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ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the
COVID-19 pandemic, most likely emerged from bats'. A prerequisite for this devastating
zoonosis was the ability of the SARS-CoV-2 Spike (S) glycoprotein to use human
angiotensin-converting enzyme 2 (ACE2) for viral entry. Although the S protein of the
closest related bat virus, RaTG13, shows high similarity to the SARS-CoV-2 S protein it
does not efficiently interact with the human ACE2 receptor’. Here, we show that a single
T403R mutation allows the RaTG13 S to utilize the human ACE2 receptor for infection
of human cells and intestinal organoids. Conversely, mutation of R403T in the SARS-
CoV-2 S significantly reduced ACE2-mediated virus infection. The S protein of SARS-
CoV-1 that also uses human ACE2 also contains a positive residue (K) at this position,
while the S proteins of CoVs utilizing other receptors vary at this location. Our results
indicate that the presence of a positively charged amino acid at position 403 in the S
protein is critical for efficient utilization of human ACE2. This finding could help to

predict the zoonotic potential of animal coronaviruses.
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Since its first occurrence in Wuhan in December 2019, SARS-CoV-2, the causative agent of
COVID-19, has infected about 170 million people by May 2021 and caused a global health and
economic crisis’. SARS-CoV-2 belongs to the Sarbecovirus subgenus of betacoronaviruses,
which are mainly found in bats®. Horseshoe bats (Rhinolophidae) also harbour viruses that are
closely related to SARS-CoV-1 that infected about 8.000 people in 2002 and 2003%*. The bat
virus RaTG13 sampled from a Rhinolophus affinis horseshoe bat in 2013 in Yunnan has been
identified as the closest relative of SARS-CoV-2 showing approximately 96% sequence
identity throughout the genome'. Thus, SARS-CoV-2 most likely originated from horseshoe
bats!, although it has been proposed that cross-species transmission to humans may have
involved pangolins as secondary intermediate host5”.

The Spike (S) proteins of both SARS-CoV-1 and SARS-CoV-2 utilize the human
angiotensin-converting enzyme 2 (ACE2) receptor to enter human target cells®!!. The ability
to use a human receptor for efficient infection is a key prerequisite for successful zoonotic
transmission. Although the RaTG13 S protein is highly similar to the SARS-CoV-2 S it does
not interact efficiently with the human ACE2 receptor?, suggesting that this bat virus would
most likely not be able to directly infect humans. It has been reported that specific alterations
in the receptor-binding domain (RBD)!?, as well as a four-amino-acid insertion (PRRA)

introducing a furin-cleavage site,*!

play a key role in efficient ACE2 utilization and
consequently the high infectiousness and efficient spread of SARS-CoV-2. However, it
remains poorly understood which specific features allow the S proteins of bat CoVs to use
human ACE2 as entry cofactor and thus to successfully cross the species barrier to humans.
Computational analyses suggested that R403 is involved in intramolecular interactions
stabilizing the SARS-CoV-2 S trimer interface? and contributes significantly to the strength of
SARS-CoV-2 RBD interaction with the human ACE2 receptor'*. We found that R403 is highly

conserved in SARS-CoV-2 S proteins: only 233 of 1.7 million sequence records contain a

conservative change of R403K and just 18 another residue or deletion. Notably, the presence
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of a positively charged residue at position 403 distinguishes the S proteins of SARS-CoV-1
(K403) and SARS-CoV-2 (R403) from the bat CoV RaTG13 S protein (T403) (Fig. 1a).
Molecular modelling of S/ACE2 interaction using reactive force field simulations confirmed
close proximity and putative charge interactions between R403 in the SARS-CoV-2 S with E37
in the human ACE2 receptor (Fig. 1b). These analyses predicted that mutation of T403R
significantly strengthens the ability of the RaTG13 S protein to bind human ACE2 (Fig. 1c,
Extended Data Movies 1 and 2).

