

1 **Diverse mating phenotypes impact the spread of *wtf* meiotic drivers in *S. pombe***

2

3

4

5 José Fabricio López Hernández¹, Rachel M. Helston¹, Jeffrey J. Lange¹, R. Blake Billmyre¹,

6 Samantha H. Schaffner^{1,2}, Michael T. Eickbush¹, Scott McCroskey¹ and Sarah E. Zanders^{*1,3}

7

8 **Affiliations:**

9 ¹Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

10 ²Kenyon College, Gambier, OH 43022, USA.

11 ³Department of Molecular and Integrative Physiology, University of Kansas Medical Center,
12 Kansas City, KS 66160, USA.

13 *Correspondence to: Sarah E. Zanders, Stowers Institute for Medical Research, 1000 E 50th
14 Street, Kansas City, Missouri 64110; sez@stowers.edu; tel: (816) 926-4114

15

16

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 Meiotic drivers are genetic loci that break Mendel's law of segregation to be transmitted into
29 more than half of the offspring produced by a heterozygote. The success of a driver relies on
30 outcrossing because drivers gain their advantage in heterozygotes. It is, therefore, curious that
31 *Schizosaccharomyces pombe*, a species reported to rarely outcross, harbors many meiotic
32 drivers. To address this paradox, we measured mating phenotypes in *S. pombe* natural isolates.
33 We found that the propensity to inbreed varies between natural isolates and can be affected
34 both by cell density and by the available sexual partners. Additionally, we found that the
35 observed level of inbreeding slows, but does not prevent, the spread of a *wtf* meiotic driver in
36 the absence of additional fitness costs. These analyses reveal parameters critical to
37 understanding the evolution of *S. pombe* and help explain the success of meiotic drivers in this
38 species.

39

40 **Introduction**

41 Mating behaviours have long been a focus of art, literature, and formal scientific inquiry. This
42 interest stems, in part, from the remarkable importance of mate choice on the evolution of
43 species. Outcrossing and inbreeding represent distinct mating strategies that both have
44 potential evolutionary benefits and costs (Glemin et al. 2019; Muller 1932; Otto and Lenormand
45 2002). For example, preferential outcrossing can facilitate the spread of adaptive traits in a
46 population, but can also promote the spread of deleterious selfish genes (Crow 1988; Hurst and
47 Werren 2001; McDonald et al. 2016; Zeyl et al. 1996).

48

49 Meiotic drivers represent one type of selfish genetic element that relies on outcrossing to persist
50 and spread in a population (Lindholm et al. 2016; Novitski 1957). These loci can manipulate the
51 process of gametogenesis to bias their own transmission into gametes at the expense of the
52 rest of the genome (Burt and Trivers 2006). Meiotic drivers are often considered selfish or

53 parasitic genes because they generally offer no fitness benefits to their hosts and are instead
54 often deleterious or linked to deleterious alleles (Dyer et al. 2007; Higgins et al. 2018; Klein et
55 al. 1984; Rick 1966; Schimenti et al. 2005; Taylor et al. 1999; Wilkinson and Fry 2001). As
56 inbreeding is thought to inhibit the spread of selfish genes like drivers, drivers are predicted to
57 be unsuccessful in species that rarely outcross (Hurst and Werren 2001). This assumption
58 appears to be challenged in the fission yeast *Schizosaccharomyces pombe*, which is thought to
59 rarely outcross, yet hosts multiple meiotic drivers (Bravo Nunez et al. 2020b; Eickbush et al.
60 2019; Farlow et al. 2015; Hu et al. 2017; Nuckolls et al. 2017; Tusso et al. 2019; Zanders et al.
61 2014).

62

63 In the wild, a minority of *S. pombe* strains are heterothallic, meaning they have a fixed mating
64 type (*h*⁺ or *h*⁻; Gutz and Doe 1975; Nieuwenhuis and Immler 2016; Schlake 1993). Heterothallic
65 strains must outcross to complete sexual reproduction (Egel 1977; Gutz and Doe 1975; Leupold
66 1949; Miyata 1981; Nieuwenhuis and Immler 2016; Osterwalder 1924; Schlake 1993). However,
67 most isolates of *S. pombe* are homothallic, meaning that they can switch between the two
68 mating types (*h*⁺ and *h*⁻) (Eie 1987; Gutz and Doe 1975; Klar 1990; Nieuwenhuis et al. 2018;
69 Singh and Klar 2003). Homothallism can facilitate inbreeding since mating can occur between
70 clonal members of a population. Mating can even occur between the two sibling cells produced
71 by a mitotic cell division (Egel 1977; Gutz and Doe 1975; Miyata 1981). In the lab, homothallic
72 strains are thought to preferentially inbreed (Ekwall and Thon 2017; Forsburg and Rhind 2006;
73 Merlini et al. 2013).

74

75 Population genetic analyses have provided additional support for the notion that *S. pombe*
76 inbreeds. *S. pombe* has been estimated to outcross once every ~800,000 generations, which is
77 about ten-fold less frequent than predictions for the homothallic budding yeast *Saccharomyces*
78 *cerevisiae* (Farlow et al. 2015). There are two major *S. pombe* lineages that diverged between

79 2,300 and 78,000 years ago (Tao et al. 2019; Tusso et al. 2019). Much of the sampled variation
80 within the species represents different admixed hybrids of those two ancestral lineages resulting
81 from an estimated 20-60 outcrossing events (Tusso et al. 2019). This low outcrossing rate could
82 result from limited opportunities to outcross, preferential inbreeding, or a combination of the two.
83 It is important to note, however, that the outcrossing rate estimates in *S. pombe* are likely low as
84 pervasive meiotic drive and decreased recombination in heterozygotes suppress the genetic
85 signatures that are used to infer outcrossing (Bravo Nunez et al. 2020b; Hu et al. 2017; Nuckolls
86 et al. 2017; Zanders et al. 2014).

87

88 The current outcrossing rate estimates suggest that drivers would infrequently have the
89 opportunity to act in *S. pombe*. Nonetheless, the *S. pombe* genome houses numerous meiotic
90 drive genes from the *wtf* gene family (Eickbush et al. 2019; Hu et al. 2017; Nuckolls et al. 2017).
91 The *wtf* drivers destroy the meiotic products (spores) that do not inherit the driver from a
92 heterozygote. Each *wtf* drive gene encodes both a *Wtf*^{poison} and an *Wtf*^{antidote} protein that,
93 together, execute targeted spore killing of the spores that do not inherit the *wtf* driver. In the
94 characterized *wtf4* driver, the *Wtf4*^{poison} protein assembles into toxic protein aggregates that are
95 packaged into all developing spores. The *Wtf4*^{antidote} protein co-assembles with *Wtf4*^{poison} only in
96 the spores that inherit *wtf4* and likely neutralizes the poison by promoting its trafficking to the
97 vacuole (Nuckolls et al. 2020). Spore killing by *wtf* drivers leads to the loss of about half of the
98 spores and almost exclusive transmission (>90%) of the *wtf* driver from a heterozygote (Hu et
99 al. 2017; Nuckolls et al. 2017). Despite their heavy costs in heterozygotes, the drivers are
100 successful in that all assayed *S. pombe* isolates contain multiple *wtf* drivers and some contain
101 ten or more predicted drivers (Bravo Nunez et al. 2020a; Eickbush et al. 2019).

102

103 In this work, we exploited the tractability of *S. pombe* to better understand how meiotic drivers
104 could succeed. Despite limited genetic diversity amongst isolates, we observed natural variation

105 in inbreeding propensity and other mating phenotypes. Some natural isolates preferentially
106 inbreed in the presence of a potential outcrossing partner, whereas others mate more randomly.
107 Additionally, we found that the level of inbreeding can be altered by cell density and affected by
108 the available sexual partners. To explore the effects of these mating phenotypes on the spread
109 of a *wtf* driver in a population, we used both mathematical modelling and an experimental
110 evolution approach. We found that while the spread of a *wtf* driver could be slowed by
111 inbreeding, the driver could still spread in the absence of linked deleterious traits. We
112 incorporated our observations into a model in which rapid *wtf* gene evolution and occasional
113 outcrossing facilitate the maintenance of *wtf* drivers. More broadly, this study illustrates how the
114 success of drive systems are impacted by mating phenotypes.

115

116 **Results**

117 **Inbreeding propensity differs amongst *S. pombe* natural isolates**

118 Most laboratory investigations of *S. pombe* utilize cells derived from 968 (CBS1042), the first
119 haploid isolated from French wine in 1921 by A. Osterwalder (Osterwalder 1924). In this work,
120 we will refer to derivatives of this isolate as “*Sp.*” Homothallic *Sp* strains switch mating type in a
121 regular pattern such that a clonal population contains an equal number of cells from each
122 mating type (*h+* and *h-*) after relatively few cell divisions (Maki et al. 2018). When starved,
123 haploid *S. pombe* cells of opposite mating types can mate (fuse) to form diploid zygotes, which
124 then generally proceed directly to undergo meiosis and spore formation (sporulation). Genetics
125 and microscopy experiments have revealed that the homothallic *Sp* haploids tend to inbreed
126 (Bendezu and Martin 2013; Egel 1977; Leupold 1949; Merlini et al. 2016; Miyata 1981).
127 However, the precise level of inbreeding when *S. pombe* cells are among nonclonal sexual
128 partners has not, to our knowledge, been formally reported for any isolate.

129

130 To quantify inbreeding in *Sp*, we first generated fluorescently tagged strains to easily observe
131 mating via microscopy (Figure 1A). We marked strains with either GFP or mCherry (both
132 constitutively-expressed and integrated at the *ura4* locus). We then mixed equal proportions of
133 GFP-expressing and mCherry-expressing haploid cells and plated them on a medium (SPA)
134 that induces mating and meiosis. We imaged the cells immediately after plating to measure the
135 starting frequency of both parent types. We then imaged again 24-48 hours later when many
136 cells in the population had mated to either form zygotes or fully developed spores. We inferred
137 the genotypes (homozygous or heterozygous) of each zygote and ascus (spore sac) based on
138 their fluorescence (Figure 1A). Homozygotes were produced by mating of two cells carrying the
139 same fluorophore, while heterozygotes were produced by mating between a GFP-labeled and
140 an mCherry-labeled cell (Figure 1B and C). Finally, we calculated the inbreeding coefficient (F)
141 by comparing the observed frequency of heterozygotes to the frequency expected if mating was
142 random ($F=1$ -observed heterozygotes/expected heterozygotes; Figure 1A). Total inbreeding,
143 random mating, and total outcrossing would yield inbreeding coefficients of 1, 0, and -1,
144 respectively (Hartl and Clark 2007).

145
146 In homothallic *Sp* cells, we measured an average inbreeding coefficient of 0.57 using our
147 microscopy assay (Figure 1B and 1D). In a mixed heterothallic population (GFP-expressing and
148 mCherry-expressing cells of both mating types), we observed random mating ($F = -0.05$),
149 consistent with mating-type switching facilitating inbreeding (Figure 1D). To validate our
150 microscopy results, we also assayed *Sp* cells using an orthogonal approach employing
151 traditional genetic markers. For this analysis, we mixed haploid cells on supplemented SPA
152 medium (SPAS) to induce them to mate and undergo meiosis. We then manually genotyped the
153 progeny and used the fraction of recombinant progeny to calculate inbreeding coefficients
154 (Supplemental Figure 1A). The average inbreeding coefficients measured using the genetic
155 assay were very similar to the values we measured using the microscopy assay (0.49 for

156 homothallic and 0.05 for heterothallic cells; Supplemental Figure 1B). Together, our results
157 confirm previous observations of self-mating in homothallic *Sp* cells and quantify the level of
158 inbreeding (Bendezu and Martin 2013; Egel 1977). In addition, we demonstrate that our
159 fluorescence assay provides a powerful tool to observe and measure inbreeding.

160

161 We next extended our inbreeding analyses to other *S. pombe* natural isolates. We assayed six
162 additional isolates, FY29043, FY29022, FY28981, FY28974, FY29044 and *S. kambucha* (*Sk*),
163 using our fluorescence microscopy assay. We chose these isolates because they span the
164 known diversity of *S. pombe*, are homothallic, sporulated well, were non-clumping, and we were
165 able to transform them with the GFP and mCherry markers described above (Supplemental
166 Table 1, Supplemental Figure 2) (Jeffares et al. 2015). We found that the inbreeding propensity
167 varied significantly between the different natural isolates (Figure 1D). FY29043 inbred similarly
168 to *Sp*, but other *S. pombe* isolates, including *Sk*, mated more randomly (Figure 1D). We also
169 observed variation in mating efficiency ranging from 10% of cells mating in FY28981 to 50% of
170 cells mating in *Sk* (Figure 1E).

171

172 Given that *S. pombe* cells are immobile, we thought that cell density could affect their propensity
173 to inbreed. To test this, we compared the inbreeding coefficient of both homothallic *Sp* and *Sk*
174 isolates at three different starting cell densities: our standard mating density (1X), high density
175 (10X), and low density (0.1X). Because crowding prevented us from assaying high-density cells
176 using our microscopy approach, we used the genetic assay for each condition. We found that
177 inbreeding was increased in both *Sp* and *Sk* isolates when cell densities were reduced
178 (Supplemental Figure 1C and 1D). This is likely because cells plated at low density tended to be
179 physically distant from potential sexual partners that were not part of the same clonally growing
180 patch of cells (Supplemental Figure 3). However, heterothallic *Sp* cells that cannot mate within a
181 clonal patch of cells showed near random mating at all cell densities assayed (Supplemental

182 Figure 1C). Overall, these experiments demonstrate that inbreeding propensity varies within *S.*
183 *pombe* homothallic isolates and can be affected by cell density.

184

185 **Variation in mating-type switching could contribute to reduced inbreeding in *Sk***

186 We next used time-lapse imaging to determine the origins of the different inbreeding
187 propensities, focusing on the *Sp* and *Sk* isolates. Previous work suggested that *Sk* cells have
188 reduced mating-type switching efficiency, based on a Southern blot assaying the level of the
189 DNA break (DSB) that initiates switching (Singh 2002). A mutation at the *mat-M* imprint site was
190 proposed to be responsible for the reduced level of DSBs (Singh and Klar 2003). Since less
191 mating-type switching could lead to less inbreeding, we decided to explore this idea using time-
192 lapse assays (Miyata 1981). For these assays, we tracked the fate of individual homothallic
193 founder cells plated on SPA at low density (0.25X to our standard mating density used above) to
194 quantify how many mitotic generations occurred prior to the first mating event. When the first
195 mating event occurred, we recorded the proportion of the cells present that mated (prior to the
196 appearance of cells from next mitotic generation). We also recorded the relationships between
197 the cells that did mate (i.e., sibling or non-sibling cells; Figure 2A). We did not consider cells that
198 were born in mitotic generations past the one in which mating first occurred (Figure 2A).

199

200 Classic work in *Sp* found that only one in a group of four clonally derived cells will have switched
201 mating types. The switched cell will be compatible to mate with one of the other three cells,
202 most typically its sibling (Figure 2A) (Miyata 1981). Under the same switching model, a smaller
203 portion of cells derived from a single division could be of opposite mating types and thus
204 sexually compatible (Figure 2A). In *Sp* cells, we observed mating amongst the clonal
205 descendants of some progenitor cells after a single mitotic division (i.e., at generation 2). By the
206 third generation, we observed mating amongst the descendants of more than half of the

207 progenitor cells. Almost all the observed mating events were between sibling cells (Figure 2A
208 and 2B). These observations are consistent with published work (Klar 1990; Miyata 1981).

209

210 *Sk* cells plated at 0.25X density on SPA divided significantly more than *Sp* cells prior to the first
211 mating (Wilcox rank sum test; p< 0.005 Figure 2B). *Sk* progenitor cells most frequently started
212 mating at the fourth mitotic generation (Figure 2B). This phenotype is consistent with less
213 mating-type switching as more generations would be required on average to produce a cell with
214 the opposite mating type (Singh 2002). In addition, many mating events were between non-
215 sibling cells. This phenotype can also be explained indirectly by reduced mating-type switching.
216 Specifically, after cells undergo several divisions, they generate cell clusters in which
217 comparably more non-sibling cells are in close proximity. This clustering could lead to more
218 non-sibling mating than when cells are mating-competent after fewer divisions and the low
219 number of cells are largely arranged linearly.

220

221 To better understand the differences between the number of cell divisions prior to mating
222 between *Sp* and *Sk*, we compared the sequence of the mating type locus in the two isolates.
223 Consistent with previous work, we found that the mating-type regions of *Sp* and *Sk* are highly
224 similar (Singh 2002). However, using a previously published mate-pair sequencing dataset we
225 discovered a ~5 kb insertion of nested *Tf* transposon sequences in the *Sk* mating type region
226 (Eickbush et al. 2019). We confirmed the presence of the insertion using PCR (Supplemental
227 Figure 4A-B). We also found evidence consistent with the same insertion in FY28981, which
228 also mates more randomly than *Sp* (Supplemental Figure 4B, Figure 1D). We did not, however
229 formally test if the insertion affects mating phenotypes. Even if it does have an effect, it is
230 insufficient to explain all the mating type variation we observed as FY29044 mates randomly,
231 yet it lacks the insertion (Figure 1D and Supplemental Figure 4B).

