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Abstract 

Motivation: Cryo-electron tomography (Cryo-ET) with sub-tomogram averaging (STA) is indispensa-
ble when studying macromolecule structures and functions in their native environments. However, cur-
rent tomographic reconstructions suffer the low signal-to-noise (SNR) ratio and the missing wedge ar-
tifacts. Hence, automatic and accurate macromolecule localization and classification become the bot-
tleneck problem for structural determination by STA. Here, we propose a 3D multi-scale dense convo-
lutional neural network (MSDNet) for voxel-wise annotations of tomograms. Weighted focal loss is 
adopted as a loss function to solve the class imbalance. The proposed network combines 3D hybrid 
dilated convolutions (HDC) and dense connectivity to ensure an accurate performance with relatively 
few trainable parameters. 3D HDC expands the receptive field without losing resolution or learning 
extra parameters. Dense connectivity facilitates the re-use of feature maps to generate fewer interme-
diate feature maps and trainable parameters. Then, we design a 3D MSDNet based approach for fully 
automatic macromolecule localization and classification, called VP-Detector (Voxel-wise Particle De-
tector). VP-Detector is efficient because classification performs on the pre-calculated coordinates in-
stead of a sliding window. 

Results: We evaluated the VP-Detector on simulated tomograms. Compared to the state-of-the-art 
methods, our method achieved a competitive performance on localization with the highest F1-score. 
We also demonstrated that the weighted focal loss improves the classification of hard classes. We 
trained the network on a part of training sets to prove the availability of training on relatively small 
datasets. Moreover, the experiment shows that VP-Detector has a fast particle detection speed, which 
costs less than 14 minutes on a test tomogram. 
 
Contact: zsh@amss.ac.cn, xfcui@email.sdu.edu.cn, zhangfa@ict.ac.cn 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

 Introduction  
Cryo-electron tomography (Cryo-ET) is currently the only imaging tech-
nique that allows 3D visualization of protein or protein complexes at mo-
lecular resolution in their native context. Subsequently, structures of 

interest presented as multiple noisy copies within a set of tomograms are 
computationally extracted, aligned, and averaged to yield higher resolu-
tion up to subnanometer resolution by a technique termed sub-tomogram 
averaging (STA) (Hutchings et al., 2018; Turonová et al., 2017; Schur et 
al., 2016). This technique provides biological insights into the interaction 
and function of structures imaged under close-to-life conditions. 
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Localizing and classifying the macromolecules in cryo-electron tomogram 
is the first step for the STA process. The accurate particle localization and 
classification can benefit the subsequent alignment and averaging of sub-
tomograms to improve the resolution of macromolecular structure. 

However, particle localization and classification in cryo-electron tomo-
gram is still challenging. One difficulty is the low signal-to-noise ratio 
(SNR) of tomographic reconstructions. Due to the beam-induced defor-
mations in the biological sample, the electron dose applies to each tilt im-
age very low, leading to a high amount of non-Gaussian noise for each 
image. The noise is further aggravated when the sample changes its thick-
ness in the beam direction during tilting. Another trouble is the macromol-
ecules of the same type are different from each other. It is because that 
each sub-tomogram loses the information in a wedge-shaped region in 
Fourier space and exhibits a deformation parallel to the direction of miss-
ing information in real space. 

For the past decade, several software packages have been designed for 
Cryo-ET together with STA, such as PEET (Heumann et al., 2011), 
Eman2 (Chen et al. 2019), RELION (Bharat et al. 2016), Dynamo 
(Castaño-Díez et al. 2012; Castaño-Díez et al. 2017), emClarity (Himes 
and Zhang, 2018), and cryoSTAC (Zhang, 2019). Although most software 
packages support manual picking particles on orthogonal slices, it is labor-
intensive and highly subjective. Automatic picking methods have been 
proposed to pick millions of macromolecules effectively. Automatic pick-
ing methods are divided into the reference-based method and reference-
free method. The typical reference-based method is template matching 
(Böhm et al., 2000), which calculates cross-correlation between a prede-
fined template and segmented volumes to find particle locations and ori-
entations. The template can be an assembly of simple 3D shapes, a struc-
ture from Protein Data Bank, or an averaged structure from several manual 
samples. However, template matching still has several limitations. The 
quality of the predefined template has a great impact on the final matching 
results. The cross-correlation threshold needs human intervention. And the 
computation time for 3D cross-correlation increase as the types of macro-
molecules increase. The difference of gaussian (DoG) (Pei et al., 2016) is 
the most common reference-free method. This method subtracts two 
gaussian filtered images to find the edge of particles, but the performance 
of DoG highly depends on the selected gaussian filters.  

In recent years, machine learning has been implemented for particle lo-
calization and classification (Chen et al., 2012). This method uses tem-
plate matching results as particle candidates, calculates corresponding fea-
tures for particle candidates, and classifies these particle candidates via 
support vector machines (SVM). Nevertheless, the limitations that existed 
in SVM are the dependence on template matching results and manually 
constructed features. 

With the improvement of data acquisition for cryo-electron microscopy 
(cryo-EM) and Cryo-ET, deep-learning gains popularity for detecting and 
classifying 2D and 3D particles. Several convolutional neural networks 
have been designed to pick single particles in Cryo-EM images (Zhang et 
al., 2019; Wang et al., 2016; Zhu et al., 2017; Xiao and Yang, 2017; Bell 
et al., 2018). These early attempts on the 2D particle picking provide val-
uable insights, but they are not suitable for 3D particles and lack identify-
ing different types of particles. 

