

1 **Title:** Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors.

2 **Authors:** Angela M. Carter^{1,*}, Nilesh Kumar², Brendon Herring¹, Chunfeng Tan³, Racheal
3 Guenter¹, Rahul Telange¹, Wayne Howse¹, Fabrice Viol⁴, Chris Graham¹, Tyler R. McCaw¹,
4 Hayden Bickerton⁵, Frank Gillardon⁶, Eugene A. Woltering⁷, Deepti Dhall⁸, John Totenhagen⁹,
5 Ronadip Banerjee⁵, Elizabeth Kurian¹⁰, Sushanth Reddy^{1,11}, Herbert Chen^{1,11}, Joerg Schrader⁴, J.
6 Bart Rose^{1,11}, M. Shahid Mukhtar^{1,2}, James A. Bibb^{1,11,*}

7 **Affiliations:**

8 ¹Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

9 ²Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

10 ³Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
11 75390, USA.

12 ⁴Department of Internal Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany

13 ⁵Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

14 ⁶ Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Birkendorferstrasse
15 65, 88397 Biberach an der Riss, Germany.

16 ⁷Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA
17 70112, USA.

18 ⁸Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
19 35233, USA.

20 ⁹Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233,
21 USA.

22 ¹⁰Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
23 75390, USA.

24 ¹¹O'Neal Comprehensive Cancer Center, Alabama at Birmingham, Birmingham, AL 35233,
25 USA.

26 **Running title:** Cdk5 drives formation of pancreatic neuroendocrine tumors.

27 **Keywords:** cyclin-dependent kinase, pancreatic neuroendocrine tumors, inducible mouse model,
28 tumorigenesis

29 **Additional information:**

30 Financial support: This work was supported by an American Cancer Society Postdoctoral
31 Fellowship (A.M.C); an American Cancer Society Research Scholars Award (J.A.B); a Robert E.
32 Reed Foundation grant (H.C.); NIH awards P30CA013148 and S10 OD028498-01 (UAB
33 Preclinical Imaging Shared Facility); and NCI award P30CA013148 (UAB O'Neal
34 Comprehensive Cancer Center). A portion of effort for this project was facilitated by NIH
35 awards DA033485-01, MH083711-01, NS073855-01, and R56MH116896 (J.A.B)

36 *Corresponding authors:

37 Angela M. Carter	James A. Bibb.
38 1900 University Blvd.	1900 University Blvd.
39 Birmingham, AL 35233	Birmingham, AL 35233
40 ph. 205-975-7920	ph. 205-996-6524
41 fax 205-975-7955	fax 205-975-7955
42 angelamcarter@uabmc.edu	jbibb@uab.edu

43 Conflict of interest statement: The authors declare no conflicts of interest.

44 Other: Word Count – 4513, Total figures - 8, Total tables - 0.

45

46 **Abstract (250 words max)**

47 Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of
48 neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased
49 markedly in incidence over the past four decades. Non-functional PanNETs, which occur more
50 frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor
51 development and have poorer prognoses. Development of successful therapeutics for PanNETs
52 has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we
53 report development of an inducible, conditional mouse model of PanNETs by using a
54 bitransgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically
55 in β -islet cells. This model produces a heterogeneous population of PanNETs that includes a
56 subgroup of well-differentiated, non-functional tumors. The utility of this model is enhanced by
57 ability to form tumor-derived allografts. Production of these tumors demonstrates the causative
58 potential of aberrantly active Cdk5 for generation of PanNETs. Further, we show that human
59 PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share
60 genetic and transcriptional overlap with the INS-p25OE model. This new model of PanNETs
61 will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new
62 targeted therapeutics.

63 **(Text 5000 words max)**

64 **Introduction**

65 Pancreatic neuroendocrine tumors (PanNETs) are a diverse group of neoplasms that
66 originate from islet cells of the pancreas¹. These tumors have the potential to secrete a range of

67 bioactive hormones such as insulin, glucagon, and somatostatin. Tumors that secrete quantities
68 of hormones that result in elevations in blood plasma levels are classified as functional².
69 Functional tumors produce hormonal syndromes commensurate with the hormone produced in
70 excess³. Functional tumors are typically lower in grade and have good prognoses, possibly due to
71 early detection as a result of the syndromes experienced by patients⁴. However, the majority of
72 PanNETs are non-functional, which on average have comparatively worse prognoses⁵.
73 Historically rare, the incidence of PanNETs in the United States increased 8-fold from 1973 to
74 2012⁴. Surgical resection provides excellent outcomes and long-term survival for patients with
75 early stage primary tumors⁶⁻⁸. However, many PanNETs are metastatic at diagnosis and there are
76 no curative therapies for advanced disease^{9,10}.

77 Multiple molecular alterations have been implicated in the development of PanNETs.
78 Mutations in the gene *MEN1* occur in approximately 40% of PanNET patients and changes in
79 *DAXX/ATRX* are present in another 40%. Roughly 15% of patients possess changes that target
80 the mTOR pathway, including mutations in *TSC2*, *PIK3CA*, or *PTEN*¹¹⁻¹³. Unfortunately, thus
81 far, no correlation has been observed between the presence of these mutations and patient
82 response to specific pathway-targeted therapies in NET clinical trials¹⁴. Recently, cyclin-
83 dependent kinase 5 (Cdk5) was implicated in the growth of several types of neuroendocrine
84 tumors including PanNETs¹⁵⁻¹⁷. Interestingly, the presence of a set of downstream biomarkers of
85 Cdk5 pathway activation was predictive of tumor growth inhibition in preclinical testing of a
86 Cdk5-targeted therapy¹⁷.

87 Cdk5 is a non-canonical member of the Cdk family of proline-directed serine/threonine
88 kinases¹⁸. Traditional family members, such as Cdk1, 2, 4, and 6, are important cell cycle
89 regulators that are activated by cyclins and required for cell division¹⁹. Unlike these family

90 members, Cdk5 is not activated by cyclins and is not required for normal cell division. Instead,
91 Cdk5 is regulated through binding to cofactors p35 or p39^{20,21}. The resulting protein complex plays
92 a prominent role in several physiological processes in neuronal cells, such as proper migration for
93 normal CNS development and function^{22,23}. Interestingly, aberrant activation of Cdk5 has been
94 implicated in several neurodegenerative diseases²¹. The pathological role of Cdk5 is facilitated
95 through calpain cleavage of p35 to p25, a highly stable fragment that exhibits mislocalization in
96 cells but retains the ability to bind and activate Cdk5^{24,25}. Cdk5 pathway components are also
97 expressed in neuroendocrine cells of pancreatic islets where they contribute to normal hormone
98 secretion and β -cell survival²⁶⁻³⁰. New studies show that under conditions of aberrant activation in
99 non-neuronal cells, Cdk5 can hijack signaling components traditionally involved in the cell cycle
100 and successfully promote proliferation and/or migration^{15,31-36}. Here, we show that Cdk5 and its
101 activators are retained in islet cells that develop into PanNETs in humans and that aberrant
102 activation of Cdk5 is involved in human PanNET cell growth. Furthermore, we show the potential
103 for Cdk5 to drive development of PanNETs by demonstrating that expression of the aberrant
104 activator, p25, in islets of mice, initiates tumor formation. Importantly, these PanNETs exhibit a
105 heterogeneous phenotype that includes both functional and non-functional, well-differentiated
106 tumors.

107

108 **Results**

109 To better understand the relevance of the Cdk5 pathway to human PanNETs, we
110 performed immunostaining on distinct groups of grade 1 human tumors for Cdk5 pathway
111 components. This revealed the presence of Cdk5 and its activators, p35 and/or p25 (p35/p25)
112 (**Fig. 1A**) in both functional and non-functional tumors. To gain further insight into the

113 prevalence of these signaling proteins in the PanNET patient population, we performed
114 immunostaining on a PanNET tissue microarray (TMA) composed of 23 grade 1 tumors, 13
115 grade 2 tumors, 1 grade 3 tumor, and 5 different normal tissue controls. (**Fig. 1B-C** and
116 Supplementary Table S1). Semi-quantitation revealed clear expression of Cdk5 and p35/p25
117 throughout these grades of tumors (**Fig. 1D-E**) and elevated expression relative to a normal
118 placenta control sample.

119 To determine if Cdk5 and its activators play a functional role in PanNETs, we next
120 examined a set of human PanNET cell lines including the well-established BON and QGP lines,
121 and two newly derived lines NT-18P and NT18-LM³⁷. All cell lines expressed Cdk5 and its
122 aberrant activator, p25 (**Fig. 2A**). We previously found that growth of the pancreatic carcinoid
123 cell line, BON, was blocked by 4 different selective Cdk5 inhibitors and not by Cdk2 and Cdk4
124 specific inhibitors¹⁷. Here, we show that growth of all five PanNET cell lines tested is inhibited
125 by the Cdk5-selective inhibitor, IndoA (**Fig. 2B**). These data indicate that Cdk5 dependence is a
126 common feature shared by many PanNETs.

127 To determine if Cdk5 has the potential to behave as a causative factor in PanNET
128 tumorigenesis, we generated a bitransgenic mouse line in which expression of the aberrant Cdk5
129 activator, p25, can be induced in β -cells of the pancreas by addition of the small molecule
130 doxycycline (dox) to drinking water. This was achieved by crossing the Ins2-rtTA mouse line³⁸
131 that expresses the reverse tetracycline transactivator under the control of the insulin promoter
132 with the tetOp-p25GFP line³⁹ that expresses p25GFP under the control of the tetOp promoter
133 (**Fig. 3A**) to produce bitransgenic offspring (INS-p25OE). As previously observed with some
134 doxycycline (dox) inducible systems, a low level of transgene expression was observed in the
135 absence of dox. However, administration of 1 g/L dox to INS-p25OE animals for 4-8 weeks

136 further induced expression of the p25-GFP transgene in pancreatic islets (**Fig. 3B-C**). Formation
137 of solid lesions in the pancreas were observed as early as 6 months post-induction of p25GFP
138 expression (**Fig. 3D** and Supplementary Fig. S1). As confirmation that transgene expression does
139 not occur ubiquitously throughout tissues of these animals, we examined samples of pancreatic
140 masses along with liver and kidney tissues for p25GFP expression after 12 months of dox
141 administration and found no evidence of p25GFP expression in non-pancreatic tissues (**Fig. 3E**).

