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Abstract 

Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) 

possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both 

passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each 

of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, 

which manifest as low frequency artefacts in MEG data. Objective: We modelled the spatial variation in the magnetic field and 

used the model to predict the movement artefact found in a dataset. Methods: We demonstrate a method for modelling this field 

with a triaxial magnetometer, then showed that we can use the same technique to predict the movement artefact in a real OPM-

based MEG (OP-MEG) dataset. Results: Using an 86-channel OP-MEG system, we found that this modelling method maximally 

reduced the power spectral density of the data by 26.2 ± 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. 

Conclusion: The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical 

harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. Significance: 

Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the 

measurement of low-frequency brain activity during natural participant movement. 

 
Keywords—Magnetic Field Mapping, MEG, OPM, wearable MEG 

 

I. INTRODUCTION 

Magnetoencephalography (MEG) is a non-invasive functional 

neuroimaging technique, which can be used to localize neuronal 

current flow with high spatial and temporal resolution. In MEG, 

the magnetic field due to current flow across active neuronal 

populations is recorded outside of the head. At the scalp, this 

magnetic field is in the range of femto- to pico-Tesla [1]. These 

fields have typically been measured using superconducting 

quantum interference devices (SQUIDs). SQUID-based MEG 

systems consist of a large vacuum flask with a helmet shaped 

recess for the head that is surrounded by superconducting coils. 

These systems are very sensitive and have excellent dynamic 

range, but are stationary, expensive and require participants to 

remain still during the recording. Recently, compact optically 

pumped magnetometers (OPMs) have been developed [2]–[8]. 

These devices can be worn directly on the scalp and so enable 

participant movement during scanning [9]. Neuroscientific 

paradigms for MEG typically avoid any subject movement, 

while OPM-based MEG (OP-MEG) makes it possible to 

perform more naturalistic tasks [10]. Similarly, participants 

who struggle to remain still, such as children or people with 

movement disorders [11], can be more easily studied with OP-

MEG.  

Many varieties of OPM sensor now exist. In this work, we 

focus on OPMs that operate in the Spin Exchange Relaxation 

Free (SERF) regime, but the methods outlined below would be 

common to many magnetometers. One practical problem that 

impacts OPMs is how to maintain a fixed operating point as the 

participant moves. The field gradient within the OPM-

dedicated Magnetically Shielded Room (MSR) at UCL is 

around 1000 pT/m [12]; we wish to measure fields in the femto-

Tesla range (typically 0.01-1 pT). This means that any small 

movements of any magnetic field sensor present a considerable 

source of interference: 1 mm of head movement could produce 

a field change equivalent to a large (1 pT) brain signal. 

Rotations within the field cause additional artefacts.  
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This leads to direct and indirect artefacts from movement in 

OP-MEG: a direct increase or decrease in the recorded value - 

as described above - and a consequential change in the gain of 

the OPMs, which is dependent on the ambient field of the sensor 

[13]. The relationship between the ambient field and OPM gain 

means that these sensors operate optimally at magnetic fields 

close to zero (~± 1 nT) [14]. Movement is one common reason 

why the field at an OPM would step outside of this range during 

an OP-MEG recording. These effects usually occur at low 

frequency (below 4 Hz), as the movements themselves are 

typically low frequency (see Supplementary Fig. 1). It is 

partially for this reason that alpha (8–15 Hz), beta (15–30 Hz) 

and gamma (>30 Hz) activity has successfully been recorded 

with OP-MEG during movement [9], [10], [15], theta (4–8 Hz) 

has been recorded while the participant was unconstrained [16], 

but delta and infra-slow waves (<4 Hz) remain a topic of future 

research.  

A number of methods have been suggested for minimizing 

changes in the background magnetic field during an OP-MEG 

experiment, with the most successful involving the placement 

of electromagnetic coils around the participant [13], [17]–[19]. 

The currents in these coils can be adjusted to minimize the 

magnetic field within the volume around the head, meaning that 

when the participant moves, the change in field is minimal [9], 

[17]. The currents in the coils can be continually updated to 

keep the background field close to zero, minimizing temporal 

changes in the background field which are introduced by 

external sources of interference [13], [18]. The electromagnetic 

coils presented in [18] have been shown to be capable of 

keeping the magnetic field to below 2 nT within a 

40 cm × 40 cm × 40 cm box around the participant’s head, 

allowing the participant to move within this region. This has 

opened up a number of new areas of research within MEG [10], 

[15].  