For cryo-ET data, the first deep-learning-based work is to annotate 
tomogram slice-by-slice using a segmentation network (Chen et al., 2017). 
Another deep-learning-based work is locating and identifying structures 
of interest per slice simultaneously using faster-rcnn (Li et al., 2019). In 
the above works, the tomographic reconstruction is viewed as a stack of 
2D tomographic slices, and all operations are performed on slices rather 
than in 3D. The operations on a 2D slice are fast, and the model complex-
ity is reduced. Nevertheless, there are limitations in slice-by-slice 

operations. It only focuses on the information on a single slice; hence it 
lacks consideration of spatial information between a set of consecutive 
slices. Besides, the outputs of the above networks cannot describe the par-
ticle density in a 3D tomogram precisely. Instead, 3D CNNs can pay equal 
attention to all directions. Especially, 3D CNNs have a better feature ex-
traction for some small structures which does not have enough features in 
2D slices. SHREC’19 challenge has indicated that deep-learning-based 
methods with 3D convolutions outperform those with 2D convolutions 
(Gubins et al., 2019) in the task of particle localization and classification. 

 A study uses a 3D CNN with an encoder-decoder architecture for sub-
tomogram semantic segmentation (Liu et al., 2018). DeepFinder uses a 
classic 3D U-net architecture for macromolecules localization and classi-
fication in tomograms (Moebel et al., 2020). The supervised 3D CNNs 
methods require large amounts of training data to achieve accurate results. 
Nevertheless, it is hard to collect a lot of non-simulated training data in 
the cryo-ET research domain. SHREC challenge provides a benchmark to 
compare and evaluate different methods for particle localization and clas-
sification in Cryo-ET data (Gubins et al., 2019; Gubins et al., 2020). This 
challenge boosts the development of macromolecules detection and inno-
vation in computational methods. In the recently launched SHREC’20 
challenge, a method uses a sliding window to select a region and then clas-
sify the selected region via 3D ResNet. The sliding window process wastes 
lots of time because some non-particle regions are also sent to the network 
for inference. A method called YOPO is based on a 3D object detection 
network without the need for segmentation maps, but segmentation maps 
are important for determining the orientations of particles. Dn3DUnet 
method and UMC method are both based on 3D U-net with connected 
component analysis. The connected component analysis is a simple way 
to cluster the segmentation maps, while mean-shift clustering can handle 
more difficult situations. Methods based on adversarial learning (Lin et al., 
2019), an auto-encoding classifier (Liu et al., 2019), and a 3D classifica-
tion network (Che et al., 2018) provide various solutions for sub-tomo-
gram classification after extracting the sub-tomogram. The main problem 
here is that the 3D classification network only receives fixed-size images, 
which goes against classifying particles with various sizes. 

To overcome the limitations mentioned above, we designed an ap-
proach based on a 3D CNN to localize and classify macromolecules in 
cryo-electron tomograms. 1) To improve the localization accuracy of par-
ticles on the segmented tomogram, we combine the 3D connected compo-
nent with the mean-shift clustering to yield more accurate coordinates of 
particles. The 3D connected component calculates rough positions of par-
ticles, and then mean-shift clustering used these positions as initial seeds 
for refinement. 2) To solve the imbalanced size between large and tiny 
particles, we use a weighted focal loss for multi-class segmentation. With 
the prior knowledge of the characteristics of each class, the weighted focal 
loss assigns different weights to the loss of each class. We can pay less 
attention to large particles while focusing more on small particles that are 
hard to classify. 3) To design the network with fewer parameters, we em-
ploy a 3D Hybrid Dilated Convolution (HDC) module in the backbone of 
our network. The dilated convolution with a kernel size of 3×3×3 allows 
for a very large receptive field while only has 3×3×3 parameters. The 
small size of parameters can settle the problem of training on small da-
tasets. 4) To avoid classifying particles in a time-consuming sliding win-
dow across the tomogram, we propose a two-stage approach for fast par-
ticle detection. In the first stage, we calculate the particle coordinates from 
a segmented tomogram. In the second stage, the particle classification is 
only performed on the coordinates found by the first stage. This two-stage 
detection approach can save time by not classifying lots of non-particle 
regions.  
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In our experiments, we evaluated our VP-Detector on simulated tomo-
grams. The mean-shift clustering based on 3D connected component im-
proved the F1-score. Compared to the state-of-the-art methods, our 
method achieved a competitive performance on localization. We also ex-
plore the influence of layers and the size of training sets. The results 
demonstrate that our proposed network can train on small datasets. And 
our two-stage VP-Detector can offer high-speed particle detection. 

The rest of the paper is organized as follows. In Section 2, we describe 
the overall pipeline for particle detection at the beginning (section 2.1). 
Then, we introduce two vital components, the 3D HDC module (section 
2.2.1) and dense connectivity (section 2.2.2), to construct our network. 
Next, we explain the network architecture (section 2.3) and the design of 
the loss function (section 2.4). In Section 3, experiments on simulated 
tomograms are discussed in detail. Lastly, we conclude our method and 
future works in Section 4. 

