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Abstract

Motivation: Cryo-electron tomography (Cryo-ET) with sub-tomogram averaging (STA) is indispensa-
ble when studying macromolecule structures and functions in their native environments. However, cur-
rent tomographic reconstructions suffer the low signal-to-noise (SNR) ratio and the missing wedge ar-
tifacts. Hence, automatic and accurate macromolecule localization and classification become the bot-
tleneck problem for structural determination by STA. Here, we propose a 3D multi-scale dense convo-
lutional neural network (MSDNet) for voxel-wise annotations of tomograms. Weighted focal loss is
adopted as a loss function to solve the class imbalance. The proposed network combines 3D hybrid
dilated convolutions (HDC) and dense connectivity to ensure an accurate performance with relatively
few trainable parameters. 3D HDC expands the receptive field without losing resolution or learning
extra parameters. Dense connectivity facilitates the re-use of feature maps to generate fewer interme-
diate feature maps and trainable parameters. Then, we design a 3D MSDNet based approach for fully
automatic macromolecule localization and classification, called VP-Detector (Voxel-wise Particle De-
tector). VP-Detector is efficient because classification performs on the pre-calculated coordinates in-
stead of a sliding window.

Results: We evaluated the VP-Detector on simulated tomograms. Compared to the state-of-the-art
methods, our method achieved a competitive performance on localization with the highest F1-score.
We also demonstrated that the weighted focal loss improves the classification of hard classes. We
trained the network on a part of training sets to prove the availability of training on relatively small
datasets. Moreover, the experiment shows that VP-Detector has a fast particle detection speed, which
costs less than 14 minutes on a test tomogram.

Contact: zsh@amss.ac.cn, xfcui@email.sdu.edu.cn, zhangfa@ict.ac.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

interest presented as multiple noisy copies within a set of tomograms are
1 Introduction computationally extracted, aligned, and averaged to yield higher resolu-

tion up to subnanometer resolution by a technique termed sub-tomogram
Cryo-electron tomography (Cryo-ET) is currently the only imaging tech- averaging (STA) (Hutchings et al., 2018; Turonova et al., 2017; Schur et
nique that allows 3D visualization of protein or protein complexes at mo- al., 2016). This technique provides biological insights into the interaction

lecular resolution in their native context. Subsequently, structures of and function of structures imaged under close-to-life conditions.
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Localizing and classifying the macromolecules in cryo-electron tomogram
is the first step for the STA process. The accurate particle localization and
classification can benefit the subsequent alignment and averaging of sub-
tomograms to improve the resolution of macromolecular structure.

However, particle localization and classification in cryo-electron tomo-
gram is still challenging. One difficulty is the low signal-to-noise ratio
(SNR) of tomographic reconstructions. Due to the beam-induced defor-
mations in the biological sample, the electron dose applies to each tilt im-
age very low, leading to a high amount of non-Gaussian noise for each
image. The noise is further aggravated when the sample changes its thick-
ness in the beam direction during tilting. Another trouble is the macromol-
ecules of the same type are different from each other. It is because that
each sub-tomogram loses the information in a wedge-shaped region in
Fourier space and exhibits a deformation parallel to the direction of miss-
ing information in real space.

For the past decade, several software packages have been designed for
Cryo-ET together with STA, such as PEET (Heumann et al., 2011),
Eman2 (Chen et al. 2019), RELION (Bharat et al. 2016), Dynamo
(Castafo-Diez et al. 2012; Castafio-Diez et al. 2017), emClarity (Himes
and Zhang, 2018), and cryoSTAC (Zhang, 2019). Although most software
packages support manual picking particles on orthogonal slices, it is labor-
intensive and highly subjective. Automatic picking methods have been
proposed to pick millions of macromolecules effectively. Automatic pick-
ing methods are divided into the reference-based method and reference-
free method. The typical reference-based method is template matching
(Bohm et al., 2000), which calculates cross-correlation between a prede-
fined template and segmented volumes to find particle locations and ori-
entations. The template can be an assembly of simple 3D shapes, a struc-
ture from Protein Data Bank, or an averaged structure from several manual
samples. However, template matching still has several limitations. The
quality of the predefined template has a great impact on the final matching
results. The cross-correlation threshold needs human intervention. And the
computation time for 3D cross-correlation increase as the types of macro-
molecules increase. The difference of gaussian (DoG) (Pei et al., 2016) is
the most common reference-free method. This method subtracts two
gaussian filtered images to find the edge of particles, but the performance
of DoG highly depends on the selected gaussian filters.

