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.+ Abstract

12 Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies
13 to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary
14 dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate
15 phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer
18 programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary
17 outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic
18 populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change?
19 (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity
20 affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive
21 phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic
22 variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic
23 populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the
24 repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive
25 alleles via deleterious hitchhiking, whereas phenotypic plasticity can stabilize populations against environmental
26 fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic
27 counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more
23 similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical
29 fluctuating environment. All natural environments subject populations to some form of change; our findings suggest

s that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.

«+ 1 Introduction

2 Natural organisms employ a wide range of evolved strategies for coping with environmental change, such as periodic
33 migration (Winger et al., [2019)), bet-hedging (Beaumont et al., 2009)), adaptive tracking (Barrett and Schluter, 2008)),
s+ and phenotypic plasticity (Ghalambor et al.,|2007). The particular mechanisms that evolve in response to fluctuating

35 environments will also shift the course of subsequent evolution (Wennersten and Forsman|, |2012; |Schaum and Collins),
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s |2014)). As such, if we are to understand or predict evolutionary outcomes, we must be able to identify which mechanisms

a7 are most likely to evolve and what constraints and opportunities they impart on subsequent evolution.

s In this work, we focus on phenotypic plasticity, which can be defined as the capacity for a single genotype to alter
39 phenotypic expression in response to a change in its environment (West-Eberhard, 2003). Phenotypic plasticity is
s controlled by genes whose expression is coupled to one or more environmental signals, which may be either biotic
+1 or abiotic. For example, the sex ratio of the crustacean Gammarus duebeni is modulated by changes in photoperiod
«2 and temperature (Dunn et al., 2005), and the reproductive output of some invertebrate species is heightened when
43 infected with parasites to compensate for offspring loss (Chadwick and Little, [2005). In this study, we conducted digital
4 evolution experiments to investigate how the evolution of adaptive phenotypic plasticity shifts the course of evolution in
s acyclically changing environment. Specifically, we examined the effects of adaptive plasticity on subsequent genomic
s and phenotypic change, the capacity to evolve and then maintain novel traits, and the accumulation of deleterious
47 alleles.

s Evolutionary biologists have long been interested in how evolutionary change is influenced by phenotypic plasticity
s because of its role in generating phenotypic variance (Gibert et al., 2019). The effects of phenotypic plasticity on
s adaptive evolution have been disputed, as few studies have been able to observe both the initial patterns of plasticity
st and the subsequent divergence of traits in natural populations (Ghalambor et al.,2007; |Wund} 2012} |Forsman, 2015;
52 |Ghalambor et al.,2015;|Hendryl |2016). In changing environments, adaptive phenotypic plasticity provides a mechanism
s3  for organisms to regulate trait expression within their lifetime, which can stabilize populations through those changes
s« (Gibert et al., 2019). In this context, the stabilizing effect of adaptive plasticity has been hypothesized to constrain the
ss rate of adaptive evolution (Gupta and Lewontin, |1982} |Ancel, [2000; Huey et al., [2003} [Price et al.,|2003}; [Paenke et al.,
s |2007). That is, directional selection may be weak if environmentally-induced phenotypes are close to the optimum; as
57 such, adaptively plastic populations may evolve slowly (relative to non-plastic populations) unless there is a substantial

ss  fitness cost to plasticity.

ss  Phenotypic plasticity allows for the accumulation of genetic variation in genomic regions that are unexpressed under
eo current environmental conditions. Such cryptic (“hidden”) genetic variation can serve as a source of diversity in the
et population, upon which selection can act when the environment changes (Schlichting| [2008; [Levis and Pfennig, 2016).
62 It remains unclear to what extent and under what circumstances this cryptic variation caches adaptive potential or
63 merely accumulates deleterious alleles (Gibson and Dworkinl 2004; [Paaby and Rockman, 2014;Zheng et al., | 2019).

e« The “genes as followers” hypothesis (also known as the “plasticity first” hypothesis) predicts that phenotypic plasticity
es may facilitate adaptive evolutionary change by producing variants with enhanced fitness under stressful or novel
e conditions (West-Eberhard, 2003} Schwander and Leimar, |201 1} |Levis and Pfennig, [2016). Environmentally-induced
e7 trait changes can be refined through selection over time (i.e., genetic accommodation). Further, selection may drive
es plastic phenotypes to lose their environmental dependence over time in a process known as genetic assimilation
e (West-Eberhard, 2005; Pigliucci, [2006; |Crispol 2007; Schlichting and Wund, 2014; Levis and Pfennig, 2016)). In this
70 way, environmentally-induced phenotypic changes can precede an evolutionary response.

71 Phenotypic plasticity may also “rescue” populations from extinction under changing environmental conditions by
72 buffering populations against novel stressors. This buffer promotes stability and persistence and grants populations time

73 to further adapt to rapidly changing environmental conditions (West-Eberhard, 2003};|Chevin and Lande} 2010).

74 Disparate predictions about how phenotypic plasticity may shift the course of subsequent evolution are not necessarily
75 mutually exclusive. Genetic and environmental contexts determine if, and to what extent, phenotypic plasticity promotes

76 or constrains subsequent evolution. Figure [[|overviews how we might expect different forms of phenotypic plasticity to
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Figure 1 Hypothetical reaction norms for genotypes placed in different environments. In all panels, two environments
(denoted E; and E») are shown on the x-axis. The y-axis indicates the phenotype expressed in each environment with Og; and
Og2 designating the optimal phenotype for E;1 and Eq, respectively. Each pair of points connected by a solid black line denotes a
genotype, with the points themselves representing its hypothetical phenotypes in each environment. We present four scenarios for
how populations could respond to a change from E; to Es. (a) A non-plastic population where phenotypes do not change with
environmental shifts. In such cases, we would expect strong directional selection toward Ogz after the environment changes. (b)
An adaptively plastic populations where phenotypes dynamically adjust to the new optimum whenever the environment shifts. As
such, we would expect this population to remain relatively stable after the environment changes. (c) A population exhibiting
non-adaptive plasticity with substantial variation in how individuals respond to the environmental change. In this case, we expect
the change in environment to result in a rapid evolutionary sweep by genotypes closest to the new optimal phenotype. (d) A
population exhibiting maladaptive plasticity relative to the given environmental change. When the environment changes, there is
little variation for selection to act on, and without beneficial mutations, this population could be at risk of extinction.

77 result in different evolutionary responses after an environmental change.

s Experimental studies investigating the relationship between phenotypic plasticity and evolutionary outcomes can be
79 challenging to conduct in natural systems. Such experiments would require the ability to irreversibly toggle plasticity
s followed by long periods of evolution during which detailed phenotypic data would need to be collected. Digital
a1 evolution experiments have emerged as a powerful research framework from which evolution can be studied. In
g2 digital evolution, self-replicating computer programs (digital organisms) compete for resources, mutate, and evolve
s following Darwinian dynamics (Wilke and Adami, |2002)). Digital evolution studies balance the speed and transparency
s of mathematical and computational simulations with the open-ended realism of laboratory experiments. Modern

ss computers allow us to observe many generations of digital evolution at tractable time scales; thousands of generations
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s can take mere minutes as opposed to months, years, or millennia. Digital evolution systems also allow for perfect,
&7 non-invasive data tracking. Such transparency permits the tracking of complete evolutionary histories within an
s experiment, which circumvents the historical problem of drawing evolutionary inferences using incomplete records
s (from frozen samples or fossils) and extant genetic sequences. Additionally, digital evolution systems allow for
90 experimental manipulations and analyses that go beyond what is possible in wet-lab experiments. Such analyses have
o1 included exhaustive knockouts of every site in a genome to identify the functionality of each (Lenski et al., [2003)),
92 comprehensive characterization of local mutational landscapes (Lenski et al., |1999; |Canino-Koning et al.,2019)), and
93 the real-time reversion of all deleterious mutations as they occur to isolate their long-term effects on evolutionary
s« outcomes (Covert et al.,2013). Furthermore, digital evolution studies allow us to directly toggle the possibility for
o5 adaptive plastic responses to evolve, which enables us to empirically test hypotheses that were previously relegated to

9 theoretical analyses.

o7 In this work, we use the Avida Digital Evolution Platform (Ofria et al.,[2009). Avida is an open-source system that has
ss been used to conduct a wide range of well-regarded studies on evolutionary dynamics, including the origins of complex
99 features (Lenski et al.| 2003)), the survival of the flattest effect (Wilke et al., [2001)), and the origins of reproductive
10 division of labor (Goldsby et al., 2014). Our experiments build directly on previous studies in Avida that characterized
101 the de novo evolution of adaptive phenotypic plasticity (Clune et al.,|2007; [Lalejini and Ofrial, 2016) as well as previous
102 work investigating the evolutionary consequences of fluctuating environments for populations of non-plastic digital
s organisms (L1 and Wilke, |2004; |Canino-Koning et al., 2019). Of particular relevance, Clune et al. (2007) and [Lalejini
104 |and Ofrial (2016) experimentally demonstrated that adaptive phenotypic plasticity can evolve given the following four
15 conditions (as identified by |Ghalambor et al.[2010): (1) populations experience temporal environmental variation, (2)
106 these environments are differentiable by reliable cues, (3) each environment favors different phenotypic traits, and (4)
107 no single phenotype exhibits high fitness across all environments. We build on this previous work, but we shift our
1s focus from the evolutionary causes of adaptive phenotypic plasticity to investigate its evolutionary consequences in a

109 fluctuating environment.

