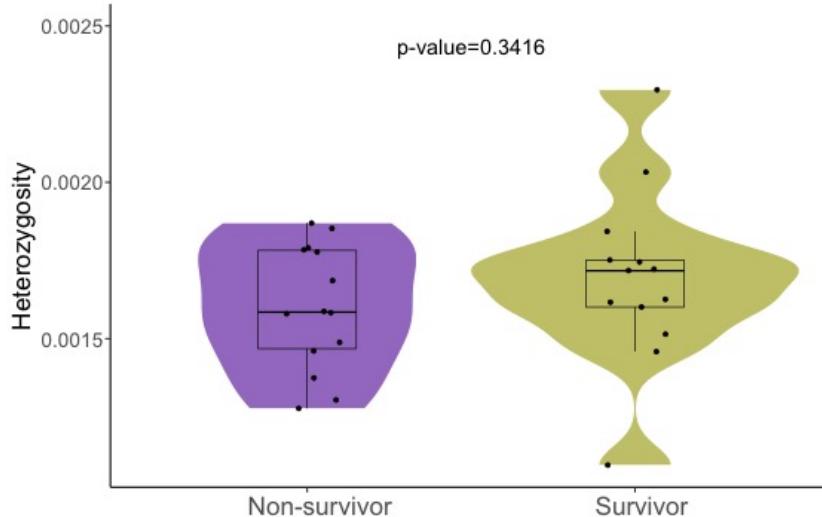
482 **Fig. 1. Sample description.** **A)** Geographical map of the extant range of gorillas and the
483 Odzala-Kokoua National Park (Republic of Congo) where fecal samples were collected
484 between 2001 and 2014, overlapping the Ebola outbreak in 2004. **B)** Average coverage
485 reached in the target space per sample in both studied groups. **C)** Percentage of human
486 contamination in each fecal sample.

