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Abstract 

Background: Understanding the influence of genetic variants on DNA methylation is 

fundamental for the interpretation of epigenomic data in the context of disease. There is a need 

for systematic approaches not only for determining methylation quantitative trait loci (methQTL) 

but also for discriminating general from cell-type-specific effects.  

Results: Here, we present a two-step computational framework MAGAR, which fully supports 

identification of methQTLs from matched genotyping and DNA methylation data, and additionally 

the identification of quantitative cell-type-specific methQTL effects. In a pilot analysis, we apply 

MAGAR on data in four tissues (ileum, rectum, T-cells, B-cells) from healthy individuals and 

demonstrate the discrimination of common from cell-type-specific methQTLs. We experimentally 

validate both types of methQTLs in an independent dataset comprising additional cell types and 

tissues. Finally, we validate selected methQTLs (PON1, ZNF155, NRG2) by ultra-deep local 

sequencing. In line with previous reports, we find cell-type-specific methQTLs to be preferentially 

located in enhancer elements. 

Conclusions: Our analysis demonstrates that a systematic analysis of methQTLs provides 

important new insights on the influences of genetic variants to cell-type-specific epigenomic 

variation. 

 

Background 
Epigenetic mechanisms, including histone modifications, small RNAs, and DNA methylation, 

regulate gene expression in a tissue- and cell-type-specific manner [1]. DNA methylation is a 

critical player in such epigenetic gene regulation that has been implicated in various biological 

processes including X-chromosomal inactivation [2], genomic imprinting [3], and allele-specific 

expression [4,5]. DNA methylation has been shown to be highly cell-type-specific and can be 

used to reliably estimate the proportions of different cell types in mixed cell samples such as blood 

or tissues [6,7]. The DNA methylation state of a defined subset of CpGs in the human genome 

can be measured reliably across many samples using the Illumina Infinium microarray 

technologies allowing to perform epigenomic association studies (EWAS).  

DNA methylation can be affected by aging [8], sex, and a range of environmental exposures 

[9,10]. Additionally, donor genotype has a strong influence on the global DNA methylation state 

(methylome), especially when a genetic alteration, such as a single nucleotide polymorphism 

(SNP), occurs at a CpG site. Since bisulfite-based methods can generate unclear and 

uninterpretable data at annotated or predicted SNPs located at CpG dinucleotides, such positions 

are typically removed from the analysis of DNA methylation data [11].  

However, additional genetic effects that are not located in the CpG site but in genetic variants 

distant to the analyzed CpG can influence its DNA methylation state. Such variants influencing 

DNA methylation states are referred to as methylation quantitative trait loci (methQTL). These 

associations can range from distances of a few bases to several megabases resulting in long-

range interactions [12,13]. The definition of proximal methQTLs varies from 500 kb to 2 mb 
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distance between the CpG and the SNP [12–14]. MethQTLs co-localize with genetic variants 

associated with diseases and donor phenotypes (GWAS hits) including obstructive pulmonary 

disease [14], prostate cancer risk [15], osteoarthritis [16], immune-mediated disease [17], asthma 

[18], and smoking [19]. Furthermore, combining methQTLs with expression QTLs (eQTLs) 

enables the investigation of associations between DNA methylation and gene expression 

changes [20–22].  

However, so far not much emphasis has been put into analyses to investigate if and how often  

methQTLs affect DNA methylation in a tissue- or cell-type-specific manner. An earlier study used 

cultured cells including fibroblasts, T-cells, and lymphoblastoid cell lines to determine largely 

tissue-independent methQTLs. The authors reported that the association of methQTLs with 

changes in gene expression was rather cell-type-specific [23] in line with recently identified cell-

type-specific eQTLs [24]. Other studies analyzing primary human cells rather reported largely cell-

type-independent eQTLs [25]. One problem which may have contributed to the current mixed 

view on the distribution of methQTLs is that methQTLs are typically determined using statistical 

models and tools that have been developed for eQTL analysis (e.g., Matrix-eQTL [26], fastQTL 

[27], or GEM [28]).  Without the consideration of the specific properties of DNA methylation data 

including the correlation of DNA methylation states of neighboring CpGs such approaches may 

lead to substantial biases in the calling and interpretation of methQTLs.  

To alleviate this problem, we present “Methylation-Aware Genotype Association in R” (MAGAR) 

- a novel computational pipeline that performs methQTL analysis. MAGAR defines clusters of 

neighboring CpGs according to their shared behavior across samples to represent DNA 

methylation haplotypes and performs methQTL analysis for each of the correlation blocks 

independently. MAGAR has been implemented as an R-package and utilizes existing tools such 

as fastQTL [27], RnBeads [29,30], and PLINK [31]. Using MAGAR, we investigated sorted blood 

cell types (T-cells, B-cells) and composite bowel tissues (ileum, rectum) of healthy individuals. 

The identified methQTLs were analyzed for cell-type-specific effects using colocalization analysis, 

which showed that we could discern tissue-specific from common methQTLs. Finally, we 

validated and reproduced our findings in additional samples and in data from two published 

methQTL studies.  

Results 

Strong cell-type-specific DNA methylation signals identified in bowel biopsies and 

purified blood cell types 

The data set that we used for the discovery of methQTLs comprised 409 samples from ileum (IL, 

n=98) and rectum (RE, n=95) tissue biopsies and the two FACS sorted blood cell types CD4-

positive T-cells (n=119) and CD19-positive B-cells (n=97). For 29 individuals DNA methylation 

data was available for all four tissues/cell types within this discovery data set (Supplementary 

Figure 1). Average DNA methylation levels across all CpGs in genome-wide five-kb bins revealed 

a strong cell-type-specific signal that discriminates the blood cell types from the biopsies. Overall, 

the tissue biopsies exhibited an enhanced variation in comparison to the purified blood cell types 

indicating that increased cell-type heterogeneity goes along with a higher variation of DNA 

methylation patterns both on genome-wide bins and on the single-CpG level (Figure 1A, B). To 
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better understand the origins of cellular heterogeneity within the biopsy samples we estimated 

the overall immune-cell content of a sample using the LUMP algorithm [32] (Figure 1C). While 

LUMP estimates were uniformly close to one for the two blood cell types as expected, they 

substantially varied across the biopsy samples. In line with previous reports [33], significantly 

higher immune cell content was observed in ileal compared to rectal samples.  

MAGAR facilitates the analysis of genome-wide methQTL effects 

Understanding the relationship between DNA methylation and genetic variants can help to 

illuminate the association of genetic alterations with diseases and changes in gene expression. 