142 Histological analysis of these masses showed a “nesting” pattern in cellular architecture
143 that is characteristic of PanNETs (**Fig. 3F**). Immunoblot and immunostain confirmed the
144 presence of p25GFP and Cdk5 in the lesions (**Fig. 3E, G**). Further, immunostain demonstrated
145 the presence of chromogranin A (ChA), confirming the neuroendocrine phenotype of the lesions.
146 Insulin staining verified the masses were composed of β -cells. In addition, pathological review
147 diagnosed the lesions as well-differentiated PanNETs. These data demonstrate that aberrant
148 activation of the Cdk5 pathway has the potential to directly promote the formation of PanNETs.

149 To assess growth rate of the INS-p25OE PanNETs, MRI was performed on tumor-
150 bearing mice over a 20-week period beginning when tumors were approximately 50 mm³ (**Fig.**
151 **3H**). PanNETs in this model exhibited a multiphasic growth pattern. Initial growth was linear
152 with tumors from males and females increasing 3.2-fold and 4.7-fold in size, respectively, over a
153 5-week timeline (**Fig. 3I-J**). This phase was followed by deceleration and an eventual plateau
154 around 400 mm³ (**Fig. 3I**). Removal of dox, to decrease expression of p25GFP after tumor onset,
155 greatly reduced tumor growth rate (**Fig. 3J**).

156 The presence of a linear growth phase allows detection of changes in tumor growth, in
157 response to experimental therapeutics, in smaller cohorts of animals. To further assess the utility
158 of this model for pre-clinical testing, we examined tumors for the presence of somatostatin

159 receptor 2 (SSTR2), a cell-surface protein commonly overexpressed in human PanNETs and
160 targeted by various FDA-approved treatments for PanNETs. All PanNETs tested exhibited clear
161 SSTR2 expression (**Fig. 3K**).

162 Human PanNETs present clinically as a highly heterogeneous population of tumors^{1,3}.
163 Subgroups of tumors secrete a variety of islet derived hormones while others exhibit no
164 detectable hormone production. To characterize the tumors generated in the new INS-p25OE
165 model, we stained sections of fixed tumors for insulin, glucagon, and somatostatin; three
166 hormones commonly expressed in functional human PanNETs. All PanNETs examined
167 expressed insulin in the tumor mass and a few also exhibited expression of glucagon and
168 somatostatin (**Fig. 4A**).

169 For a tumor to be definitively categorized as clinically functional, in addition to the
170 presence of the hormone in tumor tissue, circulating blood hormones must be elevated to levels
171 capable of inducing physiological effects. Therefore, plasma samples from animals harboring
172 PanNETs and transgene (-) littermates, as controls, were analyzed for insulin, glucagon, and
173 somatostatin. Tumor bearing animals were not found to possess statistically higher average
174 levels of any islet hormone analyzed when assessed collectively (**Fig. 4B-C**).

175 For higher stringency for classification as non-functional, the data was analyzed again
176 using two standard deviations above the mean of the control group as the cut-off for normal
177 hormones levels. The average insulin levels in normal females and males was statistically
178 different at 0.6 and 1.1 ng/mL, respectively (**Fig. 4B-C**) (p=0.03). Elevations in insulin were
179 present in 57% (8 of 14, red symbols) of tumor-bearing females with 10.8-fold being the highest
180 observed increase relative to control animals. Insulin levels were elevated in 41% (7 of 17, red
181 symbols) of males with 8.9-fold being the highest elevation observed. Normal glucagon levels

182 for females and males were 125 and 110 pg/mL, respectively. Of tumor-bearing animals, only
183 one male exhibited a 2.3-fold elevation of plasma glucagon, less than 1% of the total population
184 and within the natural expected Gaussian distribution. Somatostatin levels in control females and
185 males were 15 and 18 pg/mL, respectively. Both normal and tumor-bearing populations of males
186 contained one animal with somatostatin levels elevated greater than two SD above the mean of
187 the control population, again falling within the natural expected Gaussian curve.

188 Additionally, we tested the plasma of seven females and seven males lacking large tumor
189 masses but found to possess abnormal islets by histopathological evaluation (data not shown).
190 Insulin was elevated in the plasma of 1 of the 7 additional females. This female also exhibited
191 elevation in somatostatin. One separate female possessed elevated plasma glucagon levels. In
192 males, 2 of the 7 exhibited elevated plasma glucagon, one exhibited elevated plasma insulin, and
193 one exhibited elevated somatostatin. Although immunostaining evaluation identified tumors that
194 were positive for both insulin and glucagon, no animals were found to possess elevation of serum
195 levels of both hormones. One animal, of 45 examined, exhibited elevations in both insulin and
196 somatostatin. Collectively these data demonstrate that 48% of PanNETs generated in the INS-
197 p25OE model are potential insulinomas and 52% do not produce elevations in the serum
198 hormones analyzed and are likely non-functional.

199 Expression of insulin in all tumors and elevation of circulating insulin levels in 48% of
200 PanNET animals suggested approximately half of the tumors were functional insulinomas.
201 However no pre-mature death was observed in the animals as would be expected from severe
202 hypoglycemia due to overexpression of insulin. To investigate more thoroughly, we tested blood
203 glucose levels in several female and male animals following a 4-6 h fasting window.
204 Surprisingly, only 7% of females (1 of 14) and 23% of males (4 of 17), showed depressed

205 circulating glucose levels under these conditions compared to transgene (-) littermate controls
206 (Supplementary Fig. S2A-B). Because mild insulinemia might take longer to affect glucose
207 levels, we then tested both 4 and 8 h fasting windows in a small set of tumor-bearing females and
208 found that only 17% (1 of 6) exhibited hypoglycemia even after 8 h without food
209 (Supplementary Fig. S2C). Collectively, these data point toward 52-83% of tumors generated
210 from this model being non-functional.

211 Mutation of the *menin* gene is the most common genetic alteration found in human
212 PanNETs, although the prognostic implications of this mutation are a point of contention. To
213 begin to determine if menin and Cdk5 tumorigenic pathways overlap, we analyzed the presence
214 of menin, Cdk5, p35, and downstream components of the menin pathway in PanNETs from the
215 MEN^{+/−} model (MEN) and the INS-p25OE model (**Fig. 5A**). As expected, levels of menin were
216 reduced in MEN^{+/−} tumors. Analysis of the downstream targets of menin, p18^{Ink4c} and p27^{KIP1},
217 also revealed decreased expression in MEN tumors compared to INS-p25OE tumors. This
218 comparison suggests that aberrant activation of the Cdk5 pathway does not lead to inhibition of
219 genes targeted by menin.

220 Levels of Cdk5 and p35 were also reduced in MEN^{+/−} tumors, suggesting that PanNETs
221 arising from loss of function mutations in *menin* are not driven by aberrant activation of Cdk5.
222 To explore this observation further, we interrogated phosphorylation levels of three proteins
223 previously identified as downstream targets of aberrant Cdk5 in thyroid neuroendocrine tumors:
224 phospho-Ser18 histone H1.5, Ser988 RBL1, and Ser391 SUV3H1¹⁷. Interestingly, each of these
225 markers was highly phosphorylated in INS-p25OE tumors. In contrast, these signals were almost
226 completely absent in normal islets as well as MEN^{+/−} tumors, further supporting that loss of
227 menin does not lead to aberrant activation of Cdk5 as a part of its tumorigenic process (**Fig. 5B**).

228 Together, these data indicate that menin and Cdk5 pathways constitute separate and independent
229 tumorigenic pathways.

230 While these studies show that tumors retain dependence upon Cdk5 activity for sustained
231 growth, the variability in age of onset combined with 75% penetrance by 12 months of age
232 (Supplementary Fig. S1) raises the possibility that additional alterations occur and facilitate
233 tumor formation. To investigate this further, we performed whole exome sequencing on five
234 INS-p25OE PanNETs; three functional and two non-functional tumors. Interestingly, high
235 heterogeneity was observed in the genetic landscape of these tumors as is also found in
236 human tumors (**Fig. 6**). Several classes of mutations were observed throughout multiple
237 chromosomes including alterations in introns, exons, 3' UTRs, and 5' UTRs (**Fig. 6A**). Single
238 nucleotide polymorphisms (SNPs) were the most common type of alteration detected (**Fig. 6B**).
239 Examination of mutations from translated regions revealed very little overlap among samples
240 (**Fig. 6C**). Although mutations in identical genes among INS-p25OE tumors were rare,
241 alterations in genes encoding regulatory subunits of the PIK3 pathway were found in three of the
242 five samples. Mutations in the catalytic subunit of PIK3 are known to be enriched in human
243 PanNETs¹³. This finding prompted a full comparison with sequencing datasets from human
244 PanNETs, which revealed that 48 genes with mutations in INS-p25OE tumors are also mutated
245 in a published set of 98 human PanNETs⁴⁰ (**Fig. 6D** and Supplemental Table S2). Together, the
246 analyses indicate that the INS-p25OE model shares appreciable genetic overlap with human
247 PanNETs.

248 To further understand the molecular changes that lead to tumor development in the INS-
249 p25OE model, we performed mRNA sequencing on six INS-p25OE PanNETs, three functional
250 and three non-functional tumors, and compared levels of gene expression to that observed in

251 normal mouse islets (**Fig. 7A**). Interestingly, higher heterogeneity was observed in the non-
252 functional group than in the functional group (**Fig. 7B**). Comparing the total tumor group to
253 normal islets, we found that 796 genes were upregulated while 533 genes were downregulated
254 (**Fig. 7C**). Of note, genes such as BRCA2, STAT4 and TOP2A were dysregulated, similar to
255 previous observations from human PanNETs (**Fig. 7D**)^{41,42}. Ingenuity Pathway Analysis revealed
256 upregulation of four pathways that relate to cell cycle regulation, one pathway that involves
257 DNA repair, one that is important for vascularization, and three that are linked to collagen and
258 extracellular matrix regulation (**Fig. 7E**).