232

233 To further explore the hypothesis that decreased mating-type switching efficiency in *Sk* could
234 contribute to the mating differences we observed (Figure 2B), we carried out time-lapse
235 analyses of cells at our standard 1X cell mating density. We reasoned that at this density, any
236 given cell is likely to have a cell of opposite mating type nearby, even if mating-type switching is
237 infrequent. We again used mixed populations of GFP and mCherry-expressing cells to facilitate
238 the scoring of mating patterns (Figure 2C, Supplemental Video 1). We found that the *Sp* cells
239 predominantly mated in the second and third mitotic generations and most mating events were
240 between sibling cells (Figure 2C).

241

242 The mating behavior of *Sk* cells changed more dramatically between 0.25x density and the
243 higher 1X density. Whereas *Sk* cells tended to first mate in the fourth generation at 0.25X
244 density, at 1X density *Sk* cells, like *Sp*, generally mated in the second and third mitotic
245 generations (Figure 2C, Supplemental video 2). Additionally, we observed significantly reduced
246 levels of mating between *Sk* sibling cells at 1X density relative to 0.25X (10% and 56%,
247 respectively; Figure 2E and 2B). These phenotypes are consistent with reduced mating-type
248 switching in *Sk*. Specifically, our data suggest that *Sk* cells do not need to undergo more
249 divisions before they are competent to mate. Rather, the additional divisions that occurred at
250 0.25X density in *Sk* could have been necessary to produce a pair of cells with opposite mating
251 types. At 1X density, additional divisions are not expected to be required as additional non-
252 sibling compatible partners are available.

253

254 It is important to note that we were unable to directly measure mating-type switching. Therefore,
255 reduced switching in *Sk* represents a promising model that remains to be tested. Still, our
256 results demonstrate that the mating phenotypes previously measured in *Sp* do not apply to all *S.*
257 *pombe* isolates. Despite very little genetic diversity, *S. pombe* isolates maintain significant
258 natural variation in key mating phenotypes (Jeffares et al. 2017).

259

260 **Ascus variation**

261 While assaying inbreeding cytologically, we noticed that the *Sk* natural isolate displayed
262 tremendous diversity in ascus size and shape (Figure 1C, Supplemental Figure 5A,
263 Supplemental movie 2). This was due to high variability in the size of the mating projections,
264 known as shmoos. *Sk* produced long shmoos only in response to cells of the opposite mating
265 type and not as a response to nitrogen starvation alone (Supplemental Figure 5B). The long *Sk*
266 shmoos motivated us to quantify ascus length across all the natural isolates described above. We
267 found that most isolates generated zygotes or ascus that were ~10-15 μ m, similar to *Sp*. The
268 majority of *Sk* zygotes and ascus also fell within this range, but ~25% of *Sk* zygotes and ascus were
269 longer than 15 μ m, with some exceeding 30 μ m (Supplemental Figure 5C). We also assayed
270 zygote/ascus length in an additional natural isolate in which we were unable to quantify
271 inbreeding due to a clumping phenotype (FY29033). This isolate also showed populations of
272 long ascus, like *Sk* (Supplemental Figure 5C).

273

274 Additionally, we occasionally noticed a fused ascus phenotype in *Sk* (Supplemental Figure 5D).
275 Time-lapse analyses of mating patterns, described above, revealed these fused ascus can result
276 from an occasional disconnect between mitotic cycles and the physical separation of cells
277 (Supplemental Figure 5E). This phenotype is reminiscent of *adg1*, *adg2*, *adg3* and *agn1*
278 mutants in *Sp* that have defects in cell fission (Alonso-Nunez et al. 2005; Gould and Simanis
279 1997; Sipiczki 2007). Although we observed this phenotype in all time lapse experiments using
280 *Sk* cells, the prevalence of this phenotype varied greatly between experiments. We rarely
281 observed this phenotype in *Sp* cells. We did not analyze time-lapse images of the other natural
282 isolates, where this phenotype is most easily observed, so it is unclear if this septation
283 phenotype occurs in other natural isolates.

284

285 **Mating phenotypes are affected by available mating partners**

286 We next assayed if the mating preferences of *S. pombe* isolates *Sp* and *Sk* were invariable, or if
287 they could be affected by the available mating partners due to mating incompatibilities (Seike et
288 al. 2019b). To test this idea, we used both still and time-lapse imaging of cells mated at 1X
289 density on SPA. For these experiments, we mixed fluorescently labeled *Sp* and *Sk* cells in equal
290 frequencies.

291

292 We observed in experiments employing still images that the overall inbreeding coefficient of the
293 mixed *Sk/Sp* population of cells was intermediate between single-isolate crosses and mixed
294 crosses (Figure 2D). In time-lapse experiments, we observed that *Sk* cells maintained low levels
295 of mating between sibling cells in the mixed *Sk/Sp* population (9.2% compared to 9.8% in a
296 homogeneous population; Figure 2E). Amongst the *Sp* cells, mating between sibling cells
297 decreased significantly from 56.8% to 29.7% in the mixed mating environment (Figure 2E; t-test,
298 p = 0.04). Together, these results suggest that *Sk* cells can interfere with the ability of *Sp* cells
299 to inbreed. Although sibling cell mating preference changed, we did not observe a significant
300 decrease in the mating efficiency of *Sp* cells in a mixed *Sp/Sp* population relative to a pure *Sp*
301 population (Supplemental Figure 6A). Instead, the mating efficiency in the mixed *Sp/Sp*
302 population was intermediate of those observed in pure *Sp* and *Sk* populations, indicating these
303 isolates do not affect each other's ability to mate.

304

305 We were intrigued by the idea that long shmoos (mating projections) of *Sk* could contribute to its
306 ability to disrupt *Sp* sibling mating. We were unable to address this idea directly. We did,
307 however, find that *Sk/Sp* matings produce significantly longer zygotes/asci than either *Sk/Sp* or
308 *Sp/Sp* matings (Supplemental Figure 6B). This was true even when we compared *Sk/Sp*
309 zygote/ascus length to the length of heterozygous *Sk/Sp* or heterozygous *Sp/Sp* zygotes/asci.

310 While this result does not prove that long *Sk* shmoos disrupt *Sp* sibling mating, it does show that
311 long shmoos tend to be used in these outcrossing events.

312

313 We next extended our analyses by assaying mating efficiency and inbreeding propensity in all
314 pairwise combinations of *Sp*, *Sk*, FY29043, and FY29044 using still images of mated cells. After
315 adjusting for mating efficiencies and parental inbreeding coefficients (see Methods), the
316 phenotypes we observed in these crosses were mostly additive, in that they were intermediate
317 to the pure parental strain phenotypes (Supplemental Figure 7). The two exceptions were in the
318 crosses between *Sk* and the isolates FY20943 and FY20944. *Sk* formed more *Sk/Sk*
319 homozygotes than expected in the two crosses (one tailed t-test, $p=0.043$ and $p= 0.038$,
320 respectively); suggesting that *Sk* cells may not be fully sexually compatible with FY20943 and
321 FY20944 (Supplemental Figure 7). Overall, our observations indicate that mating phenotypes of
322 a given isolate can be affected by different mating partners. Importantly, however, our results
323 suggest mating incompatibilities are unlikely to have a major role in limiting outcrossing in *S.*
324 *pombe*.

325

326 **Population genetics model of the effect of inbreeding on *wtf* meiotic drivers**

327 We next wanted to test how the observed range of inbreeding values would affect the spread of
328 a *wtf* driver in a population. To do this, we first used population genetic modeling. We used the
329 meiotic drive model presented by J. Crow, but we also introduced an inbreeding coefficient
330 (Hartl and Clark 2007; Crow 1991) (See Methods for a full description of the model). The model
331 considers a population with two possible alleles at the queried locus. We assumed a *wtf* driver
332 would exhibit 98% drive (transmission to 98% of spores) in heterozygotes based on measured
333 values for the *Sk wtf4* driver and other *wtf* meiotic drivers (Bravo Nunez et al. 2020a; Nuckolls et
334 al. 2017). We assumed that homozygotes have a fitness of 1 (e.g., maximal fitness), whereas
335 *wtf* driver heterozygotes have a fitness of 0.51, since meiotic drive destroys nearly half of the

336 spores (Nuckolls et al. 2017). The inbreeding coefficient dictates the frequency of heterozygotes
337 and thus the frequency at which the *wtf* driver can act. We varied the inbreeding coefficient (F)
338 from 1 (total inbreeding) to -1 (total outcrossing).

339

340 We used the model to calculate the predicted change in the frequency of a *wtf* driver after only
341 one sexual generation (Figure 3A). We also calculated the spread of a *wtf* driver in a population
342 from a 5% starting frequency over many generations of sexual reproduction (Figure 3B). Under
343 complete inbreeding, the frequency of the driver does not increase after sexual reproduction or
344 spread in a population over time (Figures 3A and 3B). No change in driver frequency was
345 expected because no heterozygotes are produced under this condition, so no drive can occur.
346 The *wtf* driver has the greatest advantage if outcrossing is complete. Under all other conditions,
347 including the range of inbreeding coefficients we measured experimentally in *S. pombe* natural
348 isolates, some heterozygotes form and the *wtf* driver increases in frequency over generations of
349 sexual reproduction (Figures 3A and 3B). This model predicts that *wtf* drivers can spread if
350 outcrossing occurs in a population, even if outcrossing is infrequent.

351

352 **Inbreeding and linked deleterious alleles can suppress the spread of *wtf* drivers**

353 We next wanted to test if our predictions reflect the behavior of *wtf* drive alleles in a laboratory
354 population of *Sp* cells over many generations. To do this, we constructed an experimental
355 evolution system employing the GFP and mCherry fluorescent markers described above to
356 measure changes in allele frequencies in a population over time using cytometry. To mark drive
357 alleles, we linked the fluorescent markers with the *Sk wtf4* driver and integrated the whole
358 construct at the *ura4* locus in *Sp* (Nuckolls et al. 2017). For nondriving alleles, we used GFP or
359 mCherry integrated at the *ura4* locus without a linked *wtf* gene. We call the non-*wtf* alleles
360 ‘empty vector.’ We started the experimental evolution populations with a defined ratio of GFP
361 and mCherry-expressing cells. We then induced a subset of the population to mate and

362 sporulate followed by collection and culturing of the progeny (spores). From these cells, we
363 remeasured GFP and mCherry frequencies using flow cytometry, and we initiated the next
364 round of mating and meiosis (Figure 4A).

365

366 Because our experiments rely on comparing the frequency of GFP and mCherry-expressing
367 cells over time, we needed to test the fitness of the markers. We found that both fluorescent
368 markers were lost from all our experimental populations over time (Supplemental figure 8A-B).
369 This was likely because insertion of the markers disrupted the *ura4* gene and cells that excised
370 the marker reverted the *ura4* mutation and thereby gained a fitness benefit. We therefore only
371 considered fluorescent cells for our analyses and stopped the experiments when more than
372 95% cells lacked a fluorescent marker. In addition, in one set of experiments we also sorted
373 cells at defined timepoints to remove non-fluorescent cells from our populations (Figure 4D-E
374 and Supplemental Figure 9 C-D, described below).

375

376 To assay for potential differences in the fitness costs of GFP and mCherry markers, we carried
377 out our analyses in control populations without drive. One control population lacked the *Sk wtf4*
378 driver while the other had *Sk wtf4* linked to both fluorescent markers. For both types of controls,
379 we analyzed homothallic (inbreeding) and heterothallic (randomly mating) cell populations. We
380 found in most cases that the number of mCherry-expressing cells increased at the expense of
381 GFP-expressing cells over time (Supplemental Figure 9 A-D). The notable exception was in
382 heterothallic populations containing *Sk wtf4* linked to both fluorophore alleles, where we did not
383 observe a different cost of the GFP allele compared to mCherry (Supplemental Figure 9D). The
384 origin of the fitness cost of GFP and why this cost was not observed in the one heterothallic
385 population are both unclear. We do know that the fitness cost of GFP is incurred during sexual
386 reproduction as we observed no differences in vegetative growth between mCherry and GFP-
387 expressing cells (Supplemental Figure 8C-D). We used the first six generations of data from our

388 control crosses (Supplemental Figure 9) to calculate a 11% fitness cost to GFP allele
389 heterozygotes and 22% fitness cost to GFP homozygotes. We then used this cost when
390 predicting the evolutionary dynamics of *wtf4* in the experiments described below (Figure 4B-E).

391

392 For our experiments competing *Sk wtf4* with an empty vector allele, we first assayed
393 populations in which the alleles both started at 50% frequency. In homothallic (inbreeding)
394 populations, we observed that *wtf4* alleles spread in the population over several generations of
395 sexual reproduction. The driver spread faster when linked to mCherry than when linked to GFP,
396 presumably due to the aforementioned fitness costs linked to GFP (Figure 4B-C). In both cases,
397 the rate of spread of the allele was very close to our model's predictions if we assumed an
398 inbreeding coefficient of 0.5 (black lines, Figure 4B-C) and differed considerably from the
399 model's predictions assuming random mating (gray lines, Figure 4B-C).

400

401 We saw similar spread of *wtf4* in homothallic populations in a set of repeat experiments in which
402 we sorted the cell populations twice to remove non fluorescent cells (Figure 4D and 4E). In
403 these experiments, we also assayed heterothallic populations in parallel. As described above,
404 heterothallic cells cannot switch mating type and therefore cannot inbreed. In the heterothallic
405 populations, the *wtf4* driver spread significantly faster than in homothallic cells. In generations 1-
406 6, the spread of *wtf4* was very similar to that predicted by our model if we assumed random
407 mating. In later generations, our observations did not fit the model well. We suspect extensive
408 loss of fluorescent cells, especially those with mCherry, and the resulting decrease in population
409 size could contribute to this effect (Figure 4D and 4E; Supplemental Figure 8). Overall, our
410 results demonstrate that our population genetics model is good at describing the spread of *wtf4*
411 in our experimental population, particularly in the first few generations. Our results also confirm
412 that incomplete inbreeding slows, but does not stop, the spread of drivers in a population.

413

414 We next wanted to further explore the effects of linked deleterious traits on the spread of *wtf*
415 meiotic drivers. We used the population genetic model to calculate the ability of a driver to
416 spread when tightly linked to alleles with fitness costs ranging from 0 to 0.4. We also varied the
417 inbreeding coefficient from 0 (random mating) to 1 (complete inbreeding). We found that in the
418 absence of costs, *wtf* drivers are predicted to spread in a population at all initial frequencies
419 greater than 0 (Figure 5A). As described above, this spread is slowed, but not stopped, by
420 incomplete inbreeding (coefficients less than 1). When the driver is burdened by additional
421 fitness costs, it can still spread in a population. Importantly, the driver must start at a higher
422 initial frequency to spread when linked to deleterious alleles (Figure 5A). For example, when the
423 driver is linked to a locus with a fitness cost of 0.11, like the GFP allele described above, it is
424 expected to spread in a randomly mating population if its initial frequency is 0.125 or higher. In
425 an inbreeding population, the minimal initial frequency required for the driver to spread
426 increases as the degree of inbreeding increases (Figure 5A).

427

428 We next tested these predictions experimentally using the *Sk wtf4* allele linked to GFP in
429 homothallic cells. As described above, the GFP allele is linked to an unknown deleterious trait
430 (cost 0.11). We varied the inbreeding of the population by assaying cells mated at 1X and 0.1X
431 density. As reported above, homothallic cells mated at 1X density exhibit an inbreeding
432 coefficient of 0.5 to 0.57, but that is increased to 0.8 to 0.95 by mating the cells at low (0.1X)
433 density (Figure 1D, Supplemental Figure 1B-C). Consistent with the predictions of our model,
434 we observed in the experimental populations that the driver failed to spread when the initial
435 frequency was less than 0.25 (Figure 5B). When the *wtf4::GFP* allele was found in roughly half
436 of the population, it could spread under low levels of inbreeding but decreased in frequency
437 when inbreeding was increased (Figure 5B). Similar, but less dramatic, effects were observed at
438 higher initial frequencies of the *wtf4::GFP* allele. Altogether, our experimental analyses are

439 consistent with the predictions of our model and show that both inbreeding and linked
440 deleterious alleles can impede the spread of a *wtf* meiotic driver.

441

442 **Discussion**

443 **Natural variation in mating phenotypes in *S. pombe***

444 Mating phenotypes, particularly the outcrossing rate, are key parameters that affect the
445 evolution of species (Glemin et al. 2019). We sought to explore mating phenotypes in *S. pombe*
446 to better understand the evolution of the *wtf* gene family found in this species. Although genetic
447 variation is limited between *S. pombe* isolates, past studies found variation in mating efficiency
448 and uncovered genetic diversity of the mating-type locus (Jeffares et al. 2015; Nieuwenhuis et
449 al. 2018; Rhind et al. 2011; Singh 2002). In this work, we assayed mating in an array of
450 homothallic *S. pombe* natural isolates under a variety of laboratory conditions. Similar to
451 previous work, we found *Sp* mating efficiency close to 40% and observed variable mating
452 efficiencies for natural isolates (Merlini et al. 2016; Seike et al. 2019a). In addition, we quantified
453 the propensity of natural isolates to inbreed when given the opportunity to outcross. We found
454 this trait was variable between natural isolates and could be affected by cell density or available
455 sexual partners. Finally, we found variation in the size of mating projections and in cell division
456 phenotypes prior to mating.