Thus, we are interested in defining statistically significant associations between DNA methylation 

and genotyping data. We call genetic variants that are associated with DNA methylation 

methQTLs. To alleviate the methQTL identification process, we developed the new R-based 

framework MAGAR (Methylation-Aware Genotype Association in R) that provides a 

comprehensive suite of tools enabling methQTL analysis leveraging the correlation of DNA 

methylation states of neighboring CpGs (Figure 2A). Notably, MAGAR is the first package that 

performs data processing of raw (i.e, IDAT files) DNA methylation and genotyping data before 

returning data formatted for methQTL analysis. 

In the first phase of MAGAR, raw data is converted and processed using the established software 

packages RnBeads [29,30], PLINK [31] and CRLMM [34,35]. The processing includes data 

filtering of CpGs and SNPs according to quality criteria (see Methods for details). The second 

phase of the package – the methQTL calling – has been implemented as a two-stage workflow 

as follows: Initially, CpGs that exhibit high correlations of methylation states across the samples 

are clustered into CpG correlation blocks. MAGAR takes into consideration that the DNA 

methylation states of neighboring CpGs in the same functional or regulatory unit are usually highly 

correlated [36]. This assumption implies that one may not need to inspect each CpG. In fact, doing 

so would generate many redundant methQTLs. In MAGAR we therefore group neighboring, highly 

correlated CpGs into correlation blocks. In the second stage of the process, methQTLs are 

determined individually for each of the CpG correlation blocks. To this end, for each correlation 

Figure 1: Cell-type-specific DNA methylation patterns in the discovery data set. A: Heatmap (blue 
low, red high DNA methylation levels) of the 1,000 most variably methylated genome-wide bins of size 5 
kb. Hierarchical clustering of samples and bins was performed using Euclidean distance and complete 
linkage. B: PCA plot of genome-wide DNA methylation data at the single-CpG level. The first two principal 
components are displayed. C: Boxplots depicting the distributions of LUMP estimates for the overall 
immune cell content of the different cell types/tissues. The P-value was computed using a two-sided t-test. 
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block, MAGAR determines a tag-CpG representing this block and determines statistically 

significant associations for each of the tag-CpGs with all SNPs within a specified genomic 

distance (in this instance 500 kb up- and downstream). This methQTL calling can either be 

performed using univariate, linear least squares or by the approach implemented in fastQTL [27]. 

The fastQTL software computes correlations between DNA methylation states and SNP 

genotypes and uses a permutation scheme to address the multiple testing problem. MAGAR 

provides various options for modifying the analysis, including options for defining the CpG 

clustering, for defining the tag-CpG per correlation block, and for the methQTL calling approaches 

to be employed (linear modeling or fastQTL). Reasonable default values for the parameters were 

selected using simulation experiments (Supplementary Text, Supplementary Figure 2). 

MAGAR returns a list of associations and corresponding statistics, which can be filtered further 

by the user to define methQTLs or which can be used in downstream analyses. In the analysis 

presented here, MAGAR’s output was used as input to colocalization analysis for defining tissue 

specificity. 

Figure 2: Overview of MAGAR and methQTL results. A: MAGAR is an R-package utilizing a two-stage 

protocol. After data import via established software packages, CpGs are clustered into CpG-correlation 

blocks in a four-step procedure. In the second stage, methQTLs are called for each correlation block 

separately. B: Number of methQTLs identified by MAGAR for T-cells, B-cells, ileum, and rectum samples. 

Overlap between the methQTLs identified per tissue/cell type with methQTLs identified in the validation 

cohort (C) and in published methQTLs from blood [12] and fetal brain samples [37] (D). The methQTLs 

were reduced to those methQTLs affecting CpGs present on the 450k microarray. 
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Using MAGAR, we analyzed the ileal, rectal, T-cell, and B-cell methylation data (659,464 CpGs) 

jointly with genotype data from 5,436,098 SNPs and calculated methQTL statistics for each cell 

type/tissue independently. To determine significant methQTLs, we selected a Bonferroni-

corrected genome-wide P-value cutoff of 8.65x10-11 (see Methods for details). As a result, we 

found 696, 2,508, 1,010, and 868 methQTLs for CD19+ B-cells, CD4+ T-cells, ileal, and rectal 

biopsies, respectively (Figure 2B, Supplementary Table 1). To validate the methQTLs, we used 

additional samples from monocytes and transverse colon from the same cohort (Supplementary 

Figure 3). Additionally, we obtained published methQTLs from two studies (blood [12] and fetal 

brain [37]) and compared them with the identified methQTLs. Note that the validation cohort and 

the published studies used DNA methylation data generated using the 450k microarray, which 

comprises fewer CpG sites than the EPIC array. Thus, we excluded those methQTLs from the 

comparison that associated with a CpG site that is exclusively present on the EPIC array. We 

identified some of the methQTLs found in the discovery cohort using a different, validation P-

value cutoff (see Methods) in the validation cohort (Figure 2C) and in the published data (Figure 

2D). Notably, the overlap between the identified and the published methQTLs was significantly 

higher than expected by chance (Supplementary Table 2). As expected, the overlap of the 

methQTLs identified in B- and T-cells with the methQTLs identified using whole blood was higher 

than with those identified in fetal brain samples (Figure 2D). 

Colocalization analysis identifies common methQTLs 

Next we applied colocalization analysis that uses summary statistics from two association studies 

(here methQTLs in two different tissues) to determine if an association of two traits (here CpG 

methylation states) to the same genetic region is significant and is likely to be caused by the same 

pleiotropic genetic variant. Colocalization was examined using Summary-data-based Mendelian 

Randomization (SMR) analysis followed by the Heterogeneity in Dependent Instruments (HEIDI) 

test [38]. The SMR test indicates whether the two traits are significantly associated with the same 

locus and the HEIDI test interrogates whether the data are compatible with the hypothesis that 

both traits are affected by the same underlying functional SNP. 

We only included methQTLs in the analysis that were significant at P-value lower than 8.65x10-11 

in at least one tissue. The analysis is anchored at the tissue where the methQTL exhibited a 

significant association and the methQTL statistics were compared with those in the other tissues. 

