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Abstract (250 words max)

Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of
neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased
markedly in incidence over the past four decades. Non-functional PanNETs, which occur more
frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor
development and have poorer prognoses. Development of successful therapeutics for PanNETs
has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we
report development of an inducible, conditional mouse model of PanNETs by using a
bitransgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically
in B—islet cells. This model produces a heterogeneous population of PanNETs that includes a
subgroup of well-differentiated, non-functional tumors. The utility of this model is enhanced by
ability to form tumor-derived allografts. Production of these tumors demonstrates the causative
potential of aberrantly active CdkS5 for generation of PanNETs. Further, we show that human
PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share
genetic and transcriptional overlap with the INS-p250E model. This new model of PanNETs
will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new
targeted therapeutics.

(Text 5000 words max)
Introduction
Pancreatic neuroendocrine tumors (PanNETSs) are a diverse group of neoplasms that

originate from islet cells of the pancreas'. These tumors have the potential to secrete a range of


https://doi.org/10.1101/2021.05.25.445594
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445594; this version posted May 25, 2021. The copyright holder for this preprint (which

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

bioactive hormones such as insulin, glucagon, and somatostatin. Tumors that secrete quantities
of hormones that result in elevations in blood plasma levels are classified as functional?.
Functional tumors produce hormonal syndromes commensurate with the hormone produced in
excess’. Functional tumors are typically lower in grade and have good prognoses, possibly due to
early detection as a result of the syndromes experienced by patients*. However, the majority of
PanNETs are non-functional, which on average have comparatively worse prognoses°.
Historically rare, the incidence of PanNETs in the United States increased 8-fold from 1973 to
2012*. Surgical resection provides excellent outcomes and long-term survival for patients with
early stage primary tumors®®. However, many PanNETs are metastatic at diagnosis and there are
no curative therapies for advanced disease’!°.

Multiple molecular alterations have been implicated in the development of PanNETs.
Mutations in the gene MENI occur in approximately 40% of PanNET patients and changes in
DAXX/ATRX are present in another 40%. Roughly 15% of patients possess changes that target
the mTOR pathway, including mutations in 7SC2, PIK3CA, or PTEN'!"!3. Unfortunately, thus
far, no correlation has been observed between the presence of these mutations and patient
response to specific pathway-targeted therapies in NET clinical trials'#. Recently, cyclin-
dependent kinase 5 (Cdk5) was implicated in the growth of several types of neuroendocrine
tumors including PanNETs!>!7. Interestingly, the presence of a set of downstream biomarkers of
CdkS pathway activation was predictive of tumor growth inhibition in preclinical testing of a
Cdk5-targeted therapy'”.

CdkS is a non-canonical member of the Cdk family of proline-directed serine/threonine
kinases'®. Traditional family members, such as Cdk1, 2, 4, and 6, are important cell cycle

regulators that are activated by cyclins and required for cell division'®. Unlike these family
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members, CdkS5 is not activated by cyclins and is not required for normal cell division. Instead,
CdkS is regulated through binding to cofactors p35 or p39°%*!, The resulting protein complex plays
a prominent role in several physiological processes in neuronal cells, such as proper migration for
normal CNS development and function?>?*. Interestingly, aberrant activation of Cdk5 has been
implicated in several neurodegenerative diseases’'. The pathological role of CdkS5 is facilitated
through calpain cleavage of p35 to p25, a highly stable fragment that exhibits mislocalization in
cells but retains the ability to bind and activate Cdk5***. Cdk5 pathway components are also
expressed in neuroendocrine cells of pancreatic islets where they contribute to normal hormone
secretion and P—cell survival?*°. New studies show that under conditions of aberrant activation in
non-neuronal cells, Cdk5 can hijack signaling components traditionally involved in the cell cycle
and successfully promote proliferation and/or migration!>*!-3¢, Here, we show that Cdk5 and its
activators are retained in islet cells that develop into PanNETs in humans and that aberrant
activation of CdkS5 is involved in human PanNET cell growth. Furthermore, we show the potential
for CdkS5 to drive development of PanNETs by demonstrating that expression of the aberrant
activator, p25, in islets of mice, initiations tumor formation. Importantly, these PanNETs exhibit a
heterogeneous phenotype that includes both functional and non-functional, well-differientated

tumors.