457

458 We did not definitively identify the molecular mechanisms underlying the variation in mating
459 phenotypes we observed. Our data is, however, consistent with a model in which less frequent
460 mating-type switching in the *Sk* isolate contributes to more random mating in *Sk* than in the
461 common lab isolate, *Sp*. Specifically, if switching is less frequent in *Sk*, sibling cells are less
462 likely to be compatible to mate. Incompatibility of sibling cells opens the possibility for mating
463 with other, perhaps non-clonally derived, cells in the population. Singh and Klar were the first to
464 propose that *Sk* switched less frequently than *Sp* when they noticed less of the DNA break that

465 initiates switching (Singh 2002). We discovered a large, nested insertion of transposon
466 sequences in the mating type locus of *Sk*, and we posit that this insertion could contribute to
467 reduced DNA break formation and, potentially, decreased mating-type switching. The long
468 shmoos we observed in *Sk* may also contribute to more random mating in this isolate, as the
469 long shmoo may increase the available number of partners within range.

470

471 Additional previously described natural variation that we did not functionally explore may also
472 contribute to differences in inbreeding propensity in *S. pombe*. For example, heterothallic
473 natural isolates are predicted to exclusively outcross to isolates with the opposite mating type
474 (Jeffares et al. 2015; Nieuwenhuis et al. 2018). In addition, homothallic isolates with atypical
475 mating type loci with extra copies of the *mat* cassettes could grow into populations that are
476 biased towards one mating type (Nieuwenhuis and Immler 2016). Indeed, we analysed the
477 presumably expressed mating type locus (*mat1*) in several isolates for which we had nanopore
478 sequencing data and found an approximate 3:1 excess of the *h+* allele in FY29033
479 (Supplemental figure 4C). The excess of one mating type is predicted to facilitate outcrossing.

480

481 It is important to note that our study does not address the actual frequency of outcrossing in *S.*
482 *pombe* populations in the wild. Very little is known about the ecology of fission yeast, including
483 how frequently genetically distinct isolates are found in close enough proximity to mate (e.g.,
484 closer than ~40 microns apart) (Jeffares 2018). Outcrossing rates have been estimated using
485 genomic data, but those estimates generally assume both that heterozygous recombination
486 rates will match those observed in pure *Sp* and that allele transmission is Mendelian (Farlow et
487 al. 2015). Although these genomic estimates are reasonable, neither of these assumptions is
488 consistent with empirical analyses (Bravo Nunez et al. 2020b; Hu et al. 2017; Zanders et al.
489 2014). These assumptions have, therefore, likely led to an underestimation of the true
490 outcrossing rate.

491

492 **The effect of mating-type phenotypes on the spread of *wtf* meiotic drivers**

493 To understand the evolution of the *wtf* drive genes, it is not necessarily essential to understand
494 how frequently significantly diverged natural isolates mate. Instead, it is important to understand
495 how often a driver is found in a heterozygous state. This is likely a significantly higher frequency
496 than the frequency of mating between diverged isolates because of the rapid evolution of the *wtf*
497 gene family. Even though genetic diversity within *S. pombe* is low (<1% average DNA sequence
498 divergence in non-repetitive regions), the *wtf* genes present in different isolates tend to be
499 largely distinct (Eickbush et al. 2019; Hu et al. 2017; Jeffares et al. 2015; Rhind et al. 2011). The
500 number of *wtf* genes per isolate varies from 25-38 *wtf* genes (including pseudogenes), and even
501 genes found at the same locus can be dramatically different (e.g., <61% coding sequence
502 identity between alleles of *wtf24*) (Eickbush et al. 2019). The rapid evolution of *wtf* genes is
503 driven largely by non-allelic gene conversion within the family and expansion or contraction of
504 repetitive sequences within the coding sequences of the genes (Eickbush et al. 2019).
505 Importantly, *wtf* genes generally provide no protection against *wtf* drivers with distinct
506 sequences (Bravo Nunez et al. 2018; Bravo Nunez et al. 2020a; Hu et al. 2017). As a result,
507 even small sequence changes in *wtf* drivers can cause the birth and death of drivers. When a
508 cell bearing a novel *wtf* driver mutation mates with a cell without the mutation (i.e., not with its
509 identical sibling cell), the driver is heterozygous, and thus, drive can occur.

510

511 Previous work assayed the strength of drive and the associated fitness costs of *wtf* drivers
512 (Bravo Nunez et al. 2018; Bravo Nunez et al. 2020a; Hu et al. 2017; Nuckolls et al. 2017).
513 Those data, along with the inbreeding coefficients measured in this study, allowed us to
514 mathematically model the spread of a *wtf* meiotic driver in a *S. pombe* population. Our modeling
515 showed that the incomplete inbreeding we observed in *S. pombe* could slow the spread of a *wtf*
516 driver. Importantly, the incomplete inbreeding observed in *S. pombe* does not halt the spread

517 except in cases where the driver is found in low frequencies and linked to a deleterious allele.
518 Given the tractability of *S. pombe*, we were also able to test the predictions of the model
519 experimentally. Overall, our experimental results were quite similar to the model's predictions
520 discussed above. This suggests that our model encompasses all critical parameters. In addition,
521 our experiments show how the *wtf* drivers can persist and spread in *S. pombe*, even if
522 outcrossing is infrequent. The variation of mating phenotypes also indicates that the rate of
523 spread of a *wtf* driver is expected to vary between different populations of *S. pombe*.

524

525 Overall, our results are consistent with previous empirical and modeling studies of meiotic driver
526 dynamics in populations. For example, like our fortuitously deleterious GFP allele, meiotic
527 drivers are often linked to deleterious alleles that can hitchhike with the driver (Atlan et al. 2004;
528 Dyer et al. 2007; Finnegan et al. 2019; Fishman and Saunders 2008; Higgins et al. 2018; Lyon
529 2003; Olds-Clarke 1997; Schimenti et al. 2005; Wilkinson and Fry 2001; Wu 1983). The added
530 costs reduce the spread of drivers, which can lead a population to harbor a driver at stable
531 intermediate frequency (Dyer and Hall 2019; Finnegan et al. 2019; Fishman and Kelly 2015;
532 Hall and Dawe 2018; Manser et al. 2011).

533

534 ***S. pombe* as a tool to experimentally model complex drive dynamics**

535 To conclude, we would like to highlight the potential usefulness of the *S. pombe* experimental
536 evolution approach developed for this study. With this system, we were able to observe the
537 effects of altering allele frequencies, inbreeding rate, and fitness of a driving haplotype. In the
538 future, this system could be used to experimentally explore additional questions about drive
539 systems. For example, one could experimentally model meiotic drivers that bias sex ratios by
540 linking the driver to the mating type locus in a heterothallic population. In addition, one could
541 explore the evolution of complex multi-locus drive systems employing combinations of multiple
542 *wtf* meiotic drivers or drivers and suppressors. This tool could lead to novel insights about

543 natural drivers, but it may also be particularly useful for exploring potential evolutionary
544 trajectories of artificial gene drive systems (Burt and Crisanti 2018; Price et al. 2020; Wedell et
545 al. 2019).

546

547 **Materials and methods**

548

549 **Generation of *ura4*-integrating vectors and fluorescent strains**

550 We introduced the fluorescent genetic markers into the genome using plasmids that integrated
551 at the *ura4* locus. To generate the integrating plasmids, we first ordered gBlocks from IDT
552 (Coralville, IA) that contained mCherry or GFP under the control of a *TEF* promoter and *ADH1*
553 terminator (Hailey et al. 2002; Sheff and Thorn 2004). We digested the gBlocks with Spel and
554 ligated the GFP cassette into the Spel site of pSzb331 and the mCherry cassette into the Spel
555 site of pSEzb332 (alternate clone of pSzb331; (Bravo Nunez et al. 2020a; Bravo Nunez et al.
556 2020b)) to generate pSzb437 and pSzb882, respectively. We then linearized the plasmids with
557 KpnI and transformed them into *S. pombe* using the standard lithium acetate protocol (Schiestl
558 and Gietz 1989). We independently transformed the isolates GP50 (*S. pombe*), *S. kambucha*,
559 FY28974, FY28981, FY29022, FY29033, FY29043, and FY29044. We were unsuccessful in
560 transforming FY28969, FY29048, and FY29068. FY29033 was not included in the inbreeding
561 analyses due to its proclivity to clump. The homothallic and heterothallic strains carrying
562 mCherry or GFP were transformed using the same method.

563

564 To add *Sk wtf4* to the *Sp* genome, we again used a *ura4*-integrating plasmid. To generate this
565 plasmid, we amplified *Sk wtf4* from SZY13 using the oligos 688 and 686. We digested the
566 amplicon with SacI and ligated into the SacI site of pSzb332 to generate pSzb716 (Bravo
567 Nunez et al. 2020a; Bravo Nunez et al. 2020b). We then separately introduced the GFP and

568 mCherry gBlocks into the Spel site of pSzb716 to generate pSzb904 and pSzb909,
569 respectively. We introduced the resulting plasmids into yeast as described above.

570

571 **Crosses**

572 We performed crosses using standard approaches (Smith 2009). We cultured each haploid
573 parent to saturation in 3 ml YEL (0.5% yeast extract, 3% dextrose, and 250 mg/L adenine,
574 histidine, leucine, lysine, and uracil) for 24 hours at 32°C. We then mixed an equal volume of
575 each parent (700 µL each for individual homothallic strain, 350 µL for heterothallic parents),
576 pelleted and resuspended in an equal volume of ddH₂O (1.4 mL total), then plated 200 µL on
577 SPA (1% glucose, 7.3 mM KH₂PO₄, vitamins and agar) for microscopy experiments or SPA+S
578 (SPA + 45 mg/L adenine, histidine, leucine, lysine and uracil) for genetics experiments. We
579 incubated the plates at 25°C for 1-4 days, depending on the experiment (see figure legends for
580 exact timing). When we genotyped spore progeny, we scraped cells off of the plates and
581 isolated spores after treatment with B-Glucuronidase (Sigma) and ethanol as described in
582 (Smith 2009).

583

584 **Iodine staining**

585 We grew haploid isolates to saturation in 3 ml YEL overnight at 32°C. We washed the cells once
586 with ddH₂O then resuspended them in an equal volume ddH₂O. We then spotted 10 µL of each
587 strain onto an SPA+S plate, which we then incubated at 25°C for 4 days prior to staining with
588 iodine (VWR iodine crystals) vapor (Forsburg and Rhind 2006).

589

590 **Mating-type locus assembly and PCR**

591 We used mate-pair Illumina sequencing reads to assemble the mating-type locus of *S.*
592 *kambucha* with previously published data (Eickbush et al. 2019). We assembled the mating-type
593 locus using Geneious Prime software, (<https://www.geneious.com>; last accessed March 18,

594 2019) using an analogous approach to that described to assemble *wtf* loci (Eickbush et al.
595 2019).

596

597 **DNA extraction for Nanopore sequencing**

598 To extract DNA for Nanopore sequencing we used a modified version of a previously developed
599 protocol (Jain et al. 2018). We pelleted 50 ml of a saturated culture and proceeded as
600 described, with the addition of 0.5 mg/ml zymolyase to the TLB buffer immediately prior to use.

601

602 **Nanopore sequencing and assembly**

603 We used a MinION instrument and R9 MinION flow cells for sequencing. For library preparation,
604 we used the standard ligation sequencing prep (SQK-LSK109), including end repair using the
605 NEB End Prep Enzyme, FFPE prep using the NEB FFPE DNA repair mix, and ligation using
606 NEB Quick Ligase. We did not barcode samples and thus used each flow cell for a single
607 genome. We used guppy version 2.1.3 for base calling. We removed sequencing adapters from
608 the reads using porechop version 0.2.2 and then filtered the reads using filtlong v0.2.0 to keep
609 the 100x longest reads. We then error corrected those reads, trimmed the reads and de novo
610 assembled them using canu v 1.8 and the ovl overlapper with a predicted genome size of 13 mb
611 and a corrected error rate of 0.12 (Koren et al. 2017). Base called reads are available as fastq
612 files at the SRA under project accession number PRJNA732453.

613

614 In order to count allele frequency within the active *mat* locus, we mapped raw reads back to the
615 corresponding de novo assembly using graphmap v0.5.2 and processed using samtools v1.12
616 (Li et al. 2009; Sović et al. 2016). We then visually observed the reference-based assemblies
617 using IGV v2.3.97 to count the number of *h+* and *h-* alleles present at the active mating type
618 locus with anchors to unique sequence outside the *mat* locus (Robinson et al. 2011).

619

620 **Measuring inbreeding coefficients by microscopy**

621 We mixed haploid parents (a GFP and an mCherry-expressing strain) in equal proportions on
622 SPA as described above. We then left the plate to dry for 30 minutes and then took a punch of
623 agar from the plate using a 1271E Arch Punch (General Tools, Amazon). We then inverted the
624 punch of agar into a 35 mm glass bottomed dish (No. 1.5 MatTek Corporation). We used this
625 sample to count the initial frequency of the two parental types. We then imaged a second punch
626 of agar taken from the same SPA plate after 24 hours incubation at 25°C for homothallic cells
627 and 48 hours for heterothallic cells.

628

629 To image the cells, we used an AXIO Observer.Z1 (Zeiss) wide-field microscope with a 40x C-
630 Apochromat (1.2 NA) water-immersion objective. We excited mCherry using a 530–585 nm
631 bandpass filter which was reflected off an FT 600 dichroic filter into the objective and collected
632 emission using a long-pass 615 nm filter. To excite GFP, we used a 440-470 nm bandpass
633 filter, reflected the beam off an FT 495 nm dichroic filter into the objective and collected
634 emission using a 525-550 nm bandpass filter. We collected emission onto a Hamamatsu ORCA
635 Flash 4.0 using μ Manager software. We imaged at least three different fields for each sample.

636

637 We used cell shape to identify mated cells (zygotes and asci) and used fluorescence to identify
638 the genotype of each haploid parent. To measure both fluorescence and the length of asci, we
639 used Fiji (<https://imagej.net/Fiji>) software to hand draw 5 pixel-width lines through the length of
640 each zygote or ascus. After subtracting background using a rolling ball background subtraction
641 with width 50 pixels, we then measured the average intensity for the GFP and mCherry
642 channels. When measuring the log10 ratio of GFP over mCherry, the mCherry homozygotes
643 have the lowest ratio, homozygotes for GFP the highest ratio, and heterozygotes intermediate.

644

645 To calculate the inbreeding coefficient, we used the formula $F=1 - (\text{observed}$
646 heterozygotes/expected heterozygotes). We used Hardy-Weinberg expectations to calculate the
647 expected frequency of heterozygotes ($2p(1-p)$) for each sample, where ' p ' is the fraction of
648 mCherry+ cells and $(1-p)$ is the fraction of GFP+ cells measured prior to mating (Hartl and Clark
649 2007).

650

651 **Visualizing mating and meiosis using time-lapse microscopy**

652 For time-lapse imaging of cells mated at 1X density (Figure 2C), we prepared cells using the
653 agar punch method described above. For cells at 0.25X density (Figure 2B), we used the same
654 approach, except we cultured cells in 3 mL EMM (14.7 mM C₈H₅KO₄, 15.5 mM Na₂HPO₄, 93.5
655 mM NH₄Cl, 2% w/v glucose, salts, vitamins, minerals) then washed three times with PM-N
656 (8mM NA₂HPO₄, 1% glucose, EMM2 salts, vitamins and minerals) before plating cells to
657 SPA. While imaging the cells, we added a moistened kimwipe to the MatTek dish to maintain
658 humidity. We sealed the dish lids on with high-vacuum grease (Corning). We imaged cells using
659 either a Ti Eclipse (Nikon) coupled to a CSU W1 Spinning Disk (Yokagawa), or a Ti2 (Nikon)
660 widefield using the 60x oil immersion objective (NA 1.45), acquiring images every ten minutes
661 for 24-48 hours, using a 5x5 grid pattern with 10% overlap between fields. The Ti Eclipse was
662 used for one replicate each of the 1x crosses and the Ti2 was used for all remaining
663 experiments. We used an Okolab stage top incubator to maintain the temperature at 25°C. For
664 the Ti2 (widefield) data we excited GFP through a 470/24 nm excitation filter and collected
665 through an ET515/30m emission filter. For mCherry on this system, we excited through a
666 550/15 nm excitation filter and collected through an ET595/40m emission filter. For the Ti
667 Eclipse (confocal) data, we excited GFP with a 488 nm laser and collected its emission through
668 an ET525/36m emission filter. For mCherry on this system, we excited with a 561 nm laser and
669 collected through an ET605/70m emission filter.

670

671 To monitor mating in 1X crosses (Figure 2C and 2E), we recorded the number of divisions and
672 mating choice of the progeny of 286 cells until an expected mating efficiency for the population
673 being filmed was attained. The expected mating efficiency was calculated from still images of
674 the same crosses. We recorded two videos of each cross.

675

676 To monitor the number of divisions required before mating could occur in 0.25X cultures (Figure
677 2B), around 200 individual cells were monitored through the duration of the generation in which
678 the first mating event occurred. If cells failed to mate, they were monitored throughout the
679 duration of the movie. If a cell or its mitotic offspring interacted with a neighboring cell cluster, it
680 was not included in the analysis. We recorded two videos for each isolate.

681

682 **Calculation of mating efficiency**

683 We calculated mating efficiency from microscopic images using the following formula:

$$684 \quad Mating\ Efficiency(\%) = \frac{2Z + 2A + S/2}{V + 2Z + 2A + S/2} * 100$$

685 Where Z represents the number of zygotes, A represents the number of asci, S represents the
686 number of free spores and V represents the number of vegetative cells (Seike and Niki 2017).

