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ABSTRACT

Resolving the genetic architecture of fitness-related traits is key to understanding the evolution and
maintenance of fitness variation. However, well-characterized genetic architectures of such traits in wild
populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association
methods with sequencing data for 313 individuals from wild populations to further characterize known
candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at
five loci (on chromosomes ssa06, ssa09, ssa21, and ssa25) out of 116 candidates previously identified in an
aquaculture strain with maturation timing in wild Atlantic salmon. We found that at each of these five loci,
variation explained by the locus was predominantly driven by a single SNP suggesting the genetic
architecture of Atlantic salmon maturation includes multiple loci with simple, non-clustered alleles. This
highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study
provides a useful multi-SNP framework for future work using sequencing data to characterize genetic

variation underlying phenotypes in wild populations.
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INTRODUCTION

Understanding the genetic processes underlying fitness variation is a fundamental goal in evolutionary
biology. Identifying genetic variants that underlie fitness-related traits is therefore crucial, yet remains
challenging. Substantial effort has been made to characterize the genetic architecture of traits — i.e. Are there
few or many loci involved? Are loci effects small or large? How are loci distributed across the genome? And
what are the allele frequencies at these loci [1-5]? It is generally assumed that in most cases single genetic
variants translate into only small changes in complex traits, and therefore follow a polygenic [6,7] or an

omnigenic [3,8] model of inheritance.

Among genome-wide association studies published to date, many complex traits appear to be
polygenic [9]. Although polygenicity is widespread, an increasing number of examples of major effect loci
exist, whereby one locus explains a large proportion of the phenotypic variation [10,11]. In some cases,
major effect loci can contain multiple tightly linked genes, coined “supergenes”, where localized reduction in
recombination is often caused by larger chromosomal rearrangements. For example, this phenomenon is
known to underlie phenotypic variation observed among ruff (Philomachus pugnax) mating morphs [12,13],
Atlantic cod (Gadus morhua) [14,15] and rainbow trout (Oncorhynchus mykiss) migratory ecotypes [16], and
Heliconius butterfly wing-pattern morphs [17]. More recent work has found that major effect loci can exist
alongside a polygenic background where loci with a variety of effect sizes underlie trait variation [18,19].
Such mixed genetic architectures may be pervasive, but currently remain undetected due to the large sample
sizes required for detecting loci with smaller effects [19] and it is possible that additional examples are to be
found with future higher-powered studies. Although studies aimed at resolving genotype-phenotype links are
mounting, well-characterized genetic architectures of fitness-related traits, particularly in natural populations,

are still uncommon.

While some trait-associated loci have been identified, such findings lead to other crucial questions:
How have trait-locus associations arisen? Has the locus arisen through a single or multiple new mutations?
Or alternatively, did the locus emerge via recombination that gave rise to new combinations of existing
variants? Numerous studies from the past decade have shown that major effect loci involve the cumulative

effects of multiple mutations, rather than a single mutation, thus highlighting the relevance of considering the
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latter scenarios. For example, Bickle et al. [20] found that ~60% of variation in female abdominal
pigmentation in Drosophila melanogaster can be explained by sequence variation at the bab locus, but a
GWAS (genome-wide association study) analyzing the same trait did not identify a single SNP in bab that
passed the genome-wide significance threshold. Alleles consisting of multiple SNPs were associated with
high proportions of the variation, whereas, single SNPs had only small effects and were therefore missed in
the single-SNP GWAS. Additionally, Linnen at al. [11] and Kerdaffrec et al. [21] also identify multiple
mutations within a confined region that have cumulative effects on colour traits in deer mice and seed
dormancy in Arabidopsis thaliana, respectively. In natural populations with gene flow such as in Linnen et
al. [11] and Kerdaffrec et al. [21], this is perhaps not unexpected as theory predicts that clustered and major
effect loci will evolve under such scenarios [22,23]. Given these findings, examining extended sequence
haplotypes containing multiple SNPs, rather than each SNP independently, is important [24]. This can be
achieved by using alternative strategies that look at combined effects of variants, rather than single-SNP

methods typically used in GWAS.

Here we investigate the genetic basis of Atlantic salmon (Salmo salar) sea age at maturity — the
number of years spent in the marine environment before reaching maturity and returning to the natal river
(freshwater) to reproduce. Age at maturity is an important life history trait affecting fitness traits such as
survival, size at maturity and reproductive success [25,26]. Substantial variation in Atlantic salmon sea age
at maturity is maintained due to a trade-off between mating success at spawning grounds and survival,
whereby individuals that mature later are larger and have higher reproductive success on the spawning
grounds, but lower survival and thus lower chance of reaching reproductive age. In contrast individuals that
mature early are smaller and have lower reproductive success, but higher survival and thus higher chance of

reaching reproductive age [27,28].