Results

To better understand the relevance of the Cdk5 pathway to human PanNETs, we
performed immunostaining on distinct groups of grade 1 human tumors for CdkS5 pathway
components. This revealed the presence of CdkS5 and its activators, p35 and/or p25 (p35/p25)

(Fig. 1A) in both functional and non-functional tumors. To gain further insight into the
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prevalence of these signaling proteins in the PanNET patient population, we performed
immunostaining on a PanNET tissue microarray (TMA) composed of 23 grade 1 tumors, 13
grade 2 tumors, 1 grade 3 tumor, and 5 different normal tissue controls. (Fig. 1B-C and
Supplementary Table S1). Semi-quantitation revealed clear expression of Cdk5 and p35/p25
throughout these grades of tumors (Fig. 1D-E) and elevated expression relative to a normal
placenta control sample.

To determine if Cdk5 and it’s activators play a functional role in PanNETs, we next
examined a set of human PanNET cell lines including the well-established BON and QGP lines,
and two newly derived lines NT-18P and NT18-LM?*”. All cell lines expressed Cdk5 and its
aberrant activator, p25 (Fig. 2A). We previously found that growth of the pancreatic carcinoid
cell line, BON, was blocked by 4 different selective CdkS5 inhibitors and not by Cdk2 and Cdk4
specific inhibitors'’. Here, we show that growth of all five PanNET cell lines tested is inhibited
by the Cdk5-selective inhibitor, IndoA (Fig. 2B). These data indicate that Cdk5 dependence is a
common feature shared by many PanNETs.

To determine if CdkS5 has the potential to behave as a causative factor in PanNET
tumorigenesis, we generated a bitransgenic mouse line in which expression of the aberrant Cdk5
activator, p25, can be induced in B-cells of the pancreas by addition of the small molecule
doxycycline (dox) to drinking water. This was achieved by crossing the Ins2-rtTA mouse line®
that expresses the reverse tetracycline transactivator under the control of the insulin promoter
with the tetOp-p25GFP line*® that expresses p25GFP under the control of the tetOp promoter
(Fig. 3A) to produce bitransgenic offspring (INS-p250E). As previously observed with some
doxycycline (dox) inducible systems, a low level of transgene expression was observed in the

absence of dox. However, administration of 1 g/L dox to INS-p250E animals for 4-8 weeks
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further induced expression of the p25-GFP transgene in pancreatic islets (Fig. 3B-C). Formation
of solid lesions in the pancreas were observed as early as 6 months post-induction of p25GFP
expression (Fig. 3D and Supplementary Fig. S1). As confirmation that transgene expression does
not occur ubiquitously throughout tissues of these animals, we examined samples of pancreatic
masses along with liver and kidney tissues for p25GFP expression after 12 months of dox
administration and found no evidence of p25GFP expression in non-pancreatic tissues (Fig. 3E).

Histological analysis of these masses showed a “nesting” pattern in cellular architecture
that is characteristic of PanNETs (Fig. 3F). Inmunoblot and immunostain confirmed the
presence of p25GFP and CdkS5 in the lesions (Fig. 3E, G). Further, immunostain demonstrated
the presence of chromogranin A (ChA), confirming the neuroendocrine phenotype of the lesions.
Insulin staining verified the masses were composed of B—cells. In addition, pathological review
diagnosed the lesions as well-differientiated PanNETs. These data demonstrate that aberrant
activation of the Cdk5 pathway has the potential to directly promote the formation of PanNETs.

To assess growth rate of the INS-p250E PanNETs, MRI was performed on tumor-
bearing mice over a 20-week period beginning when tumors were approximately 50 mm? (Fig.
3H). PanNETs in this model exhibited a multiphasic growth pattern. Initial growth was linear
with tumors from males and females increasing 3.2-fold and 4.7-fold in size, respectively, over a
5-week timeline (Fig. 31-J). This phase was followed by deceleration and an eventual plateau
around 400 mm? (Fig. 3I). Removal of dox, to decrease expression of p25GFP after tumor onset,
greatly reduced tumor growth rate (Fig. 3J).

The presence of a linear growth phase allows detection of changes in tumor growth, in
response to experimental therapeutics, in smaller cohorts of animals. To further assess the utility

of this model for pre-clinical testing, we examined tumors for the presence of somatostatin
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receptor 2 (SSTR2), a cell-surface protein commonly overexpressed in human PanNETs and
targeted by various FDA-approved treatments for PanNETs. All PanNETs tested exhibited clear
SSTR2 expression (Fig. 3K).

