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Abstract11

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies12

to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary13

dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate14

phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer15

programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary16

outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic17

populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change?18

(2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity19

affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive20

phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic21

variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic22

populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the23

repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive24

alleles via deleterious hitchhiking, whereas phenotypic plasticity can stabilize populations against environmental25

fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic26

counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more27

similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical28

fluctuating environment. All natural environments subject populations to some form of change; our findings suggest29

that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.30

1 Introduction31

Natural organisms employ a wide range of evolved strategies for coping with environmental change, such as periodic32

migration (Winger et al., 2019), bet-hedging (Beaumont et al., 2009), adaptive tracking (Barrett and Schluter, 2008),33

and phenotypic plasticity (Ghalambor et al., 2007). The particular mechanisms that evolve in response to fluctuating34

environments will also shift the course of subsequent evolution (Wennersten and Forsman, 2012; Schaum and Collins,35

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/


2014). As such, if we are to understand or predict evolutionary outcomes, we must be able to identify which mechanisms36

are most likely to evolve and what constraints and opportunities they impart on subsequent evolution.37

In this work, we focus on phenotypic plasticity, which can be defined as the capacity for a single genotype to alter38

phenotypic expression in response to a change in its environment (West-Eberhard, 2003). Phenotypic plasticity is39

controlled by genes whose expression is coupled to one or more environmental signals, which may be either biotic40

or abiotic. For example, the sex ratio of the crustacean Gammarus duebeni is modulated by changes in photoperiod41

and temperature (Dunn et al., 2005), and the reproductive output of some invertebrate species is heightened when42

infected with parasites to compensate for offspring loss (Chadwick and Little, 2005). In this study, we conducted digital43

evolution experiments to investigate how the evolution of adaptive phenotypic plasticity shifts the course of evolution in44

a cyclically changing environment. Specifically, we examined the effects of adaptive plasticity on subsequent genomic45

and phenotypic change, the capacity to evolve and then maintain novel traits, and the accumulation of deleterious46

alleles.47

Evolutionary biologists have long been interested in how evolutionary change is influenced by phenotypic plasticity48

because of its role in generating phenotypic variance (Gibert et al., 2019). The effects of phenotypic plasticity on49

adaptive evolution have been disputed, as few studies have been able to observe both the initial patterns of plasticity50

and the subsequent divergence of traits in natural populations (Ghalambor et al., 2007; Wund, 2012; Forsman, 2015;51

Ghalambor et al., 2015; Hendry, 2016). In changing environments, adaptive phenotypic plasticity provides a mechanism52

for organisms to regulate trait expression within their lifetime, which can stabilize populations through those changes53

(Gibert et al., 2019). In this context, the stabilizing effect of adaptive plasticity has been hypothesized to constrain the54

rate of adaptive evolution (Gupta and Lewontin, 1982; Ancel, 2000; Huey et al., 2003; Price et al., 2003; Paenke et al.,55

2007). That is, directional selection may be weak if environmentally-induced phenotypes are close to the optimum; as56

such, adaptively plastic populations may evolve slowly (relative to non-plastic populations) unless there is a substantial57

fitness cost to plasticity.58

Phenotypic plasticity allows for the accumulation of genetic variation in genomic regions that are unexpressed under59

current environmental conditions. Such cryptic (“hidden”) genetic variation can serve as a source of diversity in the60

population, upon which selection can act when the environment changes (Schlichting, 2008; Levis and Pfennig, 2016).61

It remains unclear to what extent and under what circumstances this cryptic variation caches adaptive potential or62

merely accumulates deleterious alleles (Gibson and Dworkin, 2004; Paaby and Rockman, 2014; Zheng et al., 2019).63

The “genes as followers” hypothesis (also known as the “plasticity first” hypothesis) predicts that phenotypic plasticity64

may facilitate adaptive evolutionary change by producing variants with enhanced fitness under stressful or novel65

conditions (West-Eberhard, 2003; Schwander and Leimar, 2011; Levis and Pfennig, 2016). Environmentally-induced66

trait changes can be refined through selection over time (i.e., genetic accommodation). Further, selection may drive67

plastic phenotypes to lose their environmental dependence over time in a process known as genetic assimilation68

(West-Eberhard, 2005; Pigliucci, 2006; Crispo, 2007; Schlichting and Wund, 2014; Levis and Pfennig, 2016). In this69

way, environmentally-induced phenotypic changes can precede an evolutionary response.70

Phenotypic plasticity may also “rescue” populations from extinction under changing environmental conditions by71

buffering populations against novel stressors. This buffer promotes stability and persistence and grants populations time72

to further adapt to rapidly changing environmental conditions (West-Eberhard, 2003; Chevin and Lande, 2010).73

Disparate predictions about how phenotypic plasticity may shift the course of subsequent evolution are not necessarily74

mutually exclusive. Genetic and environmental contexts determine if, and to what extent, phenotypic plasticity promotes75

or constrains subsequent evolution. Figure 1 overviews how we might expect different forms of phenotypic plasticity to76

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/


P
he

no
ty

pe E1 E2 E1 E2

E1 E2E1 E2

Environment

(a) (b)

(c) (d)

Adaptive 
plasticityNon-plastic

Maladaptive 
plasticity

Non-adaptive 
plasticity

OE1

OE2

OE1

OE2

Figure 1 Hypothetical reaction norms for genotypes placed in different environments. In all panels, two environments
(denoted E1 and E2) are shown on the x-axis. The y-axis indicates the phenotype expressed in each environment with OE1 and
OE2 designating the optimal phenotype for E1 and E2, respectively. Each pair of points connected by a solid black line denotes a
genotype, with the points themselves representing its hypothetical phenotypes in each environment. We present four scenarios for
how populations could respond to a change from E1 to E2. (a) A non-plastic population where phenotypes do not change with
environmental shifts. In such cases, we would expect strong directional selection toward OE2 after the environment changes. (b)
An adaptively plastic populations where phenotypes dynamically adjust to the new optimum whenever the environment shifts. As
such, we would expect this population to remain relatively stable after the environment changes. (c) A population exhibiting
non-adaptive plasticity with substantial variation in how individuals respond to the environmental change. In this case, we expect
the change in environment to result in a rapid evolutionary sweep by genotypes closest to the new optimal phenotype. (d) A
population exhibiting maladaptive plasticity relative to the given environmental change. When the environment changes, there is
little variation for selection to act on, and without beneficial mutations, this population could be at risk of extinction.