To verify the functional importance of residue 403 for ACE2 usage by CoV S proteins, we
used VSV particles (VSVpp) pseudotyped with parental and mutant S proteins. Mutation of
R403T reduced the ability of the SARS-CoV-2 S protein to mediate entry of VSVpp into Caco-
2 cells by 40% (Fig. 2a, b). Strikingly, the T403R change enhanced the infectiousness of
VSVpp carrying the RaTG13 S ~30-fold, while substitution of T403A introduced as control
had no enhancing effect (Fig. 2b). Cell-to-cell fusion assays showed that coexpression of the
SARS-CoV-2 S and human ACE2 resulted in the formation of large syncytia (Extended Data
Fig. 1). The parental and T403A RaTG13 S did not lead to significant fusion but significant
syncytia formation was observed for the T403R RaTG13 S (Extended Data Fig. 1). Western
blot analyses showed that the mutant S proteins were efficiently expressed and incorporated
into VSVpp, albeit the SARS-CoV-2 R403T S with reduced efficiency (Extended Data Fig.
2). In line with the VSVpp results, complementation of a full-length recombinant SARS-CoV-
2 lacking the S ORF (SCoV-2AS) in ACE2-expressing HEK293T cells with wildtype (WT)
SARS-CoV-2 S led to virus-induced cytopathic effects (CPE) indicating successful virus
production and propagation (Fig. 2¢). Mutation of R403T in the SARS-CoV-2 S reduced CPE.
The WT and T403A RaTG13 S were entirely unable to complement SCoV-2AS, while the
T403R RaTG13 S resulted in significant CPE. Expression of a Gaussia luciferase (GLuc) from
S variant complemented recombinant SCoV2AS-GLuc confirmed the importance of R403 for

viral spread (Fig. 2d).


https://doi.org/10.1101/2021.05.31.446386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446386; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

90 Coronavirus entry is a multi-step process and critically dependent on proteolytic processing
91  of the S protein'>. The interaction of the SARS-CoV-2 S trimer with ACE2 promotes
92 proteolytic processing!®!”. Western blot analysis revealed that ACE2 coexpression induces
93 efficient cleavage of the SARS-CoV-2 and T403R RaTG13 S proteins to S2, while cleavage
94  ofthe WT and T403A RaTG13 S proteins remained inefficient (Extended Data Fig. 3). R403
95  generates a potential RGD integrin binding site in the viral Spike protein and it is under debate
96  whether the ability of the SARS-CoV-2 S to use integrins as viral attachment factors may play
97  arole in its high infectiousness'®!”. The integrin inhibitor ATN-161 had no significant effect
98 on SARS-CoV-2 or T403R RaTG13 S-mediated infection (Extended Data Fig. 4a, b). Thus,
99 the enhancing effect of the T403R mutation on the ability of RaTG13 S to infect human cells
100  seems to be due to increased interaction with ACE2 rather than utilization of integrins. Taken
101  together, our results demonstrate that mutation of T403R strongly enhances the ability of the
102 bat RaTG13 S protein to utilize ACE2 for infection of human cells.
103 To assess whether the T403R change might allow the bat CoV RaTG13 to spread to different
104  human organs, we performed infection studies using intestinal organoids derived from
105  pluripotent stem cells. The parental SARS-CoV-2 S protein allowed efficient infection of gut
106  organoids®® and the R403T change had modest attenuating effects (Fig. 3, Extended Data Fig.
107  5). In contrast, the parental RaTG13 S protein did not result in significant VSVpp infection,
108  while the corresponding T403R mutant allowed significant infection of human intestinal cells
109  (Fig. 3; Extended Data Fig. 5).
110 To examine the species-specificity of receptor usage by SARS-CoV-2 and RaTG13 S
111 proteins, we overexpressed human and bat derived ACE2 in HEK293T cells and examined
112 their susceptibility to S-mediated VSVpp infection. The WT SARS-CoV-2 and the T403R
113 RaTG13 S proteins allowed efficient entry into cells overexpressing human ACE2, while the
114  parental RaTG13 S protein was poorly active (Fig. 4a). Both WT SARS-CoV-2 S and (to a

115  lesser extent) R403T SARS-CoV-2 S proteins were also capable of using bat (Rhinolophus
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116  affinis) ACE2 for viral entry although the overall infection rates were low (Fig. 4a, Extended
117  Data Fig. 6). In contrast, the RaTG13 S proteins were unable to use bat ACE2 for infection
118  suggesting that RaTG13 might use an alternative receptor for infection of bat cells. The results
119  agree with the previous finding that RaTG13 S is able to use human ACE2 to some extent if
120  overexpressed! but further demonstrate that the T403R greatly enhances this function and is
121 required for utilization of endogenously expressed human ACE2.