Human PanNETs present clinically as a highly heterogeneous population of tumors'=.
Subgroups of tumors secrete a variety of islet derived hormones while others exhibit no
detectable hormone production. To characterize the tumors generated in the new INS-p250E
model, we stained sections of fixed tumors for insulin, glucagon, and somatostatin; three
hormones commonly expressed in functional human PanNETs. All PanNETs examined
expressed insulin in the tumor mass and a few also exhibited expression of glucagon and
somatostatin (Fig. 4A).

For a tumor to be definitively categorized as clinically functional, in addition to the
presence of the hormone in tumor tissue, circulating blood hormones must be elevated to levels
capable of inducing physiological effects. Therefore, plasma samples from animals harboring
PanNETs and transgene (-) littermates, as controls, were analyzed for insulin, glucagon, and
somatostatin. Tumor bearing animals were not found to possess statistically higher average
levels of any islet hormone analyzed when assessed collectively (Fig. 4B-C).

For higher stringency for classification as non-functional, the data was analyzed again
using two standard deviations above the mean of the control group as the cut-off for normal
hormones levels. The average insulin levels in normal females and males was statistically
different at 0.6 and 1.1 ng/mL, respectively (Fig. 4B-C) (p=0.03). Elevations in insulin were
present in 57% (8 of 14, red symbols) of tumor-bearing females with 10.8-fold being the highest
observed increase relative to control animals. Insulin levels were elevated in 41% (7 of 17, red

symbols ) of males with 8.9-fold being the highest elevation observed. Normal glucagon levels
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for females and males were 125 and 110 pg/mL, respectively. Of tumor-bearing animals, only
one male exhibited a 2.3-fold elevation of plasma glucagon, less than 1% of the total population
and within the natural expected Gaussian distribution. Somatostatin levels in control females and
males were 15 and 18 pg/mL, respectively. Both normal and tumor-bearing populations of males
contained one animal with somatostatin levels elevated greater than two SD above the mean of
the control population, again falling within the natural expected Gaussian curve.

Additionally, we tested the plasma of seven females and seven males lacking large tumor
masses but found to possess abnormal islets by histopathological evaluation (data not shown).
Insulin was elevated in the plasma of 1 of the 7 additional females. This female also exhibited
elevation in somatostatin. One separate female possessed elevated plasma glucagon levels. In
males, 2 of the 7 exhibited elevated plasma glucagon, one exhibited elevated plasma insulin, and
one exhibited elevated somatostatin. Although immunostaining evaluation identified tumors that
were positive for both insulin and glucagon, no animals were found to possess elevation of serum
levels of both hormones. One animal, of 45 examined, exhibited elevations in both insulin and
somatostatin. Collectively these data demonstrate that 48% of PanNETs generated in the INS-
p250E model are potential insulinomas and 52% do not produce elevations in the serum
hormones analyzed and are likely non-functional.

Expression of insulin in all tumors and elevation of circulating insulin levels in 48% of
PanNET animals suggested approximately half of the tumors were functional insulinomas.
However no pre-mature death was observed in the animals as would be expected from severe
hypoglycemia due to overexpression of insulin. To investigate more thoroughly, we tested blood
glucose levels in several female and male animals following a 4-6 h fasting window.

Surprisingly, only 7% of females (1 of 14) and 23% of males (4 of 17), showed depressed
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circulating glucose levels under these conditions compared to transgene (-) littermate controls
(Supplementary Fig. S2A-B). Because mild insulinemia might take longer to affect glucose
levels, we then tested both 4 and 8 h fasting windows in a small set of tumor-bearing females and
found that only 17% (1 of 6) exhibited hypoglycemia even after 8 h without food
(Supplementary Fig. S2C). Collectively, these data point toward 52-83% of tumors generated
from this model being non-functional.

Mutation of the menin gene is the most common genetic alteration found in human
PanNETs, although the prognostic implications of this mutation are a point of contention. To
begin to determine if menin and Cdk5 tumorigenic pathways overlap, we analyzed the presence
of menin, CdkS5, p35, and downstream components of the menin pathway in PanNETs from the
MEN*" model (MEN) and the INS-p250E model (Fig. 5A). As expected, levels of menin were
reduced in MEN"" tumors. Analysis of the downstream targets of menin, p18™* and p27XIP!,
also revealed decreased expression in MEN tumors compared to INS-p250E tumors. This
comparison suggests that aberrant activation of the Cdk5 pathway does not lead to inhibition of
genes targeted by menin.