110 Each of our experiments are divided into two phases: in phase one, we precondition sets of founder organisms with
1 differing plastic or non-plastic adaptations; in phase two, we examine the subsequent evolution of populations founded
112 with organisms from phase one under specific environmental conditions (Figure[2). First, we examine the evolutionary
113 histories of phase two populations to test whether adaptive plasticity constrained subsequent genomic and phenotypic
112 changes. Next, we evaluate how adaptive plasticity influences how well populations produced by each type of founder
115 can evolve and retain novel adaptive traits. Finally, we examine lineages to determine whether adaptive plasticity

ns facilitated the accumulation of cryptic genetic variation that would prove deleterious when the environment changed.

117 We found that the evolution of adaptive plasticity reduced subsequent rates of evolutionary change in a cyclic environ-
11s ment. The non-plastic populations underwent more frequent selective sweeps and accumulated many more genetic
119 changes over time, as non-plastic populations relied on genetic variation from de novo mutations to continuously readapt
120 to environmental changes. The evolution of adaptive phenotypic plasticity buffered populations against environmental
121 fluctuations, whereas repeated selective sweeps in non-plastic populations drove the accumulation of deleterious
122 mutations and the loss of secondary beneficial traits via deleterious hitchhiking. As such, adaptively plastic populations
123 were better able to retain novel traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic
124 plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than

125 to non-plastic populations evolving in an identical fluctuating environment.
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» 2 Materials and Methods

2z 2.1 The Avida Digital Evolution Platform

128 Avida is a study system wherein self-replicating computer programs (digital organisms) compete for space on a finite
120 toroidal grid (Ofria et al., |2009). Each digital organism is defined by a linear sequence of program instructions (its
130 genome) and a set of virtual hardware components used to interpret and express those instructions. Genomes are
131 expressed sequentially except when the execution of one instruction (e.g., a “jump” instruction) deterministically
122 changes which instruction should be executed next. Genomes are built using an instruction set that is both robust (i.e.,
133 any ordering of instructions is syntactically valid, though not necessarily meaningful) and Turing Complete (i.e., able
134 to represent any computable function, though not necessarily in an efficient manner). The instruction set includes

135 operations for basic computations, flow control (e.g., conditional logic and looping), input, output, and self-replication.

136 Organisms in Avida reproduce asexually by copying their genome instruction-by-instruction and then dividing. However,
137 copy operations are imperfect and can result in single-instruction substitution mutations in an offspring’s genome. For
138 this work, we configured copy operations to err at a rate of one expected mutation for every 400 instructions copied (i.e.,
139 a per-instruction error rate of 0.0025). We held individual genomes at a fixed length of 100 instructions; that is, we did
10 not include insertion and deletion mutations. We used fixed-length genomes to control for treatment-specific conditions
141 resulting in the evolution of substantially different genome sizes (Lalejini and Ferguson, 2021aﬂ which could, on its
122 own, drive differences in evolutionary outcomes among experimental treatments. When an organism divides in Avida,
13 its offspring is placed in a random location on the toroidal grid, replacing any previous occupant. For this work, we used
e the default 60 by 60 grid size, which limits the maximum population size to 3600 organisms. As such, improvements to

145 the speed of self-replication are advantageous in the competition for space.

16 During evolution, organism replication rates improve in two ways: by improving genome efficiency (e.g., using a
147 more compact encoding) or by accelerating the rate at which the genome is expressed (their “metabolic rate”). An
14s  organism’s metabolic rate determines the speed at which it executes instructions in its genome. Initially, an organism’s
149 metabolic rate is proportional to the length of its genome, but that rate is adjusted as it completes designated tasks,
150 such as performing Boolean logic computations (Ofria et al.,2009). In this way, we can reward or punish particular

151 phenotypic traits.

12 2.1.1 Phenotypic plasticity in Avida

1ss In this work, we measure a digital organism’s phenotype as the set of Boolean logic functions that it performs in a given
154 environment. Sensory instructions in the Avida instruction set allow organisms to detect how performing a particular
155 logic function would affect their metabolic rate (see supplemental material for more details, [Lalejini and Ferguson
156 [2021a). We define a phenotypically plastic organism as one that uses sensory information to alter which logic functions

157 it performs based on the environment.

1ss  Phenotypic plasticity in Avida can be adaptive or non-adaptive for a given set of environments. Adaptive plasticity shifts
159 net task expression closer to the optimum for the given environments. Non-adaptive plasticity changes task expression
10 in either a neutral or deleterious way. In this work, optimal plasticity toggles tasks to always perfectly match the set of

1s1  rewarded tasks for the given set of environments.

'We repeated our experiments without genome size restrictions and observed qualitatively similar results (see supplemental material, |Lalejini and
Ferguson|2021a)).
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Figure 2 Overview of experimental design. The first three plots in panel (a) show the environments used in every experiment
and whether they reward or punish each base task. Additionally, the last two subplots in (a) show the additional tasks added in
phases 2B and 2C. All novel tasks in phase 2B confer a 10% metabolic reward, while executing the poisonous task in phase 2C
causes a 10% metabolic punishment (bars not drawn to scale). Panel (b) shows treatment differences and experimental phases.
Treatments are listed on the left, with each treatment specifying its environmental configuration and whether sensors are functional.
We conducted three independent two-phase experiments, each described on the right. Phases 2B and 2C are textured to match
their task definitions in panel (a). Phase one is repeated for each experiment with 100 replicate populations per treatment per
experiment. For each replicate at the end of phase one, we used an organism of the most abundant genotype to found the second
phase population. All STATIC and NON-PLASTIC populations move on to phase two, but PLASTIC populations only continue
to the second phase if their most abundant genotype exhibits optimal plasticity. Metrics are recorded only in phase two.

1es  We conducted three independent experiments using Avida to investigate how the evolution of adaptive plasticity
1« influences evolutionary outcomes in fluctuating environments. For each experiment, we compared the evolutionary
165 outcomes of populations evolved under three treatments (Figure[2)): (1) a PLASTIC treatment where the environment
16 fluctuates, and digital organisms can use sensory instructions to differentiate between environmental states; (2) a
167 NON-PLASTIC treatment with identical environment fluctuations, but where sensory instructions are disabled; and

s (3) a STATIC control where organisms evolve in a constant environment.

1eo  Each experiment was divided into two phases that each lasted for 200,000 updatesﬂ of evolution (Figure , which
170 18 equivalent to approximately 30,000 to 40,000 generations. In phase one of each experiment, we preconditioned
171 populations to their treatment-specific conditions. In phase two, we founded new populations with the evolved organisms
172 from phase one and examined their subsequent evolution under given combinations of treatment and experimental

173 conditions. During phase two, we tracked and saved each population’s evolutionary history as well as saving the full

20ne update in Avida is the amount of time required for the average organism to execute 30 instructions. See (Ofria et al., 2009) for more details.
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172 final population. Phase one was for preconditioning only; all comparisons between treatments were performed on phase

175 two data.

17 2.2.1 Environments

177 We constructed three experimental environments, abbreviated hereafter as “ENV-A”, “ENV-B”, and “ENV-ALL".
178 Figure [2| describes these environments based on whether each of six Boolean logic tasks (NOT, NAND, AND, OR-NOT,
179 OR, and AND-NQOT) is rewarded or punished. A rewarded task performed by an organism doubles their metabolic rate,
1.0 allowing them to execute twice as many instructions in the same amount of time. A punished task halves an organism’s

181 metabolic rate.