However, even when these field nulling coils are used, the 

magnetic field around the head is not zero. This makes rotations 

during OP-MEG challenging [13]. Additionally, the volume 

that is nulled is limited to a 40 cm box at the center of the coil 

system. If it were possible to record OP-MEG outside of this 

region, it would allow experiments that could not previously be 

considered; for example, recording as people walk about an 

MSR. This could be achieved by locally nulling the magnetic 

field at each sensor (using the internal coils that each sensor 

incorporates), as is done in some novel OPM designs that 

include closed-loop operating modes [20]–[24]. Here we work 

towards selectively controlling for movement-related field 

changes by creating a model of the background field. Previous 

simulation studies have shown how a generative model, 

comprised of current dipole sources located on a shell around 

the room, could be used to null this interference [25]. 

Additionally, it has been shown that  modelling the background 

field as a spatially homogeneous mean field can offer 

significant improvement [26]. We explore an alternative model 

in which we express the low-frequency background field in the 

room as the sum of a real-valued spherical harmonic series [27]. 

Due to the wearability of OP-MEG, here we build a model of 

the spatial distribution of the noise from the participant’s 

movements. The advantage of the spherical harmonic approach 

is that we expect the field models to be computationally simpler 

to estimate and update in real-time. In this work, we establish 

proof-of-principle and use this information to minimize the 

movement-related changes in our OP-MEG recordings post-

hoc.  

The paper proceeds as follows. We start by mapping the 

magnetic field in our MSR using a triaxial magnetometer. We 

show how it is possible to model these field variations using 

relatively low-order spherical harmonic models. We then 

consider a typical OP-MEG experiment using the participant’s 

natural movements. We examine the dependence of these 

methods on the time-window used to construct the model. We 

finish by discussing the suitability of these models for 

correcting for movement noise in real-time. 

II. METHODS 

A. Theory 

A point on notation; vectors and matrices have been 

emboldened. Vectors are additionally italicized to differentiate 

the two.  

For a singular OPM on the scalp, at position 𝒓 ∈ ℝ{3×1} and 

time 𝑡, the recording (𝐵{𝑂𝑃𝑀}(𝒓, 𝑡)) is the sum of the magnetic 

field (𝑩(𝒓, 𝑡) ∈ ℝ{3×1}) along the recording axis of the sensor 

(𝝆{𝑂𝑃𝑀} ∈ ℝ
{3×1}), multiplied by the sensor gain (𝐺), plus any 

sensor error terms (𝑒{𝑂𝑃𝑀}):  

 𝐵{𝑂𝑃𝑀}(𝒓, 𝑡) = 𝐺(𝑩(𝒓, 𝑡) ∙ 𝝆{𝑂𝑃𝑀} + 𝑒{𝑂𝑃𝑀}) (1) 

The dot indicates the dot product between the magnetic field at 

the sensor’s location and the orientation of its sensitive axis. 

𝑩(𝒓, 𝑡) has contributions from both the environment 

(background noise) and the brain (the signal of interest). Here 

we seek to model the background noise component of 𝑩(𝒓, 𝑡).  
We make the assumption that 𝐺 = 1. We also assume that 

the sensitive axis of the sensor remains aligned with its exterior 

shell and that the error term, 𝑒{𝑂𝑃𝑀}, consists of a random, 

Gaussian error and a static offset term. There are multiple 

causes of this offset, the largest being an intentionally applied 

field to null the initial magnetic field at the start of any 

experiment, described in section II.B. Additional sources of this 

offset include slight magnetization of the internal OPM 

components, effective DC fields from the cell heater, internal 

magnetic field gradients, and light shift (a fictitious magnetic 

field created from the interaction of Rubidium atoms and the 

laser) [28].  

 Equation (1) simplifies to 

𝐵{𝑂𝑃𝑀}(𝒓, 𝑡) = 𝑩(𝒓, 𝑡) ∙ 𝝆{𝑂𝑃𝑀} + 𝑒𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛   (2) 

We also assume that the MSR can be approximated as a static, 

source-free space. The magnetic field can then be described by 

 

𝑩(𝒓) =  −𝜇0∑ ∑ 𝛽𝑙𝑚∇(𝑟
𝑙𝑌𝑙𝑚(𝜃, 𝜙))

𝑙

𝑚= −𝑙

∞

𝑙=0

 (3) 

as shown by [29]–[31]. (𝑟, 𝜃, 𝜙) are spherical coordinates, such 

that 𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃, where 𝑥, 

𝑦 and 𝑧 are the Cartesian coordinates. 𝛽𝑙𝑚 are coefficients to be 

modelled. 𝑌𝑙𝑚(𝜃, 𝜙) are the spherical harmonic functions, as 

defined in equation (4). As the magnetic field being modelled 

is real, we used the real-valued – also known as solid – spherical 

harmonics (𝑆𝑙𝑚), defined in [32] and given here in equation (5), 

in place of 𝑌𝑙𝑚 to ensure this condition. The first 6 orders are 

listed in Supplementary Table 1.  
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𝑌𝑙𝑚(𝜃, 𝜙) = (−1)
𝑚√