Variation in maturation timing in Atlantic salmon is highly heritable [19,29,30] and consequently
there is substantial interest in understanding the underlying genetic architecture. A large-effect locus on
chromosome 25 explaining up to 39% of the variation in sea age at maturity was found in wild European
populations [10] and domesticated salmon [31]. The primary candidate gene underlying the association of

this locus is vgll3 due to its close proximity to the associated SNP variation [10,31,32] and its known
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function in other species. The vgll3 gene encodes a transcription cofactor that, amongst other things,
regulates adipogenesis [33] and is associated with variation in puberty timing in humans [34,35]. In addition
to vgll3, Sinclair-Waters et al. [19] identified 119 other candidate genes for male maturation in a GWAS
including >11,000 males from the same Atlantic salmon aquaculture strain. Two particularly strong
associations between maturation timing were found on chromosome 9 in close proximity to six6 and
chromosome 25, vgll3. The association of six6 was also found by Barson et al. [10] in wild Atlantic salmon,
however, the signal disappeared after correction for population structure. Interestingly, the six6é gene is also
associated with age at maturity in two Pacific salmon species [36], humans [35] and cattle [37]. However,
Barson et al. [10] focused solely on single-SNP associations via GWAS without considering the possible

influence of combined variant effects.

Studies using sequencing data to examine variation associated with important fitness-related traits in
wild populations are limited. However due to developments in sequencing technologies and bioinformatics,
studies using this approach are likely to rise in number. We therefore aim to provide a useful and timely
framework for characterizing genetic variation underlying phenotypes in wild populations in the future.
Here, we focus on further characterizing the association between the loci identified in Sinclair-Waters et al.
[15] and sea age at maturity in wild Atlantic salmon. We integrate re-sequencing data and phenotype
information for 313 individuals from 53 wild population of Atlantic salmon with alternative GWAS
strategies that consider the combined effects of variants, rather than single-SNP effects. This approach can
provide better resolution of the variants that are potentially involved in controlling fitness-related traits such

as maturation timing in Atlantic salmon.

METHODS

Study material

Whole genome sequencing data was obtained for 313 wild individuals collected from 53 Norwegian
and Finnish populations spanning the Norwegian coast and to the Barents sea in the north (59°N - 71°N)

(Supplementary Table S1) previously reported in Bertolotti et al. [38]. The 313-individual dataset includes
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populations belonging to both the Atlantic and Barents/White sea phylogeographic groups. These regions
were studied in Barson et al. [10] using SNP-array data and a single SNP approach, therefore missing
variants and potentially combined variant effects. Individuals were categorized into three maturation
categories based on the number of years spent at sea prior to their first return migration to rivers for
spawning: 1 (one year spent at sea), 2 (two years spent at sea), or 3 (three or more years spent at sea). Only

five individuals had spent four years and were therefore combined with three-year fish for all analyses.

SNP calling & filtering

Variant calling and the first round of filtering was done in a larger set of individuals described in
Bertolotti et al. [38]. Raw Illumina reads were mapped to the Atlantic salmon genome (ICSASG_v2) [39]
using bcbio-nextgen v.1.1 [40]with the bwa-mem aligner v.0.7.17 [41]. Genomic variation was identified
using the Genome Analysis Toolkit (GATK) v4.0.3.0., following GATK’s best practice recommendations.
Picard v2.18.7 [42] was used to mark duplicates and GATK was used for joint calling [43]. Variants were
annotated using SNPeff v. 4.3 [44]. Variant call were further filtered with GATK’s variant filtration
according to the following --filterExpression: “MQRankSum < -12.5 || ReadPosRankSum < -8.0 || QD < 2.0
|| FS > 60.0 || (QD < 10.0 && ADI[0:1] / (AD[0:1] + AD[0:0]) < 0.25 && ReadPosRankSum < 0.0) || MQ <
30.0". SNPs were then filtered using SNPable procedure [45], where 100 bp kmers are mapped to reference
genome (ICSASG_v2) using Burrows-Wheeler Aligner (bwa aln) [46], and only SNPs within regions with
reads that uniquely map are retained. We then removed additional SNPs with vcftools using the following
criteria: --min-alleles 2, --max-alleles 2, --maf 0.0000000001, --max-missing 0.7, --remove-indels, --minGQ
10, and —minDP 4. A subset 313 individuals from wild populations was then extracted from this larger

dataset using vcftools [47]. This reduced dataset was used for all subsequent analyses.

Principal component analysis

We produced a reduced SNP dataset by pruning one SNP from each SNP pair with a correlation
coefficient (r?) greater than 0.2 within a 50 kb block using the --indep-pairwise 50 10 0.2 function
implemented in PLINK v1.9 [48]. This yielded 403,540 SNPs to examine population structure using a

principal component analysis, smartpca, implemented in the EIGENSOFT v5 software [49].
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Data preparation

In this study, we focus on genomic regions containing the 116 candidate loci for age at maturity
identified in Sinclair-Waters et al. [19]. We extracted SNP genotype data from 500 kb regions surrounding
the 116 trait-associated SNPs identified in Sinclair-Waters et al. [19] using vcftools’ [47] position filtering
functions --from-bp and --to-bp, as well as allele filtering function --mac 1 to keep only polymorphic sites.
SNPs that were within 250 kb of an adjacent SNP were analyzed together by examining a region that extends

250 kb upstream of the first SNP to 250 kb downstream of the last SNP.

The current Atlantic salmon genome (ICSASG_v2) contains a known assembly error within the 500
kb region surrounding the known candidate loci vgll3 [31]. A misplaced and misoriented scaffold currently
placed downstream of vgll3 belongs within a gap in the assembly just upstream of vgll3 on ssa25. For this
reason, we constructed a revised assembly for this chromosome. SNP calling was performed as described
above. We then retained SNPs that had met the filtering criteria. A total of 8 candidate SNPs are located
within regions of the genome that were moved. To find the position of these SNPs in the revised
chromosome 25 sequence, we extracted 200 bp surrounding each of these SNPs from the current genome
assembly (ICSASG_v2) using the getfasta function in BEDTools [50]. The 200 bp sequence was then blasted
to the fixed assembly to determine the new position of each SNP using Blast’s blastn function [51]. Using
the new SNP positions, SNP genotypes within a 500 kb region surrounding the moved candidate SNPs were

extracted from the fixed dataset using vcftools.

