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Abstract 

Two large but independent bodies of literature exist on two essential components of the 

dynamics of isotopic incorporation: the isotopic incorporation rate () and the trophic 35 

discrimination factor (). Understanding the magnitude of these two parameters and the 

factors that shape them is fundamental to interpret the results of ecological studies that rely on 

stable isotopes.  scales allometrically with body mass among species and depends on growth 

within species. Both are often assumed to be constant and independent of each other but 

evidence accumulates that might be linked and to vary with growth. We built and analyzed a 40 

model (IsoDyn) that connects individual growth and isotopic incorporation of nitrogen into 

whole body and muscle tissues. The model can assume a variety of individual growth patterns 

including exponential or asymptotic growths.  depends on the rate of body mass gains which 

scales allometrically with body mass.  is a dynamic response variable that depends partly on 

the ratio between fluxes of gains and losses and covaries negatively with . The model can be 45 

parameterized either from existing large databases of animal growth models or directly from 

experimental results. The model was applied to experimental results on three ectotherms and 

one endotherm and compared to the results of the simpler and widely used time model. 

IsoDyn model gave a better fit with relatively little calibration. IsoDyn clarifies and expands 

the interpretation of isotopic incorporation data.  50 
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Introduction 55 

 

Animal ecologists rely on stable isotope analysis (SIA) of carbon, nitrogen, and sulfur, to 

trace the pathways of organic matter trough food webs, to estimate trophic position, to 

examine intra- and inter-species trophic relationships (i.e. niche properties), to track origins 

and migration of animals, and to reconstruct animals’ diets (reviewed by Boecklen et al. 2011, 60 

Glibert et al. 2018 or Shipley and Matich 2020). Most of these applications hinge on the 

observation that the isotopic value of animal tissues resembles that of their diet with a small 

difference (De Niro and Eptein 1978) called trophic discrimination factor (Healy et al. 2018) 

and denoted by a ∆ with ‰ units (see Table 1 for a list of symbols and their definitions). 

However, many applications of SIA in tropic ecology depend on an additional observation: 65 

the incorporation of the value of resources into consumer’s tissues after a diet change is not 

instantaneous, but obeys predictable temporal dynamics (Martinez del Rio and Carleton 

2012). The isotopic incorporation rate (λ with units of time-1) is construed as the instantaneous 

rate of isotopic incorporation with the interpretation of 1/λ as the average retention time of an 

element in a tissue, and ln(2)/ λ as its half-life (Thomas et al. 2015; Vander Zanden et al. 70 

2015).  

 

Ecologists and physiologists have conducted large numbers of experiments that describe the 

temporal changes of the isotopic values in consumer’s tissues after animals shift between 

diets of different isotopic composition (the so-called diet switching experiments, DSE, Fry 75 

and Arnold 1982 , Thomas et al. 2015; Vander Zanden et al. 2015). Often, these experiments 

have the dual objective of estimating both λ and . The results of these experiments are 

interpreted by fitting a family of 2 to 3 parameter models that assumes one-compartment, first 

order-kinetics and exponential growth of the consumers under study (e.g. Fry and Arnold 

1982; Tieszen et al. 1983; Hesslein  et al. 1993 and later on Carleton and Martinez Del Rio 80 

2010). These models (referred here as isotope incorporation models, DIIM) have many 

virtues: they are simple, their parameters can be easily estimated and readily interpreted, and 

they provide an excellent fit to the temporal changes in the isotopic values of animals that 

follow a diet change. For instance, the widely applied time model (Tieszen et al. 1983) 

follows: 85 
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𝛿𝑡 = 𝛿 − (𝛿 − 𝛿0)𝑒−𝑡    Eq(1) 

Where 𝛿𝑡 is the isotopic composition of the consumer’s tissues over time after a diet switch, 

𝛿 is the asymptotic value when tissues have reached steady state with the new diet (δd i.e. 90 

isotopic equilibrium) for a given incorporation rate (), and 𝛿0 is the isotopic composition of 

the consumer’s tissues at the beginning of the DSE.  is often estimated as a by-product of the 

estimation of 𝛿: 

𝛿 = 𝛿𝑑 + ∆     Eq(2) 

 95 

The value of  can be partitioned into two components (Heisslein et al. 1993): the mass-

specific growth rate (kg ) that corresponds to the contribution of tissue addition due to growth  

and evaluated by an exponential model (with W the body mass, and W0 the initial body mass), 

and the catabolic turnover rate (kc) that corresponds  to the replacement of existing tissue.  

 = kg + kc       Eq(3) 100 

𝑊𝑡 = 𝑊0𝑒𝑘𝑔𝑡      Eq(4) 

Equation 3 may not evaluate properly the contribution of kg and kc to  when animal’s growth 

does follow an exponential pattern. For instance, MacAvoy et al. (2005)  experimented on 

young adult mice approaching their asymptotic body mass. They observed a steady decrease 

in kg along the course of one DSE and estimated different kg values at different times. This 105 

problem can be solved by recognizing that most animals follow common asymptotic growth 

patterns (Kearney 2020) such as described by the von Bertalanffy growth model (von 

Bertalanffy 1957), the DEB theory (Kooijman, 2010) or the ontogenetic growth model (West 

et al. 2001) in which true exponential growth occurs only during early life stages.  

 110 

Many applications of SIA in trophic ecology assume both (1) an isotopic equilibrium between 

the isotopic values of consumers’ tissues and its food sources (i.e. that  is large at the time of 

measurement but see Marin Leal et al. 2008 and reference therein) and (2) a constant value of 

 among individuals of a population and even among different species (Phillips et al. 2014). 

These assumptions allows to a widely use of sophisticated user-friendly algorithms to solve 115 

mixing models  that attempt to resolve a consumer’s diet composition from the isotopic values 

of its tissues (e.g. Parnell et al.’s (2010) Bayesian mixing model, SIAR). The importance of  

values for the interpretation of ecological isotopic data, via mixing models, has led to 

compilation of large data sets of values and new methods to predict them (Healy et al. 2018). 

Although some tantalizing patterns between tissue type (and thus amino acid composition and 120 
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isotopic incorporation), form of nitrogen excretion, nutritional status, and phylogeny have 

been documented (McCutchan et al. 2003; Vanderklift and Ponsard 2003;  Healy et al., 2018), 

some of the drivers of differences in  remain elusive (Caut et al. 2009).  