122 To validate the results obtained with human HEK293T cells, we utilized the lung epithelial
123 cell line Tbl Lul of Tadarida brasiliensis (Bat31)*%. In agreement with the previous finding
124  that this cell line lacks endogenous ACE2 expression, it did not support infection by CoV S
125  proteins (Fig. 4b). Engineered expression of human ACE2 rendered Lu 1 highly susceptible to
126  infection mediated by SARS-CoV-2 and the T403R RaTGI3 S proteins (Fig. 4b). In
127  comparison, entry via the R403T SARS-CoV-2 S was strongly attenuated and the parental and
128  T403A RaTGl13 S proteins were unable to mediate significant VSV-pp infection.

129 Our results demonstrate that a single amino acid change of T403R allows RaTG13, the
130  closest known bat relative of SARS-CoV-2, to utilize human ACE2 for viral entry. The strong
131  enhancing effect of the T403R change on RaTG13 S function came as surprise since five of six
132 different residues proposed to be critical for SARS-CoV-2 S RBD interaction with human
133 ACE2 are not conserved in RaTG13 S'%3, A very recent study proposed that residue 501 plays
134  a key role in the ability of RaTG13 S to use human ACE2 for viral entry** but the reported
135  enhancing effect of changes at position 501 was weaker than that observed for the T403R
136  change analysed in the present study. However, the previous finding that numerous residues in
137  the SARS-CoV-2 S RBD are involved in the interaction with the human ACE2 orthologue
138  explains why the R403T substitution only moderately reduced SARS-CoV-2 infection. It has
139  been shown that the RBD of SARS-CoV-2 S shows higher homology to the corresponding
140  region of the pangolin CoV S protein than to RaTG13%’. Whether or not this is a consequence

141  of recombination or convergent evolution is under debate®>%. Notably, the Pan CoV-S protein
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142  also contains a positive residue (K) at position 403 (Fig. 1a) and is capable of utilizing human
143  ACE2 for infection. Altogether our results suggest that a positive residue at position 403 in the
144 S protein was most likely a prerequisite for efficient zoonotic transmission and pandemic
145  spread of SARS-CoV-2. We found that a positively charged residue at the corresponding
146  position is present in the S proteins of the great majority of RaTG13-related bat coronaviruses
147  (Extended Data Fig. 7) raising the possibility that many bat sarbecoviruses, including the

148  unknown precursor of SARC-CoV-2, are fitter for zoonotic transmission than RaTG13.

149

150 Methods

151  Molecular dynamics simulation. Based on the structure of ACE2-bounded to SARS-CoV-2
152  taken from the Protein Data Bank?’ (identification code 7KNB), the initial atomic positions
153  were obtained. Equilibration (300K for 0.5 ns) was performed by ReaxFF (reactive molecular
154  dynamic) simulations?® within the Amsterdam Modeling Suite 2020 (ADF2020, SCM,
155  Theoretical Chemistry, Vrije  Universiteit, Amsterdam, The  Netherlands,
156  http://www.scm.com). Based on the equilibrated structure, amino acids from the spike protein
157  were replaced with the respective amino acids from RaTG13, respectively the modification.
158  After an additional equilibration (300K for 0.5 ns) ReaxFF (reactive molecular dynamic)
159  simulations were performed within the NVT ensemble over 25 ps, while coupling the system
160  to a Berendsen heat bath (T=300 K with a coupling constant of 100 fs). The interaction energy
161  was obtained by averaging over these simulations. For all visualizations the Visual Molecular

162  Dynamics program (VMD)* was used.

163  Cell culture and viruses. All cells were cultured at 37°C in a 5% CO2 atmosphere. Human
164  embryonic kidney 293T cells purchased from American type culture collection (ATCC:
165 #CRL3216) were cultivated in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)