Association testing at candidate regions

We applied three association mapping methods to describe the genetic architecture underlying sea age
at maturity at each of the candidate regions identified in Sinclair-Waters et al. [19]. First, a multi-SNP
approach examining associations between phenotype and haplotypes was conducted using Bayesian linear
regression implemented in hapQTLv1.00 [52]. In this approach, a hidden Markov model is used to
characterize haplotype structure and ancestry [53]. Haplotype sharing at each marker is then used to quantify
genetic similarity among individuals. Haplotype associations are identified by testing for an association

between genetic similarity at each marker and the phenotype [52]. Each of the extracted vcf files was
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converted to bimbam format using PLINK 1.9 [54]. The resulting bimbam files were used as input for
hapQTL. Second, single SNP associations were also identified using a Bayesian linear regression method
implemented in hapQTL [55]. For all hapQTL association tests, sex and the six most significant principal
components (see above) were included as covariates in the models. Each hapQTL run consisted of 2 EM runs
(-e 2) with 40 steps (-w 40), 2 upper clusters (-C 2), 10 lower clusters (-c 10). Three replicate hapQTL runs
were performed for each of the 116 selected regions. Based on recommendations from Jeffreys [56], Bayes
factors greater than three were considered evidence for an association of either SNPs or haplotype with sea

age at maturity phenotype.

Third, a multi-SNP approach aimed to estimate the number and identity of SNPs underlying trait
variation at each candidate region using Bayesian Variable Selection regression implemented in PiIMASS
[55]. Due to computational restrictions, the PIMASS analysis was performed for only candidate regions that
had a SNP or haplotype association with Bayes factor greater than 3. Prior to the PIMASS analysis, all
missing genotypes were imputed in BIMBAM [55] as mean genotypes (-wmg) using default settings.
Additionally, our phenotype values for sea age at maturity were adjusted to correct for confounding effects
of sex and population structure by regressing the phenotype on sex and the six most significant principal
components (see above) using the Im function in R. PIMASS was run with the residual phenotype values. We

placed priors on the proportion of variance explained by SNP(s) (hmin = 0.001 and hmax = 0.999) and the
number of SNPs in the model (pmin = Iog% and pmax = Iog%, where N is the total number of SNPs). Each

run consisted of a burn-in of 2000000 steps, followed by 2500000 steps where parameter values were
recorded every 1000 steps. For each analysis, we examined the posterior inclusion probability for each SNP,
the distribution of the number of included SNPs and the distribution of the proportions of variance explained
per model. We also examined the path of estimated Bayes factors and parameter values (h, p, s) across all

recorded iterations to check for convergence of runs.

To further assess whether more than one SNP in a candidate region was significantly associated with
sea age at maturity, we regressed out the top-associated SNP from the residual phenotype values described
above and reran PiMASS using the previously-used priors and settings. We then examined the posterior

inclusion probability for each SNP, the distribution of the number of included SNPs, and the distribution of
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proportion of variance explained to determine whether there was evidence for multiple SNP associations

within a given candidate region.

RESULTS

Principal component analysis

The first six principal components (PCs) calculated with the pruned SNP dataset explained 1.96%,
0.68%, 0.63%, 0.59%, 0.56% and 0.51% of the genetic variance, respectively (Supplementary Figure S1).
These six PCs were included in subsequent association analyses to reflect population structure among

samples.

Associations identified with hapQTL

Single-SNP and haplotype association analyses with hapQTL revealed strong (Bayes factor > 3)
association signals at 5 of the 116 candidate regions (Figure 1, Supplementary Figure S2). The strongest
association observed within each region was with a single SNP, rather than an extended haplotype,
suggesting a single mutation underlies the effect of each of these regions on maturation timing. However,
exceptions occurred in the ssa09:24636574-25136574 and ssa25:28389273-28889273 regions, where second
association signals were found upstream of the primary association signal and were most strongly linked to
an extended haplotype. For instance, strong haplotype association scores (Bayes factor > 3) spanned a 26971
bp region (ssa09:24781742-24808713) containing an uncharacterized gene (LOC106610978) and pcnx4. In

the ssa25:28389273-28889273 region, a strong haplotype signal was found within edar (Figure 1).

We find differences in the location of the top-associated SNPs found here and those identified in
Sinclair-Waters et al. [19]. For regions ssa06:27541960-28218141, ssa09:10915066-11415066 and
$sa25:28389273-28889273, the top-associated SNP was located further upstream than in Sinclair-Waters et
al. [19]. Contrastingly, the strongest associated SNPs within the regions ssa09:24636574-25136574 and

$5a21:49390687-49890687 differed only slightly (<5000 bp) between studies (Table 1).
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Figure 1. Plots displaying single SNP associations (black points) and haplotype associations (red line) scores
from hapQTL for the five candidate regions with Bayes factors greater than 3. Y-axis shows the Bayes factor
indicating the association strength. X-axis shows the position on the respective chromosomes.
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Table 1. Strongest association signals for each candidate region showing evidence of an association with sea age at maturity, the genes in closest proximity

and association values from hapQTL. Top SNPs for each region from previous SNP-array study [19].