 Methods 
This section presents the VP-Detector algorithm for particle detection via 
a 3D multi-scale dense convolution network (see Figure 1). We start with 
an overview of our approach and outline the details of two modules: par-
ticle localization module and particle classification module (Section 2.1). 
And then present a 3D HDC module for multi-scale features and dense 
connectivity (Section 2.2). Finally, we describe the architecture of the pro-
posed network (Section 2.3) and weighted loss function (Section 2.4). 

2.1 Overview of the two-stage particle detector 
Our particle detection algorithm provides an automatic and efficient 
scheme for macromolecules localization and classification in cryo-elec-
tron tomogram. Figure 1 schematically illustrates the proposed VP-
Detector architecture, with seven basic procedures represented in white 
boxes. It is designed as a two-stage approach, including a particle locali-
zation stage (1)(2)(3) and a particle classification stage (4)-(7). Detailed 
descriptions of our two-stage detection are described as follows. 

2.1.1 Particle localization stage 

The first stage conducts a fast particle localization on binary segmentation 
maps. 

(1) Binary segmentation via a 3D MSDNet. The goal is to obtain a 
binary segmentation map where each voxel is the probability of 
being labeled as particle class or the background class. Due to the 
GPU memory limit, the network conducts a binary segmentation 
on cubic volumes cropped from the input tomogram. In this way, 
we can obtain many segmented subvolumes for the following lo-
calization. 

(2) Merge strategy. All segmented subvolumes are merged into a 
whole segmentation map with an identical size to the original 
tomogram. Since cubic volumes are cropped with overlapping re-
gions, it is rational to mask out the incomplete particles connected 
to the image boundary before merging them. We remove the 
noise in a segmentation map with the opening operation of mor-
phology. The whole segmentation map is ready for clustering, 
which can determine particle localizations at one time. 

(3) Clustering for finding particle coordinates. All particles are la-
beled as the same value in the segmentation map, where the re-
gion for an individual particle is unclear. Ideally, each particle in 
a segmentation map is observed as a 3D-connected component. 
The connected component analysis is a frequently used method 
to give each component a unique label for distinguishing differ-
ent particles. The rules for connected components are not rigor-
ous enough because multiple particles connected by a few voxels 
can be labeled as one particle. To determine more accurate parti-
cle coordinates, we perform a clustering algorithm on the seg-
mentation map, which can assemble voxels into groups of parti-
cles to calculate particle coordinates at sub-voxel precision. Typ-
ical clustering algorithms are k-means, mean-shift, agglomera-
tive clustering, and DBSCAN. We use mean-shift clustering be-
cause it can handle many data points without prior knowledge of 
object numbers. To accelerate and improve the mean-shift clus-
tering algorithm, we can use the centroids of 3D connected com-
ponents as initial seeds for clustering. The only interactive pa-
rameter required in mean-shift clustering is the bandwidth, which 
is related to the particle size. Some relatively small clusters are 
filtered out as false positives. 

2.1.2 Particle classification stage 

The second stage is designed to classify particles via analyzing multi-class 
segmentation maps.  

(4) Particle extraction. Once we have a list of particle coordinates, 
we are able to extract them from the segmentation maps for the 
subsequent classification. Each extraction, also called a sub-
tomogram, has a target particle at the center point. 

(5) Multi-class voxel-wise classification (segmentation) via a 3D 
MSDNet. This is a vital procedure to precisely label the voxels in 
sub-tomogram with 𝑁  classes. The network architecture used 
here is similar to that of procedure ①, where the number of layers 
and classes are different. Now that the labeled sub-tomograms are 
in place, post-processing is needed to obtain the classification re-
sults. 

(6) Masking. The goal is to preserve the target particle only. A binary 
mask is utilized to wipe out irrelevant particles in the labeled sub-
tomogram, which means only the 3D-connected component at the 
center is the useful information. 

(7) Voting. The classification of a labeled target is determined by vot-
ing strategy. We count the number of class labels and taking the 
majority of labels as a result.  

Overall, our two-stage detection approach has several advantages over 
one-stage detection. First, the classification only performs on the given 
coordinate instead of a sliding window across the segmentation map. It 
helps to dramatically accelerate particle detection. Second, the two-stage 

 
Figure 1. The overall workflow of VP-Detector includes seven procedures 

represented in white boxes. The two stages are shown in solid boxes: 

the particle localization stage (blue) and the particle classification 

stage (red). 
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approach is more flexible since each stage can be used independently for 
different needs. For instance, the coordinates generated from the first stage 
can be used for testing other classification methods. Besides, the localiza-
tion can deal with both known and unknown structures since the network 
of the first stage is trained for particle class and background class. Third, 
a one-stage network for localization and classification simultaneously puts 
a strain on hardware resources. We introduced two independent networks 
for localization and classification, respectively, so that each network can 
be more thoroughly trained under the limited hardware. Moreover, we find 
a precise solution to particle coordinates by combining mean-shift cluster-
ing and connected component analysis. 