166  supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS, Gibco), 2 mM L-
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167  glutamine (PANBiotech), 100 ug/ml streptomycin (PANBiotech) and 100 U/ml penicillin
168  (PANBiotech). Calu-3 (human epithelial lung adenocarcinoma, kindly provided and verified
169 by Prof. Frick, Ulm University) cells were cultured in Minimum Essential Medium Eagle
170 (MEM, Sigma) supplemented with 10% (v/v) FBS (Gibco) (during viral infection) or 20%
171 (v/v) FBS (Gibco) (during all other times), 100 U/ml penicillin (PAN-Biotech), 100 pg/ml
172 streptomycin (PAN-Biotech), 1 mM sodium pyruvate (Gibco), and 1 mM NEAA (Gibco).
173  Caco-2 (human epithelial colorectal adenocarcinoma, kindly provided by Prof. Holger Barth,
174  Ulm University) cells were cultivated in DMEM (Gibco) containing 10% FBS (Gibco), 2 mM
175  glutamine (PANBiotech), 100 pg/ml streptomycin (PANBiotech), 100 U/ml penicillin
176  (ANBiotech), 1 mM Non-essential amino acids (NEAA, Gibco), 1 mM sodium pyruvate
177  (Gibco). I1-Hybridoma cells were purchased from ATCC (#CRL-2700) and cultured in RPMI
178  supplemented with 10% (v/v) heat-inactivated FBS (Gibco), 2 mM L-glutamine
179  (PANBiotech), 100 pg/ml streptomycin (PANBiotech) and 100 U/ml penicillin (PANBiotech).
180 Tb 1 Lu (Tadarida brasiliensis derived lung epithelial) and Ri 1 Lu huACE2 (Rhinolophus
181  affinis derived lung epithelial cells expressing human ACE2, ACE2, kindly provided by Marcel
182  A. Miiller, were cultured in DMEM supplemented with 10% (v/v) heat-inactivated FBS
183  (Gibco), 2 mM L-glutamine (PANBiotech), 100 pg/ml streptomycin (PANBiotech) and 100
184 U/ml penicillin (PANBiotech), 2 mM sodium pyruvate (Gibco). Viral isolate
185  BetaCoV/France/IDF0372/2020 (#014V-03890) was obtained through the European Virus

186  Archive global.

187  Expression constructs. pCG_SARS-CoV-2-Spike-IRES eGFP, coding the spike protein of
188  SARS-CoV-2 isolate Wuhan-Hu-1, NCBI reference Sequence YP_009724390.1, was kindly
189  provided by Stefan Pohlmann (German Primate Center, 473 Goéttingen, Germany).
190 pCG_SARS-CoV-2-Spike C-V5-IRES eGFP and RaTG13-S (synthesized by Baseclear) was
191  PCR amplified and subcloned into a pCG-IRES eGFP expression construct using the

192  restriction enzymes Xbal and Mlul (New England Biolabs). The SARS-CoV-2 S R403T and

8
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193 RaTGI3 S T403R/T403A mutant plasmids were generated using QS5 Site-Directed
194  Mutagenesis Kit (NEB).

195  Cloning of SARS-CoV-2 AS bacmid. An anonymized residual respiratory swab sample from
196  apatient with SARS-CoV-2 infection was used as a template for genome amplification. Total
197  nucleic acids were extracted on an automated Qiagen EZ1 robotic workstation using the Qiagen
198  EZI1 virus mini kit v2.0 according to the manufacturer's instructions. Genomic viral RNA was
199 reverse transcribed using the NEB LunaScript RT SuperMix Kit according to the
200 manufacturer’s protocol. Four overlapping fragments covering the entire viral genome were
201  amplified using the NEB Q5 High-Fidelity DNA Polymerase. The resulting amplicons were
202  assembled with a modified pBeloBAC11 backbone, containing CMV and T7 promotors as well
203  as the HDV ribozyme and bGH polyA signal, using the NEBuilder HiFi DNA Assembly
204  Cloning Kit. Assembled DNA was electroporated into E. coli GS1783 strain and resulting
205 clones of pBelo-SARSARS-CoV-2 were confirmed by restriction digestion and next
206  generation sequencing. The viral Spike gene was replaced with a kanamycin-cassette flanked
207 by Sacll restriction sites by homologous recombination using the Lambda-Red Recombination
208  System®’. The bacmid was linearized with the restriction enzyme Sacll, and EGFP or GLuc
209  reporter cassettes were introduced instead of Spike using the the NEBuilder HiFi DNA
210  Assembly Cloning Kit according to the manufacturer’s instruction. Positive clones were

211 confirmed by restriction digestion and sequencing.

212 SARS-CoV-2 AS replicon system. HEK293 T cells were seeded in six well format and
213 transfected with 3 pg pBelo-SARSCoV-2-dSpike-GLuc-K2 or pBelo-SARSCoV-2-dSpike-
214  EGFP and 0.25 pg of each expression construct pLVX-EF1alpha-SARS-CoV2-N-2xStrep-
215  IRES-Puro, pCG-ACE2, pCAG-T7-RNA-polymerase and one pCG- vector encoding the spike
216  protein of SARS-CoV-2, RaTG13 or the indicated mutant S respectively. Two days after
217  transfection, bright field and fluorescence microscopy (GFP) images were acquired using the

218  Cytation 3 microplate reader (BioTek). Gaussia luciferase activity in the supernatants was

9
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219  measured with the Gaussia Luciverase Assay system (Promega) according to the company’s

220  instructions.