Candidate Top signal Closest gene  Bayes -logio(P- Allele Top SNP(s)* Candidate
region Factor value) frequency gene(s)®
$5a06:27541960- 6:28045390 (SNP) pecaml 3.835 5.107 0.320 6:27791960  slc9a3rl
28218141 (intron) 6:27968141  recql5
LOC106606978

$5a09:10915066- 9:11266848 (SNP) asap2a 4.696 5.434 0.074 9:11165066  mboat2
11415066 (upstream)
55a09:24636574- 9:24888841 (SNP)  six6 6.184 4.242 0.425 9:24886574  six6
25136574 (upstream)
$5a21:49390687- 21:49645222 taarl3c 3.172 4.649 0.464 21:49640687 taarl3c
49890687 (SNP) (upstream)
$5a25:28389273- 25: 28651640 vgll3 12.893 6.406 0.358 25:28910202 vglI3
28889273 (SNP) (downstream)

[ICSASG_v2:

25:28669350]

®From Sinclair-Waters et al. [19].
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226 Multi-SNP associations identified using PiIMASS

227 Multi-SNP association analysis with PIMASS showed that at four of five candidate regions, a single-
228  SNP model was most commonly used to explain variation in sea age at maturity. At one candidate region,
229  ss5a09:24636574-25136574, a multi-SNP model including two SNPs was most commonly used to explain
230  variation in sea age at maturity. Median proportion of variance explained by each candidate region ranged
231  between 4% and 19% (Figure 2, Table 2). However, when the top-associated SNP was regressed out from
232 the phenotype values, no SNPs were selected to explain sea age at maturity for all five candidate regions.
233 Additionally, post-regression median proportion of variance was substantially lower — ranging between 0%
234  and 1% (Supplementary Figure S3, Table 2). This would suggest that sea age variation explained by each of
235  these regions is largely driven by a single mutation. We observe no obvious trends in parameter values or
236  Bayes factors, suggesting models converged and burn-in period was adequate (Supplementary Figure S4
237  &S5).

A. s5a06:27541960-28218141
i) i) ii)

1.00 4
3000 A 3000
0.751
o 20001 2000 1
& 0.501 .
0.251 1000 4 1000 A
0.00 g' Py Y Yy T ™ 04 0-
27.5427.6427.7427.8427.9428.0428.14 0 5 10 15 20 0.0 01 0.2
)38 Position (Mb) # of SNPs Proportion of variance explained
B. ssa09:10915066-11415066
i) ii) iii)
1.007 4000 4
0.751 3000 1
o
& 0.501 20001
0.251 * 1000 1
0.00 = 0-
1092 11.02 1112 1122 11.32 0 5 10 15 20 0.0 0.1 0.2
239 Position (Mb) # of SNPs Proportion of variance explained
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C. 55a09:24636574-25136574
D)

1.001 1500
0.75 1
1000
2 0.50
500
0.25
Ittt ———— 1
0'024.64 24.74 2484 24.94 2504 0 5 10 15 20 0.0 0.1 0.2
240 Position (Mb) # of SNPs Proportion of variance explained
D. ssa21:49390687-49890687
i) i) iii)
1.00 1
0.75 30001 1500 1
& 050 20001 1000+
0.25- 10001 500
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4939 4949 4959 49.69 49.79 0 5 10 15 0.00 005 010 0.15
a1 Position (Mb) # of SNPs Proportion of variance explained
E. s5a25:28389273-28889273
i) ii) iii)
1.007 1000 4
0.751 2000 1 750 1
& 0501 500
1000
0.25 .. 2501
0,00 4 mtends attihabratosdee o ] ol
28.39 2849 2859 2869 28.79 0 5 10 15 20 0.1 0.2 0.3 0.4
242 Position (Mb) # of SNPs Proportion of variance explained
243 Figure 2. PiMASS results for each of the tested candidate regions: A. ssa06:27541960-28218141, B.
244  ssa09:10915066-11415066 C. ssa09:24636574-25136574, D. ssa21:49390687-49890687, and E.
245  ss5a25:28389273-28889273. Plots display the following results for each candidate region: i) posterior
246  inclusion probability (PIP) indicating the probability of a SNP being included in a model explaining sea age
247  at maturity variation, ii) truncated distribution of the number of SNPs included in a model explaining sea age
248  at maturity variation, and iii) distribution of proportion of variance explained per recorded iteration (2500).
249  Red line indicates the median proportion of variance explained.
250
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Table 2. PiMASS results prior to and after regression of top-associated SNP identified in the initial PIMASS
analysis. These include the mode of the distribution of the number of SNPs and the median of the
distribution of proportion of variance explained (PVE) for a model explaining sea age at maturity.