result in different evolutionary responses after an environmental change.77

Experimental studies investigating the relationship between phenotypic plasticity and evolutionary outcomes can be78

challenging to conduct in natural systems. Such experiments would require the ability to irreversibly toggle plasticity79

followed by long periods of evolution during which detailed phenotypic data would need to be collected. Digital80

evolution experiments have emerged as a powerful research framework from which evolution can be studied. In81

digital evolution, self-replicating computer programs (digital organisms) compete for resources, mutate, and evolve82

following Darwinian dynamics (Wilke and Adami, 2002). Digital evolution studies balance the speed and transparency83

of mathematical and computational simulations with the open-ended realism of laboratory experiments. Modern84

computers allow us to observe many generations of digital evolution at tractable time scales; thousands of generations85
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can take mere minutes as opposed to months, years, or millennia. Digital evolution systems also allow for perfect,86

non-invasive data tracking. Such transparency permits the tracking of complete evolutionary histories within an87

experiment, which circumvents the historical problem of drawing evolutionary inferences using incomplete records88

(from frozen samples or fossils) and extant genetic sequences. Additionally, digital evolution systems allow for89

experimental manipulations and analyses that go beyond what is possible in wet-lab experiments. Such analyses have90

included exhaustive knockouts of every site in a genome to identify the functionality of each (Lenski et al., 2003),91

comprehensive characterization of local mutational landscapes (Lenski et al., 1999; Canino-Koning et al., 2019), and92

the real-time reversion of all deleterious mutations as they occur to isolate their long-term effects on evolutionary93

outcomes (Covert et al., 2013). Furthermore, digital evolution studies allow us to directly toggle the possibility for94

adaptive plastic responses to evolve, which enables us to empirically test hypotheses that were previously relegated to95

theoretical analyses.96

In this work, we use the Avida Digital Evolution Platform (Ofria et al., 2009). Avida is an open-source system that has97

been used to conduct a wide range of well-regarded studies on evolutionary dynamics, including the origins of complex98

features (Lenski et al., 2003), the survival of the flattest effect (Wilke et al., 2001), and the origins of reproductive99

division of labor (Goldsby et al., 2014). Our experiments build directly on previous studies in Avida that characterized100

the de novo evolution of adaptive phenotypic plasticity (Clune et al., 2007; Lalejini and Ofria, 2016) as well as previous101

work investigating the evolutionary consequences of fluctuating environments for populations of non-plastic digital102

organisms (Li and Wilke, 2004; Canino-Koning et al., 2019). Of particular relevance, Clune et al. (2007) and Lalejini103

and Ofria (2016) experimentally demonstrated that adaptive phenotypic plasticity can evolve given the following four104

conditions (as identified by Ghalambor et al. 2010): (1) populations experience temporal environmental variation, (2)105

these environments are differentiable by reliable cues, (3) each environment favors different phenotypic traits, and (4)106

no single phenotype exhibits high fitness across all environments. We build on this previous work, but we shift our107

focus from the evolutionary causes of adaptive phenotypic plasticity to investigate its evolutionary consequences in a108

fluctuating environment.109

Each of our experiments are divided into two phases: in phase one, we precondition sets of founder organisms with110

differing plastic or non-plastic adaptations; in phase two, we examine the subsequent evolution of populations founded111

with organisms from phase one under specific environmental conditions (Figure 2). First, we examine the evolutionary112

histories of phase two populations to test whether adaptive plasticity constrained subsequent genomic and phenotypic113

changes. Next, we evaluate how adaptive plasticity influences how well populations produced by each type of founder114

can evolve and retain novel adaptive traits. Finally, we examine lineages to determine whether adaptive plasticity115

facilitated the accumulation of cryptic genetic variation that would prove deleterious when the environment changed.116

We found that the evolution of adaptive plasticity reduced subsequent rates of evolutionary change in a cyclic environ-117

ment. The non-plastic populations underwent more frequent selective sweeps and accumulated many more genetic118

changes over time, as non-plastic populations relied on genetic variation from de novo mutations to continuously readapt119

to environmental changes. The evolution of adaptive phenotypic plasticity buffered populations against environmental120

fluctuations, whereas repeated selective sweeps in non-plastic populations drove the accumulation of deleterious121

mutations and the loss of secondary beneficial traits via deleterious hitchhiking. As such, adaptively plastic populations122

were better able to retain novel traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic123

plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than124

to non-plastic populations evolving in an identical fluctuating environment.125
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2 Materials and Methods126

2.1 The Avida Digital Evolution Platform127

Avida is a study system wherein self-replicating computer programs (digital organisms) compete for space on a finite128

toroidal grid (Ofria et al., 2009). Each digital organism is defined by a linear sequence of program instructions (its129

genome) and a set of virtual hardware components used to interpret and express those instructions. Genomes are130

expressed sequentially except when the execution of one instruction (e.g., a “jump” instruction) deterministically131

changes which instruction should be executed next. Genomes are built using an instruction set that is both robust (i.e.,132

any ordering of instructions is syntactically valid, though not necessarily meaningful) and Turing Complete (i.e., able133

to represent any computable function, though not necessarily in an efficient manner). The instruction set includes134

operations for basic computations, flow control (e.g., conditional logic and looping), input, output, and self-replication.135