687

688 **Measuring inbreeding coefficients using genetics**

689 We used a high-throughput system to genotype the progeny from each cross. First, we crossed
690 two parental populations to generate spore progeny as described above. In addition to placing
691 the mixed haploid cells on SPA+S, we also diluted a subset of the mix and plated it onto
692 YEA+S. We genotyped the colonies that grew on that YEA+S plate to measure the starting
693 frequency of each parental strain in the cross. We plated the spores produced by the cross on
694 YEA+S and grew them at 32°C for 4 days. We picked the colonies using a Qpix 420 Colony
695 Picking System and cultured them in YEL for 24 hours at 30°C in 96 well round-bottom plates

696 (Axygen). We then used a Singer RoTor robot to spot the cultures to YNP dropout and YEA+S
697 drug plates and incubated them at 32°C for three days. We then imaged the plates using an
698 S&P robotics SPImager with a Canon EOS Rebel T3i camera. We analyzed each picture using
699 the *subtract background* feature in Fiji and assigned regions of interest (ROIs) to the 384 spots
700 where cells were pinned. We then measured the average intensity of each spot and classified
701 cells as grown or not by a heuristic threshold. We genotyped some cross progeny manually
702 using standard techniques due to robot unavailability, with indistinguishable results.

703

704 We then inferred the frequency of outcrossing based on the frequency of recombinant progeny
705 using a combination of either two or three unlinked genetic markers. If mating was random, we
706 expect the progeny to reflect Hardy-Weinberg expectations ($p^2 + 2p(1-p) + (1-p)^2 = 1$),
707 where $p^2 + (1-p)^2$ reflect the expected frequency of homozygotes and $2p(1-p)$ reflects the
708 expected frequency of outcrossing. If the parental strains inbreed to make homozygotes, they
709 can only produce offspring with the parental genotypes. If the strains outcross to generate
710 heterozygotes, they will make the parental genotypes and recombinant genotypes all in equal
711 frequencies (2^n total genotypes where n is the number of segregating markers). For our crosses
712 with three markers, we therefore expected the true 'observed' frequency of progeny produced
713 by outcrossing to be equal to the number of observed recombinants divided by 6/8. For our
714 crosses with two unlinked markers, we divided by 2/4. We then calculated the inbreeding
715 coefficient using the formula,

$$716 F = 1 - \frac{(the \ true \ observed \ fraction \ of \ progeny \ produced \ by \ outcrossing)}{2p(1-p)}.$$

717

718 **Zygote frequency expectation under inbreeding and different mating efficiencies**

719 We calculated the expected zygote frequencies when isolates were outcrossed with different
720 isolates on SPA (see Measuring inbreeding coefficients by microscopy) using an additive model

721 that incorporated mating efficiencies and inbreeding coefficients measured from the isogenic
722 crosses. The model assumed that each strain contributes equally to inbreeding, and that they
723 do not change their own mating in response to the mating partner.

724

725 We calculated the expected frequency of homozygotes for parental strain 1 as:

726
$$= [p^2 + p(1 - p)F_{I1}](1 - u_{s1}),$$

727 where the inbreeding coefficient is F_{I1} and the mating efficiency is $(1 - u_{s1})$ for parental strain 1
728 ($s1$), considering its initial frequency p . The expected heterozygote frequency is:

729
$$= 2p(1 - p) \left(1 - \frac{F_{I1} + F_{I2}}{2}\right) \left(1 - \frac{u_{s1} + u_{s2}}{2}\right).$$

730 The expected fraction of homozygotes for parental strain 2 is:

731
$$= 1 - (Homozygote\ frequency\ strain\ 1 + Heterozygote\ frequency)$$

732

733 **Calculating expected allele frequencies after sexual reproduction**

734 To model the expected changes in allele frequencies in a randomly mating population over time,
735 we used the equations described by Crow (Crow 1991). For nonrandomly mating populations,
736 we included the 'F' inbreeding coefficient in the equations, similar to (Sun and Tian 2017). We
737 assumed that *wtf4* had a drive strength (' k ') of 0.98 based on experimental observations
738 (Nuckolls et al. 2017). We assumed the control allele exhibited Mendelian transmission (k)=0.5.

739 Simulations for the spread of a driver in Figure 3 only considered drive and inbreeding. To
740 simulate drive in fluorescent populations, the starting frequencies of each allele (i.e. ' p ') were
741 determined empirically for each experiment using either traditional genetic approaches or
742 cytometry. For relative fitness values w_{11} , w_{12} , w_{22} , we assigned mCherry/mCherry
743 homozygotes a fitness of $w_{11} = 1$, regardless of whether they were EV/EV or *wtf4/wtf4*
744 homozygotes. In all but one cross (see below), we observed a fitness cost linked to the GFP
745 alleles relative to mCherry alleles during sexual reproduction, regardless of *wtf4*. We therefore

746 used our data (see below) to calculate the 0.11 as the fitness cost of the GFP-linked variant.
747 Because of that, we assigned a fitness value of 0.78 to GFP homozygotes, w_{22} . We assumed
748 the fitness cost linked to GFP was codominant and thus assigned a fitness value of 0.89 for
749 GFP/mCherry homozygous for *wtf4* or Empty vector, w_{12} . For GFP/mCherry heterozygotes that
750 were also heterozygous for *wtf4*, we assigned a fitness of 0.46, w_{11} . This accounts for the cost
751 of spores killed by drive (0.5/0.98=0.51) and the cost of the GFP-linked variant (0.51*0.89=0.46)

752

753 The calculation for allele frequency for a *wtf* meiotic driver in consecutive sexual cycles from
754 haploid populations is,

$$755 \quad p_{g+1} = \frac{\left[p_g^2 + Fp_g(1 - p)_g \right] w_{11} + 2p_g(1 - p)_g k w_{12}}{\bar{W}_g}.$$

756 Where the mean fitness of the population at each generation (g),
757

$$758 \quad \bar{W}_g = p_g^2 w_{11} + 2p_g(1 - p)_g w_{12} + (1 - p)_g^2 w_{22} + Fp_g(1 - p)_g (w_{11} + w_{22} - 2w_{12}).$$

759

760 To determine the fitness cost of the GFP linked variant that was present in most of our
761 experiments, we used the L-BFGS-B algorithm to find a fitness that maximized the likelihood
762 that our observed allele frequencies varied only due to the cost of GFP in the first six
763 generations of the control experiments shown in Supplemental Figure 9 (Byrd et al. 1995). To
764 do this, we used the *mle* function from the R *stats4* package (Team 2019). We assumed the
765 fitness cost alters the relative fitness of both homozygotes and heterozygotes. The fitting was
766 done using only the initial six generations due to a rapid loss of fluorescent cells from seven to
767 ten generations.

768

769 To calculate the minimum initial frequency of driver linked to alleles with varying additional
770 fitness costs, we assumed codominance for the additional alleles (c). Then the relative fitness of

771 heterozygotes for the allele is $w_{12} = 1 - c$ and the relative fitness of homozygotes for the allele
772 is $w_{11} = 1 - 2c$. For simplicity we also assumed complete transmission bias, $k = 1$. The relative
773 fitness of the alternative allele was assumed to be $w_{22} = 1$. A *wtf* meiotic driver linked to
774 deleterious allele spread under the condition that

775
$$F < -\frac{cp + c - p}{2c}.$$

776 Where p is the initial frequency of a *wtf* driver linked to allele c and F was the inbreeding
777 coefficient.

778

779 **Measuring allele frequencies for experimental evolution analyses**

780 We performed the crosses and collected spores as described above. We then started the next
781 generation by culturing 60 μ L of spores from each cross in each of three different wells with 600
782 μ L fresh YEL media in 96 deep-well-round-bottom plates (Axygen) and cultured for 24 hours at
783 1200 rpm at 32°C. We then transferred 60 μ l from each culture to a new plate with 600 μ L YEL
784 and cultured for 12-14 hours at 1200 rpm at 32°C. We then pooled the culture replicates in an
785 Eppendorf tube, spun down, and resuspended them in an equal volume of ddH2O. We then took
786 100 μ L of this sample to assay via cytometry (described below). We also plated 200 μ L of each
787 sample on SPA+S plates and incubated at 25°C for 5 days to allow the cells to mate and
788 sporulate.

789

790 To detect and quantify fluorescent cells via flow cytometry, we used the ZE5 Cell Analyzer (Bio-
791 Rad). We spun down 100 μ L of each culture, washed the cell pellet with water, spun down again
792 and resuspended the cells in 200 μ L of 1X PBS (phosphate buffered saline) with 1.5 μ l 4',6-
793 diamidino-2-phenylindole (DAPI, Sigma-Aldrich, 100 ng/ml). DAPI stains dead cells, so we
794 considered DAPI-negative cells as live cells. To image DAPI, we used 355 nm laser excitation
795 and a 447/60 nm detector. To image GFP, we excited using a 488 nm laser and detected

796 emission with a 525/35 nm filter. To image mCherry, we excited using a 561 nm laser and
797 detected emission with a 615/24 nm filter. We used 405 nm and 488 nm (FSC 405 and FSC
798 488) lasers for forward scatter and 488 nm laser for side scatter (SSC 488).

799

800 To quantify the frequency of GFP or mCherry positive cells, we analyzed the Flow Cytometry
801 Standard files in R/Bioconductor using the packages FlowTrans and FlowClust (Lo et al. 2009).
802 We first separated the cells that had round and uniform shape and similar granularity. This step
803 allowed us to detect a more uniform population of single cells. We then discarded DAPI positive
804 cells. To determine the GFP positive and mCherry positive cells, we used limits for each
805 channel. The limits varied throughout the experiment due to reconfiguration in the flow
806 cytometer. For every measurement, we corrected with standard samples of cells that only
807 expressed either GFP or mCherry. Fluorescent GFP positive and mCherry positive cells always
808 showed non-overlapping cell populations. We quantified cells that were not classified as non-
809 fluorescent cells.

810

811 **Fluorescent marker loss in experimental evolution**

812 In the experimental evolution experiments (Figure 4, Figure 5B, and Supplemental Figure 9), a
813 large proportion of cells lost their fluorescent marker over time (Supplemental figure 8 A-B). We
814 assume this is because we introduced the markers using an integrating plasmid that enters the
815 genome following a single crossover event. Because of this, a single crossover can then pop
816 the marker and the associated vector out of the genome. We repeatedly observed that the loss
817 occurred faster with the mCherry markers. Consistent with this model, cells that lost
818 fluorescence generally also lost the associated drug resistance marker present on the
819 integrating vector.

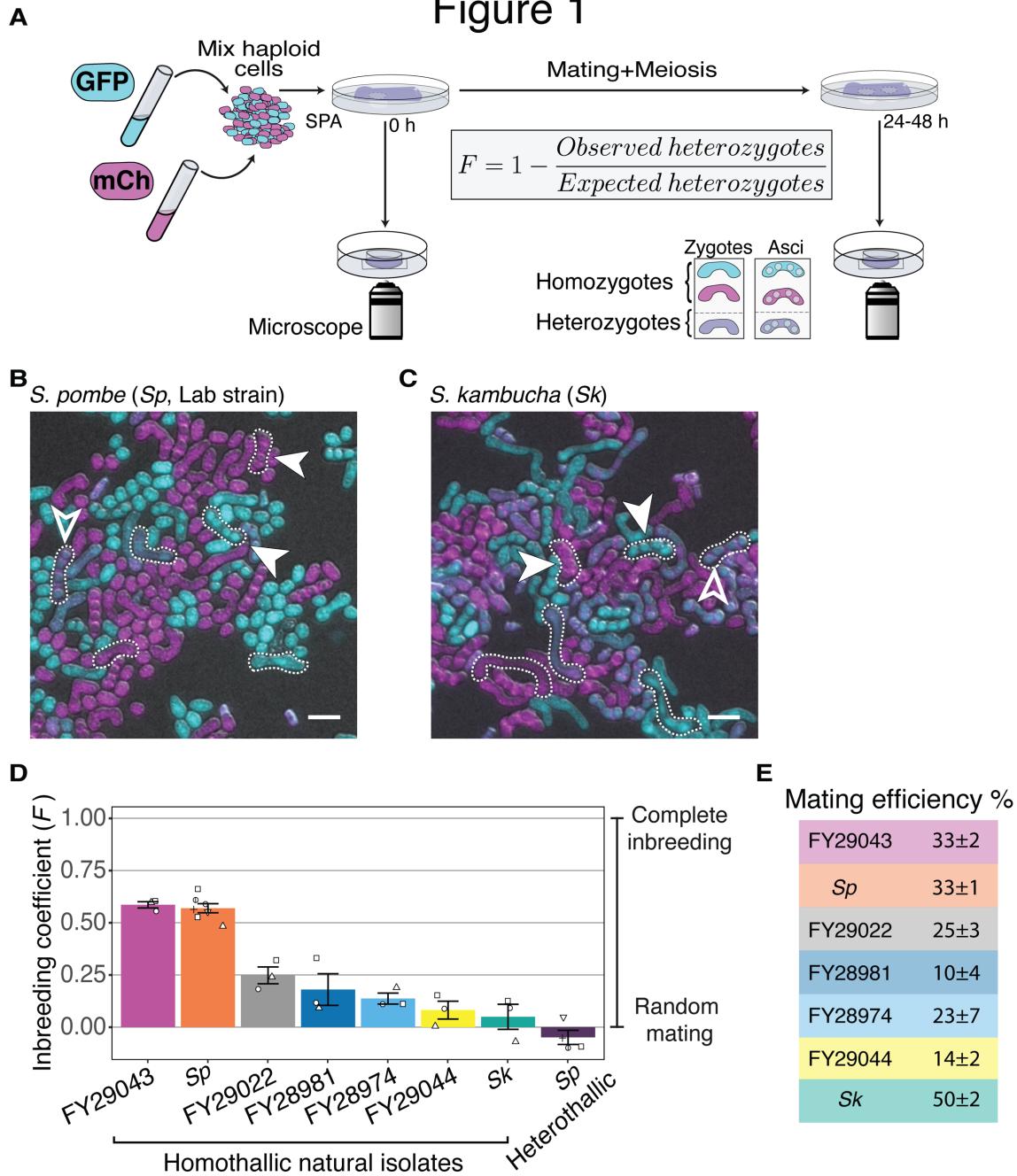
820

821 We only considered fluorescent cells in our analyses. In the experiments (Figure 4A-B,
822 Supplemental Figure 4A-B, and Figure 5B) we extended the evolution up to ten generations. In
823 other experiments (Figure 4C-D and Supplemental Figure 4C-D), we removed non-fluorescent
824 cells by cell sorting after generations two and five. To sort cells, we first collected and cultured
825 spores as described above with the first culture done for 12 hours. We then transferred 60 μ L of
826 germinated cells into 600 μ L fresh YEL media. We used three cultures for each experimental
827 line and pooled all in equal amounts to have 1.4 ml of each line. We spun each sample down
828 and resuspended the cells in 5 ml ddH₂O prior to sorting. We removed non-fluorescent cells and
829 retained GFP positive (488 nm laser for excitation and a filter 507 nm) and mCherry positive
830 (561 nm laser for excitation and a 582 nm filter) cells using the laser the BD FACSMelody cell
831 sorter software. We collected 1.2 million cells for each line into 1X PBS. We then spun down the
832 cells and resuspended the pellets in 200 μ L YEL. We then took 60 μ L from each sample and
833 diluted the cells into 600 μ L YEL and continued with the time course as described above. This
834 restored fluorescently labelled cells populations as expected for homothallic and heterothallic
835 lines (Supplemental figure 8B). Cell sorting did not affect our results as we observed the same
836 patterns in replicate experiments in which we did not remove the non-fluorescent cells (Figure
837 4).