In total, 4,253 colocalization tests were performed (Supplementary Table 3) based on the 

number of significant methQTLs. We defined those methQTLs as shared between two tissues/cell 

types that had an FDR-adjusted P-value of the SMR test lower than 0.05 and that had a HEIDI 

test nominal P-value larger than 0.05 (Supplementary Table 3). These methQTLs are likely 

driven by the same genetic variant and the shared association is likely caused by a single 
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pleiotropic variant rather than two linked variants. Colocalization analysis was conducted for all 

pairs of cell types/tissues (Figure 3A) and we define three classes of methQTLs:  

1. Common methQTLs are shared across all investigated pairs of tissues/cell types 

according to the colocalization analysis and pass the methQTL P-value cutoff 8.65x10-11 

in all tissues 

Figure 3: Common and tissue-specific methQTLs identified through colocalization analysis. A: To 

define tissue specificity, we employed MAGAR on the four tissues/cell types independently to obtain 

methQTL statistics. These were used in pairwise colocalization analyses to define common and tissue-

specific methQTL, as well as methQTLs shared across several tissues. B: Number of tissue-specific 

methQTLs per tissue and methQTLs shared across different tissues according to the colocalization 

analysis. Common methQTLs were shared according to the colocalization analysis and had methQTL P-

values below the cutoff in all tissues. C: Examples of four common methQTLs located in vicinity to PON1, 

LGR6, LCE3D, and RIBC2.  
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2. Shared methQTLs are shared across all the investigated pairs of tissues/cell types 

according to the colocalization analysis 

3. Tissue-specific methQTLs are only present in one of the tissues/cell types and not shared 

in any pairwise comparison according to the colocalization analysis 

We found that 16 methQTLs were shared across all of the pairwise comparisons and lay below 

the methQTL P-value cutoff of 8.65x10-11 in all tissues and are thus common methQTLs (Figure 

3B, Supplementary Table 4). The common methQTLs included well established methQTLs and 

eQTLs, such as the ones present in the PON1 [39],  LGR6 [40], and RIBC2 [41] loci (Figure 3C). 

We found substantially more methQTLs shared across different tissues than tissue-specific 

methQTLs. Most (254) tissue-specific methQTLs were exclusively found in CD4+ T-cells (Figure 

3B, Supplementary Table 5), and similar numbers of tissue-specific methQTLs (78, 75) were 

identified for ileal and rectal biopsies, respectively. Due to the definition above, common 

methQTLs are a subset of the shared methQTLs. 

We used the validation cohort to validate the identified common and shared methQTLs further. 

Notably, the validation cohort samples were assayed using the 450k array and only 10 (of 16) 

and 689 (of 1,470), respectively, of the common and shared methQTLs associated with a CpG  

present on the 450k array. We found that most of the common (9/10, Fisher test P-value: 1.6x10-

4) and some of the shared QTLs (178/689, Fisher test P-value: 1) were also present in at least 

one of the two tissues (Supplementary Figure 4A,B). Additionally, four of the 10 overlapping 

common methQTLs (rs2272804, rs705379, rs55901738, rs10021193) were also identified in an 

independent study of blood samples [12] (Supplementary Figure 4C). 

Common methQTL at PON1 locus identified in independent samples using ultra-

deep bisulfite sequencing 

To rule out potential technology-dependent artifacts, we used local deep amplicon sequencing for 

the validation of a common methQTL. We selected the methQTL at the PON1 locus (comprising 

rs705379, cg19678392, cg17330251, and cg01874867), since both the SNP and the CpGs could 

be included into a single amplicon of size 462 base pairs. Thus, we were able to capture the 

genotype of the SNP and the DNA methylation state of multiple CpGs simultaneously. Notably, 

we associated the genotype with the CpG methylation state at the single-molecule level, since 

each sequencing read represents a single molecule. The results indicated a strong relationship 

between the genotype of rs705379 and the CpG methylation state at all CpGs present in the 

amplicon, while the effect was stronger in those CpGs that were closer to the SNP (Figure 4A). 

In this setting, the A genotype was associated with a high DNA methylation state of more than 

50%, while the G genotype leads to a decrease of the methylation level below 25% for some 

CpGs (Figure 4B). Notably, there was no one-to-one relationship between the genotype and the 

DNA methylation state and G genotypes co-occurred with methylated CpGs and A genotypes 

with unmethylated CpGs at the single-molecule level. The effect of the SNP on the DNA 

methylation state was consistent across all samples within a genotype, and the standard 

deviations across the samples within the different genotype groups were comparable (T-cells: AA: 

0.054, AG: 0.046, GG: 0.058; B-cells: AA: 0.042, AG: 0.058, GG: 0.06, Figure 4C). Notably, 

rs705379 had a high minor-allele frequency of 0.46 for the B-cell and 0.47 for the T-cell samples 

in our cohort. To further investigate whether the effects that we detected are also present for 
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methQTLs beyond the 16 common methQTLs, we constructed two additional amplicons to 

capture the methQTLs shared across different cell types/tissues at the ZNF155 (Supplementary 

Figure 5) and NRG2 (Supplementary Figure 6) loci. In accordance with the results obtained in 

the PON1 amplicon, we found a strong association of the genotype with DNA methylation states.   

Tissue-specific methQTLs are preferentially located in proximal enhancer 

elements 

To determine characteristic properties of tissue-specific methQTLs, we compared all 452 tissue-

specific methQTLs with 1,470 methQTLs shared across multiple tissues (Supplementary Table 

6). While the distance between the CpG and the SNP that significantly correlates with the DNA 

methylation state was not different in the two classes of methQTLs, we found both stronger effects 

on the DNA methylation state with respect to effect size and lower P-values for the shared 

Figure 4: Validation of methQTL at PON1 locus using ultra-deep bisulfite sequencing. A: Bisulfite 
sequencing read pattern maps for three individuals with genotypes homozygous for the reference allele 
(AA), heterozygous (AG), or homozygous for the alternative allele (GG) for B-cells and T-cells, respectively. 
Each line is a sequencing read, where the red color indicates a cytosine, i.e., a methylated cytosine before 
bisulfite conversion, and blue a thymine, i.e., an unmethylated cytosine before bisulfite conversion. All 
cytosines within the amplicon are shown in the pattern map and the CpG and CpA dinucleotides are 
marked. The genotype at rs705379 per sequencing read is indicated on the right. Shown is the common 
methQTL at the PON1 locus at chr7:94,953,722-94,954,184 (hg19). B: Average DNA methylation levels 
across all samples of the same genotype and standard deviations across the samples. The barplots are 
shown for all 22 CpGs present in the amplicon. C: Average DNA methylation levels across all sequencing 
reads per sample for the three CpGs that were associated with the SNP genotype in the microarray data 
analysis for B-cells and T-cells. 
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methQTLs than for the tissue-specific methQTLs (Figure 5A). To determine whether the CpGs 

or the SNPs of the shared and cell-type-specific methQTLs are preferentially located in particular 

functional regions of the genome, we performed enrichment analysis for various functional 

annotations such as gene promoters and proximal enhancers. We found that methQTL SNPs 

were depleted in regions of active transcription such as transcriptional start sites (TSS) and gene 

bodies for the shared methQTLs (Figure 5B). No significant enrichment of a functional category 

was detected for the shared methQTLs. In contrast, the tissue-specific methQTLs were 

preferentially located in proximal enhancer elements according to the Ensembl Regulatory Build 

[42] further pointing toward the important regulatory role of enhancers in establishing cellular 

identity. Further indication for this hypothesis was obtained by the LOLA [43] enrichment of tissue-

specific methQTLs in enhancer elements and transcription factor binding sites indicating an 

enhancer element in B-cells and in the B-lymphocyte cell line GM12878 (Figure 5C). 

