

Spike mutation T403R allows bat coronavirus RaTG13 to use human ACE2

Fabian Zech¹, Daniel Schniertshauer¹, Christoph Jung^{2,3,4}, Alexandra Herrmann⁵, Qinya Xie¹, Rayhane Nchioua¹, Caterina Prelli Bozzo¹, Meta Volcic¹, Lennart Koepke¹, Jana Krüger⁶, Sandra Heller⁶, Alexander Kleger⁶, Timo Jacob^{2,3,4}, Karl-Klaus Conzelmann⁷, Armin Ensser⁵, Konstantin M.J. Sparrer¹ and Frank Kirchhoff^{1*}

¹Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany;

²Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; ³Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany;

⁴Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany;

⁵Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany. ⁶Department of

Internal Medicine I, Ulm University Medical Center, 89081 Ulm, Germany; ⁷Max von Pettenkofer-Institute of Virology, Medical Faculty, and Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.

* Address Correspondence to: Frank.Kirchhoff@uni-ulm.de

Running title: T403R allows RaTG13 Spike to use human ACE2

KEYWORDS: SARS-CoV-2, RaTG13, spike glycoprotein, ACE2

KEYWORDS: SARS-CoV-2, RaTG13, spike glycoprotein, ACE2 receptor, viral zoonosis

23 **ABSTRACT**

24 **Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the**
25 **COVID-19 pandemic, most likely emerged from bats¹. A prerequisite for this devastating**
26 **zoonosis was the ability of the SARS-CoV-2 Spike (S) glycoprotein to use human**
27 **angiotensin-converting enzyme 2 (ACE2) for viral entry. Although the S protein of the**
28 **closest related bat virus, RaTG13, shows high similarity to the SARS-CoV-2 S protein it**
29 **does not efficiently interact with the human ACE2 receptor². Here, we show that a single**
30 **T403R mutation allows the RaTG13 S to utilize the human ACE2 receptor for infection**
31 **of human cells and intestinal organoids. Conversely, mutation of R403T in the SARS-**
32 **CoV-2 S significantly reduced ACE2-mediated virus infection. The S protein of SARS-**
33 **CoV-1 that also uses human ACE2 also contains a positive residue (K) at this position,**
34 **while the S proteins of CoVs utilizing other receptors vary at this location. Our results**
35 **indicate that the presence of a positively charged amino acid at position 403 in the S**
36 **protein is critical for efficient utilization of human ACE2. This finding could help to**
37 **predict the zoonotic potential of animal coronaviruses.**

38 Since its first occurrence in Wuhan in December 2019, SARS-CoV-2, the causative agent of
39 COVID-19, has infected about 170 million people by May 2021 and caused a global health and
40 economic crisis³. SARS-CoV-2 belongs to the *Sarbecovirus* subgenus of betacoronaviruses,
41 which are mainly found in bats³. Horseshoe bats (*Rhinolophidae*) also harbour viruses that are
42 closely related to SARS-CoV-1 that infected about 8.000 people in 2002 and 2003^{3,4}. The bat
43 virus RaTG13 sampled from a *Rhinolophus affinis* horseshoe bat in 2013 in Yunnan has been
44 identified as the closest relative of SARS-CoV-2 showing approximately 96% sequence
45 identity throughout the genome¹. Thus, SARS-CoV-2 most likely originated from horseshoe
46 bats^{1,5}, although it has been proposed that cross-species transmission to humans may have
47 involved pangolins as secondary intermediate host^{6,7}.

48 The Spike (S) proteins of both SARS-CoV-1 and SARS-CoV-2 utilize the human
49 angiotensin-converting enzyme 2 (ACE2) receptor to enter human target cells⁸⁻¹¹. The ability
50 to use a human receptor for efficient infection is a key prerequisite for successful zoonotic
51 transmission. Although the RaTG13 S protein is highly similar to the SARS-CoV-2 S it does
52 not interact efficiently with the human ACE2 receptor², suggesting that this bat virus would
53 most likely not be able to directly infect humans. It has been reported that specific alterations
54 in the receptor-binding domain (RBD)¹², as well as a four-amino-acid insertion (PRRA)
55 introducing a furin-cleavage site,^{8,13} play a key role in efficient ACE2 utilization and
56 consequently the high infectiousness and efficient spread of SARS-CoV-2. However, it
57 remains poorly understood which specific features allow the S proteins of bat CoVs to use
58 human ACE2 as entry cofactor and thus to successfully cross the species barrier to humans.

59 Computational analyses suggested that R403 is involved in intramolecular interactions
60 stabilizing the SARS-CoV-2 S trimer interface² and contributes significantly to the strength of
61 SARS-CoV-2 RBD interaction with the human ACE2 receptor¹⁴. We found that R403 is highly
62 conserved in SARS-CoV-2 S proteins: only 233 of 1.7 million sequence records contain a
63 conservative change of R403K and just 18 another residue or deletion. Notably, the presence

64 of a positively charged residue at position 403 distinguishes the S proteins of SARS-CoV-1
65 (K403) and SARS-CoV-2 (R403) from the bat CoV RaTG13 S protein (T403) (**Fig. 1a**).

66 Molecular modelling of S/ACE2 interaction using reactive force field simulations confirmed
67 close proximity and putative charge interactions between R403 in the SARS-CoV-2 S with E37
68 in the human ACE2 receptor (**Fig. 1b**). These analyses predicted that mutation of T403R
69 significantly strengthens the ability of the RaTG13 S protein to bind human ACE2 (**Fig. 1c**,

70 **Extended Data Movies 1 and 2**.

71 To verify the functional importance of residue 403 for ACE2 usage by CoV S proteins, we
72 used VSV particles (VSVpp) pseudotyped with parental and mutant S proteins. Mutation of
73 R403T reduced the ability of the SARS-CoV-2 S protein to mediate entry of VSVpp into Caco-
74 2 cells by 40% (**Fig. 2a, b**). Strikingly, the T403R change enhanced the infectiousness of
75 VSVpp carrying the RaTG13 S ~30-fold, while substitution of T403A introduced as control
76 had no enhancing effect (**Fig. 2b**). Cell-to-cell fusion assays showed that coexpression of the
77 SARS-CoV-2 S and human ACE2 resulted in the formation of large syncytia (**Extended Data**
78 **Fig. 1**). The parental and T403A RaTG13 S did not lead to significant fusion but significant
79 syncytia formation was observed for the T403R RaTG13 S (**Extended Data Fig. 1**). Western
80 blot analyses showed that the mutant S proteins were efficiently expressed and incorporated
81 into VSVpp, albeit the SARS-CoV-2 R403T S with reduced efficiency (**Extended Data Fig.**
82 **2**). In line with the VSVpp results, complementation of a full-length recombinant SARS-CoV-
83 2 lacking the S ORF (SCoV-2ΔS) in ACE2-expressing HEK293T cells with wildtype (WT)
84 SARS-CoV-2 S led to virus-induced cytopathic effects (CPE) indicating successful virus
85 production and propagation (**Fig. 2c**). Mutation of R403T in the SARS-CoV-2 S reduced CPE.
86 The WT and T403A RaTG13 S were entirely unable to complement SCoV-2ΔS, while the
87 T403R RaTG13 S resulted in significant CPE. Expression of a Gaussia luciferase (GLuc) from
88 S variant complemented recombinant SCoV2ΔS-GLuc confirmed the importance of R403 for
89 viral spread (**Fig. 2d**).

90 Coronavirus entry is a multi-step process and critically dependent on proteolytic processing
91 of the S protein¹⁵. The interaction of the SARS-CoV-2 S trimer with ACE2 promotes
92 proteolytic processing^{16,17}. Western blot analysis revealed that ACE2 coexpression induces
93 efficient cleavage of the SARS-CoV-2 and T403R RaTG13 S proteins to S2, while cleavage
94 of the WT and T403A RaTG13 S proteins remained inefficient (**Extended Data Fig. 3**). R403
95 generates a potential RGD integrin binding site in the viral Spike protein and it is under debate
96 whether the ability of the SARS-CoV-2 S to use integrins as viral attachment factors may play
97 a role in its high infectiousness^{18,19}. The integrin inhibitor ATN-161 had no significant effect
98 on SARS-CoV-2 or T403R RaTG13 S-mediated infection (**Extended Data Fig. 4a, b**). Thus,
99 the enhancing effect of the T403R mutation on the ability of RaTG13 S to infect human cells
100 seems to be due to increased interaction with ACE2 rather than utilization of integrins. Taken
101 together, our results demonstrate that mutation of T403R strongly enhances the ability of the
102 bat RaTG13 S protein to utilize ACE2 for infection of human cells.