1.2 In both the PLASTIC and NON-PLASTIC treatments, the environment cycles between equal-length periods of ENV-A
18 and ENV-B. Each of these periods persist for 100 updates (approximately 15 to 20 generations). Thus, populations
18a  experience a total of 1,000 full periods of ENV-A interlaced with 1,000 full periods of ENV-B during each experimental

185 phase.

186 Organisms in the PLASTIC treatments differentiate between ENV-A and ENV-B by executing one of six sensory
17 instructions, each associated with a particular logical task; these sensory instructions detect whether their associated task
18 1s currently rewarded or punished. By using sensory information in combination with execution flow-control instructions,

189 organisms can conditionally perform different logic tasks depending on the current environmental conditions.

10 2.2.2 Experiment Phase 1 — Environment preconditioning

191 For each treatment, we founded 100 independent populations from a common ancestral strain capable only of self-
12 replication. At the end of phase one, we identified the most abundant (i.e., dominant) genotype and sampled an organism

193 with that genotype from each replicate population to found a new population for phase two.

1« For the PLASTIC treatment, we measure plasticity by independently testing a given genotype in each of ENV-A and
15 ENV-B. We discard phase one populations if the dominant genotype does not exhibit optimal plasticity. This approach
196 ensures that measurements taken on PLASTIC-treatment populations during the second phase of each experiment

17 reflect the evolutionary consequences of adaptive plasticity.

1e 2.2.3 Experiment Phase 2A — Evolutionary change rate

190 Phase 2A continued exactly as phase one, except we tracked the rates of evolutionary change in each of the PLASTIC-,
200 NON-PLASTIC-, and STATIC-treatment populations. Specifically, we quantified evolutionary change rates using four
200 metrics (each described in Table : (1) coalescence event count, (2) mutation count, (3) phenotypic volatility, and (4)

202 mutational robustness.

203 2.2.4 Experiment Phase 2B — Novel task evolution

20« Phase 2B extended the conditions of phase one by adding 71 novel Boolean logic tasks, which were always rewarded in
205 all treatments (Ofria et al.l 2009). The original six phase one tasks (NOT, NAND, AND, OR-NOT, OR, and AND-NOT;

206 hereafter called “base” tasks) continued to be rewarded or punished according to the particular treatment conditions.
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207 An organism’s metabolic rate was increased by 10% for each novel task that it performed (limited to one reward per
208 task). This reward provided a selective pressure to evolve these tasks, but their benefits did not overwhelm the 100%
200 metabolic rate increase conferred by rewarded base tasks. As such, populations in the PLASTIC and NON-PLASTIC
210 treatments could not easily escape environmental fluctuations by abandoning the fluctuating base tasks.

211 During this experiment, we tracked the extent to which populations evolving under each treatment were capable of
212 acquiring and retaining novel tasks. Specifically, we used three metrics (each described in Table[I): (1) final novel task

213 count, (2) novel task discovery, and (3) novel task loss.

210 2.2.5 Experiment Phase 2C - Deleterious instruction accumulation

215 Phase 2C extended the instruction set of phase one with a poi son instruction. When an organism executes a poison
216 instruction, it performs a “poisonous” task, which reduces the organism’s metabolic rate (and thus reproductive success)
217 but does not otherwise alter the organism’s function. We imposed a 10% penalty each time an organism performed the
218 poisonous task, making the poison instruction explicitly deleterious to execute. We did not limit the number of times
219 that an organism could perform the poisonous task, and as such, organisms could perform the poisonous task as many

220 times as they executed the poison instruction.

221 We tracked the number of times each organism along the dominant lineage performed the poisonous task. Specifically,
222 we used two metrics (each described in Table E]): (1) final poisonous task count and (2) poisonous task acquisition

223 count.

»« 2.3 Experimental analyses

225 For each of our experiments, we tracked and analyzed the phylogenetic histories of evolving populations during phase
226 two. For each replicate, we identified an organism with the most abundant genotype in the final evolved population, and
227 we used it as a representative organism for further analysis. We used the lineage from the founding organism to the
228 rEpresentative organism as the representative lineage for further analysis. We manually inspected evolved phylogenies
220 and found no evidence that any of our experimental treatments supported long-term coexistence. As such, each of the

230 representative lineages reflect the majority of evolutionary history from a given population at the end of our experiment.

231 Some of our metrics (Table 1)) required us to measure genotype-by-environment interactions. Importantly, in the
232 fluctuating environments, we needed to differentiate phenotypic changes that were caused by mutations from those that
233 were caused by environmental changes. To accomplish this, we produced organisms with the given focal genotype,
23« measured their phenotype in each environment, and aggregated the resulting phenotypes to create a phenotypic profile.
235 Although organisms with different genotypes may express the same set of tasks across environments, their phenotypic
23 profiles may not necessarily be the same. For example, an organism that expresses NOT in ENV-A and NAND in
237 ENV-B has a distinct phenotypic profile from one that expresses NAND in ENV-A and NOT in ENV-B.

233 While most analyses employed here are retrospective metrics applied to lineages, digital evolution allows precise manip-
239 ulations on individual organisms and genomes. Mutational robustness uses this technique when looking at the possible
240 Mmutations on a representative genotype. Genomes in Avida are linear sequences of instructions, and as such possible
2¢1  mutations can be simulated by substituting other instructions at the desired site. Indeed, the mutational robustness of

242 a genotype examines all one-step mutations (i.e., each mutation where exactly one instruction is substituted). This
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Metric Description

Coalescence event count Number of coalescence events that have occurred, which indicates the
frequency of selective sweeps in the population.

Mutation count Sum of all mutations that have occurred along a lineage.

Phenotypic volatility Number of instances where parent and offspring phenotypic profiles
do not match along a lineage.

Mutational robustness Proportion of mutations (from the set of all possible one-step muta-
tions) that do not change the phenotypic profile of a focal genotype.
We also measured realized mutational robustness, which is the pro-
portion of mutated offspring along a lineage whose phenotypic profile
matches that of their parent.

Final novel task count Count of unique novel tasks performed by the representative organism
in a final population from experiment This metric can
range from O to 71 and measures how well the fitness landscape was
exploited at a given point in time.

Novel task discovery Number of unique novel tasks ever performed along a given lineage
in experimental even if a task is later lost. This metric can
range from 0 to 71 and measures a given lineage’s level of exploration
of the fitness landscape.

Novel task loss Number of instances along a given lineage from experimental
where a novel task is performed by a parent but not its offspring.
This metric measures how often a given lineage fails to retain evolved
traits over time.

Final poisonous task count Number of times the poisonous task is performed by the representative
organism from a final population from experiment
Poisonous task acquisition count Number of instances along a given lineage where a mutation causes

an offspring to perform the poisonous task more times than its parent.

Table 1 Metric descriptions.

23 allows us the disentangle whether results of the lineage metrics are a consequence of evolved genetic architectures or

244 otherwise.

25 2.4 Statistical analyses

26 Across all of our experiments, we differentiated between sample distributions using non-parametric statistical tests.
27 For each major analysis, we first performed a Kruskal-Wallis test (Kruskal and Wallis|, [1952) to determine if there
25 were significant differences in results from the PLASTIC, NON-PLASTIC, and STATIC treatments (significance level
29 a = 0.05). If so, we applied a Wilcoxon rank-sum test (Wilcoxon, |1992) to distinguish between pairs of treatments.

250 We applied Bonferroni corrections for multiple comparisons (Rice, |[1989) where appropriate.
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2.5 Software availability

We conducted our experiments using a modified version of the Avida software, which is open source and freely available
on GitHub (Lalejini and Ferguson, 2021a). We used Python for data processing, and we conducted all statistical
analyses using R version 4 (R Core Team, [2021)). We used the tidyverse collection of R packages (Wickham et al.,[2019)
to wrangle data, and we used the following R packages for analysis, graphing, and visualization: ggplot2 (Wickham
et al., [2020), cowplot (Wilkel [2020), Color Brewer (Harrower and Brewer} 2003; Neuwirth, [2014), rstatix (Kassambara,
2021)), ggsignif (Ahlmann-Eltze and Patil, [2021)), scales (Wickham and Seidel, 2020), Hmisc (Harrell Jr et al.} 2020),
fmsb (Nakazawal 2019)), and boot (Canty and Ripley} 2019). We used R markdown (Allaire et al.,|2020) and bookdown
(Xiel [2020) to generate web-enabled supplemental material. All of the source code for our experiments and analyses,
including configuration files and guides for replication, can be found in our supplemental material, which is hosted
on GitHub (Lalejini and Ferguson, [2021a). Additionally, our experimental data is available on the Open Science
Framework athttps://osf.io/sav2c/|(Lalejini and Ferguson, 2021b).