Analogously, we associated the tissue-specific and shared methQTL SNPs and CpGs with 

overlapping gene bodies. For those overlapping genes, we performed Gene Ontology (GO) 

enrichment analysis [44] and detected an enrichment of the shared methQTLs towards the 

biological process “cell development” (P-value=0.0069, Supplementary Table 7).  

We aimed to validate the tissue-specific methQTLs in the validation cohort and in independent 

studies. While some of the ileum- and rectum-specific methQTLs identified earlier were present 

in the transverse colon samples, only two of them were present (at P-value cutoff 9.84x10-6) in 

Figure 5: Properties of methQTLs shared across the tissues and tissue-specific methQTLs. A: 
Distance between the CpG and the SNP, the effect size (slope of the regression) of the methQTL, and the 
negative common logarithm of the methQTL P-value are visualized. MethQTLs were classified as either 
shared or tissue-specific. B: Enrichment analysis of shared (top) or tissue-specific methQTLs (bottom) in 
different functional annotations of the genome. Visualized is the common logarithm of the odds ratio and 
the associated Fisher exact-test P-value was computed. P-values below 0.01 are indicated by a bold 
outline. C: LOLA [43] enrichment analysis of the methQTL SNPs for the shared and tissue-specific 
methQTLs, respectively. ESC=embryonic stem cell, AML=acute myeloid leukemia. 
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the monocytes. Similarly, two of the T-cell-specific methQTLs were also found in transverse colon. 

However, more (seven for T-cells, one for B-cells) were found in the CD14-positive monocytes 

(Supplementary Figure 4A). To validate whether T-cell- and B-cell-specific methQTLs actually 

capture effects specific to blood cell types, we compared the methQTL effect sizes in the 

monocytes and in transverse colon. We detected significantly higher effect sizes for the T-cell-

specific methQTLs in the monocytes in comparison to transverse colon (Supplementary Figure 

4B). Notably, not all methQTLs detected in the discovery cohort could be found in the validation 

cohort, since the latter has been assayed using the Infinium 450k technology. Similarly, more of 

the T- and B-cell-specific methQTLs were present in the methQTL study on blood samples in 

comparison to fetal brain samples (Supplementary Figure 4C). 

Discussion 
Patient-stratification according to mutational signatures, i.e., genotype-based markers, is already 

well-accepted in the clinic [45]. Recently, DNA methylation-based biomarkers are also becoming 

relevant in a clinical setting [46] and may contribute to clinical decision making. The relationship 

between genotype and DNA methylation variation is only just beginning to be understood. As a 

first step towards the joint characterization of DNA methylation patterns and genotypes, 

methylation quantitative trait loci (methQTL) have been identified in healthy individuals. To 

facilitate standardized analyses of DNA methylation and genotyping data, we developed the R-

package MAGAR that supports processing of raw data and integrates with established 

bioinformatic tools. MAGAR is the first package providing a start-to-finish workflow for microarray-

based methQTL studies and supports bisulfite sequencing data, without specifically using the 

information on co-methylation of neighboring CpGs present in the sequencing reads. For bisulfite 

sequencing data, specialized methods are available such as IMAGE [47]. Notably, MAGAR 

performs methQTL analysis while accounting for the correlation structure of neighboring CpGs 

and is a first step toward associating genetic haplotypes with DNA methylation haplotypes. 

Grouping together CpGs into clusters is an approach that has also been used earlier [48,49] in 

contexts different from methQTL analysis. The earlier approaches to group CpGs into correlation 

blocks however either do not take into account the genomic distance between two CpGs or are 

restricted to either microarray or bisulfite sequencing data. 

It remains elusive whether methQTLs are inherently cell-type-specific or tissue-independent. In 

this study, we systematically investigated cell-type specificity of methQTLs in sorted blood cell 

types (CD19+ B-cells, CD4+ T-cells) and bowel biopsies (ileum, rectum). We found fewer tissue-

specific methQTLs than methQTLs that were shared across tissues. We validated tissue-

specificity in additional CD14+ monocyte and transverse colon samples. Since DNA methylation 

is a cell-type-specific epigenetic mark, it is likely that methQTLs are also cell-type specific. It 

remains to be shown whether these cell-type-specific methQTLs preferentially co-occur with other 

cell-type-specific epigenetic marks such as open chromatin or histone modifications. Previous 

methQTL studies [12,37] identified a partially overlapping list of methQTLs, some of which were 

also detected in this study. Notably, the previous studies used a different strategy for identifying 

methQTLs (Merlin [50] in the blood study and Matrix-eQTL [26] in the fetal brain samples). While 

these strategies do not account for the properties of DNA methylation data, we found a substantial 

overlap with the methQTLs that we identified.  
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We found that cell-type-specific methQTLs were preferentially located in enhancer elements, 

which further emphasizes the importance of enhancers to establish cellular identity. However, 

methQTL effects were weaker in cell-type-specific methQTLs compared to those shared across 

different cell types. It remains to be shown how methQTLs affect gene expression states in our 

samples. In subsequent analyses, the overlap between methQTLs and eQTLs can be explored 

to further understand the relationship between genome, epigenome, and transcriptome. Since the 

cell-type-specific methQTLs were associated with the CpG methylation states to a lower extent 

than shared methQTLs, cell-type-specific methQTLs could modulate transcript abundance in a 

more fine-grained manner. We would also like to point out that this observation may be due to 

technical rather than biological reasons. Using colocalization analysis for determining shared 

effects of methQTLs across tissues, a bias towards stronger effects can be introduced. Since we 

define tissue-specific methQTLs as those that are not shared according to the colocalization 

analysis, they could be weaker than the shared ones by definition. 