103 To assess whether the T403R change might allow the bat CoV RaTG13 to spread to different
104 human organs, we performed infection studies using intestinal organoids derived from
105 pluripotent stem cells. The parental SARS-CoV-2 S protein allowed efficient infection of gut
106 organoids²⁰ and the R403T change had modest attenuating effects (**Fig. 3, Extended Data Fig.**
107 **5**). In contrast, the parental RaTG13 S protein did not result in significant VSVpp infection,
108 while the corresponding T403R mutant allowed significant infection of human intestinal cells
109 (**Fig. 3; Extended Data Fig. 5**).

110 To examine the species-specificity of receptor usage by SARS-CoV-2 and RaTG13 S
111 proteins, we overexpressed human and bat derived ACE2 in HEK293T cells and examined
112 their susceptibility to S-mediated VSVpp infection. The WT SARS-CoV-2 and the T403R
113 RaTG13 S proteins allowed efficient entry into cells overexpressing human ACE2, while the
114 parental RaTG13 S protein was poorly active (**Fig. 4a**). Both WT SARS-CoV-2 S and (to a
115 lesser extent) R403T SARS-CoV-2 S proteins were also capable of using bat (*Rhinolophus*

116 *affinis*) ACE2 for viral entry although the overall infection rates were low (**Fig. 4a, Extended**
117 **Data Fig. 6**). In contrast, the RaTG13 S proteins were unable to use bat ACE2 for infection
118 suggesting that RaTG13 might use an alternative receptor for infection of bat cells. The results
119 agree with the previous finding that RaTG13 S is able to use human ACE2 to some extent if
120 overexpressed²¹ but further demonstrate that the T403R greatly enhances this function and is
121 required for utilization of endogenously expressed human ACE2.

122 To validate the results obtained with human HEK293T cells, we utilized the lung epithelial
123 cell line Tb1 Lu1 of *Tadarida brasiliensis* (Bat31)²². In agreement with the previous finding
124 that this cell line lacks endogenous ACE2 expression, it did not support infection by CoV S
125 proteins (**Fig. 4b**). Engineered expression of human ACE2 rendered Lu 1 highly susceptible to
126 infection mediated by SARS-CoV-2 and the T403R RaTG13 S proteins (**Fig. 4b**). In
127 comparison, entry via the R403T SARS-CoV-2 S was strongly attenuated and the parental and
128 T403A RaTG13 S proteins were unable to mediate significant VSV-pp infection.

129 Our results demonstrate that a single amino acid change of T403R allows RaTG13, the
130 closest known bat relative of SARS-CoV-2, to utilize human ACE2 for viral entry. The strong
131 enhancing effect of the T403R change on RaTG13 S function came as surprise since five of six
132 different residues proposed to be critical for SARS-CoV-2 S RBD interaction with human
133 ACE2 are not conserved in RaTG13 S^{12,23}. A very recent study proposed that residue 501 plays
134 a key role in the ability of RaTG13 S to use human ACE2 for viral entry²⁴ but the reported
135 enhancing effect of changes at position 501 was weaker than that observed for the T403R
136 change analysed in the present study. However, the previous finding that numerous residues in
137 the SARS-CoV-2 S RBD are involved in the interaction with the human ACE2 orthologue
138 explains why the R403T substitution only moderately reduced SARS-CoV-2 infection. It has
139 been shown that the RBD of SARS-CoV-2 S shows higher homology to the corresponding
140 region of the pangolin CoV S protein than to RaTG13^{6,7}. Whether or not this is a consequence
141 of recombination or convergent evolution is under debate^{25,26}. Notably, the Pan CoV-S protein

142 also contains a positive residue (K) at position 403 (**Fig. 1a**) and is capable of utilizing human
143 ACE2 for infection. Altogether our results suggest that a positive residue at position 403 in the
144 S protein was most likely a prerequisite for efficient zoonotic transmission and pandemic
145 spread of SARS-CoV-2. We found that a positively charged residue at the corresponding
146 position is present in the S proteins of the great majority of RaTG13-related bat coronaviruses
147 (**Extended Data Fig. 7**) raising the possibility that many bat sarbecoviruses, including the
148 unknown precursor of SARC-CoV-2, are fitter for zoonotic transmission than RaTG13.

149

150 **Methods**

151 **Molecular dynamics simulation.** Based on the structure of ACE2-bounded to SARS-CoV-2
152 taken from the Protein Data Bank²⁷ (identification code 7KNB), the initial atomic positions
153 were obtained. Equilibration (300K for 0.5 ns) was performed by ReaxFF (reactive molecular
154 dynamic) simulations²⁸ within the Amsterdam Modeling Suite 2020 (ADF2020, SCM,
155 Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,
156 <http://www.scm.com>). Based on the equilibrated structure, amino acids from the spike protein
157 were replaced with the respective amino acids from RaTG13, respectively the modification.
158 After an additional equilibration (300K for 0.5 ns) ReaxFF (reactive molecular dynamic)
159 simulations were performed within the *NVT* ensemble over 25 ps, while coupling the system
160 to a Berendsen heat bath (T=300 K with a coupling constant of 100 fs). The interaction energy
161 was obtained by averaging over these simulations. For all visualizations the Visual Molecular
162 Dynamics program (VMD)²⁹ was used.

163 **Cell culture and viruses.** All cells were cultured at 37°C in a 5% CO₂ atmosphere. Human
164 embryonic kidney 293T cells purchased from American type culture collection (ATCC:
165 #CRL3216) were cultivated in Dulbecco's Modified Eagle Medium (DMEM, Gibco)
166 supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS, Gibco), 2 mM L-

167 glutamine (PANBiotech), 100 µg/ml streptomycin (PANBiotech) and 100 U/ml penicillin
168 (PANBiotech). Calu-3 (human epithelial lung adenocarcinoma, kindly provided and verified
169 by Prof. Frick, Ulm University) cells were cultured in Minimum Essential Medium Eagle
170 (MEM, Sigma) supplemented with 10% (v/v) FBS (Gibco) (during viral infection) or 20%
171 (v/v) FBS (Gibco) (during all other times), 100 U/ml penicillin (PAN-Biotech), 100 µg/ml
172 streptomycin (PAN-Biotech), 1 mM sodium pyruvate (Gibco), and 1 mM NEAA (Gibco).
173 Caco-2 (human epithelial colorectal adenocarcinoma, kindly provided by Prof. Holger Barth,
174 Ulm University) cells were cultivated in DMEM (Gibco) containing 10% FBS (Gibco), 2 mM
175 glutamine (PANBiotech), 100 µg/ml streptomycin (PANBiotech), 100 U/ml penicillin
176 (ANBiotech), 1 mM Non-essential amino acids (NEAA, Gibco), 1 mM sodium pyruvate
177 (Gibco). I1-Hybridoma cells were purchased from ATCC (#CRL-2700) and cultured in RPMI
178 supplemented with 10% (v/v) heat-inactivated FBS (Gibco), 2 mM L-glutamine
179 (PANBiotech), 100 µg/ml streptomycin (PANBiotech) and 100 U/ml penicillin (PANBiotech).
180 Tb 1 Lu (*Tadarida brasiliensis* derived lung epithelial) and Ri 1 Lu huACE2 (*Rhinolophus*
181 *affinis* derived lung epithelial cells expressing human ACE2, ACE2, kindly provided by Marcel
182 A. Müller, were cultured in DMEM supplemented with 10% (v/v) heat-inactivated FBS
183 (Gibco), 2 mM L-glutamine (PANBiotech), 100 µg/ml streptomycin (PANBiotech) and 100
184 U/ml penicillin (PANBiotech), 2 mM sodium pyruvate (Gibco). Viral isolate
185 BetaCoV/France/IDF0372/2020 (#014V-03890) was obtained through the European Virus
186 Archive global.