2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙
𝑚(cos θ)𝑒𝑖𝑚𝜙 (4) 

𝑆𝑙𝑚(𝜃, 𝜙) =  

{
 
 

 
 
𝑖

√2
(𝑌𝑙−|𝑚| − (−1)

𝑚𝑌𝑙|𝑚|), 𝑚 < 0

𝑌𝑙0, 𝑚 = 0
1

√2
(𝑌𝑙−𝑚 + (−1)

𝑚𝑌𝑙𝑚), 𝑚 > 0

 (5) 

𝑃𝑙
𝑚 represents the associated Legendre polynomials. In 

equation (5), the function dependencies on 𝜃 and 𝜙 have been 

removed to keep the equation concise. Due to the nature of the 

associated Legendre polynomials, equation (5) can be 

equivalently expressed as: 

𝑆𝑙𝑚(𝜃, 𝜙) =  

{
 
 

 
 

𝑇𝑙𝑚(𝜃)sin (|𝑚|𝜙), 𝑚 < 0

√
2𝑙 + 1

4𝜋
𝑃𝑙
0(cos(𝜃)), 𝑚 = 0

𝑇𝑙𝑚(𝜃) cos(|𝑚|𝜙) , 𝑚 > 0

 

𝑇𝑙𝑚(𝜃) =  √
2𝑙 + 1

2𝜋

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
𝑃𝑙
|𝑚|(cos(𝜃)) 

(6) 

Whenever we refer to model order in this paper, we are referring 

to the maximum value of 𝑙 used (𝑙𝑚𝑎𝑥).  

We used linear regression to create the model from all 

recorded channels and timepoints. 

 𝒀 = 𝐗𝜷 + 𝒆𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 (7) 

Where 𝒀 is the measured field data and 𝐗, the design matrix, 

contains the spherical harmonic model of magnetic field change 

over space. As such, 

 𝜷 = 𝐗†𝒀 
𝒀𝒑𝒓𝒆𝒅 = 𝐗𝜷 

(8) 

𝐗† is the pseudoinverse of 𝐗.  

The first 𝑀 (where 𝑀 is the number of channels) columns of 

the design matrix are used to account for constant (channel 

specific) offsets.  The remaining columns describe the change 

in the magnetic field over space, such that the expression agrees 

with equations (2) and (3). The number of columns of 𝐗 is 

therefore determined by the number of channels and the model 

complexity and is equal to (𝑀 + (𝑙𝑚𝑎𝑥 + 1)
2). The rows of 𝐗 

correspond to the timepoint and sensor. We chose to list all 

timepoints of sensor 1, then all times of sensor 2 etc. 

Consequently, the data for the regression (𝒀) is given as 

follows: 

𝒀 = [𝐵{1}(𝒓{1}1, 𝑡1), 𝐵{1}(𝒓{2}2, 𝑡2), …, 
(9) 

𝐵{1}(𝒓{1}𝑁 , 𝑡𝑁), 𝐵{2}(𝑟{2}1, 𝑡1), … , 𝐵{𝑀}(𝒓{𝑀}𝑁 , 𝑡𝑁)]
𝑇 

And has length (𝑁𝑀), where 𝑁 is the number of datapoints 

modelled over. 𝐵{𝑚}(𝒓{𝑚}𝑛, 𝑡𝑛) refers to the recording of OPM 

𝑚 at timepoint 𝑛 and position 𝒓{𝑚}(𝑡𝑛).  

As an example, in the simplest case considered here, 𝑙𝑚𝑎𝑥 =
1, and so the background magnetic field is modelled by 𝑩 =
𝛽11𝒙 + 𝛽1−1𝒚̂ + 𝛽10𝒛̂, where 𝒙, 𝒚̂, 𝒛̂ are the standard unit 

vectors in the direction of the 𝑥, 𝑦 and 𝑧 axes. In this scenario, 

the design matrix is as follows,  

 𝐗 = [𝚪, 𝝆𝒙⊙ [𝟎, 𝟎, 𝟎, 𝟏] + 𝝆𝒚⊙ [𝟎, 𝟏, 𝟎, 𝟎]

+ 𝝆𝒛⊙ [𝟎, 𝟎, 𝟏, 𝟎]] 