There are some aspects of methQTLs, which remain to be investigated. It would be relevant to 

study cell-type-specificity of methQTLs in purified cell types outside of the hematopoietic system, 

such as in neurons, epithelial cells, and hepatocytes. To that end, the identified common 

methQTLs could be further validated to determine whether they are truly tissue- and cell-type-

independent. Furthermore, MAGAR groups together CpGs into CpG correlation blocks, which 

reduces the number of redundant methQTL interactions detected. However, methQTLs affecting 

single CpGs may be missed using this method. It is well-established that genetic associations 

with a disease (GWAS hits) are preferentially located in non-coding regions of the genome [51]. 

The functional impact of such genetic variants, which can be modulated by QTLs (methQTLs, 

eQTLs), remains to be investigated. Additionally, DNA methylation data can be used to reliably 

estimate the proportions of different cell types in the samples, either using a reference data set 

[6] or in a reference-free way [52]; an analysis strategy known as deconvolution. Given the cell-

type specificity of a subset of methQTLs identified within this study, a combination of DNA 

methylation-based deconvolution and identification of methQTLs could be implemented similarly 

to transcriptome-based approaches [24,53]. By using such a method, it will be possible to 

investigate methQTL effects in bulk tissues without considering cell-type-specific signals. 

Preferably, novel analysis methods, such as colocalization analysis and the integration of 

methQTL and DNA methylation-based deconvolution, are implemented in an easy-to-use 

software package such as MAGAR. To overcome the issue of cell-type specificity, DNA 

methylation can be assayed at the single-cell level and associated with genotype information from 

the same cell. Alternatively, more readily accessible single-cell RNA-seq datasets can be jointly 

analyzed with bulk methQTL studies to understand gene regulation at the single-cell level. Finally, 

long-read sequencing allows for simultaneously profiling of the genotype and DNA methylation 

state of the same molecule over distances up to 10 kb, which enables associating genetic 

haplotypes with DNA methylation haplotypes. 

Conclusions 
 

In summary, the relationships between genetic and epigenetic variations are currently 

underexplored. To facilitate the joint analysis of genotype and DNA methylation data, we present 
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MAGAR as a novel software tool that accounts for the properties of DNA methylation data. In 

combination with colocalization analysis, we identified tissue-specific and common methQTLs 

with unique biological properties and genomic location. Tissue-specific and shared methQTLs 

identified using MAGAR were validated in both independent samples and were verified using an 

alternative local deep sequencing approach. 

Methods 

MAGAR R-package 

MAGAR package overview 

We developed “Methylation-Aware Genotype Association in R” (MAGAR) as a new computational 

framework to determine methQTLs from DNA methylation and genotyping data. MAGAR supports 

both sequencing-based assays including whole-genome (bisulfite) sequencing and microarray-

based data. It is the first computational framework for performing methQTL analysis starting from 

raw DNA methylation and genotyping microarray data. The pipeline implemented within MAGAR 

comprises the following phases: 

i. Data import and preprocessing using established software packages such as PLINK 

[31], RnBeads [29,30], and CRLMM [34,35]. Additional modules for quality control and 

standard processing using these packages are available to the user. MAGAR supports 

automated imputation using the Michigan Imputation Server [54]. 

ii. MethQTL calling, i.e. computing associations between genotype and a DNA methylation 

state. A two-stage approach is employed: (i) Define CpG correlation blocks as groups of 

CpGs that are highly correlated across the samples to mimic DNA methylation haplotypes. 

(ii) From each of these correlation blocks, a tag-CpG is selected as a representative of the 

block and associations are computed with all SNPs up to a given distance using either a 

linear modeling strategy or using external software tools (e.g., fastQTL [27]). All SNP-CpG 

pairs that have a P-value below a given cutoff are returned. 

Data import and preprocessing 

DNA methylation data For DNA methylation data, we use the RnBeads software package for 

data handling and processing. RnBeads supports most DNA methylation assays yielding single-

CpG methylation calls, including whole-genome/reduced-representation bisulfite sequencing 

(RRBS/WGBS) and the Illumina microarray series. Microarray data can be provided as raw 

intensity data (IDAT files) and is checked for data quality using RnBeads’ reporting functionality. 

Further processing steps, such as CpG and sample filtering (e.g., SNP removal, cross-reactive 

site removal) and data normalization, can be performed within RnBeads. Although we recommend 

RnBeads for data handling, MAGAR supports the output of further data processing tools if they 

provide single-CpG methylation calls. 

Genotyping data MAGAR accepts microarray and sequencing data as input. Sequencing data 

has to be preprocessed using genotyping pipelines [55] and converted into a format that is 

readable through PLINK (e.g., VCF files). For microarray data, MAGAR supports raw intensity 

data files as input and computes genotype calls through the CRLMM R-package [34,35]. As an 

optional step, genotyping data can be imputed using the Michigan Imputation Server [54]. 
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Additional data processing, such as filtering SNPs with many missing values or Hardy-Weinberg 

equilibrium filtering, are conducted through PLINK. 

MethQTL calling 

MethQTL calling within MAGAR follows a two-stage workflow (Figure 2A):  

i. CpGs with highly correlated methylation states across the samples are grouped to form 

CpG-correlation blocks. 

ii. A tag-CpG per CpG-correlation block is associated with all SNPs in a given genomic 

distance to compute associations between SNP genotypes and DNA methylation states. 

We elaborate on the two stages in more details below. 

Correlation block calling To compute distinct CpG correlation blocks, i.e., groups of CpGs that 

exhibit high correlations of their methylation states across the samples, from a DNA methylation 

data matrix we developed a four-step framework: 

1. To obtain a similarity matrix, compute the (Pearson) correlation coefficients between the 

DNA methylation states of any pair of CpGs across the samples using the bigstatsR R-

package [56] for each chromosome separately. Similarities of two CpGs with correlation 

lower than 0.2 (package parameter: cluster.cor.threshold) are set to zero. Since 

matrices can grow too large to fit into main memory of standard machines, the CpGs are 

split per chromosome into equally sized smaller groups until a maximum number of CpGs 

per computation is achieved (here 40,000 CpGs, parameter: max.cpgs). 

2. Weight the similarities according to the genomic distance between any CpG and the 

remaining CpGs using a Gaussian centered at the CpG of interest with standard deviation 

3,000 bp (parameter: standard.deviation.gauss). Additionally, the similarity between 

any pair of CpGs further apart than 500 kb is set to zero (parameter: 

absolute.distance.cutoff). Optionally, functional annotations such as the Ensembl 

Regulatory Build [42] or DNA methylation-based segmentation [57] can be used to re-

define the similarities. 

3. Construct the associated weighted graph from the similarity matrix, where the edge 

weights correspond to the similarities between the two CpGs. 