221 Transfections. Plasmid DNA was transfected using either calcium phosphate transfection or
222 Polyethylenimine (PEIL, 1 mg/ml in H20, Sigma-Aldrich) according to the manufacturers

223 recommendations or as described previously>!.

224  Pseudoparticle production. To produce pseudotyped VSVAG-GFP particles, 6*10° HEK 293
225 T cells were seeded 18 hours before transfection in 10 cm dishes. The cells were transfected
226 with 15 pg of a glycoprotein expressing vector using PEI (PEL, 1 mg/ml in H20, Sigma-
227  Aldrich). Twenty-four hours post transfection, the cells were infected with VSVAG-GFP
228  particles pseudotyped with VSV G at a MOI of 3. One hour post-infection, the inoculum was
229 removed. Pseudotyped VSVAG-GFP particles were harvested 16 hours post infection. Cell
230  debris were pelleted and removed by centrifugation (500 g, 4 °C, 5 min). Residual input
231 particles carrying VSV-G were blocked by adding 10 % (v/v) of I1 Hybridoma Supernatant

232 (I1, mouse hybridoma supernatant from CRL-2700; ATCC) to the cell culture supernatant.

233 Whole-cell and cell free lysates. Whole-cell lysates were prepared by collecting cells in
234 Phosphate-Buffered Saline (PBS, Gibco), pelleting (500 g, 4 °C, 5 min), lysing and clearing as
235  previously described®!. Total protein concentration of the cleared lysates was measured using
236 the Pierce BCA Protein Assay Kit (Thermo Scientific) according to manufacturer’s
237  instructions. Viral particles were filtered though a 0.45 um MF-Millipore Filter (Millex) and
238  centrifuged through a 20% sucrose (Sigma) cushion. The pellet was lysed in transmembrane

239 lysis buffer already substituted with Protein Sample Loading Buffer (LI-COR).

240 SDS-PAGE and immunoblotting. SDS-PAGE and immunoblotting was performed as
241  previously described*!. In brief, whole cell lysates were mixed with 4x Protein Sample Loading
242  Buffer (LI-COR, at a final dilution of 1x) supplemented with 10% (v/v) Tris(2-

243 Carboxyethyl)phosphine hydrochloride 0.5 M (SIGMA), heated to 95°C for 10 min separated

10
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244 on NuPAGE 4-12% Bis-Tris Gels (Invitrogen) for 90 min at 120 V and blotted at constant 30
245 'V for 30 min onto Immobilon-FL PVDF membrane (Merck Millipore). After the transfer, the
246 membrane was blocked in 1% Casein in PBS (Thermo Scientific) and stained using primary
247  antibodies directed against SARS-CoV-2 S (1:1,000, Biozol, 1A9, #GTX632604), ACE2
248  (1:1,000, Abcam, #GTX632604), VSV-M (1:2,000, Absolute Antibody, 23H12, #Ab01404-
249  2.0), V5-tag (1:1,000, Cell Signaling, #13202), GAPDH (1:1,000, BioLegend, #631401) and
250 Infrared Dye labelled secondary antibodies (1:20,000, LI-CORIRDye). Proteins were detected
251  using a LI-COR Odyssey scanner and band intensities were quantified using LI-COR Image

252 Studio.

253  Stem Cell Culture and Intestinal Differentiation. Human embryonic stem cell line HUESS
254  (Harvard University, Cambridge, MA) was used with permission from the Robert Koch
255  Institute according to the “79. Genehmigung nach dem Stammzellgesetz, AZ 3.04.02/0084.”
256  Cells were cultured on human embryonic stem cell matrigel (Corning, Corning, NY) in mTeSR
257  Plus medium (STEMCELL Technologies, Vancouver, Canada) at 5% CO2, 5% 02, and 37°C.
258  Medium was changed every other day and cells were split with TrypLE Express (Invitrogen,
259  Carlsbad, CA) twice a week. For differentiation, 300,000 cells per well were seeded in 24-well
260  plates coated with growth factor-reduced matrigel (Corning) in mTeSR Plus with 10 mM Y-
261 27632 (STEMCELL Technologies). The next day, differentiation was started at 80%-90%

262  confluency, as described previously*2.