(10) 

where 𝚪 ∈ ℝ{(𝑁𝑀)×𝑀} represents the matrix for the channel 

offsets. Each column of 𝚪 corresponds to a sensor channel and 

is zero, unless, for column 𝑚, row 𝑘, the data in row 𝑘 of 𝒀 was 

recorded by OPM channel number 𝑚. Apart from 𝚪, all terms 

in equation (10) are column vectors with values corresponding 

to the position and orientation of the channel in the 

corresponding row of 𝒀, e.g. the first element of 𝝆𝒙 is the 

component of the orientation of OPM channel 1 in the 𝑥 

direction at timepoint 0, the second is its orientation in 𝑥 at 

timepoint 1 and so on, until the last element is the component 

of the orientation of OPM channel 𝑀 in the 𝑥 direction at 

timepoint 𝑁. 𝟏 is a column of ones and, similarly, 𝟎 is a column 

of zeros. ⊙ indicates elementwise multiplication. In this case 

where 𝑙𝑚𝑎𝑥 = 1, the estimated parameters would be  

𝜷 = [𝑒𝑜𝑓𝑓𝑠𝑒𝑡,1, 𝑒𝑜𝑓𝑓𝑠𝑒𝑡,2, … , 𝑒𝑜𝑓𝑓𝑠𝑒𝑡,𝑀, 𝛽1−1, 𝛽10, 𝛽11]
𝑇
 

For simplicity, we have only written this out for the simplest 

model. To expand this to include higher order models, the real 

spherical harmonics, as listed in Supplementary Table 1, need 

only be concatenated to the inner arrays. For example, 

considering only the magnetic field in the 𝑥 direction, in going 

from a first order model to second,  
[𝟎, 𝟎, 𝟎, 𝟏] →  [𝟎, 𝟎, 𝟎, 𝟏, 𝒚, 𝟎, 𝒙, 𝒛, 𝒙] 

B. Recording setup 

Two experiments for two different sensor configurations – 

triaxial and whole-head, as described in II.C – were undertaken. 

Fig. 1 shows the setup of the triaxial field mapping experiment. 

In both cases, we used QuSpin QZFM 2nd generation OPMs 

(https://quspin.com/products-qzfm/). The OPMs were moved 

manually, pseudo-randomly, either on the end of stick or on the 

participant’s head, around the central 1-2 cubic meters of a 4-

layer MSR (Magnetic Shields, Ltd.; internal dimensions 3 m 

× 4 m × 2.2 m) for 5 minutes. 

Before the start of the experiments, the inner layer of mu-

metal lining the room was degaussed by passing a low-

frequency decaying sinusoidal current through cables within the 

walls.  

The position of a rigid array of 4 retroreflective markers, 

which was fixed relative to the OPMs, was recorded using an 

OptiTrack v120:duo motion tracking camera in the triaxial 

experiment or, in the case of the OP-MEG experiment, 6 

OptiTrack Flex 13 cameras spaced around the room.  

Fig. 1.  Field Mapping system set up. In the triaxial experiment, the 

position and orientation of two magnetometers were tracked optically, 

while the field along two of their axes were recorded. These two data-

streams (magnetic field and position/orientation) were synchronously 

recorded. 
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The magnetometer outputs were recorded at 6000 Hz using 

LabView with a National Instruments (NI) DAQ (NI-9205, 16-

bit, ± 10 V input range), using QuSpin’s adapter 

(https://quspin.com/products-qzfm/ni-9205-data-acquisition-

unit/). The position information was recorded on a separate 

computer using OptiTrack's Motive software at 120 Hz. A 5 V 

voltage pulse was sent to both systems for synchronization.  

Occasional occlusion of one or multiple markers led to gaps 

in the position data. In the triaxial recording, these gaps were 

filled in using cubic spline interpolation in Motive. In the OP-

MEG experiment, an initial “pattern-based” interpolation was 

performed prior to spline fitting. In this case, when only one 

marker was missing (i.e. the position of the other three markers 

was known), the trajectory data from the other markers was 

used to determine the position of the occluded marker by the 

constraints of the rigid body. Any remaining gaps were then 

filled with cubic spline interpolation. 

The magnetometer outputs were downsampled to 240 Hz for 

convenience. Linear interpolation was used to upsample the 

OptiTrack data to 240 Hz to match the two recordings.  