Organisms in Avida reproduce asexually by copying their genome instruction-by-instruction and then dividing. However,136

copy operations are imperfect and can result in single-instruction substitution mutations in an offspring’s genome. For137

this work, we configured copy operations to err at a rate of one expected mutation for every 400 instructions copied (i.e.,138

a per-instruction error rate of 0.0025). We held individual genomes at a fixed length of 100 instructions; that is, we did139

not include insertion and deletion mutations. We used fixed-length genomes to control for treatment-specific conditions140

resulting in the evolution of substantially different genome sizes (Lalejini and Ferguson, 2021a)1, which could, on its141

own, drive differences in evolutionary outcomes among experimental treatments. When an organism divides in Avida,142

its offspring is placed in a random location on the toroidal grid, replacing any previous occupant. For this work, we used143

the default 60 by 60 grid size, which limits the maximum population size to 3600 organisms. As such, improvements to144

the speed of self-replication are advantageous in the competition for space.145

During evolution, organism replication rates improve in two ways: by improving genome efficiency (e.g., using a146

more compact encoding) or by accelerating the rate at which the genome is expressed (their “metabolic rate”). An147

organism’s metabolic rate determines the speed at which it executes instructions in its genome. Initially, an organism’s148

metabolic rate is proportional to the length of its genome, but that rate is adjusted as it completes designated tasks,149

such as performing Boolean logic computations (Ofria et al., 2009). In this way, we can reward or punish particular150

phenotypic traits.151

2.1.1 Phenotypic plasticity in Avida152

In this work, we measure a digital organism’s phenotype as the set of Boolean logic functions that it performs in a given153

environment. Sensory instructions in the Avida instruction set allow organisms to detect how performing a particular154

logic function would affect their metabolic rate (see supplemental material for more details, Lalejini and Ferguson155

2021a). We define a phenotypically plastic organism as one that uses sensory information to alter which logic functions156

it performs based on the environment.157

Phenotypic plasticity in Avida can be adaptive or non-adaptive for a given set of environments. Adaptive plasticity shifts158

net task expression closer to the optimum for the given environments. Non-adaptive plasticity changes task expression159

in either a neutral or deleterious way. In this work, optimal plasticity toggles tasks to always perfectly match the set of160

rewarded tasks for the given set of environments.161

1We repeated our experiments without genome size restrictions and observed qualitatively similar results (see supplemental material, Lalejini and
Ferguson 2021a).
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2.2 Experimental design162
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Figure 2 Overview of experimental design. The first three plots in panel (a) show the environments used in every experiment
and whether they reward or punish each base task. Additionally, the last two subplots in (a) show the additional tasks added in
phases 2B and 2C. All novel tasks in phase 2B confer a 10% metabolic reward, while executing the poisonous task in phase 2C
causes a 10% metabolic punishment (bars not drawn to scale). Panel (b) shows treatment differences and experimental phases.
Treatments are listed on the left, with each treatment specifying its environmental configuration and whether sensors are functional.
We conducted three independent two-phase experiments, each described on the right. Phases 2B and 2C are textured to match
their task definitions in panel (a). Phase one is repeated for each experiment with 100 replicate populations per treatment per
experiment. For each replicate at the end of phase one, we used an organism of the most abundant genotype to found the second
phase population. All STATIC and NON-PLASTIC populations move on to phase two, but PLASTIC populations only continue
to the second phase if their most abundant genotype exhibits optimal plasticity. Metrics are recorded only in phase two.

We conducted three independent experiments using Avida to investigate how the evolution of adaptive plasticity163

influences evolutionary outcomes in fluctuating environments. For each experiment, we compared the evolutionary164

outcomes of populations evolved under three treatments (Figure 2): (1) a PLASTIC treatment where the environment165

fluctuates, and digital organisms can use sensory instructions to differentiate between environmental states; (2) a166

NON-PLASTIC treatment with identical environment fluctuations, but where sensory instructions are disabled; and167

(3) a STATIC control where organisms evolve in a constant environment.168

Each experiment was divided into two phases that each lasted for 200,000 updates2 of evolution (Figure 2), which169

is equivalent to approximately 30,000 to 40,000 generations. In phase one of each experiment, we preconditioned170

populations to their treatment-specific conditions. In phase two, we founded new populations with the evolved organisms171

from phase one and examined their subsequent evolution under given combinations of treatment and experimental172

conditions. During phase two, we tracked and saved each population’s evolutionary history as well as saving the full173

2One update in Avida is the amount of time required for the average organism to execute 30 instructions. See (Ofria et al., 2009) for more details.
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final population. Phase one was for preconditioning only; all comparisons between treatments were performed on phase174

two data.175

2.2.1 Environments176

We constructed three experimental environments, abbreviated hereafter as “ENV-A”, “ENV-B”, and “ENV-ALL”.177

Figure 2 describes these environments based on whether each of six Boolean logic tasks (NOT, NAND, AND, OR-NOT,178

OR, and AND-NOT) is rewarded or punished. A rewarded task performed by an organism doubles their metabolic rate,179

allowing them to execute twice as many instructions in the same amount of time. A punished task halves an organism’s180

metabolic rate.181

In both the PLASTIC and NON-PLASTIC treatments, the environment cycles between equal-length periods of ENV-A182

and ENV-B. Each of these periods persist for 100 updates (approximately 15 to 20 generations). Thus, populations183

experience a total of 1,000 full periods of ENV-A interlaced with 1,000 full periods of ENV-B during each experimental184

phase.185

Organisms in the PLASTIC treatments differentiate between ENV-A and ENV-B by executing one of six sensory186

instructions, each associated with a particular logical task; these sensory instructions detect whether their associated task187

is currently rewarded or punished. By using sensory information in combination with execution flow-control instructions,188

organisms can conditionally perform different logic tasks depending on the current environmental conditions.189

2.2.2 Experiment Phase 1 – Environment preconditioning190

For each treatment, we founded 100 independent populations from a common ancestral strain capable only of self-191

replication. At the end of phase one, we identified the most abundant (i.e., dominant) genotype and sampled an organism192

with that genotype from each replicate population to found a new population for phase two.193

For the PLASTIC treatment, we measure plasticity by independently testing a given genotype in each of ENV-A and194

ENV-B. We discard phase one populations if the dominant genotype does not exhibit optimal plasticity. This approach195

ensures that measurements taken on PLASTIC-treatment populations during the second phase of each experiment196

reflect the evolutionary consequences of adaptive plasticity.197

2.2.3 Experiment Phase 2A – Evolutionary change rate198

Phase 2A continued exactly as phase one, except we tracked the rates of evolutionary change in each of the PLASTIC-,199