 

More recently,  has received new attention (as reviewed by Carter et al. 2019). The 125 

estimation of  is crucial to determine the time window over which diet could be 

reconstructed (Dalerum and Angerbjorn 2005; Phillips et al. 2014) or to model ontogenetic 

diet shift (Hertz  et al. 2016). Incorporation rate is also a component explaining part of the 

isotopic variance used to evaluate the trophic niche (Fink  et al. 2012; Yeakel et al. 2016). In 

fact,  is a function of the body size and is expected to vary allometrically within species 130 

(Martinez Del Rio et al. 2009). This expectation has been proven to be correct between 

species (Thomas et al. 2015; Vander Zanden et al. 2015), even though the relationship 

between  and body mass has large residual variation that remains unexplained. Assuming 

isotopic equilibrium and a constant  in isotopic ecology are possibly the result of our still 

incomplete understanding of the factors that shape their values: these strong assumptions 135 

should be relaxed.  

Isotope ecologists have compiled large data sets of  and ∆ values estimated using DSE 

interpreted with first-order one-compartment models (Eq 1, 2 and 3), and assuming that these 

two parameters are independent and constant over the course of one DSE. Nonetheless, 

theoretical and empirical evidences suggest  and ∆ are dynamic and linked. On the empirical 140 

side, Lefebvre  and Dubois (2016) and Gorokhova (2018) documented strong negative 

relationships between 15N  and kg (which is the dominant determinant factor of  in rapidly 

growing organism, Hesslein et al. 1993) in exponentially growing animals. Villamarin et al. 

(2018) documented a negative relationship between ∆15N of crocodiles and their kg that could 

not be accounted for a change in diet. On the theoretical side, the models of Olive et al. 145 

(2003) and Martinez del Rio and Wolf (2005) suggest a decreasing relationship between 15N  

and . The generality of this result is unknown because both Olive et al. (1999) and Martinez 

del Rio and Wolf (2005) modelled only the special case of animals growing exponentially. 

Pecquerie  et al. (2010) constructed a more general approach (which is called Dynamic 

Isotopic budgets DIB) that assume asymptotic growth. This approach combines an accounting 150 

of the fate of different elements on the body compartments defined by the dynamic energy 

budget theory (DEB, Kooijman 2010). Emmery  al. (2011) applied Pequerie et al. (2010)’s 

DIB approach to Pacific oysters (Crassostrea gigas) and found that Δ15N declined from 5 to 2 
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‰ with increasing kg. Like DEB-dependent growth models, DIB models are species-specific 

and each case requires calibration with a high number of parameters (over 22 in the case of 155 

Emmery et al.’s (2011) application), although DEB models can be potentially parameterized 

with values from a huge database (Marques et al., 2018). Moreover, their application involves 

computationally intensive calibration and expertise in DEB that is not common among 

ecologists. We venture that for this reason, Pecquerie et al.’s (2010) model has not been 

applied widely. As far as we know, Emmery et al. (2011)’s study is its only empirical 160 

application to stable isotope studies.  

 

Our purpose is to construct a relatively simple mathematical model that allows researching 

the interplay between growth, ∆ and  at the whole body and element levels while including 

other previous conventional models as special cases (Fig. 1). Our model permits exploring the 165 

hypothesis that  and ∆ are neither constant nor species specific, but predictably variable 

among individuals and dynamically linked. We hypothesize that such model would be more 

accurate in describing incorporation dynamics than conventional models particularly when 

consumer growth deviates from pure exponential trajectories (early life stages). The dual 

assumption of constancy and independence between  and Δ precludes inferring their values 170 

for different life stages than the ones observed and estimated in DSEs. Another consequence 

of assuming static ∆ and  within the course of DSEs would be an improper estimation of 

their values and potentially the contribution of kg and kc to . The relative simplicity of our 

model facilitates its parameterization. By constructing a model that can incorporate the many 

ways in which animal growth has been described (for example by the ontogenetic growth 175 

model (West et al. 2001; Hou et al, 2011), von Bertalanffy growth model (von Bertalanffy 

1957) and DEB theory (Kooijman 2010)), our model offers a new and dynamic perspective to 

interpret DSEs, but also provide a tool to help explain the still unexplained variation in ∆ and 

, and in doing so provide a conceptual link between trophic isotopic ecology and the study of 

animal growth and life histories. 180 

 

Methods 

IsoDyn as a new model of isotopic incorporation 

 

Although our model is general enough to be used by all of the stable isotopes commonly used 185 

in ecological research (C, N, S, H, and O), we will focus on nitrogen (N). The isotopic value 
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of this element (δ15N) and its trophic discrimination factor (∆15N) are used to estimate trophic 

position, and thus ∆15N has been relatively well studied (Post 2002; Glibert et al. 2019). 

Further, dietary protein is assumed to be the main driver of 15N incorporation rate and ∆15N 

is less sensitive to isotopic routing than ∆13C (Martinez Del Rio et al., 2009).  190 

 

We assume here that body mass dynamics (Wt) of a consumer follows an asymptotic growth 

pattern (see supplementary material 1 for details), giving: 

𝑊𝑡 = {𝑊∞
1−𝛽

+ (𝑊0
1−𝛽

− 𝑊∞
1−𝛽

)e−𝑟𝑜(1−𝛽)𝑡}

1

1−𝛽
      Eq(5) 

with   195 

 lim
𝑡→∞

𝑊𝑡 = 𝑊∞ = (
𝑟𝑖

𝑟𝑜
)

1

1−𝛽
         Eq(6) 

and with 

𝑘𝑔 =
1

𝑊

𝑑𝑊

𝑑𝑡
= 𝑟𝑖𝑊𝑡

1−𝛽
− 𝑟𝑜        Eq(7)  

 

where ri and ro are rates of gains and losses respectively (assimilation and excretion in the 200 

case of N), β the allometric coefficient and W∞ is the asymptotic body mass.  

 

Under these body mass dynamics, δ15N values in a consumer tissues follows (see 

supplementary material 1 for details) : 

𝑑𝛿15𝑁

𝑑𝑡
= 𝑟𝑖𝑊

𝛽−1(𝛿15𝑁𝑑 − 𝛿15𝑁 + ∆𝑖) − ∆𝑜𝑟𝑜     Eq(8) 205 

where i and o are discrimination factors on gains and losses respectively.  