259 Although the INS-p25OE model generates genetically (**Fig. 6**) and phenotypically (**Fig.**
260 **4**) heterogenous tumors as is observed in human patients, heterogenous models require large
261 cohort sizes to identify responses in pre-clinical trials. In addition, the primary model requires 6-
262 12 months to form tumors. Therefore, we established tumor-derived allografts from INS-p25OE
263 primary PanNETs as second tool that could be utilized for quick screening in a large,
264 homogenous cohort of animals. We implanted 2 mm x 2 mm sections of tissue from a primary
265 tumor (P0) into five recipient BL/6 male mice. Allograft tissue established new tumors (P1) with
266 100% penetrance and, on average, within 17 weeks, reducing the timeframe for development
267 from 45 weeks in P0 mice to 17 weeks in P1 animals (**Fig. 8A-D**). Further, allografts can be
268 serially passaged with 100% penetrance and establish 3rd generation tumors (P2), on average,
269 within 8 weeks (**Fig. 8C-D**). Allografts retain expression of the p25-GFP transgene and tumors
270 grow 4.3 fold in a 5 week period, very similar to growth rates of primary PanNETs (**Fig. 8B and**
271 **E, Fig. 3J**). Allografts retain the well-differentiated neuroendocrine phenotype of the primary
272 tumors, including tumor architecture and positivity for ChA and insulin staining. (**Fig. 8F**).

273 **Discussion**

274 Progress in the development of therapeutics that specifically target NETs has been
275 hampered in part by an insufficient number of animal models in which to perform preclinical
276 experimentation. While PanNETs co-occur with multiple other tumor types in diverse genetically
277 engineered mouse models, only two main types of transgenic mouse models have been generated
278 and utilized for pre-clinical PanNET studies prior to the development of the INS-p25OE model
279 reported here^{43,44}. The MEN^{+/−} conventional knockout model develops PanNETs, as well as
280 parathyroid and pituitary NETs, and has been utilized to explore new therapeutics such as anti-
281 VEGF-A monoclonal antibody therapy and Pasireotide for efficacy toward PanNETs^{43,45,46}. This
282 model is expected to be especially relevant to the approximately 40% of PanNET patients that
283 possess a mutation in the gene menin. Both pan-pancreas and islet-specific conditional
284 homozygous knockouts of the menin gene also produce PanNETs⁴³. Of note, all of the PanNETs
285 from these menin knockout models are insulinomas or gastrinomas while approximately 85% of
286 human PanNETs are classified as non-functional. Therefore, additional models would be highly
287 beneficial.

288 A second conditional transgenic mouse model of PanNETs is the RIP1-Tag2 line⁴⁷. This
289 model was generated by cloning the large T-antigen of SV40, a known oncogenic driver,
290 downstream of the rat insulin promoter for expression in β-islet cells. This model develops
291 aggressive insulinomas, including both well- and poorly-differentiated subsets, and has been
292 successfully utilized to explore new therapeutics such as sunitinib and mTOR inhibitors⁴⁸⁻⁵⁰.
293 Interestingly, crossing the RIP1-Tag2 mouse model into the A/J background leads to formation
294 of tumors that do not express insulin⁵¹. The A/J background has a known SNP, relative to the
295 C57BL/6 background, in the *Insm1* gene. *Insm1*, which encodes a transcription factor that
296 promotes neuroendocrine differentiation and is required for insulin expression in β cells, was

297 implicated in the loss of insulin expression observed in the model⁵². Development of this model
298 will undoubtedly provide insight into non-functional tumor physiology. However, these tumors
299 are more poorly differentiated than tumors from the parent C57BL/6 background and the
300 population of human tumors to which it is relevant will need to be carefully investigated as rare,
301 poorly-differentiated G3 neuroendocrine carcinomas, and relatively more abundant, well-
302 differentiated G3 NETs, are molecularly distinct tumor types^{51,53}.

303 Here, we present development of a novel, dox-inducible, conditional mouse model of
304 PanNETs in which activation of the Cdk5 pathway in β -islet cells leads to slow growing islet
305 tumors with heterogeneous hormone production profiles, including a large subset of non-
306 functioning, well-differentiated tumors. The utility of this model is further extended by the
307 ability to generate multiple allograft animals from each primary PanNET. As these second
308 generation animals also possess a fully functional immune system, this method for generating
309 large homogenous cohorts of immunocompetent PanNET models will be especially useful for
310 exploration of immunotherapies, a modality whose implementation has lagged for
311 neuroendocrine cancers.

312 Male and female cohorts were interrogated as separate groups when characterizing the
313 INS-p25OE primary PanNET model so that differences linked to sex could be uncovered.
314 Surprisingly, although females exhibited a higher propensity for elevation of plasma insulin
315 levels compared to males, fewer females developed hypoglycemia in response to fasting. This
316 may be due to the fact that total insulin levels were higher in “elevated” males than “elevated”
317 females. We have found no clinical analysis of human populations that indicate that non-
318 functioning PanNETs are more common in one sex versus the other, although NETs in general
319 are slightly more common in females⁴.

320 The INS-p25OE model reported here is molecularly distinct from the MEN^{+/−} model and
321 likely represents a group of human PanNETs in which mutation of the gene menin is not the key
322 driving factor. Although causative events that lead to Cdk5 pathway activation in humans are
323 unclear, Cdk5 misregulation has been demonstrated in multiple types of human NETs^{17,18}. In
324 addition, genetic and transcriptional data point to multiple overlaps between human tumors and
325 the INS-p25OE model. Significant overlap was also observed at the functional level, as ~85% of
326 human tumors are non-functional and we observed a similar distribution of functional and non-
327 functional tumors in the INS-p25OE model. This newly developed model will serve as a useful
328 platform for molecular characterization of the population of human PanNETs in which aberrant
329 activation of Cdk5 is present as well as the development and testing of new therapeutics that
330 target those pathways. Moreover, because this model more faithfully reflects human PanNET
331 biology, it will facilitate development of a variety of therapeutic strategies, not limited to
332 targeting of Cdk5.

333 **Methods**

334 **Human tissue collection.** Samples were collected in accordance with institutional review board
335 (IRB) regulations under Louisiana State University IRB 5774 and University of Alabama at
336 Birmingham IRB 300002147.

337 **Histology.** Tissues were fixed in formalin, embedded in paraffin, and sliced into 5 μm sections
338 for placement on glass slides. Samples were deparaffinized and subjected to high temperature
339 antigen retrieval in citrate buffer (pH 6.0). For immunostaining, samples were permeabilized in
340 0.3% Triton X-100, incubated in 0.3% hydrogen peroxide, blocked with 3% normal goat serum,
341 and then incubated overnight at 4°C in primary antibodies. Human and mouse tissue was
342 immunostained for Cdk5 (PhosphoSolutions 308-Cdk5; 1:50) and p35/p25 (Santa Cruz sc-820;

343 1:50). Mouse tissue was immunostained for GFP (Cell Signaling Technology 2956; 1:200), ChA
344 (Abcam ab15160; 1:500), insulin (Abcam ab63820; 1:2000), glucagon (Santa Cruz sc7779;
345 1:200), somatostatin (Abcam ab108456; 1:450). Biotinylated secondary antibodies (Pierce
346 31820 or 31800; 1:500) were applied to slides for 1 h at room temperature followed by 30 min of
347 HRP streptavidin. Slides were then incubated with DAB Chromogen (Dako Liquid DAB+
348 substrate K3468) and counter stained with hematoxylin. Standard procedures were used for H&E
349 staining. The human PanNET TMA was prepared by the UAB Research Pathology Core. Slides
350 were immunostained as stated above. Images were deconvoluted using Fiji ImageJ. The mean
351 intensity of a fixed region of interest for each core in the resulting DAB channel was measured
352 and then converted to optical density using the formula: OD = Log (Max intensity/mean
353 intensity) for semi-quantitative analysis.

354 **Cell Culture.** All cells were cultured in a humidified incubator at 37°C under 5% CO₂.
355 Fibroblasts were grown in DMEM plus 10% FBS. BON and QGP cells were grown in RPMI
356 plus 10% FBS, 100 µg/ml penicillin, and 100 µg/ml streptomycin. NT3 and NT18 cells were
357 cultured in RPMI 1640 GlutMAX plus 10% FCS, 20 ng/ml EGF, 10 ng/ml FGF2, 100 µg/ml
358 penicillin, and 100 µg/ml streptomycin.

359 **Cell growth assay.** Cells were seeded onto 96-well plates and allowed to adhere for 24 h. Cells
360 were then treated twice (day 1 and day 3) with various concentrations of inhibitor, as shown, and
361 viability measured after 5 days by MTT assay. IC₅₀ values were determined by 4-parameter
362 logistic regression.

363 **INS-p25OE animal model.** All animal work was performed in accordance with the Animal
364 Welfare Act and the Guide for the Care and Use of Laboratory Animals under UTSW and UAB
365 Institutional Animal Care and Use Committee approved protocols. Bi-transgenic INS-p25OE

366 animals were generated from crossing of the tetOp-p25GFP strain (The Jackson Laboratory stock
367 # 005706) with the Ins2-rtTA strain (Provided by Dr. Alvin C. Powers at Vanderbilt; available
368 from The Jackson Laboratory stock # 008250). Breeders and pups were maintained in the
369 absence of doxycycline to allow for normal development of offspring prior to transgene
370 induction. Upon weaning, at 3-4 weeks of age, offspring were administered 1 mg/L doxycycline
371 via drinking water to induce transgene expression in bi-transgenic animals. Bi-transgenic animals
372 were co-housed with transgene negative littermates. Transgene negative littermates were used as
373 normal controls. All mice were maintained in the C57BL/6 background. Animals were
374 euthanized by CO₂ administration and cardiac perfusion.