The OPMs used here operate optimally in ambient magnetic 

fields close to zero (~ ± 1 nT), so at the start of each 

experiment, electromagnetic coils on board each sensor were 

optimized to produce a magnetic field equal and opposite to the 

ambient field at the time of the calibration. This bias field 

(typically 0.1–2 nT for our OPM-dedicated MSR) was recorded 

and left on throughout each recording. The gain of the OPMs 

was set to allow recordings of up to ± 5.56 nT. This was 

necessary to ensure that all of the data was within range, 

although, as discussed previously, larger magnitude OPM 

recordings have higher gain errors, meaning that there is more 

uncertainty in the larger field values. 

The OptiTrack coordinate system was set using an initial 

Ground Plane recording, where a right-angled triangle frame 

with retroreflective markers at the corners was placed at the 

origin of and aligned along the axes of the desired coordinate 

system. This coordinate system was chosen to be related to the 

geometry of the MSR. The origin was set approximately in the 

center of the room, with the x-axis pointing towards the door, 

y-axis pointing down and z-axis defined so that the coordinate 

system is right-handed. 

To find the position and orientation of the OPMs from the 

position of the markers, we used the Kabsch method [33] to find 

the optimal transformation between the known coordinates of 

the markers relative to the OPMs and the OptiTrack recordings. 

We then applied the same transformation to the known OPM 

coordinates and orientations at each data point.  

C. Experiments 

1) Triaxial Field Mapping 

We created a triaxial magnetometer from two, orthogonally 

oriented OPMs, shown in Fig. 2. Each OPM recorded two 

orthogonal directions of field change, although only three axes 

were selected for modelling (i.e. only one of the two parallel 

axes was used). We recorded for 5 minutes while moving the 

sensor around the room, waited 20 minutes and then repeated 

the recording. 

Three filters were applied to the OPM recordings: a 4th–order 

60 Hz low-pass Butterworth filter and two 5th–order band-stop 

Butterworth filters at 50 Hz (line noise) and 120 Hz (infrared 

interference from the OptiTrack cameras). 

To determine the number of spherical harmonic functions 

required to reasonably describe the magnetic field in our MSR, 

we tested the first six model orders. We performed a 10-fold 

cross-validation test to compare the different models for both 

recordings and evaluated their performance by the variance in 

the data explained by each model, quantified by the Coefficient 

of Determination (𝑅2) across the full dataset.  

 
𝑅2 = 1 −

∑ (Ymeasured,i − Ymodelled,i)
2NM

i=1

∑ (Ymeasured,i − 〈Ymeasured〉)
2NM

i=1

 (11) 

Here the brackets around Ymeasured indicate the mean over all 

channels and times.  

Additionally, we wished to avoid overfitting and also 

establish whether the magnetic field changed with time. 

Therefore, we trained a model on the first 80% of the data and 

tested it on the last 20%. For this purpose, we also trained the 

model on the alternative run, recorded 20 minutes apart.  

 

2) OP-MEG Recording 

We sought to recreate this modelling with OP-MEG data 

based on recordings from multiple scalp-based sensors. To 

create a test dataset, 43 (dual-axis) OPMs were placed evenly 

around a participant’s head in a 3D printed, bespoke, rigid 

scanner-cast. The sensor and OptiTrack marker positions 

relative to the scalp are shown in Fig. 3.  

The participant was standing and was asked to move such that 

their head made large translational and rotational movements 

(shown in Fig. 6). The experimental protocol was approved by 

Fig. 2.  Photographs of the experimental set-up, showing the OPMs 

and retroreflective markers for position tracking, taken from opposite 

directions. 

Fig. 3.  Position of each of the OPMs (black cuboids) and 

retroreflective markers (orange circles) in the auditory experiment. 

The participant’s head is represented by the grey mesh.  
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the UCL Research Ethics Committee and informed consent was 

obtained prior to participation.  

Aiming to compensate for the temporal changes in the 

magnetic field, we performed this modelling on sliding 

windows of the data. Six different window lengths — 5 s, 10 s, 

30 s, 60 s, 120 s and 240 s — were tested. In this work, we have 

consistently set the modelling step size, i.e. how often we 

update the model, to half of the length of the modelling window. 

The impact of changing this value is discussed in the 

supplementary material.  

To evaluate the model’s performance, we looked at the 

shielding factor of the resulting correction, calculated with SPM 

(https://github.com/tierneytim/OPM).  

𝑠ℎ𝑖𝑒𝑙𝑑𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑑𝐵)

= 20 log10 (
𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑌𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
) 

(12) 

For three windows (5 s, 30 s and 120 s), we also looked at 

the percentage decrease in the RMS value of the OP-MEG 

recording and how that varied between the channels. 