 

Eq(8) is a linear differential equation without a general analytical solution when  is lower 

than 1 (i.e. for asymptotic growth models such as the von Bertalanffy model). However, a 

discrete approximation can be done for small dt:  210 

 

𝛿15𝑁𝑡+1 = 𝛿15𝑁∞ − (𝛿15𝑁∞ − 𝛿15𝑁𝑡)𝑒−𝑟𝑖𝑊𝑡
𝛽−1

𝑑𝑡    Eq(9) 

 

This approximation of Eq(8) then parallels the time model in Eq(1),  most commonly used to 

describe and interpret isotopic incorporation data in DSEs, but with 𝛿15𝑁∞ and  depending 215 

on the body mass at time t:  
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𝛿15𝑁∞ = 𝛿15𝑁𝑑 + ∆15𝑁𝑡  with ∆15𝑁𝑡 = ∆𝑖 −
∆𝑜𝑟𝑜

𝑟𝑖𝑊𝑡
𝛽−1      Eq(10) 

and 

𝑡 = 𝑟𝑖𝑊𝑡
𝛽−1

= 𝑘𝑔 + 𝑟𝑜    Eq(11) 220 

Eq(10) and eq(1) differ between them in that the terms equivalent to 𝛿15𝑁∞ and  (eq(2) and 

eq(3) vs eq(10) and eq(11) respectively) vary with time. Another difference is that 

partitioning between growth and catabolism is variable in eq(11) because kg is variable while 

it was constant in eq(3) due to the assumption of exponential growth (eq 4). Note that ro is 

equivalent to kc or m in eq(3). These equations highlight the predictable dependence of  and 225 

Δ15N on the parameters that shape growth (, ri and ro). A large number of studies report 

values for these parameters (see e.g. West et al. 2001 for the ontogenetic growth model; and 

Kooijman 2010 for von Bertalanffy 1957). Eq(8) also means that the isotopic incorporation 

rate for N can be estimated from the dynamics of body mass as long as the proportion of N in 

the body mass (pN) is constant (see supplementary material 1 for explanations). This 230 

important feature applies to any pool of element as for instance carbon or sulfur in the 

absence of isotopic routing. 

 

Simulations and parameter estimations 

One of the major advantages of our model is that it can be parameterized and fitted readily 235 

with available information data or data that can be gathered in DSE. Describing dynamics of 

body mass require three parameters that are ri, ro and , and only two parameters if we 

consider  following a common framework (e.g. =2/3 in the case of the von Bertalanffy 

growth model). Two additional parameters are needed, Δi and Δo, for simulating the 

incorporation dynamics of stable isotopes. Simulations presented here, were generated 240 

following a numerical integration algorithm under R software v.4.0.3 (2019) using the 

package DeSolve (Soetaert et al. 2010) to solve eq (8). Because fitting the four parameters (ri, 

ro, Δi and Δo) from data on isotope incorporation alone (15N values over time) is not 

possible, the parameters can be estimated in two ways which can be called simultaneous and 

sequential and by using dynamics of body mass in parallel.  245 

In simultaneous estimation, the parametrization of the four main parameters (ri, ro, Δi and Δo) 

can be done using both the dynamics of body mass and stable isotopes incorporation. For 

simplicity, we chose to perform the calibration considering that Δi and Δo as opposite values 
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but equal in absolute value (Δi = - Δo). This means that the same isotopic discrimination was 

applied to gains and losses, an assumption also done by Flynn et al (2018) in a mechanistic 250 

simulation model. Parameter estimations were performed using the Nelder Mead function of 

the lme4 package which allows to set boundaries for the parameters (ri and ro must be 

positive). The function minimizes the sum of two symmetric bounded loss functions 

(hereafter named the cost function) which accounts for the difference between predictions and 

observations for dynamics of body mass and stable isotopes respectively. This cost function is 255 

ideally suited to fit several models to several dataset (Marques et al. 2019). Local minima can 

be found during the optimization process. In order to ensure to detect the global minimum, the 

initial starting values of the parameters were randomly selected and the procedure is 

performed twice first (N=2). Then, the process continues (up to N=20) until the value of the 

cost function for the last set of parameters is lower than the best set by 5%. Parameter sets in 260 

which some parameters stuck to the boundaries were systematically deleted. Interval 

estimates of parameters were evaluated using a bootstrap method (N=500) by adding log-

normally distributed scatter (mean coefficient of variations of observations) to the predictions 

with replacement of the original data sets (Marques et al. 2019). We then compare the 

parameters of the IsoDyn model with the time model partitioning  into kg and kc  (eq 1, 2, 3 265 

and 4). The time and exponential models were fitted with the nls2 package. Goodness of fit of 

all the models was assessed by the relative error (RE) as calculated by Marques et al. (2019):  

𝑅𝐸 = ∑
|𝑝𝑖−𝑑𝑖|

|𝑑𝑖|
𝑁
𝑖=1       Eq(12) 

where pi and di are prediction and observation, respectively, for a given data point i and N is 

the total number of data points.  270 

 

The sequential estimation consists first in obtaining estimates for ri and ro, which allows 

estimating body mass over time as well as . This can be done either by conducting 

experiments and fitting the parameters of von Bertalanffy (1957) or West et al. (2001)’s 

equations. In the absence of sufficient experimental data, ri and ro can be obtained from data 275 

bases developed from DEB theory such as “Add my Pet” (Marques et al., 2018) or the 

ontogenetic growth model (West et al. 2001; Hou  et al. 2011) or studies on the selected 

species. Then, the estimation of Δi and Δo were done in a second step by implementing the 

values of the three previous parameters in Eq (8).  

R code for all analyses, figures and tables is available from GitHub 280 

(https://github.com/Sebastien-Lefebvre/IsoDyn)  
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Data sets 

For our model to be calibrated or validated, dynamics of body mass in parallel to dynamics of 

nitrogen stable isotope incorporation are needed and these combinations are not often reported 285 

in experimental studies. Our predictions apply to the whole organism. However, it is generally 

assumed that muscle tissue and other structural tissues form the majority of an organism’s 

body mass and that consequently isotopic dynamics of the whole organism can be 

approximated by the ones of muscle tissues (Thomas and Crowther 2015). We have then 

selected four studies to highlight the different ways to estimate parameters in the context of 290 

DSEs. The first study applied on young adult mouse (Mus musculus) approaching the 

maximum body mass (MacAvoy et al., 2005). Stable isotope incorporation dynamics were 

measured over 112 days DSE on skeletal muscle (15Nm) using an experimental diet. Mus 

musculus is a small endotherm species with a maximum body mass of ca 25 g. In the second 

study, Pacific yellowtail (Seriola lalandi) juveniles were used for a 98 days DSE in which 295 

incorporation dynamics of stable isotope ratios of nitrogen of dorsal muscle (15Nm) were 

measured (Nuche -Pascual et al. 2018). Fish were fed with a commercial diet. Seriola lalandi 

is a large ectotherm species with a maximum body mass of ca 193 kg. In the third study, sand 

goby (Pomatoschistus minutus) late juveniles were used for a 90 days DSE and 15Nm values 

were measured (Guelinckx et al. 2007). Fish were fed with a commercial diet. Pomatoschistus 300 

minutus is a small ectotherm species with a maximum body mass of ca 7 g. These three first 

studies were calibrated following the simultaneous estimation. In the fourth and last study, the 

growth rate of common carp (Cyprinus carpio) was manipulated by changing food 

availability providing four different diet switching experiments lasting eight weeks (Gaye -

Siesseger et al. 2004). Only start and end values of body mass and 15N values of the whole 305 

body (15Nb) were originally provided for this study. Cyprinus carpio is a medium ectotherm 

species with a maximum body mass of ca 40 kg. This last study was calibrated using the 

sequential method for estimates of ri and ro of this species as described by the DEB theory 

(ESM 2).  