375 **MRI.** MRI was performed with a Bruker Biospec 9.4 Tesla instrument using Paravision 5.1
376 software (Bruker Biospin, Billerica, MA). A Bruker 72 mm ID volume coil was used for
377 excitation and a custom 24 mm surface coil for signal reception (Doty Scientific Inc., Columbia,
378 SC). Mice were anesthetized with isoflurane gas and respiration observed with a MRI-
379 compatible physiological monitoring system (SA Instruments Inc., Stony Brook, NY). Animals
380 were imaged in supine position on a Bruker animal bed system with circulating heated water to
381 maintain body temperature. A 2D T2-weighted RARE sequence was used for imaging of the
382 abdomen. The following imaging parameters were used: TR/TE = 2000/25 ms, echo spacing =
383 12.5 ms, ETL = 4, 2 averages, 29 contiguous axial slices with 1 mm thickness, FOV = 30x30
384 mm and matrix = 300x300 for an in-plane resolution of 100 μ m. Prospective respiratory gating
385 was used to minimize motion artifacts. Tumors volumes were quantitated using ImageJ software.
386 **Immunoblot.** Cells were lysed in 1% SDS plus 50 mM NaF. Samples were sonicated briefly,
387 spun at 20,000 g for 5 min, and supernatant combined with Laemmli buffer for analysis by SDS-
388 PAGE followed by transfer to PVDF for immunoblotting. Tumors were crushed while frozen

389 and then processed using the same protocol. Immunoblotting was performed using antibodies for
390 Cdk5 (Rockland 200-301-163; 1:1000), p35 (Santa Cruz sc-820; 1:300), GFP (Cell Signaling
391 Technology 2956; 1:2000), SSTR2 (Santa Cruz sc-365502; 1:500), Menin (Santa Cruz sc-
392 374371; 1:250), p18Ink4c (Invitrogen 393400; 1:500), and p27Kip1 (Cell Signaling Technology
393 2552; 1:1000), pS18H1.5 (Bibb Lab; 1:1000), H1.5 (Santa Cruz sc-247158; 1:1000),
394 pS988RBL1 (Bibb Lab; 1:1000), RBL1 (Santa Cruz sc-318; 1:500), pS392-SUV39H1 (Bibb
395 Lab; 1:300), SUV39H1 (Sigma S8316; 1:500), and actin (Invitrogen AM4302; 1:5000). Revert
396 700 Total Protein Stain (LICOR 926-11011) was used per manufacturer's protocol.

397 **Whole Exome Sequencing.** The analysis of raw WES data was performed using MoCaSeq
398 pipeline (source code: <https://github.com/roland-rad-lab/MoCaSeq>). The pipeline was set up
399 using the docker container and Ubuntu Linux. Specifically, the raw reads were trimmed aligned
400 to the mouse reference genome GRCm38.p6 using Trimmomatic 0.38 and BWA-MEM 0.7.17,
401 respectively. For further post-processing, Picard 2.20.0 and GATK 4.1.0.0 were used. For the
402 loss of heterozygosity (LOH) analyses from WES data, somatic SNP calling was performed
403 using Mutect2. To avoid ambiguous SNP positions resulting from mis-mapping, only reads with
404 a mapping quality of 60 were kept in LOH analyses. For CNV calling, CopywriteR 2.6.1.216
405 was used, which extracts DNA copy number information from targeted sequencing by utilizing
406 off-target reads. Finally, the downstream analysis and visualization were done using custom
407 Python (v.3.8) and Shell scripting. Data from mice were compared to human data deposited with
408 the European Genome-Phenome Archive under EGAD00001002684.

409 **RNASeq Analysis.** RNA was isolated from tissue using RNeasy Plus Mini Kit (Qiagen 74134).
410 RNA was transcribed to cDNA using NEBNext UltraTM RNA Library Prep Kit for Illumina

411 (NEB E7530). RNA sequencing was performed using single-end 75 bp reads on an Illumina
412 NextSeq500. The RAW sequences were trimmed using Trimmomatic 0.38 and low-quality reads
413 were removed. The quantification of the expression of transcripts of preprocessed sequences was
414 using salmon 1.4.0 and mm10 mouse reference genome. The resulting quant (transcript
415 abundance estimates) values were utilized for the differential expression analysis. Differential
416 gene expression analysis was done using DESeq2 and for downstream analysis and visualization
417 python (v.3.8) and Bash scripting were used.

418 **Allograft models.** Primary tumors were removed from INS-p25OE mice and diced into ~2 mm
419 x 2 mm sections. These sections were implanted into both the right and left flanks of C57BL/6
420 P1 (passage 1) recipient mice by trocar. Tumor size was monitored by measurement with
421 calipers. P2 mice were generated by passaging P1 tumors into a second generation of C57BL/6
422 recipient mice.

423 **Statistical Analysis.** Comparisons between two groups were performed using two-tailed
424 Student's *t*-test. Comparisons between three groups were performed using one-way ANOVA.
425 Sample sizes are provided within figure legends or in results. (*p<0.05).

426

427 **Acknowledgments**

428 Ins2-rtTA mice were kindly provided by Dr. Alvin C. Powers (Vanderbilt University). PanNETs
429 from the MEN^{+/−} mouse model (18-22 months old mice) were kindly provided by Vaishali
430 Parekh of Dr. Sunita K. Agarwal's lab (NIH/NIDDK). We thank the Pathology Core at UAB for
431 TMA production, the UAB Small Animal Imaging Facility for MRI on mice, and the Heflin
432 Center for Genomic Science at UAB for WES and RNAseq. We thank Boehringer-Ingelheim

433 and Frank Gillardon for providing Indo A. This research was further supported by core
434 capabilities provided by the O’Neal Comprehensive Cancer Center.

435

436 **Author Contributions**

437 A.M.C. and J.A.B. conceptualized the study. A.M.C., B.H., C.T., R.G., and W.H. performed
438 immunostaining. A.M.C. performed biochemistry, immunoblots, ELISA assays, analysis of
439 MRIs, quantitation of immunostaining, and data interpretation. F.V. performed cell growth
440 assays. R.T. maintained the mouse colony, assisted with tissue harvesting and molecular biology.
441 A.M.C., T.M., C.G., and J.B.R. generated allografts. H.B. harvested islets from mice. C.T. and
442 E.K. performed pathological assessment of tumors. J.T. developed the MRI protocol. N.K. and
443 M.S.M. performed bioinformatics analyses. A.M.C. and J.A.B. assembled figures and wrote the
444 manuscript. R.B., H.C., J.S., J.B.R., M.S.M., and J.A.B. supervised the study. All authors
445 reviewed and edited the manuscript.

446

447 **Figures**

448

449 **Supplemental**

450

451 **References**

- 452 1 Ehehalt, F., Saeger, H. D., Schmidt, C. M. & Grutzmann, R. Neuroendocrine tumors of the
453 pancreas. *Oncologist* **14**, 456-467, doi:10.1634/theoncologist.2008-0259 (2009).
- 454 2 de Wilde, R. F., Edil, B. H., Hruban, R. H. & Maitra, A. Well-differentiated pancreatic
455 neuroendocrine tumors: from genetics to therapy. *Nat Rev Gastroenterol Hepatol* **9**, 199-208,
456 doi:10.1038/nrgastro.2012.9 (2012).
- 457 3 Krampitz, G. W. & Norton, J. A. Pancreatic neuroendocrine tumors. *Curr Probl Surg* **50**, 509-545,
458 doi:10.1067/j.cpsurg.2013.08.001 (2013).
- 459 4 Dasari, A. *et al.* Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With
460 Neuroendocrine Tumors in the United States. *JAMA Oncol* **3**, 1335-1342,
461 doi:10.1001/jamaoncol.2017.0589 (2017).
- 462 5 Rindi, G. & Wiedenmann, B. Neuroendocrine neoplasms of the gut and pancreas: new insights.
463 *Nat Rev Endocrinol* **8**, 54-64, doi:10.1038/nrendo.2011.120 (2011).

464 6 Oronskey, B., Ma, P. C., Morgensztern, D. & Carter, C. A. Nothing But NET: A Review of
465 Neuroendocrine Tumors and Carcinomas. *Neoplasia* **19**, 991-1002,
466 doi:10.1016/j.neo.2017.09.002 (2017).

467 7 Chen, H., Hardacre, J. M., Uzar, A., Cameron, J. L. & Choti, M. A. Isolated liver metastases from
468 neuroendocrine tumors: does resection prolong survival? *J Am Coll Surg* **187**, 88-92; discussion
469 92-83, doi:10.1016/s1072-7515(98)00099-4 (1998).

470 8 Chen, H. *et al.* The North American Neuroendocrine Tumor Society consensus guideline for the
471 diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma,
472 and medullary thyroid cancer. *Pancreas* **39**, 775-783, doi:10.1097/MPA.0b013e3181ebb4f0
473 (2010).

474 9 Oberg, K. Management of neuroendocrine tumours. *Ann Oncol* **15 Suppl 4**, iv293-298,
475 doi:10.1093/annonc/mdh942 (2004).

476 10 Neychev, V. & Kebebew, E. Management Options for Advanced Low or Intermediate Grade
477 Gastroenteropancreatic Neuroendocrine Tumors: Review of Recent Literature. *Int J Surg Oncol*
478 **2017**, 6424812, doi:10.1155/2017/6424812 (2017).

479 11 Jiao, Y. *et al.* DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic
480 neuroendocrine tumors. *Science* **331**, 1199-1203, doi:10.1126/science.1200609 (2011).

481 12 Corbo, V. *et al.* MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169
482 sporadic neoplasms reveals alterations in the vast majority of cases. *Endocr Relat Cancer* **17**,
483 771-783, doi:10.1677/ERC-10-0028 (2010).

484 13 Mafficini, A. & Scarpa, A. Genomic landscape of pancreatic neuroendocrine tumours: the
485 International Cancer Genome Consortium. *J Endocrinol* **236**, R161-R167, doi:10.1530/JOE-17-
486 0560 (2018).

487 14 Capdevila, J. *et al.* Translational research in neuroendocrine tumors: pitfalls and opportunities. *Oncogene* **36**, 1899-1907, doi:10.1038/onc.2016.316 (2017).

488 15 Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M. & Lin, S. Y. Cdk5 regulates STAT3 activation and cell
489 proliferation in medullary thyroid carcinoma cells. *J Biol Chem* **282**, 2776-2784,
490 doi:10.1074/jbc.M607234200 (2007).

491 16 Pozo, K. *et al.* The role of Cdk5 in neuroendocrine thyroid cancer. *Cancer Cell* **24**, 499-511,
492 doi:10.1016/j.ccr.2013.08.027 (2013).

493 17 Carter, A. M. *et al.* Phosphoprotein-based biomarkers as predictors for cancer therapy. *Proc Natl
494 Acad Sci U S A* **117**, 18401-18411, doi:10.1073/pnas.2010103117 (2020).