The position data was low-pass filtered at 2 Hz with a 6th–

order Butterworth filter before modelling. The model 

predictions were low pass filtered at 2 Hz with a 5th–order 

Butterworth filter. This filter was necessary because we found 

that above this frequency, the noise from the motion tracking 

camera was larger than the noise from the movement. This is 

consistent with Supplementary Fig. 1, which shows that most 

of the movement here is described by frequency components 

below 2 Hz.  

III. RESULTS 

A. Triaxial recording 

The modelled magnetic field in the OPM–dedicated MSR at 

UCL from the whole of the first triaxial recording using a 3rd 

order model is shown in Fig. 4. The figure shows the trajectory 

of the movement, which begins in the bottom left of the grid 

shown (as the researcher picks the sensor up from a table). The 

range of movement was 1.2 m, 1.4 m, and 0.8 m in 𝑥, 𝑦, and 𝑧 

respectively. The model is spatially smooth, as you would 

expect given the basis functions, with a gradient in the 𝑥 

direction (towards the door). The equivalent figures for the 

second triaxial run and the OP-MEG recording are shown in 

Supplementary Fig. 3.  

Fig. 5 shows the variance in both triaxial recordings for 

spherical harmonic models of different complexity. As one 

Fig. 4.  Background magnetic field in the Magnetic Shields Limited (MSL) MSR at UCL at the mean OPM position during the first run of the 

triaxial experiment, according to a 3rd order real spherical harmonic model. The three columns are the three magnetic field components. In each, 

the direction of the MSR door is indicated. The graphs are oriented to be representative of the room such that down the page is nearer to the 

ground in the room. The two trails coming out of the main space - bottom left and top right - are, respectively, caused by the magnetometer being 

picked up off the table at the start of the experiment and moving it nearer the camera (to see how this affected the field). The equivalent figure 

for the second run of this experiment and for the OP-MEG experiment is shown in Supplementary Fig. 4. 

Fig. 5.  Variance explained (𝑹𝟐) by different order spherical harmonic 

models in three different analyses: 10-fold cross-validation (blue 

circles), training on the first 80% of the data (orange triangles) and 

training on the opposite run (yellow squares). The within-sample 

(testing and training data are the same) variance explained is given by 

complete lines, the out-of-sample (testing and training data are 

different) variance explained is given a dashed line. The two 

recordings are shown on separate graphs. Run 1 (left) was recorded 

first, then run 2 (right) recorded 20 minutes later. Note the different 

scales on the two graphs.  
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would expect, the model error decreases as the complexity of 

the model increases. When a 10-fold cross-validation test was 

performed, the difference between the within-sample variance 

explained and out–of–sample variance explained was within the 

error bars for all the models. This suggests that all the models 

generalize well. However, for both recordings, the same cannot 

be said when training on the first 80% of the data and testing on 

the last 20%. The model still explains over 96% of the variance 

in the hold out set and, indeed, the variance explained in the 

hold out set of the second run exceeds that in the training set 

but the fact that they are different implies that the magnetic field 

is changing in time.  

In line with this, there is a notable drop in the variance 

explained when training on the alternative recording, i.e. 

training on data recorded in the same room, without opening or 

closing the door but recorded 20 minutes later or earlier. Unlike 

testing on the same dataset, the variance explained does not 

increase as the model order increases. In this case, the lower 

order models appear to be more stable. Additionally, the 

number of model parameters is (𝑙𝑚𝑎𝑥 + 1)
2. As the number of 

parameters increases, so does the size of the design matrix 𝐗 

and the time required to invert it. Therefore, for computational 

efficiency and robustness, a spherical harmonic model of order 

2 is a pragmatic compromise for the space sampled. For the rest 

of the paper, if a model order is not explicitly given, a 2nd order 

real spherical harmonic model was used.    

B. OP-MEG Recording 

Having established that it is possible to describe the field in 

the center of the room using a low-order spherical harmonic 

model, we set out to examine how effective these models and 

estimates might be during a real participant recording. As we 

expect the optimal field model to change depending on the 

room space moved within (i.e. high orders for large spaces or 

spaces close to the walls), we were aiming to use the 

participant’s own movements to define the optimal field model, 

rather than reusing the models from the previous triaxial 

experiments.  