 310 

Results 

 

Although our model shares a variety of characteristics with previous models, it has specific 

ones. In this section we highlight two of those: 1) IsoDyn model makes explicit links between 
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growth and isotopic incorporations patterns; 2) the model allows parameterizing and fitting 315 

existing patterns on the dynamics of isotopic incorporation particularly when consumer 

growth deviates from pure exponential trajectories. Before considering our analyses on the 

four case studies, we considered a few general traits of our model that distinguishes it from 

previous ones.  

 320 

Growth and isotopic incorporation patterns are predictably linked 

 

Our model predicts that the relationships between body mass and the isotopic value of tissues 

as a function of time are shaped by a set of common parameters (i.e. ri, ro and ). Examples of 

such relationships and their effects on body mass,  and δ15N dynamics are given in Fig. 2 for 325 

three virtual species characterized by different values and ratios of ri and ro , a common =2/3 

and initial body mass W0=0.1 g. Species 1 (Sp1) and species 2 (Sp2) have the same 

asymptotic body mass (Wmax=64 g eq(7)) but differ in their mass gains and losses rates by 

half (ri1 = 0.2 g 1/3 d-1, ro1 = 0.05 d-1, ri2 = 0.1 g 1/3 d-1, ro2 = 0.025 d-1). As rate of losses (ro) 

governs the steepness at which Wmax is reached, Sp1 reached its Wmax faster (Fig. 2A). 330 

Species 3 has higher ri3=0.6 g 1/3 d-1 and ro3=0.2 d-1 but lower Wmax = 27g. Dynamics of 

isotopic incorporation are then explained by two components,  and δ15N value which are 

both dynamic in our model (see equation 10 and 11).  

 

Typically,  decreases over time along with body mass. On a ln/ln scale, the slope is negative 335 

and equals -1, and the intercept is ln(ri) (Fig. 2B);  ri and thus  are higher in Sp3 than Sp1 

and Sp2. The range of  displayed by one species depends on the difference between W0 and 

Wmax, which is lower for Sp3. As  and kg decrease, δ15N difference between body and diet 

(δ15Nb- δ
15Nd) increases (Fig. 2C). When growth approaches zero, δ15N dynamics are 

dominated by flux of body mass losses (i.e. excretion) and δ15Nb- δ
15Nd reaches its maximum 340 

(i.e. Δi - Δo = 4‰). On the opposite, when growth tends to its maximal value, δ15Nb- δ
15Nd 

approaches δ15Nd (here set at 0) and δ15N dynamics are dominated by the flux of mass gains 

(i.e. assimilation). The inflexion characterizes the trade-off between fluxes of gains and losses 

dominance in δ15N dynamics. Then, the range of these values depends on the extent of kg 

performed by the species between initial body mass (i.e. birth W0) and Wmax. 345 

These results suggest that the δ15N dynamics obtained in DSE will depend on the stage of 

growth at which experiments are done. Typical DSEs were performed using features of the 
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three species above at two life stages (juveniles i.e. from W0 and adult at Wmax). As our 

analysis of special cases indicates, δ15Nb- δ
15Nd values will be lower in experiments involving 

organisms growing in the early, quasi-exponential, phases of body growth than in animals of 350 

the same species that have reached or are close to the asymptotic body mass.  

 

In Sp1 and Sp3, adults reach the asymptotic isotopic composition faster, because  (which 

equals ro in adults) remains quite high even for adult while δ15Nb- δ
15Nd is maximum (Fig. 3). 

For the young of these species, although  is even higher than for adults, δ15Nb- δ
15Nd is still 355 

increasing and this prevents from reaching fully the asymptote for juveniles of Sp1. The 

pattern is a bit different for Sp2 (Fig. 3). As juveniles of Sp2 are still performing high kg , then 

 remains high and the δ15Nb- δ
15Nd although increasing, is still low: asymptotic isotopic 

composition remains a moving target and cannot be fully reached. In Sp2 adults,  is twice 

lower than for Sp1, and its value does not reach the asymptotic value within the 100 days of 360 

the experiment. 

 

Case study: calibration using the simultaneous parameter estimation 

The three species studied are an endotherm (the house mouse Mus musculus) and two 

ectotherms (the two fish species Pacific yellowtail, Seriola lalandi and sand goby, 365 

Pomatoschistus minutus), at different life stages and as a consequence, in different growth 

situations at the time of DSE. The young adult mice approached their asymptotic body mass 

so that their growth rate gradually decreased during the experiment. The mouse body mass 

gain was about 25% (Fig. 4). Individuals of both fish species were juveniles and showed a 

linear body mass increase for Pacific yellowtail and an exponential increase for sand goby 370 

with a body mass gain of 600% and 100% respectively (Fig. 4).  

 

A comparison between the conventional isotopic incorporation time model and IsoDyn model 

was done. Both models displayed very good and comparable goodness of fit concerning δ15N 

values (as estimated by the RE Table 2). However, the two models differed strongly in the 375 

prediction of body mass dynamics for two species (mouse and Pacific yellowtail) which did 

not follow exponential growth patterns. In these two cases, the exponential model fitted 

poorly to the data whereas IsoDyn model fitted better. Both models displayed a very good fit 

for sand goby growing exponentially. Therefore, IsoDyn model performed better than the 
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time model regarding simultaneously the body mass and δ15N dynamics (mean RE Table 2) 380 

when body mass dynamics did not follow an exponential pattern.  

 

The estimated parameters were of the same order of magnitude for both models but in some 

cases they differed substantially, especially for , kg and kc (Table 2). The estimates of ∆ 

values were roughly the same in both models, although slightly higher in the case of Isodyn 385 

model (10 to 20% for sand goby and Pacific yellowtail, respectively). kg were identical in the 

case of sand goby and smaller for the two other species which body mass dynamics deviated 

from the exponential pattern.  estimates were comparable for the first two species (mouse 

and Pacific yellowtail) but it was 60% smaller using IsoDyn model compared to the time 

model for the sand goby. As a result, the proportion of kg explaining  differed noticeably 390 

from one case to another. In mouse and Pacific yellowtail, kg/ ratios were 10 to 20% lower 

respectively in IsoDyn estimates, whereas it was 60% higher for the sand goby. As for the 

specific estimates of the IsoDyn model, ri ranked according to the maximum body mass of the 

species (Pacific yellowtail > mouse > sand goby) and ro was higher for mouse (endotherm 

species). The predicted maximum body masses (as calculated with eq(7)) were 331.5 g, 23.5 g 395 

and 15.5 g for Pacific yellowtail, mouse and sand goby respectively. Isotopic discrimination 

on assimilation or excretion rates (Δi and Δo respectively) ranged from 0.8 to 2.1 ‰. The 

strong interplay of growth and isotopic incorporation dynamics in IsoDyn model offer new 

perspectives in the interpretation of  and and a more consistent evaluation of the 

contribution of growth and catabolic rates in .  400 

 