263  Intestinal organoids. To prepare in vitro differentiated organoids for transduction, matrigel
264  was dissolved in Collagenase/Dispase (Roche, Basel, Switzerland) for 2 hours at 37°C and
265  stopped by cold neutralization solution (DMEM, 1% bovine serum albumin, and 1% penicillin-
266  streptomycin). Organoids were transferred into 1.5-mL tubes and infected in 300 pL
267  pseudoparticle containing inoculum. Organoids were then resuspended in 35-pL cold growth
268  factor-reduced matrigel to generate cell-matrigel domes in 48-well plates. After 10 minutes at

269  37°C, intestinal growth medium (DMEM F12 [Gibco, Gaithersburg, MD], 1x B27 supplement
11
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270  [Thermo Fisher Scientific], 2-mM L-glutamine, 1% penicillin-streptomycin, 40 mM HEPES
271 [Sigma-Aldrich], 3 uM CHIR99021, 200 nM LDN-193189 [Sigma-Aldrich], 100 ng/mL hEGF
272 [Novoprotein, Summit, NJ], and 10 uM Y-27632 [STEMCELL Technologies]) was added and
273  organoids were incubated at 37°C. The Organoids were imaged using the Cytation 3 cell
274  imaging system and processed with Gen 5 and Imagel software. For FACS preparation, the
275  matrigel was dissolved and the extracted organoids were dissolved in Accutase (Stemcell
276  technologies). The cells were fixed with PBS for 10 min at 4°C and washed with cold PBS
277  containing 2% FBS. Flow cytometry analyses were performed using a FACS CANTO II (BD)
278  flow cytometer. Transduction rates were determined by GFP expression and analysed with
279  DIVA and Flowjow10 software.

280  a5PS integrin blocking. Caco-2 cells were preincubated with the indicated amounts of a5B5
281  integrin Inhibitor ATN-161 (Sigma) for two hours and infected with 100 pl freshly produced
282  VSVAG-GFP pseudo particles. 16 hours post infection, GFP positive cells were automatically
283  quantification using a Cytation 3 microplate reader (BioTek). Calu-3 cells were preincubated
284  with the indicated amounts of ATN-161 (Sigma) for two hours and infected with SARS-CoV-
285 2 Viral isolate BetaCoV/France/IDF0372/2020 (MOI 0.05, six hours). 48 hours post-infection

286  supernatants were harvested for qRT-PCR analysis.

287  Sequence Logo and alignments. Alignments of primary bat sequences (GQ153541.1/1-
288  71,GQ153544.1/1-71,GQ153540.1, GQ153539.1, DQ084200.1, DQ084199.1, GQ153548.1,
289  GQI153547.1, GQI153546.1, GQ153545.1, DQ022305.2, GQ153542.1, GQI153543.1,
290 KJ473815.1, KF294457.1, KY417148.1, KJ473814.1, MK211374.1, KY417142.1,
291 MK211377.1, JX993988.1, DQ412043.1, DQ648857.1, JX993987.1, KY417143.1,
292 KY417147.1, MK211378.1, DQ648856.1, KJ473812.1, KY770860.1, KY770858.1,
293  KY770859.1,KJ473816.1, RmYNO02, KY417145.1, KU182964.1, KY938558.1, KJ473811.1,
294 KJ473813.1, MG772933.1, MG772934.1, KY417150.1, KT444582.1, KY417152.1,