187 **Expression constructs.** pCG_SARS-CoV-2-Spike-IRES_eGFP, coding the spike protein of
188 SARS-CoV-2 isolate Wuhan-Hu-1, NCBI reference Sequence YP_009724390.1, was kindly
189 provided by Stefan Pöhlmann (German Primate Center, 473 Göttingen, Germany).
190 pCG_SARS-CoV-2-Spike C-V5-IRES_eGFP and RaTG13-S (synthesized by Baseclear) was
191 PCR amplified and subcloned into a pCG-IRES_eGFP expression construct using the
192 restriction enzymes XbaI and MluI (New England Biolabs). The SARS-CoV-2 S R403T and

193 RaTG13 S T403R/T403A mutant plasmids were generated using Q5 Site-Directed
194 Mutagenesis Kit (NEB).

195 **Cloning of SARS-CoV-2 ΔS bacmid.** An anonymized residual respiratory swab sample from
196 a patient with SARS-CoV-2 infection was used as a template for genome amplification. Total
197 nucleic acids were extracted on an automated Qiagen EZ1 robotic workstation using the Qiagen
198 EZ1 virus mini kit v2.0 according to the manufacturer's instructions. Genomic viral RNA was
199 reverse transcribed using the NEB LunaScript RT SuperMix Kit according to the
200 manufacturer's protocol. Four overlapping fragments covering the entire viral genome were
201 amplified using the NEB Q5 High-Fidelity DNA Polymerase. The resulting amplicons were
202 assembled with a modified pBeloBAC11 backbone, containing CMV and T7 promotors as well
203 as the HDV ribozyme and bGH polyA signal, using the NEBuilder HiFi DNA Assembly
204 Cloning Kit. Assembled DNA was electroporated into *E. coli* GS1783 strain and resulting
205 clones of pBelo-SARS-CoV-2 were confirmed by restriction digestion and next
206 generation sequencing. The viral Spike gene was replaced with a kanamycin-cassette flanked
207 by SacII restriction sites by homologous recombination using the Lambda-Red Recombination
208 System³⁰. The bacmid was linearized with the restriction enzyme SacII, and EGFP or GLuc
209 reporter cassettes were introduced instead of Spike using the the NEBuilder HiFi DNA
210 Assembly Cloning Kit according to the manufacturer's instruction. Positive clones were
211 confirmed by restriction digestion and sequencing.

212 **SARS-CoV-2 ΔS replicon system.** HEK293 T cells were seeded in six well format and
213 transfected with 3 µg pBelo-SARSCoV-2-dSpike-GLuc-K2 or pBelo-SARSCoV-2-dSpike-
214 EGFP and 0.25 µg of each expression construct pLVX-EF1alpha-SARS-CoV2-N-2xStrep-
215 IRES-Puro, pCG-ACE2, pCAG-T7-RNA-polymerase and one pCG- vector encoding the spike
216 protein of SARS-CoV-2, RaTG13 or the indicated mutant S respectively. Two days after
217 transfection, bright field and fluorescence microscopy (GFP) images were acquired using the
218 Cytation 3 microplate reader (BioTek). Gaussia luciferase activity in the supernatants was

219 measured with the Gaussia Luciferase Assay system (Promega) according to the company's
220 instructions.

221 **Transfections.** Plasmid DNA was transfected using either calcium phosphate transfection or
222 Polyethylenimine (PEI, 1 mg/ml in H₂O, Sigma-Aldrich) according to the manufacturers
223 recommendations or as described previously³¹.

224 **Pseudoparticle production.** To produce pseudotyped VSVΔG-GFP particles, 6*10⁶ HEK 293
225 T cells were seeded 18 hours before transfection in 10 cm dishes. The cells were transfected
226 with 15 µg of a glycoprotein expressing vector using PEI (PEI, 1 mg/ml in H₂O, Sigma-
227 Aldrich). Twenty-four hours post transfection, the cells were infected with VSVΔG-GFP
228 particles pseudotyped with VSV G at a MOI of 3. One hour post-infection, the inoculum was
229 removed. Pseudotyped VSVΔG-GFP particles were harvested 16 hours post infection. Cell
230 debris were pelleted and removed by centrifugation (500 g, 4 °C, 5 min). Residual input
231 particles carrying VSV-G were blocked by adding 10 % (v/v) of I1 Hybridoma Supernatant
232 (I1, mouse hybridoma supernatant from CRL-2700; ATCC) to the cell culture supernatant.

233 **Whole-cell and cell free lysates.** Whole-cell lysates were prepared by collecting cells in
234 Phosphate-Buffered Saline (PBS, Gibco), pelleting (500 g, 4 °C, 5 min), lysing and clearing as
235 previously described³¹. Total protein concentration of the cleared lysates was measured using
236 the Pierce BCA Protein Assay Kit (Thermo Scientific) according to manufacturer's
237 instructions. Viral particles were filtered through a 0.45 µm MF-Millipore Filter (Millex) and
238 centrifuged through a 20% sucrose (Sigma) cushion. The pellet was lysed in transmembrane
239 lysis buffer already substituted with Protein Sample Loading Buffer (LI-COR).

240 **SDS-PAGE and immunoblotting.** SDS-PAGE and immunoblotting was performed as
241 previously described³¹. In brief, whole cell lysates were mixed with 4x Protein Sample Loading
242 Buffer (LI-COR, at a final dilution of 1x) supplemented with 10% (v/v) Tris(2-
243 Carboxyethyl)phosphine hydrochloride 0.5 M (SIGMA), heated to 95°C for 10 min separated

244 on NuPAGE 4-12% Bis-Tris Gels (Invitrogen) for 90 min at 120 V and blotted at constant 30
245 V for 30 min onto Immobilon-FL PVDF membrane (Merck Millipore). After the transfer, the
246 membrane was blocked in 1% Casein in PBS (Thermo Scientific) and stained using primary
247 antibodies directed against SARS-CoV-2 S (1:1,000, Biozol, 1A9, #GTX632604), ACE2
248 (1:1,000, Abcam, #GTX632604), VSV-M (1:2,000, Absolute Antibody, 23H12, #Ab01404-
249 2.0), V5-tag (1:1,000, Cell Signaling, #13202), GAPDH (1:1,000, BioLegend, #631401) and
250 Infrared Dye labelled secondary antibodies (1:20,000, LI-CORIRDye). Proteins were detected
251 using a LI-COR Odyssey scanner and band intensities were quantified using LI-COR Image
252 Studio.

253 **Stem Cell Culture and Intestinal Differentiation.** Human embryonic stem cell line HUES8
254 (Harvard University, Cambridge, MA) was used with permission from the Robert Koch
255 Institute according to the “79. Genehmigung nach dem Stammzellgesetz, AZ 3.04.02/0084.”
256 Cells were cultured on human embryonic stem cell matrigel (Corning, Corning, NY) in mTeSR
257 Plus medium (STEMCELL Technologies, Vancouver, Canada) at 5% CO₂, 5% O₂, and 37°C.
258 Medium was changed every other day and cells were split with TrypLE Express (Invitrogen,
259 Carlsbad, CA) twice a week. For differentiation, 300,000 cells per well were seeded in 24-well
260 plates coated with growth factor-reduced matrigel (Corning) in mTeSR Plus with 10 mM Y-
261 27632 (STEMCELL Technologies). The next day, differentiation was started at 80%-90%
262 confluence, as described previously³².

263 **Intestinal organoids.** To prepare in vitro differentiated organoids for transduction, matrigel
264 was dissolved in Collagenase/Dispase (Roche, Basel, Switzerland) for 2 hours at 37°C and
265 stopped by cold neutralization solution (DMEM, 1% bovine serum albumin, and 1% penicillin-
266 streptomycin). Organoids were transferred into 1.5-mL tubes and infected in 300 µL
267 pseudoparticle containing inoculum. Organoids were then resuspended in 35-µL cold growth
268 factor-reduced matrigel to generate cell-matrigel domes in 48-well plates. After 10 minutes at
269 37°C, intestinal growth medium (DMEM F12 [Gibco, Gaithersburg, MD], 1× B27 supplement

270 [Thermo Fisher Scientific], 2-mM L-glutamine, 1% penicillin-streptomycin, 40 mM HEPES
271 [Sigma-Aldrich], 3 μ M CHIR99021, 200 nM LDN-193189 [Sigma-Aldrich], 100 ng/mL hEGF
272 [Novoprotein, Summit, NJ], and 10 μ M Y-27632 [STEMCELL Technologies]) was added and
273 organoids were incubated at 37°C. The Organoids were imaged using the Cytation 3 cell
274 imaging system and processed with Gen 5 and ImageJ software. For FACS preparation, the
275 matrigel was dissolved and the extracted organoids were dissolved in Accutase (Stemcell
276 technologies). The cells were fixed with PBS for 10 min at 4°C and washed with cold PBS
277 containing 2% FBS. Flow cytometry analyses were performed using a FACS CANTO II (BD)
278 flow cytometer. Transduction rates were determined by GFP expression and analysed with
279 DIVA and Flowjow10 software.