Case study: calibration using the sequential parameter estimation  

To determine the suitability of IsoDyn model when intra-specific variations of ri and ro occurs 

due to different ration levels, we re-analyzed the data from Gaye Siesseger et al. (2004). In 

this DSE, the growth of Common carp (Cyprinus carpio) was manipulated by changing food 405 

availability through different feeding levels. We estimated parameters in a sequential 

approach because dynamics of body mass were restricted to start and end values preventing a 

reliable calibration of ri and ro. First, we used parameters from the DEB “Add My Pet” data 

set to calibrate the model (see supplementary material 2 for more details), and then adjusted 

the scaled functional response (f), an Holling type II function ranging from 0 to 1, that 410 

controls the rates of body mass gains (ri) and of body mass losses (ro) to fit the observations of 
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body mass change over time (Fig. 5). The f values were estimated to be 0.16, 0.29, 0.53, 0.82 

from the lowest feeding ration levels to the highest ones (Table 2). This allowed estimating 

values of ri and ro for the four treatments according to ESM2 (Table 3). Then, independent 

values of Δi and Δo were simultaneously fitted using δ15Nb- δ
15Nd values and giving Δi = 415 

1.08‰ and Δo = -1.32‰. The model not only predicted the qualitative decrease of δ15Nb- 

δ15Nd values with kg (Fig. 5) but, in addition, it yielded a very good quantitative fit to the data. 

 

Discussion 

 420 

The IsoDyn model links growth and dynamics of isotopes incorporation  

 

Existing dynamic models of isotope incorporation (DIIM) can be ranked in a continuum that 

spans from simple phenomenological models with few parameters (e.g. Fry and Arnold 1982; 

Tieszen et al., 1983) to complex mechanistic models with many parameters (e.g. Pecquerie et 425 

al. 2010; Poupin et al. 2014). The first models developed were function of either body mass 

(Fry et al., 1982) or time (Tieszen et al., 1983). Each of these models was then improved later 

(Carleton and Martinez del Rio, 2010, Heisslein et al., 1993 respectively) in order to partition 

the  into two components, kg and  kc. As these improved models need an independent 

estimation of kg, they do not explicitly connect the underlying mechanisms common to both 430 

isotopes and body mass dynamics such as rate of mass gains (ri) and rate of mass losses (ro). 

Further, parameters from previous models are constant with time and body mass dynamics are 

restricted to the exponential or the steady state cases. However, they are simple to use and 

describe experimental available data sets well in most cases, and have interpretable 

parameters but they are limited in that they can hide important details of the factors that shape 435 

the process of isotope incorporation in a dynamic way.  

 

IsoDyn model renders  dynamic by considering common and explicit parameters (ri, ro and  

) to both δ15N and body mass dynamics, and offers the possibility to reproduce different 

growth patterns over the organism life span. This highlights a first important feature of the 440 

new model over the previous ones. A second important property of IsoDyn is the possible 

temporally variable trophic discrimination factor (∆15N) due to its interaction with growth. 

Our model allows for this interaction thanks to two fluxes of which the flux of gains is 

allometrically related to body mass, plus that each of the fluxes being associated with a 
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discrimination value. Actually, ∆15N varies over time along with growth only if the 445 

discrimination linked to body mass losses (o) is different from zero (and most probably 

below zero). Interaction between ∆15N and growth was evidenced in experimental results (e.g. 

Lefebvre and Dubois 2016; Gorokhova 2018) and predicted by earlier mechanistic models but 

for the exponential case only (Olive et al. 2003; Martinez Del Rio et al. 2005). This 

interaction is absent in the conventional models developed earlier. IsoDyn model has the time 450 

model as a special case (i.e. when  and ∆15N are constants, =1 and o=0) and shares with it 

ease of computation and analytical tractability. 

 

Our model provides also a new link between models that describe isotopic incorporation 

phenomenologically and those that incorporate more mechanistic details. Pecquerie et al. 455 

(2010) and Emmery et al. (2011) applied dynamic energy budget theory (DEB) to clarify the 

processes that determine both  and ∆15N values in an approach called Dynamic Isotope 

Budget modeling (DIB). Unlike our model, DIB models cannot be summarized simply as they 

are assumption-rich (Pecquerie et al. 2010). DIB recognizes the dynamic dependence of 

isotope incorporation dynamics on body mass and growth (Emmery et al. 2011). The results 460 

of DIB are consistent with our simpler mechanistic model. However, DIB is a two sequential 

compartments and three fluxes model at least, and then ∆15N is not only explained by the 

isotopic discrimination on fluxes but the proportion of the two sequential compartments that 

account for the body mass of organisms (i.e. reserve and structure compartments, Pecquerie et 

al. 2010; Lefebvre and Dubois 2016). In another approach, Poupin et al. (2014) developed a 465 

detailed mechanistic multi-compartment model of nitrogen pool and fluxes (21 compartments 

and 49 fluxes) on adult rat. They showed for instance a deviation from optima in food quality 

or quantity led to an increase of ∆15N at the whole body scale. Unlike IsoDyn model, DIB and 

the multi-compartment model demand detailed parameterization. The model that we describe 

shares some of the powerful characteristics of DIB or the multi-compartmental model while 470 

making it consistent with the mass-balance models more widely used by isotopic ecologists.  

 

Parameterizing the model and the experiments that we need 

 

Because growth is a central feature of an animal’s ecological traits, IsoDyn model allows 475 

linking patterns of isotopic incorporation and trophic discrimination factor with the biology of 

animal life histories. This true link between growth and isotope incorporation offers several 
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possibilities regarding the parametrization of our model in simultaneous and sequential 

estimations: calibration of body mass dynamics and of dynamics of isotope incorporation 

could insight from each other.  480 

 

The simultaneous approach allows strengthening the parametrization by coupling body mass 

dynamics and isotope incorporation dynamics into a single calibration procedure. The limit of 

this procedure stands in the number of parameters to be estimated since the higher the number 

of parameters, the bigger the problem of multiple local minima in the minimisation of the cost 485 

function. Specifying some parameters is then necessary to relax this problem. This was 

performed by assuming a known  (here =2/3), and that the two isotopic discrimination were 

equal in absolute values (Δi=-Δo). Fittings were then very good. The rate of body mass gains 

(ri) ranked with maximal body size and this is coherent with metabolic theories (West et al. 

2001; Kooijman 2010). Estimates of ri and ro allow to predict the maximum body masses that 490 

can be reached by the three species using eq(6). The maximal body mass was correctly 

estimated for mouse (23.5 g vs 25 g) and sand goby 15.5 g vs 7 g) but was underestimated  for 

Pacific yellow tail (331.5 g vs 193 kg) probably due to sub-optimal experimental conditions 

for this large and migratory fish species.  