838

839 **Acknowledgements**

840 We thank members of the Zanders lab, María Bravo Núñez and Ibrahim M. Sabbarini for their
841 helpful comments on the paper. We are grateful to Gerry Smith for sharing various strains and
842 thank Alexandra Cockrell for technical support. Original data underlying this manuscript can be
843 accessed from the Stowers Original Data Repository
844 at <http://www.stowers.org/research/publications/libpbxxxx>. This work was performed to fulfill, in
845 part, requirements for JLH's thesis research in the Graduate School of the Stowers Institute for

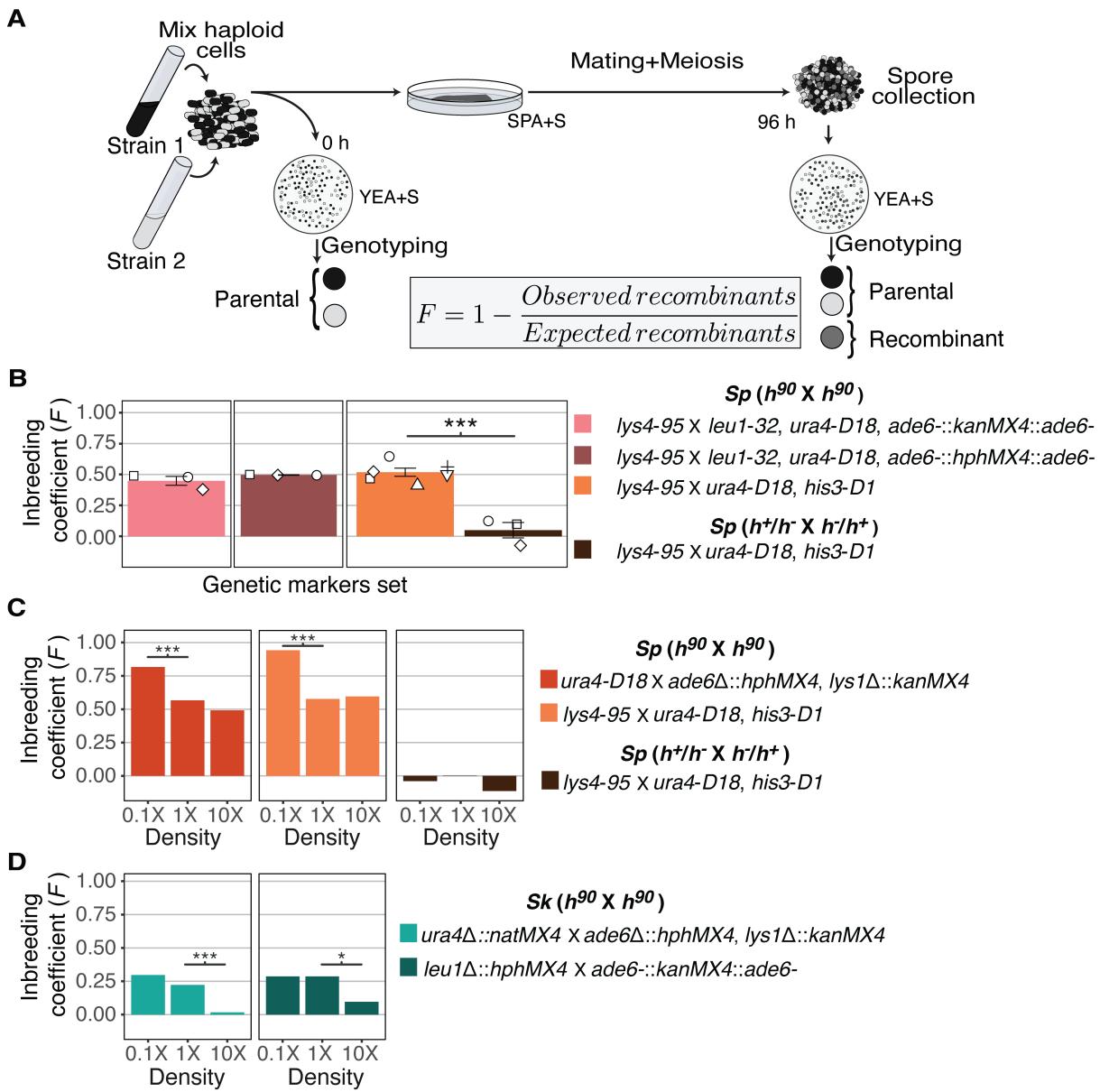

846 Medical Research. This work was supported by The Stowers Institute for Medical Research
847 (SEZ); the Searle Scholars Award (SEZ); and the National Institutes of Health (NIH)
848 DP2GM132936 (SEZ). The funders had no role in study design, data collection and analysis, or
849 manuscript preparation. The content is solely the responsibility of the authors and does not
850 necessarily represent the official views of the funders.

851

852 **Competing interests**

853 SEZ is an Inventor on patent application 834 serial 62/491,107 based on *wtf* killers. We confirm
854 that other authors have no competing interests.

Figure 1


855

856 **Figure 1. Inbreeding propensity varies between homothallic isolates of *S. pombe*. A)**
857 Experimental strategy to quantify inbreeding. GFP (cyan)- and mCherry (magenta)-expressing
858 cells were mixed and placed on SPA medium that induces mating and meiosis. An agar punch
859 from this plate was imaged to assess the initial frequencies of each haploid strain. After
860 incubation at 25°C for at least 24 hours, another punch was imaged to determine the number of
861 homozygous and heterozygous zygotes/asci based on their fluorescence. The inbreeding
862 coefficient (F) was calculated using the formula shown. **B and C**) Representative images of the
863 mating in *Sp* (**B**) and *Sk* (**C**) isolates after 24 hours. Filled arrowheads highlight examples of

864 homozygous asci whereas open arrowheads highlight heterozygous asci. A few additional
865 zygotes are also outlined with dotted lines in the images. Scale bars represent 10 μ m. **D)**
866 Inbreeding coefficient of homothallic natural isolates and complementary heterothallic (h^+, h^- -
867 mCherry and h^+, h^- GFP) *Sp* lab strains. At least three biological replicates per isolate are
868 shown (open shapes). **E)** Mating efficiency of the isolates shown in **D** (%) +/- standard error
869 from three biological replicates of each natural isolate.

870

Supplemental Figure 1

871


872 **Supplemental figure 1. Inbreeding coefficients can be affected by cell density.**

873 **A**) Experimental strategy to infer inbreeding coefficient by genotyping the segregation of
 874 unlinked genetic markers. The composition of the starting population was measured by
 875 genotyping cells placed on rich medium (YEA+S). Cells were also plated on SPA+S, where they
 876 mate and undergo meiosis. After meiosis, spores were genotyped and we compared the
 877 expected number of recombinant progeny to the number observed to calculate the inbreeding
 878 coefficient (F). **B**) Inbreeding coefficients calculated as described in **A** using the indicated
 879 genetic markers at standard 1X mating density. Each color indicates a different cross. ***
 880 indicates p -value < 0.005 , One tailed t-test on at least three biological replicates (open shapes).
 881 **C**) Inbreeding coefficients calculated as described in **A** for Sp crosses plated at low (0.1X),

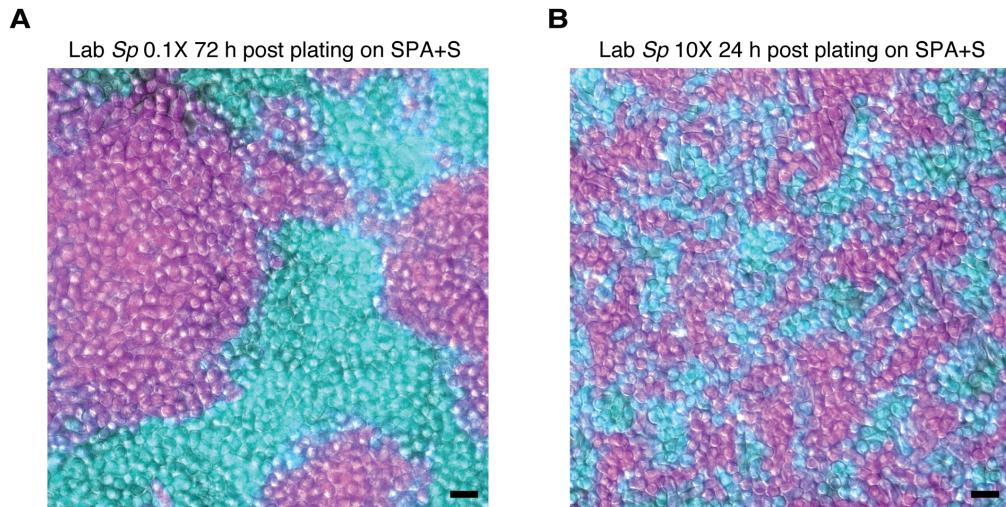
882 standard (1X), and high (10X) density. *** indicates p-value <0.005, G-test. Colonies were
883 randomly sampled for each cross–320 for left panel and 144 colonies for the second and third
884 cross sets. **D)** Inbreeding coefficients calculated as described in **A** for *Sk* crosses plated at low
885 (0.1X), standard (1X), and high (10X) density. *** indicates p-value <0.005, *indicates p-value <
886 0.05 G-test. 325 and 340 colonies were sampled from the crosses in the left and right panels,
887 respectively.

888

Supplemental Figure 2

889

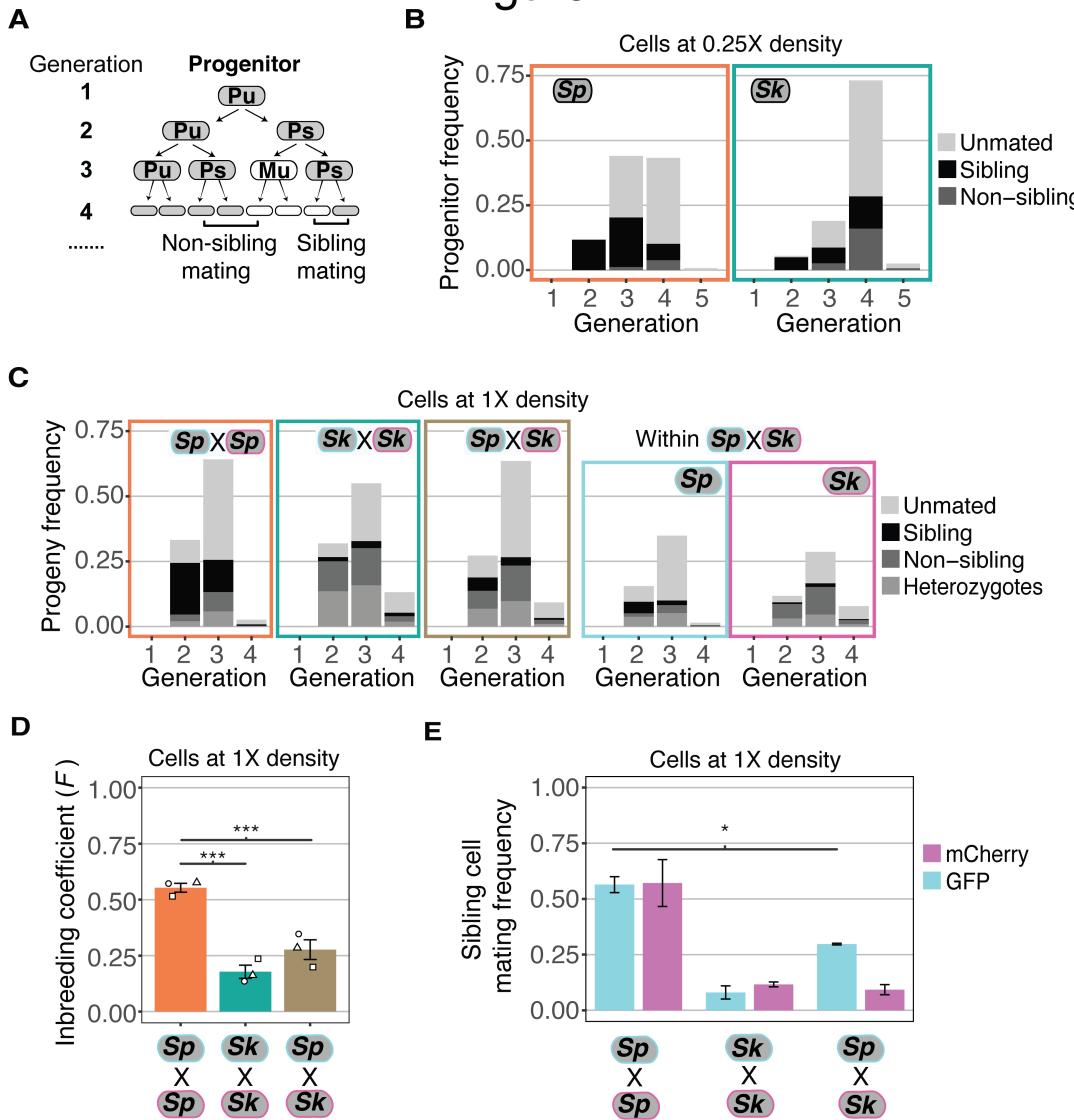
890 **Supplemental figure 2. Homothallism of natural isolates.** Saturated cultures were spotted on
891 SPA+S to induce mating and meiosis. After five days at 25°C, cells were exposed to iodine
892 vapor, which stains spores brown. The top panel shows natural isolates of homothallic (*Hom*)
893 strains and *h- Sp* as a negative control. The bottom panel shows individual heterothallic strains,
894 mixed complimentary heterothallic strains and a homothallic isolate of *Sp*.


895

896

897

898


Supplemental Figure 3

899

900 **Supplemental figure 3. Density variation in plated cells.** Homothallic GFP (cyan)- and
901 mCherry (magenta)-expressing cells were mixed, plated on SPA+S, incubated at 25°C and then
902 imaged. On this medium, cells tend to divide until confluent prior to mating. When plated at low
903 density (0.1X; **A**), cells form large clusters of clonal cells after ~72 hours. Cells mixed and plated
904 at high density (10X; **B**) reach confluence after just 24 hours and form clusters with more
905 contact zones between cells of different genotypes. Scale bars represents 10 μ m.

Figure 2

906

907 **Figure 2. Variation between mating behaviors in *Sp* and *Sk* cells. A)** Schematic showing
 908 cell divisions, switching and mate choice in *Sp*. Mitotic generations are shown on the left. Cells
 909 are either *h*+ (P) or *h*- (M) and their status is switchable (s) or unswitchable (u). **B)** Division and
 910 mating phenotypes of wildtype *Sp* and *Sk* cells plated at low cell density (0.25X) on SPA plates.
 911 Single founder cells and their descendants were monitored through time-lapse imaging. Mating
 912 patterns were categorized until the end of the generation in which the first mating event
 913 occurred. The data presented were pooled from two independent time-lapses in which over 400
 914 founder cells were tracked. **C)** Division and mating phenotypes of fluorescently labeled *Sp* and
 915 *Sk* cells plated at standard (1X) density on SPA plates. Individual cells were monitored until the
 916 population reached a typical mating efficiency for the specific cross and the mate choice of their
 917 progeny and the mitotic generation of those events was classified. The cells labeled with GFP
 918 are indicated with a cyan line around the cell whereas the mCherry-labeled cells are outlined in
 919 magenta. Pooled data from two independent experiments are presented, with 286 cells scored

920 from each experiment. In the cross of *Sp* (GFP) and *Sk* (mCherry), we present an additional plot
921 (far right) in which the fate of each founder is separated by isolate. **D)** Inbreeding coefficient
922 calculated from still images of cells plated at 1X density on SPA. *** indicates p-value < 0.005,
923 Multiple t-test, Bonferroni corrected. At least three biological replicates per isolate are shown
924 (open shapes). **E)** Breakdown of sibling cell mating by fluorophore in the indicated crosses from
925 C. * indicates p-value=0.04, one-tailed t-test comparing isogenic and mixed *Sp* cells.