280 **$\alpha 5\beta 5$ integrin blocking.** Caco-2 cells were preincubated with the indicated amounts of $\alpha 5\beta 5$
281 integrin Inhibitor ATN-161 (Sigma) for two hours and infected with 100 μ l freshly produced
282 VSV Δ G-GFP pseudo particles. 16 hours post infection, GFP positive cells were automatically
283 quantification using a Cytation 3 microplate reader (BioTek). Calu-3 cells were preincubated
284 with the indicated amounts of ATN-161 (Sigma) for two hours and infected with SARS-CoV-
285 2 Viral isolate BetaCoV/France/IDF0372/2020 (MOI 0.05, six hours). 48 hours post-infection
286 supernatants were harvested for qRT-PCR analysis.

287 **Sequence Logo and alignments.** Alignments of primary bat sequences (GQ153541.1/1-
288 71, GQ153544.1/1-71, GQ153540.1, GQ153539.1, DQ084200.1, DQ084199.1, GQ153548.1,
289 GQ153547.1, GQ153546.1, GQ153545.1, DQ022305.2, GQ153542.1, GQ153543.1,
290 KJ473815.1, KF294457.1, KY417148.1, KJ473814.1, MK211374.1, KY417142.1,
291 MK211377.1, JX993988.1, DQ412043.1, DQ648857.1, JX993987.1, KY417143.1,
292 KY417147.1, MK211378.1, DQ648856.1, KJ473812.1, KY770860.1, KY770858.1,
293 KY770859.1, KJ473816.1, RmYN02, KY417145.1, KU182964.1, KY938558.1, KJ473811.1,
294 KJ473813.1, MG772933.1, MG772934.1, KY417150.1, KT444582.1, KY417152.1,
295 MK211376.1, GU190215.1, MN996532.1, EF065513.1, MG693170.1, MG762674.1,

296 HM211101.1, HM211099.1, EF065514.1, EF065516.1, EF065515.1, MK492263.1,
297 MG693168.1, MG693172.1, MG693169.1, MG693171.1, KU762337.1, KU762338.1,
298 HQ166910.1, KT253270.1, KT253269.1, KY073748.1, MN611517.1, KY073747.1,
299 KY073744.1, KY073745.1, KY073746.1, NC_028833.1, MK720944.1, NC_010437.1/1-
300 7,EU420138.1, KJ473796.1, MN611524.1, KJ473795.1, EU420137.1, KJ473799.1,
301 KJ473800.1, KJ473797.1, MN611518.1, KY770850.1, KY770851.1, KJ473806.1,
302 EU420139.1, KJ473798.1, MG916902.1, MG916903.1, JQ989269.1, JQ989267.1,
303 JQ989268.1, JQ989266.1, JQ989272.1, JQ989273.1, MN611523.1, MN611525.1,
304 JQ989271.1, JQ989270.1, MK720945.1, MK720946.1, MG916904.1, KJ473810.1,
305 NC_028814.1, DQ648858.1, NC_009657.1, MN611521.1, KF430219.1, NC_009988.1/1-
306 7,EF203066.1, EF203067.1, EF203065.1, MF370205.1, KJ473808.1, MN611522.1,
307 DQ648794.1, EF065505.1, EF065506.1, EF065508.1, MH002339.1, MN611519.1,
308 MH002338.1, KJ473822.1, MH002337.1, KU182965.1, EF065507.1, EF065510.1,
309 EF065511.1, EF065512.1, MH002342.1, EF065509.1, KJ473820.1, MH002341.1,
310 MN611520.1, KX442565.1, KX442564.1/1-71) was performed using ClustalW³³ with a
311 gapOpening penalty of 80. Sequence logos were generated using R packages ggplot2 and
312 ggseqlogo³⁴.

313 **Statistics.** Statistical analyses were performed using GraphPad PRISM 8 (GraphPad Software).
314 P-values were determined using a two-tailed Student's t test with Welch's correction. Unless
315 otherwise stated, data are shown as the mean of at least three independent experiments ± SEM.

316 **References**

317 1. Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable
318 bat origin. *Nature* **579**, 270–273 (2020).

319 2. Wrobel, A. G. *et al.* SARS-CoV-2 and bat RaTG13 spike glycoprotein structures
320 inform on virus evolution and furin-cleavage effects. *Nat Struct Mol Biol* **27**, 763–767
321 (2020).

322 3. Li, W. *et al.* Bats Are Natural Reservoirs of SARS-Like Coronaviruses. *Science* **310**,
323 676–679 (2005).

324 4. Hu, B. *et al.* Discovery of a rich gene pool of bat SARS-related coronaviruses
325 provides new insights into the origin of SARS coronavirus. *PLoS Pathog* **13**, e1006698
326 (2017).

327 5. Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China.
328 *Nature* **579**, 265–269 (2020).

329 6. Lam, T. T. Y. *et al.* Identifying SARS-CoV-2 related coronaviruses in Malayan
330 pangolins. *Nature* (2020) doi:10.1038/s41586-020-2169-0.

331 7. Xiao, K. *et al.* Isolation of SARS-CoV-2-related coronavirus from Malayan
332 pangolins. *Nature* (2020) doi:10.1038/s41586-020-2313-x.

333 8. Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
334 Glycoprotein. *Cell* **181**, 281–292.e6 (2020).

335 9. Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor
336 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature Microbiology* **5**, 562–
337 569 (2020).

338 10. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
339 Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* (2020)
340 doi:10.1016/j.cell.2020.02.052.

341 11. Li, W. *et al.* Angiotensin-converting enzyme 2 is a functional receptor for the SARS
342 coronavirus. *Nature* **426**, 450–454 (2003).

343 12. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the
344 Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of
345 SARS Coronavirus. *J Virol* **94**, (2020).

346 13. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in the
347 Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Molecular
348 Cell* **78**, 779–784.e5 (2020).

349 14. Laurini, E., Marson, D., Aulic, S., Fermeglia, A. & Pricl, S. Computational
350 Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding
351 Interface: Comparison with Experimental Evidence. *ACS Nano* **15**, 6929–6948 (2021).

352 15. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. *Annu Rev
353 Virol* **3**, 237–261 (2016).

354 16. Raghuvamsi, P. V. *et al.* SARS-CoV-2 S protein:ACE2 interaction reveals novel
355 allosteric targets. *eLife* **10**, e63646 (2021).

356 17. Beniac, D. R., deVarennes, S. L., Andonov, A., He, R. & Booth, T. F. Conformational
357 reorganization of the SARS coronavirus spike following receptor binding: implications for
358 membrane fusion. *PLoS One* **2**, e1082 (2007).

359 18. Sigrist, C. J., Bridge, A. & Le Mercier, P. A potential role for integrins in host cell
360 entry by SARS-CoV-2. *Antiviral Res* **177**, 104759 (2020).

361 19. Othman, H. *et al.* SARS-CoV-2 spike protein unlikely to bind to integrins via the
362 Arg-Gly-Asp (RGD) motif of the Receptor Binding Domain: evidence from structural

363 analysis and microscale accelerated molecular dynamics. *bioRxiv* 2021.05.24.445335 (2021)
364 doi:10.1101/2021.05.24.445335.

365 20. Krüger, J. *et al.* Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent
366 Stem Cell-Derived Intestinal Organoids. *Cell Mol Gastroenterol Hepatol* (2020)
367 doi:10.1016/j.jcmgh.2020.11.003.

368 21. Shang, J. *et al.* Structural basis of receptor recognition by SARS-CoV-2. *Nature* **581**,
369 221–224 (2020).

370 22. Hoffmann, M. *et al.* Differential Sensitivity of Bat Cells to Infection by Enveloped
371 RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses. *PLoS*
372 *One* **8**, (2013).

373 23. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The
374 proximal origin of SARS-CoV-2. *Nat Med* **26**, 450–452 (2020).