Candidate region  Mode # of SNPs Median PVE Mode # of SNPs Median PVE
(post-regression)  (post-regression)

$sa06:27541960- 1 0.05 0 0
28218141

$5a09:10915066- 1 0.07 0 0.01
11415066

$5a09:24636574- 2 0.09 0 0.01
25136574

$sa21:49390687- 1 0.04 0 0
49890687

$5a25:28389273- 1 0.19 0 0.01
28889273

DISCUSSION

Despite that combined effects of multiple variants at trait-associated loci are playing an important role
in controlling fitness traits across a variety of species [11,20,21], our results indicate that sea age at
maturation in Atlantic salmon is predominantly associated with single SNP variation at candidate regions.
Using resequencing data to analyse 116 candidate loci and an analytical framework aimed at detecting multi-
SNP associations, we find that single SNPs explain the variation in sea age at maturity in almost all cases.
This work targeting candidate genes identified in aquaculture salmon strains suggests a mixed genetic
architecture where a combination large-effect loci and smaller-effect loci also underlies age at maturity in
wild Atlantic salmon populations. Two core loci, vgll3 and six6, likely play a key role in determining age at
maturity and additional smaller effect loci may be important for fine-tuning the trait across heterogeneous

environments.

Theoretical modelling predicts that clustering of tightly linked adaptive mutations will occur under
gene flow and selection in populations inhabiting spatially and/or temporally heterogeneous environments
[22,23]. Although this seems to be a plausible scenario under which the genetic architecture of age at
maturity has evolved in Atlantic salmon, our work suggests that the association in each of the candidate
regions is driven by a single mutation. We cannot rule out, however, the possibility that the examined
regions have pleiotropic effects and contain SNPs controlling other adaptive traits that have weak or no
correlation with maturation timing. It is also possible that we did not have sufficient power to detect
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additional SNPs in these regions with small effects or with rare alleles. However, previous empirical studies
have found few, but complex, loci with clusters of adaptive mutations [11,20,21], thus motivating our
investigation of multi-SNP and haplotypic effects. Remington [24] also highlights the importance of
distinguishing between allelic effects and single mutational effects when examining the genetic architecture
of adaptive variation and its evolution. Our findings, however, suggest that alternative genetic architectures
are feasible. One possible explanation could relate to the multiple whole genome duplication events that have
occurred in Atlantic salmon and other salmonids [57]. The presence of multiple gene copies may impact the
evolution of genetic architecture for traits such as age at maturity in Atlantic salmon. It is also possible that
gene flow among Atlantic salmon populations is too restricted to neighbouring populations and/or strength of
selection is insufficient for the establishment of linked mutations, as there is a rather specific balance of gene
flow and selection required for clustered loci to arise [58]. Both an extension of models predicting genetic
architecture and additional empirical studies — on a wider variety organisms and traits — are needed to
evaluate the generality of particular architectures and to further understand the conditions under which they

evolve.

We find additional evidence that a large-effect locus on ssa25, vgll3, largely underlies age at maturity
in Atlantic salmon corroborating findings from a number of association studies on Atlantic salmon
maturation [10,19,31,32,59]. The second strongest associated locus in this study is located in close proximity
to six6 on ssa09. This locus was previously found to be associated with early maturation in male farmed
Atlantic salmon [19], with sea age at maturity in wild Atlantic salmon prior to population structure correction
[10] and two species of Pacific salmon (Sockeye salmon and Steelhead trout) [36]. Additionally, we found
another three loci associated with sea age at maturity: pecaml, asap2aa and taar13c. The handful of loci
found here suggests that wild Atlantic salmon have a mixed genetic architecture where multiple loci, with a
variety of effect sizes, control maturation timing — similar to what has been found in male farmed Atlantic
salmon [19]. Knowledge of this mixed genetic architecture is highly relevant for how we predict the
evolution of maturation timing in wild Atlantic salmon populations. A large body of work has shown the
relevance of genetic architecture in determining evolutionary responses [60-68]. Recent works highlight the

relevance of the genetic architecture underlying fitness traits when predicting a population’s response to
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environmental changes [69] and selective pressures such a fishing [70]. Future work elucidating how such
mixed genetic architectures affect predicted evolution of traits, compared to that of omnigenic or polygenic

architectures, will be valuable.

We find differences in locations of top-associated SNPs identified here and in Sinclair-Waters et al.
[19]. This is not surprising given that we are examining sequence data that captures more SNP variation
compared to SNP-array data used in Sinclair-Waters et al. [19]. Furthermore, we failed to find associations
between sea age at maturity and many of the candidate regions identified in Sinclair-Waters et al. [19]. For
example, several candidate regions on ssa03 and ssa04 displayed particularly strong association signals in
aquaculture salmon, however, no signals at these regions were found here. Additionally, only one association
peak at ssa06:27541960-28218141 was found here, whereas two independent associations within this region
were found in aquaculture salmon [19]. Such differences may reflect changes in the genetic architecture of
the trait evolving since the domestication of Atlantic salmon. Although, we would not expect large changes
to occur given the domestication is relatively recent, just 10 to 15 generations ago [71]. Furthermore, this
study is likely under-powered to detect all previously identified loci, particularly those with smaller effect
sizes or rare alleles, due to smaller sample size. Additionally, there could be differences in genetic
architecture among environments [72] and/or genotype by environment interactions giving rise to distinct

genetic architectures in wild populations versus aquaculture strains.