487

A



B

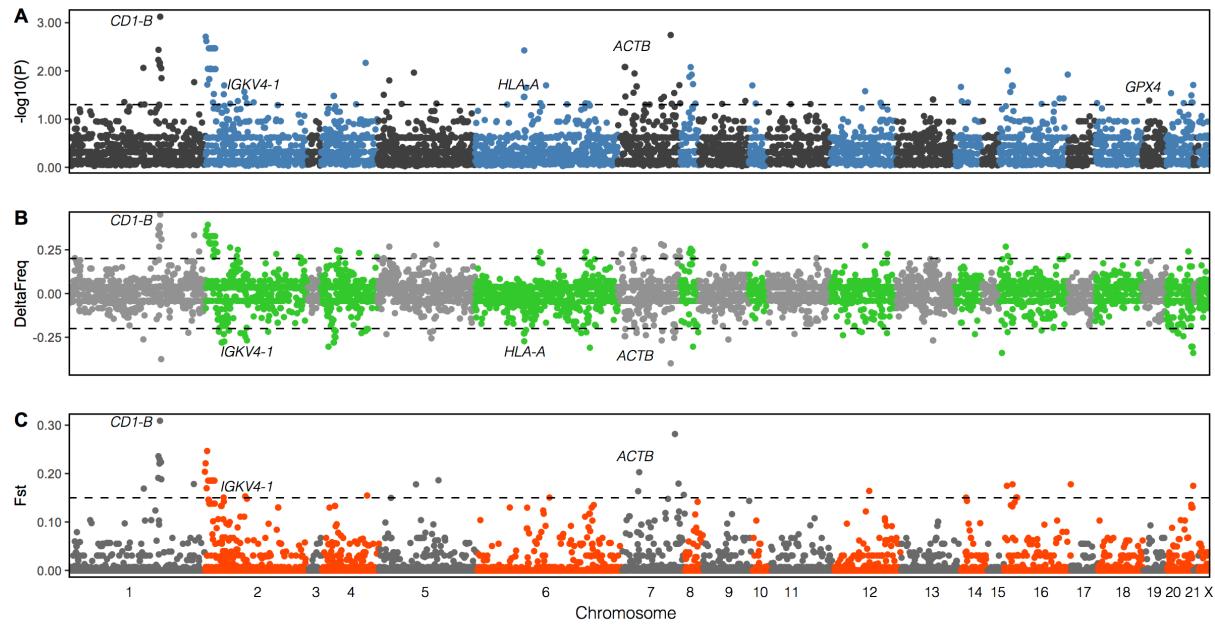


488

489 **Fig. 2. Genetic distance dendrogram and heterozygosity among non-survivor and**
490 **survivor gorilla groups. A)** Clustering dendrogram of pairwise genetic distance derived from
491 genotype likelihoods (N=5,477). **B)** Mean heterozygosity (bp^{-1}) in non-survivors and survivors;
492 not significantly different (Student t-test, p-value=0.34).

493

494



495

496 **Fig. 3. Association analysis to detect SNPs and candidate genes related to survivorship**
497 **to EBOV outbreak. A)** Significance level (threshold set at $\alpha=0.05$, $-\log_{10}(P\text{-value})=1.30$). **B)**
498 Difference in allele frequency (threshold set at ± 0.2). **C)** Fixation index (threshold set at
499 $F_{ST}=0.15$). Dashed lines delineate the thresholds used.

500 **Availability of data and materials**

501 The dataset generated during the current study will be made publicly available upon
502 acceptance (raw sequencing data to ENA, project ID: PRJEB43265). It will be available to
503 reviewers from the corresponding author on request.

504 **Abbreviations**

505 EBOV: Ebola virus

506 EVD: Ebola virus Disease

507 GWAS: Genome-Wide Association Study

508 IUCN: International Union for Conservation of Nature

509 PCA: Principal Component Analysis

510 SNP: Single Nucleotide Polymorphism

511 **References**

- 512 1. Centers for Disease Control and Prevention. History of Ebola Virus Disease. U.S.
513 Department of Health & Human Services. 2018.
- 514 2. World Health Organization. Situation Report - Ebola Virus Disease. 2016.
- 515 3. World Health Organization. External Situation Report 98 - Ebola Virus Disease. 2020.
516 <https://www.who.int/publications/i/item/10665-332654>.
- 517 4. Kuhn JH, Becker S, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, et al. Proposal
518 for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and
519 virus abbreviations. 2010;155:2083–103.
- 520 5. Centers of Disease Control and Prevention. What is Ebola Virus Disease? 2018.
- 521 6. World Health Organization. Ebola virus disease. 2018.
- 522 7. Feldmann H. Ebola haemorrhagic fever. Lancet. 2011;377:849–62.
- 523 8. Smith KF, Acevedo-Whitehouse K, Pedersen AB. The role of infectious diseases in
524 biological conservation. Anim Conserv. 2009;12:1–12.
- 525 9. Walsh PD, Abernethy KA, Bermejo M, Beyers R, De Wachter P, Akou ME, et al. Letters
526 To Nature. Nature. 2003;422 April:611–4.
- 527 10. Rouquet P, Froment J-M, Bermejo M, Kilbourn A, Karesh W, Reed P, et al. Wild
528 Animal Mortality Monitoring and Human Ebola Outbreaks, Gabon and Republic of Congo,
529 2001–2003. Emerg Infect Dis. 2005;11:283–90.
- 530 11. Leroy EM, Rouquet P, Formenty P, Kilbourne A, Froment J, Bermejo M, et al.
531 Multiple Ebola Virus Transmission Events and Rapid Decline of Central African Wildlife. Science
532 (80-). 2004;303 January:387–90.
- 533 12. Bermejo M, Rodríguez-teijeiro JD, Illera G, Barroso A, Vilà C, Walsh PD. Ebola
534 Outbreak Killed 5000 Gorillas. 2006;314 December.

535 13. Caillaud D, Levréro F, Cristescu R, Gatti S, Dewas M, Douadi M, et al. Gorilla
536 susceptibility to Ebola virus: the cost of sociality. *Curr Biol.* 2006;16:489–91.