375 24. Liu, K. *et al.* Binding and molecular basis of the bat coronavirus RaTG13 virus to
376 ACE-2 in humans and other species. *Cell* (2021) doi:10.1016/j.cell.2021.05.031.

377 25. Boni, M. F. *et al.* Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage
378 responsible for the COVID-19 pandemic. *Nature Microbiology* 1–10 (2020)
379 doi:10.1038/s41564-020-0771-4.

380 26. Li, X. *et al.* Emergence of SARS-CoV-2 through recombination and strong purifying
381 selection. *Science Advances* **6**, eabb9153 (2020).

382 27. Bernstein, F. C. *et al.* The Protein Data Bank: a computer-based archival file for
383 macromolecular structures. *Journal of molecular biology* **112**, 535–42 (1977).

384 28. Adri C. T. van Duin, †, Siddharth Dasgupta, ‡, and Francois Lorant, § & William
385 A. Goddard III*, ‡. ReaxFF: A Reactive Force Field for Hydrocarbons. (2001)
386 doi:10.1021/JP004368U.

387 29. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *Journal*
388 *of molecular graphics* **14**, 33–8, 27–8 (1996).

389 30. Tischer, B. K., Smith, G. A. & Osterrieder, N. En passant mutagenesis: a two step
390 markerless red recombination system. *Methods Mol Biol* **634**, 421–430 (2010).

391 31. Koepke, L. *et al.* An improved method for high-throughput quantification of
392 autophagy in mammalian cells. *Scientific Reports* **10**, 1–20 (2020).

393 32. Hohwieler, M. *et al.* ‘Miniguts’ from plucked human hair meet Crohn’s disease. *Z*
394 *Gastroenterol* **54**, 748–759 (2016).

395 33. Larkin, M. A. *et al.* Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947–
396 2948 (2007).

397 34. Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos.
398 *Bioinformatics* **33**, 3645–3647 (2017).

399

400 **Acknowledgments**

401 We thank Kerstin Regensburger, Regina Burger, Jana-Romana Fischer, Birgit Ott, Martha
402 Meyer, Nicole Schrott and Daniela Krnavek for technical assistance. The ACE2 vector and the
403 SARS-CoV-2 S-HA plasmid were kindly provided by Shinji Makino and Stefan Pöhlmann,
404 and bat cells by Marcel A. Müller. F.Z., C.P.B., J.K. and L.K. are part of the International
405 Graduate school for Molecular Medicine (IGradU), Ulm. This study was supported by DFG
406 grants to F.K. (CRC 1279, SPP 1923), K.-K.C. (Co260/6-1 Neuro-COVID), T.J. (CRC1279),
407 A.K. (KL 2544/8-1, KL 2544/5-1,7-1 and the 'Heisenberg-Programm' KL 2544/6-1) and
408 K.M.J.S. (CRC1279, SP1600/6-1). A.E. is funded by the State of Bavaria "BAY-VoC" and
409 "Coronaforschung". F.K., K.M.J.S. and A.E. were supported by the BMBF (Restrict SARS-
410 CoV-2, IMMUNOMOD and 01KI20172A SENSE-CoV2).

411 **Author Contributions**

412 F.Z. performed most experiments. D.S., M.V., Q.X. and L.K. performed western blots and
413 interaction assays. J.K., S.H. and A.K. generated and provided gut organoids. C.J. and T.J.
414 performed molecular modelling analyses. K.-K.C. provided pseudotypes and reagents. F.Z.,
415 D.S., K.M.J.S. and F.K. conceived the study, planned experiments and wrote the manuscript.
416 All authors reviewed and approved the manuscript.

417 **Competing interests**

418 The authors declare no competing interests.

419 **Materials & Correspondence**

420 Further information and requests for resources and reagents should be directed to and will be
421 fulfilled by Frank Kirchhoff (frank.kirchhoff@uni-ulm.de).

422

423 **FIGURES**

424 **Fig. 1: Modelling of the interaction of Coronavirus Spike residue 403 with human ACE2.**

425 **a**, Schematic representation of the SARS-CoV-2 S protein (top panel), domains are indicated
426 in different colors. Receptor binding domain (RBD), light green. Receptor binding motif

427 (RBM), dark green. Transmembrane domain (TM), orange. R403, pink. S1/S2 and S2'
428 cleavage sites are indicated. Sequence alignment of SARS-CoV-2, SARS-CoV-1, Pan-CoV
429 and RaTG13 Spike RBD (bottom panel). Sequence conservation is indicated. purple arrows
430 denote important residues for ACE2 binding. **b**, Reactive force field simulation of SARS-CoV-
431 2 Spike in complex with human ACE2 (PDB: 7KNB) (left panel) and focus on position 403 in
432 SARS-CoV-2 S (R) or RaTG13 S (T) or respective exchange mutants at position 403 (right
433 panel). **c**, Exemplary energy curve of the reactive molecular dynamics simulation for SARS-
434 CoV-2 S and SARS-CoV-2 S R403T (top panel) and RaTG13 and RaTG13 T430R spike with
435 human ACE2 (bottom panel).

436 **Fig. 2: R403 in Spike is crucial to use ACE2 as an entry receptor. a**, Binary images of
437 CaCo2 cells transduced with VSVΔG-GFP pseudotyped with SARS-CoV-2, RaTG13 or
438 indicated mutant S. Successful infection events (=GFP positive cells) displayed as black dots.
439 Scale bar, 1.5mm. **b**, Automatic quantification of infection events by counting GFP positive
440 cells. n=3 (biological replicates) ± SEM. **c**, Bright field and fluorescence microscopy (GFP)
441 images of HEK293T cells transfected with SCoV-2ΔS bacmid, SCoV2-N, ACE2, T7
442 polymerase and indicated Spike variants. Scale bar, 125μm. **d**, Quantification of Gaussia
443 luciferase activity in the supernatant of HEK293T cells expressing SCoV-2ΔS-Gaussia
444 bacmids as described in (c). n=3 (biological replicates) ± SEM. P values are indicated
445 (student's t test).

446 **Fig. 3: T403R allows RaTG13 S to mediate infection of human gut organoids. a**, Bright
447 field and fluorescence microscopy (GFP) images of hPSC derived gut organoids infected with
448 VSVΔG-GFP (green) pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S (300 μl,
449 2 h). Scale bar, 250μm. **b**, Quantification of the percentage of GFP-positive cells of (a). n=3
450 (biological replicates) ± SEM. P values are indicated (student's t test).

451 **Fig. 4: SARS-CoV-2 S and T403R RaTG13 S allow entry with human but not bat ACE2.**

452 **a**, HEK293T cells expressing indicated ACE2 (Human ACE2 or *Rhinolophus affinis* ACE2)
453 constructs or **b**, Tb 1 Lu, *Tadarida brasiliensis* derived lung epithelial and Ri 1 Lu huACE2
454 *Rhinolophus affinis* derived lung epithelial cells expressing human ACE2 were infected with
455 VSV Δ G-GFP pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S. Quantification
456 by automatic counting of GFP positive cells. n=3 (biological replicates) \pm SEM. P values are
457 indicated (student's t test).

458

459 **Extended Figure legends**

460 **Extended Data Fig. 1: T403R RaTG13 S allows ACE2 dependent cell fusion.** Exemplary
461 fluorescence microscopy images of HEK293T cells expressing SCoV2 S, RaTG13 S or the
462 indicated mutant, Human ACE2 and GFP (green). Insets are indicated by white boxes. Scale
463 bar, 125 μ m.

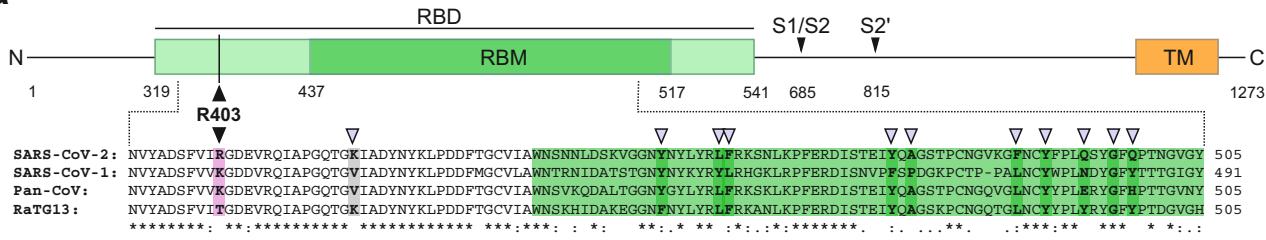
464 **Extended Data Fig. 2: Incorporation of Spike variants in VSV pseudoparticles.** **a**,
465 Exemplary immunoblots of whole cells lysates (WCLs) and supernatants of HEK293T cells
466 expressing SCoV2 S, RaTG13 S or the indicated mutant that were infected with VSV Δ G-GFP.
467 Blots were stained with anti-SARS-CoV-2 S, anti-GAPDH and anti-VSV-M. **b**, Quantification
468 of Spike expression. n=3 (biological replicates) \pm SEM. P values are indicated (student's t test).