A 100 s segment of the recordings from three randomly 

selected example channels, as well as the movement and 

rotation of the scanner-cast in the OP-MEG experiment, is 

Fig. 6.  Example OPM recordings (first three rows) and corresponding movement information (last two rows) for the participant experiment. In 

the OPM recordings, the measured data is shown in blue. The model predictions for a first order model with three window lengths is shown: 5 s 

(orange), 30 s (yellow) and 120 s (purple). The position information is shown as the movement (position minus starting position, 4th row) and 

rotation (bottom) of the scanner-cast during the field mapping recording. In the movement panel, the x (blue), y (orange) and z (yellow) 

components of the position of the scanner cast in the same room-based coordinate system as the triaxial recording are shown. The bottom panel 

shows the pitch (blue), roll (orange) and yaw (yellow) of the scanner-cast, as recorded by the OptiTrack camera.   
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shown in Fig. 6. The movements (approximately 60 cm) here 

are notably larger than the typical movement range for SQUID-

MEG (1 cm) [34]. 

Fig. 6 also shows the predictions from a 2nd order spherical 

harmonic model fit to these data. The predicted field is shown 

for three different sliding window lengths – 5 s, 30 s and 120 s. 

For each of the three channels shown, it appears from visual 

inspection that the 5 s window fits to the original data most 

closely.  

The per-sample noise reduction (as defined by the percentage 

decrease in the root mean square of the OPM recording) for 

these three window lengths and all 86 channels is shown as a 

histogram in Fig. 7. There is variation between the 86 channels, 

with noise reduction value  ranging from 34.9 ± 0.3 % to 

66.7 ± 0.2 % for the 5 s window, with an average of 

54.3 ± 0.8 %.  

The level of noise reduction was found to be dependent on the 

length of the window used. As the window length increases, the 

average noise reduction decreases while the variation between 

channels increases. Consequently, for a 120 s window, we saw 

a reduction between -2.9 ± 0.5 % and 48.7 ± 0.3 % with an 

average of 27.1 ± 1.3 %. 

To look at the dependence of performance on frequency, the 

shielding factor for different window lengths is examined in 

Fig. 8. The impact of the correction is largest at 0 Hz for all 

window lengths, with maxima at 7.8 ± 0.5 dB, 13.3 ± 0.4 dB  

and 26.2 ± 0.6 dB for 120 s, 30 s and 5 s windows respectively. 

However, above 1 Hz, particularly for the 5 s and 10 s 

windows, the algorithm can have a detrimental effect, with 

shielding factors below 0 dB suggesting that the additional 

noise from the OptiTrack introduced by applying the correction 

is higher than the original movement noise in this region.  

When longer (60 s, 120 s and 240 s) windows are used, the 

algorithm is less detrimental; the noise in the position 

recordings has less of an impact by simply having more 

datapoints from which to create the model. This is also the case 

for the out-of-sample shielding factor, shown in Supplementary 

Fig. 5. However, in this scenario, the field modelling also has 

limited benefit, with a maximum shielding factor of 8.9 ± 

0.7 dB for the 120 s window. Along with model complexity, 

modelling window length will be an important factor to be 

considered when using this method to reduce movement noise 

in OP-MEG.    

IV. DISCUSSION 

We tested a method to compensate for sensor movement 

within the central portion of a magnetically shielded room using 

a spherical harmonic field model. We created models from 

recordings made while moving a triaxial sensor and a whole-

head sensor array. We showed that low-order spherical 

harmonics could explain (and predict) over 80 % of the 

variance in the data.  

We used the same spherical harmonic models with an on-

scalp array but we note the performance gains were much less 

striking. Although large noise reduction was achieved for short 

time windows (54.3 ± 0.8 % at 5 s) with the on-scalp array, the 

performance for longer windows was relatively modest. This is 

likely due to a number of factors. First, the magnetic field in the 

room was changing temporally as well as spatially, due, for 

example, to passing traffic. Second, there was additional noise 

due to movement of the sensor cabling. These cables pull on 

and consequently move the magnetically sensitive cell within 

the OPM housing, creating field changes due to internal device 

movement. The cables also interact as they move across one 

another, creating movement-related but unpredictable artefacts. 

These issues are currently being resolved with improved cable 

fastening and layout. These factors may help to explain the 

poorer performance at long window lengths and why, when we 

repeated the 10-fold cross-validation used in the triaxial 

experiment on the OP-MEG data, the variance explained was 

notably lower (see Supplementary Fig. 3). One future 

improvement to the method could be to add regularization, in 

particular on the OPM offsets which should change far more 

slowly than the background magnetic field. A Bayesian update 

method for example would allow some parameters to be 

updated more slowly than others. 

This method draws inspiration from the signal space 

separation method (SSS) [30], [35], [36] and mean field 

modelling of the background magnetic field in an MSR [26]. 

SSS makes use of the spherical harmonic description of the 

magnetic field to separate fields arising from within and outside 

of the head. Here we make use of the fact that the head is 

moving and assume that brain activity is negligible compared 

to the movement induced artefacts. The assumption in mean 

Fig. 7.  The RMS noise reduction for 120 s, 30 s and 5 s sliding 

modelling windows as a histogram of the values for different channels. 