2.2 The main components of 3D MSDNet 

2.2.1 3D Hybrid Dilated Convolution for Multi-Scale Features 

Dilated convolution is suitable for voxel-wise dense prediction because it 
allows enlarging the receptive field without losing resolution or coverage 
(Yu and Koltun, 2015). We employ 3D dilated convolutions with different 
dilation factors to systematically extract multi-scale features. However, 
the use of serialized layers with increasing dilation factor may suffer a 
gridding effect. To address this problem, we design an HDC module that 
consists of 𝑛	 subsequent convolutional layers that apply kernel size 
𝐾 × 𝐾 × 𝐾	with different dilation factors of [𝑠!, . . . , 𝑠" , . . . , 𝑠#] . In our 
HDC module, the assignment of dilation factors follows the rule in (Wang 
et al., 2018). The maximum dilation factor 𝑀"  in 𝑖$%  layer is equal to 
𝑚𝑎𝑥[𝑀"&! − 2𝑠" , 𝑀"&! − 2(𝑀"&! − 𝑠"), 𝑠"] , and we should let 𝑀' ≤ 𝐾 
with 𝑀# = 𝑠". Such an assignment ensures that the final size of the recep-
tive field fully covers a square region without any holes or missing 
edges. Another problem that exists in dilated convolutions is that large di-
lation factors might capture irrelevant long-ranged information. A study 
has revealed that a filter with a small dilation factor can be applied to most 
of the valid regions on a feature map instead of the padded region (Chen 
et al., 2017). In our network, we use small dilation factors to capture ef-
fective multi-scale information. The number of parameters should be 
small, thus we adopt dilated convolutions with a kernel size of 3 × 3 × 3.  

Figure 2 depicts an example of two channels HDC module with dilation 
factors ∈ [1,3]. HDC module applies continuous dilated convolutional 
layers with increasing dilation factors to effectively expand the receptive 
field (RF) to aggregate multi-scale contextual information. For a voxel in 
a feature map in 𝑖() layer, RF* represents all the voxels from feature maps 
in (𝑖 − 1)$% layer that affect its value, which will be (2𝑖 + 1)+. And 𝑅𝐹,* 
represents all the voxels from the original image that affect its value, 
which will be	𝑅𝐹,* = [(𝑖	 + 	1)𝑖	 + 	1]+. A number of HDC modules are 
grouped to form the main architecture of our network with the same pat-
tern of dilation factors. By doing this, the dilation factors of the convolu-
tional layers are equal to 𝑠" ≡ (𝑖 + 1)	𝑚𝑜𝑑	4. 

One benefit of the HDC module is that the use of arbitrary dilation fac-
tors captures global context and detail information while preserving reso-
lution as well as computational efficiency. Unlike other scaling operations 
to extract features at various scales, e.g., pooling operations or strided con-
volutions lose small-scale objects and detailed information. And stacking 
convolutional layers or increasing the filter size to acquire global 

contextual information could raise the number of parameters and the com-
plexity of the model. The more important point is that our HDC module 
alleviates the gridding issue, which hampers the performance.  

2.2.2 Dense connectivity 

In the densely connected network (Huang et al., 2017), each layer is di-
rectly connected to all the subsequent layers. Without loss of generality, 
the 𝑖$% layer receives all the preceding feature maps 𝒁𝟎, . . . , 𝒁".! as inputs 
to generate 𝒁*, 	

 𝒁! =	𝐻"([𝒁#, 𝒁$, . . . , 𝒁"%$]). (3) 

Here, [⋅⋅⋅] is an operation used to combine features, which usually uses 
channel-wise concatenation or element-wise addition. It introduces direct 
connections between any size-matched two layers. The dense connectivity 
has several merits: it helps alleviate the vanishing gradient problem and 
substantially reduces the parameters. In addition, it ensures that preceding 
feature maps can be fully re-used and more spatial resolution are reserved. 

2.3 The Architecture of 3D MSDNet  
In this section, we describe our proposed 3D MSDNet. Our segmentation 
network aims to create a label map 𝒚 where voxels are labeled with cate-
gories. Suppose an input 3D image	𝒙 has 𝐶 channels, long 𝐿, height 𝐻, 
and width 𝑊 . In our 3D MSDNet, the 𝑖$%  layer outputs a feature map 
𝒁" ∈ ℝ/×1×2×3, and a single channel 𝑗 of 𝒁"  is denoted as 𝒁"

4 . 
Composite function for convolutional layers. We define 

𝛾"5: ℝ/×1×2×3 → ℝ1×2×3 as a function to convolve the input feature map 
in 𝑖$% layer with different kernels for each channel and sums up the result-
ing images voxel by voxel to yield a single channel 𝑗 of the output feature 
map, 

 𝜸𝒊𝒋(𝒁𝒊%𝟏) = ∑ 𝑫𝒇𝒊𝒋𝒌,𝒔𝒊𝒋𝒁𝒊%𝟏
𝒌𝑪𝒊$𝟏

𝒌.𝟎  (1) 

where D𝒇𝒁 is a 3D convolution of image	𝒁 with filter 𝒇. During convo-
lution operations, dilation factors 𝑠 for each channel of a certain layer are 
different. And 𝒇"57 are kernels of size 3 × 3 × 3 voxels that have fewer 
parameters and a more enhanced capability of nonlinear mapping than 
larger kernels. 𝐶".! is the number of channels of an output feature map in 
𝑖 − 1$% layer. 

Convolutional layers have a composite operation 𝐻: performing a 3D 
convolution on each channel of the input with a different filter, summing 
up the resulted images voxel by voxel, adding a bias, and applying an el-
ement-wise nonlinearity. Thus, the single channel output 𝒁"

5 of such a con-
volutional layer is defined as, 

 𝒁"
0 = 𝐻"0(𝒁"%$) = 𝜎/𝛾"0(𝒁"%$) + 𝑏"03, (2) 

 
 
Figure 2. An example of two channels HDC modules with six convolutional layers 
with dilation factors ∈ [1,2,3]. 