495 18 Pozo, K. & Bibb, J. A. The Emerging Role of Cdk5 in Cancer. *Trends Cancer* **2**, 606-618,
496 doi:10.1016/j.trecan.2016.09.001 (2016).

497 19 Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting
498 cyclin-dependent kinases in cancer therapy. *Nat Rev Drug Discov* **14**, 130-146,
499 doi:10.1038/nrd4504 (2015).

500 20 Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. *Trends Biochem Sci* **30**,
501 630-641, doi:10.1016/j.tibs.2005.09.005 (2005).

502 21 Dhariwala, F. A. & Rajadhyaksha, M. S. An unusual member of the Cdk family: Cdk5. *Cell Mol
503 Neurobiol* **28**, 351-369, doi:10.1007/s10571-007-9242-1 (2008).

504 22 Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T. & Harlow, E. p35 is a neural-specific regulatory
505 subunit of cyclin-dependent kinase 5. *Nature* **371**, 419-423, doi:10.1038/371419a0 (1994).

506 23 Angelo, M., Plattner, F. & Giese, K. P. Cyclin-dependent kinase 5 in synaptic plasticity, learning
507 and memory. *J Neurochem* **99**, 353-370, doi:JNC4040 [pii] 10.1111/j.1471-4159.2006.04040.x
508 (2006).

509 24 Lee, M. S. *et al.* Neurotoxicity induces cleavage of p35 to p25 by calpain. *Nature* **405**, 360-364,
510 doi:10.1038/35012636 (2000).

511

512 25 Patrick, G. N. *et al.* Conversion of p35 to p25 deregulates Cdk5 activity and promotes
513 neurodegeneration. *Nature* **402**, 615-622, doi:10.1038/45159 (1999).

514 26 Lilja, L. *et al.* Cyclin-dependent kinase 5 promotes insulin exocytosis. *J Biol Chem* **276**, 34199-
515 34205, doi:10.1074/jbc.M103776200 (2001).

516 27 Ubeda, M., Kemp, D. M. & Habener, J. F. Glucose-induced expression of the cyclin-dependent
517 protein kinase 5 activator p35 involved in Alzheimer's disease regulates insulin gene
518 transcription in pancreatic beta-cells. *Endocrinology* **145**, 3023-3031, doi:10.1210/en.2003-1522
519 (2004).

520 28 Wei, F. Y. *et al.* Cdk5-dependent regulation of glucose-stimulated insulin secretion. *Nat Med* **11**,
521 1104-1108, doi:10.1038/nm1299 (2005).

522 29 Lee, H. Y., Jung, H., Jang, I. H., Suh, P. G. & Ryu, S. H. Cdk5 phosphorylates PLD2 to mediate EGF-
523 dependent insulin secretion. *Cell Signal* **20**, 1787-1794, doi:10.1016/j.cellsig.2008.06.009 (2008).

524 30 Daval, M., Gurlo, T., Costes, S., Huang, C. J. & Butler, P. C. Cyclin-dependent kinase 5 promotes
525 pancreatic beta-cell survival via Fak-Akt signaling pathways. *Diabetes* **60**, 1186-1197,
526 doi:10.2337/db10-1048 (2011).

527 31 Demelash, A. *et al.* Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells
528 through Cdk5/p35 pathway. *Mol Biol Cell* **23**, 2856-2866, doi:10.1091/mbc.E10-12-1010
529 mbc.E10-12-1010 [pii] (2012).

530 32 Zhuang, K. *et al.* CDK5 functions as a tumor promoter in human colorectal cancer via modulating
531 the ERK5-AP-1 axis. *Cell Death Dis* **7**, e2415, doi:10.1038/cddis.2016.333 (2016).

532 33 Goodyear, S. & Sharma, M. C. Roscovitine regulates invasive breast cancer cell (MDA-MB231)
533 proliferation and survival through cell cycle regulatory protein cdk5. *Exp Mol Pathol* **82**, 25-32,
534 doi:S0014-4800(06)00105-5 [pii]10.1016/j.yexmp.2006.09.002 (2007).

535 34 Liu, R. *et al.* Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion.
536 *Proc Natl Acad Sci U S A* **105**, 7570-7575, doi:10.1073/pnas.0712306105 0712306105 [pii]
537 (2008).

538 35 Eggers, J. P. *et al.* Cyclin-dependent kinase 5 is amplified and overexpressed in pancreatic cancer
539 and activated by mutant K-Ras. *Clin Cancer Res* **17**, 6140-6150, doi:10.1158/1078-0432.CCR-10-
540 2288 1078-0432.CCR-10-2288 [pii] (2011).

541 36 Strock, C. J. *et al.* Cyclin-dependent kinase 5 activity controls cell motility and metastatic
542 potential of prostate cancer cells. *Cancer Res* **66**, 7509-7515, doi:66/15/7509 [pii] 10.1158/0008-
543 5472.CAN-05-3048 (2006).

544 37 Benten, D. *et al.* Establishment of the First Well-differentiated Human Pancreatic
545 Neuroendocrine Tumor Model. *Mol Cancer Res* **16**, 496-507, doi:10.1158/1541-7786.MCR-17-
546 0163 (2018).

547 38 Milo-Landesman, D. *et al.* Correction of hyperglycemia in diabetic mice transplanted with
548 reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. *Cell
549 Transplant* **10**, 645-650 (2001).

550 39 Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant Cdk5 activation by p25
551 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. *Neuron*
552 **40**, 471-483, doi:10.1016/s0896-6273(03)00627-5 (2003).

553 40 Scarpa, A. *et al.* Whole-genome landscape of pancreatic neuroendocrine tumours. *Nature* **543**,
554 65-71, doi:10.1038/nature21063 (2017).

555 41 Wong, H. L. *et al.* Molecular characterization of metastatic pancreatic neuroendocrine tumors
556 (PNETs) using whole-genome and transcriptome sequencing. *Cold Spring Harb Mol Case Stud* **4**,
557 doi:10.1101/mcs.a002329 (2018).

558 42 Scott, A. T. *et al.* Gene Expression Signatures Identify Novel Therapeutics for Metastatic
559 Pancreatic Neuroendocrine Tumors. *Clin Cancer Res* **26**, 2011-2021, doi:10.1158/1078-
560 0432.CCR-19-2884 (2020).

561 43 Agarwal, S. K. Exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for
562 basic and preclinical studies. *Int J Endocr Oncol* **1**, 153-161, doi:10.2217/ije.14.16 (2014).

563 44 Ney, A., Canciani, G., Hsuan, J. J. & Pereira, S. P. Modelling Pancreatic Neuroendocrine Cancer:
564 From Bench Side to Clinic. *Cancers (Basel)* **12**, doi:10.3390/cancers12113170 (2020).

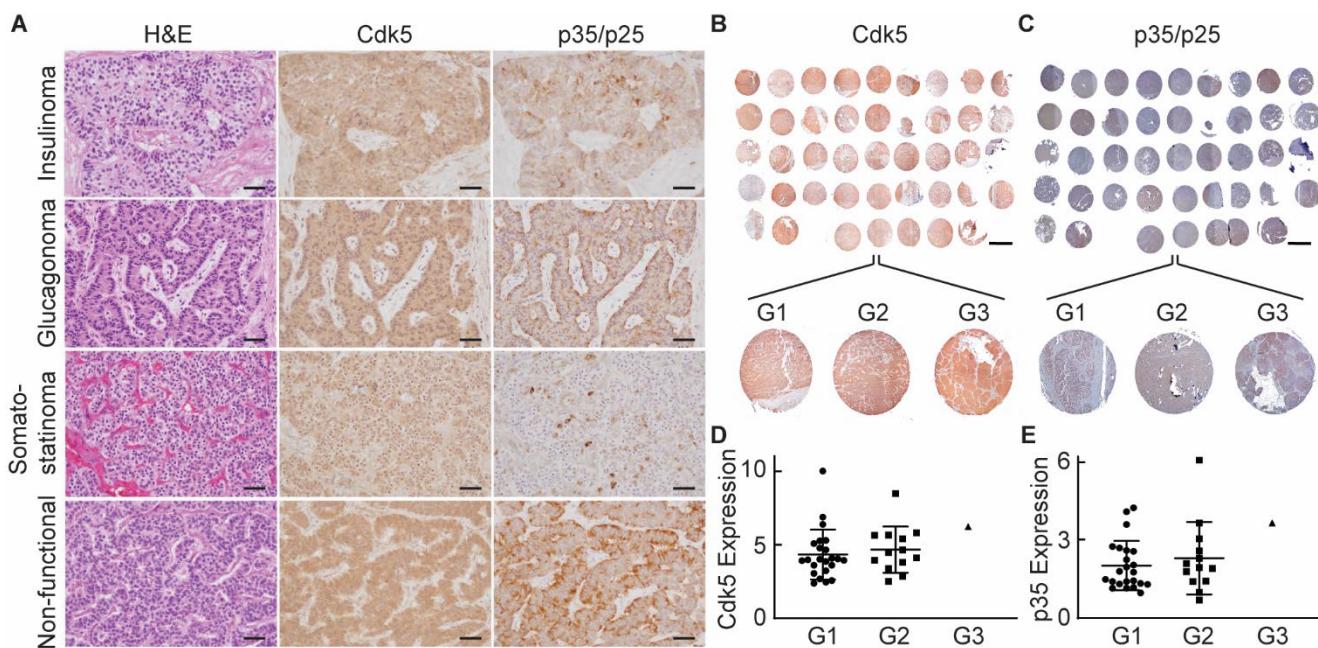
565 45 Korsisaari, N. *et al.* Blocking vascular endothelial growth factor-A inhibits the growth of pituitary
566 adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia
567 type 1. *Clin Cancer Res* **14**, 249-258, doi:10.1158/1078-0432.CCR-07-1552 (2008).

568 46 Quinn, T. J. *et al.* Pasireotide (SOM230) is effective for the treatment of pancreatic
569 neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional
570 knockout mouse model. *Surgery* **152**, 1068-1077, doi:10.1016/j.surg.2012.08.021 (2012).