In recent years, machine learning has been implemented for particle lo-
calization and classification (Chen et al., 2012). This method uses tem-
plate matching results as particle candidates, calculates corresponding fea-
tures for particle candidates, and classifies these particle candidates via
support vector machines (SVM). Nevertheless, the limitations that existed
in SVM are the dependence on template matching results and manually
constructed features.

With the improvement of data acquisition for cryo-electron microscopy
(cryo-EM) and Cryo-ET, deep-learning gains popularity for detecting and
classifying 2D and 3D particles. Several convolutional neural networks
have been designed to pick single particles in Cryo-EM images (Zhang et
al., 2019; Wang et al., 2016; Zhu et al., 2017; Xiao and Yang, 2017; Bell
et al., 2018). These early attempts on the 2D particle picking provide val-
uable insights, but they are not suitable for 3D particles and lack identify-
ing different types of particles.

For cryo-ET data, the first deep-learning-based work is to annotate
tomogram slice-by-slice using a segmentation network (Chen et al., 2017).
Another deep-learning-based work is locating and identifying structures
of interest per slice simultaneously using faster-renn (Li et al., 2019). In
the above works, the tomographic reconstruction is viewed as a stack of
2D tomographic slices, and all operations are performed on slices rather
than in 3D. The operations on a 2D slice are fast, and the model complex-
ity is reduced. Nevertheless, there are limitations in slice-by-slice

operations. It only focuses on the information on a single slice; hence it
lacks consideration of spatial information between a set of consecutive
slices. Besides, the outputs of the above networks cannot describe the par-
ticle density in a 3D tomogram precisely. Instead, 3D CNNs can pay equal
attention to all directions. Especially, 3D CNNs have a better feature ex-
traction for some small structures which does not have enough features in
2D slices. SHREC’19 challenge has indicated that deep-learning-based
methods with 3D convolutions outperform those with 2D convolutions
(Gubins et al., 2019) in the task of particle localization and classification.

A study uses a 3D CNN with an encoder-decoder architecture for sub-
tomogram semantic segmentation (Liu et al., 2018). DeepFinder uses a
classic 3D U-net architecture for macromolecules localization and classi-
fication in tomograms (Moebel et al., 2020). The supervised 3D CNNs
methods require large amounts of training data to achieve accurate results.
Nevertheless, it is hard to collect a lot of non-simulated training data in
the cryo-ET research domain. SHREC challenge provides a benchmark to
compare and evaluate different methods for particle localization and clas-
sification in Cryo-ET data (Gubins et al., 2019; Gubins et al., 2020). This
challenge boosts the development of macromolecules detection and inno-
vation in computational methods. In the recently launched SHREC’20
challenge, a method uses a sliding window to select a region and then clas-
sify the selected region via 3D ResNet. The sliding window process wastes
lots of time because some non-particle regions are also sent to the network
for inference. A method called YOPO is based on a 3D object detection
network without the need for segmentation maps, but segmentation maps
are important for determining the orientations of particles. Dn3DUnet
method and UMC method are both based on 3D U-net with connected
component analysis. The connected component analysis is a simple way
to cluster the segmentation maps, while mean-shift clustering can handle
more difficult situations. Methods based on adversarial learning (Lin et al.,
2019), an auto-encoding classifier (Liu et al., 2019), and a 3D classifica-
tion network (Che et al., 2018) provide various solutions for sub-tomo-
gram classification after extracting the sub-tomogram. The main problem
here is that the 3D classification network only receives fixed-size images,
which goes against classifying particles with various sizes.