3 Results

3.1 Adaptive phenotypic plasticity slows evolutionary change in fluctuating environments

a Coalescence events count b Mutation count c Phenotypic volatility
Kruskal-Wallis, p < 1e-04 Kruskal-Wallis, p < 1e-04 Kruskal-Wallis, p < 1e-04
p =0.001944
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Figure 3 Magnitude of evolutionary change. Raincloud plots (Allen et al.L[2019) of (a) coalescence event count, (b) mutation
count, and (c) phenotypic volatility. See Table[I|for descriptions of each metric. Each plot is annotated with statistically significant
comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 42 of
100 replicates from the PLASTIC treatment during phase one of this experiment; we used this more limited group to found 42
phase-two PLASTIC replicates from which we report these PLASTIC data.

In experimental phase 2A, we tested whether adaptive phenotypic plasticity constrained or promoted subsequent
evolutionary change in a fluctuating environment. First, we compared the total amount of evolutionary change in
populations evolved under the PLASTIC, NON-PLASTIC, and STATIC treatments as measured by coalescence event
count, mutation count, and phenotypic volatility (Figure [3). According to each of these metrics, NON-PLASTIC
populations experienced a larger magnitude of evolutionary change than either PLASTIC or STATIC populations. We
observed significantly higher coalescence event counts in NON-PLASTIC populations than in PLASTIC or STATIC
populations (Figure [3a). NON-PLASTIC lineages had significantly higher mutation counts (Figure [3p) and phenotypic
volatility than PLASTIC or STATIC lineages (Figure 3f).

10


https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://osf.io/sav2c/
https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

273 Changing environments have been shown to increase generational turnover in Avida populations (Canino-Koning et al.|
274 |2016)), which could explain why we observe a larger magnitude of evolutionary change at the end of 200,000 updates of
275 evolution in NON-PLASTIC populations. Indeed, we found that significantly more generations of evolution elapsed in
276 NON-PLASTIC populations (mean of 41090 + 2702 std. dev.) than in PLASTIC (mean of 31016 £ 2615 std. dev.)
277 or STATIC (mean of 30002 £ 3011 std. dev.) populations during phase 2A (corrected Wilcoxon rank-sum tests, p
278 < 1074).

270 To evaluate whether increased generational turnover explains the greater magnitude of evolutionary change in NON-
20 PLASTIC populations, we examined the average number of generations between coalescence events and the realized
261 mutational robustness of lineages (Table[I)). A coalescence event indicates a selective sweep, which is a hallmark of
252 adaptive evolutionary change. Realized mutational robustness measures the frequency that mutations cause phenotypic
283 changes along a lineage. We expect that static conditions should favor fit lineages with high realized mutational
23¢  robustness that no longer undergo rapid adaptive change and hence do not trigger frequent coalescence events. Under
255 fluctuating conditions, however, lineages must be composed of plastic organisms if they are to maintain both high
255 fitness and realized mutational robustness. Without plasticity, we expect fluctuating conditions to produce lineages with
257 low realized mutational robustness and frequent coalescence events as populations must continually acquire and fix

283 Mmutations to readapt to the environment.

a Generations between coalescence events b Realized mutational robustness
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Figure 4 Pace of evolutionary change. Raincloud plots of (a) average number of generations between coalescence events, and (b)
realized mutational robustness (Table[I). Each plot is annotated with statistically significant comparisons (Bonferroni-corrected
pairwise Wilcoxon rank-sum tests).

289 On average, significantly fewer generations elapsed between coalescence events in NON-PLASTIC populations than in
200 either PLASTIC or STATIC populations (Figure[p). We also found that both STATIC and PLASTIC lineages exhibited
201 higher realized mutational robustness relative to that of NON-PLASTIC lineages (Figure[db); that is, mutations observed
202 along NON-PLASTIC lineages more often caused phenotypic changes in offspring. Overall, our results indicate that
203 NON-PLASTIC populations underwent more rapid (and thus a greater amount of) evolutionary change than either
20« PLASTIC or STATIC populations.

205 While both STATIC and PLASTIC lineages exhibited high realized mutational robustness, we found that STATIC
206 lineages exhibited higher realized robustness than PLASTIC lineages (Figure[db). Overall, there were rare instances
207 of mutations that caused a change in phenotypic profile across all PLASTIC lineages. Of these mutations, we found
208 that over 80% (83 out of 102) of changes to phenotypic profiles were cryptic. That is, the mutations affected traits that
209 would not have been expressed in the environment that the organism was born into but would have been expressed had

a0 the environment changed.
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Figure 5 Mutational robustness. Raincloud plot of mutational robustness of each representative genotype (Table . The plot is
annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

a1 Given that NON-PLASTIC lineages exhibited the lowest realized mutational robustness of our three experimental
a2 treatments, we sought to determine if this effect was driven by differences in evolved genetic architectures. Specifically,
a3 did the NON-PLASTIC genetic architectures evolve such that mutations were more likely to result in phenotypic
s« change? Such a mutational bias would trade off descendant fitness in the same environment in exchange for a chance of
a5 increasing descendant fitness in alternate environments. This strategy would be an example of diversifying bet-hedging
a6 (i.e., reducing expected mean fitness to lower variance in fitness) (Childs et al.,[2010). Alternatively, the lower realized
307 mutational robustness in NON-PLASTIC lineages could be due to survivorship bias, as we measured realized mutational

as robustness as the fraction of mutations observed along successful lineages that caused a phenotypic change.

as  We analyzed the mutational robustness of representative genotypes by calculating the fraction of single-instruction
a0 mutations that change the phenotypic profile. We found that mutations to representative genotypes on NON-PLASTIC
a1 lineages are less likely to result in a phenotypic change than mutations to comparable genotypes on either STATIC or
sz PLASTIC lineages (Figure[5). These data provide evidence against NON-PLASTIC lineages engaging in a mutation-
a3 driven bet-hedging strategy, and instead, are consistent with the hypothesis that lower realized mutational robustness in
s« the NON-PLASTIC treatment was due to survivorship bias.

a5 In general, adaptive plasticity stabilized PLASTIC-treatment populations against environmental fluctuations, and their
ais  evolutionary dynamics more closely resembled those of populations evolving in a static environment. We observed
317 no significant difference in the number and frequency of coalescence events in PLASTIC and STATIC populations.
s We did, however, observe small, but statistically significant, differences in each of the following metrics: elapsed
a9 generations, mutation counts, mutational robustness, and realized mutational robustness between PLASTIC and STATIC

320 populations.

= 3.2 Adaptively plastic populations retain more novel tasks than non-plastic populations in
522 fluctuating environments

323 We have so far shown that adaptive plasticity constrains the rate of evolutionary change in fluctuating environments.
324 However, it is unclear how this dynamic influences the evolution of novel tasks. Based on their relative rates of

a5 evolutionary change, we might expect NON-PLASTIC-treatment populations to evolve more novel tasks than PLASTIC-
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Figure 6 Novel task evolution. Raincloud plots of (a) final novel task count, (b) novel task discovery, and (c) novel task loss. See
Table[T]for descriptions of each metric. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected
pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 42 of 100 replicates from the PLASTIC
treatment during phase one of this experiment; we used this more limited group to seed the resulting 42 phase-two PLASTIC
replicates.

treatment populations. But, how much of the evolutionary change in NON-PLASTIC populations is useful for exploring
novel regions of the fitness landscape versus continually rediscovering the same regions?