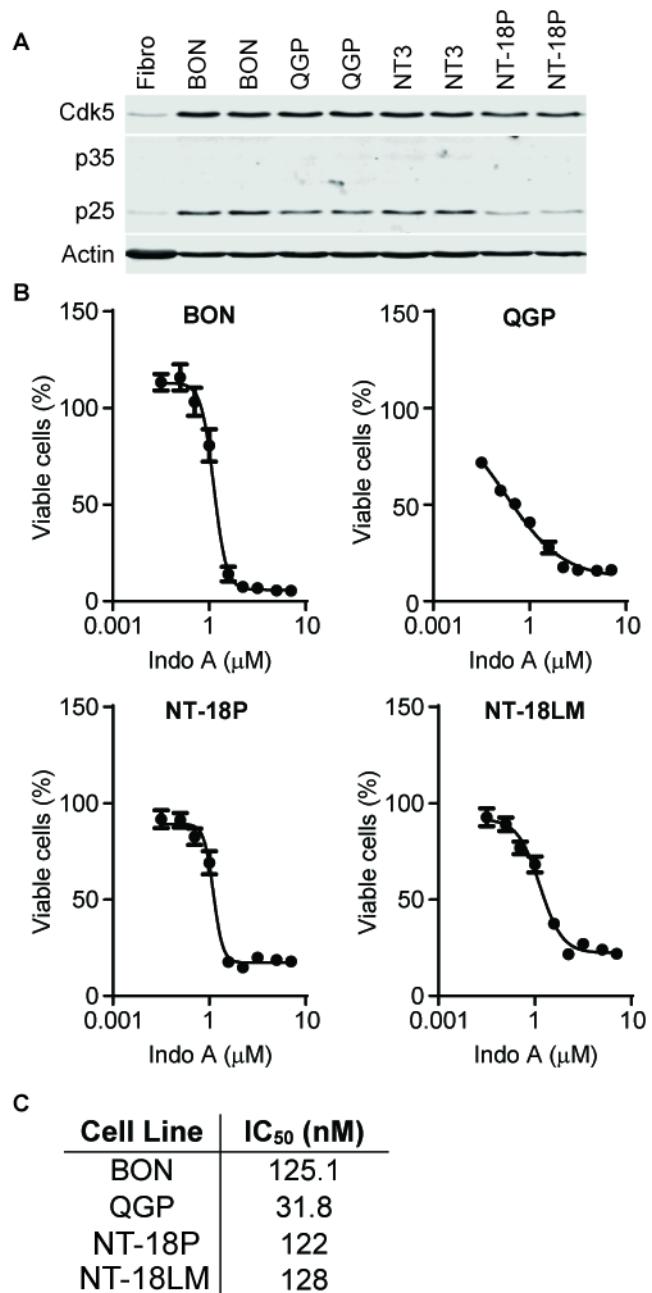
571 47 Hanahan, D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing
572 recombinant insulin/simian virus 40 oncogenes. *Nature* **315**, 115-122, doi:10.1038/315115a0
573 (1985).

574 48 Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose "chemo-
575 switch" regimen is antiangiogenic, producing objective responses and survival benefit in a
576 mouse model of cancer. *J Clin Oncol* **23**, 939-952, doi:10.1200/JCO.2005.07.093 (2005).

577 49 Chiu, C. W., Nozawa, H. & Hanahan, D. Survival benefit with proapoptotic molecular and
578 pathologic responses from dual targeting of mammalian target of rapamycin and epidermal
579 growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. *J Clin
580 Oncol* **28**, 4425-4433, doi:10.1200/JCO.2010.28.0198 (2010).


581 50 Sadanandam, A. *et al.* A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals
582 Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic
583 Characteristics. *Cancer Discov* **5**, 1296-1313, doi:10.1158/2159-8290.CD-15-0068 (2015).

584 51 Kobayashi, S. *et al.* Alleles of Insm1 determine whether RIP1-Tag2 mice produce insulinomas or
585 nonfunctioning pancreatic neuroendocrine tumors. *Oncogenesis* **8**, 16, doi:10.1038/s41389-019-
586 0127-1 (2019).


587 52 Lan, M. S. & Breslin, M. B. Structure, expression, and biological function of INSM1 transcription
588 factor in neuroendocrine differentiation. *FASEB J* **23**, 2024-2033, doi:10.1096/fj.08-125971
589 (2009).

590 53 Zhang, J. *et al.* Current understanding of the molecular biology of pancreatic neuroendocrine
591 tumors. *J Natl Cancer Inst* **105**, 1005-1017, doi:10.1093/jnci/djt135 (2013).