537 14. Maisels F, Bergl R, Williamson E. Gorilla gorilla (errata version published in 2016).
538 The IUCN Red List of Threatened Species. 2016.

539 15. Leendertz SAJ, Wich SA, Ancrenaz M, Bergl RA, Gonder MK, Humle T, et al. Ebola
540 in great apes – current knowledge, possibilities for vaccination, and implications for
541 conservation and human health. *Mamm Rev.* 2017;47:98–111.

542 16. Genton C, Cristescu R, Gatti S, Levréro F, Bigot E, Motsch P, et al. Using
543 demographic characteristics of populations to detect spatial fragmentation following suspected
544 ebola outbreaks in great apes. *Am J Phys Anthropol.* 2017;164:3–10.

545 17. Genton C, Cristescu R, Gatti S, Levréro F, Bigot E, Caillaud D, et al. Recovery
546 Potential of a Western Lowland Gorilla Population following a Major Ebola Outbreak: Results
547 from a Ten Year Study. *PLoS One.* 2012;7:e37106.

548 18. Le Gouar PJ, Vallet D, David L, Bermejo M, Gatti S, Levréro F, et al. How Ebola
549 impacts genetics of Western lowland gorilla populations. *PLoS One.* 2009;4:e8375.

550 19. Li X, Zai J, Liu H, Feng Y, Li F, Wei J, et al. The 2014 Ebola virus outbreak in West
551 Africa highlights no evidence of rapid evolution or adaptation to humans. *Nat Publ Gr.* 2016;
552 June:1–9.

553 20. Honda K, Littman DR. The microbiome in infectious disease and inflammation. *Annu
554 Rev Immunol.* 2012;30:759–95.

555 21. Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the interplay between intestinal
556 microbiota and host immunity in health and disease: Lessons learned from germfree and
557 gnotobiotic animal models. *Eur J Microbiol Immunol.* 2016;6:253–71.

558 22. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health
559 and disease. *Cell Res.* 2020;30:492–506.

560 23. Domínguez-Díaz C, García-Orozco A, Riera-Leal A, Padilla-Arellano JR, Fafutis-
561 Morris M. Microbiota and its role on viral evasion: Is it with us or against us? *Front Cell Infect
562 Microbiol.* 2019;9 JUL:256.

563 24. Gou W, Fu Y, Yue L, Chen GD, Cai X, Shuai M, et al. Gut microbiota may underlie
564 the predisposition of healthy individuals to COVID-19. *medRxiv.* 2020.

565 25. Moeller AH, Peeters M, Ayouba A, Ngole EM, Esteban A, Hahn BH, et al. Stability of
566 the gorilla microbiome despite simian immunodeficiency virus infection. *Mol Ecol.*
567 2015;24:690–7.

568 26. Genton C, Pierre A, Cristescu R, Lévréro F, Gatti S, Pierre J-S, et al. How Ebola
569 impacts social dynamics in gorillas: a multistate modelling approach. *J Anim Ecol.*
570 2015;84:166–76.

571 27. Fischer A, Prüfer K, Good JM, Halbwax M, Wiebe V, André C, et al. Bonobos fall
572 within the genomic variation of Chimpanzees. *PLoS One.* 2011;6:1–10.

573 28. Voight BF, Adams AM, Frisse LA, Qian Y, Hudson RR, Di Rienzo A. Interrogating
574 multiple aspects of variation in a full resequencing data set to infer human population size
575 changes. *Proc Natl Acad Sci U S A.* 2005;102:18508–13.

576 29. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, et al.
577 Great ape genetic diversity and population history. *Nature.* 2013;499:471–5.
578 doi:10.1038/nature12228.

579 30. Xue Y, Prado-martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, et al.
580 Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding.
581 *Science* (80-). 2015;348:242–5.

582 31. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation
583 Sequencing Data. *BMC Bioinformatics.* 2014.

584 32. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A
585 method and server for predicting damaging missense mutations. *Nat Methods.* 2010;7:248–9.

586 33. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for

587 genomes. *Nat Protoc.* 2016;11:1–9.