NON-PLASTIC-, and STATIC-treatment populations. Specifically, we quantified evolutionary change rates using four200

metrics (each described in Table 1): (1) coalescence event count, (2) mutation count, (3) phenotypic volatility, and (4)201

mutational robustness.202

2.2.4 Experiment Phase 2B – Novel task evolution203

Phase 2B extended the conditions of phase one by adding 71 novel Boolean logic tasks, which were always rewarded in204

all treatments (Ofria et al., 2009). The original six phase one tasks (NOT, NAND, AND, OR-NOT, OR, and AND-NOT;205

hereafter called “base” tasks) continued to be rewarded or punished according to the particular treatment conditions.206
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An organism’s metabolic rate was increased by 10% for each novel task that it performed (limited to one reward per207

task). This reward provided a selective pressure to evolve these tasks, but their benefits did not overwhelm the 100%208

metabolic rate increase conferred by rewarded base tasks. As such, populations in the PLASTIC and NON-PLASTIC209

treatments could not easily escape environmental fluctuations by abandoning the fluctuating base tasks.210

During this experiment, we tracked the extent to which populations evolving under each treatment were capable of211

acquiring and retaining novel tasks. Specifically, we used three metrics (each described in Table 1): (1) final novel task212

count, (2) novel task discovery, and (3) novel task loss.213

2.2.5 Experiment Phase 2C – Deleterious instruction accumulation214

Phase 2C extended the instruction set of phase one with a poison instruction. When an organism executes a poison215

instruction, it performs a “poisonous” task, which reduces the organism’s metabolic rate (and thus reproductive success)216

but does not otherwise alter the organism’s function. We imposed a 10% penalty each time an organism performed the217

poisonous task, making the poison instruction explicitly deleterious to execute. We did not limit the number of times218

that an organism could perform the poisonous task, and as such, organisms could perform the poisonous task as many219

times as they executed the poison instruction.220

We tracked the number of times each organism along the dominant lineage performed the poisonous task. Specifically,221

we used two metrics (each described in Table 1): (1) final poisonous task count and (2) poisonous task acquisition222

count.223

2.3 Experimental analyses224

For each of our experiments, we tracked and analyzed the phylogenetic histories of evolving populations during phase225

two. For each replicate, we identified an organism with the most abundant genotype in the final evolved population, and226

we used it as a representative organism for further analysis. We used the lineage from the founding organism to the227

representative organism as the representative lineage for further analysis. We manually inspected evolved phylogenies228

and found no evidence that any of our experimental treatments supported long-term coexistence. As such, each of the229

representative lineages reflect the majority of evolutionary history from a given population at the end of our experiment.230

Some of our metrics (Table 1) required us to measure genotype-by-environment interactions. Importantly, in the231

fluctuating environments, we needed to differentiate phenotypic changes that were caused by mutations from those that232

were caused by environmental changes. To accomplish this, we produced organisms with the given focal genotype,233

measured their phenotype in each environment, and aggregated the resulting phenotypes to create a phenotypic profile.234

Although organisms with different genotypes may express the same set of tasks across environments, their phenotypic235

profiles may not necessarily be the same. For example, an organism that expresses NOT in ENV-A and NAND in236

ENV-B has a distinct phenotypic profile from one that expresses NAND in ENV-A and NOT in ENV-B.237

While most analyses employed here are retrospective metrics applied to lineages, digital evolution allows precise manip-238

ulations on individual organisms and genomes. Mutational robustness uses this technique when looking at the possible239

mutations on a representative genotype. Genomes in Avida are linear sequences of instructions, and as such possible240

mutations can be simulated by substituting other instructions at the desired site. Indeed, the mutational robustness of241

a genotype examines all one-step mutations (i.e., each mutation where exactly one instruction is substituted). This242
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Metric Description

Coalescence event count Number of coalescence events that have occurred, which indicates the
frequency of selective sweeps in the population.

Mutation count Sum of all mutations that have occurred along a lineage.

Phenotypic volatility Number of instances where parent and offspring phenotypic profiles
do not match along a lineage.

Mutational robustness Proportion of mutations (from the set of all possible one-step muta-
tions) that do not change the phenotypic profile of a focal genotype.
We also measured realized mutational robustness, which is the pro-
portion of mutated offspring along a lineage whose phenotypic profile
matches that of their parent.

Final novel task count Count of unique novel tasks performed by the representative organism
in a final population from experiment phase 2B. This metric can
range from 0 to 71 and measures how well the fitness landscape was
exploited at a given point in time.

Novel task discovery Number of unique novel tasks ever performed along a given lineage
in experimental phase 2B, even if a task is later lost. This metric can
range from 0 to 71 and measures a given lineage’s level of exploration
of the fitness landscape.

Novel task loss Number of instances along a given lineage from experimental phase
2B where a novel task is performed by a parent but not its offspring.
This metric measures how often a given lineage fails to retain evolved
traits over time.

Final poisonous task count Number of times the poisonous task is performed by the representative
organism from a final population from experiment phase 2C.

Poisonous task acquisition count Number of instances along a given lineage where a mutation causes
an offspring to perform the poisonous task more times than its parent.

Table 1 Metric descriptions.

allows us the disentangle whether results of the lineage metrics are a consequence of evolved genetic architectures or243

otherwise.244

2.4 Statistical analyses245

Across all of our experiments, we differentiated between sample distributions using non-parametric statistical tests.246

For each major analysis, we first performed a Kruskal-Wallis test (Kruskal and Wallis, 1952) to determine if there247

were significant differences in results from the PLASTIC, NON-PLASTIC, and STATIC treatments (significance level248

α = 0.05). If so, we applied a Wilcoxon rank-sum test (Wilcoxon, 1992) to distinguish between pairs of treatments.249

We applied Bonferroni corrections for multiple comparisons (Rice, 1989) where appropriate.250
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2.5 Software availability251

We conducted our experiments using a modified version of the Avida software, which is open source and freely available252

on GitHub (Lalejini and Ferguson, 2021a). We used Python for data processing, and we conducted all statistical253

analyses using R version 4 (R Core Team, 2021). We used the tidyverse collection of R packages (Wickham et al., 2019)254

to wrangle data, and we used the following R packages for analysis, graphing, and visualization: ggplot2 (Wickham255

et al., 2020), cowplot (Wilke, 2020), Color Brewer (Harrower and Brewer, 2003; Neuwirth, 2014), rstatix (Kassambara,256

2021), ggsignif (Ahlmann-Eltze and Patil, 2021), scales (Wickham and Seidel, 2020), Hmisc (Harrell Jr et al., 2020),257

fmsb (Nakazawa, 2019), and boot (Canty and Ripley, 2019). We used R markdown (Allaire et al., 2020) and bookdown258