926

927

928

929

930

931

932

933

934

935

936

937

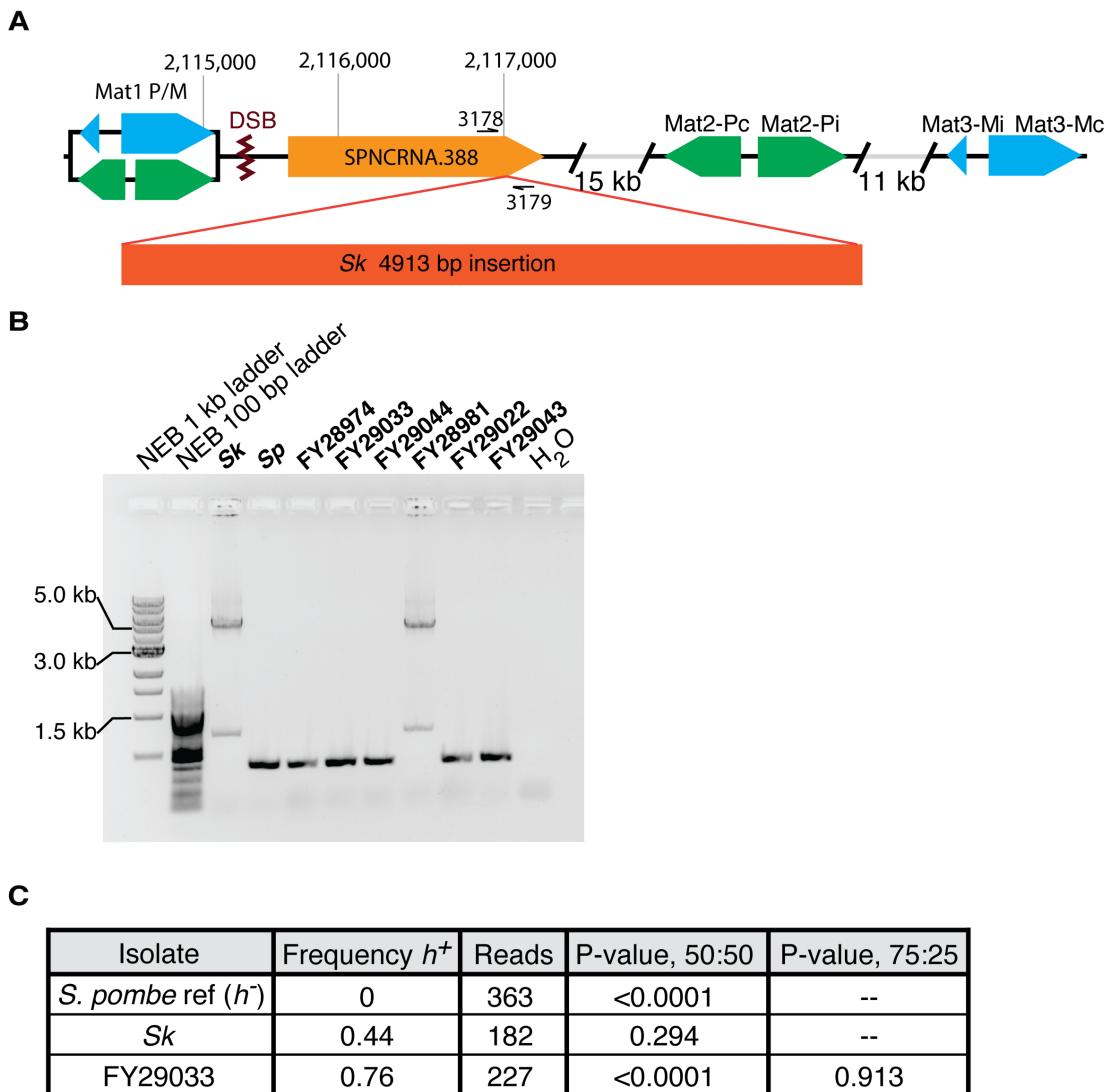
938

939

940

941

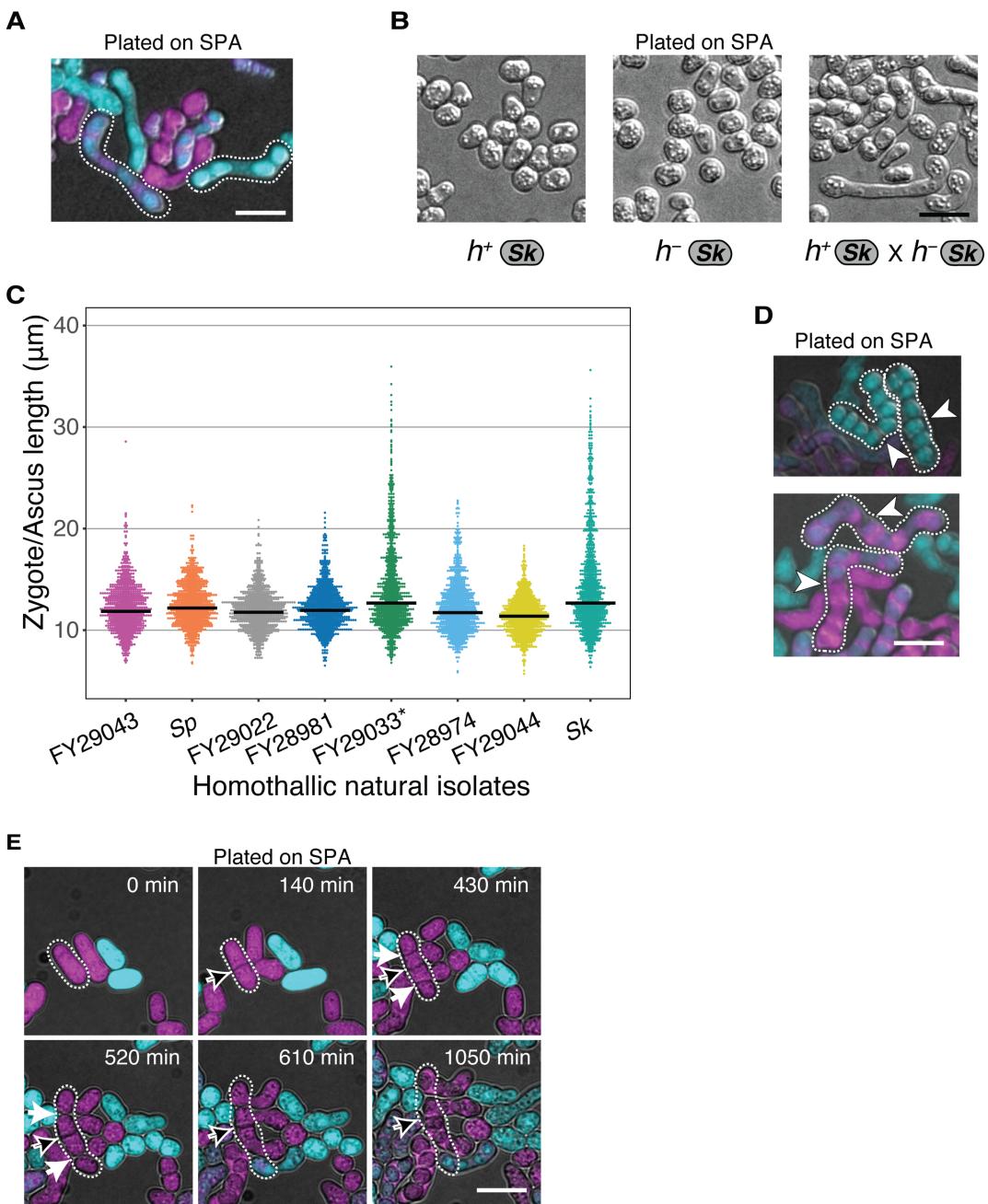
942


943

944

945

946

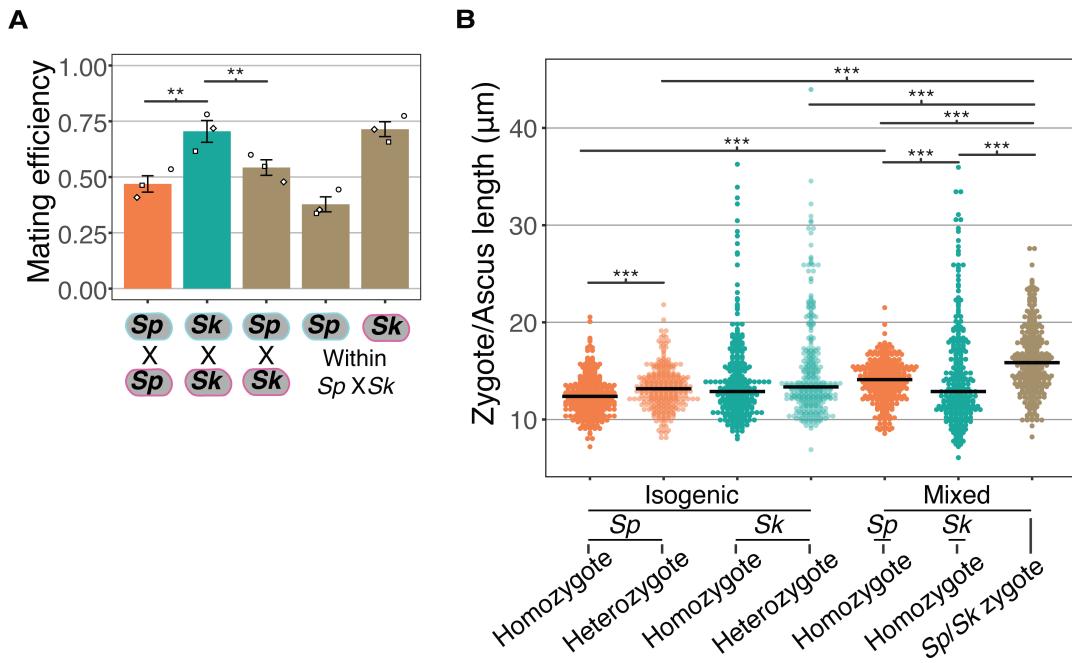

Supplemental Figure 4

947

948 **Supplemental figure 4. Mating-type locus variation in *S. pombe* isolates. A)** Schematic
949 representation of the mating-type locus. We found a 5 kb insertion of transposon sequences in
950 the *Sk* isolate using published Illumina mate-pair sequencing data (Eickbush et al. 2019). The
951 insert is within SPNCRNA.388, near the double-strand break site (DSB) where switching
952 initiates. **B)** PCR amplification of the 5 kb insertion using the oligos 3178 and 3179 shown in **A**
953 suggests the insertion is also in the FY28981 isolate. **C)** We aligned long Nanopore sequencing
954 from the indicated strains to the *Sp* reference genome *mat* locus, which is *h*⁻. We then
955 quantified the frequency of *h*⁺ alleles from the aligned reads. We used Fisher's exact tests to
956 compare our observations to the indicated ratios.

Supplemental Figure 5

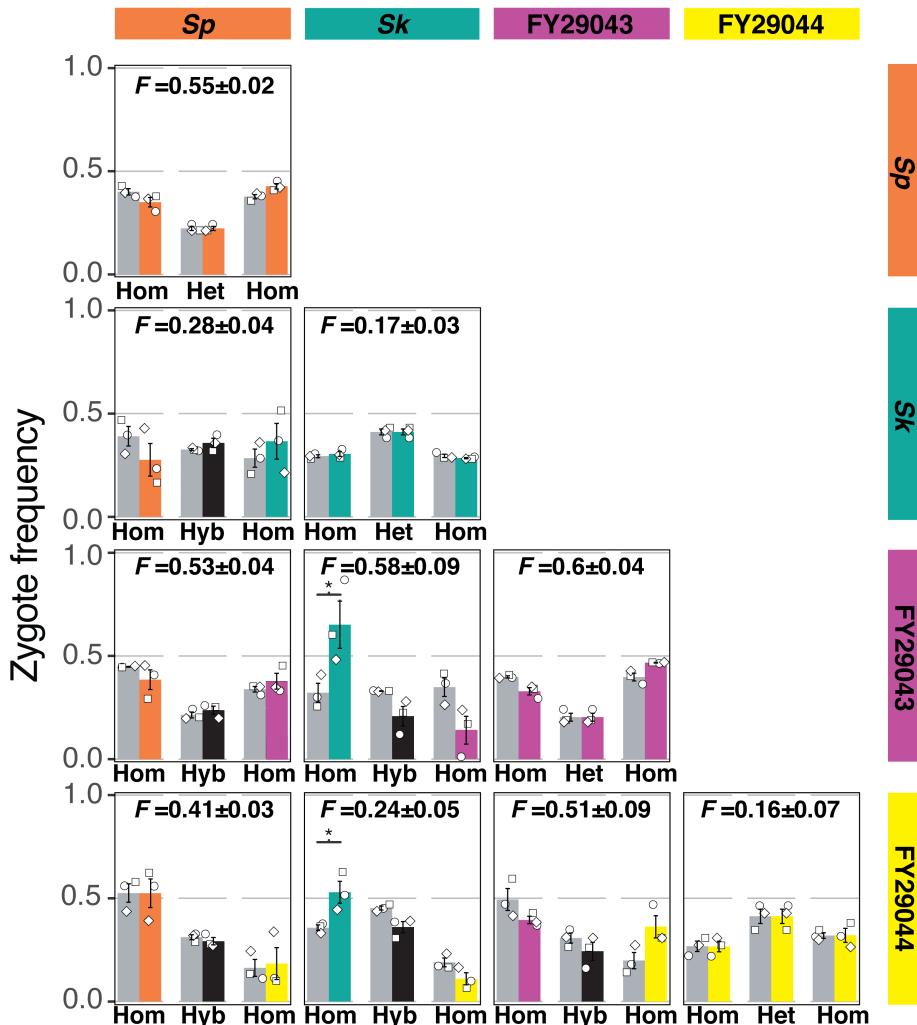
957


958 **Supplemental figure 5. Variation in cell division and ascospore phenotypes in natural isolates.**

959 **A)** Examples of *Sk* long ascospores formed by GFP- and mCherry-expressing cells mated on SPA. **B)**
960 *Sk* cells of each mating type were plated to SPA plates individually or in combination and
961 imaged after 48 hours at 25°C. Cells only form long projections (shmoos) in response to cells of
962 the opposite mating type. **C)** Tip-to-tip length (tracing through the center of the cells) of zygotes
963 and ascospores of distinct natural isolates. Cells were plated on SPA and incubated for 24 hours at
964 25°C. *FY29033 cells showed a clumpy phenotype upon nitrogen starvation. **D)** Examples of *Sk*

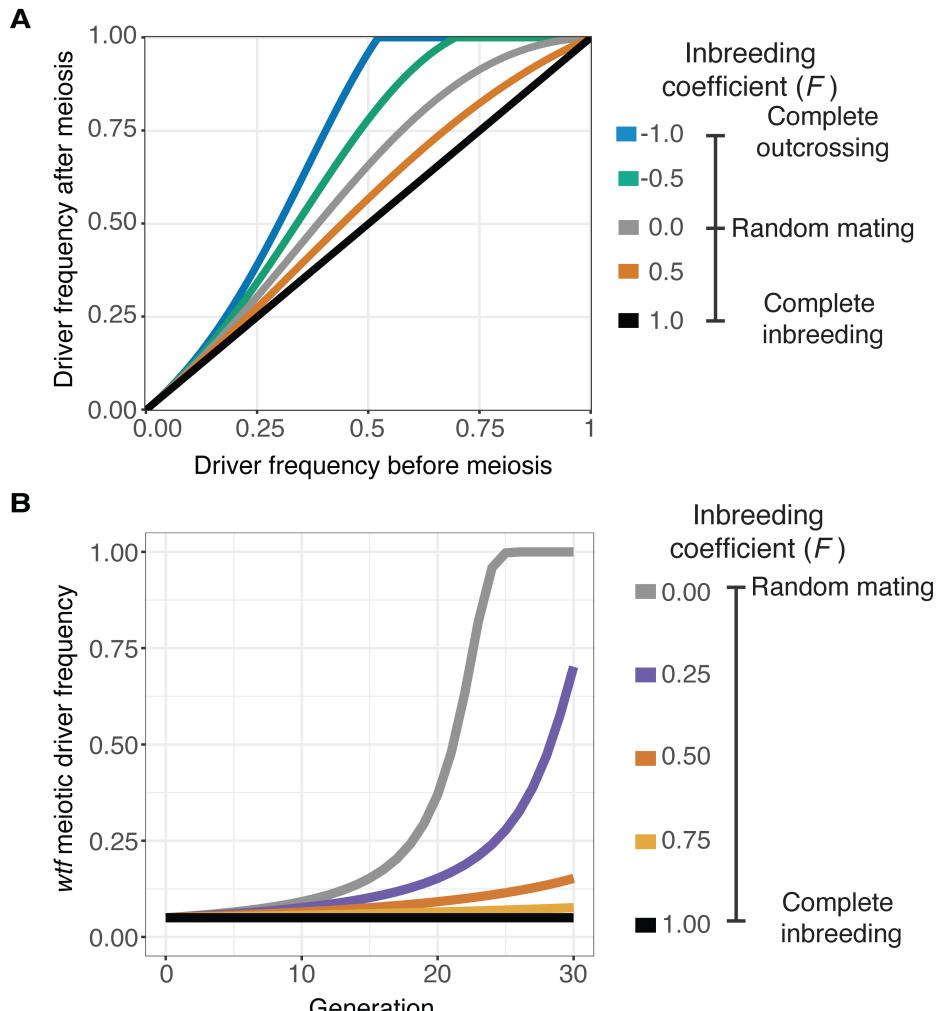
965 asci fused at uncleaved septa. White arrows indicate uncleaved septa. **E**) Time-lapse showing
966 *Sk* cells with a septum (black arrow) that remained uncleaved after two rounds of fission.
967 Additional septa (white arrows) are also shown that cleaved prior to mating. Scale bar
968 represents 10 μ m.

969


Supplemental Figure 6

970

971 **Supplemental figure 6. Mating efficiency and ascus length of *Sp/Sk* heterozygotes. A)**
972 Mating efficiency calculated from still images taken after 24 hours on SPA at 25°C from isogenic
973 and mixed isolate crosses. The open shapes represent values from three biological replicates
974 per cross. ** indicates p-value <0.01, t-test. **B)** Length of zygotes/asci from isogenic and mixed
975 isolate crosses of *Sp* and *Sk*. Cells were plated on SPA at 1X density and incubated for 24
976 hours at 25°C before being imaged. For each category (e.g., homozygote) of zygote, 300 cells
977 were sampled from three independent biological replicates. Multiple Wilcoxon Rank Sum Tests,
978 Bonferroni corrected; ***, p-value<0.005.


Supplemental Figure 7

979

Supplemental figure 7. Mostly additive inbreeding phenotypes in crosses between natural isolates. Four natural isolates with distinct mating efficiencies and inbreeding coefficients were mixed and mated in all pair-wise combinations. After 24 hours on SPA at 25°C, cells were imaged and the mating efficiencies and inbreeding coefficients were calculated using fluorescent markers scored from still images, obtained as in Figure 1A. On the outer diagonal are isogenic crosses color-coded with the respective natural isolate. For the non-isogenic crosses, the observed homozygotes (hom) are color-coded by the respective parent isolate. The observed frequencies of hybrid (hyb) zygotes and ascospores are plotted in black. The expected values (gray bars) account for the inbreeding coefficient and mating efficiency from each isolate assuming the parental phenotypes are additive. Inbreeding coefficients (F values) and standard error (+/-) for each cross are indicated above each plot. The open shapes represent experimental replicates. * indicates p-value<0.05, one-tailed t-test.

Figure 3

992

993 **Figure 3. Inbreeding is predicted to slow the spread of a *wtf* driver.** We assumed a 0.98
994 transmission bias favoring the *wtf* driver and a fitness of 0.51 in *wtf*+/*wtf*- heterozygotes. We
995 assumed that homozygote fitness is 1. We simulated the spread of a *wtf* drive for 30
996 generations. **A)** Change of *wtf* meiotic driver frequency after meiosis assuming varying levels of
997 inbreeding. **B)** The spread of a *wtf* driver in a population over time assuming varying levels of
998 inbreeding.