To overcome the limitations mentioned above, we designed an ap-
proach based on a 3D CNN to localize and classify macromolecules in
cryo-electron tomograms. 1) To improve the localization accuracy of par-
ticles on the segmented tomogram, we combine the 3D connected compo-
nent with the mean-shift clustering to yield more accurate coordinates of
particles. The 3D connected component calculates rough positions of par-
ticles, and then mean-shift clustering used these positions as initial seeds
for refinement. 2) To solve the imbalanced size between large and tiny
particles, we use a weighted focal loss for multi-class segmentation. With
the prior knowledge of the characteristics of each class, the weighted focal
loss assigns different weights to the loss of each class. We can pay less
attention to large particles while focusing more on small particles that are
hard to classify. 3) To design the network with fewer parameters, we em-
ploy a 3D Hybrid Dilated Convolution (HDC) module in the backbone of
our network. The dilated convolution with a kernel size of 3x3x3 allows
for a very large receptive field while only has 3x3x3 parameters. The
small size of parameters can settle the problem of training on small da-
tasets. 4) To avoid classifying particles in a time-consuming sliding win-
dow across the tomogram, we propose a two-stage approach for fast par-
ticle detection. In the first stage, we calculate the particle coordinates from
a segmented tomogram. In the second stage, the particle classification is
only performed on the coordinates found by the first stage. This two-stage
detection approach can save time by not classifying lots of non-particle
regions.
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Figure 1. The overall workflow of VP-Detector includes seven procedures
represented in white boxes. The two stages are shown in solid boxes:
the particle localization stage (blue) and the particle classification
stage (red).

In our experiments, we evaluated our VP-Detector on simulated tomo-
grams. The mean-shift clustering based on 3D connected component im-
proved the Fl-score. Compared to the state-of-the-art methods, our
method achieved a competitive performance on localization. We also ex-
plore the influence of layers and the size of training sets. The results
demonstrate that our proposed network can train on small datasets. And
our two-stage VP-Detector can offer high-speed particle detection.

The rest of the paper is organized as follows. In Section 2, we describe
the overall pipeline for particle detection at the beginning (section 2.1).
Then, we introduce two vital components, the 3D HDC module (section
2.2.1) and dense connectivity (section 2.2.2), to construct our network.
Next, we explain the network architecture (section 2.3) and the design of
the loss function (section 2.4). In Section 3, experiments on simulated
tomograms are discussed in detail. Lastly, we conclude our method and
future works in Section 4.

2 Methods

This section presents the VP-Detector algorithm for particle detection via
a 3D multi-scale dense convolution network (see Figure 1). We start with
an overview of our approach and outline the details of two modules: par-
ticle localization module and particle classification module (Section 2.1).
And then present a 3D HDC module for multi-scale features and dense
connectivity (Section 2.2). Finally, we describe the architecture of the pro-
posed network (Section 2.3) and weighted loss function (Section 2.4).

2.1 Overview of the two-stage particle detector

Our particle detection algorithm provides an automatic and efficient
scheme for macromolecules localization and classification in cryo-elec-
tron tomogram. Figure 1 schematically illustrates the proposed VP-
Detector architecture, with seven basic procedures represented in white
boxes. It is designed as a two-stage approach, including a particle locali-
zation stage (1)(2)(3) and a particle classification stage (4)-(7). Detailed
descriptions of our two-stage detection are described as follows.

2.1.1 Particle localization stage

The first stage conducts a fast particle localization on binary segmentation
maps.

(1)  Binary segmentation via a 3D MSDNet. The goal is to obtain a
binary segmentation map where each voxel is the probability of
being labeled as particle class or the background class. Due to the
GPU memory limit, the network conducts a binary segmentation
on cubic volumes cropped from the input tomogram. In this way,
we can obtain many segmented subvolumes for the following lo-
calization.

(2) Merge strategy. All segmented subvolumes are merged into a
whole segmentation map with an identical size to the original
tomogram. Since cubic volumes are cropped with overlapping re-
gions, it is rational to mask out the incomplete particles connected
to the image boundary before merging them. We remove the
noise in a segmentation map with the opening operation of mor-
phology. The whole segmentation map is ready for clustering,
which can determine particle localizations at one time.