(Xie, 2020) to generate web-enabled supplemental material. All of the source code for our experiments and analyses,259

including configuration files and guides for replication, can be found in our supplemental material, which is hosted260

on GitHub (Lalejini and Ferguson, 2021a). Additionally, our experimental data is available on the Open Science261

Framework at https://osf.io/sav2c/ (Lalejini and Ferguson, 2021b).262

3 Results263

3.1 Adaptive phenotypic plasticity slows evolutionary change in fluctuating environments264
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Figure 3 Magnitude of evolutionary change. Raincloud plots (Allen et al., 2019) of (a) coalescence event count, (b) mutation
count, and (c) phenotypic volatility. See Table 1 for descriptions of each metric. Each plot is annotated with statistically significant
comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 42 of
100 replicates from the PLASTIC treatment during phase one of this experiment; we used this more limited group to found 42
phase-two PLASTIC replicates from which we report these PLASTIC data.

In experimental phase 2A, we tested whether adaptive phenotypic plasticity constrained or promoted subsequent265

evolutionary change in a fluctuating environment. First, we compared the total amount of evolutionary change in266

populations evolved under the PLASTIC, NON-PLASTIC, and STATIC treatments as measured by coalescence event267

count, mutation count, and phenotypic volatility (Figure 3). According to each of these metrics, NON-PLASTIC268

populations experienced a larger magnitude of evolutionary change than either PLASTIC or STATIC populations. We269

observed significantly higher coalescence event counts in NON-PLASTIC populations than in PLASTIC or STATIC270

populations (Figure 3a). NON-PLASTIC lineages had significantly higher mutation counts (Figure 3b) and phenotypic271

volatility than PLASTIC or STATIC lineages (Figure 3c).272
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Changing environments have been shown to increase generational turnover in Avida populations (Canino-Koning et al.,273

2016), which could explain why we observe a larger magnitude of evolutionary change at the end of 200,000 updates of274

evolution in NON-PLASTIC populations. Indeed, we found that significantly more generations of evolution elapsed in275

NON-PLASTIC populations (mean of 41090± 2702 std. dev.) than in PLASTIC (mean of 31016± 2615 std. dev.)276

or STATIC (mean of 30002 ± 3011 std. dev.) populations during phase 2A (corrected Wilcoxon rank-sum tests, p277

< 10−4).278

To evaluate whether increased generational turnover explains the greater magnitude of evolutionary change in NON-279

PLASTIC populations, we examined the average number of generations between coalescence events and the realized280

mutational robustness of lineages (Table 1). A coalescence event indicates a selective sweep, which is a hallmark of281

adaptive evolutionary change. Realized mutational robustness measures the frequency that mutations cause phenotypic282

changes along a lineage. We expect that static conditions should favor fit lineages with high realized mutational283

robustness that no longer undergo rapid adaptive change and hence do not trigger frequent coalescence events. Under284

fluctuating conditions, however, lineages must be composed of plastic organisms if they are to maintain both high285

fitness and realized mutational robustness. Without plasticity, we expect fluctuating conditions to produce lineages with286

low realized mutational robustness and frequent coalescence events as populations must continually acquire and fix287

mutations to readapt to the environment.288
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Figure 4 Pace of evolutionary change. Raincloud plots of (a) average number of generations between coalescence events, and (b)
realized mutational robustness (Table 1). Each plot is annotated with statistically significant comparisons (Bonferroni-corrected
pairwise Wilcoxon rank-sum tests).

On average, significantly fewer generations elapsed between coalescence events in NON-PLASTIC populations than in289

either PLASTIC or STATIC populations (Figure 4a). We also found that both STATIC and PLASTIC lineages exhibited290

higher realized mutational robustness relative to that of NON-PLASTIC lineages (Figure 4b); that is, mutations observed291

along NON-PLASTIC lineages more often caused phenotypic changes in offspring. Overall, our results indicate that292

NON-PLASTIC populations underwent more rapid (and thus a greater amount of) evolutionary change than either293

PLASTIC or STATIC populations.294

While both STATIC and PLASTIC lineages exhibited high realized mutational robustness, we found that STATIC295

lineages exhibited higher realized robustness than PLASTIC lineages (Figure 4b). Overall, there were rare instances296

of mutations that caused a change in phenotypic profile across all PLASTIC lineages. Of these mutations, we found297

that over 80% (83 out of 102) of changes to phenotypic profiles were cryptic. That is, the mutations affected traits that298

would not have been expressed in the environment that the organism was born into but would have been expressed had299

the environment changed.300

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445672
http://creativecommons.org/licenses/by/4.0/


p < 1e−04

p < 1e−04

p = 0.003

0.00

0.25

0.50

0.75

1.00

STATIC NON−PLASTIC PLASTIC

M
ut

at
io

na
l r

ob
us

tn
es

s

Kruskal−Wallis, p < 1e−04

Mutational robustness

Figure 5 Mutational robustness. Raincloud plot of mutational robustness of each representative genotype (Table 1). The plot is
annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

Given that NON-PLASTIC lineages exhibited the lowest realized mutational robustness of our three experimental301

treatments, we sought to determine if this effect was driven by differences in evolved genetic architectures. Specifically,302

did the NON-PLASTIC genetic architectures evolve such that mutations were more likely to result in phenotypic303

change? Such a mutational bias would trade off descendant fitness in the same environment in exchange for a chance of304

increasing descendant fitness in alternate environments. This strategy would be an example of diversifying bet-hedging305

(i.e., reducing expected mean fitness to lower variance in fitness) (Childs et al., 2010). Alternatively, the lower realized306

mutational robustness in NON-PLASTIC lineages could be due to survivorship bias, as we measured realized mutational307

robustness as the fraction of mutations observed along successful lineages that caused a phenotypic change.308

We analyzed the mutational robustness of representative genotypes by calculating the fraction of single-instruction309

mutations that change the phenotypic profile. We found that mutations to representative genotypes on NON-PLASTIC310

lineages are less likely to result in a phenotypic change than mutations to comparable genotypes on either STATIC or311