469 **Extended Data Fig. 3: Processing of Spike proteins by ACE2 expression.** **a**, Exemplary
470 immunoblots of WCLs of HEK293T cells expressing SARS-CoV-2 S, RaTG13 S or the
471 indicated mutant coexpressing Human ACE2 or empty vector construct. The blots were stained
472 with anti-SARS-CoV-2 S, anti-GAPDH, anti-ACE2 and anti-VSV-M.

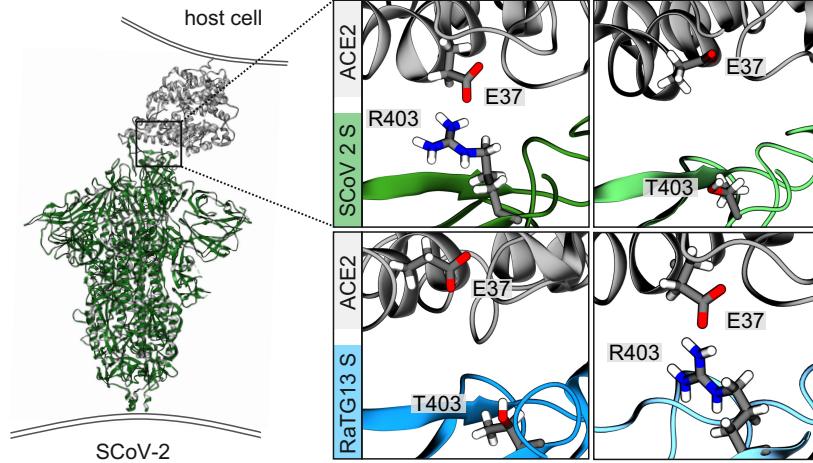
473 **Extended Data Fig. 4: SARS-CoV-2 entry is independent of $\alpha 5\beta 5$ integrin.** **a**, Automated
474 quantification by GFP fluorescence of Caco-2 cells preincubated with indicated amounts of

475 $\alpha 5\beta 5$ integrin Inhibitor ATN-161 and infected with VSV Δ G-GFP pseudotyped with SARS-
476 CoV-2, RaTG13 T403R mutant or RaTG13 S. n=3 (biological replicates) \pm SEM. **b**,
477 Quantification of viral RNA copies in the supernatant of Calu-3 cells preincubated with
478 indicated amounts of ATN-161 and infected SARS-CoV-2 (MOI 0.05, 6 h). n=3 (biological
479 replicates) \pm SEM. P values are indicated (student's t test).

480 **Extended Data Fig. 5: T403R allows RaTG13 S to mediate infection of human intestinal**
481 **organoids. a**, Bright field and fluorescence microscopy (GFP) images of hPSC derived gut
482 organoids infected with equal amounts of VSV Δ G-GFP (green) pseudotyped with SARS-CoV-
483 2, RaTG13 or indicated mutant S (2 h). Scale bar, 250 μ m. **b**, Exemplary gating strategy of flow
484 cytometry-based analysis of GFP-positive cells of (a). **c**, Quantification and exemplary gating.
485 n=3 (biological replicates) \pm SEM. P values are indicated (student's t test).


486 **Extended Data Fig. 6: Bat ACE2 can be used for entry by SARS-CoV-2 Spike.**
487 Quantification of GFP positive HEK293T cells expressing indicated ACE2 variants
488 (*Rhinolophus macrotis* ACE2 or *Rhinolophus rhodesiae* ACE2) infected with VSV Δ G-GFP
489 pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S. n=3 (biological replicates) \pm
490 SEM. P values are indicated (student's t test).

491 **Extended Data Fig. 7: Conservation of the RGD motif in bat Coronavirus Spike proteins.**
492 **a**, Sequence logo of the alignment of 137 different bat Coronavirus Spike RBD sequences. The
493 RGD motif is highlighted by a red box. **b**, Primary sequence alignment of selected bat
494 coronaviruses, human coronaviruses and SARS-CoV-2 strains. The RGD motif is highlighted
495 in bold.


Fig. 1

Zech et al.

a

b

c

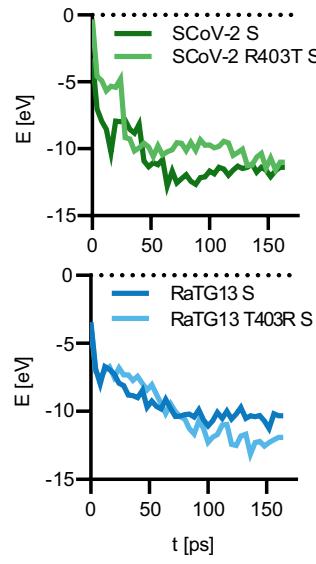


Fig. 2

Zech et al.