We do not find strong evidence of multi-SNP associations at candidate loci examined in this study,
however, we cannot yet disregard the utility of multi-SNP association methods for further resolving the
genetic architecture of Atlantic salmon maturation. First, we do not examine the entire genome due to
computational restrictions, rather, we focussed on 116 previously identified candidate regions. Second, the
Atlantic salmon genome is highly complex [39] and therefore errors in the assembly that may be disruptive
for haplotype-based analysis could exist. As new and improved versions of the Atlantic salmon genome are
published, our ability to test for haplotypic associations will improve. Furthermore, in a few cases
(s5a09:10915066-11415066, ssa09:24636574-25136574, ssa25:28389273-28889273) the PIMASS analyses
post-regression of the top SNP selected no SNPs for a model explaining sea age at maturity variation,

however, the median proportion of variance explained across all iterations was greater than zero. This may
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suggest that a weak signal was present, but was being missed due to insufficient power. Although this is
largely speculative, it suggests that ruling out the possibility of multi-SNP associations at these particular
candidate regions may be premature. Higher-powered studies (i.e. more individuals per population) may help

to resolve this in the future.

In conclusion, our analytical framework, combining both single and multi-SNP association methods,
reveals that single SNP variation is sufficient for explaining the association of previously identified
candidate loci for Atlantic salmon maturation timing. Previous empirical and theoretical work have described
trait-associated loci that have complex alleles with multiple variants, our findings therefore demonstrate the
diversity of genetic architectures for fitness-related traits. Additional data, and a greater diversity of species
and traits, will serve to better understand why this diversity of genetic architectures exists and how these
particular genetic architectures evolve. The analytical framework used here will be a valuable resource for
accomplishing this as individual-level resequencing data for wild species with phenotyped individuals

becomes increasingly available.

Acknowledgements

Funding was provided by Academy of Finland (grant numbers 307593, 302873 and 327255), the Research
Council of Norway (NFR-275310 and NFR-275862) and a Natural Sciences and Engineering Research
Council of Canada postgraduate scholarship. Wild Atlantic salmon genome sequencing was funded by the
Research Council of Norway (The Aqua Genome project; ref: 221734). We would like to acknowledge
Terese Andersstuen, Dr Mariann Arnyasi and Hanna Hellerud Hansen from CIGENE for their work in
organising the sequencing of samples. We thank Gunnel @sthorg (NINA), Kurt Urdal (Radgivende Biologer)
and Natural Resources Institute Finland (LUKE) for their work collecting phenotype data. We also
acknowledge the Agua Genome project for providing access to data prior to public release. The Orion
Computing Cluster at CIGENE-NMBU and CSC — IT Center for Science, Finland are acknowledged for

computational resources. Storage resources were provided by the Norwegian National Infrastructure for

18


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446127; this version posted May 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Research Data (NIRD, project NS9055K). Phenotype data was provided by the Norwegian Institute for

Nature Research (NINA).
Data availability

Genome re-sequencing data for individuals used in this study are available in the European Nucleotide

Archive (ENA) or NCBI with the project accession code PRIEB38061 [38].
Contributions

CRP, NJB, MSW conceived the study. TN developed the variant calling workflow and constructed the fixed
assembly of ssa25. JW developed the variant filtering criteria. MSW performed all downstream analyses
with input from NJB. MPK played key role in generating whole genome sequencing data. SL led the whole
genome sequencing work as part of the AquaGenome project. HS, GHB, BFL, CRP coordinated Atlantic
salmon sampling and provided phenotypic information. MSW, CRP, NJB drafted the manuscript. All authors

commented on and approved the final manuscript.

Competing interests

There are no competing interests.

19


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

368

369
370

371
372

373
374

375
376
377

378
379
380

381
382

383

384
385

386
387
388

389
390
391

392
393

394
395
396

397
398

399
400
401

402
403
404
405

406
407
408

409
410

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446127; this version posted May 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. Rare and low-frequency
coding variants alter human adult height. Nature. 2017;542(7640):186-90.

Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape
of the genetic contribution to human traits and disease. Nat Rev Genet. 2017,

Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to
Omnigenic. Cell. 2017;169(7):1177-86.

Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous Discovery,
Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model. PL0oS
Genet. 2015;11(4):1-22.

Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, et al. Contrasting genetic
architectures of schizophrenia and other complex diseases using fast variance-components analysis.
Nat Genet. 2015;47(12):1385-92.

Fisher R. The correlations between relatives on the supposition of mendelian inheritance. Philos
Trans R Soc Edinburgh. 1918;52:399-433.

Pritchard JK, Di Rienzo A. Adaptation - not by sweeps alone. Nat Rev Genet. 2010;11(10):665-7.

Liu X, Li YI, Pritchard JK. Trans Effects on Gene Expression Can Drive Omnigenic Inheritance.
Cell. 2019;177(4):1022-1034.€6.

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS
Discovery: Biology, Function, and Translation. Am J Hum Genet [Internet]. 2017;101(1):5-22.
Available from: http://dx.doi.org/10.1016/j.ajhg.2017.06.005

Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH, Fiske P, et al. Sex-dependent dominance
at a single locus maintains variation in age at maturity in salmon. Nature. 2015 Dec
17;528(7582):405-8.

Linnen CR, Poh Y-P, Peterson BK, Barrett RDH, Larson JG, Jensen JD, et al. Adaptive evolution of
multiple traits through multiple mutations at a single gene. Science (80- ). 2013;339(6125):1312-6.

Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, et al. Structural
genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat
Genet. 2015;48(1):84-8.

Kipper C, Stocks M, Risse JE, Dos Remedios N, Farrell LL, McRae SB, et al. A supergene
determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2015;48(1):79-83.

Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, et al. Two adjacent
inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic
cod. Mol Ecol. 2016;25:2130-43.