Levels of Cdk5 and p35 were also reduced in MEN"" tumors, suggesting that PanNETs
arising from loss of function mutations in menin are not driven by aberrant activation of CdkS5.
To explore this observation further, we interrogated phosphorylation levels of three proteins
previously identified as downstream targets of aberrant CdkS5 in thyroid neuroendocrine tumors:
phospho-Ser18 histone H1.5, Ser988 RBL1, and Ser391 SUV3H1"". Interestingly, each of these
markers was highly phosphorylated in INS-p250E tumors. In contrast, these signals were almost
completely absent in normal islets as well as MEN™" tumors, further supporting that loss of

menin does not lead to aberrant activation of Cdk5 as a part of its tumorigenic process (Fig. 5B).
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Together, these data indicate that menin and CdkS5 pathways constitute separate and independent
tumorigenic pathways.

While these studies show that tumors retain dependence upon Cdk5 activity for sustained
growth, the variability in age of onset combined with 75% penetrance by 12 months of age
(Supplementary Fig. S1) raises the possibility that additional alterations occur and facilitate
tumor formation. To investigate this further, we performed whole exome sequencing on five
INS-p250E PanNETs; three functional and two non-functional tumors. Interestingly, high
heterogeneity was observed in the genetic landscape of the these tumors as is also found in
human tumors (Fig. 6). Several classes of mutations were observed throughout multiple
chromosomes including alterations in introns, exons, 3° UTRs, and 5> UTRs (Fig. 6A). Single
nucleotide polymorphisms (SNPs) were the most common type of alteration detected (Fig. 6B).
Examination of mutations from translated regions revealed very little overlap among samples
(Fig. 6C). Although mutations in identical genes among INS-p250E tumors were rare,
alterations in genes encoding regulatory subunits of the PIK3 pathway were found in three of the
five samples. Mutations in the catalytic subunit of PIK3 are known to be enriched in human
PanNETs!?. This finding prompted a full comparison with sequencing datasets from human
PanNETs, which revealed that 48 genes with mutations in INS-p250E tumors are also mutated
in a published set of 98 human PanNETs*’ (Fig. 6D and Supplemental Table S2). Together, the
analyses indicate that the INS-p250E model shares appreciable genetic overlap with human
PanNETs.

To further understand the molecular changes that lead to tumor development in the INS-
p250E model, we performed mRNA sequencing on six INS-p250E PanNETs, three functional

and three non-functional tumors, and compared levels of gene expression to that observed in

10
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normal mouse islets (Fig. 7A). Interestingly, higher heterogeneity was observed in the non-
functional group than in the functional group (Fig. 7B). Comparing the total tumor group to
normal islets, we found that 796 genes were upregulated while 533 genes were downregulated
(Fig. 7C). Of note, genes such as BRCA2, STAT4 and TOP2A were dysregulated, similar to
previous observations from human PanNETs (Fig. 7D)*'**. Ingenuity Pathway Analysis revealed
upregulation of four pathways that relate to cell cycle regulation, one pathway that involves
DNA repair, one that is important for vascularization, and three that are linked to collagen and
extracellular matrix regulation (Fig. 7E).

Although the INS-p250E model generates genetically (Fig. 6) and phenotypically (Fig.
4) heterogenous tumors as is observed in human patients, heterogenous models require large
cohort sizes to identify responses in pre-clinical trials. In addition, the primary model requires 6-
12 months to form tumors. Therefore, we established tumor-dervied allografts from INS-p250E
primary PanNETs as second tool that could be utilized for quick screening in a large,
homogenous cohort of animals. We implanted 2 mm x 2 mm sections of tissue from a primary
tumor (P0) into five recipient BL/6 male mice. Allograft tissue established new tumors (P1) with
100% penetrance and, on average, within 17 weeks, reducing the timeframe for development
from 45 weeks in PO mice to 17 weeks in P1 animals (Fig. 8A-D). Further, allografts can be
serially passaged with 100% penetrance and establish 3™ generation tumors (P2), on average,
within 8 weeks (Fig. 8C-D). Allografts retain expression of the p25-GFP transgene and tumors
grow 4.3 fold in a 5 week period, very similar to growth rates of primary PanNETs (Fig. 8B and
E, Fig. 3J). Allografts retain the well-differientiated neuroendocrine phenotype of the primary
tumors, including tumor architecture and positivity for ChA and insulin staining. (Fig. 8F).