(3)  Clustering for finding particle coordinates. All particles are la-
beled as the same value in the segmentation map, where the re-
gion for an individual particle is unclear. Ideally, each particle in
a segmentation map is observed as a 3D-connected component.
The connected component analysis is a frequently used method
to give each component a unique label for distinguishing differ-
ent particles. The rules for connected components are not rigor-
ous enough because multiple particles connected by a few voxels
can be labeled as one particle. To determine more accurate parti-
cle coordinates, we perform a clustering algorithm on the seg-
mentation map, which can assemble voxels into groups of parti-
cles to calculate particle coordinates at sub-voxel precision. Typ-
ical clustering algorithms are k-means, mean-shift, agglomera-
tive clustering, and DBSCAN. We use mean-shift clustering be-
cause it can handle many data points without prior knowledge of
object numbers. To accelerate and improve the mean-shift clus-
tering algorithm, we can use the centroids of 3D connected com-
ponents as initial seeds for clustering. The only interactive pa-
rameter required in mean-shift clustering is the bandwidth, which
is related to the particle size. Some relatively small clusters are
filtered out as false positives.

2.1.2 Particle classification stage

The second stage is designed to classify particles via analyzing multi-class
segmentation maps.

(4) Particle extraction. Once we have a list of particle coordinates,
we are able to extract them from the segmentation maps for the
subsequent classification. Each extraction, also called a sub-
tomogram, has a target particle at the center point.

(5) Multi-class voxel-wise classification (segmentation) via a 3D
MSDNet. This is a vital procedure to precisely label the voxels in
sub-tomogram with N classes. The network architecture used
here is similar to that of procedure O, where the number of layers
and classes are different. Now that the labeled sub-tomograms are
in place, post-processing is needed to obtain the classification re-
sults.

(6) Masking. The goal is to preserve the target particle only. A binary
mask is utilized to wipe out irrelevant particles in the labeled sub-
tomogram, which means only the 3D-connected component at the
center is the useful information.

(7)  Voting. The classification of a labeled target is determined by vot-
ing strategy. We count the number of class labels and taking the
majority of labels as a result.

Overall, our two-stage detection approach has several advantages over
one-stage detection. First, the classification only performs on the given
coordinate instead of a sliding window across the segmentation map. It
helps to dramatically accelerate particle detection. Second, the two-stage
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Figure 2. An example of two channels HDC modules with six convolutional layers
with dilation factors € [1,2,3].

approach is more flexible since each stage can be used independently for
different needs. For instance, the coordinates generated from the first stage
can be used for testing other classification methods. Besides, the localiza-
tion can deal with both known and unknown structures since the network
of the first stage is trained for particle class and background class. Third,
a one-stage network for localization and classification simultaneously puts
a strain on hardware resources. We introduced two independent networks
for localization and classification, respectively, so that each network can
be more thoroughly trained under the limited hardware. Moreover, we find
a precise solution to particle coordinates by combining mean-shift cluster-
ing and connected component analysis.

2.2 The main components of 3D MSDNet

2.2.1 3D Hybrid Dilated Convolution for Multi-Scale Features

Dilated convolution is suitable for voxel-wise dense prediction because it
allows enlarging the receptive field without losing resolution or coverage
(Yu and Koltun, 2015). We employ 3D dilated convolutions with different
dilation factors to systematically extract multi-scale features. However,
the use of serialized layers with increasing dilation factor may suffer a
gridding effect. To address this problem, we design an HDC module that
consists of n subsequent convolutional layers that apply kernel size
K x K x K with different dilation factors of [sy,...,s;,..
HDC module, the assignment of dilation factors follows the rule in (Wang

.,Sp]. In our

et al., 2018). The maximum dilation factor M; in i*" layer is equal to
max[M;,, — 2s;, My, — 2(Myy1 — s;),5;], and we should let M, < K
with M,, = s;. Such an assignment ensures that the final size of the recep-
tive field fully covers a square region without any holes or missing
edges. Another problem that exists in dilated convolutions is that large di-
lation factors might capture irrelevant long-ranged information. A study
has revealed that a filter with a small dilation factor can be applied to most
of the valid regions on a feature map instead of the padded region (Chen
et al., 2017). In our network, we use small dilation factors to capture ef-
fective multi-scale information. The number of parameters should be
small, thus we adopt dilated convolutions with a kernel size of 3 X 3 X 3.