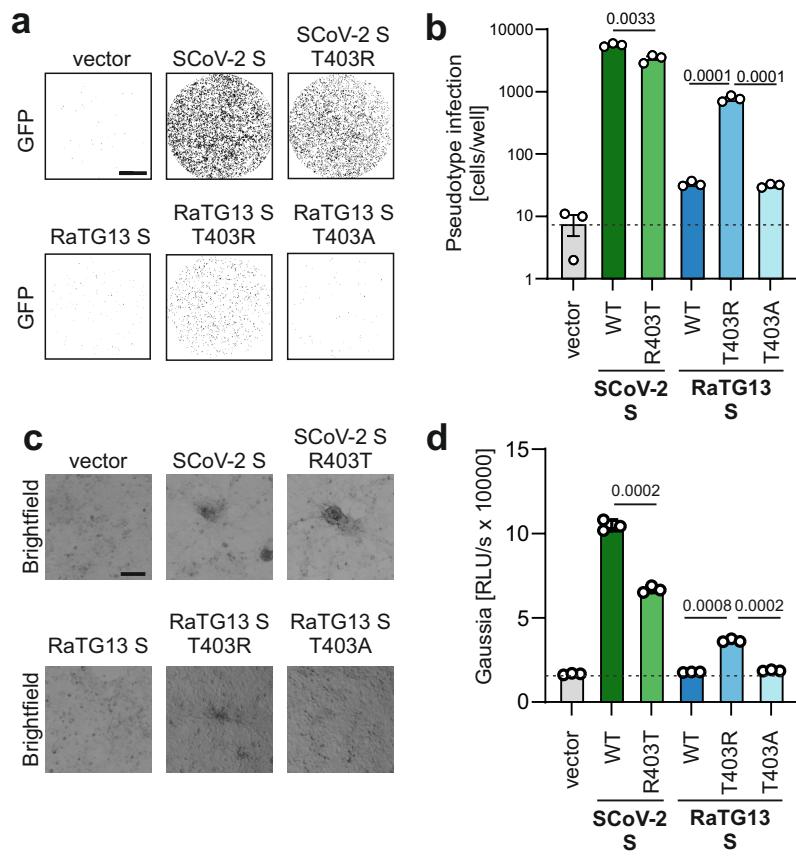
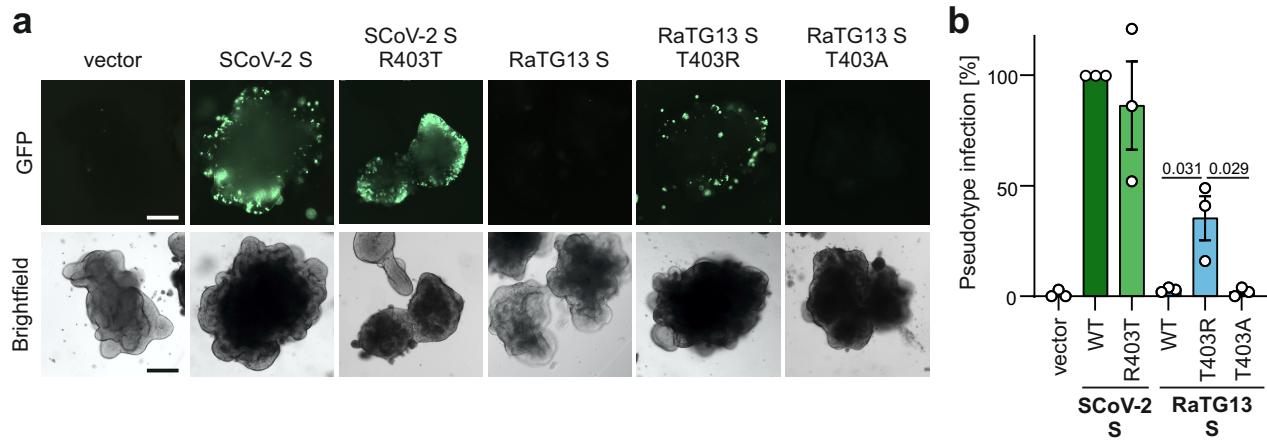
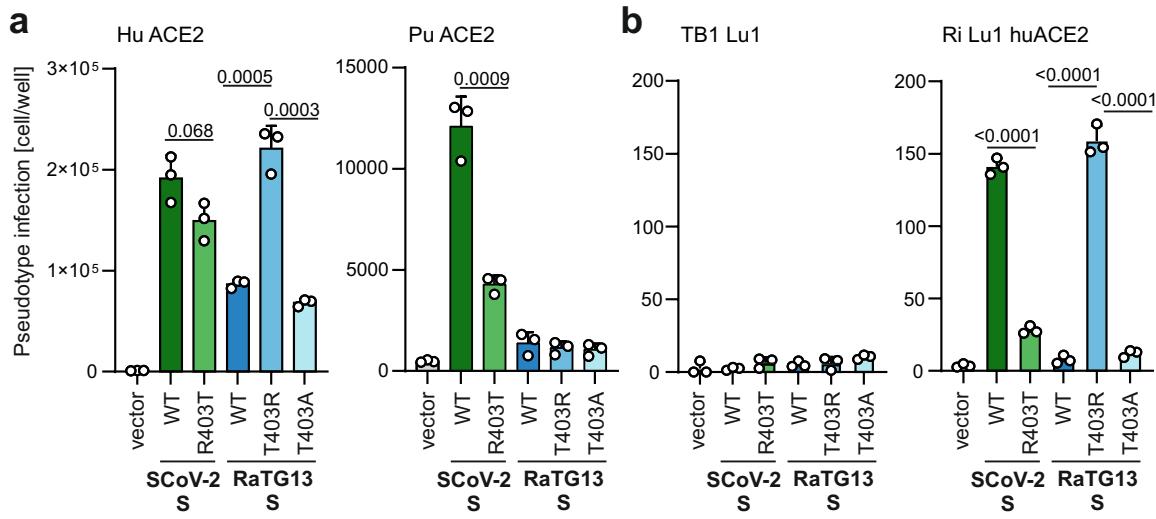
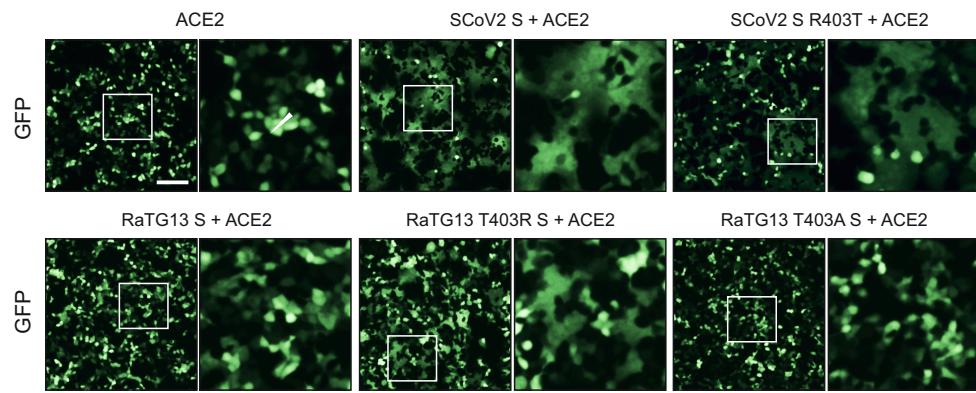


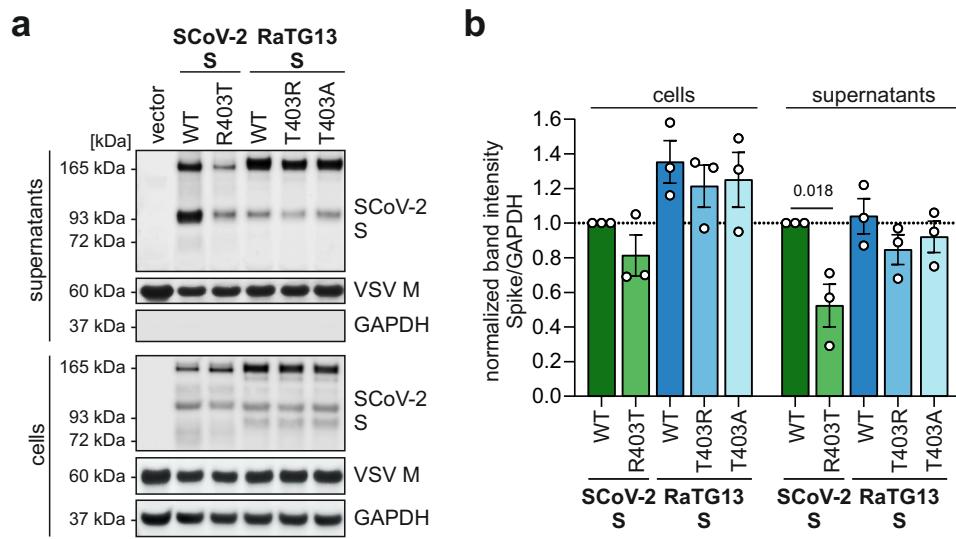
Fig. 3

Zech et al.

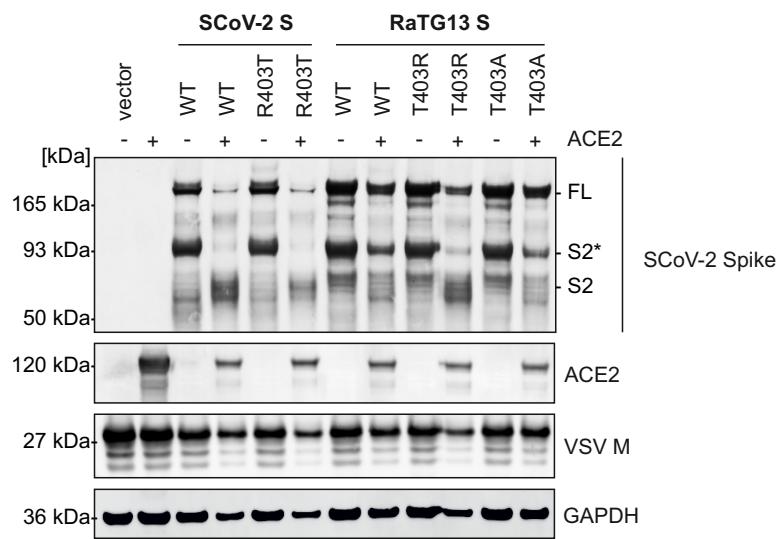




Fig. 4

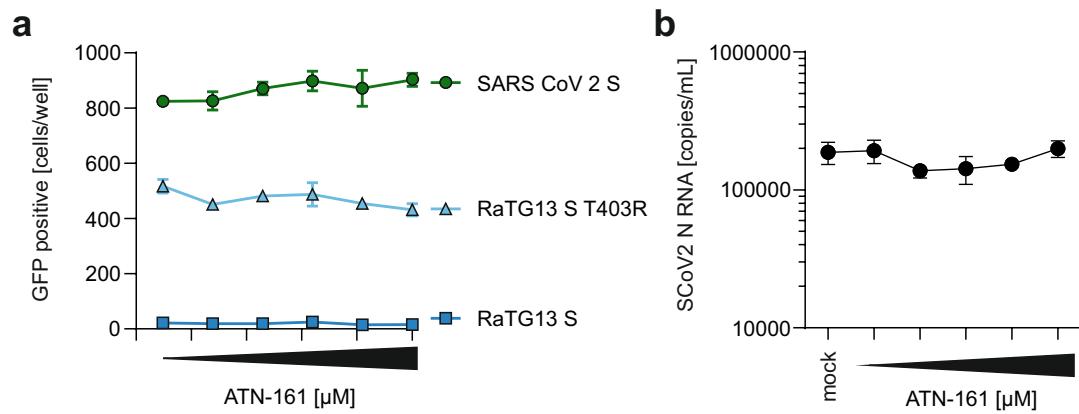
Zech et al.