To answer this question, we quantified the number of novel tasks performed by a representative organism in the final
population of each replicate. We found that both PLASTIC and STATIC populations had significantly higher final
task counts than NON-PLASTIC populations at the end of the experiment (Figure[6a). The final novel task count in
PLASTIC and STATIC lineages could be higher than that of the NON-PLASTIC lineages for several non-mutually
exclusive reasons. One possibility is that PLASTIC and STATIC lineages could be exploring a larger area of the fitness
landscape when compared to NON-PLASTIC lineages. Another possibility is that the propensity of the NON-PLASTIC
lineages to maintain novel traits could be significantly lower than PLASTIC or STATIC lineages. When we looked at
the total sum of novel tasks discovered by each of the PLASTIC, STATIC, and NON-PLASTIC lineages, we found
that NON-PLASTIC lineages generally explored a larger area of the fitness landscape (Figure [6b). Although the
NON-PLASTIC lineages discovered more novel tasks, those lineages also exhibited significantly higher novel task loss
when compared to PLASTIC and STATIC lineages (Figure[6k).

a Novel task discovery frequency b Novel task loss frequency
Kruskal-Wallis, p = 0.02806 Kruskal-Wallis, p < 1e-04
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Figure 7 Rate of novel task evolution. Raincloud plots of (a) novel task discovery frequency and (b) novel task loss frequency.
Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

A larger number of generations elapsed in NON-PLASTIC populations than in PLASTIC or STATIC populations
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a0 during our experiment (Lalejini and Ferguson, [2021a). Are NON-PLASTIC lineages discovering and losing novel tasks
a1 more frequently than PLASTIC or STATIC lineages, or are our observations a result of differences in generational
a2 turnover? To answer this question, we converted the metrics of novel task discovery and novel task loss to rates by
a3 dividing each metric by the number of elapsed generations along the associated representative lineages. We found no
s significant difference in the frequency of novel task discovery between NON-PLASTIC and STATIC lineages, and
ss  we found that PLASTIC lineages had a lower frequency of novel task discovery than STATIC lineages (Figure [7).
as Therefore, we cannot reject the possibility that the larger magnitude of task discovery in NON-PLASTIC lineages was
a7 driven by a larger number of elapsed generations. NON-PLASTIC lineages had a higher frequency of task loss than
as  either PLASTIC or STATIC lineages, and PLASTIC lineages tended to have a lower frequency of novel task loss than
4o STATIC lineages (Figure[7p).

ss0  Next, we examined the frequency at which novel task loss along lineages co-occurred with the loss or gain of any of
351 the six base tasks. Across all NON-PLASTIC representative lineages, over 97% (10998 out of 11229) of instances
a2 of novel task loss co-occurred with a simultaneous change in base task profile. In contrast, across all PLASTIC and
s STATIC dominant lineages, we observed that approximately 20% (29 out of 142) and 2% (13 out of 631), respectively,
s« of instances of novel task loss co-occurred with a simultaneous change in base task profile. As such, the losses of novel
a5 tasks in NON-PLASTIC lineages appear to be primarily due to hitchhiking.

= 3.3 Lineages without plasticity that evolve in fluctuating environments express more delete-
357 rious tasks

a8 Phenotypic plasticity allows for genetic variation to accumulate in genomic regions that are unexpressed, which could
sss  lead to the fixation of deleterious instructions in PLASTIC populations. However, in NON-PLASTIC lineages, we

s observe a higher rate of novel task loss, indicating that they may be more susceptible to deleterious mutations (Figure

st [/b).

sz Therefore, in experiment phase 2C, we tested whether adaptive phenotypic plasticity can increase the incidence of
sss  deleterious task performance. Specifically, we added an instruction that triggered a “poisonous” task and measured the
s« number of times it was executed. Each execution of the poison instruction reduces an organism’s fitness by 10%. At
a5 the beginning of phase 2C, the poi son instruction is not present in the population, as it was not part of the instruction
ass  set during phase one of evolution. Accordingly, if a poison instruction fixes in a population, it must be the result of

s7 evolutionary dynamics during phase 2C, including cryptic variation or hitchhiking.

sss At the end of our experiment, no representative organisms from the PLASTIC or STATIC treatments performed the
a9 poisonous task under any environmental condition; however, representative organisms in 14% of replicates of the
a0 NON-PLASTIC treatment performed the poisonous task at least once. NON-PLASTIC lineages contained significantly
71 more mutations that conferred the poisonous task as compared to PLASTIC or STATIC lineages (Figure [8p), and these
w2 mutations occurred at a significantly higher frequency in NON-PLASTIC lineages (Figure[Sb).

a3 Next, we measured how often mutations that increased poisonous task performance co-occurred with changes to the base
ara  task profile within representative lineages. A poisonous instruction can fix in a lineage by having a beneficial effect that
a5 outweighs its inherent cost (e.g., knocking out a punished task) or through linkage with a secondary beneficial mutation
are  at another site within the genome. Across all NON-PLASTIC representative lineages, we found that approximately
a7 49% (956 out of 1916) of mutations that increased poisonous task expression co-occurred with a change in the base task

s7e  profile (Figure 8). In all representative lineages from the PLASTIC treatment, only 18 mutations increased poisonous
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Figure 8 Deleterious instruction accumulation. Raincloud plots of (a) poisonous task acquisition, (b) poisonous task acquisition
frequency, and (c) the proportion of mutations that increase poisonous task performance along a lineage that co-occur with a
change in phenotypic profile. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise
Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 43 of 100 replicates from the PLASTIC treatment
during phase one of this experiment; we used this more limited group to seed the 43 phase-two PLASTIC replicates.

a7 task expression, and none co-occurred with a change in base task profile (Figure[8f). Likewise, only 58 mutations
a0 increased poisonous task performance in all representative lineages from the STATIC treatment, and none co-occurred
se1 with a change in base task profile (Figure[8f). We did not find compelling evidence that the few mutations that increased

a2 poisonous task expression occurred as cryptic variation in PLASTIC lineages.

a3 We repeated this experiment with 3% and 30% metabolic rate penalties associated with the poisonous task, which

s« produced results that were consistent with those reported here (Lalejini and Ferguson), [2021a)).

= 4 Discussion

ass  In this work, we used evolving populations of digital organisms to determine how adaptive phenotypic plasticity alters
a7 subsequent evolutionary dynamics and influences evolutionary outcomes in fluctuating environments. Specifically, we
ass compared lineages of adaptively plastic organisms in fluctuating environments to both non-plastic organisms in those

a9 same environments and other non-plastic organisms in static environments.

w0 4.1 Evolutionary change

a1 We found strong evidence that adaptive plasticity slows evolutionary change in fluctuating environments. Adaptively
a2 plastic populations experienced fewer coalescence events and fewer total genetic changes relative to non-plastic
ss  populations evolving under identical environmental conditions (Figure [3). Whereas non-plastic populations relied on de
a4 novo mutations to adapt to each environmental fluctuation, plastic populations leveraged sensory instructions to regulate
a5 task performance. Indeed, in fluctuating environments, selection pressures toggle after each environmental change.
sss  We hypothesize that in non-plastic populations such toggling would repeatedly drive the fixation of mutations that
se7  align an organism’s phenotypic profile to the new conditions. This hypothesis is supported by the increased frequency
ses  of coalescence events in these populations (Figure ) as well as increased rates of genetic and phenotypic changes

ass observed along the lineages of non-plastic organisms.
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400 Representative lineages in the non-plastic treatment experienced lower realized mutational robustness than plastic
401 and static lineages (Figure @p). We reasoned that this lower realized mutational robustness was due to non-plastic
402 populations evolving a bet-hedging strategy where mutations are more likely to modify the phenotypic profile. However,
403  when we switched from measuring the realized mutational robustness of representative lineages to measuring the
404 mutational robustness of representative genotypes (i.e., what fraction of one-step mutants change the phenotypic profile),
w5 we observed that non-plastic genotypes exhibited the highest mutational robustness of all three treatments (Figure [3)).
406 This result runs contrary to both our expectations and the results of other fluctuating environment studies in Avida
407 (Canino-Koning et al.,2019). |Canino-Koning et al.| (2019) found that mutational robustness is negatively correlated
408 with the number of task-encoding sites in the genome. In our work, most plastic and static genotypes encode all six base
409 tasks, while most non-plastic genotypes only encode tasks from one environment; this results in fewer task-encoding
410 sites, which may increase mutational robustness in non-plastic genotypes (relative to plastic and static genotypes).
411 Regardless of the cause, this higher mutational robustness in non-plastic organisms indicates that bet-hedging is not
412 driving the low realized mutational robustness observed in non-plastic lineages. Thus, we expect the lower realized
43 mutational robustness in non-plastic lineages to be driven by survivorship bias. Because non-plastic lineages must rely
44 on mutations to adapt to environmental changes, phenotype-altering mutations are often highly advantageous, and their

415 selection decreases the realized mutational robustness of the lineage.

416 To our knowledge, this study is the first in-depth empirical investigation into how the de novo evolution of adaptive
417 plasticity shifts the course of subsequent evolution in a cyclic environment. The relative rates of evolutionary change that
418 we observed in non-plastic populations, however, are consistent with results from previous digital evolution studies. For
419 example, Dolson et al.|(2020) showed that non-plastic populations that were evolved in cyclically changing environments
420 exhibited higher phenotypic volatility and accumulated more mutations than that of populations evolved under static
421 conditions. Furthermore, |Lalejini and Ofrial (2016) visually inspected the evolutionary histories of non-plastic organisms
42 evolved in fluctuating environments, observing that mutations along successful lineages readily switched the set of

423 traits expressed by offspring.