Feature map channel

3×3×3 dilated conv
Input Output

!!=2 		!"=3          !#=1         !$ = $ !%=3!&=1

 

Figure 3. An illustration of MS-D network with 𝒘 = 𝟐	and 𝒅 = 𝟑. Colored lines de-
note dilated convolutions with different dilation factors.  
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where	𝜎 ∶ 	ℝ1×2×3 → ℝ1×2×3 denotes an activation function, such as 
sigmoid, rectified linear units (ReLU), softplus, leaky ReLU (LReLU). 
And 𝑏"5 ∈ ℝ is the bias for channel 𝑗 of an output feature map in 𝑖$% layer. 

First layer. The input 3D image 𝒙 is taken as the first layer 𝒛𝟎 and is 
defined as a set of voxels 𝒙 ∈ ℝ/×1×2×3. The single channel 𝑗 of 𝒙 is de-
noted as 𝒙5. 

Subsequent layers. In the HDC mentioned above module with padded 
convolutions, the input image, all feature maps, and output image have 
identical dimensions. Therefore, all previously computed feature maps can 
be used to calculate the feature map in current layer. To further enhance 
the information flow between layers, we introduce dense connectivity to 
directly connect any layer to all subsequent layers (Huang et al., 2017). 
Here, the 𝑖$% layer receives all the preceding feature maps 𝒁𝟎, . . . , 𝒁".! as 
input, thus a single channel output feature map 𝒁"

5 is defined as: 

𝒁"
0 = 𝐻"0([𝒁#, 𝒁$, … , 𝒁"%$]) = 𝜎/𝛾"0([𝒁#, 𝒁$, … , 𝒁"%$]) + 𝑏"03,	 

 𝛾"0([𝒁#, 𝒁$, … , 𝒁"%$]) = ∑ ∑ 𝐷=&'(),>&'
?*$+
@.#

"%$
A.# 𝑍A@ , (4) 

where 𝐻"5	is a composite operation for channel 𝑗 of the output in 𝑖$% layer, 
and	𝜎 is an activation function. We adopt LReLU as the activation func-
tion, that is	𝑓(𝑥) = 𝑚𝑎𝑥(0.01𝑥, 𝑥), to avoid the dying ReLU problem. 
LReLU brings the tradeoff between the network sparsity and the perfor-
mance and solves the vanishing gradient problem (Zhang et al., 2017). In 
equation 4, 𝛾"5([𝒁8, 𝒁!, … , 𝒁".!]) is an operation of convolving all previ-
ously computed feature maps from the first layer to 𝑖 − 1$% layer and sum-
ming up the resulting images voxel by voxel to yield a single channel 𝑗 of 
output feature map in 𝑖$%  layer. And 𝒇"57  are kernels of size 3 × 3 × 3 
voxels. The dense connectivity utilizes element-wise addition, defined as 
[⋅⋅⋅], to aggregate each feature map within the network. Element-wise ad-
dition has several merits: Its summation operation accelerates the training 
process via parallelization as well as dense connectivity. This indirectly 
helps solve the vanishing gradient problem. Besides, it supports incorpo-
rating feature maps with various size receptive fields into a feature map 
with new features. Compared to concatenation, element-wise addition per-
forms better on small and blurry objects in images (Gao et al., 2018). In 
our research, since the particles have low signal-to-noise (SNR) ratio 
caused by low electron doses, the contextual information is useful for their 
detection. Element-wise addition is strongly recommended because it can 
learn the relationship between the target and context well while concate-
nation cannot. Our 3D MSDNet allows that the feature map per layer has 
the different number of channels. For simplicity, suppose the number of 
channels for all layers is a fixed value, then we can define the number of 
non-input and non-output layers as the depth 𝑑 and the number of chan-
nels as the width	𝑤. Figure 3 illustrates the layout of the 3D MSDNet with 
𝑤 = 2	and 𝑑 = 3. 

Last layer. The final layer output an image 𝒚 through similar compo-
site operations and the channel 𝑗 of 𝒚 is defined as, 

 𝒚@ = 𝜎B 8∑ ∑ 𝑓′"0@𝑍"
0?)$+

0.#
"%$
".# + 𝑏@B ;, (5) 

where 𝑓′"57  are kernels of size 1 × 1 × 1  voxels. It computes a lin-
ear combination of feature maps of the input layer and intermediate layers. 
The nonlinear mapping 𝜎, is a voxel-wise soft-max function for dense im-
age labeling. Our network gives a voxel-to-voxel prediction so that the 
sizes of the output image and input image are identical.  

Parameters. The trainable parameters of our proposed network include 
convolution filters 𝒇"57, biases 𝑏"5 of non-input layers and non-output lay-
ers (see equation 4), as well as weights 𝑓′"57, biases 𝑏7,  of the last layer 
(see equation 5). The number of filters, weights and bias are denoted as 

𝑁9, 𝑁:, 𝑁;  respectively, hence the number of parameters is 𝑁< =
𝑁9+𝑁: + 𝑁; . Suppose an input image with 𝐶  channels, we can 
have 	𝑁9=3 × 3 × 3∑ 𝑤(𝑖𝑤 + 𝐶)>.!

