
 1 

Reconstruction of metagenome-assembled genomes from aquaria  1 
 2 
 3 
Cassandra L. Ettingera,b,c,#, Jordan Bryand, Sima Tokajiane, Guillaume Jospina,f, David Coila, 4 
Jonathan A. Eisena,b,g 5 
 6 
 7 
aGenome Center, University of California, Davis, CA, USA 8 
bDepartment of Evolution and Ecology, University of California, Davis, CA, USA 9 
cDepartment of Microbiology & Plant Pathology, University of California, Riverside, CA, USA  10 
dCollege of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA 11 
eDepartment of Natural Sciences, Lebanese American University, Byblos, Lebanon 12 
fAnimalBiome, Oakland, CA, USA 13 
gDepartment of Medical Microbiology and Immunology, University of California, Davis, CA, 14 
USA 15 
 16 
 17 
#Address correspondence to: Cassandra L. Ettinger, cassande@ucr.edu 18 

 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446213
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract  41 
 42 
We report 11 metagenome-assembled genomes (MAGs) reconstructed from freshwater and 43 

saltwater aquaria including representatives of Polynucleobacter, Anaerolinae, Roseobacter, 44 

Flavobacteriia, Octadecabacter, Mycobacterium and Candidate Phyla Radiation (CPR) members. 45 

These MAGs can serve as a resource for aquatic research and elucidating the role of CPR taxa in 46 

the built environment. 47 

 48 
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Announcement 64 

 65 

Microbial communities play critical roles in aquaria health. Aquaria support complex multi-66 

trophic interactions between fish, invertebrates, plants and microbial communities that occur in 67 

an enclosed built environment. Understanding the genomics of aquaria microbial communities is 68 

critical to understanding the health of other enclosed aquatic systems. 69 

 70 

Samples were collected prior to the start of an undergraduate research project that investigated 71 

microbial community assembly of multiple aquaria in the Fall of 2012 at the University of 72 

California, Davis (1). Tropical tank sediment (n=3), cold reef tank sediment (n=1), freshwater 73 

tank sediment (n=3), cold reef tank water (n=3), freshwater wipes (n=3) and freshwater tank 74 

water (n=3) were collected and processed for DNA extraction as described in Bik et al (1). 75 

Libraries were made using a Nextera XT DNA library sample preparation kit (Illumina, Inc.) and 76 

were sequenced on an Illumina MiSeq (paired end, 150 bp reads).  77 

 78 

All reads were co-assembled using MEGAHIT (2) v.1.0.6. Metagenome-assembled genomes 79 

(MAGs) were generated using anvi’o v. 2.3.2 (3). First, a contig database was produced using 80 

‘anvi-gen-contigs-database’ and open reading frames identified with Prodigal (4) v.2.6.2. We 81 

then used ‘anvi-run-hmms’ to run HMMER v3.1b2 (5) to identify bacterial (6) and archeal (7) 82 

single-copy genes. Contig taxonomy was inferred using Kaiju v.1.5.0  (8) with the NCBI BLAST 83 

non-redundant protein database including fungi and microbial eukaryotes v.2016-09-18. Reads 84 

were mapped using Bowtie2 v.2.2.8 (9) and samtools v.1.4.1 (10). Using ‘anvi-profile’ and 85 

‘anvi-merge’, contigs > 2.5 kbp were mapped to samples and then profiles were combined. On 86 
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average, 780,565 reads per sample mapped to the contig database with the majority of mapped 87 

reads from cold reef tank water (57.3%) and freshwater tank water (41.7%). Contigs were 88 

clustered using ‘anvi-cluster-with-concoct’ to automatically bin MAGs (11). MAG completeness 89 

and contamination was assessed in anvi’o using ‘anvi-summarize’ and confirmed with CheckM 90 

v.1.0.7 (12). Phylosift v. 1.0.1 (13) was used to place MAGs in a phylogenetic context to provide 91 

additional information about  taxonomic assignments. Candidate Phyla Radiation (CPR) 92 

genomes were identified with ‘anvi-script-gen-cpr-classifier’ and ‘anvi-script-predict-cpr-93 

genomes’ using the Brown et al (14) and Cambell et al (6) databases. CPR genome completion 94 

was then estimated for 43 single copy marker genes (14). The CPR are putatively a diverse group 95 

of uncultured bacterial lineages with poorly understood metabolic functions known mostly from 96 

metagenomic sequencing work. Representatives of CPR have been previously found in a wide 97 

range of aquatic habitats including bioreactors, ocean, lakes, groundwater and waterways (15–98 

21).  99 

 100 

We report two high-quality draft MAGs >90% completion and four medium-quality draft MAGs 101 

with >70% completion (Table 1). Additionally, we report five draft MAGs that were identified as 102 

potential CPR genomes with >90% completion (Table 2). These metagenome-assembled 103 

genomes will enable deeper insights into the ecology of aquaria microbial communities and also 104 

into the possible functional roles of understudied lineages (e.g. CPR members) in the built 105 

environment.  106 

 107 

Data availability. The raw sequencing reads, co-assembly and individual MAGs were deposited 108 

at DDBJ/ENA/GenBank under BioProject accession number PRJNA728121. Contigs identified 109 
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as possible contaminants or adaptors by NCBI’s Contamination Screen were subsequently 110 

trimmed or removed from the co-assembly or individual MAGs during deposition. 111 

 112 
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Table 1. Genomic feature summary for metagenome-assembled genomes identified from 225 
aquaria. 226 
 227 

Bin ID Draft 
quality 

Putative 
taxonomy 

Genom
e Size 
(Mb) 

%GC  CheckM 
% 
Complet
ion 

Check
M % 
Redund
ancy 

anvi’o 
% 
Compl
etion 

anvi’o % 
Redunda
ncy 

AQU-
01 

High Polynucleobacte
r sp. 

1.68 45.38 97.69 0.16 98.56 0.72 

AQU-
02 

High Anaerolineae sp. 5.35 53.21 91.36 1.73 95.68 2.88 

AQU-
03 

Medium Roseobacter sp. 2.69 60.69 88.80 0.63 75.54 2.16 

AQU-
04 

Medium Flavobacteriia 
sp. 

1.85 41.36 86.62 0.07 92.81 1.44 

AQU-
05 

Medium Octadecabacter 
sp. 

2.61 55.83 84.33 1.96 76.98 1.44 

AQU-
06 

Medium Mycobacterium 
sp. 

3.35 66.59 70.94 1.74 71.94 2.16 

 228 
 229 
 230 
 231 
 232 
 233 
 234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
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Table 2. Genomic feature summary for Candidate Phyla Radiation (CPR) metagenome-245 
assembled genomes identified from aquaria.  246 
 247 

Bin ID Putative taxonomy Genome 
Size (Mb) 

%GC  CPR % 
Completi
ona 

AQU-
07 

Candidatus 
Shapirobacteria sp. 

0.86 35.61 93.02 

AQU-
08 

Candidatus 
Kerfeldbacteria sp. 

1.07 46.20 93.02 

AQU-
09 

Candidatus Uhrbacteria 
sp. 

1.12 51.31 93.02 

AQU-
10 

Candidatus Moranbacteria 
sp. 

0.89 43.56 93.02 

AQU-
11 

Candidatus 
Saccharibacteria sp. 

1.09 47.69 90.70 

 248 
aCompletion estimates were generated using 43 single copy markers for CPR following Brown et 249 
al (14). 250 
 251 
 252 
 253 
 254 
 255 
 256 
 257 
 258 
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