Fig. 8.  Shielding factor for a 2nd order spherical harmonic model on 

the OP-MEG recording for different window lengths. The values 

shown are the mean over all channels, with the width of the line given 

by the standard error of the mean. 
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field modelling is that the background magnetic field across the 

head is spatially constant and can therefore be removed. This 

takes place time-point by time-point without any knowledge of 

head-position. It is therefore well-suited to temporally non-

stationary interference. In contrast, here we assume that the 

background magnetic field varies spatially and only changes 

slowly in time. This makes the model slower to compute but, 

critically, means that the magnetic field at a new position, 

orientation, and time can be predicted. This may have 

advantages in situations in which movements are fast or where 

field gradients are high, and field changes would have 

otherwise moved the OPMs outside of their optimal operating 

range (see next section). There is clearly scope for further work 

in which all three approaches are combined. 

Here we discussed the change in the OPM recordings from 

movement while the OPMs are operating within their dynamic 

range of ±5.56 nT [19]. We are fortunate that the central part 

of our room meets these specifications after degaussing the 

inner mu-metal layer, but for other rooms or different ranges of 

movement, we envisage that real-time field correction may be 

required to keep the OPMs within their operating range. If the 

sensors can continuously be kept close to their optimal (0 T) 

operating point this also mitigates the gain errors (~1 % per nT 

[9], [13], [14], [37]) which are incurred as a result of operating 

at an offset field during movement. Practical constraints to be 

considered in the future would be the cross-talk from these 

compensating fields between the coils on the different OPMs 

[38].  The space the participant moves through will also likely 

be important in the choice of model parameters, in particular 

the window length and model order. Here we looked at 

continuous, large movements; arguably the worst-case-scenario 

for OP-MEG recordings. However, typical neuroimaging 

experiments are likely to contain less frequent and smaller 

movements. A longer modelling window and a lower order 

model may be preferable in these situations. 

The timing of the applied field will also likely be important. 

In the way we have used field modelling in this paper, time is 

not a significant limitation, since the modelling is done offline 

after an experiment. However, in this real-time scenario, 

computation time will be critical and should not be more than 

the time between recalculating the model. This recalculation 

time will depend to some extent on the stationarity of the 

environment. It is encouraging, therefore, that in Fig. 5, over 

80% of the field variation in the room can be predicted from 

measurements taken 20 minutes apart. The computation time is 

dependent on the size of the design matrix, itself determined by 

the number of OPM channels, number of datapoints in a 

modelling window, and model complexity. The time between 

recalculating the model, equivalent to the step size for the 

sliding window, should be chosen to be small enough to account 

for the changes in magnetic field with time, but larger than the 

computation time. In this paper, we have consistently used a 

step size of half the sliding window length. The relationship 

between this step size and the model accuracy, computation 

time, and noise reduction is discussed in the supplementary 

material. One of the advantages of a spherical harmonic model 

as we have used here, is the relative simplicity by comparison 

with a more complicated source model [25]. Further work will 

be needed to increase the speed of this modelling, in order to 

selectively correct for movement-related field changes in real-

time. 

We have focused on mapping signal modulations due to 

movements through static fields; we are currently exploring 

how this method could be applied to predict spatial variations 

in other interfering fields. For example, the mains (50 Hz) noise 

within our shielded room has a clear spatial structure. Other 

fields, such as those due to the vibration of the room walls may 

also have a deterministic structure. Typically, one might use an 

adaptive filter and reference noise measurements to minimize 

such signals; however, updating the correlation between the 

reference sensor and signal recordings over time as the 

participant moves introduces high pass filtering effects. Using 

a method based purely on measurement of spatial position 

would incur no sacrifice in recording bandwidth as the optimal 

weighting of the reference signal(s) would be given by the 

location and orientation of each sensor.  

V. CONCLUSION 

In summary, we have explored a method to model the spatial 

variation of background magnetic fields within a magnetically 

shielded room and the interference they cause during an OP-

MEG recording. We used a spherical harmonic field model and 

found that for the central portion of our shielded room, effective 

field cancellation could be achieved for low model orders. This 

is consistent with prior work and encouraging for future use of 

external field nulling coils typically used in OP-MEG, which 

are generally capable of producing 1st order magnetic field 

gradients [13], [17], [18]. 

This demonstrates the potential for real-time correction based 

on these models in the future. These preliminary steps hold 

promise for OP-MEG systems with greater movement tolerance 

requiring less passive shielding. 
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