4. Employ Louvain clustering [58] using the igraph R-package [59] on the weighted graph to 

obtain clusters of CpGs that are highly correlated. The obtained clusters are defined as 

the CpG correlation blocks. 

The parameters presented here are available as package options to the user. The default 

parameters have been evaluated using simulations for EPIC and 450k data (Supplementary 

Text, Supplementary Figure 2). 

Associating SNPs with CpG-correlation blocks To determine whether the DNA methylation 

state of a CpG-correlation block is associated with the SNP, we first determine a tag-CpG per 

correlation block as the medoid of all CpGs in the correlation block. To compute the medoid CpG, 

we compute the median for each CpG in the correlation block across the samples. Then, we 

select the CpG that is the median of the vector of medians across the samples as the tag-CpG. 

Alternative tag-CpG selection methods are available through the package parameter 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445237doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.30.445237
http://creativecommons.org/licenses/by/4.0/


15 
 

representative.cpg.computation. In the next step, all SNPs closer than 500 kb to the tag-

CpG are considered and a univariate, least squares regression (lm R function) model is created 

using the genotypes (encoded as 0=homozygous reference/major allele, 1=heterozygous, 

2=homozygous alternative/minor allele) as the features and the CpG methylation state as the 

response. Further covariates can be included as additional inputs into the linear model. 

Alternatively, fastQTL [27] can be used to compute associations between tag-CpGs and SNPs. 

The obtained P-values and slopes (referred to as effect sizes or beta in this work) of the linear 

model are used for further analysis. 

Package options and modularity 

MAGAR is a modular software package that allows for easy integration with additional tools. 

Different variants of the analysis can be specified by the package’s rich option settings. For 

instance, CpG correlation blocks depend on various parameters including the correlation 

threshold between two CpGs or the standard deviation of the Gaussian distribution. We used 

simulation experiments to determine reasonable default parameter settings for the most widely 

used technologies 450k array, EPIC array, and bisulfite sequencing (Supplementary Text, 

Supplementary Figure 2). However, the option setting can be tailored to the data set at hand. 

CpG correlation block calling can be deactivated, resulting in the analysis scheme implemented 

by most published methQTL studies, i.e., associating each CpG with a SNP individually. 

Additionally, MAGAR allows for setting the parameters of the different software tools that are 

internally used (e.g., RnBeads, PLINK). To facilitate analyses of large-scale data sets, MAGAR 

supports multi-core processing and automatic distribution of jobs across the nodes of a high 

performance computing (HPC) cluster. MAGAR comes with different export options, including a 

direct export into the format accepted by GWAS-MAP (see section “Determining tissue-specific 

methQTLs”). MAGAR is publicly available from GitHub 

(https://github.com/MPIIComputationalEpigenetics/MAGAR). 

Data sets 

The data sets used throughout this study have been generated in the context of the SYSCID 

project (http://syscid.eu/). The CEDAR (Correlated Expression Disease Association Research) 

[60] cohort data set comprises 164 individuals and we had microarray-based genotyping data 

available for 163 individuals as described earlier [60]. More specifically, healthy individuals were 

recruited at the University Hospital in Liège and bowel biopsies as well as blood draws were 

collected. The biopsies were obtained from rectum (RE) and ileum (IL), and blood cells were 

FACS sorted into CD4-positive T-cells and CD19-positive B-cells. We used this data set as the 

discovery cohort within this study. In addition, we used a second data set from the CEDAR cohort 

comprising additional 197 donors (16 overlapping with the earlier ones) including transverse colon 

biopsies (n=191) and CD14-positive monocytes (n=192) as a validation cohort.  

DNA methylation profiling 

DNA methylation profiling of the samples in the CEDAR cohort was performed using the Illumina 

EPIC array. Per sample 500 ng of genomic DNA were bisulfite converted using the EZ-96 DNA 

methylation Gold Kit (Zymo research, Irvine, USA) according to the kit’s manual, except that the 

final elution volume was reduced to 12 µl. Then, four µl of bisulfite converted DNA was used to 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445237doi: bioRxiv preprint 

https://github.com/MPIIComputationalEpigenetics/MAGAR
http://syscid.eu/
https://doi.org/10.1101/2021.05.30.445237
http://creativecommons.org/licenses/by/4.0/


16 
 

run on an Infinium Methylation EPIC array (Illumina, San Diego, USA) according to the 

manufacturer’s protocol. 

DNA methylation data for the validation cohort was generated earlier using the Illumina 450k 

microarray according to the standard protocol. Due to the small overlap of donors from the EPIC 

and 450k data set and due to the reduced number of CpGs available on the 450k array, we 

decided to analyze the data sets separately. 

Genotyping microarrays 

Genotyping of the CEDAR cohort has been performed as described earlier [60]. Additional 23 

donors have been genotyped using the Illumina Infinium OmniExpress-24v1.3 microarray at the 

GIGA-Institute Genomics core facility.  

MAGAR analysis of the CEDAR cohort 

DNA methylation data We used MAGAR, which internally uses RnBeads, for processing raw 

IDAT files obtained on the CEDAR cohort samples. A subset (13 B-cell samples, 1 T-cell sample) 

was removed from the discovery cohort, since the samples exhibited substantially lower technical 

quality. CpGs were filtered for annotated SNPs in dbSNP [61], for sites on the sex chromosomes, 

and for potentially cross-reactive sites [62]. Further quality-based filtering of CpGs was conducted 

using RnBeads’ Greedycut algorithm [29]. Data was normalized using the “dasen” method from 

the wateRmelon R-package [63]. As outcome of the filtering procedure, 659,464 CpGs were 

retained for the analysis. The immune cell infiltration was estimated using the LUMP algorithm 

[32] based on 44 CpGs that are particularly hypomethylated in immune cells, 34 of which were 

available in the CEDAR data set. For the validation cohort (450k), we used analogous processing 

options, removed one sample from the 383 samples due to lower technical quality, and retained 

353,388 from the 485,777 CpGs available on the microarray. 

Genotyping data Genotyping microarray data was imported into MAGAR and genotypes called 

using the KRLMM algorithm implemented in the CRLMM R-package [34,35] using default 

parameters. Genotypes were imputed using the Michigan Imputation Server [54] using Minimac4 

and the following parameters: Reference panel: “hrc-r1.1”, phasing method: “shapeit”, population: 

“eur”. Imputation was performed for all 163 unique donors simultaneously and the outcome of the 

procedure yielded 39,127,678 SNPs. Imputed data was exported to PLINK [31] for further 

processing. We filtered for SNPs with a Hardy-Weinberg equilibrium exact test P-value below 

0.001, a maximum number of missing values across the samples of 10%, and with minor allele 

frequency below 5%. Additionally, we removed samples with more than 5% missing genotypes. 