"=8 , 𝑁:=(𝑤𝑑 + 𝐶)𝐶, 𝑁; = 𝑤𝑑 + 𝐶 , 
where 𝑑 and 𝑤 are the depth and width of the network. 

2.4 Weighted focal loss of 3D MSDNet 
Class imbalance is a common problem in segmentation tasks where the 
number of voxels labeled for each class is disproportionate. In our simu-
lated dataset, the volumetric ratio between the largest and the smallest par-
ticles can reach nearly 30:1. The loss is dominated by prevalent labels of 
large particle class, which leads to inaccurate labeling on small particle 
class. Focal loss is a modified version of cross-entropy loss by down-
weighting the loss assigned to easy examples (Lin et al., 2017). To address 
the class imbalance problem, we designed a weighted focal loss for multi-
class segmentation. We defined the weighted focal loss as:  

 𝐿=A = − $
C
∑ ∑ 𝛼D(1	 −	𝑝"D)E	𝑔"D𝑙𝑜𝑔(𝑝"D)C

".$ ,?
D.$  (6) 

where	𝑁 is the number of voxels in an image, 𝑐 ∈ 𝐶 represents a class 
𝑐,		𝑔"? is a binary indicator of ground-truth class 𝑐 of voxel	𝑖, and	𝑝"? rep-
resents the corresponding model’s estimated probability. 𝛼? is introduced 
to reweight different classes, which are based on the effective radius of 
particles. 𝛾 is a focusing parameter that down-weights the loss assigned to 
well-classified samples and makes hard samples contribute more to the 
loss. When 𝛾	 = 	0	and 𝛼? = 1, the function behaves as cross-entropy. 

 Results 

3.1 Dataset 
To evaluate the performance of localization and classification for biolog-
ical particles in the cryo-electron tomogram, we carried out the experi-
ments on realistically simulated tomograms provided by SHREC. Figure 
4(A) gives an example of a raw tomogram. It is tough for a human to see 
particles inside the noisy tomogram. SHREC’20 contains nine sets of  
512 × 512 × 512 tomograms with 1 nm/voxel resolution. Ground truth 
volumes and particle location are also given in the dataset. Between 2400 
and 2800 bio-particles of 12 classes are placed in each tomogram. In our 
experiments, tomograms from 1 to 7 make up training sets, and tomogram 

 

Figure 4. An example of SHREC’20 dataset. (A) A slice of a raw tomogram. (B) The 
corresponding ground truth. (C) Predicted segmentation map from our VP-Detector. 
3d2f, 3cf3, 4d8q, 1u6g are four particles extracted from the raw tomogram and ground 
truth. 
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8 is for validation. Tomogram 9 is the test tomogram to evaluate our par-
ticle detector. SHREC’19 contains ten sets of tomograms generated in a 
similar way which has higher SNR. 

3.2 Implementation details  
VP-Detector is built on a deep learning framework called PyTorch with 
CUDA acceleration, written in Python programming language. All exper-
iments are carried on a workstation with four GeForce RTX 2080 Ti. We 
train our weights using stochastic gradient descent with the Adam opti-
mizer. The initial learning rate is 0.001 and decreased by ten times after 
80 epochs. We stop training after 500 epochs. The localization and classi-
fication networks are based on 3D MSDNet with different hyperparame-
ters. The localization network has dilation factors ∈ [1,7] and 49 dilated 
layers with 132K trainable parameters. The classification network has di-
lation factors ∈ [1,5] and 100 dilated layers with 551K trainable parame-
ters. 

3.3 The localization performance of VP-Detector 

3.3.1 Evaluation Metrics 

The evaluation metrics for particle localization are precision	𝑃, recall 𝑅, 
miss rate 𝑀, F1-score, and confusion matrix. 

𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) , 𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁),𝑀 =
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁) , 𝐹1 =
2𝑃𝑅

(𝑃 + 𝑅).	

The evaluation metrics for semantic segmentation are: voxel accuracy 
VA, mean voxel accuracy MVA, and mean IoU MIoU. We assume that 
𝑝"5 is the number of voxels of class 𝑖 predicted to belong to class 𝑗, and 
the number of 𝑀 classes. 

𝑉𝐴 =
∑ 𝑝!!"#$
!%&

∑ ∑ 𝑝!'"#$
'%&

"#$
!%&

, 𝑀𝑉𝐴 =
1
𝑀
T

𝑝!!
∑ 𝑝!'"#$
'%&

"#$

!%&
, 

	𝑀𝐼𝑜𝑈 =
1
𝑀
T

𝑝!!
∑ 𝑝!'"#$
'%& + ∑ 𝑝'!"#$

'%& − 𝑝!!

"#$

!%&
	.	

3.3.2 Qualitative Evaluation  

We compare VP-Detector with all algorithms submitted to SHREC’19 and 
SHREC’20 challenge, and the performance comparison is listed in Table 
1,2. The best results are shown in bold. For the SHREC’20 dataset, table 
1 indicates that VP-Detector has the best precision of 0.978 and the best 
F1-score of 0.951. For the SHREC’19 dataset, Table 2 shows that VP-
Detector has a superior performance and has the best evaluation metrics 
of recall, miss rate, F1-score of 0.86299, 0.13701, and 0.88709, respec-
tively. Precision is the ratio of correctly detected particles to the detected 
results. Precision is an essential metric for particle localization because the 
false positives interfere with the subsequent classification, alignment, and 
averaging structures. F1-score is a weighted average of precision and 

recall. VP-Detector is proved to be the most well-perform among all lo-
calization methods since it has the best F1-score.  