295 MK211376.1, GU190215.1, MN996532.1, EF065513.1, MG693170.1, MG762674.1,
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296  HM211101.1, HM211099.1, EF065514.1, EF065516.1, EF065515.1, MK492263.1,
297  MG693168.1, MG693172.1, MG693169.1, MG693171.1, KU762337.1, KU762338.1,
298  HQI166910.1, KT253270.1, KT253269.1, KYO073748.1, MN611517.1, KY073747.1,
299  KYO073744.1, KY073745.1, KY073746.1, NC 028833.1, MK720944.1, NC 010437.1/1-
300 7,EU420138.1, KJ473796.1, MN611524.1, KIJ473795.1, EU420137.1, KIJ473799.1,
301  KJ473800.1, KJ473797.1, MN611518.1, KY770850.1, KY770851.1, KIJ473806.1,
302 EU420139.1, KIJ473798.1, MG916902.1, MG916903.1, JQ989269.1, JQ989267.1,
303 JQ989268.1, JQ989266.1, JQ989272.1, JQ989273.1, MN611523.1, MN611525.1,
304 JQ989271.1, JQ989270.1, MK720945.1, MK720946.1, MG916904.1, KJ473810.1,
305 NC 028814.1, DQ648858.1, NC 009657.1, MN611521.1, KF430219.1, NC_009988.1/1-
306  7,EF203066.1, EF203067.1, EF203065.1, MF370205.1, KJ473808.1, MN611522.1,
307 DQ648794.1, EF065505.1, EF065506.1, EF065508.1, MHO002339.1, MN611519.1,
308 MHO002338.1, KJ473822.1, MHO002337.1, KU182965.1, EF065507.1, EF065510.1,
309 EF065511.1, EF065512.1, MHO002342.1, EF065509.1, KJ473820.1, MH002341.1,
310  MN611520.1, KX442565.1, KX442564.1/1-71) was performed using ClustalW* with a
311  gapOpening penalty of 80. Sequence logos were generated using R packages ggplot2 and

312 ggseqlogo®.

313 Statistics. Statistical analyses were performed using GraphPad PRISM 8 (GraphPad Software).
314  P-values were determined using a two-tailed Student’s t test with Welch’s correction. Unless

315  otherwise stated, data are shown as the mean of at least three independent experiments + SEM.
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423  FIGURES
424  Fig. 1: Modelling of the interaction of Coronavirus Spike residue 403 with human ACE2.
425  a, Schematic representation of the SARS-CoV-2 S protein (top panel), domains are indicated

426  in different colors. Receptor binding domain (RBD), light green. Receptor binding motif
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427 (RBM), dark green. Transmembrane domain (TM), orange. R403, pink. S1/S2 and S2’
428  cleavage sites are indicated. Sequence alignment of SARS-CoV-2, SARS-CoV-1, Pan-CoV
429  and RaTG13 Spike RBD (bottom panel). Sequence conservation is indicated. purple arrows
430  denote important residues for ACE2 binding. b, Reactive force field simulation of SARS-CoV-
431 2 Spike in complex with human ACE2 (PDB: 7KNB) (left panel) and focus on position 403 in
432  SARS-CoV-2 S (R) or RaTG13 S (T) or respective exchange mutants at position 403 (right
433  panel). ¢, Exemplary energy curve of the reactive molecular dynamics simulation for SARS-
434  CoV-2 S and SARS-CoV-2 S R403T (top panel) and RaTG13 and RaTG13 T430R spike with

435  human ACE2 (bottom panel).

436  Fig. 2: R403 in Spike is crucial to use ACE2 as an entry receptor. a, Binary images of
437  CaCo2 cells transduced with VSVAG-GFP pseudotyped with SARS-CoV-2, RaTG13 or
438  indicated mutant S. Successful infection events (=GFP positive cells) displayed as black dots.
439  Scale bar, 1.5mm. b, Automatic quantification of infection events by counting GFP positive
440  cells. n=3 (biological replicates) + SEM. ¢, Bright field and fluorescence microscopy (GFP)
441  images of HEK293T cells transfected with SCoV-2AS bacmid, SCoV2-N, ACE2, T7
442  polymerase and indicated Spike variants. Scale bar, 125pm. d, Quantification of Gaussia
443  luciferase activity in the supernatant of HEK293T cells expressing SCoV-2AS-Gaussia
444  bacmids as described in (c). n=3 (biological replicates) + SEM. P values are indicated

445  (student’s t test).

446  Fig. 3: T403R allows RaTG13 S to mediate infection of human gut organoids. a, Bright
447  field and fluorescence microscopy (GFP) images of hPSC derived gut organoids infected with
448  VSVAG-GFP (green) pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S (300 pl,
449 2 h). Scale bar, 250pum. b, Quantification of the percentage of GFP-positive cells of (a). n=3

450  (biological replicates) £ SEM. P values are indicated (student’s t test).
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451  Fig.4: SARS-CoV-2 S and T403R RaTG13 S allow entry with human but not bat ACE2.
452  a, HEK293T cells expressing indicated ACE2 (Human ACE2 or Rhinolophus affinis ACE2)
453  constructs or b, Tb 1 Lu, Tadarida brasiliensis derived lung epithelial and Ri 1 Lu huACE2
454  Rhinolophus affinis derived lung epithelial cells expressing human ACE2 were infected with
455  VSVAG-GFP pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S. Quantification
456 by automatic counting of GFP positive cells. n=3 (biological replicates) + SEM. P values are

457  indicated (student’s t test).