Discussion

11
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274 Progress in the development of therapeutics that specifically target NETs has been

275  hampered in part by an insufficient number of animal models in which to perform preclinical

276  experimentation. While PanNETs co-occur with multiple other tumor types in diverse genetically
277  engineered mouse models, only two main types of transgenic mouse models have been generated
278  and utilized for pre-clinical PanNET studies prior to the development of the INS-p250E model
279  reported here****. The MEN"" conventional knockout model develops PanNETs, as well as

280  parathyroid and pituitary NETs, and has been utilized to explore new therapeutics such as anti-
281  VEGF-A monoclonal antibody therapy and Pasireotide for efficacy toward PanNETs*#>#_ This
282  model is expected to be especially relevant to the approximately 40% of PanNET patients that
283  possess a mutation in the gene menin. Both pan-pancreas and islet-specific conditional

284  homozygous knockouts of the menin gene also produce PanNETs*. Of note, all of the PanNETs
285  from these menin knockout models are insulinomas or gastrinomas while approximately 85% of
286  human PanNETs are classified as non-functional. Therefore, additional models would be highly
287  beneficial.

288 A second conditional transgenic mouse model of PanNETs is the RIP1-Tag2 line*’. This
289  model was generated by cloning the large T-antigen of SV40, a known oncogenic driver,

290  downstream of the rat insulin promoter for expression in B—islet cells. This model develops

291  aggressive insulinomas, including both well- and poorly-differentiated subsets, and has been

292  successfully utilized to explore new therapeutics such as sunitinib and mTOR inhibitors*-°.
293  Interestingly, crossing the RIP1-Tag2 mouse model into the A/J background leads to formation
294  of tumors that do not express insulin®'. The A/J background has a known SNP, relative to the

295  (C57BL/6 background, in the Insm1 gene. Insmi, which encodes a transcription factor that

296  promotes neuroendocrine differentiation and is required for insulin expression in 3 cells, was
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implicated in the loss of insulin expression observed in the model>

. Development of this model
will undoubtedly provide insight into non-functional tumor physiology. However, these tumors
are more poorly differentiated than tumors from the parent C57BL/6 background and the
population of human tumors to which it is relevant will need to be carefully investigated as rare,
poorly-differentiated G3 neuroendocrine carcinomas, and relatively more abundant, well-
differentiated G3 NETs, are molecularly distinct tumor types>'-*>.

Here, we present development of a novel, dox-inducible, conditional mouse model of
PanNETs in which activation of the Cdk5 pathway in B-islet cells leads to slow growing islet
tumors with heterogeneous hormone production profiles, including a large subset of non-
functioning, well-differentiated tumors. The utility of this model is further extended by the
ability to generate multiple allograft animals from each primary PanNET. As these second
generation animals also possess a fully functional immune system, this method for generating
large homogenous cohorts of immunocompetent PanNET models will be especially useful for
exploration of immunotherapies, a modality whose implementation has lagged for
neuroendocrine cancers.

Male and female cohorts were interrogated as separate groups when characterizing the
INS-p250E primary PanNET model so that differences linked to sex could be uncovered.
Surprisingly, although females exhibited a higher propensity for elevation of plasma insulin
levels compared to males, fewer females developed hypoglycemia in response to fasting. This
may be due to the fact that total insulin levels were higher in “elevated” males than “elevated”
females. We have found no clinical analysis of human populations that indicate that non-

functioning PanNETs are more common in one sex versus the other, although NETSs in general

are slightly more common in females®.
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The INS-p250E model reported here is molecularly distinct from the MEN"- model and
likely represents a group of human PanNETs in which mutation of the gene menin is not the key
driving factor. Although causative events that lead to Cdk5 pathway activation in humans are
unclear, Cdk5 misregulation has been demonstrated in multiple types of human NETs!”!%, In
addition, genetic and transcriptional data point to multiple overlaps between human tumors and
the INS-p250E model. Significant overlap was also observed at the functional level, as ~85% of
human tumors are non-functional and we observed a similar distribution of functional and non-
functional tumors in the INS-p250E model. This newly developed model will serve as a useful
platform for molecular characterization of the population of human PanNETs in which aberrant
activation of CdkS5 is present as well as the development and testing of new therapeutics that
target those pathways. Moreoever, because this model more faithfully reflects human PanNET
biology, it will facilitate development of a variety of therapeutic strategies, not limited to
targeting of CdkS.