PLASTIC lineages (Figure 5). These data provide evidence against NON-PLASTIC lineages engaging in a mutation-312

driven bet-hedging strategy, and instead, are consistent with the hypothesis that lower realized mutational robustness in313

the NON-PLASTIC treatment was due to survivorship bias.314

In general, adaptive plasticity stabilized PLASTIC-treatment populations against environmental fluctuations, and their315

evolutionary dynamics more closely resembled those of populations evolving in a static environment. We observed316

no significant difference in the number and frequency of coalescence events in PLASTIC and STATIC populations.317

We did, however, observe small, but statistically significant, differences in each of the following metrics: elapsed318

generations, mutation counts, mutational robustness, and realized mutational robustness between PLASTIC and STATIC319

populations.320

3.2 Adaptively plastic populations retain more novel tasks than non-plastic populations in321

fluctuating environments322

We have so far shown that adaptive plasticity constrains the rate of evolutionary change in fluctuating environments.323

However, it is unclear how this dynamic influences the evolution of novel tasks. Based on their relative rates of324

evolutionary change, we might expect NON-PLASTIC-treatment populations to evolve more novel tasks than PLASTIC-325
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Figure 6 Novel task evolution. Raincloud plots of (a) final novel task count, (b) novel task discovery, and (c) novel task loss. See
Table 1 for descriptions of each metric. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected
pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 42 of 100 replicates from the PLASTIC
treatment during phase one of this experiment; we used this more limited group to seed the resulting 42 phase-two PLASTIC
replicates.

treatment populations. But, how much of the evolutionary change in NON-PLASTIC populations is useful for exploring326

novel regions of the fitness landscape versus continually rediscovering the same regions?327

To answer this question, we quantified the number of novel tasks performed by a representative organism in the final328

population of each replicate. We found that both PLASTIC and STATIC populations had significantly higher final329

task counts than NON-PLASTIC populations at the end of the experiment (Figure 6a). The final novel task count in330

PLASTIC and STATIC lineages could be higher than that of the NON-PLASTIC lineages for several non-mutually331

exclusive reasons. One possibility is that PLASTIC and STATIC lineages could be exploring a larger area of the fitness332

landscape when compared to NON-PLASTIC lineages. Another possibility is that the propensity of the NON-PLASTIC333

lineages to maintain novel traits could be significantly lower than PLASTIC or STATIC lineages. When we looked at334

the total sum of novel tasks discovered by each of the PLASTIC, STATIC, and NON-PLASTIC lineages, we found335

that NON-PLASTIC lineages generally explored a larger area of the fitness landscape (Figure 6b). Although the336

NON-PLASTIC lineages discovered more novel tasks, those lineages also exhibited significantly higher novel task loss337

when compared to PLASTIC and STATIC lineages (Figure 6c).338
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Figure 7 Rate of novel task evolution. Raincloud plots of (a) novel task discovery frequency and (b) novel task loss frequency.
Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

A larger number of generations elapsed in NON-PLASTIC populations than in PLASTIC or STATIC populations339
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during our experiment (Lalejini and Ferguson, 2021a). Are NON-PLASTIC lineages discovering and losing novel tasks340

more frequently than PLASTIC or STATIC lineages, or are our observations a result of differences in generational341

turnover? To answer this question, we converted the metrics of novel task discovery and novel task loss to rates by342

dividing each metric by the number of elapsed generations along the associated representative lineages. We found no343

significant difference in the frequency of novel task discovery between NON-PLASTIC and STATIC lineages, and344

we found that PLASTIC lineages had a lower frequency of novel task discovery than STATIC lineages (Figure 7a).345

Therefore, we cannot reject the possibility that the larger magnitude of task discovery in NON-PLASTIC lineages was346

driven by a larger number of elapsed generations. NON-PLASTIC lineages had a higher frequency of task loss than347

either PLASTIC or STATIC lineages, and PLASTIC lineages tended to have a lower frequency of novel task loss than348

STATIC lineages (Figure 7b).349

Next, we examined the frequency at which novel task loss along lineages co-occurred with the loss or gain of any of350

the six base tasks. Across all NON-PLASTIC representative lineages, over 97% (10998 out of 11229) of instances351

of novel task loss co-occurred with a simultaneous change in base task profile. In contrast, across all PLASTIC and352

STATIC dominant lineages, we observed that approximately 20% (29 out of 142) and 2% (13 out of 631), respectively,353

of instances of novel task loss co-occurred with a simultaneous change in base task profile. As such, the losses of novel354

tasks in NON-PLASTIC lineages appear to be primarily due to hitchhiking.355

3.3 Lineages without plasticity that evolve in fluctuating environments express more delete-356

rious tasks357

Phenotypic plasticity allows for genetic variation to accumulate in genomic regions that are unexpressed, which could358

lead to the fixation of deleterious instructions in PLASTIC populations. However, in NON-PLASTIC lineages, we359

observe a higher rate of novel task loss, indicating that they may be more susceptible to deleterious mutations (Figure360

7b).361

Therefore, in experiment phase 2C, we tested whether adaptive phenotypic plasticity can increase the incidence of362

deleterious task performance. Specifically, we added an instruction that triggered a “poisonous” task and measured the363

number of times it was executed. Each execution of the poison instruction reduces an organism’s fitness by 10%. At364

the beginning of phase 2C, the poison instruction is not present in the population, as it was not part of the instruction365

set during phase one of evolution. Accordingly, if a poison instruction fixes in a population, it must be the result of366

evolutionary dynamics during phase 2C, including cryptic variation or hitchhiking.367

At the end of our experiment, no representative organisms from the PLASTIC or STATIC treatments performed the368

poisonous task under any environmental condition; however, representative organisms in 14% of replicates of the369

NON-PLASTIC treatment performed the poisonous task at least once. NON-PLASTIC lineages contained significantly370

more mutations that conferred the poisonous task as compared to PLASTIC or STATIC lineages (Figure 8a), and these371

mutations occurred at a significantly higher frequency in NON-PLASTIC lineages (Figure 8b).372

Next, we measured how often mutations that increased poisonous task performance co-occurred with changes to the base373

task profile within representative lineages. A poisonous instruction can fix in a lineage by having a beneficial effect that374

outweighs its inherent cost (e.g., knocking out a punished task) or through linkage with a secondary beneficial mutation375

at another site within the genome. Across all NON-PLASTIC representative lineages, we found that approximately376