424 Our results are also consistent with conventional evolutionary theory. A trait’s evolutionary response to selection
45 depends on the strength of directional selection and on the amount of genetic variation for selection to act upon (Lande
426 |and Arnold,|1983;[Zimmer and Emlen, [2013). In our experiments, non-plastic populations repeatedly experienced strong
427 directional selection to toggle which tasks were expressed after each environmental change. As such, retrospective
48 analyses of successful lineages revealed rapid evolutionary responses (that is, high rates of genetic and phenotypic
40 changes). Evolved adaptive plasticity shielded populations from strong directional selection when the environment
40 changed by eliminating the need for a rapid evolutionary response to toggle task expression. Indeed, both theoretical
431 and empirical studies have shown that adaptive plasticity can constrain evolutionary change by weakening directional

432 selection on evolving populations (Price et al.|[2003; [Paenke et al., 2007; |Ghalambor et al.,|2015)).

4.2 The evolution and maintenance of novel tasks

43¢ In fluctuating environments, non-plastic populations explored a larger area of the fitness landscape than adaptively
a5 plastic populations (Figure [6b). However, adaptively plastic populations better exploited the fitness landscape, retaining
436 a greater number of novel tasks than non-plastic populations evolving under identical environmental conditions (Figure
47 [6p). In our experiment, novel tasks were less important to survival than the fluctuating base tasks. In non-plastic
438 populations, when a mutation changes a base task to better align with current environmental conditions, its benefit

439 will often outweigh the cost of losing one or more novel tasks. Indeed, we found that along non-plastic representative
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40 lineages, 97% of the mutations associated with novel task loss co-occurred with phenotypic changes that helped

41 offspring adapt to current environmental conditions.

42 Previous studies have shown that transitory environmental changes can improve overall fitness landscape exploration in
43 evolving populations of non-plastic digital organisms (Nahum et al., 2017). Similarly, changing environments have
44 been shown to increase the rate of evolutionary adaptation in simulated network models (Kashtan et al., |2007). In
45 our system, however, we found that repeated fluctuations reduced the ability of non-plastic populations to maintain
4 and exploit tasks; that said, we did find that repeated fluctuations may improve overall task discovery by increasing
47 generational turnover. Consistent with our findings, Canino-Koning et al.| (2019) found that non-plastic populations of
4s  digital organisms evolving in a cyclic environment maintained fewer novel traits than populations evolving in static

49 environments.

40 Our results suggest that adaptive phenotypic plasticity can improve the potential for populations to exploit novel
451 resources by stabilizing them against stressful environmental changes. The stability that we observe may also lend
42 some support to the hypothesis that phenotypic plasticity can rescue populations from extinction under changing

43 environmental conditions (Chevin et al.l [2010).

44 Our data do not necessarily provide evidence for or against the genes as followers hypothesis. The genes as followers
45 hypothesis focuses on contexts where plastic populations experience novel or abnormally stressful environmental
46 change. However, in our system, environmental changes were cyclic (not novel), and no single environmental change
457 was abnormally stressful. Further, the introduction of novel tasks during the second phase of the experiment merely
43 added static opportunities for fitness improvement. This addition did not change the meaning of existing environmental

49 cues, nor did it require those cues to be used in new ways.

w0 4.3 The accumulation of deleterious alleles

41 We found that non-plastic lineages that evolved in a fluctuating environment exhibited both greater totals and higher
a2  rates of poisonous task acquisition than that of adaptively plastic lineages (Figure[8)). In asexual populations without
43 horizontal gene transfer, all co-occurring mutations are linked. As such, deleterious mutations linked with a stronger
44 beneficial mutation (i.e., a driver) can sometimes “hitchhike” to fixation (Smith and Haigh| |1974;|Van den Bergh et al.}
45 [2018}; Buskirk et al., 2017). Natural selection normally prevents deleterious mutations from reaching high frequencies,
46 as such mutants are outcompeted. However, when a beneficial mutation sweeps to fixation in a clonal population, it
47 carries along any linked genetic material, including other beneficial, neutral, or deleterious mutations (Barton, 2000;
48 |Smith and Haighl [1974). Therefore, we hypothesize that deleterious genetic hitchhiking drove poison instruction

49 accumulation along non-plastic lineages in changing environments.

40 Across our experiments, the frequency of selective sweeps in non-plastic populations provided additional opportunities
41 for genetic hitchhiking with each environmental change. Indeed, representative lineages from non-plastic populations in
a2 the cyclic environment exhibited higher mutation accumulation (Figure 3p), novel trait loss (Figure[6t), and poisonous
a3 task acquisition (Figure [8h) than their plastic counterparts. In aggregate, we found that many (~49%; 956 / 1916)
474 mutations that increased poi son instruction execution in offspring co-occurred with mutations that provided an even
475 stronger benefit by adapting the offspring to an environmental change. We expect that an even larger fraction of these
476 deleterious mutations were linked to beneficial mutations, but our analysis only counted mutations that co-occurred in

477 the same generation.

47s Theory predicts that under relaxed selection deleterious mutations should accumulate as cryptic variation in unexpressed
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479 traits (Lahti et al.,|2009). Contrary to this expectation, we did not find evidence of poi son instructions accumulating as
40 cryptic variation in adaptively plastic lineages. One possible explanation is that the period of time between environmental
41 changes was too brief for variants carrying unexpressed poison instructions to drift to high frequencies before the
42 environment changed, after which purifying selection would have removed such variants. Indeed, we would not expect
453 drift to fix an unexpressed trait since we tuned the frequency of environmental fluctuations to prevent valuable traits
484 from being randomly eliminated during the off environment. Additionally, plastic organisms in Avida usually adjust
45 their phenotype by toggling the expression of a minimal number of key instructions, leaving little genomic space for

46 Cryptic variation to accumulate.

« 4.4 Limitations and future directions

48 Our work lays the groundwork for using digital evolution experiments to investigate the evolutionary consequences of
49 phenotypic plasticity in a range of contexts. However, the data presented here are limited to the evolution of adaptively
40 plastic populations. Future work might explore the evolutionary consequences of maladaptive and non-adaptive
st phenotypic plasticity (e.g., [Leroi et al.||1994), which are known to bias evolutionary outcomes (Ghalambor et al.|
42 [2015). Additionally in our experiments, sensory instructions perfectly differentiated between ENV-A and ENV-B, and
493 environmental fluctuations never exposed populations to entirely new conditions. These parameters have been shown to
494 influence evolutionary outcomes (Li and Wilkel 2004; Boyer et al.| 2021)), which if relaxed in the context of further

495 digital evolution experiments, may yield additional insights.

496 We focused our analyses on the lineages of organisms with the most abundant genotype in the final population. These
497 successful lineages represented the majority of the evolutionary histories of populations at the end of our experiment,
498 as populations did not exhibit long-term coexistence of different clades. Our analyses, therefore, gave us an accurate
499 picture of what fixed in the population. We did not, however, examine the lineages of extinct clades. Future work will
s0 extend our analyses to include extinct lineages, giving us a more complete view of evolutionary history, which may

s allow us to better distinguish adaptively plastic populations from populations evolving in a static environment.

s As with any wet-lab experiment, our results are in the context of a particular model organism: “Avidian” self-replicating
s3  computer programs. Digital organisms in Avida regulate responses to environmental cues using a combination of
s04  sensory instructions and conditional logic instructions (i £ statements). The if instructions conditionally execute a
s05  single instruction depending on previous computations and the state of memory. As such, plastic organisms in Avida
sos  typically regulate phenotypes by toggling the expression of a small number of key instructions as opposed to regulating
so7  cohorts of instructions under the control of a single regulatory sequence (Lalejini and Ferguson, 2021a)). This bias may
s limit the accumulation of hidden genetic variation in Avida genomes. However, as there are many model biological
so0  organisms, there are many model digital organisms that have different regulatory mechanisms (e.g.,|Lalejini and Ofria
st0  |2018)) that should be used to test the generality of our results.

s Supplemental Material

stz The supplemental material for this article is hosted on GitHub and can be found online athttps://github.com/

si3 lamlalejini/evolutionary-consequences—-of-plasticity|(Lalejini and Ferguson,2021al).

18


https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s« Data Availability Statement

si5 The datasets generated and analyzed for this study can be found on the Open Science Framework at https://osf,

si6 |10/sav2c/|(Lalejint and Ferguson, |2021b).

s» Author Contributions

sis AL and AJF designed the experiments, developed the necessary experiment software, conducted experiments, analyzed
sto  the results, and drafted the manuscript. AL, AJF, NAG and CO edited and approved the manuscript.