Figure 2 depicts an example of two channels HDC module with dilation
factors € [1,3]. HDC module applies continuous dilated convolutional
layers with increasing dilation factors to effectively expand the receptive
field (RF) to aggregate multi-scale contextual information. For a voxel in
a feature map in i*" layer, RF; represents all the voxels from feature maps
in (i — 1)®" layer that affect its value, which will be (2i + 1)°. And RF’;
represents all the voxels from the original image that affect its value,
which will be RF'; = [(i + 1)i + 1]%. A number of HDC modules are
grouped to form the main architecture of our network with the same pat-
tern of dilation factors. By doing this, the dilation factors of the convolu-
tional layers are equal to s; = (i + 1) mod 4.

One benefit of the HDC module is that the use of arbitrary dilation fac-
tors captures global context and detail information while preserving reso-
lution as well as computational efficiency. Unlike other scaling operations
to extract features at various scales, e.g., pooling operations or strided con-
volutions lose small-scale objects and detailed information. And stacking
convolutional layers or increasing the filter size to acquire global

Feature map channel
3x3x3 dilated conv
1x1x1 conv

Input

Output

Width

e@|||lo

Figure 3. An illustration of MS-D network with w = 2 and d = 3. Colored lines de-

note dilated convolutions with different dilation factors.

contextual information could raise the number of parameters and the com-
plexity of the model. The more important point is that our HDC module
alleviates the gridding issue, which hampers the performance.

2.2.2 Dense connectivity

In the densely connected network (Huang et al., 2017), each layer is di-
rectly connected to all the subsequent layers. Without loss of generality,
the i" layer receives all the preceding feature maps Zy, ..., Z;_; as inputs

to generate Z;,

Zi= H{([Zy,Zy,...,Z;_1]). 3)

Here, [--] is an operation used to combine features, which usually uses
channel-wise concatenation or element-wise addition. It introduces direct
connections between any size-matched two layers. The dense connectivity
has several merits: it helps alleviate the vanishing gradient problem and
substantially reduces the parameters. In addition, it ensures that preceding
feature maps can be fully re-used and more spatial resolution are reserved.

2.3 The Architecture of 3D MSDNet

In this section, we describe our proposed 3D MSDNet. Our segmentation
network aims to create a label map y where voxels are labeled with cate-
gories. Suppose an input 3D image x has C channels, long L, height H,
and width W. In our 3D MSDNet, the i** layer outputs a feature map
Z; € ROPWXH and asingle channel j of Z; is denoted as Z).
layers. We define

as a function to convolve the input feature map

Composite function for convolutional

Vi RODWXH _ RLxWxH
-

in i*" layer with different kernels for each channel and sums up the result-
ing images voxel by voxel to yield a single channel j of the output feature
map,

Cio
Vii(Zi-1) = X5 Dfi,-k,s,-jzfq )

where DZ is a 3D convolution of image Z with filter f. During convo-
lution operations, dilation factors s for each channel of a certain layer are
different. And f;;; are kernels of size 3 X 3 X 3 voxels that have fewer
parameters and a more enhanced capability of nonlinear mapping than
larger kernels. C;_; is the number of channels of an output feature map in
i — 1t" layer.

Convolutional layers have a composite operation H: performing a 3D
convolution on each channel of the input with a different filter, summing
up the resulted images voxel by voxel, adding a bias, and applying an el-
ement-wise nonlinearity. Thus, the single channel output Z l] of such a con-
volutional layer is defined as,

] = Hy(Ziy) = 0(vij(Zio) + byy), &
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where g : REW*H 5 REXW>H denotes an activation function, such as
sigmoid, rectified linear units (ReLU), softplus, leaky ReLU (LReLU).
And b;; € R is the bias for channel j of an output feature map in ith layer.

First layer. The input 3D image x is taken as the first layer zy and is
defined as a set of voxels x € RE*E*W*H The single channel j of x is de-
noted as x/.

Subsequent layers. In the HDC mentioned above module with padded
convolutions, the input image, all feature maps, and output image have
identical dimensions. Therefore, all previously computed feature maps can
be used to calculate the feature map in current layer. To further enhance
the information flow between layers, we introduce dense connectivity to
directly connect any layer to all subsequent layers (Huang et al., 2017).
Here, the i" layer receives all the preceding feature maps Zy, ..., Z;_; as
input, thus a single channel output feature map Z; l] is defined as:

Z{ = Hi'([ZOJZIJ "'rZi—l]) = O'(Vi'([z()rzp ""Zi—l]) + bi ')'
] ] ]
i— C—
Vij([Zo,Zy, s Zia]) = ZiZ0 Xk 50 Drijuasy 205 (4)

where H;; is a composite operation for channel j of the output in i*" layer,
and ¢ is an activation function. We adopt LReLU as the activation func-
tion, that is f(x) = max(0.01x, x), to avoid the dying ReLU problem.
LReLU brings the tradeoff between the network sparsity and the perfor-
mance and solves the vanishing gradient problem (Zhang et al., 2017). In
equation 4, y;;([Z,, Z4, ..., Z;_4]) is an operation of convolving all previ-
ously computed feature maps from the first layer to i — 1** layer and sum-
ming up the resulting images voxel by voxel to yield a single channel j of
output feature map in i** layer. And f; ji are kernels of size 3 X3 x 3
voxels. The dense connectivity utilizes element-wise addition, defined as
[-+], to aggregate each feature map within the network. Element-wise ad-
dition has several merits: Its summation operation accelerates the training
process via parallelization as well as dense connectivity. This indirectly
helps solve the vanishing gradient problem. Besides, it supports incorpo-
rating feature maps with various size receptive fields into a feature map
with new features. Compared to concatenation, element-wise addition per-
forms better on small and blurry objects in images (Gao et al., 2018). In
our research, since the particles have low signal-to-noise (SNR) ratio
caused by low electron doses, the contextual information is useful for their
detection. Element-wise addition is strongly recommended because it can
learn the relationship between the target and context well while concate-
nation cannot. Our 3D MSDNet allows that the feature map per layer has
the different number of channels. For simplicity, suppose the number of
channels for all layers is a fixed value, then we can define the number of
non-input and non-output layers as the depth d and the number of chan-
nels as the width w. Figure 3 illustrates the layout of the 3D MSDNet with
w=2andd = 3.

Last layer. The final layer output an image y through similar compo-
site operations and the channel j of y is defined as,

i— C— j ’
Y =o' (B3R5 FinZl + bi), ®)

where f';;; are kernels of size 1x 1 x 1 voxels. It computes a lin-
ear combination of feature maps of the input layer and intermediate layers.
The nonlinear mapping ¢’ is a voxel-wise soft-max function for dense im-
age labeling. Our network gives a voxel-to-voxel prediction so that the
sizes of the output image and input image are identical.

Parameters. The trainable parameters of our proposed network include
convolution filters fj;, biases b;; of non-input layers and non-output lay-
ers (see equation 4), as well as weights ', biases by of the last layer
(see equation 5). The number of filters, weights and bias are denoted as

Figure 4. An example of SHREC’20 dataset. (A) A slice of a raw tomogram. (B) The
corresponding ground truth. (C) Predicted segmentation map from our VP-Detector.
3d2f, 3cf3, 4d8q, 1u6g are four particles extracted from the raw tomogram and ground

truth.

N¢, Ny, N, respectively, hence the number of parameters is Ny =
N¢+N,, + N, . Suppose an input image with C channels, we can
have N;.3 x3x3XEdw(iw +C),Ny(wd + C)C,Ny =wd +C
where d and w are the depth and width of the network.

2.4 Weighted focal loss of 3D MSDNet

Class imbalance is a common problem in segmentation tasks where the
number of voxels labeled for each class is disproportionate. In our simu-
lated dataset, the volumetric ratio between the largest and the smallest par-
ticles can reach nearly 30:1. The loss is dominated by prevalent labels of
large particle class, which leads to inaccurate labeling on small particle
class. Focal loss is a modified version of cross-entropy loss by down-
weighting the loss assigned to easy examples (Lin et al., 2017). To address
the class imbalance problem, we designed a weighted focal loss for multi-
class segmentation. We defined the weighted focal loss as:

1
Ly = =3 e it ac(1 — p©) giflog(®i©),  (6)

where N is the number of voxels in an image, ¢ € C represents a class
¢, g;° is a binary indicator of ground-truth class ¢ of voxel i, and p;° rep-
resents the corresponding model’s estimated probability. a, is introduced
to reweight different classes, which are based on the effective radius of
particles. y is a focusing parameter that down-weights the loss assigned to
well-classified samples and makes hard samples contribute more to the
loss. When y = 0 and a, = 1, the function behaves as cross-entropy.