999

1000

1001

1002

1003

Figure 4

1004

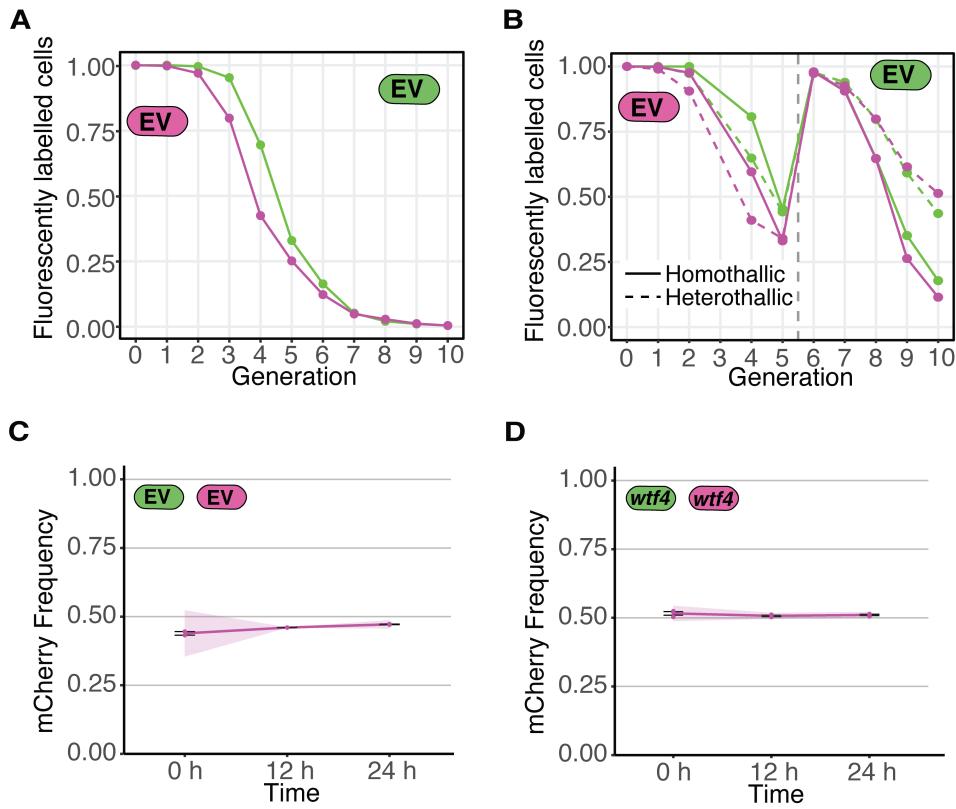
1005 **Figure 4. Inbreeding slows the spread of the *wtf4* meiotic driver in homothallic strains. A)**

1006 Experimental strategy to monitor allele frequency through multiple generations of sexual

1007 reproduction. GFP (green) and mCherry (magenta) markers are used to follow empty vector

1008 (EV) alleles or the *wtf4* meiotic driver. Starting allele frequencies and allele frequencies after

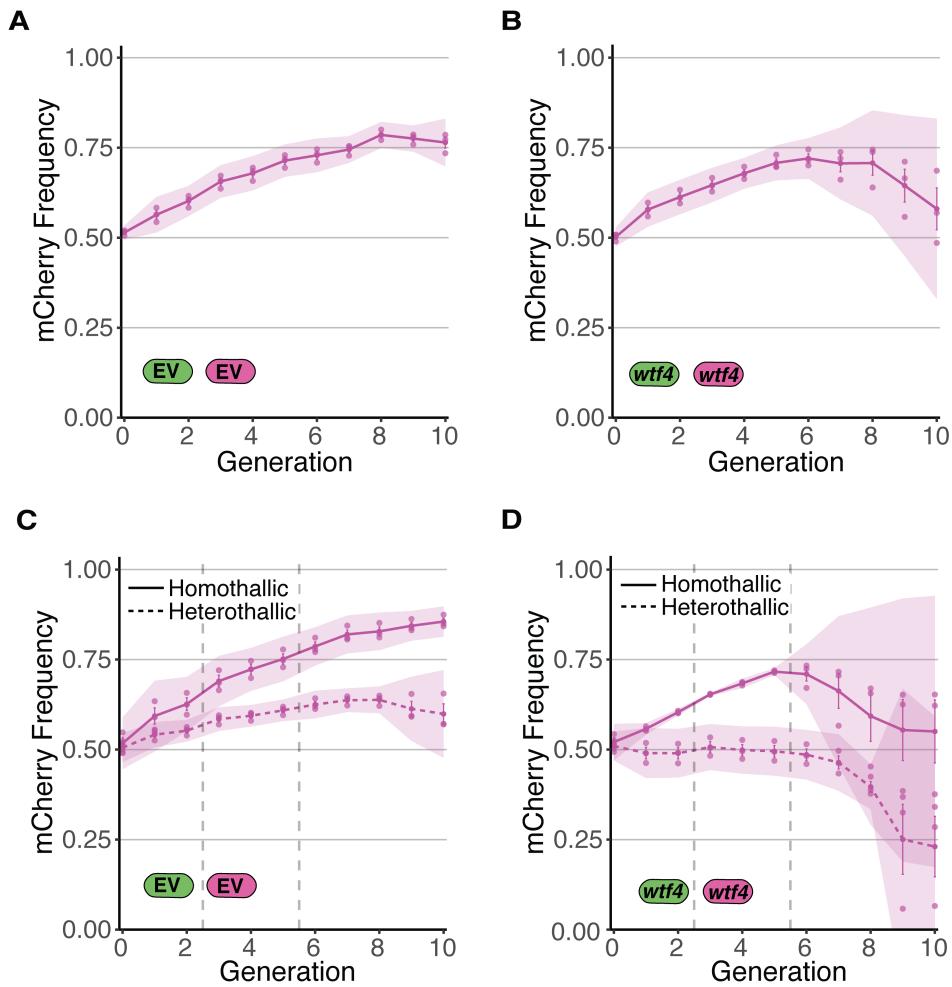
1009 each round of sexual reproduction were monitored using cytometry. **B)** Homothallic population


1010 with mCherry marking *wtf4* and GFP marking an EV allele. Allele dynamics were predicted

1011 using drive and fitness parameters described in the text assuming inbreeding (black lines) and

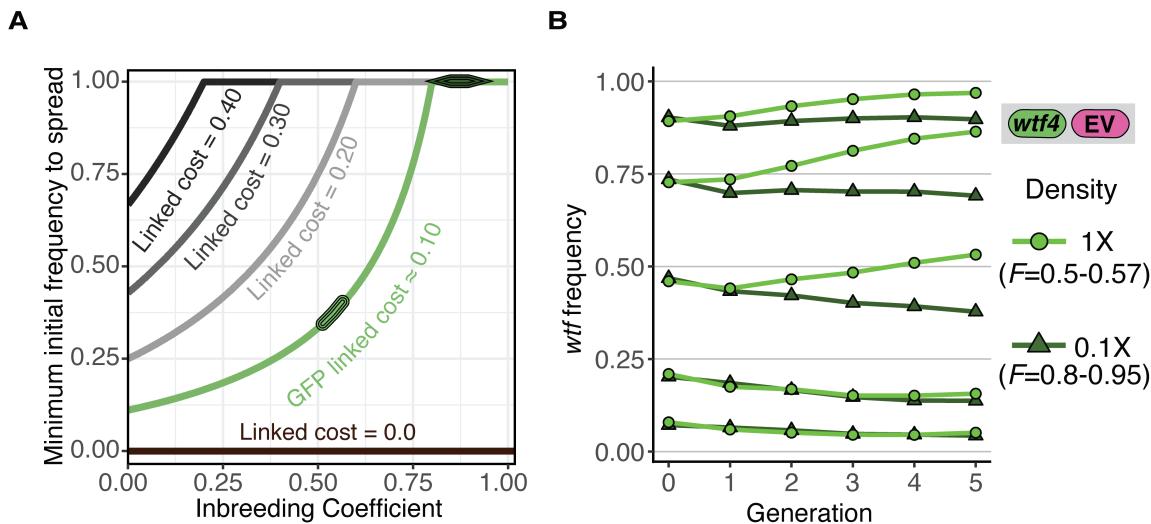
1012 random mating (gray lines). The individual spots represent experimental replicates and the
1013 shaded areas around the lines represent 95% confidence intervals. **C)** Same experimental
1014 setup as in **B**, but with mCherry marking the EV allele and GFP marking *wtf4*. **D-E)** Repeats of
1015 the experiments shown in **B** and **C** with two alterations. First, these experiments tracked
1016 heterothallic populations (dotted lines) in addition to homothallic cells (solid lines). Second, the
1017 populations were sorted by cytometry at generations 3 and 5 (vertical long-dashed lines) to
1018 remove non-fluorescent cells.

1019


Supplemental Figure 8

1020

1021 **Supplemental figure 8. Loss of fluorescent markers in experimental evolution analyses**
1022 **and vegetative growth competition between fluorescently labelled cells. A)** Fluorescent
1023 marker loss from cell populations carrying only one type of fluorescent marker (GFP or
1024 mCherry) linked to an empty vector (EV). Cells were grown as in Figure 4A in parallel to the cell
1025 populations depicted in Figure 4 B-C. **B)** Similar to A, but both heterothallic and homothallic
1026 cells were analyzed in parallel to the cell populations depicted Figure 4 D-E. The cells were
1027 sorted after generation 5 to remove non-fluorescent cells (vertical grey dotted line). **C-D)** We
1028 sorted GFP- and mCherry-positive cells from the progeny of a single replicate after nine meiotic
1029 generations. Sorted cells were taken from control crosses that are homozygous for *wtf4* locus
1030 (Supplemental figure 9 C-D). We then competed an equal ratio of GFP and mCherry cells
1031 starting with 30 μ L of each strain into 600 μ L of fresh YEL media for 12 hours at 32°C. Then 60
1032 μ L of culture was transferred to 600 μ L fresh YEL media for 12 hours of growth **C)** Competition
1033 cultures during vegetative growth of strains with empty vector. **D)** Competition cultures during
1034 vegetative growth of strains carrying *wtf4*.


Supplemental Figure 9

1035

1036 **Supplemental figure 9. Allele transmission in homozygous control homothallic and**
1037 **heterothallic populations. A)** Homothallic population with both mCherry and GFP marking EV
1038 alleles. The individual spots represent experimental replicates and the shaded areas around the
1039 lines represent 95% confidence intervals. **C)** Same experimental setup as in **B**, but with both
1040 markers linked to a *wtf4* allele. **C-D)** Repeats of the experiments shown in **B** and **C** with two
1041 alterations. First, these experiments tracked heterothallic populations (dotted lines) in addition to
1042 homothallic cells (solid lines). Second, the populations were sorted by cytometry at generations
1043 3 and 5 (vertical long-dashed lines) to remove non-fluorescent cells.

Figure 5

1044

1045 **Figure 5. Inbreeding purges *wtf* drivers with linked deleterious alleles. A)** Modeling the
1046 predicted impacts of inbreeding, the fitness of the driving haplotype, and the initial frequency of
1047 the driver on the spread of a *wtf* driver in a population. The circle indicates the predicted initial
1048 frequency necessary for the GFP::*wtf4*+ allele to spread in a population when mated at standard
1049 (1X) density where $F=0.5$. The triangle indicates the predicted initial frequency necessary for the
1050 GFP::*wtf4*+ allele to spread in a population when mated at low (0.1X) density where $F=0.8-0.95$
1051 measured in Supplemental Figure 1C. **B)** Experimental analyses of the impacts of inbreeding
1052 and the initial driver frequency on the spread of the GFP::*wtf4*+ allele in a population.

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073 **Data availability**

1074

1075 **Supplemental file 1. *S. pombe* natural isolates.**

1076 List of *S. pombe* natural isolates reported by (Tusso et al. 2019). Those selected to measure
1077 inbreeding coefficients using microscopy are highlighted and observations for these from other
1078 studies are reported (Jeffares et al. 2015; Nieuwenhuis et al. 2018).

1079

1080 **Supplemental file 2. Raw data of allele transmission values reported in Supplemental 1081 figure 1.**

1082 Crosses shown in Supplemental figure 1 were genotyped before and after meiosis. The
1083 absolute and relative frequencies of each genotype were quantified. Segregation for each
1084 genetic marker is reported. From each cross, the list of recombinant genotypes are described.
1085 In tables 1-3 on spreadsheet 1 (columns B-K) we show the genotypes, number of colonies
1086 counted and initial frequencies of the two parents used in each cross represented in
1087 Supplemental figure 1B. In columns L, O and R we show the expected frequency of Parent1,
1088 Parent 2 and recombinants, respectively, predicted using Hardy-Weinberg. Columns M-Y show
1089 the results obtained after meiosis. In columns M-N, P-Q and S-T we report the observed
1090 frequency and total number of colonies counted for Parent 1, Parent2, and recombinants,
1091 respectively. In columns U-W (U-X for table 3) we report the transmission frequency of each
1092 individual marker in the recombinants. The inbreeding coefficient for each cross is reported in
1093 Column Y. In tables 4,5 and 6 we show the numbers of each genotype obtained after meiosis
1094 for each replicate experiment. Parental genotypes are shown in white. Discordant genotypes
1095 are highlighted in blue at the bottom of each table. We also specify which experiments were
1096 performed manually and which were performed using robotics. Spreadsheet 2 shows similar
1097 data for the multiple density experiments shown in Supplemental figure 1C-D. Column Q also
1098 shows the G of fit G-test p-value.

1099

1100 **Supplemental file 3. Yeast strains used in this study.**

1101 Strains used and created in this study are listed.

1102

1103 **Supplemental file 4. Plasmids used in this study.**

1104 Plasmids used in this study.

1105

1106 **Supplemental file 5. Oligo table.**

1107 Oligos used in this study.

1108

1109 **Supplemental video 1. Homothallic *Sp* mating video.**

1110 Homothallic *Sp* cells plated mating inducing media (SPA) were recorded for 24 hours. Cells
1111 labelled with constitutively -expressing fluorophores mCherry (magenta) or (GFP) were mixed in
1112 equal proportion 1X standard cell density.

1113

1114 **Supplemental video 2. Homothallic *Sk* mating video.**

1115 Homothallic *Sk* cells plated mating inducing media (SPA) were recorded for 24 hours. Cells
1116 labelled with constitutively -expressing fluorophores mCherry (magenta) or (GFP) were mixed in
1117 equal proportion at 1X standard cell density.

1118 **References**

1119 Alonso-Nunez ML, An H, Martin-Cuadrado AB, Mehta S, Petit C, Sipiczki M, del Rey F, Gould
1120 KL, de Aldana CR. 2005. Ace2p controls the expression of genes required for cell
1121 separation in *Schizosaccharomyces pombe*. *Mol Biol Cell* **16**:2003-2017. doi:
1122 10.1091/mbc.e04-06-0442

1123 Atlan A, Joly D, Capillon C, Montchamp-Moreau C. 2004. Sex-ratio distorter of *drosophila*
1124 *simulans* reduces male productivity and sperm competition ability. *J Evol Biol* **17**:744-
1125 751. doi: 10.1111/j.1420-9101.2004.00737.x

1126 Bendezu FO, Martin SG. 2013. Cdc42 explores the cell periphery for mate selection in fission
1127 yeast. *Curr Biol* **23**:42-47. doi: 10.1016/j.cub.2012.10.042

1128 Bravo Nunez MA, Lange JJ, Zanders SE. 2018. A suppressor of a wtf poison-antidote meiotic
1129 driver acts via mimicry of the driver's antidote. *PLoS Genet* **14**:e1007836. doi:
1130 10.1371/journal.pgen.1007836

1131 Bravo Nunez MA, Sabbarini IM, Eickbush MT, Liang Y, Lange JJ, Kent AM, Zanders SE. 2020a.
1132 Dramatically diverse *Schizosaccharomyces pombe* wtf meiotic drivers all display high
1133 gamete-killing efficiency. *PLoS Genet* **16**:e1008350. doi: 10.1371/journal.pgen.1008350

1134 Bravo Nunez MA, Sabbarini IM, Eide LE, Unckless RL, Zanders SE. 2020b. Atypical meiosis
1135 can be adaptive in outcrossed *Schizosaccharomyces pombe* due to wtf meiotic drivers.
1136 *Elife* **9**. doi: 10.7554/elife.57936

1137 Burt A, Crisanti A. 2018. Gene drive: Evolved and synthetic. *ACS Chem Biol* **13**:343-346. doi:
1138 10.1021/acschembio.7b01031

1139 Burt A, Trivers R. 2006. Genes in conflict : The biology of selfish genetic elements. Cambridge,
1140 MA: Belknap Press of Harvard University Press. **Book**

1141 Byrd R, Lu P, Nocedal J, Zhu C. 1995. A limited memory algorithm for bound constrained
1142 optimization. *SIAM Journal on Scientific Computing*:1190-1208.