We use mean-shift clustering to improve the performance of localiza-
tion. Before mean-shift clustering, 87 particles had more than one predic-
tion. The precision and F1-score are 0.916 and 0.931. After mean-shift 
clustering, there is one particle that had more than one prediction. The 
precision improves 0.062, and F1-score improves 0.02. 
3.3.3 Visualization 

Figure 4(C) shows the segmentation map of the input tomogram generated 
by our VP-Detector. Our VP-Detector shows excellent robustness to the 
noise. We can also observe that particles on the prediction map have 
smoother and clearer boundaries than ground truth volume shown in Fig-
ure 4(B). We use VA, MVA, and MIoU to prove the effectiveness of our 
prediction map with ground truth volume. Here, VA is 0.961, MVA is 
0.819, and MIoU is 0.763. 

Table 1.  Performance comparison between different algorithms for the 
SHREC’20 dataset. RR (reported results), MH (unique particles that had 
duplicate results), RO (results not inside particle region), AD (average 
Euclidean distance between the predicted center and ground truth cen-
ter). 

Method RR TP FP FN MH RO AD Precision Recall Miss rate F1 score 

VP-Detector 2635 2577 57 205 1 0 2.046 0.978 0.926 0.074 0.951 

DeepFinder 2594 2485 107 297 2 0 2.166 0.957 0.893 0.107 0.924 

3D Res-
Net 

2864 1983 611 799 246 0 3.501 0.692 0.712 0.288 0.702 

YOPO 2821 2543 240 239 37 0 2.104 0.901 0.914 0.086 0.907 

Dn3DUnet 2598 2340 146 442 112 0 2.807 0.9 0.841 0.159 0.869 

UMC 2781 2642 68 140 68 0 1.873 0.95 0.949 0.051 0.949 

TM-T 2604 1898 20 884 412 0 1.528 0.728 0.682 0.318 0.704 

TM-F 2604 2267 331 515 6 0 1.767 0.87 0.814 0.185 0.841 
 

Table 2.  Performance comparison between different algorithms for the 
SHREC’19 dataset. 

Methods RR TP FP FN MH RO AD Precision Recall Miss rate F1 score 

VP-Detector 2402 2192 209 348 1 0 1.771 0.913 0.863 0.137 0.887 

DoG-3D-CNN 1813 1690 110 850 13 1 2.452 0.932 0.665 0.334 0.777 

3D-Unet 2887 2163 709 377 15 24 3.506 0.749 0.852 0.148 0.797 

2.5D-Resnet 4524 1507 1185 1033 876 1 3.987 0.333 0.593 0.407 0.427 

3D-TM 2429 814 356 1726 425 313 2.561 0.335 0.321 0.680 0.328 

3D-HN-localization 2127 455 867 2085 311 48 5.932 0.214 0.179 0.821 0.195 

3D-Unet-CNN-8 2500 1367 372 1173 480 13 4.166 0.547 0.538 0.462 0.543 

3D-Unet-CNN-12 2500 1438 555 1102 352 12 4.408 0.575 0.566 0.434 0.570 

2.5D-SSD-3D-CNN 1977 710 196 1830 485 7 4.6453 0.3591 0.2795 0.7205 0.3144 

 

Figure 5. The Training loss and validation loss for different loss functions. 
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Table 3.  Performance of classification with different hyperparameters 
for SHREC’20 dataset. 

Loss 
function 

Training 
set 

Layer class accuracy 
Small medium large 

1s3x 3qm1 3gl1 3h84 2cg9 avg 3d2f 1u6g 3cf3 1bxn 1qvr avg 4cr2 4d8q avg 
Cross-
entropy 

loss 

1~7 40 0.16 0.79 0.57 0.8 0.41 0.55 0.68 0.52 0.84 0.95 0.86 0.77 0.99 1 1 
1~7 60 0.52 0.59 0.84 0.8 0.69 0.69 0.76 0.83 0.93 0.94 0.95 0.88 0.98 1 0.99 
1~7 80 0.5 0.77 0.8 0.81 0.71 0.718 0.8 0.69 0.97 0.98 0.92 0.872 1 1 1 
1~7 100 0.47 0.66 0.92 0.75 0.83 0.73 0.88 0.72 0.89 0.99 0.96 0.89 0.99 1 1 

Focal 
loss 

1~7 100 0.66 0.6 0.85 0.82 0.76 0.74 0.83 0.79 0.96 0.97 0.94 0.90 1 1 1 
1,2 100 0.64 0.64 0.68 0.74 0.69 0.68 0.71 0.75 0.95 0.95 0.94 0.86 0.99 1 1 

Table 4.  The effective radius of 12 classes. The classes colored in orange 
are very difficult. The classes colored in yellow are relatively difficult. 
The classes colored in green are normal. The classes without color are easy. 