49% (956 out of 1916) of mutations that increased poisonous task expression co-occurred with a change in the base task377

profile (Figure 8c). In all representative lineages from the PLASTIC treatment, only 18 mutations increased poisonous378
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Figure 8 Deleterious instruction accumulation. Raincloud plots of (a) poisonous task acquisition, (b) poisonous task acquisition
frequency, and (c) the proportion of mutations that increase poisonous task performance along a lineage that co-occur with a
change in phenotypic profile. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise
Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 43 of 100 replicates from the PLASTIC treatment
during phase one of this experiment; we used this more limited group to seed the 43 phase-two PLASTIC replicates.

task expression, and none co-occurred with a change in base task profile (Figure 8c). Likewise, only 58 mutations379

increased poisonous task performance in all representative lineages from the STATIC treatment, and none co-occurred380

with a change in base task profile (Figure 8c). We did not find compelling evidence that the few mutations that increased381

poisonous task expression occurred as cryptic variation in PLASTIC lineages.382

We repeated this experiment with 3% and 30% metabolic rate penalties associated with the poisonous task, which383

produced results that were consistent with those reported here (Lalejini and Ferguson, 2021a).384

4 Discussion385

In this work, we used evolving populations of digital organisms to determine how adaptive phenotypic plasticity alters386

subsequent evolutionary dynamics and influences evolutionary outcomes in fluctuating environments. Specifically, we387

compared lineages of adaptively plastic organisms in fluctuating environments to both non-plastic organisms in those388

same environments and other non-plastic organisms in static environments.389

4.1 Evolutionary change390

We found strong evidence that adaptive plasticity slows evolutionary change in fluctuating environments. Adaptively391

plastic populations experienced fewer coalescence events and fewer total genetic changes relative to non-plastic392

populations evolving under identical environmental conditions (Figure 3). Whereas non-plastic populations relied on de393

novo mutations to adapt to each environmental fluctuation, plastic populations leveraged sensory instructions to regulate394

task performance. Indeed, in fluctuating environments, selection pressures toggle after each environmental change.395

We hypothesize that in non-plastic populations such toggling would repeatedly drive the fixation of mutations that396

align an organism’s phenotypic profile to the new conditions. This hypothesis is supported by the increased frequency397

of coalescence events in these populations (Figure 4a) as well as increased rates of genetic and phenotypic changes398

observed along the lineages of non-plastic organisms.399
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Representative lineages in the non-plastic treatment experienced lower realized mutational robustness than plastic400

and static lineages (Figure 4b). We reasoned that this lower realized mutational robustness was due to non-plastic401

populations evolving a bet-hedging strategy where mutations are more likely to modify the phenotypic profile. However,402

when we switched from measuring the realized mutational robustness of representative lineages to measuring the403

mutational robustness of representative genotypes (i.e., what fraction of one-step mutants change the phenotypic profile),404

we observed that non-plastic genotypes exhibited the highest mutational robustness of all three treatments (Figure 5).405

This result runs contrary to both our expectations and the results of other fluctuating environment studies in Avida406

(Canino-Koning et al., 2019). Canino-Koning et al. (2019) found that mutational robustness is negatively correlated407

with the number of task-encoding sites in the genome. In our work, most plastic and static genotypes encode all six base408

tasks, while most non-plastic genotypes only encode tasks from one environment; this results in fewer task-encoding409

sites, which may increase mutational robustness in non-plastic genotypes (relative to plastic and static genotypes).410

Regardless of the cause, this higher mutational robustness in non-plastic organisms indicates that bet-hedging is not411

driving the low realized mutational robustness observed in non-plastic lineages. Thus, we expect the lower realized412

mutational robustness in non-plastic lineages to be driven by survivorship bias. Because non-plastic lineages must rely413

on mutations to adapt to environmental changes, phenotype-altering mutations are often highly advantageous, and their414

selection decreases the realized mutational robustness of the lineage.415

To our knowledge, this study is the first in-depth empirical investigation into how the de novo evolution of adaptive416

plasticity shifts the course of subsequent evolution in a cyclic environment. The relative rates of evolutionary change that417

we observed in non-plastic populations, however, are consistent with results from previous digital evolution studies. For418

example, Dolson et al. (2020) showed that non-plastic populations that were evolved in cyclically changing environments419

exhibited higher phenotypic volatility and accumulated more mutations than that of populations evolved under static420

conditions. Furthermore, Lalejini and Ofria (2016) visually inspected the evolutionary histories of non-plastic organisms421

evolved in fluctuating environments, observing that mutations along successful lineages readily switched the set of422

traits expressed by offspring.423

Our results are also consistent with conventional evolutionary theory. A trait’s evolutionary response to selection424

depends on the strength of directional selection and on the amount of genetic variation for selection to act upon (Lande425

and Arnold, 1983; Zimmer and Emlen, 2013). In our experiments, non-plastic populations repeatedly experienced strong426

directional selection to toggle which tasks were expressed after each environmental change. As such, retrospective427

analyses of successful lineages revealed rapid evolutionary responses (that is, high rates of genetic and phenotypic428

changes). Evolved adaptive plasticity shielded populations from strong directional selection when the environment429

changed by eliminating the need for a rapid evolutionary response to toggle task expression. Indeed, both theoretical430

and empirical studies have shown that adaptive plasticity can constrain evolutionary change by weakening directional431

selection on evolving populations (Price et al., 2003; Paenke et al., 2007; Ghalambor et al., 2015).432

4.2 The evolution and maintenance of novel tasks433

In fluctuating environments, non-plastic populations explored a larger area of the fitness landscape than adaptively434

plastic populations (Figure 6b). However, adaptively plastic populations better exploited the fitness landscape, retaining435

a greater number of novel tasks than non-plastic populations evolving under identical environmental conditions (Figure436