Finally, 5,436,098 SNPs and all samples were retained. 

MethQTL analysis We employed MAGAR on an HPC cluster to compute methQTLs for each of 

the tissues/cell types of the discovery data set independently (Figure 3B). Notably, we used sex 

(categorical), age (continuous), BMI (continuous), smoking state (categorical), alcohol intake 

(categorical), ethnicity (categorical), and the first two principal components (continuous) 

computed on the genotype data as covariates in the analysis. MAGAR returns a table of methQTL 

summary statistics (i.e., slope of the regression, standard deviation of the estimate, P-value), 

which can be further filtered according to a P-value cutoff. Throughout this analysis, we 

termed methQTLs significant, if they have a P-value below a genome-wide Bonferroni- 1.1 
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adjusted cutoff of 8.65x10-11 in the summary statistics returned by MAGAR. We computed the P-

value cutoff as follows: We identified 82,271, 69,219, 75,779, and 76,109 correlation blocks for T-

cells, B-cells, ileum, and rectum samples, respectively. On average, each CpG was tested for 

association with 1,905 SNPs, which results in: 

0.05

(82,271 + 69,219 + 75,779 + 76,109)x1,905
= 8.65x10−11 

For each CpG that was affected by more than one methQTL, we selected the SNP with the lowest 

P-value as the lead-SNP. 

Determining tissue-specific methQTLs 

To determine whether the effects observed in the four tissues independently were shared across 

the different samples, we employed colocalization analysis. More specifically, we used Summary- 

data-based Mendelian Randomization (SMR) and Heterogeneity in Dependent Instruments 

(HEIDI) analysis [38] implemented in the GWAS-MAP software tool. Briefly, SMR is a statistical 

test that indicates whether two traits (here CpG methylation states in two tissues) are significantly 

associated with the same genetic locus. The test is an extension of Mendelian Randomization 

(MR), which is used to test for a causal relationship between two traits using an instrumental 

variable. While classical MR requires that the two traits are measured on the same samples, these 

can be investigated in distinct samples or studies using SMR. The input to the SMR test are 

methQTL statistics (i.e., P-values, slopes of the regression line) obtained in two scenarios, and it 

returns a test statistic that indicates whether the effect observed in the two scenarios is 

significantly associated with the same SNP. Thus, SMR analysis determines whether the same 

genetic effect leads to the methQTL results that we obtained in the two tissues, but cannot discern 

pleiotropy (the same SNP influences two traits) from linkage (two highly correlated SNPs influence 

the traits independently). Thus, for the SNPs that pass the SMR test, we employed the HEIDI test 

in a second step to test whether the observed effects are likely driven by pleiotropy. Briefly, the 

HEIDI test utilizes linkage (correlation) information of SNPs from a reference panel to determine 

whether the observed heterogeneity in the methQTL statistics are more likely caused by linkage 

than by pleiotropy. By using colocalization analysis through SMR and HEIDI, we were able to 

determine whether the methQTLs identified in the four tissues/cell types independently were 

shared or tissue-specific. We employed colocalization analysis for all pairs of tissues/cell types to 

determine shared methQTLs (Figure 3B). 

 

We selected those CpGs for colocalization analysis, which were selected as tag-CpGs in at least 

two tissues and that had a significant association with a lead-SNP (P-value below 8.65x10-11) at 

least in one tissue. Then, anchoring the analysis on the tissue showing the significant association, 

we performed the SMR test to detect if the same lead-SNP is associated with the same CpG in 

any of the other tissues. In case the same lead-SNP was identified in more than one tissue, the 

tissue/cell type with the lowest P-value was used as the starting point of the SMR analysis. In 

total, we performed 4,253 SMR tests. The SMR P-values were adjusted for multiple testing using 

the Benjamini-Hochberg [64] method and we used a P-value cutoff of 0.05. In case the methQTLs 

measured in two tissues are significant according to the SMR test, this is an indication that the 

CpG methylation states are significantly correlated with the same SNP in the two tissues. Thus, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445237doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.30.445237
http://creativecommons.org/licenses/by/4.0/


18 
 

we use the P-value of the SMR test as an indication of the shared effect of methQTLs in the two 

tissues.  

For CpGs that passed the SMR test, we applied the HEIDI test to discern pleiotropy from linkage. 

We defined all those pairs of methQTLs with a P-value higher than 0.05 as pleiotropic interactions. 

The results for a different P-value cutoff (0.001) are shown in Supplementary Table 3. The 

methQTLs that had an SMR test P-value below the cutoff and had a HEIDI test P-value higher 

than the threshold were defined as shared across the two tissues. The methQTLs shared across 

all pairwise comparisons according to the colocalization analysis were termed shared methQTLs. 

Additionally, those shared methQTLs with a methQTL P-value below 8.65x10-11 in all tissues were 

termed common methQTLs. 

The methQTLs that either fail the SMR test or that pass the SMR test, but also pass the HEIDI 

test were defined as tissue-specific methQTLs (Supplementary Table 3). Tissue-specificity was 

defined for each tissue individually. Finally, three classes of methQTLs were defined: tissue-

specific, shared, and common methQTLs. SMR and HEIDI analysis was performed using GWAS-

MAP (https://www.polyknomics.com/solutions/gwas-map-biomarker-and-intervention-target-

discovery-platform). 

Characterizing tissue-specific and common methQTLs We merged the methQTLs from the 

four tissues and compared the effect sizes, P-values, and the distance between the CpG and 

SNP of the tissue-specific with the methQTLs shared across the tissues. Additionally, we selected 

different functional annotations of the genome, such as Ensembl genes (version 75), associated 

promoter regions (defined as 1.5 kb upstream and 0.5 kb downstream of the TSS), and different 

functional categories according to the Ensembl regulatory build [42]. Then, we overlapped the 

shared/tissue-specific methQTLs with those annotations using the GenomicRanges [65] R-

package and computed odds ratios and (one-sided) Fisher-exact test P-values to investigate 

enrichment towards the functional annotations in comparison to all identified methQTLs. Last, we 

used the LOLA tool [43] to compute enrichments towards various additional functional annotations 

from databases such as Cistrome [66], CODEX [67], or ENCODE [68]. In contrast to the 

annotation enrichment analysis, we performed LOLA enrichment analysis using all CpGs/SNPs 

that were analyzed as the background for the enrichment. 