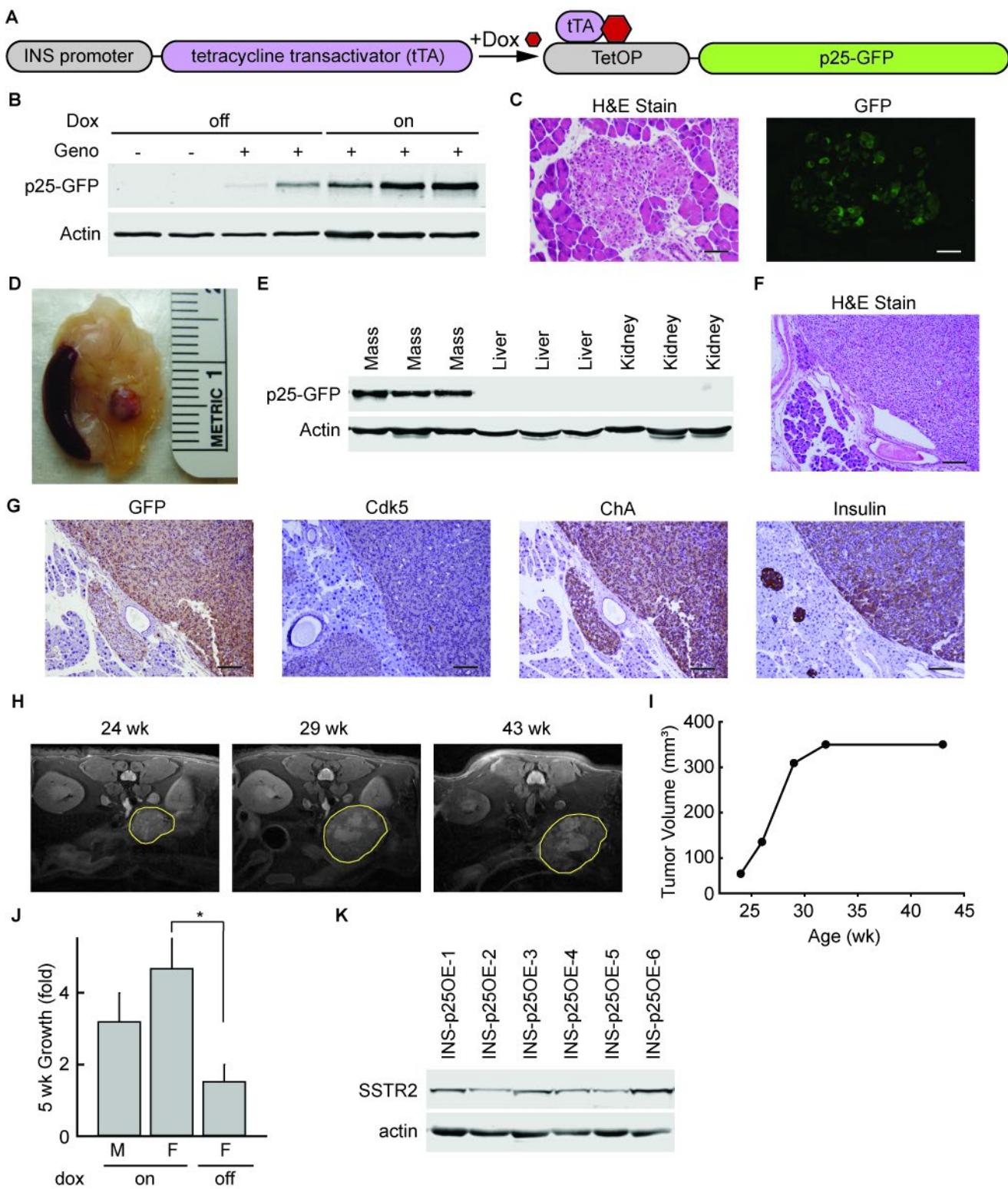
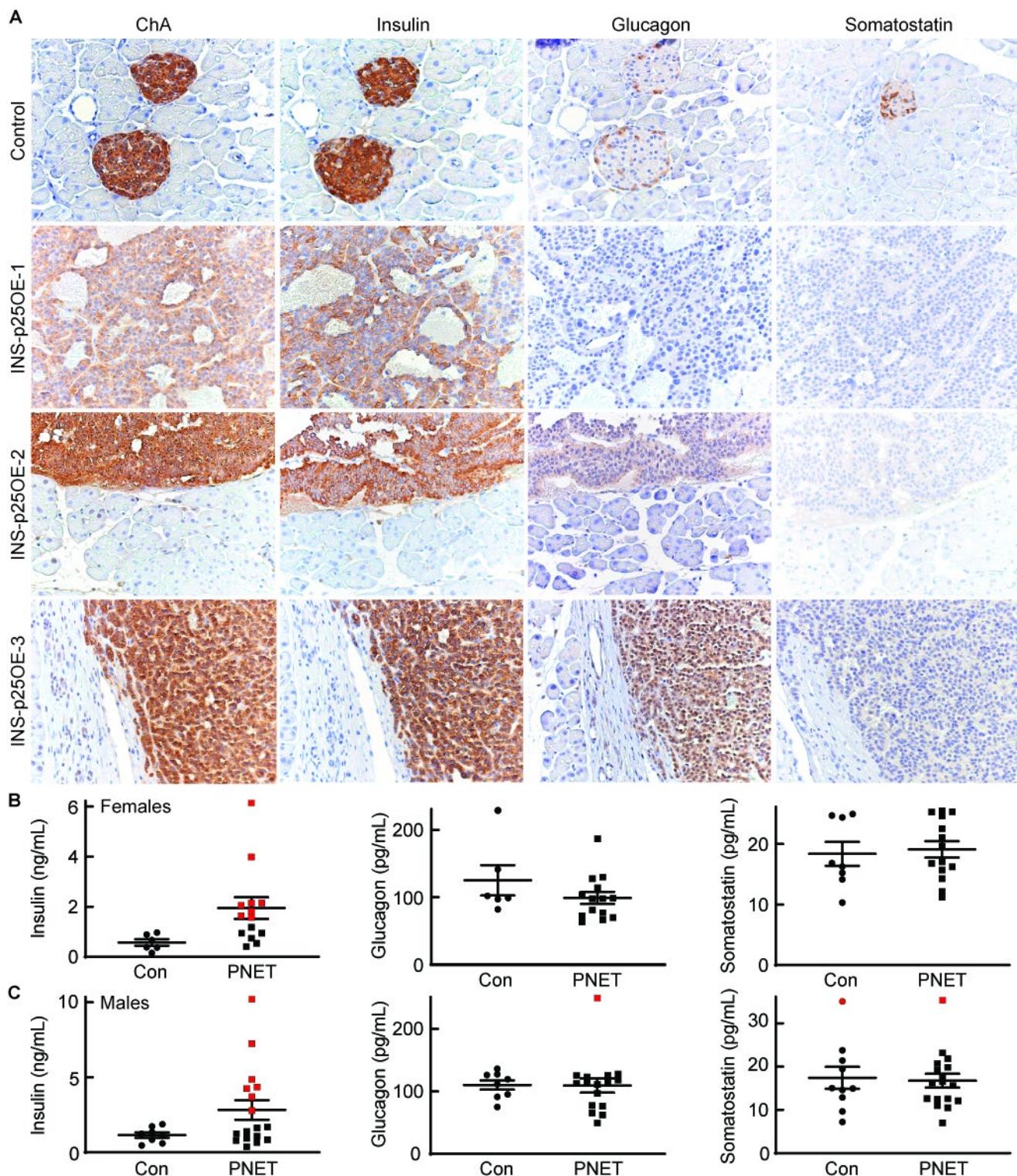
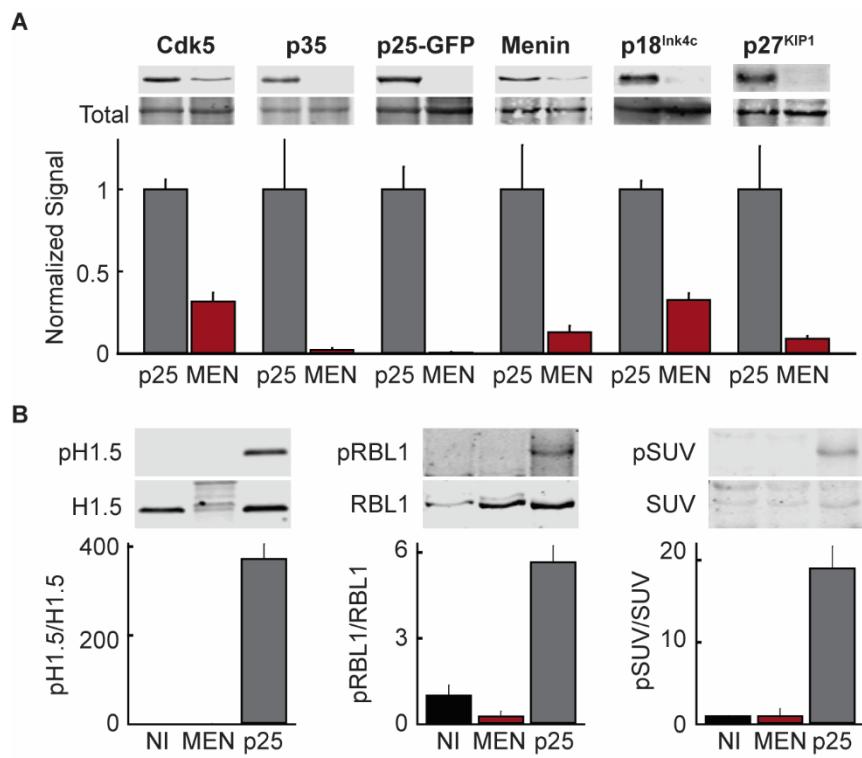
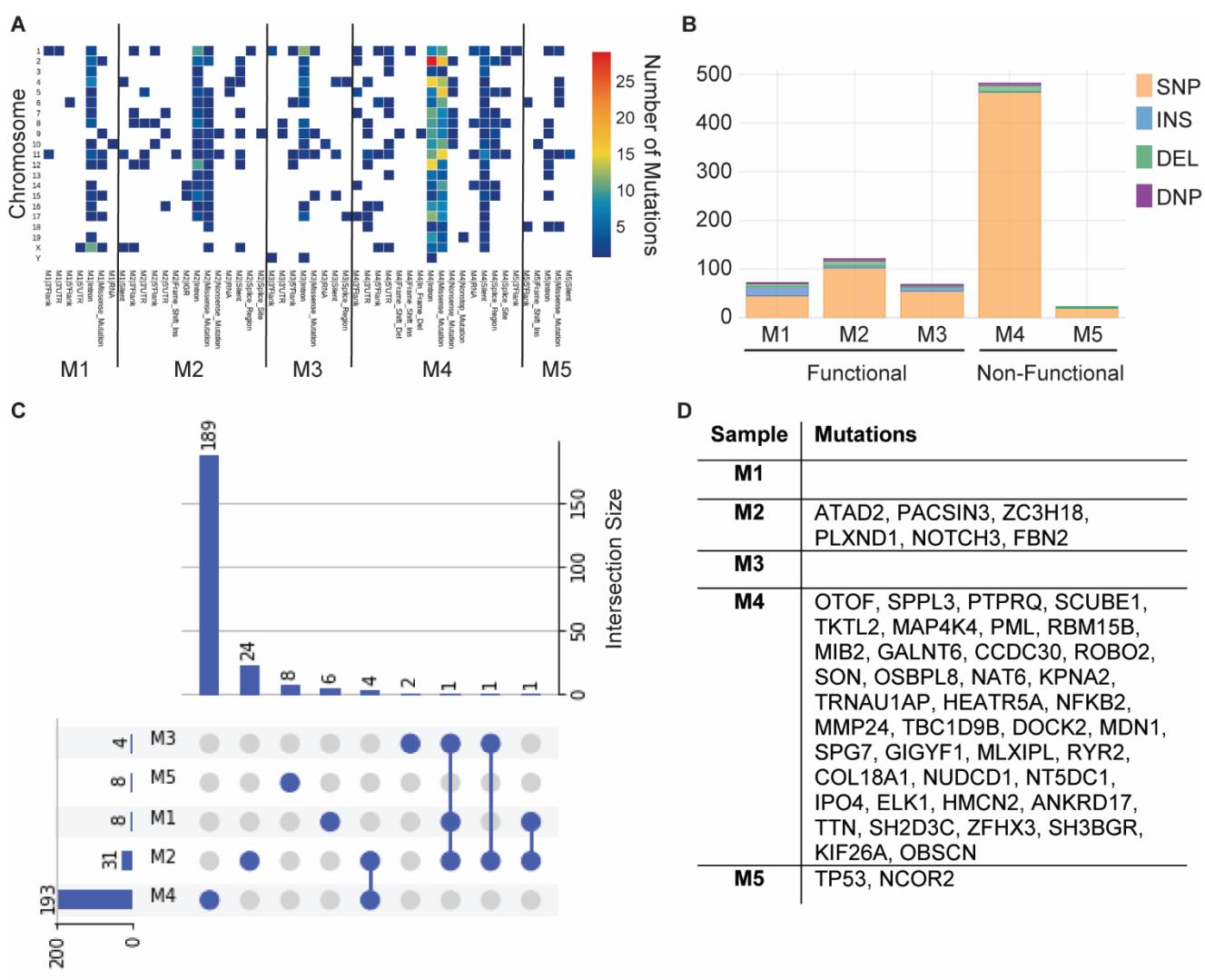

592

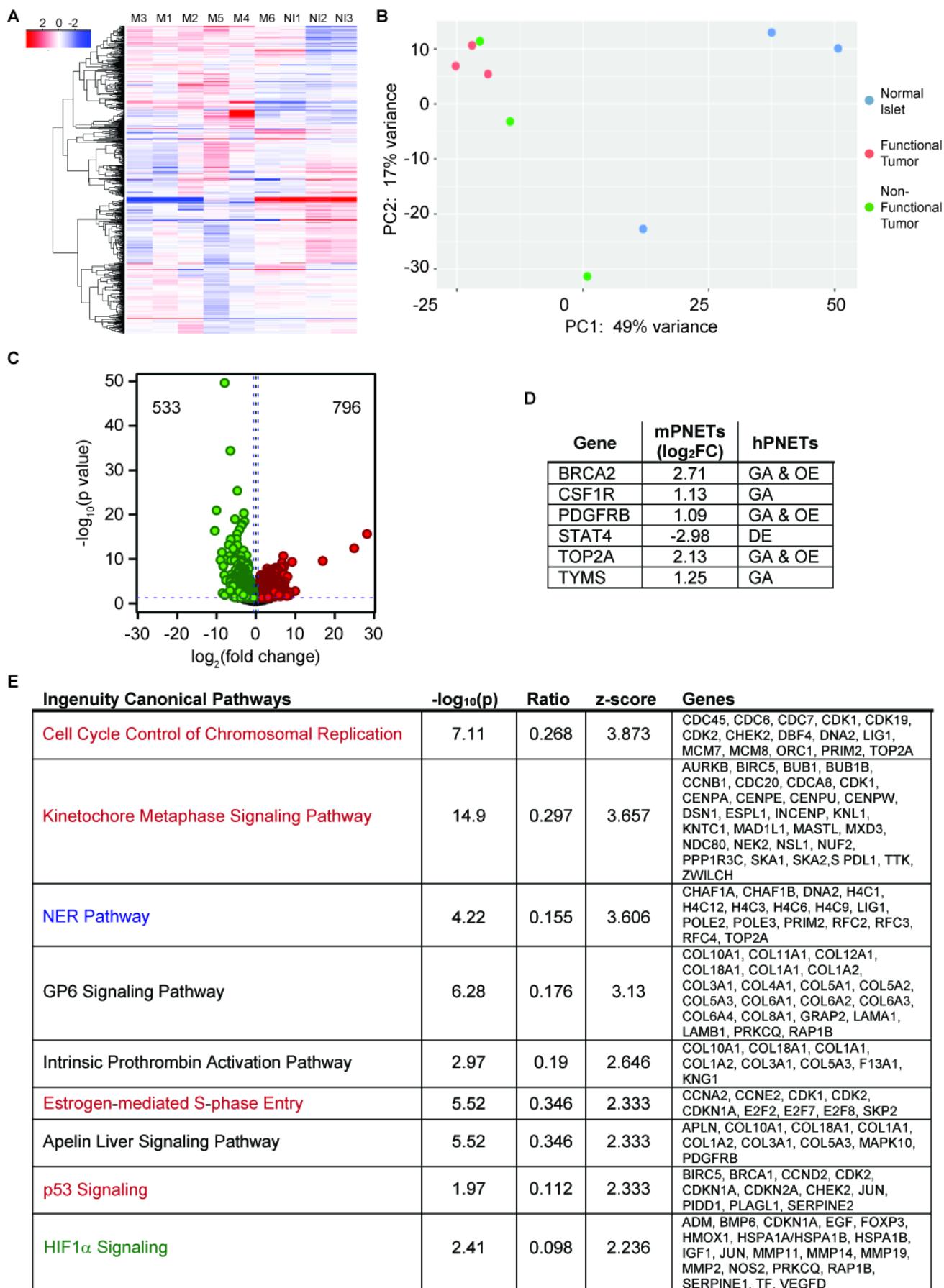
Figure 1. Cdk5 pathway components are present in human PanNETs. A. H&E stain and immunostains for Cdk5 and p35/p25 in G1 PanNETs. Scale bars = 50 μ m. B-C. Immunostains for Cdk5 (B) and p35/p25 (C) from human PanNET TMA. Scale bar = 2 mm. D-E. Semi-quantitation of Cdk5 expression from B (D) and p35/p25 expression from C (E) normalized to expression levels of each in a normal placenta core; column 1 row 4 of the TMA. Map of TMA in Supplementary Table S1.