588 34. Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general
589 framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet.*
590 2014;46:310–5.

591 35. Brawand D, Soumilon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The
592 evolution of gene expression levels in mammalian organs. *Nature.* 2011;478.

593 36. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-
594 EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic Acids
595 Res.* 2017;45 Database issue:D896–901. doi:10.1093/nar/gkw1133.

596 37. Gomez A, Petrzekova K, Yeoman CJ, Vlckova K, Koppova I, Carbonero F, et al. Gut
597 microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla
598 gorilla gorilla) reflect host ecology. 2015; September 2014:2551–65.

599 38. Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut
600 microbiomes of wild great apes fluctuate seasonally in response to diet. *Nat Commun.*
601 2018;9:1786.

602 39. Vågene ÅJ, Herbig A, Campana MG, Robles García NM, Warinner C, Sabin S, et al.
603 *Salmonella enterica* genomes from victims of a major sixteenth-century epidemic in Mexico.
604 *Nat Ecol Evol.* 2018;2:520–8. doi:10.1038/s41559-017-0446-6.

605 40. Gomez A, Rothman JM, Petrzekova K, Yeoman CJ, Vlckova K, Umaña JD, et al.
606 Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp. *ISME
607 J.* 2016;10:514–26. doi:10.1038/ismej.2015.146.

608 41. Gomez A, Petrzekova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I, et al. Gut
609 microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla
610 gorilla gorilla) reflect host ecology. *Mol Ecol.* 2015;24:2551–65.

611 42. Bittar F, Keita MB, Lagier J-C, Peeters M, Delaporte E, Raoult D. Gorilla gorilla gorilla
612 gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular
613 tools. *Sci Rep.* 2014;4:7174. doi:10.1038/srep07174.

614 43. Hernandez-Rodriguez J, Arandjelovic M, Lester J, de Filippo C, Weihmann A, Meyer
615 M, et al. The impact of endogenous content, replicates and pooling on genome capture from
616 faecal samples. *Mol Ecol Resour.* 2017. doi:10.1111/1755-0998.12728.

617 44. Fontserè C, Alvarez-Estape M, Lester J, Arandjelovic M, Kuhlwilm M, Dieguez P, et
618 al. Maximizing the acquisition of unique reads in non-invasive capture sequencing experiments.
619 *Mol Ecol Resour.* 2020;n/a n/a. doi:<https://doi.org/10.1111/1755-0998.13300>.

620 45. Kerviel A, Thomas A, Chaloin L, Favard C, Muriaux D. Virus assembly and plasma
621 membrane domains: Which came first? *Virus Res.* 2013;171:332–40.

622 46. Lefranc M-P. Immunoglobulin and T Cell Receptor Genes: IMGT® and the Birth and
623 Rise of Immunoinformatics. *Front Immunol.* 2014;5:22.

624 47. Saeed MF, Kolokoltsov AA, Freiberg AN, Holbrook MR, Davey RA.
625 Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus. *PLoS Pathog.*
626 2008;4:e1000141.

627 48. Ruibal P, Oestreich L, Lüdtke A, Becker-Ziaja B, Wozniak DM, Kerber R, et al.
628 Unique human immune signature of Ebola virus disease in Guinea. *Nat* 2016 5337601.
629 2016;533:100.

630 49. Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation
631 and primate COVID-19 risk. *Commun Biol.* 2020;3:641. doi:10.1038/s42003-020-01370-w.

632 50. Vallet D, Petit EJ, Gatti S, Levréro F, Ménard N. A new 2CTAB/PCI method improves
633 DNA amplification success from faeces of Mediterranean (Barbary macaques) and tropical
634 (lowland gorillas) primates. *Conserv Genet.* 2008;9:677–80.

635 51. Meyer M, Kircher M. Illumina Sequencing Library Preparation for Highly Multiplexed
636 Target Capture and Sequencing. *Cold Spring Harb Protoc.* 2010;2010:pdb.prot5448-
637 pdb.prot5448.

638 52. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in

639 multiplex sequencing on the Illumina platform. *Nucleic Acids Res.* 2012;40.