 495 

One way to improve the estimation of IsoDyn model parameters in the simultaneous 

estimation is to perform DSE with different conditions of growth for the same species fed 

with the same diet with measurement of body mass dynamics in parallel. It can be done 

performing either DSEs at different life stages of the same species with the same diet to 

satiation, or DSEs at different food rations at one life stage when growth is still significant. To 500 

our best knowledge, the first case has not been reported yet in literature. The second one is 

rare and the body mass dynamics with an adequate time resolution were not reported (e.g. 

Gaye Siesseger et al. 2004; Lefebvre and Dubois 2016; Gorokhova 2018;). Unfortunately, 

most of DSEs reporting both body mass and 15N dynamics used diets that differ in quality 

and are fed to satiation (Nahon et al. 2020), and this leads to different growth rates but 505 

possibly confounding results with additional sources of  and ∆15N variations (e.g. diet type, 

mode of nitrogen excretion, etc...).  

 

In the sequential parameter estimation, the model’s simplicity allows ready parameterization 

with available estimates of ri, ro and  (Common carp case study). Because our new model 510 
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incorporates widely used individual growth models , it links isotopic ecology with large 

bodies of data (Ontogenetic growth model, West et al. 2001; Hou et al. 2011, von Bertalanffy 

models, including DEB’s  “Add My Pet” data base and other growth rate data available for a 

large number of animals, Marques et al. 2018). The two approaches can explore the effect of 

food restrictions on body mass dynamics (Kearney 2020). Once the individual growth model 515 

is parameterized, calibrations of isotopic discriminations on flux of body mass gains and 

losses (i and o respectively) can be easily performed. Results from the Common carp case 

study have emphasized that Δi was a bit lower than Δo. The latter is probably the main driver 

of Δ15N enrichment in animal tissues (Poupin et al. 2014).  

The range of values of Δi and Δo can be predicted from the relationship between Δ15N and kg: 520 

When kg is high for a given species Δ15N is mostly explained by Δi whereas when kg 

approaches 0, Δ15N equals Δi- Δo. For example, Δ15N varied between 2 and 4‰ depending 

on kg in mysids (Gorokhova 2018), from 3 to 9‰ in invertebrates (Lefebvre and Dubois 

2016), from 2 to 5‰ in a bivalve (Emmery et al., 2011) from 1 to 1.7‰ in the Common carp 

case study (Gaye-Siesseger et al. 2004). From these ranges, one can predict that the Δo values 525 

are probably higher that Δi values in general. Generalizing the calibration of IsoDyn model on 

DSEs would help determine the range of the Δo and Δi values using meta-analyses on some 

particular taxons. Finally, a common problem in the interpretation of isotopic data from 

studies is that the family of eq(1) needs a DSE data set with a clear shift and a clear asymptote 

to relax as much as possible the co-variation of  and the asymptotic value ( needed to 530 

estimate Δ15N) and their uncertainties. Our model relaxes the necessity of perfect DSEs since 

the calibration can be sequential. DSEs (e.g. Logan and Lutcavage 2010) that provide limited 

information for  and Δ15N could be then exploited with the IsoDyn model used as an 

alternative.  

 535 

Implications of the IsoDyn model for isotopic ecology 

 

With all its simplifying assumptions, the IsoDyn model represents significant progress. In 

particular, it offers new perspectives in understanding the variabilities of  and Δ15N values, 

two critical variables for the interpretation of isotopic data (Martinez del Rio et al. 2012). 540 

Vander Zanden et al (2015) or Thomas et al. (2015) constructed allometric relationships that 

relate  values with body size and several authors have summarized data on Δ15N and 

searched for the potential causes for its variation (Vanderklift and Ponsard 2003; Caut et al. 
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2009; Healy et al. 2018). The allometric studies of Vander Zanden et al. (2015) and Thomas 

et al. (2015) verified the prediction that  varies as an allometric function of body mass 545 

(Martinez del Rio et al., 2009). Although these relationships are in broad agreement with 

predictions, they have large residual variation that limits precise estimation. We hypothesize 

that some of this variation can be explained by growth, the factor identified by IsoDyn model 

as a major determinant of  and Δ15N.  

 550 

By necessity, these large comparative data sets gloss over the characteristics of the animals 

that might generate variation in  and Δ15N due to growth. For example, the vast majority of 

the estimates of  and Δ15N on endotherms with determinate growth like birds and mammals 

are done on fully-grown adults. The same is the case of measurements of small invertebrates 

that reach asymptotic body mass in a short time. In contrast, experiments on ectotherms with 555 

indeterminate growth such as fish, amphibians, and reptiles are done in growing juvenile 

animals. This growth effect may explain why Δ15N mean values in ectotherms are slightly 

lower than the ones on endotherms (Caut et al. 2009). Re-analysing results of these meta-

analyses using the IsoDyn model would be an interesting perspective. Further, we identified 

areas in which its application can solve long-standing questions to merge isotopic ecology and 560 

trophic ecology more seamlessly: the reconstruction of diet, the interpretation of “isotopic 

niches” and the determination of trophic level and food web structure.  

 

Stable isotopes are very often used within mixing models to estimate the proportions of 

dietary items with contrasting isotopic values into animal diets at species (Layman et al. 565 

2012) and food web level (see Kadoya et al. 2012). Indeed the use of mixing models to 

estimate diet proportions has increased exponentially over the last years (as referred to in the 

citation dynamics of Parnell et al. 2010 paper). The mixing models used for this purpose 

require estimates of Δ15N and assumed isotopic equilibrium between diet and consumers. 

Relaxing the isotopic equilibrium assumption has been the concern of several studies with 570 

different prospects but in which the Isodyn model may help to quantify the parameter values. 

Phillips et al. (2014) recommended to carefully consider the time period over which the 

putative food sources have to be sampled to back calculate diet using mixing-models. 

Actually, this time period relies on (Thomas and Crowther 2015). Stock and Semmens 

(2016) integrated a new component in their mixing models by accounting for the variation in 575 
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consumption rate between individuals of a population. The rate of body mass gains (ri) is a 

proxy of this consumption rate.  