Figure 2. Human PanNET cells are dependent on Cdk5 for growth. A. Immunoblot of Cdk5 pathway components in fibroblasts and PanNET cells. B. PanNET cell lines were treated with increasing concentrations of Indo A and monitored for effects on cell viability. Error bars represent SEM. C. IC₅₀ values obtained from viability assays in B.


Figure 3. Aberrant activation of Cdk5 generates PanNETs in an inducible bi-transgenic mouse model.

A. Schematic of genetic system for regulated tissue-specific expression of p25-GFP. B. Immunoblot for expression of p25GFP in islets isolated from transgene negative (-) and INS-p25OE (+) mice with (on) or without (off) administration of 1 g/L Dox for 4-5 weeks. C. H&E stain and immunofluorescence of sections of pancreas from INS-p25OE mice at 4 weeks post-p25-GFP induction. D. Representative gross image of a pancreatic mass from INS-p25OE mice. E. Immunoblot for expression of p25-GFP in pancreatic mass, liver, and kidney at 12 months induction. F-G. H&E stain (F), and immunostains (G) of primary PanNET from an INS-25OE animal. Scale bars = 100 μ m. H. Axial MRI sections from a representative INS-p25OE mouse. PanNET circumscribed in yellow. I. Quantitation of tumor volume over time from a representative INS-p25OE


mouse. J. Tumor growth, normalized to initial volume, during the linear growth phase; males (M; n=4) and females (F; n=3 for each group) administered dox since weaning (on) or Dox since weaning followed by discontinuation for 5 weeks at initial tumor detection (off). K. Immunoblot for expression of SSTR2 and actin in INS-p25OE tumors.


Figure 4. Cdk5 induces both functional and non-functional PanNETs. A. Immunostains of pancreas from control and three representative INS-p25OE animals. B-C. ELISA assays of hormone levels in blood plasma of female (B) and male (C) control (Con; females n=6, males n=8) and tumor-bearing (PNET; females n=14, males n=21) mice. Error bars are SEM; red points illustrate samples with levels that are two SD above the average for controls.

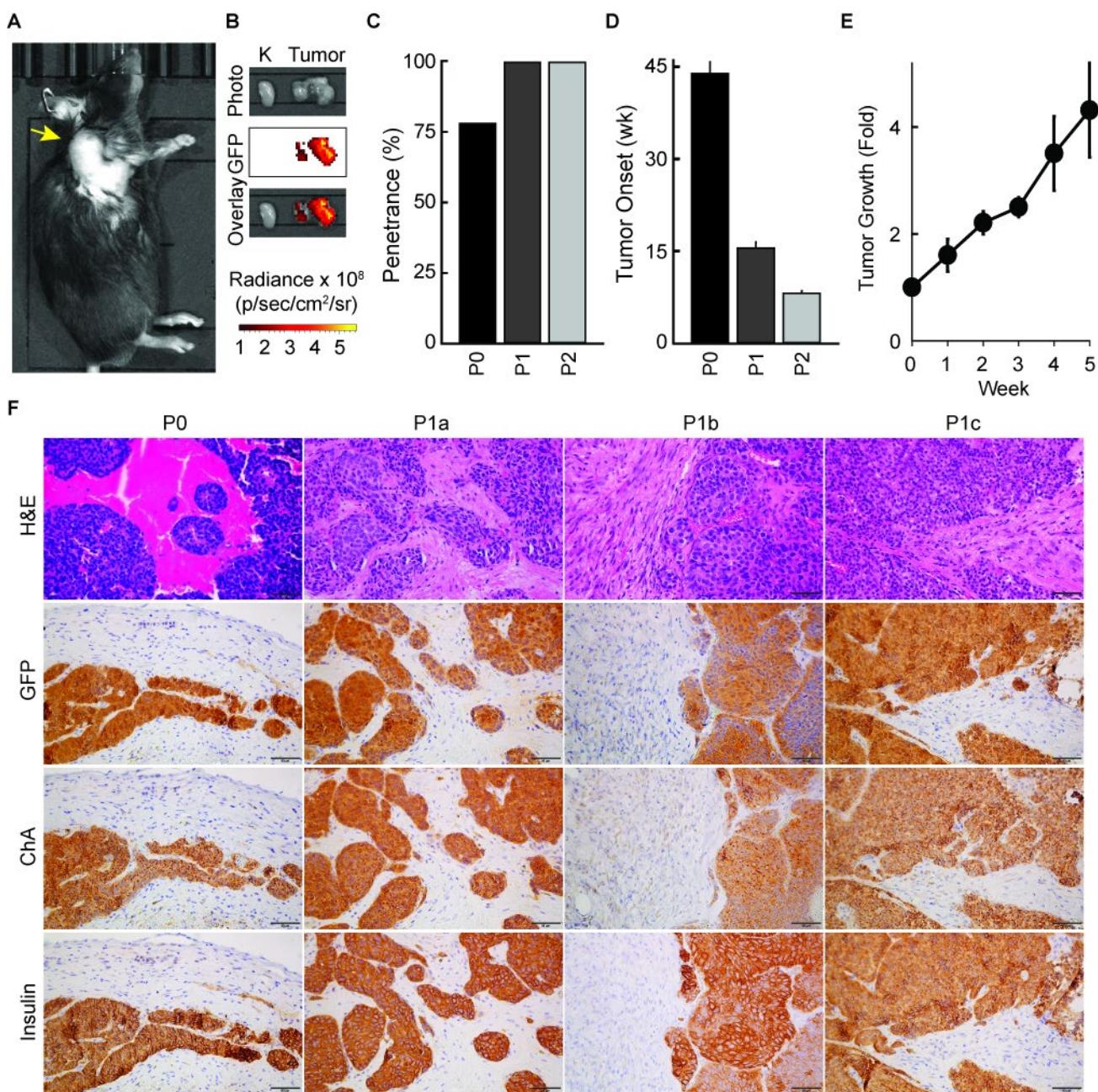

Figure 5. Cdk5 and menin pathways are distinct drivers of mPanNETs. A. Quantitative immunoblot of Cdk5 pathway components, menin, and downstream targets of menin in $\text{MEN}^{-/-}$ tumors (MEN; n=4) and INS-p25OE tumors (p25; n=5). B. Quantitative immunoblot of downstream targets of Cdk5 in normal mouse islets (NI; n=3), $\text{MEN}^{-/-}$ tumors (MEN; n=4), and INS-p25OE tumors (p25; n=7); phosphorylated Ser18-H1.5 (pH1.5), phosphorylated Ser988-RBL1 (pRBL1), phosphorylated Ser391-SUV39H1 (pSUV).

Figure 6. INS-p25OE tumors possess mutations found in human PanNETs. A. Heat map of number of total mutations in each INS-p25OE PanNET by classification per chromosome. B. Type of mutations present in each INS-p25OE PanNET. C. Waterfall plot of overlapping exonal mutations among INS-p25OE PanNETs. D. Table of mutations in INS-p25OE PanNETs found to overlap with mutations in human PanNETs.

Figure 7. RNA-seq. A. Heatmap of differentially expressed genes in normal mouse islets (NI1-3), functional (M1-3) and non-functional (M4-6) INS-p25OE PanNETs . B. Principal component analysis of expression data. C. Volcano plot of annotated genes upregulated and downregulated compared to normal mouse islets. D. Table of differentially expressed genes that overlap with alterations in human PanNETs; gene amplification (GA), overexpression (OE), decreased expression (DE). E. Ingenuity Pathway Analysis of differentially expressed genes. Pathways are related to cell cycle (red), DNA repair (blue), vascularization (green), and extracellular matrix (black).

Figure 8. INS-p25OE PanNETs form successful allografts. A. Photograph from IVIS imagine of representative allograft tumor model; tumor marked with yellow arrow. B. Photograph and fluorescence imaging from IVIS, ex vivo, of kidney (left) and tumor (right) from representative allograft model. C. Penetrance in primary INS-p25OE model (P0), passage 1 models (P1), and passage 2 models (P2). D. Tumor onset in the same groups as C. E. Fold growth of passage 1 tumors over a 5 week period starting at approximately 100 mm³ (week 0). F. H&E stains and immunostains of primary INS-p25OE model (P0) and three passage 1 models (P1a-c).