640 53. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for
641 multiplexed target capture. *Genome Res.* 2012;22:939–46.

642 54. Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, et al.
643 DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in
644 microbial ecology studies. *Appl Environ Microbiol.* 2014;80:5116–23.

645 55. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation
646 of general 16S ribosomal RNA gene PCR primers for classical and next-generation
647 sequencing-based diversity studies. *Nucleic Acids Res.* 2013;41:e1–e1.

648 56. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
649 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
650 platforms. *ISME J.* 2012;6:1621–4.

651 57. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
652 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
653 platforms. *ISME J.* 2012;6:1621–4.

654 58. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, et al. FastUniq: A Fast De Novo
655 Duplicates Removal Tool for Paired Short Reads. *PLoS One.* 2012;7:1–6.

656 59. Stamatakis A, Zhang J, Kober K. Genome analysis PEAR: a fast and accurate
657 Illumina Paired-End reAd mergeR. *2014;30:614–20.*

658 60. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
659 transform. *Bioinformatics.* 2009;25:1754–60.

660 61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
661 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25:2078–9.

662 62. Depristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, et al. A
663 framework for variation discovery and genotyping using next-generation DNA sequencing data.
664 *Nat Genet.* 2011;43:491–8.

665 63. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The
666 variant call format and VCFtools. *Bioinformatics.* 2011;27:2156–8.

667 64. Kuhlwilm M, Fontseré C, Han S, Alvarez-Estape M, Marques-Bonet T. HuConTest:
668 Testing human contamination in great ape samples. *Genome Biology and Evolution.* 2021;
669 doi: 10.1093/gbe/evab117.

670 65. Fontseré C, Alvarez-Estape M, Lester J, Arandjelovic M, Kuhlwilm M, Dieguez P, et
671 al. Maximizing the acquisition of unique reads in non-invasive capture sequencing experiments.
672 *Mol Ecol Resour.* 2020;:1755–0998.13300.

673 66. Meisner J, Albrechtsen A. Inferring population structure and admixture proportions
674 in low-depth NGS data. *Genetics.* 2018;210:719–31.

675 67. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:
676 A tool set for whole-genome association and population-based linkage analyses. *Am J Hum
677 Genet.* 2007;81:559–75.

678 68. Vieira FG, Lassalle F, Korneliussen TS, Fumagalli M. Improving the estimation of
679 genetic distances from Next-Generation Sequencing data. *Biol J Linn Soc.* 2016;117:139–49.
680 doi:<https://doi.org/10.1111/bij.12511>.

681 69. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in
682 R language. *Bioinformatics.* 2004;20:289–90.

683 70. Korneliussen TS, Moltke I. NgsRelate: A software tool for estimating pairwise
684 relatedness from next-generation sequencing data. *Bioinformatics.* 2015;31:4009–11.

685 71. Hanghøj K, Moltke I, Andersen PA, Manica A, Korneliussen TS. Fast and accurate
686 relatedness estimation from high-throughput sequencing data in the presence of inbreeding.
687 *Gigascience.* 2019;8.

688 72. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J. SNP calling, genotype
689 calling, and sample allele frequency estimation from new-generation sequencing data. *PLoS
690 One.* 2012;7.

691 73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:
692 A tool set for whole-genome association and population-based linkage analyses. *Am J Hum*
693 Genet.

694 74. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
695 customizable Venn and Euler diagrams in R. 2011.

696 75. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl
697 Variant Effect Predictor. *Genome Biol.* 2016;17:122. doi:10.1186/s13059-016-0974-4.

698 76. Sim N, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server : predicting
699 effects of amino acid substitutions on proteins. 2012;40 June:452–7.

700 77. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general
701 framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet.*
702 2014;46:310–5.

703 78. Macarthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-
704 EBI Catalog of published genome-wide association studies (GWAS Catalog). 2017;45
705 November 2016:896–901.

706 79. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al.
707 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. *Genome Res.*
708 2003;:2129–41.