= Funding

s21  This research was supported by the Department of Energy through Grant No. DE-SC0019436 and by the National
s22 Science Foundation (NSF) through the BEACON Center (DBI-0939454), a Graduate Research Fellowship to AL
523 (DGE-1424871), and NSF Grant No. DEB-1655715.

- Conflict of Interest Statement

s The authors declare that the research was conducted in the absence of any commercial or financial relationships that

s26 could be construed as a potential conflict of interest.

= Acknowledgments

522 We thank members of the MSU Digital Evolution Lab for helpful comments and suggestions on this work. We also
s20 thank Luis Zaman whose keynote talk at the 2020 Artificial Life conference inspired the initial exploratory experiments
s from which this work blossomed. MSU provided computational resources through the Institute for Cyber-Enabled
st Research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
sz author(s) and do not necessarily reflect the views of the National Science Foundation, Department of Energy, Michigan
s State University, or The University of Idaho.

= References

s5 Ahlmann-Eltze, C. and Patil, 1. (2021). ggsignif: Significance Brackets for ’ggplot2’. R package version 0.6.1

s Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., et al. (2020). rmarkdown: Dynamic Documents
537 for R. R package version 2.6

ss  Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., and Kievit, R. A. (2019). Raincloud plots: a multi-platform tool
539 for robust data visualization. Wellcome Open Research 4, 63. doi:10.12688/wellcomeopenres.15191.1

19


https://osf.io/sav2c/
https://osf.io/sav2c/
https://osf.io/sav2c/
https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s Ancel, L. W. (2000). Undermining the Baldwin Expediting Effect: Does Phenotypic Plasticity Accelerate Evolution?
541 Theoretical Population Biology 58, 307-319. doi:10.1006/tpbi.2000.1484

s« Barrett, R. and Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution 23,
543 38-44. doi:10.1016/j.tree.2007.09.008

s« Barton, N. H. (2000). Genetic hitchhiking. Philosophical Transactions of the Royal Society of London. Series B:
545 Biological Sciences 355, 1553-1562. Publisher: The Royal Society

s Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C., and Rainey, P. B. (2009). Experimental evolution of bet
547 hedging. Nature 462, 90-93. doi:10.1038/nature08504

s¢  Boyer, S., Hrissant, L., and Sherlock, G. (2021). Adaptation is influenced by the complexity of environmental change
549 during evolution in a dynamic environment. PLOS Genetics 17, e1009314. doi:10.1371/journal.pgen.1009314

sso  Buskirk, S. W., Peace, R. E., and Lang, G. I. (2017). Hitchhiking and epistasis give rise to cohort dynamics in adapting
551 populations. Proceedings of the National Academy of Sciences 114, 8330-8335. doi:10.1073/pnas.1702314114

ss2 Canino-Koning, R., Wiser, M. J., and Oftia, C. (2016). The Evolution of Evolvability: Changing Environments Promote
553 Rapid Adaptation in Digital Organisms. In Proceedings of the Artificial Life Conference 2016 (Cancun, Mexico:
554 MIT Press), 268-275. doi:10.7551/978-0-262-33936-0-ch047

sss  Canino-Koning, R., Wiser, M. J., and Ofria, C. (2019). Fluctuating environments select for short-term phenotypic
556 variation leading to long-term exploration. PLOS Computational Biology 15, e1006445. doi:10.1371/journal.pcbi.
557 1006445

sss  Canty, A. and Ripley, B. D. (2019). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-23

ss9  Chadwick, W. and Little, T. J. (2005). A parasite-mediated life-history shift in Daphnia magna. Proceedings of the
560 Royal Society B: Biological Sciences 272, 505-509. doi:10.1098/rspb.2004.2959

ssr  Chevin, L.-M. and Lande, R. (2010). When do adaptive plasticity and genetic evolution prevent extinction of a
562 densityregulated population? Evolution 64, 1143—-1150. doi:10.1111/5.1558-5646.2009.00875.x

sss  Chevin, L.-M., Lande, R., and Mace, G. M. (2010). Adaptation, Plasticity, and Extinction in a Changing Environment:
564 Towards a Predictive Theory. PLoS Biology 8, €1000357. doi:10.1371/journal.pbio.1000357

ses  Childs, D. Z., Metcalf, C., and Rees, M. (2010). Evolutionary bet-hedging in the real world: empirical evidence and
566 challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences 277, 3055-3064

ss7 Clune, J., Ofria, C., and Pennock, R. T. (2007). Investigating the Emergence of Phenotypic Plasticity in Evolving
568 Digital Organisms. In Advances in Artificial Life, eds. F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, and
569 A. Coutinho (Berlin, Heidelberg: Springer Berlin Heidelberg), vol. 4648. 74-83. doi:10.1007/978-3-540-74913-4_8

s Covert, A. W., Lenski, R. E., Wilke, C. O., and Oftria, C. (2013). Experiments on the role of deleterious mutations
571 as stepping stones in adaptive evolution. Proceedings of the National Academy of Sciences 110, E3171-E3178.
572 doi:10.1073/pnas.1313424110

szs Crispo, E. (2007). The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change
574 mediated by phenotypic plasticity. Evolution 61, 2469-2479. doi:10.1111/j.1558-5646.2007.00203.x

55 Dolson, E., Lalejini, A., Jorgensen, S., and Ofria, C. (2020). Interpreting the Tape of Life: Ancestry-Based Analyses
576 Provide Insights and Intuition about Evolutionary Dynamics. Artificial Life 26, 58-79. doi:10.1162/artl_a_00313

20


https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s77 Dunn, A. M., Hogg, J. C., Kelly, A., and Hatcher, M. J. (2005). Two cues for sex determination in Gammarus
578 duebeni : Adaptive variation in environmental sex determination? Limnology and Oceanography 50, 346-353.
579 doi:10.4319/10.2005.50.1.0346

se0 Forsman, A. (2015). Rethinking phenotypic plasticity and its consequences for individuals, populations and species.
581 Heredity 115, 276-284. doi:10.1038/hdy.2014.92

ss2 Ghalambor, C. K., Angeloni, L. M., and Carroll, S. P. (2010). Behavior as phenotypic plasticity. In Evolutionary
583 behavioral ecology, eds. D. Westneat and C. W. Fox (New York, NY: Oxford University Press). 90-107

s« Ghalambor, C. K., Hoke, K. L., Ruell, E. W,, Fischer, E. K., Reznick, D. N., and Hughes, K. A. (2015). Non-
585 adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372-375. doi:
586 10.1038/nature15256

ss7  Ghalambor, C. K., McKay, J. K., Carroll, S. P., and Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic
588 plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21, 394-407.
589 doi:10.1111/j.1365-2435.2007.01283.x

s Gibert, P., Debat, V., and Ghalambor, C. K. (2019). Phenotypic plasticity, global change, and the speed of adaptive
591 evolution. Current Opinion in Insect Science 35, 34—40. doi:10.1016/j.c0is.2019.06.007

s2  Gibson, G. and Dworkin, I. (2004). Uncovering cryptic genetic variation. Nature Reviews Genetics 5, 681-690.
503 doi:10.1038/nrg1426

s« Goldsby, H. J., Knoester, D. B., Ofria, C., and Kerr, B. (2014). The Evolutionary Origin of Somatic Cells under the
595 Dirty Work Hypothesis. PLoS Biology 12, e1001858. doi:10.1371/journal.pbio.1001858

s Gupta, A. P. and Lewontin, R. C. (1982). A Study of Reaction Norms in Natural Populations of Drosophila pseudoob-
597 scura. Evolution 36, 934. doi:10.2307/2408073

ses  Harrell Jr, F. E., with contributions from Charles Dupont, and many others. (2020). Hmisc: Harrell Miscellaneous. R

599 package version 4.4-2

so Harrower, M. and Brewer, C. A. (2003). ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps.
601 The Cartographic Journal 40, 27-37. doi:10.1179/000870403235002042

ez Hendry, A. P. (2016). Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. Journal of
603 Heredity 107, 25-41. doi:10.1093/jhered/esv060

s« Huey, R., Hertz, P., and Sinervo, B. (2003). Behavioral Drive versus Behavioral Inertia in Evolution: A Null Model
605 Approach. The American Naturalist 161, 357-366. doi:10.1086/346135

es Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments can speed up evolution. Proceedings of the National
607 Academy of Sciences 104, 13711-13716

ss Kassambara, A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0

soo  Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American
610 Statistical Association 47, 583-621. doi:10.1080/01621459.1952.10483441

s11  Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P, Blumstein, D. T., et al. (2009). Relaxed selection in
612 the wild. Trends in Ecology & Evolution 24, 487-496. doi:10.1016/].tree.2009.03.010

21


https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

e Lalejini, A. and Ferguson, A. (2021a). Supplemental material. doi:10.5281/zenodo.4642704.  GitHub.