3 Results

3.1 Dataset

To evaluate the performance of localization and classification for biolog-
ical particles in the cryo-electron tomogram, we carried out the experi-
ments on realistically simulated tomograms provided by SHREC. Figure
4(A) gives an example of a raw tomogram. It is tough for a human to see
particles inside the noisy tomogram. SHREC’20 contains nine sets of
512 x 512 x 512 tomograms with 1 nm/voxel resolution. Ground truth
volumes and particle location are also given in the dataset. Between 2400
and 2800 bio-particles of 12 classes are placed in each tomogram. In our
experiments, tomograms from 1 to 7 make up training sets, and tomogram
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Figure 5. The Training loss and validation loss for different loss functions.

8 is for validation. Tomogram 9 is the test tomogram to evaluate our par-
ticle detector. SHREC’19 contains ten sets of tomograms generated in a
similar way which has higher SNR.

3.2 Implementation details

VP-Detector is built on a deep learning framework called PyTorch with
CUDA acceleration, written in Python programming language. All exper-
iments are carried on a workstation with four GeForce RTX 2080 Ti. We
train our weights using stochastic gradient descent with the Adam opti-
mizer. The initial learning rate is 0.001 and decreased by ten times after
80 epochs. We stop training after 500 epochs. The localization and classi-
fication networks are based on 3D MSDNet with different hyperparame-
ters. The localization network has dilation factors € [1,7] and 49 dilated
layers with 132K trainable parameters. The classification network has di-
lation factors € [1,5] and 100 dilated layers with 551K trainable parame-
ters.

3.3 The localization performance of VP-Detector

3.3.1 Evaluation Metrics

The evaluation metrics for particle localization are precision P, recall R,

miss rate M, Fl-score, and confusion matrix.
TP TP FN 2PR
= R= M= JF1= :
(TP + FP) (TP+FN),” ~ (TP +FN) P+R)
The evaluation metrics for semantic segmentation are: voxel accuracy

VA, mean voxel accuracy MVA, and mean IoU MIoU. We assume that
p;j is the number of voxels of class i predicted to belong to class j, and
the number of M classes.
i pu Z
VA = ,MVA =
ZMI ?401 L} M lOZ,oPU
Dii
MloU = Z S e e = em—
M Luio X5 vy + X5 i — v

3.3.2 Qualitative Evaluation

We compare VP-Detector with all algorithms submitted to SHREC’19 and
SHREC’20 challenge, and the performance comparison is listed in Table
1,2. The best results are shown in bold. For the SHREC’20 dataset, table
1 indicates that VP-Detector has the best precision of 0.978 and the best
Fl-score of 0.951. For the SHREC’19 dataset, Table 2 shows that VP-
Detector has a superior performance and has the best evaluation metrics
of recall, miss rate, F1-score of 0.86299, 0.13701, and 0.88709, respec-
tively. Precision is the ratio of correctly detected particles to the detected
results. Precision is an essential metric for particle localization because the
false positives interfere with the subsequent classification, alignment, and
averaging structures. Fl-score is a weighted average of precision and

recall. VP-Detector is proved to be the most well-perform among all lo-
calization methods since it has the best F1-score.

We use mean-shift clustering to improve the performance of localiza-
tion. Before mean-shift clustering, 87 particles had more than one predic-
tion. The precision and F1-score are 0.916 and 0.931. After mean-shift
clustering, there is one particle that had more than one prediction. The
precision improves 0.062, and F1-score improves 0.02.

3.3.3 Visualization

Figure 4(C) shows the segmentation map of the input tomogram generated
by our VP-Detector. Our VP-Detector shows excellent robustness to the
noise. We can also observe that particles on the prediction map have
smoother and clearer boundaries than ground truth volume shown in Fig-
ure 4(B). We use VA, MVA, and MIoU to prove the effectiveness of our
prediction map with ground truth volume. Here, VA is 0.961, MVA is
0.819, and MlIoU is 0.763.

Table 1. Performance comparison between different algorithms for the
SHREC’20 dataset. RR (reported results), MH (unique particles that had
duplicate results), RO (results not inside particle region), AD (average
Euclidean distance between the predicted center and ground truth cen-
ter).