709 80. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate
710 alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome*
711 *Biol.* 2013;14:R36. doi:10.1186/gb-2013-14-4-r36.

712 81. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-
713 throughput sequencing data. *Bioinformatics.* 2015;31:166–9.

714 82. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et
715 al. QIIME allows analysis of high- throughput community sequencing data. *Nat Methods.*
716 2010;7:335–6.

717 83. Aronesty E. ea-utils : “Command-line tools for processing biological sequencing
718 data.” 2011.

719 84. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
720 *Bioinformatics.* 2017;26:2460–1.

721 85. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming,
722 identification, and read merging. *BMC Res Notes.* 2016;9:88. doi:10.1186/s13104-016-1900-2.

723 86. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data.
724 *Genome Res.* 2007;17:377–86. doi:10.1101/gr.5969107.

725

726 Declarations

727 Acknowledgments

728 We are grateful to S. Gatti, F. Levréro, C. Genton, R. Cristescu for their assistance with
729 sample collection on site. We thank the teams of the ECOFAC program (EU) and African Parks
730 Networks for logistic assistance and permission to work in Odzala-Kokoua National Park. The
731 storage and extraction of fecal samples were performed in the molecular ecology platform
732 (UMR 6553 Ecobio, CNRS/UR1) dedicated to non-invasive samples.

733 Funding

734 C.F. is supported by "la Caixa" PhD fellowship, fellowship code
735 LCF/BQ/DE15/10360006. M.K. is supported by "la Caixa" Foundation (ID 100010434),
736 fellowship code LCF/BQ/PR19/11700002. J.N is supported by the European Union's Horizon
737 2020 research and innovation programme under grant agreement no. 676154 (ArchSci2020)
738 and an EMBO short-term fellowship STF-8036. P.F. is supported by the Innovation Fund
739 Denmark. H.R.S is supported by The Danish Council for Independent Research | Natural
740 Sciences. A.N. is supported by BFU2015-68649-P (MINECO/FEDER, UE). M.T.P.G. is
741 supported by the Danish Basic Research Foundation award DNRF143. T.M.-B is supported by
742 BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International
743 Early Career, Obra Social "La Caixa" and Secretaria d'Universitats i Recerca del Departament
744 d'Economia i Coneixement de la Generalitat de Catalunya. P.L.G., N.M. and D.V. are supported
745 by the French National agency for research via the ANR-11-JVS7-015 IDiPop project. D.H. is
746 supported by Wellcome Investigator Award (202802/Z/16/Z) and works in the Medical
747 Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported
748 by the Medical Research Council (MC_UU_00011/1-7). This long-term research on gorillas was
749 funded by the ECOsystèmes FORestiers program (Ministère de l'Ecologie et du
750 Développement Durable France), the Espèces-Phares program (DG Environnement, UE) and
751 Lundbeck Foundation Visiting Professorship R317-2019-5 grant to T.M.-B. and M.T.P.G.

752 Contributions

753 D.H., T.M.-B., P.L.G., N.M., D.V., A.N. and M.T.P.G. conceived and designed the study; D.H.,
754 D.V. and C.S.O. performed experiments; C.F., M.K., D.H., J.H.R., C.H.S.O and J.N. analyzed
755 data; P.L.G., N.M. and D.V. collected genetic and demographic data; P.F., H.R.S., C.H., provided
756 analytical support. C.F., M.K., D.H., and T.M.-B. wrote the manuscript with input and approval
757 from the other authors.

758 Corresponding authors

759 Correspondence to: Claudia Fontseré (claudia.fontseré@upf.edu), Tomas Marques-Bonet

760 (tomas.marques@upf.edu) or Martin Kuhlwilm (martin.kuhlwilm@upf.edu)

761 Ethics declarations

762 Ethics approval and consent to participate

763 Not applicable.

764 Consent for publication

765 Not applicable.

766 Competing interests

767 The authors declare that they have no competing interests.

768 Additional information

769 **Additional File 1.** Excel file with tables S1-S13.

770 **Additional File 2.** PDF with Figures S1-S15.