 

Hertz  et al. (2016) evidenced that  is a critical parameter when modelling ontogenetic diet 

shifts. They typically modified a growth incorporation model in which vary with the body 580 

mass increase (Fry and Arnold 1982), but they kept constant the contribution of kg and kc 

while it is variable in the IsoDyn model. Finally, many ecologists analyse muscle for large 

species or whole body for small species, those working on endotherms use blood, and 

paleontologists are constrained to the analysis of bone and collagen. These tissues have 

widely different  values (Thomas and Crowther 2015) and can have different Δ15N within an 585 

organism (Vanderklift and Ponsard 2003). A multi-compartment extension of the Isodyn 

model might allow predicting the magnitude of Δ15N values among tissues and the effect of 

growth on these values. Building a multi-compartment extension of the IsoDyn model has 

both computational and empirical challenges. Martínez del Rio and Andreson-Sprecher 

(2008) described how to arrange several compartments in parallel or sequentially (or a mix of 590 

both as in DIB for adults) but the model used assumes steady state or exponential growth and 

like all conventional models it assumes no dynamic pattern for  and Δ15N. Unlike Poupin et 

al.’s (2014) model which assumes that the animals are not growing and hence allows using a 

system of linear differential equations, the multi-compartment Isodyn model is non-linear and 

hence is computationally more complex. Furthermore, the model requires empirical data of 595 

changes in fluxes among compartments that can vary in relative size during development or 

not. Challenging as they will be, these models are needed to estimate observed differences in 

both  and Δ15N in different organs. 

 

Our model suggests that differences in kg can distort the geometry of isotopic niches beyond 600 

the frequency of diet change (Yeakel et al. 2016). The characteristics of the space occupied by 

individuals, populations, and by species assemblages in isotopic space are often used to 

interpret trophic structure (Shipley and Matich 2020). For example, the area of standard 

ellipses (and other metrics of extent of occupancy of isotopic space, Layman et al. 2012) is 

often used to assess variation in resource use (Parnell et al. 2013). Gorokhova (2018) 605 

demonstrated experimentally that the characteristics (as assessed by commonly used metrics) 

of the “isotopic niches” were dependent on growth (and hence on feeding regime) in Mysid 

shrimp (Neomysis integer) fed on the same food but different rations. In accordance with the 
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results of IsoDyn model, she found lower Δ15N in animals fed at high rations and hence 

growing more rapidly. Through its effects on  and Δ15N, kg can change the position and 610 

variance (as measured by area occupied in isotopic space) of isotopic niches all the more so as 

growth is time dependent. The interpretation of isotopic patterns must be informed by the 

mechanisms that shape them, including growth rate. 

 

The value of Δ15N is not only used in mixing models applied to determine diet composition. It 615 

is also often used to estimate an animal’s trophic position in a food web (Post 2002; Quezada 

-Romegialli et al. 2018). An extension of this application is the use of the interspecific range 

of Δ15N values in assemblages of consumers to estimate the length of a food chain (Vander 

Zanden  and Fetzer 2007). The prediction of our model adds a note of caution to the 

interpretation of the use of stable isotopes as estimates of trophic position and food-chain 620 

length, but opens the opportunity to make these measurements more accurate. Villamarin et 

al. (2018) identified a clear mismatch between trophic position estimated from Δ15N 

measurements and diet in crocodiles. This mismatch was largely explained by a decrease in 

Δ15N with kg consistent with the predictions of the IsoDyn model (Villamarín et al. 2018). 

The often reported positive correlation between Δ15N and body size in fishes (e.g. Nakazawa 625 

et al. 2010) that is attributed to upwards shifts in trophic position might have to be 

reconsidered in light of declining growth rates (and hence Δ15N values) with size predicted by 

our model. This could also have additional unsuspected consequences when scaling δ15N 

values and trophic level (Hussey et al. 2014).  

 630 

So far, patterns of occupancy in isotopic space are used to infer the ecological characteristics 

of individuals, populations, and food wed structure. Our model suggests that patterns in 

measured isotopic values are not only the result of a one-way translation of resource use into 

isotopic value. They are the dynamic outcome of not only how animals use resources, but of 

the tempo and fidelity of isotopic incorporation. These are shaped by the mechanisms by 635 

which animals incorporate and dispose materials into their tissues. We believe that 

incorporating these mechanisms into dynamic models can transform isotopic ecology from a 

descriptive into a more dynamic process-based discipline. Recent studies advocated for the 

use of simulation modelling to predict stable isotope ratios using mechanistic processes (e.g. 

Flynn et al. 2018; Trueman et al. 2019). Isodyn model can be an element of these models, and 640 

hence can be a further step in the direction of a mechanistic process-based isotopic ecology. 
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Table 1 List of abbreviations and symbols used throughout the manuscript 

Abreviation 

or symbol 

Unit Definition 

 or HX ‰ The ratio of heavy (H) to light isotope in element X in  notation 

Noted  for sake of simplicity in some occasion 

Δ or ΔHX ‰ The trophic discrimination factor i.e. the difference in  value 

between the  value of the consumer and the  value its diet 

Received a variety of names depending on the application 

including trophic shift (e.g. McCutchan et al. 2003), trophic 

fractionation (Vander Zanden and Rasmussen 2001), trophic 

enrichment factor (Post 2002) diet to tissue discrimination factor 

(Hussey et al. 2014). Noted Δ for sake of simplicity in some 

occasion 

 d-1 The isotopic incorporation rate also named the isotopic turnover 

rate with the interpretation of 1/λ as the average retention time of 

an element in a tissue, and ln(2)/ λ as its half-life (Thomas et al. 

2015; Vander Zanden et al. 2015) 

 ‰ Asymptotic value of  in the time model of isotopic incorporation 

needed to calculate Δ 

kg d-1 The specific growth rate in an exponential model (also noted k). 

Net addition of new tissues 

kc d-1 Catabolic turnover rate also noted k or m and named metabolic 

turnover rate. Renewal of old tissues 

W g Body mass or wet weight 

W g Asymptotic body mass 

ri g 1- d-1 Rate of body mass gains (or inputs). Named anabolic rate in von 

Bertalanffy growth model or Ontognetic growth model and 

assimilation rate in DEB Theory. Note that underlying 

mechanisms may differ (Kearney 2020). 

ro d-1 Rate of body mass losses (or outputs). Named catabolic rate in 

von Bertalanffy growth model and maintenance rate in DEB 

Theory or Ontognetic growth model. Note that underlying 

mechanisms may differ (Kearney 2020) 

 - Allometric coefficient  

Δi ‰ Isotopic discrimination on the flux of body mass gains 

Δo ‰ Isotopic discrimination on the flux of body mass losses 

DIIM  Models of the dynamics of isotope incorporation in consumer 

tissues as a function of time or body mass. Usually one 

compartment first order kinetics assuming exponential growth of 

the consumer of which the time model (Tieszen et al. 1983; 

Heisslein et al. 1993) or the mass model (Carleton and Martinez 

Del Rio 2010) 

DSE - Diet switch(ing) experiment. A controlled experiment in which a 

switch in diet is provoked while  values of the consumers are 

measured over time and potentially body mass dynamics 

RE % Relative error. Used to assess the goodness of fit of the models 
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Table 2 Parameter estimation (best estimates and interval estimates) of the two isotopic 

incorporation approaches: (1) the time model assuming exponential growth, TIM; (2) the 