614 https://github.com/amlalejini/evolutionary-consequences-of-plasticity

e15s Lalejini, A. and Ofria, C. (2016). The Evolutionary Origins of Phenotypic Plasticity. In Proceedings of the Artificial
616 Life Conference 2016 (Cancun, Mexico: MIT Press), 372-379. doi:10.7551/978-0-262-33936-0-ch063

e17 Lalejini, A. and Ofria, C. (2018). Evolving Reactive Agents with SignalGP. In The 2018 Conference on Artificial Life
618 (Tokyo, Japan: MIT Press), 368-369. doi:10.1162/isal_a_00069

s19 [Dataset] Lalejini, A. M. and Ferguson, A. J. (2021b). Data for evolutionary consequences of phenotypic plasticity.
620 doi:10.17605/0OSF.IO/SAV2C. OSFE. https://osf.io/sav2c

e2t  Lande, R. and Arnold, S. J. (1983). The Measurement of Selection on Correlated Characters. Evolution 37, 1210.
622 doi:10.2307/2408842

e2s Lenski, R. E., Ofria, C., Collier, T. C., and Adami, C. (1999). Genome complexity, robustness and genetic interactions
624 in digital organisms. Nature 400, 661-664. doi:10.1038/23245

e2s Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003). The evolutionary origin of complex features. Nature
626 423, 139-144. doi:10.1038/nature01568

e27 Leroi, A. M., Bennett, A. F., and Lenski, R. E. (1994). Temperature acclimation and competitive fitness: an experimental
628 test of the beneficial acclimation assumption. Proceedings of the National Academy of Sciences 91, 1917-1921.
629 doi:10.1073/pnas.91.5.1917

s0 Levis, N. A. and Pfennig, D. W. (2016). Evaluating Plasticity-First Evolution in Nature: Key Criteria and Empirical
631 Approaches. Trends in Ecology & Evolution 31, 563-574. doi:10.1016/j.tree.2016.03.012

ez Li, Y. and Wilke, C. O. (2004). Digital Evolution in Time-Dependent Fitness Landscapes. Artificial Life 10, 123—134.
633 doi:10.1162/106454604773563559

e3¢« Nahum, J. R., West, J., Althouse, B. M., Zaman, L., Ofria, C., and Kerr, B. (2017). Improved adaptation in exogenously
635 and endogenously changing environments. In Proceedings of the 14th European Conference on Artificial Life ECAL
636 2017 (Lyon, France: MIT Press), 306-313. doi:10.7551/ecal_a_052

s7 Nakazawa, M. (2019). finsb: Functions for Medical Statistics Book with some Demographic Data. R package version
638 0.7.0

sss Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2

s0 Ofria, C., Bryson, D. M., and Wilke, C. O. (2009). Avida: A Software Platform for Research in Computational
641 Evolutionary Biology. In Artificial Life Models in Software, eds. M. Komosinski and A. Adamatzky (London:
642 Springer London). 3-35. doi:10.1007/978-1-84882-285-6_1

s3 Paaby, A. B. and Rockman, M. V. (2014). Cryptic genetic variation: evolution’s hidden substrate. Nature Reviews
644 Genetics 15, 247-258. doi:10.1038/nrg3688

ess  Paenke, 1., Sendhoff, B., and Kawecki, T. (2007). Influence of Plasticity and Learning on Evolution under Directional
646 Selection. The American Naturalist 170, E47-E58. doi:10.1086/518952

s7  Pigliucci, M. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology 209,
648 2362-2367. doi:10.1242/jeb.02070

22


https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sso  Price, T. D., Qvarnstrm, A., and Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution.
650 Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1433—1440. doi:10.1098/rspb.2003.
651 2372

es2 R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

653 Computing, Vienna, Austria
e« Rice, W. R. (1989). Analyzing Tables of Statistical Tests. Evolution 43, 223. doi:10.2307/2409177

ess  Schaum, C. E. and Collins, S. (2014). Plasticity predicts evolution in a marine alga. Proceedings of the Royal Society B:
656 Biological Sciences 281, 20141486. doi:10.1098/rspb.2014.1486

es7  Schlichting, C. D. (2008). Hidden Reaction Norms, Cryptic Genetic Variation, and Evolvability. Annals of the New
658 York Academy of Sciences 1133, 187-203. doi:10.1196/annals.1438.010

eso  Schlichting, C. D. and Wund, M. A. (2014). Phenotypic Plasticity and Epigenetic Marking: An Assessment of Evidence
660 for Genetic Accommodation. Evolution 68, 656—672. doi:10.1111/evo.12348

et Schwander, T. and Leimar, O. (2011). Genes as leaders and followers in evolution. Trends in Ecology & Evolution 26,
662 143-151. doi:10.1016/j.tree.2010.12.010

ess  Smith, J. M. and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetical Research 23, 23-35.
664 doi:10.1017/S0016672300014634

ess Van den Bergh, B., Swings, T., Fauvart, M., and Michiels, J. (2018). Experimental Design, Population Dynamics,
666 and Diversity in Microbial Experimental Evolution. Microbiology and Molecular Biology Reviews 82, e00008-18,
667 /mmbr/82/3/e00008—-18.atom. doi:10.1128/MMBR.00008-18

ess  Wennersten, L. and Forsman, A. (2012). Population-level consequences of polymorphism, plasticity and randomized
669 phenotype switching: a review of predictions. Biological Reviews 87, 756-767. doi:10.1111/j.1469-185X.2012.
670 00231.x

o7t West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. (Oxford University Press)

ez West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the
673 National Academy of Sciences 102, 6543-6549. doi:10.1073/pnas.0501844102

e74 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., Franois, R., et al. (2019). Welcome to the tidyverse.
675 Journal of Open Source Software 4, 1686. doi:10.21105/joss.01686

e7s  Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., et al. (2020). ggplot2: Create Elegant

677 Data Visualisations Using the Grammar of Graphics. R package version 3.3.2
ers  Wickham, H. and Seidel, D. (2020). scales: Scale Functions for Visualization. R package version 1.1.1

e79  Wilcoxon, F. (1992). Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics, eds. S. Kotz and
680 N. L. Johnson (New York, NY: Springer New York). 196-202. doi:10.1007/978-1-4612-4380-9_16. Series Title:

681 Springer Series in Statistics
ez Wilke, C. O. (2020). cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2. R package version 1.1.0

ess  Wilke, C. O. and Adami, C. (2002). The biology of digital organisms. Trends in Ecology & Evolution 17, 528-532.
684 doi:10.1016/S0169-5347(02)02612-5

23


https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445672; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ess  Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., and Adami, C. (2001). Evolution of digital organisms at high
686 mutation rates leads to survival of the flattest. Nature 412, 331-333. doi:10.1038/35085569

es7  Winger, B. M., Auteri, G. G., Pegan, T. M., and Weeks, B. C. (2019). A long winter for the Red Queen: rethinking the
688 evolution of seasonal migration. Biological Reviews 94, 737-752. doi:10.1111/brv.12476

ess  Wund, M. A. (2012). Assessing the Impacts of Phenotypic Plasticity on Evolution. Integrative and Comparative
690 Biology 52, 5-15. doi:10.1093/icb/ics050

et Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.21

e2 Zheng, J., Payne, J. L., and Wagner, A. (2019). Cryptic genetic variation accelerates evolution by opening access to
693 diverse adaptive peaks. Science 365, 347-353. doi:10.1126/science.aax1837

e« Zimmer, C. and Emlen, D. J. (2013). Evolution: making sense of life (Greenwood Village, CO: Roberts and Company
695 Publishers)

24


https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	The Avida Digital Evolution Platform
	Phenotypic plasticity in Avida

	Experimental design
	Environments
	Experiment Phase 1 – Environment preconditioning
	Experiment Phase 2A – Evolutionary change rate
	Experiment Phase 2B – Novel task evolution
	Experiment Phase 2C – Deleterious instruction accumulation

	Experimental analyses
	Statistical analyses
	Software availability

	Results
	Adaptive phenotypic plasticity slows evolutionary change in fluctuating environments
	Adaptively plastic populations retain more novel tasks than non-plastic populations in fluctuating environments
	Lineages without plasticity that evolve in fluctuating environments express more deleterious tasks

	Discussion
	Evolutionary change
	The evolution and maintenance of novel tasks
	The accumulation of deleterious alleles
	Limitations and future directions