6a). In our experiment, novel tasks were less important to survival than the fluctuating base tasks. In non-plastic437

populations, when a mutation changes a base task to better align with current environmental conditions, its benefit438

will often outweigh the cost of losing one or more novel tasks. Indeed, we found that along non-plastic representative439
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lineages, 97% of the mutations associated with novel task loss co-occurred with phenotypic changes that helped440

offspring adapt to current environmental conditions.441

Previous studies have shown that transitory environmental changes can improve overall fitness landscape exploration in442

evolving populations of non-plastic digital organisms (Nahum et al., 2017). Similarly, changing environments have443

been shown to increase the rate of evolutionary adaptation in simulated network models (Kashtan et al., 2007). In444

our system, however, we found that repeated fluctuations reduced the ability of non-plastic populations to maintain445

and exploit tasks; that said, we did find that repeated fluctuations may improve overall task discovery by increasing446

generational turnover. Consistent with our findings, Canino-Koning et al. (2019) found that non-plastic populations of447

digital organisms evolving in a cyclic environment maintained fewer novel traits than populations evolving in static448

environments.449

Our results suggest that adaptive phenotypic plasticity can improve the potential for populations to exploit novel450

resources by stabilizing them against stressful environmental changes. The stability that we observe may also lend451

some support to the hypothesis that phenotypic plasticity can rescue populations from extinction under changing452

environmental conditions (Chevin et al., 2010).453

Our data do not necessarily provide evidence for or against the genes as followers hypothesis. The genes as followers454

hypothesis focuses on contexts where plastic populations experience novel or abnormally stressful environmental455

change. However, in our system, environmental changes were cyclic (not novel), and no single environmental change456

was abnormally stressful. Further, the introduction of novel tasks during the second phase of the experiment merely457

added static opportunities for fitness improvement. This addition did not change the meaning of existing environmental458

cues, nor did it require those cues to be used in new ways.459

4.3 The accumulation of deleterious alleles460

We found that non-plastic lineages that evolved in a fluctuating environment exhibited both greater totals and higher461

rates of poisonous task acquisition than that of adaptively plastic lineages (Figure 8). In asexual populations without462

horizontal gene transfer, all co-occurring mutations are linked. As such, deleterious mutations linked with a stronger463

beneficial mutation (i.e., a driver) can sometimes “hitchhike” to fixation (Smith and Haigh, 1974; Van den Bergh et al.,464

2018; Buskirk et al., 2017). Natural selection normally prevents deleterious mutations from reaching high frequencies,465

as such mutants are outcompeted. However, when a beneficial mutation sweeps to fixation in a clonal population, it466

carries along any linked genetic material, including other beneficial, neutral, or deleterious mutations (Barton, 2000;467

Smith and Haigh, 1974). Therefore, we hypothesize that deleterious genetic hitchhiking drove poison instruction468

accumulation along non-plastic lineages in changing environments.469

Across our experiments, the frequency of selective sweeps in non-plastic populations provided additional opportunities470

for genetic hitchhiking with each environmental change. Indeed, representative lineages from non-plastic populations in471

the cyclic environment exhibited higher mutation accumulation (Figure 3b), novel trait loss (Figure 6c), and poisonous472

task acquisition (Figure 8a) than their plastic counterparts. In aggregate, we found that many (∼49%; 956 / 1916)473

mutations that increased poison instruction execution in offspring co-occurred with mutations that provided an even474

stronger benefit by adapting the offspring to an environmental change. We expect that an even larger fraction of these475

deleterious mutations were linked to beneficial mutations, but our analysis only counted mutations that co-occurred in476

the same generation.477

Theory predicts that under relaxed selection deleterious mutations should accumulate as cryptic variation in unexpressed478
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traits (Lahti et al., 2009). Contrary to this expectation, we did not find evidence of poison instructions accumulating as479

cryptic variation in adaptively plastic lineages. One possible explanation is that the period of time between environmental480

changes was too brief for variants carrying unexpressed poison instructions to drift to high frequencies before the481

environment changed, after which purifying selection would have removed such variants. Indeed, we would not expect482

drift to fix an unexpressed trait since we tuned the frequency of environmental fluctuations to prevent valuable traits483

from being randomly eliminated during the off environment. Additionally, plastic organisms in Avida usually adjust484

their phenotype by toggling the expression of a minimal number of key instructions, leaving little genomic space for485

cryptic variation to accumulate.486

4.4 Limitations and future directions487

Our work lays the groundwork for using digital evolution experiments to investigate the evolutionary consequences of488

phenotypic plasticity in a range of contexts. However, the data presented here are limited to the evolution of adaptively489

plastic populations. Future work might explore the evolutionary consequences of maladaptive and non-adaptive490

phenotypic plasticity (e.g., Leroi et al. 1994), which are known to bias evolutionary outcomes (Ghalambor et al.,491

2015). Additionally in our experiments, sensory instructions perfectly differentiated between ENV-A and ENV-B, and492

environmental fluctuations never exposed populations to entirely new conditions. These parameters have been shown to493

influence evolutionary outcomes (Li and Wilke, 2004; Boyer et al., 2021), which if relaxed in the context of further494

digital evolution experiments, may yield additional insights.495

We focused our analyses on the lineages of organisms with the most abundant genotype in the final population. These496

successful lineages represented the majority of the evolutionary histories of populations at the end of our experiment,497

as populations did not exhibit long-term coexistence of different clades. Our analyses, therefore, gave us an accurate498

picture of what fixed in the population. We did not, however, examine the lineages of extinct clades. Future work will499

extend our analyses to include extinct lineages, giving us a more complete view of evolutionary history, which may500

allow us to better distinguish adaptively plastic populations from populations evolving in a static environment.501

As with any wet-lab experiment, our results are in the context of a particular model organism: “Avidian” self-replicating502

computer programs. Digital organisms in Avida regulate responses to environmental cues using a combination of503

sensory instructions and conditional logic instructions (if statements). The if instructions conditionally execute a504

single instruction depending on previous computations and the state of memory. As such, plastic organisms in Avida505

typically regulate phenotypes by toggling the expression of a small number of key instructions as opposed to regulating506

cohorts of instructions under the control of a single regulatory sequence (Lalejini and Ferguson, 2021a). This bias may507

limit the accumulation of hidden genetic variation in Avida genomes. However, as there are many model biological508

organisms, there are many model digital organisms that have different regulatory mechanisms (e.g., Lalejini and Ofria509

2018) that should be used to test the generality of our results.510

Supplemental Material511

The supplemental material for this article is hosted on GitHub and can be found online at https://github.com/512

amlalejini/evolutionary-consequences-of-plasticity (Lalejini and Ferguson, 2021a).513
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