458

459  Extended Figure legends

460  Extended Data Fig. 1: T403R RaTG13 S allows ACE2 dependent cell fusion. Exemplary
461  fluorescence microscopy images of HEK293T cells expressing SCoV2 S, RaTG13 S or the
462  indicated mutant, Human ACE2 and GFP (green). Insets are indicated by white boxes. Scale

463  bar, 125um.

464  Extended Data Fig. 2: Incorporation of Spike variants in VSV pseudoparticles. a,
465  Exemplary immunoblots of whole cells lysates (WCLs) and supernatants of HEK293T cells
466  expressing SCoV2 S, RaTG13 S or the indicated mutant that were infected with VSVAG-GFP.
467  Blots were stained with anti-SARS-CoV-2 S, anti-GAPDH and anti-VSV-M. b, Quantification

468  of Spike expression. n=3 (biological replicates) = SEM. P values are indicated (student’s t test).

469  Extended Data Fig. 3: Processing of Spike proteins by ACE2 expression. a, Exemplary
470  immunoblots of WCLs of HEK293T cells expressing SARS-CoV-2 S, RaTG13 S or the
471  indicated mutant coexpressing Human ACE2 or empty vector construct. The blots were stained

472  with anti-SARS-CoV-2 S, anti-GAPDH, anti-ACE2 and anti-VSV-M.

473  Extended Data Fig. 4: SARS-CoV-2 entry is independent of aSBS5 integrin. a, Automated

474  quantification by GFP fluorescence of Caco-2 cells preincubated with indicated amounts of
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475  a5BS integrin Inhibitor ATN-161 and infected with VSVAG-GFP pseudotyped with SARS-
476  CoV-2, RaTG13 T403R mutant or RaTG13 S. n=3 (biological replicates) + SEM. b,
477  Quantification of viral RNA copies in the supernatant of Calu-3 cells preincubated with
478  indicated amounts of ATN-161 and infected SARS-CoV-2 (MOI 0.05, 6 h). n=3 (biological

479  replicates) £ SEM. P values are indicated (student’s t test).

480 Extended Data Fig. 5: T403R allows RaTG13 S to mediate infection of human intestinal
481  organoids. a, Bright field and fluorescence microscopy (GFP) images of hPSC derived gut
482  organoids infected with equal amounts of VSVAG-GFP (green) pseudotyped with SARS-CoV-
483  2,RaTG13 or indicated mutant S (2 h). Scale bar, 250um. b, Exemplary gating strategy of flow
484  cytometry-based analysis of GFP-positive cells of (a). ¢, Quantification and exemplary gating.

485  n=3 (biological replicates) + SEM. P values are indicated (student’s t test).

486  Extended Data Fig. 6: Bat ACE2 can be used for entry by SARS-CoV-2 Spike.
487  Quantification of GFP positive HEK293T cells expressing indicated ACE2 variants
488  (Rhinolophus macrotis ACE2 or Rhinolophus rhodesiae ACE2) infected with VSVAG-GFP
489  pseudotyped with SARS-CoV-2, RaTG13 or indicated mutant S. n=3 (biological replicates) +

490  SEM. P values are indicated (student’s t test).

491  Extended Data Fig. 7: Conservation of the RGD motif in bat Coronavirus Spike proteins.
492  a, Sequence logo of the alignment of 137 different bat Coronavirus Spike RBD sequences. The
493  RGD motif is highlighted by a red box. b, Primary sequence alignment of selected bat
494  coronaviruses, human coronaviruses and SARS-CoV-2 strains. The RGD motif is highlighted

495  in bold.
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Fig.1 Zech et al.
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Fig. 2 Zech et al.
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Fig. 3 Zech et al.
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Extended Data Fig. 1 Zech et al.

SCoV2 S + ACE2 SCoV2 S R403T + ACE2

5
] . ’
5 .

GFP

GFP



https://doi.org/10.1101/2021.05.31.446386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446386; this version posted May 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Fig. 2 Zech et al.
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Extended Data Fig. 4 Zech et al.
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Extended Data Fig. 5
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Extended Data Fig. 6 Zech et al.
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