Methods

Human tissue collection. Samples were collected in accordance with institutional review board
(IRB) regulations under Louisiana State University IRB 5774 and University of Alabama at
Birmingham IRB 300002147.

Histology. Tissues were fixed in formalin, embedded in paraffin, and sliced into 5 um sections
for placement on glass slides. Samples were deparaffinized and subjected to high temperature
antigen retrieval in citrate buffer (pH 6.0). For immunostaining, samples were permeabilized in
0.3% Triton X-100, incubated in 0.3% hydrogen peroxide, blocked with 3% normal goat serum,
and then incubated overnight at 4°C in primary antibodies. Human and mouse tissue was

immunostained for Cdk5 (PhosphoSolutions 308-Cdk5; 1:50) and p35/p25 (Santa Cruz sc-820;
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1:50). Mouse tissue was immunostained for GFP (Cell Signaling Technology 2956; 1:200), ChA
(Abcam ab15160; 1:500), insulin (Abcam ab63820; 1:2000), glucagon (Santa Cruz sc7779;
1:200), somatostatin (Abcam ab108456; 1:450). Biotinylated secondary antibodies (Pierce
31820 or 31800; 1:500) were applied to slides for 1 h at room temperature followed by 30 min of
HRP streptavidin. Slides were then incubated with DAB Chromogen (Dako Liquid DAB+
substrate K3468) and counter stained with hematoxylin. Standard procedures were used for H&E
staining. The human PanNET TMA was prepared by the UAB Research Pathology Core. Slides
were immunostained as stated above. Images were deconvoluted using Fiji ImageJ. The mean
intensity of a fixed region of interest for each core in the resulting DAB channel was measured
and then converted to optical density using the formula: OD = Log (Max intensity/mean
intensity) for semi-quantitative analysis.

Cell Culture. All cells were cultured in a humidified incubator at 37°C under 5% COx.
Fibroblasts were grown in DMEM plus 10% FBS. BON and QGP cells were grown in RPMI
plus 10% FBS, 100 pug/ml penicillin, and 100 pg/ml streptomycin. NT3 and NT18 cells were
cultured in RPMI 1640 GlutMAX plus 10% FCS, 20 ng/ml EGF, 10 ng/ml FGF2, 100 pg/ml
penicillin, and 100 pg/ml streptomycin.

Cell growth assay. Cells were seeded onto 96-well plates and allowed to adhere for 24 h. Cells
were then treated twice (day 1 and day 3) with various concentrations of inhibitor, as shown, and
viability measured after 5 days by MTT assay. ICso values were determined by 4-parameter
logistic regression.

INS-p25OE animal model. All animal work was performed in accordance with the Animal
Welfare Act and the Guide for the Care and Use of Laboratory Animals under UTSW and UAB

Institutional Animal Care and Use Committee approved protocols. Bi-transgenic INS-p250E
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animals were generated from crossing of the tetOp-p25GFP strain (The Jackson Laboratory stock
# 005706) with the Ins2-rtTA strain (Provided by Dr. Alvin C. Powers at Vanderbilt; available
from The Jackson Laboratory stock # 008250). Breeders and pups were maintained in the
absence of doxycycline to allow for normal development of offspring prior to transgene
induction. Upon weaning, at 3-4 weeks of age, offspring were administered 1 mg/L. doxycycline
via drinking water to induce transgene expression in bi-transgenic animals. Bi-transgenic animals
were co-housed with transgene negative littermates. Transgene negative littermates were used as
normal controls. All mice were maintained in the C57BL/6 background. Animals were
euthanized by CO> administration and cardiac perfusion.

MRI. MRI was performed with a Bruker Biospec 9.4 Tesla instrument using Paravision 5.1
software (Bruker Biospin, Billerica, MA). A Bruker 72 mm ID volume coil was used for
excitation and a custom 24 mm surface coil for signal reception (Doty Scientific Inc., Columbia,
SC). Mice were anesthetized with isoflurane gas and respiration observed with a MRI-
compatible physiological monitoring system (SA Instruments Inc., Stony Brook, NY). Animals
were imaged in supine position on a Bruker animal bed system with circulating heated water to
maintain body temperature. A 2D T2-weighted RARE sequence was used for imaging of the
abdomen. The following imaging parameters were used: TR/TE = 2000/25 ms, echo spacing =
12.5 ms, ETL =4, 2 averages, 29 contiguous axial slices with 1 mm thickness, FOV = 30x30
mm and matrix = 300x300 for an in-plane resolution of 100 um. Prospective respiratory gating
was used to minimize motion artifacts. Tumors volumes were quantitated using ImageJ software.
Immunoblot. Cells were lysed in 1% SDS plus 50 mM NaF. Samples were sonicated briefly,
spun at 20,000 g for 5 min, and supernatant combined with Laemmli buffer for analysis by SDS-