1143 Hartl DL, Clark, AG. 2007. Principles of population genetics. *Oxford University Press*. **Book**

1144 Crow JF. 1988. The ultraselfish gene. *Genetics* **118**:389-391.

1145 Crow JF. 1991. Why is Mendelian segregation so exact? *Bioessays*:305-312. doi:
1146 10.1002/bies.950130609

1147 Dyer KA, Charlesworth B, Jaenike J. 2007. Chromosome-wide linkage disequilibrium as a
1148 consequence of meiotic drive. *Proc Natl Acad Sci U S A* **104**:1587-1592. doi:
1149 10.1073/pnas.0605578104

1150 Dyer KA, Hall DW. 2019. Fitness consequences of a non-recombinant sex-ratio drive
1151 chromosome can explain its prevalence in the wild. *Proc Biol Sci* **286**:20192529. doi:
1152 10.1098/rspb.2019.2529

1153 Egel R. 1977. Frequency of mating-type switching in homothallic fission yeast. *Nature* **266**:172-
1154 174. doi: 10.1038/266172a0

1155 Eickbush MT, Young JM, Zanders SE. 2019. Killer meiotic drive and dynamic evolution of the
1156 wtf gene family. *Mol Biol Evol* **36**:1201-1214. doi: 10.1093/molbev/msz052

1157 Egel R, Eie B. 1987. Cell lineage asymmetry in *Schizosaccharomyces pombe*: Unilateral
1158 transmission of a high-frequency state for mating-type switching in diploid pedigrees.
1159 *Current Genetics* **12**:429-433

1160 Ekwall K, Thon G. 2017. Setting up *Schizosaccharomyces pombe* crosses/matings. *Cold Spring
1161 Harb Protoc* **2017**:pdb prot091694. doi: 10.1101/pdb.prot091694

1162 Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The spontaneous
1163 mutation rate in the fission yeast *Schizosaccharomyces pombe*. *Genetics* **201**:737-744.
1164 doi: 10.1534/genetics.115.177329

1165 Finnegan SR, White NJ, Koh D, Camus MF, Fowler K, Pomiankowski A. 2019. Meiotic drive
1166 reduces egg-to-adult viability in stalk-eyed flies. *Proc Biol Sci* **286**:20191414. doi:
1167 10.1098/rspb.2019.1414

1168 Fishman L, Kelly JK. 2015. Centromere-associated meiotic drive and female fitness variation in
1169 *Mimulus*. *Evolution* **69**:1208-1218. doi: 10.1111/evo.12661

1170 Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness
1171 costs in monkeyflowers. *Science* **322**:1559-1562. doi: 10.1126/science.1161406

1172 Forsburg SL, Rhind N. 2006. Basic methods for fission yeast. *Yeast* **23**:173-183. doi:
1173 10.1002/yea.1347

1174 Glemin S, Francois CM, Galtier N. 2019. Genome evolution in outcrossing vs. Selfing vs.
1175 Asexual species. *Methods Mol Biol* **1910**:331-369. doi: 10.1007/978-1-4939-9074-0_11

1176 Gould KL, Simanis V. 1997. The control of septum formation in fission yeast. *Genes Dev*
1177 **11**:2939-2951. doi: 10.1101/gad.11.22.2939

1178 Gutz H, Doe FJ. 1975. On homo- and heterothallism in *Schizosaccharomyces pombe*.
1179 *Mycologia* **67**:748-759.

1180 Hailey DW, Davis TN, Muller EG. 2002. Fluorescence resonance energy transfer using color
1181 variants of green fluorescent protein. *Methods Enzymol* **351**:34-49. doi: 10.1016/s0076-
1182 6879(02)51840-1

1183 Hall DW, Dawe RK. 2018. Modeling the evolution of female meiotic drive in maize. *G3*
1184 (*Bethesda*) **8**:123-130. doi: 10.1534/g3.117.300073

1185 Higgins DM, Lowry EG, Kanizay LB, Becraft PW, Hall DW, Dawe RK. 2018. Fitness costs and
1186 variation in transmission distortion associated with the abnormal chromosome 10 meiotic
1187 drive system in maize. *Genetics* **208**:297-305. doi: 10.1534/genetics.117.300060

1188 Hu W, Jiang ZD, Suo F, Zheng JX, He WZ, Du LL. 2017. A large gene family in fission yeast
1189 encodes spore killers that subvert Mendel's law. *eLife* **6**. doi: 10.7554/eLife.26057

1190 Hurst GD, Werren JH. 2001. The role of selfish genetic elements in eukaryotic evolution. *Nat*
1191 *Rev Genet* **2**:597-606. doi: 10.1038/35084545

1192 Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT,
1193 Fiddes IT, Malla S, Marriott H, Nieto T, O'Grady J, Olsen HE, Pedersen BS, Rieh A,
1194 Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT,
1195 Loman NJ, Loose M. 2018. Nanopore sequencing and assembly of a human genome
1196 with ultra-long reads. *Nat Biotechnol* **36**:338-345. doi: 10.1038/nbt.4060

1197 Klein J, Sipos P, Figueiroa F. 1984. Polymorphism of t-complex genes in european wild mice.
1198 *Genetics Research* **44**:39-46. doi: <https://doi.org/10.1017/S0016672300026239>

1199 Jeffares DC. 2018. The natural diversity and ecology of fission yeast. *Yeast* **35**:253-260. doi:
1200 10.1002/yea.3293

1201 Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallies C, Balloux F, Dessimoz C, Bahler J,
1202 Sedlazeck FJ. 2017. Transient structural variations have strong effects on quantitative
1203 traits and reproductive isolation in fission yeast. *Nat Commun* **8**:14061. doi:
1204 10.1038/ncomms14061

1205 Jeffares DC, Rallies C, Rieux A, Speed D, Prevorovsky M, Mourier T, Marsellach FX, Iqbal Z,
1206 Lau W, Cheng TM, Pracana R, Mulleder M, Lawson JL, Chessel A, Bala S, Hellenthal G,
1207 O'Fallon B, Keane T, Simpson JT, Bischof L, Tomiczek B, Bitton DA, Sideri T, Codlin S,
1208 Hellberg JE, van Trigt L, Jeffery L, Li JJ, Atkinson S, Thodberg M, Febrer M, McLay K,
1209 Drou N, Brown W, Hayles J, Carazo Salas RE, Ralser M, Maniatis N, Balding DJ,
1210 Balloux F, Durbin R, Bahler J. 2015. The genomic and phenotypic diversity of
1211 *Schizosaccharomyces pombe*. *Nat Genet* **47**:235-241. doi: 10.1038/ng.3215

1212 Klar AJ. 1990. The developmental fate of fission yeast cells is determined by the pattern of
1213 inheritance of parental and grandparental DNA strands. *EMBO J* **9**:1407-1415.

1214 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: Scalable and
1215 accurate long-read assembly via adaptive. *Genome Res* **27**:722-736. doi:
1216 10.1101/gr.215087.116

1217 Leupold U. 1949. Die vererbung von homothallie und heterothallie bei *Schizosaccharomyces*
1218 *pombe*. *CR Trav Lab Carlsberg Ser Physiol*:381-480.

1219 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
1220 Subgroup GPDP. 2009. The sequence alignment/map format and samtools.
1221 *Bioinformatics* **25**:2078-2079. doi: 10.1093/bioinformatics/btp352

1222 Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Krief
1223 U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG,
1224 Pomiankowski A, Presgraves DC, Safranova LD, Sutter A, Unckless RL, Verspoor RL,
1225 Wedell N, Wilkinson GS, Price TAR. 2016. The ecology and evolutionary dynamics of
1226 meiotic drive. *Trends Ecol Evol* **31**:315-326. doi: 10.1016/j.tree.2016.02.001

1227 Lo K, Hahne F, Brinkman RR, Gottardo R. 2009. Flowclust: A bioconductor package for
1228 automated gating of flow cytometry data. *BMC Bioinformatics* **10**:145. doi:
1229 10.1186/1471-2105-10-145

1230 Lyon MF. 2003. Transmission ratio distortion in mice. *Annu Rev Genet* **37**:393-408. doi:
1231 10.1146/annurev.genet.37.110801.143030

1232 Maki T, Ogura N, Haber JE, Iwasaki H, Thon G. 2018. New insights into donor directionality of
1233 mating-type switching in *Schizosaccharomyces pombe*. *PLoS Genet* **14**:e1007424. doi:
1234 10.1371/journal.pgen.1007424

1235 Manser A, Lindholm AK, Konig B, Bagheri HC. 2011. Polyandry and the decrease of a selfish
1236 genetic element in a wild house mouse population. *Evolution* **65**:2435-2447. doi:
1237 10.1111/j.1558-5646.2011.01336.x

1238 McDonald MJ, Rice DP, Desai MM. 2016. Sex speeds adaptation by altering the dynamics of
1239 molecular evolution. *Nature* **531**:233-236. doi: 10.1038/nature17143

1240 Merlini L, Dudin O, Martin SG. 2013. Mate and fuse: How yeast cells do it. *Open Biol* **3**:130008.
1241 doi: 10.1098/rsob.130008

1242 Merlini L, Khalili B, Bendezu FO, Hurwitz D, Vincenzetti V, Vavylonis D, Martin SG. 2016. Local
1243 pheromone release from dynamic polarity sites underlies cell-cell pairing during yeast
1244 mating. *Curr Biol* **26**:1117-1125. doi: 10.1016/j.cub.2016.02.064

1245 Miyata HaM, Machiko. 1981. Mode of conjugation in homothallic cells of *Schizosaccharomyces*
1246 *pombe*. *Journal of General and Applied Microbiology*.

1247 Muller HJ. 1932. Some genetic aspects of sex. *The American Naturalist* **66**:118-138.

1248 Nieuwenhuis BP, Immler S. 2016. The evolution of mating-type switching for reproductive
1249 assurance. *Bioessays* **38**:1141-1149. doi: 10.1002/bies.201600139

1250 Nieuwenhuis BPS, Tusso S, Bjerling P, Stangberg J, Wolf JBW, Immler S. 2018. Repeated
1251 evolution of self-compatibility for reproductive assurance. *Nat Commun* **9**:1639. doi:
1252 10.1038/s41467-018-04054-6

1253 Novitski LSaE. 1957. Meiotic drive as an evolutionary force. *American Society of Naturalists*
1254 **91**:105-110.

1255 Nuckolls NL, Bravo Nunez MA, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR,
1256 Jaspersen SL, Malik HS, Zanders SE. 2017. Wtf genes are prolific dual poison-antidote
1257 meiotic drivers. *eLife* **6**. doi: 10.7554/eLife.26033

1258 Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS, Hunn AM, McCroskey S, Snyder JL, Bravo
1259 Nunez MA, McClain M, McKinney SA, Wood C, Halfmann R, Zanders SE. 2020. The
1260 wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death.
1261 *eLife* **9**. doi: 10.7554/eLife.55694

1262 Olds-Clarke P. 1997. Models for male infertility: The t haplotypes. *Rev Reprod* **2**:157-164. doi:
1263 10.1530/ror.0.0020157

1264 Osterwalder A. 1924. *Schizosaccharomyces liquefaciens n. Sp.*, eine gegen freie schweflige
1265 säure widerstandsfähige gärhefe. *Mitt Gebiete Lebensmittelunters Hyg* **15**:5-28.

1266 Otto SP, Lenormand T. 2002. Resolving the paradox of sex and recombination. *Nat Rev Genet*
1267 **3**:252-261. doi: 10.1038/nrg761

1268 Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A,
1269 Nuckolls NL, Montchamp-Moreau C, Mideo N, Martin OY, Manser A, Legros M,

1270 Larracuente AM, Holman L, Godwin J, Gemmell N, Courret C, Buchman A, Barrett LG,
1271 Lindholm AK. 2020. Resistance to natural and synthetic gene drive systems. *J Evol Biol*
1272 **33**:1345-1360. doi: 10.1111/jeb.13693

1273 Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF,
1274 Heiman DI, Young SK, Furuya K, Guo Y, Pidoux A, Chen HM, Robbertse B, Goldberg
1275 JM, Aoki K, Bayne EH, Berlin AM, Desjardins CA, Dobbs E, Dukaj L, Fan L, FitzGerald
1276 MG, French C, Gujja S, Hansen K, Keifenheim D, Levin JZ, Mosher RA, Muller CA,
1277 Pfiffner J, Priest M, Russ C, Smialowska A, Swoboda P, Sykes SM, Vaughn M,
1278 Vengrova S, Yoder R, Zeng Q, Allshire R, Baulcombe D, Birren BW, Brown W, Ekwall K,
1279 Kellis M, Leatherwood J, Levin H, Margalit H, Martienssen R, Nieduszynski CA,
1280 Spatafora JW, Friedman N, Dalgaard JZ, Baumann P, Niki H, Regev A, Nusbaum C.
1281 2011. Comparative functional genomics of the fission yeasts. *Science* **332**:930-936. doi:
1282 10.1126/science.1203357

1283 Rick CM. 1966. Abortion of male and female gametes in the tomato determined by allelic
1284 interaction. *Genetics* **53**:85-96.

1285 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
1286 Integrative genomics viewer. *Nat Biotechnol* **29**:24-26. doi: 10.1038/nbt.1754

1287 Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells using single
1288 stranded nucleic acids as a carrier. *Curr Genet* **16**:339-346. doi: 10.1007/BF00340712

1289 Schimenti JC, Reynolds JL, Planchart A. 2005. Mutations in Serac1 or Synj2 cause proximal t
1290 haplotype-mediated male mouse sterility but not transmission ratio distortion. *Proc Natl
1291 Acad Sci U S A* **102**:3342-3347. doi: 10.1073/pnas.0407970102

1292 Schlake T, Gutz H. 1993. Mating configurations in *Schizosaccharomyces pombe* strains of
1293 different geographical origins. *Current Genetics*:108-114.

1294 Seike T, Maekawa H, Nakamura T, Shimoda C. 2019a. The asymmetric chemical structures of
1295 two mating pheromones reflect their differential roles in mating of fission yeast. *J Cell Sci*
1296 **132**. doi: 10.1242/jcs.230722

1297 Seike T, Niki H. 2017. Mating response and construction of heterothallic strains of the fission
1298 yeast *Schizosaccharomyces octosporus*. *FEMS Yeast Res* **17**. doi:
1299 10.1093/femsyr/fox045

1300 Seike T, Shimoda C, Niki H. 2019b. Asymmetric diversification of mating pheromones in fission
1301 yeast. *PLoS Biol* **17**:e3000101. doi: 10.1371/journal.pbio.3000101

1302 Sheff MA, Thorn KS. 2004. Optimized cassettes for fluorescent protein tagging in
1303 *Saccharomyces cerevisiae*. *Yeast* **21**:661-670. doi: 10.1002/yea.1130

1304 Singh G, Klar AJ. 2003. DNA sequence of the mat2,3 region of *Schizosaccharomyces*
1305 *kambucha* shares high homology with the corresponding sequence from sz. *Pombe*.
1306 *Yeast* **20**:1273-1278. doi: 10.1002/yea.1042

1307 Singh G, Klar AJS. 2002. The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent
1308 region in two species of *Schizosaccharomyces* and are involved in epigenetic silencing
1309 in *Schizosaccharomyces pombe*. *Genetics*:591-602.

1310 Sipiczki M. 2007. Splitting of the fission yeast septum. *FEMS Yeast Res* **7**:761-770. doi:
1311 10.1111/j.1567-1364.2007.00266.x

1312 Smith GR. 2009. Genetic analysis of meiotic recombination in *Schizosaccharomyces pombe*.
1313 *Methods Mol Biol* **557**:65-76. doi: 10.1007/978-1-59745-527-5_6

1314 Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. 2016. Fast and sensitive mapping of
1315 nanopore sequencing reads with graphmap. *Nat Commun* **7**:11307. doi:
1316 10.1038/ncomms11307

1317 Sun S, Klebaner F, Tian T. 2017. Mathematical modelling for variations of inbreeding
1318 populations fitness with single and polygenic traits. *BMC Genomics* **18**:196. doi:
1319 10.1186/s12864-017-3492-1

1320 Tao YT, Suo F, Tusso S, Wang YK, Huang S, Wolf JBW, Du LL. 2019. Intraspecific diversity of
1321 fission yeast mitochondrial genomes. *Genome Biol Evol* **11**:2312-2329. doi:
1322 10.1093/gbe/evz165

1323 Taylor DR, Saur MJ, Adams E. 1999. Pollen performance and sex-ratio evolution in a dioecious
1324 plant. *Evolution* **53**:1028-1036. doi: 10.1111/j.1558-5646.1999.tb04518.x

1325 Team RC. 2019. R: A language and environment for statistical computing.

1326 Tusso S, Nieuwenhuis BPS, Sedlazeck FJ, Davey JW, Jeffares DC, Wolf JBW. 2019. Ancestral
1327 admixture is the main determinant of global biodiversity in fission yeast. *Mol Biol Evol*
1328 **36**:1975-1989. doi: 10.1093/molbev/msz126

1329 Wedell N, Price TAR, Lindholm AK. 2019. Gene drive: Progress and prospects. *Proc Biol Sci*
1330 **286**:20192709. doi: 10.1098/rspb.2019.2709

1331 Wilkinson GS, Fry CL. 2001. Meiotic drive alters sperm competitive ability in stalk-eyed flies.
1332 *Proc Biol Sci* **268**:2559-2564. doi: 10.1098/rspb.2001.1831

1333 Wu CI. 1983. Virility deficiency and the sex-ratio trait in *Drosophila pseudoobscura*. I. Sperm
1334 displacement and sexual selection. *Genetics* **105**:651-662.

1335 Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR, Smith GR, Malik HS. 2014. Genome
1336 rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. *eLife*
1337 **3**:e02630. doi: 10.7554/eLife.02630

1338 Zeyl C, Bell G, Green DM. 1996. Sex and the spread of retrotransposon Ty3 in experimental
1339 populations of *Saccharomyces cerevisiae*. *Genetics* **143**:1567-1577.

1340