Validation of methQTLs 

Validation using independent data sets 

For further validation of the methQTLs identified above, we used 191 transverse colon and 192 

monocyte samples from the CEDAR cohort assayed using the Infinium 450k microarray. 

Genotyping and DNA methylation data was processed analogously to the discovery cohort and 

methQTLs were called at the P-value cutoff 9.84x10-6. We aimed to replicate the 2,508, 696, 

1,010, and 868 methQTLs that we identified in the four tissues/cell types and thus computed the 

P-value cutoff as: 

0.05

2508 + 696 + 1010 + 868
= 9.84𝑥10−6 

We used sex (categorical), age (continuous), BMI (continuous), smoking (categorical), alcohol 

intake (categorical), ethnicity (categorical), and the first two principal components (continuous) 
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computed on the genotype data as covariates. The resulting methQTLs were compared with the 

common and tissue-specific methQTLs detected in the discovery cohort, respectively. 

Additionally, we obtained methQTL data in tabular form from two studies identifying methQTLs in 

peripheral blood [12] and fetal brain samples [37], respectively. The two studies identified 52,918 

(blood) and 16,811 (fetal brain) methQTLs. We only used unique SNPs with a P-value lower than 

8.65x10-11 to match our criteria. To determine whether the detected overlap was larger than 

expected by chance, we used Fisher’s exact test using all SNPs that have been used as input to 

the methQTL calling as the background set. 

Validation using local deep sequencing 

For validation of the common methQTLs at the PON1 locus, as well as the shared methQTLs at 

the ZNF155, and NRG2 loci, we performed local deep sequencing using independent samples 

from the CEDAR cohort. 500 ng of genomic DNA were bisulfite converted using the EZ-96 DNA 

methylation Gold Kit (Zymo research, Irvine, USA) according to the kit’s manual. PCRs were set-

up in 30 µl reactions using three µl of 10x HotStarTaq buffer (Qiagen, Hilden Germany), 2.4 µl of 

10 mM d’NTPs (Fisher Scientific, Pittsburgh, USA), 1.5 µl of 25 mM MgCl2 (Qiagen), 0.3 µl each 

of 10 µM forward and reverse primers (Table 1), 0.5 µl of five U/µl HotStarTaq Polymerase 

(Qiagen), two µl of bisulfite converted DNA, and 20 µl of aqua bidest. PCRs were performed in 

an ABI Veriti thermo-cycler (Life Technologies, Karlsbad, USA) using the following program: 95°C 

for 15 min, 40 cycles of 95°C for 30 sec, 1.5 min of 56°C, and one min at 72°C, followed by five 

min of 72°C and hold at 12°C. PCR products were cleaned up using Agencourt AMPure XP Beads 

(Beckman Coulter, Brea, USA) and concentration was measured. All amplified products were 

diluted to four nM and NGS tags were finalized by a second PCR step (five cycles) with primers 

matching to the NGS compatible tags and carrying a sample-specific barcode (forward 5’-3’: 

CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT; reverse 5’-3’: 

AATGATACGGCGACCACCGAGATCTACACXXXXXXTCTTTCCCTACACGACGCTCTTCCGATC; ‘X’s refer to the sample 

barcode position) followed by a clean-up (AMPure XP). Finally, all samples (set to ten nM) were 

pooled, loaded on an Illumina MiSeq sequencing machine and sequenced for 2x 300 bp paired-

end reads with a MiSeq reagent kit V3 (Illumina) to ca. 10k - 20k fold depth. 

Quality control of the raw data files was performed using the FastQC software 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptor trimming and filtering for 

excluding low quality bases was conducted through cutadapt [69] and Trim Galore! 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Paired reads were joined with 

the FLASh tool [70]. Next, reads were sorted in a two-step procedure by (i) the NGS barcode 

adaptors to assign samples to identifiers and (ii) the initial 15 bp to assign data to the amplicons. 

Subsequently, the sorted data was input to BiQAnalyzer HT [71] using the following settings: 

‘analyzed methylation context’ was set to “C”, ‘minimal sequence identity’ was set to 0.9, and 

‘minimal conversion rate’ was set to 0.95. The filtered high-quality reads were used to compute 

methylation levels of the respective CpGs. Finally, each read was tagged by its base call at the 

respective SNP position in the amplicon (PON1@173, ZNF155@329, NRG2@255).  
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Tables and legends 

Table1: Details on bisulfite amplicons screened in the study. *: Capital letters are NGS compatible 

tags. ** Absolute methylation change of homozygote minor versus major individuals. 

Gene 

locus 
chr 

SNP 

position 

ID 

PCR primers (5'-3')* CpG ID 
methQTL 

distance 

methQTL 

delta** 

EPIC, 

NGS 

PON1 7 
94,953,895 

rs705379 

TCTTTCCCTACACGACGCTCTTCCGATCTgattggtggtttttgaagagtgttagtttt 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTccataatcaaactactaaatctctctaaaac 

cg01874867, 

cg20119798 

164 bp 

249 bp 

+14.9%, 

+39.7% 

ZNF155 19 
44,488,352 

rs62116613 

TCTTTCCCTACACGACGCTCTTCCGATCTggttgataggttagaatttataggttt 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcacatacttaactcaaaccacctt 

cg23456212, 

cg20451226 

182 bp 

171 bp 

+7.8%, 

+13.3% 
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NRG2 5 
139,340,779 

rs6580323 

TCTTTCCCTACACGACGCTCTTCCGATCTtttatgaattttgaagaagttgttaggt 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcacatacaaaactaaaacctaaatcc 

cg22710094 85 bp 
-5.1%, 

-20.1% 

 

Supplementary tables 

Supplementary Table 1: MethQTLs identified in the four tissues/cell types using MAGAR. 

Supplementary Table 2: Enrichment P-values according to Fisher’s exact test for validation of 

the identified methQTLs in independent samples (monocytes, transverse colon) and independent 

studies (blood and fetal brain). 

Supplementary Table 3: Results of the colocalization analysis for different P-value cutoffs of the 

HEIDI test (0.05 and 0.001). 

 

Supplementary Table 4: Common methQTLs across the four tissues/cell types. 

 

Supplementary Table 5: Tissue-specific methQTLs for the four tissues/cell types. 

 

Supplementary Table 6: MethQTLs shared across the tissues/cell types according to the 

colocalization analysis. The table comprises 1,912 rows and we focus on the 1,470 unique SNPs 

in the analysis. 

 

Supplementary Table 7: GO enrichment analysis results for the shared and tissue-specific 

methQTLs. 
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