PAGE followed by transfer to PVDF for immunoblotting. Tumors were crushed while frozen
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and then processed using the same protocol. Immunoblotting was performed using antibodies for
CdkS5 (Rockland 200-301-163; 1:1000), p35 (Santa Cruz sc-820; 1:300), GFP (Cell Signaling
Technology 2956; 1:2000), SSTR2 (Santa Cruz sc-365502; 1:500), Menin (Santa Cruz sc-
374371; 1:250), p18Ink4c (Invitrogen 393400; 1:500), and p27Kip1 (Cell Signaling Technology
2552; 1:1000), pS18H1.5 (Bibb Lab; 1:1000), H1.5 (Santa Cruz sc-247158; 1:1000),
pS988RBL1 (Bibb Lab; 1:1000), RBL1 (Santa Cruz sc-318; 1:500), pS392-SUV39H1 (Bibb
Lab; 1:300), SUV39HI1 (Sigma S8316; 1:500), and actin (Invitrogen AM4302; 1:5000). Revert
700 Total Protein Stain (LICOR 926-11011) was used per manufacturer’s protocol.

Whole Exome Sequencing. The analysis of raw WES data was performed using MoCaSeq

pipeline (source code: https://github.com/roland-rad-lab/MoCaSeq). The pipeline was set up

using the docker container and Ubuntu Linux. Specifically, the raw reads were trimmed aligned
to the mouse reference genome GRCm38.p6 using Trimmomatic 0.38 and BWA-MEM 0.7.17,
respectively. For further post-processing, Picard 2.20.0 and GATK 4.1.0.0 were used. For the
loss of heterozygosity (LOH) analyses from WES data, somatic SNP calling was performed
using Mutect2. To avoid ambiguous SNP positions resulting from mis-mapping, only reads with
a mapping quality of 60 were kept in LOH analyses. For CNV calling, CopywriteR 2.6.1.216
was used, which extracts DNA copy number information from targeted sequencing by utilizing
off-target reads. Finally, the downstream analysis and visualization were done using custom
Python (v.3.8) and Shell scripting. Data from mice were compared to human data deposited with
the European Genome-Phenome Archive under EGAD00001002684.

RNASeq Analysis. RNA was isolated from tissue using RNeasy Plus Mini Kit (Qiagen 74134).

RNA was transcribed to cDNA using NEBNext Ultra™ RNA Library Prep Kit for [llumina
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(NEB E7530). RNA sequencing was performed using single-end 75 bp reads on an Illumina
NextSeq500. The RAW sequences were trimmed using Trimmomatic 0.38 and low-quality reads
were removed. The quantification of the expression of transcripts of preprocessed sequences was
using salmon 1.4.0 and mm10 mouse reference genome. The resulting quant (transcript
abundance estimates) values were utilized for the differential expression analysis. Differential
gene expression analysis was done using DESeq2 and for downstream analysis and visualization
python (v.3.8) and Bash scripting were used.

Allograft models. Primary tumors were removed from INS-p250E mice and diced into ~2 mm
x 2 mm sections. These sections were implanted into both the right and left flanks of C57BL/6
P1 (passage 1) recipient mice by trocar. Tumor size was monitored by measurement with
calipers. P2 mice were generated by passaging P1 tumors into a second generation of C57BL/6
recipient mice.

Statistical Analysis. Comparisons between two groups were performed using two-tailed
Student’s #-test. Comparisons between three groups were performed using one-way ANOVA.