Sinclair-Waters M, Bradbury IR, Morris CJ, Lien S, Kent MP, Bentzen P. Ancient chromosomal
rearrangement associated with local adaptation of a post-glacially colonized population of Atlantic
Cod in the northwest Atlantic. Mol Ecol [Internet]. 2017;(October):1-13. Available from:
http://doi.wiley.com/10.1111/mec.14442

Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadia-Cardoso A, et al. Sex-dependent
dominance maintains migration supergene in rainbow trout. bioRxiv [Internet]. 2018;504621.
Available from: https://www.biorxiv.org/content/early/2018/12/22/504621.article-metrics

Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. polymorphic supergene
controlling butterfly mimicry. Nature. 2011;

20


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

411
412
413

414
415
416
417

418
419

420
421
422

423
424

425
426
427
428

429
430

431
432

433
434
435

436
437

438
439
440

441
442

443
444
445
446
447

448
449
450

451
452
453
454

455

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446127; this version posted May 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

made available under aCC-BY-NC-ND 4.0 International license.

Sinnott-Armstrong N, Naqgvi S, Rivas MA, Pritchard JK. GWAS of three molecular traits highlights
core genes and pathways alongside a highly polygenic background. bioRxiv.
2020;2020.04.20.051631.

Sinclair-Waters M, @degard J, Korsvoll SA, Moen T, Lien S, Primmer CR, et al. Beyond large-effect
loci: large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of
Atlantic salmon. Genet Sel Evol [Internet]. 2020;52(1):9. Available from:
https://doi.org/10.1186/s12711-020-0529-8

Bickel RD, Kopp A, Nuzhdin S V. Composite effects of polymorphisms near multiple regulatory
elements create a major-effect QTL. PLoS Genet. 2011;7(1):1-8.

Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V, Seren U, et al. Multiple alleles at a single
locus control seed dormancy in Swedish Arabidopsis. Elife [Internet]. 2016 Dec 14;5(3):1-24.
Available from: http://elifesciences.org/lookup/doi/10.7554/eL ife.22502

Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance.
Evolution (N Y). 2011;65(7):1897-911.

Yeaman S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl
Acad Sci U S A [Internet]. 2013;110:E1743-51. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3651494&tool=pmcentrez&rendertype=a
bstract

Remington DL. Alleles versus mutations: Understanding the evolution of genetic architecture
requires a molecular perspective on allelic origins. Evolution (N Y). 2015;69(12):3025-38.

Stearns SC. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften.
2000;87(11):476-86.

Maobley KB, Aykanat T, Czorlich Y, House A, Kurko J, Miettinen A, et al. Maturation in Atlantic
salmon (Salmo salar, Salmonidae): a review of ecological, genetic, and molecular processes. FEBS
Lett. 2020;(November):1-58.

Fleming IA, Einum S. Reproductive ecology: a tale of two sexes. In: Atlantic Salmon Ecology. 2011.
p. 35-65.

Mabley KB, Granroth-Wilding H, Ellmén M, Orell P, Erkinaro J, Primmer CR. Time spent in distinct
life history stages has sex-specific effects on reproductive fitness in wild Atlantic salmon. Mol Ecol.
2020;29(6):1173-84.

Gjerde B. Response to individual selection for age at sexual maturity in Atlantic salmon.
Agquaculture. 1984;38(3):229-40.

Reed TE, Prodéhl PA, Bradley C, Gilbey J, McGinnity P, Primmer CR, et al. Heritability estimation
via molecular pedigree reconstruction in a wild fish population reveals substantial evolutionary
potential for sea-age at maturity, but not size within age-classes. Can J Fish Aquat Sci [Internet].
2018;cjfas-2018-0123. Available from: http://www.nrcresearchpress.com/doi/10.1139/cjfas-2018-
0123

Ayllon F, Kjeerner-Semb E, Furmanek T, Wennevik V, Solberg MF, Dahle G, et al. The vglI3 Locus
Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males. PLoS
Genet. 2015;11(11):1-15.

Sinclair-Waters M, Piavchenko N, Ruokolainen A, Aykanat T, Erkinaro J, Primmer CR. Refining the
genomic location of SNP variation affecting Atlantic salmon maturation timing at a key large-effect
locus. bioRxiv [Internet]. 2021; Available from:
https://www.biorxiv.org/content/early/2021/04/26/2021.04.26.441431

Halperin DS, Pan C, Lusis AJ, Tontonoz P. Vestigial-like 3 is an inhibitor of adipocyte

21


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

456

457
458
459

460
461

462
463

464
465
466

467
468
469

470
471

472
473

474
475

476

477
478
479

480
481
482

483
484

485
486

487
488

489
490
491

492

493
494

495
496

497
498

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446127; this version posted May 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

made available under aCC-BY-NC-ND 4.0 International license.

differentiation. J Lipid Res. 2013;54(2):473-81.

Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, et al. Genomic analyses
identify hundreds of variants associated with age at menarche and support a role for puberty timing in
cancer risk. Nat Genet. 2017;49(6):834-41.

Perry JRB, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, et al. Parent-of-origin-specific allelic
associations among 106 genomic loci for age at menarche. Nature. 2014 Jul 23;514:92.

Waters CD, Clemento A, Aykanat T, Garza JC, Naish KA, Narum S, et al. Heterogeneous genetic
basis of age at maturity in salmonid fishes. Molcular Ecol. 2021,

Céanovas A, Reverter A, DeAtley KL, Ashley RL, Colgrave ML, Fortes MRS, et al. Multi-tissue
omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS One.
2014;9(7):1-17.