PDB 1s3x 3qm1 3h84 1u6g 3d2f 2cg9 3gl1 1qvr 3cf3 4cr2 1bxn 4d8q 

𝑅@  2.56 2.88 2.822 3.065 3.145 3.108 3.065 3.248 4.181 4.696 4.78 4.85 

 

3.4 The classification performance of VP-Detector  

3.4.1 Influence of loss function  

We trained a classification network with cross-entropy loss and a classifi-
cation network with weighted focal loss. As plotted in Figure 5, all losses 
decline sharply in the first several epochs and become steady during more 
epochs. The weighted focal loss is much lower than cross-entropy loss. 
We can also observe that the validation loss of weighted focal loss con-
verges earlier than cross-entropy. However, the validation loss of cross-
entropy presents a slight shaking. Moreover, we evaluate the class accu-
racy for cross-entropy loss and weighted focal loss. The results are pre-
sented in Figure 6, where the accuracy for a certain PDB is defined as 
correctly found particles / the total number of particles. The top figure 
depicts the class accuracy for cross-entropy loss. Most of the classes are 
not stable during training, and they tend to be up and down many times. It 
can only classify large particle class well. And it is hard to pick the best-
fit model for all classes. The bottom figure depicts the class accuracy for 
weighted focal loss. All the classes become steady after 250 epochs. Table 
3 compares 100 layers of 3D MSDNet with cross-entropy loss and 
weighted focal loss. Particles are grouped into four sets according to sizes. 
The network with weighted focal loss has the highest class accuracy for 
small, medium, large particles. 

The weighted focal loss function performs better than the cross-entropy 
loss function in terms of loss and class accuracy during training. The cross-
entropy loss is dominated by prevalent labels of large particle class, which 
lacks training on small particle class. In contrast, weighted focal loss can 
pay more attention to hard classes by adding a weight factor. Each class 
can be fully learned during training, no matter how small. The classifica-
tion confusion matric of our VP-Detector is offered as shown in Figure 7. 
Although we add more weight to the loss of small classes, it is difficult for 
our network to identify between 1s3x and 3qm1. Sometimes our network 
may confuse 2cg9 with 3gl1, 3h84 with 3d2f, and 1u6g with 2cg9. We 
find that the confused pair have a similar effective radius. The high noise 
of tomograms increases difficulty for confused pairs.  

3.4.2 Influence of hyperparameters  

The classification result on a test tomogram is presented in Table 3. We 
discuss the influence of layers and the sizes of training sets. The number 
of layers is not sensitive to three classes (1bxn, 4d8q, 4cr2), and shallow 
networks can recognize them effectively. 1s3x and 3qm1are the hardest 
classes for both shallow and deep networks. We divide 12 classes into four 

 

 

Figure 6. The accuracy of 12 classes for different loss functions. Top figure uses cross-
entropy loss function. Bottom figure uses weighted focal loss. 

 

 

 

 

 
Figure 7. Classification confusion matric of our VP-Detector. 
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groups based on their difficulty, as shown in Table 4. We find that the 
classification difficulty depends on the effective radius, 	
𝑅@ = 3𝑉 𝐴⁄ , where 𝑉 is the volume and	𝐴 is the surface area. The smaller 
the effective radius, the harder it is to identify. 

There are seven sets of tomograms for us to prepare the training sets. 
When we use only two sets of tomograms for training, the large classes 
have almost the same accuracy, and the small classes and medium classes 
have a slight decline. In this way, our proposed 3D MSDNet supports 
training on small datasets since we combine HDC module and dense con-
nection to design the network with fewer parameters. 

Table 5.  Run time for particle detection on a test tomogram. 

Method Inference time 
3D MSDNet 13m44s = 8m16s(localization) + 5m28s(classification) 
DeepFinder 20m 
3D ResNet 2h 

YOPO 40m 
Dn3DUnet 1m 41s 

UMC 42m 
TM-T 27h 24m 
TM-F 1h 24m 

 

3.5 Run Time for inference 
Table 5 shows the run time for different methods. The test tomogram has 
a size of 512 × 512 × 512 voxels with 2782 particles. The traditional 
template matching methods are the most time-consuming methods, which 
cost a few hours. The CNNs based method using slide window needs about 
an hour or more to finish particle detection. Our method uses only 13 
minutes 44 seconds to achieve accurate particle detection, which creates a 
balance between efficiency and accuracy. Our fast detection has two 
stages. The localization stage costs about 8 minutes, and the classification 
stage costs about 5 minutes. Our two-stage detection approach is fast be-
cause the classification is only performed on given positions. 

 Discussion 
In this paper, we present an automatic and accurate CNNs based approach 
for volumetric particle detection in cryo-electron tomogram. To solve the 
problem of training on relatively small datasets, we design a novel 3D 
convolutional network architecture with HDC modules and dense connec-
tivity. The 3D HDC module is a set of dilated convolutional layers with 
various dilation factors to capture multi-scale objects and contextual in-
formation. Dense connectivity enhances the re-use of feature maps. We 
evaluated the VP-Detector on the simulated tomograms. Comparing to the 
state-of-the-art methods, our method achieved the best localization perfor-
mance with the highest F1-score. The mean shift clustering also helps a 
better F1-score. Experimental results also demonstrate that our network 
can train on small datasets. Moreover, our two-stage detection approach 
can achieve fast detection for about 14 minutes. In future work, we plan 
to improve memory efficiency by sharing the memory of the same features 
(Pleiss et al., 2017). Besides, there is still room for improvement towards 
small object detection. We can explore more future fusion techniques fo-
cusing on detailed information. In addition, preprocessing for input tomo-
grams may improve the performance of particle detection, such as image 
denoising (Zhang et al., 2017). 
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