Sample sizes are provided within figure legends or in results. (*p<0.05).
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Figure 1. Cdk5 pathway components are present in human PanNETs. A. H&E stain and immunostains for
Cdk5 and p35/p25 in G1 PanNETs. Scale bars = 50 um. B-C. Immunostains for Cdk5 (B) and p35/25 (C) from
human PanNET TMA. Scale bar = 2 mm. D-E. Semi-quantitation of Cdk5 expression from B (D) and p35/25
expression from C (E) normalized to expression levels of each in a normal placenta core; column 1 row 4 of
the TMA. Map of TMA in Supplementary Table S1.
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Figure 2. Human PanNET cells are dependent on Cdk5 for growth. A. Immunoblot of Cdk5 pathway
components in fibroblasts and PanNET cells. B. PanNET cell lines were treated with increasing concentrations

of Indo A and monitored for effects on cell viability. Error bars represent SEM. C. I1Cs, values obtained from
viability assays in B.
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Figure 3. Aberrant activation of Cdk5 generates PanNETs in an inducible bi-transgenic mouse model.
A. Schematic of genetic system for regulated tissue-specific expression of p25-GFP. B. Immunoblot for
expression of p25GFP in islets isolated from transgene negative (-) and INS-p250E (+) mice with (on) or
without (off) administration of 1 g/L Dox for 4-5 weeks. C. H&E stain and immunofluorescence of sections of
pancreas from INS-p250E mice at 4 weeks post-p25-GFP induction. D. Representative gross image of a
pancreatic mass from INS-p250E mice. E. Immunoblot for expression of p25-GFP in pancreatic mass, liver,
and kidney at 12 months induction. F-G. H&E stain (F), and immunostains (G) of primary PanNET from an
INS-250E animal. Scale bars = 100 um. H. Axial MRI sections from a representative INS-p250E mouse.
PanNET circumscribed in yellow. |. Quantitation of tumor volume over time from a representative INS-p250E
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mouse. J. Tumor growth, normalized to initial volume, during the linear growth phase; males (M; n=4) and
females (F; n=3 for each group) administered dox since weaning (on) or Dox since weaning followed by
discontinuation for 5 weeks at initial tumor detection (off). K. Immunoblot for expression of SSTR2 and actin in
INS-p250E tumors.
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Figure 4. Cdk5 induces both functional and non-functional PanNETs. A. Immunostains of pancreas from
control and three representative INS-p250E animals. B-C. ELISA assays of hormone levels in blood plasma of
female (B) and male (C) control (Con; females n=6, males n=8) and tumor-bearing (PNET; females n=14,
males n=21) mice. Error bars are SEM; red points illustrate samples with levels that are two SD above the
average for controls.
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Figure 5. Cdk5 and menin pathways are distinct drivers of mPanNETs. A. Quantitative immunoblot of
Cdk5 pathway components, menin, and downstream targets of menin in MEN”* tumors (MEN; n=4) and INS-
p250E tumors (p25; n=5). B. Quantitative immunoblot of downstream targets of Cdk5 in normal mouse islets
(NI; n=3), MEN"* tumors (MEN; n=4), and INS-p250E tumors (p25; n=7); phosphorylated Ser18-H1.5 (pH1.5),
phosphorylated Ser988-RBL1 (pRBL1), phosphorylated Ser391-SUV39H1 (pSUV).
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Figure 6. INS-p250E tumors possess mutations found in human PanNETs. A. Heat map of number of
total mutations in each INS-p250E PanNET by classification per chromosome. B. Type of mutations present in
each INS-p250E PanNET. C. Waterfall plot of overlapping exonal mutations among INS-p250E PanNETs. D.
Table of mutations in INS-p250E PanNETs found to overlap with mutations in human PanNETs.
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Figure 7. RNA-seq. A. Heatmap of differentially expressed genes in normal mouse islets (NI1-3), functional
(M1-3) and non-functional (M4-6) INS-p250E PanNETSs . B. Principal component analysis of expression data.
C. Volcano plot of annotated genes upregulated and downregulated compared to normal mouse islets. D.
Table of differentially expressed genes that overlap with alterations in human PanNETs; gene amplification
(GA), overexpression (OE), decreased expression (DE). E. Ingenuity Pathway Analysis of differentially
expressed genes. Pathways are related to cell cycle (red), DNA repair (blue), vascularization (green), and
extracellular matrix (black).
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Figure 8. INS-p250E PanNETs form successful allografts. A.Photograph from IVIS imagine of
representative allograft tumor model; tumor marked with yellow arrow. B. Photograph and fluorescence
imaging from IVIS, ex vivo, of kidney (left) and tumor (right) from representative allograft model. C. Penetrance
in primary INS-p250E model (P0), passage 1 models (P1), and passage 2 models (P2). D. Tumor onset in the
same groups as C. E. Fold growth of passage 1 tumors over a 5 week period starting at approximately 100

mm? (week 0). F. H&E stains and immunostains of primary INS-p250E model (P0) and three passage 1
models (P1a-c).
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