Extended Data Fig. 1

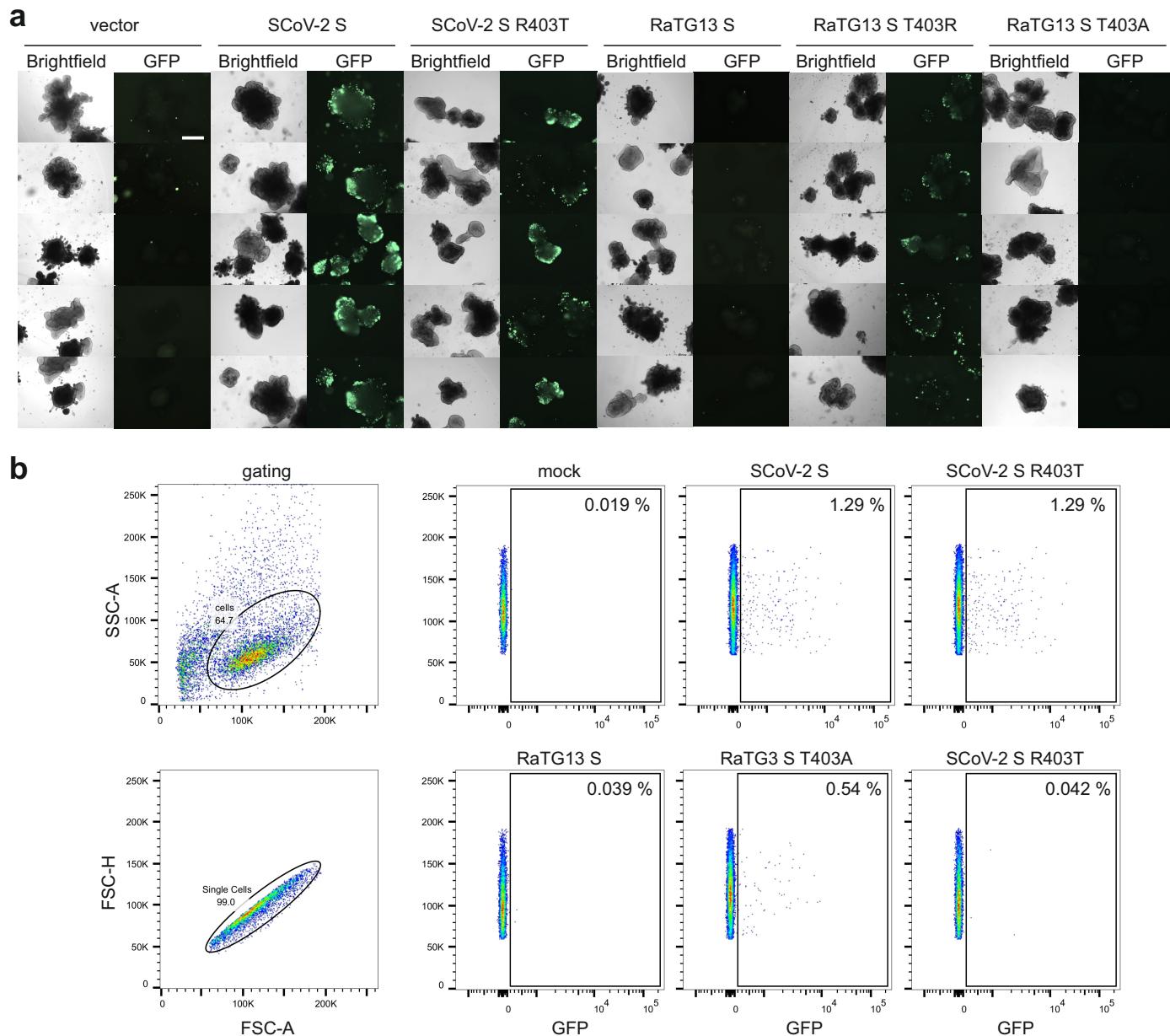
Zech et al.


Extended Data Fig. 2

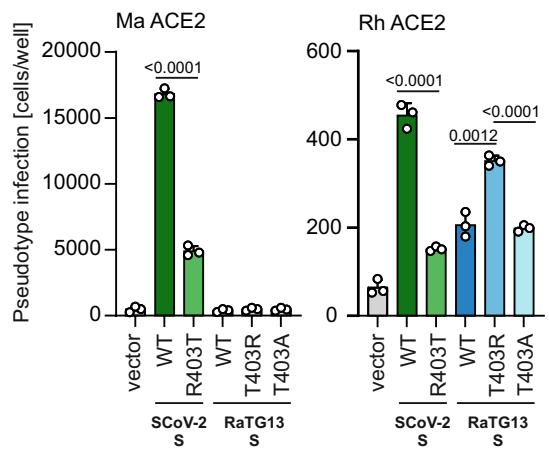
Zech et al.


Extended Data Fig. 3

Zech et al.

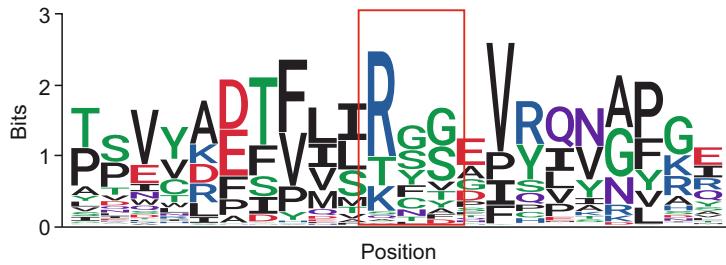

Extended Data Fig. 4

Zech et al.


Extended Data Fig. 5

Zech et al.

Extended Data Fig. 6


Zech et al.

Extended Data Fig. 7

Zech et al.

a

b bat coronaviruses

BtCoV/133	VDYFAYPLSMKSYIRPG
BtCoV/Rp3	ADTFLIRSSSEVRQVAPG
Bat SARS-like CoV	ADTFLIRFSEVRQVAPG
Bat-CoV RaTG13	ADSFVITGDEVRQIAPG
Rhinolophus bat CoV	ADSFVVKGDDVRQIAPG
Rousettus bat CoV	LDIFKLNTHLSNMLGS
Eidolon bat CoV	LDSMLINTTHYNDLKSN
Hypsugo bat CoV	VDYFAYPTSLASYLQQG
Zaria bat CoV	ADVFRALAQDDFYSFKPS

human coronaviruses

SARS-CoV-2	YADSFVI RGDEVRQIAP
SARS-CoV	YADSFVV KGD DVRQIAP
MERS-CoV	ILDYFSY PLSMKSDLSV
HCoV-HKU1 N1	VLDKFAI PNS RRSDLQL
HCoV-HKU1 N2	TVDKFAI PNR RRDDLQL
HCoV-HKU1 N5	TVDKFAI PNR RRDDLQL
HCoV-229E	TLANFNE---TKGPLCV
HCoV-NL63	SLNG-----NTSVCV
HCoV-OC43	TIDKFAI PNGRKVDLQL

SCoV-2 Strains

6VSB_A	YADSFVI RGDEVRQIAP
QHZ00379	YADSFVI RGDEVRQIAP
QIC53204	YADSFVI RGDEVRQIAP
QHR84449	YADSFVI RGDEVRQIAP
QIA20044	YADSFVI RGDEVRQIAP
YP_009724390	YADSFVI RGDEVRQIAP
QHW06059	YADSFVI RGDEVRQIAP
QHU79173	YADSFVI RGDEVRQIAP