Bertolotti AC, Layer RM, Gundappa MK, Gallagher MD, Pehlivanoglu E, Nome T, et al. The
structural variation landscape in 492 Atlantic salmon genomes. Nat Commun [Internet].
2020;11(5176). Available from: https://doi.org/10.1101/2020.05.16.099614

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon genome
provides insights into rediploidization. Nature. 2016 May 12;533(7602):200-5.

Chapman B, Kirchner R, Pantano L, Smet M De, Beltrame L, Khotiainsteva T, et al. bchio/bcbio-
nextgen: v1.2.3. 2020 Apr 7 [cited 2020 Sep 17]; Available from: https://zenodo.org/record/3743344

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv
[Internet]. 2013 Mar 16 [cited 2020 Sep 17]; Available from: https://arxiv.org/abs/1303.3997

Picard toolkit. Broad Institute, GitHub repository. Broad Institute; 2019.

Depristo MA, Banks E, Poplin R, Garimella K V., Maguire JR, Hartl C, et al. A framework for
variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet.
2011;43(5):491-501.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and
predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80-92.

Li H. SNPable Regions [Internet]. 2009. Available from:
http://In3Ih3.users.sourceforge.net/snpable.shtmi

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009 Jul;25(14):1754-60.

Danecek P, Auton A, Abecasis G, Albers C, Banks E, DePristo M. The variant call format and
vcftools. Bioinformatics. 2011;27(15):2156-2158.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D. Plink: A tool set for whole-
genome association and population-based linkage analyses. Am J Hum Genet [Internet]. 2007;81.
Available from: https://doi.org/10.1086/519795

Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLoS Genet. 2006;2(12).

Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features.
Bioinformatics. 2010;26(6):841-2.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: Architecture
and applications. BMC Bioinformatics. 2009;10:1-9.

Xu H, Guan Y. Detecting local haplotype sharing and haplotype association. Genetics.
2014;197(3):823-38.

22


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

499

500
501

502
503

504

505
506

507
508
509

510
511
512

513

514
515

516
517

518
519

520
521

522
523

524
525

526
527

528
529

530
531
532

533
534

535
536
537

538

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446127; this version posted May 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

53.
54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.
69.

70.

71.

72.

made available under aCC-BY-NC-ND 4.0 International license.

Guan Y. Detecting structure of haplotypes and local ancestry. Genetics. 2014;196(3):625-42.

Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK:
rising to the challenge of larger and richer datasets. Gigascience. 2015 Feb;4(1):7.

Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies and
other large-scale problems. Ann Appl Stat. 2011;5(3):1780-815.

Harold Jeffreys. The Theory of Probability. 2020. 470 p.

Allendorf FW, Thorgaard GH. Tetraploidy and the Evolution of the Salmonid Fishes. Springer.
Monographs in Evolutionary Biology. Boston; 1984. 55-93 p.

Yeaman S, Aeschbacher S, Biirger R. The evolution of genomic islands by increased establishment
probability of linked alleles. Mol Ecol [Internet]. 2016 Jun 1;25(11):2542-58. Available from:
https://doi.org/10.1111/mec.13611

Ayllon F, Solberg MF, Glover KA, Mohammadi F, Kjerner-semb E, Fjelldal PG, et al. The influence
of vglI3 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon. BMC
Genet. 2019;20(44):1-8.

Barton NH, Turelli M. Natural and sexual selection on many loci. Genetics. 1991 Jan;127(1):229-55.

Turelli M. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the
abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138-93.

Turelli M, Barton NH. Polygenic Variation Maintained by Balancing Selection: Pleiotropy, Sex-
Dependent Allelic Effects and G x E Interactions. Genetics. 2004;166(2):1053-79.

Turelli M, Barton NH. Dynamics of polygenic characters under selection. Theor Popul Biol.
1990;38(1):1-57.

Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked
loci. Genet Res. 2009/04/14. 1975;26(3):221-35.

Bulmer MG. The genetic variability of polygenic characters under optimizing selection, mutation and
drift. Genet Res (Camb). 1972;19(1):17-25.

Débarre F, Yeaman S, Guillaume F. Evolution of Quantitative Traits under a Migration-Selection
Balance : When Does Skew Matter ?*. Am Nat. 2015;186.

Fisher R. The genetical theory of natural selection. Clarendon, Oxford; 1930.
Yeaman S. Local Adaptation by Alleles of Small Effect *. Am Nat. 2015;186.

Kardos M, Luikart G. The genetic architecture of fitness drives population viability during rapid
environmental change. Am Nat. 2021;

Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked
Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered [Internet].
2020;319-32. Available from: https://academic.oup.com/jhered/article/111/4/319/5867197

Gjerde B, Gjedrem T. Estimates of phenotypic and genetic parameters for carcass traits in Atlantic
salmon and rainbow trout. Aquaculture. 1984;36(1-2):97-110.

Yan W, Wang B, Chan E, Mitchell-Olds T. Genetic architecture and adaptation of flowering time
among environments. New Phytol [Internet]. 2021 Jan 23;n/a(n/a). Available from:
https://doi.org/10.1111/nph.17229

23


https://doi.org/10.1101/2021.05.28.446127
http://creativecommons.org/licenses/by-nc-nd/4.0/