IsoDyn model assuming asymptotic growth patterns with an allometric coefficient =2/3 for 

the three case studies. Interval estimates are 95% confidence interval for TIM, and 2.5% and 810 

97.5% quantiles for Isodyn as parameter interval density distribution did not follow a normal 

distribution. Relative Error (RE, %) between observations and predictions for the body mass 

and the δ15N values, and the mean RE between the two latter. Specific parameters of Isodyn 

model are ri (rate of gains or assimilation), ro (rate of losses or excretion equivalent to the 

catabolic rate kc), Δi and Δo (isotopic discrimination on gains  and losses respectively) related 815 

to eq(8). In Isodyn model, the isotopic incorporation  rate (), the specific growth rate (kg) and 

the asymptotic trophic discrimination factor (Δ15N) are calculated following eq (7), eq (10), 

and as Δi - Δo respectively. Specific parameters of the time model are , Δ15N, kg and kc 

related to eq (1 to 4). Standard propagation of error formulae were used to estimate interval of 

parameters not directly estimated from the fitting methods 820 

Study Parameter Units Estimates (interval) 

   IsoDyn model Time model 

Pacific yellowtail RE body mass % 12.5 19.1 

Nuche et al. (2018) RE δ15N % 1.1 1.2 

 Mean RE % 6.8 10.1 

 ri g 1/3 d-1 21.03 (15.70 - 26.86) 10-2 -  

 ro or kc d-1 3.04 (1.88 - 4.27) 10-2 3.04 (1.90 - 4.17) 10-2 

 kg d-1 1.83 (1.65 - 1.99) 10-2 2.18 (2.14 - 2.22) 10-2 

 Δi=-Δo ‰ 1.28 (1.16 - 1.43)  -  

  d-1 4.87 (3.58 - 6.24) 10-2 5.21 (3.09 - 7.34) 10-2 

 Δ15N ‰ 2.55 (2.33 - 2.85) 2.12 (1.94 – 2.29) 

 kg/ % 37.5 41.8 

Adult mouse RE body mass % 2.0 3.4 

MacAvoy et al. (2005) RE δ15N % 0.9 1.0 

 Mean RE % 1.5 2.2 

 ri g 1/3 d-1 11.16 (4.77 – 50.0) 10-2 - 

 ro or kc d-1 3.86 (1.57 – 18.0) 10-2 3.03 (1.76 – 4.30) 10-2 

 kg d-1 0.24 (0.14 – 0.32) 10-2 0.27 (0.21 – 0.33) 10-2 

 Δi=-Δo ‰ 1.32 (1.05 – 1.94)   

  d-1 4.10 (1.75 – 18.34) 10-2 3.27 (1.57 – 5.03) 10-2 

 Δ15N ‰ 2.64 (2.11- 3.88)  1.70 (1.29 – 2.11) 

 kg/ % 5.9 8.3 

Sand goby RE body mass % 9.3 9.4 

Guelinkx et al. (2007) RE δ15N % 1.8 1.7 

 Mean RE % 5.5 5.6 

 ri g 1/3 d-1 1.77 (1.27-8.07) 10-2 - 

 ro or kc d-1 0.71 (0.57-6.16) 10-2 1.59 (0.81-2.36) 10-2 

 kg d-1 0.87 (0.53-1.27) 10-2 0.87 (0.77-0.96) 10-2 

 Δi=-Δo ‰ 2.05 (1.41-2.63) - 

  d-1 1.58 (1.11-7.19) 10-2 2.45 (1.25 – 3.65) 10-2 

 Δ15N ‰ 4.10 (2.82 - 5.26) 3.73 (2.94 – 4.52)  

 kg/ % 55.0 35.5 
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Table 3 Estimates of scaled functional response (f), a Holling type II functional response 

ranging from 0 to 1, of the von Bertalanffy model as predicted by DEB theory (see 

supplementary material 2 for details) and related ri (rate of gains i.e. assimilation) and ro (rate 

of losses i.e. excretion) values from the Common carp case study (Gaye-Siesseger et al. 825 

2004). Fish were fed at four feeding ration levels (L) from the lowest feeding ration levels to 

the highest ones (1 to 4) 

Feeding ration level  f (unitless) ri (g 1/3 d-1) ro (d
-1) 

L 1 0.16 7.39 10-2 2.27 10-2 

L 2 0.29 9.62 10-2 1.37 10-2 

L 3 0.53 12.34 10-2 0.78 10-2 

L 4 0.82 14.47 10-2 0.52 10-2 
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Figure Legends 

Fig. 1 Main features of the IsoDyn model compared to the conventional time model of isotope 

incorporation (Hesslein et al. 1993). IsoDyn model accounts for many growth forms and 

offers new perspective in the interpretation of diet switch experiments (DSE) and dynamics of 

isotope incorporation into animal tissues in general 835 

 

Fig. 2 General patterns of the IsoDyn model over time for three virtual species (see text for 

details) with an allometric coefficient  = 2/3. The same parameters that shape growth also 

shape isotopic incorporation. A) Body mass over time B) Range of values of isotopic 

incorporation rate ln() = ln(ri) + ( -1) ln(W), C) 15N difference between body and diet as a 840 

function of specific growth rate (kg) with Δi = 2‰, Δo =-2‰ and δ15Nd=0‰. kg was 

calculated following eq(15) 

 

Fig. 3 Typical 100-day Diet Switch Experiment for three species with different growth 

patterns (described in text and Fig. 2) and comparing patterns for juveniles and adults. Figures 845 

describe changes in δ15Nb of whole body over time for Sp1, Sp2, and Sp3. In each species, the 

experiment for juveniles starts at W0. For adults, experiments start at Wmax. The dash line 

represents δ15Nd value of the new diet 

 

Fig. 4 Changes in body mass (in g; left column) and δ15Nm values of muscle tissue (in ‰; 850 

right column) in three species (young adult mouse Mus musculus data from MacAvoy et al. 

2005; Pacific yellowtail juvenile fish Seriola lalandi data from Nuche-Pascual et al. 2018; 

sand goby juvenile fish Pomatoschistus minutus data from Guelinckx et al. 2007). Open 

circles are observations (mean ± sd), solid lines are predictions from Isodyn model (eq 6 and 

13), dotted lines are predictions from the time model (eq 1 and 4). Colored envelopes are 2.5 855 

and 97.5 quantiles of IsoDyn model predictions. Grey dashed lines are δ15Nd of the new diet 

 

Fig. 5 Changes in body mass (A) and δ15Nb values of whole body minus δ15Nd values of the 

diet (B) in common carp (Cyprinus carpio) diet-shifted to a new diet and fed four different 

feeding ration levels (L1, L2, L3, L4; Gaye-Siesseger et al. 2004). Closed circles are 860 

observations and lines are predictions. C) represents δ15Nb- δ
15Nd for each diet and hence for 

each mass specific growth rates   
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 880 
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