Method RR TP FP FN MH RO AD Precision Recall Missrate F1 score

VP-Detector 2635 2577 57 205 1 0 2.046 0978 0926 0.074 0.951
DeepFinder 2594 2485 107 297 2 0 2.166 0.957 0893 0.107 0.924
3D Res- 2864 1983 611 799 246 0 3.501 0.692 0.712 0.288 0.702
YOPO 2821 2543 240 239 37 0 2.104 0.901 0914 0.086 0.907
Dn3DUnet 2598 2340 146 442 112 0 2.807 0.9 0.841  0.159 0.869
UMC 2781 2642 68 140 68 0 1873 095 0.949 0.051 0.949
TM-T 2604 1898 20 884 412 0 1.528 0.728 0.682 0318 0.704
TM-F 2604 2267 331515 6 0 1767 0.87 0.814 0.185 0.841

Table 2. Performance comparison between different algorithms for the
SHREC’19 dataset.

Methods RR TP FP_FN MH RO AD Precision Recall Missrate F1 score
VP-Detector 2402 2192 209 348 1 0 1771 0913 0.863 0.137 0.887
poG3p-cNN 1813 1690 110 850 13 1 2452 0932 0.665 0334 0.777
3D-Unet 2887 2163 709 377 15 24 3506 0.749 0.852 0.148 0.797
2.5D-Resnet 4524 1507 1185 1033 876 1 3987 0.333 0.593 0.407 0427
3D-TM 2429 814 356 1726 425 313 2.561 0335 0321 0.680 0.328
oo 2127 455 867 2085 311 48 5932 0214 0.179 0.821  0.195
suaans 2500 1367 372 1173 480 13 4.166 0.547 0.538 0.462  0.543
wuaowz 2500 1438 555 1102 352 12 4408 0.575 0.566 0.434  0.570

aspssoapeny 1977 710 196 1830 485 7 4.6453 0.3591 0.2795 0.7205 0.3144
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Figure 6. The accuracy of 12 classes for different loss functions. Top figure uses cross-

entropy loss function. Bottom figure uses weighted focal loss.

Table 3. Performance of classification with different hyperparameters
for SHREC’20 dataset.

Loss [ Training [Layer class accuracy
function| st Small medium large
1s3x 3qm1 3gl1 3h842¢cg9 avg |3d2f lu6g3cf3 1bxn lqvr avg Her24d8q avg
Cross- | 1~7 40 [0.16 0.79 0.57 0.8 0.41 0.55[0.68 0.52 0.84 0.95 0.86 0.77 [0.99 1 1
e“]::’fy 1~7 60 10.52 0.59 0.84 0.8 0.69 0.69]0.76 0.830.93 0.94 0.95 0.880.98 1  0.99
1~7 80 |0.5 0.77 0.8 0.81 0.710.718) 0.8 0.690.970.98 0.920.872| 1 1 1
1~7 100 [0.47 0.66 0.92 0.75 0.83 0.73 [0.88 0.72 0.89 0.99 0.96 0.89 0.99 1 1
Focal 1~7 100 [0.66 0.6 0.850.82 0.76 0.74(0.83 0.79 0.96 0.97 0.94 0.90 | 1 1 1
loss 12 100 [0.64 0.64 0.68 0.74 0.69 0.68[0.71 0.75 0.95 0.95 0.94 0.86 (0.99 1 1

Table 4. The effective radius of 12 classes. The classes colored in orange
are very difficult. The classes colored in yellow are relatively difficult.

The classes colored in green are normal. The classes without color are easy.

PDB
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3.4 The classification performance of VP-Detector
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Figure 7. Classification confusion matric of our VP-Detector.

3.4.1 Influence of loss function

We trained a classification network with cross-entropy loss and a classifi-
cation network with weighted focal loss. As plotted in Figure 5, all losses
decline sharply in the first several epochs and become steady during more
epochs. The weighted focal loss is much lower than cross-entropy loss.
We can also observe that the validation loss of weighted focal loss con-
verges earlier than cross-entropy. However, the validation loss of cross-
entropy presents a slight shaking. Moreover, we evaluate the class accu-
racy for cross-entropy loss and weighted focal loss. The results are pre-
sented in Figure 6, where the accuracy for a certain PDB is defined as
correctly found particles / the total number of particles. The top figure
depicts the class accuracy for cross-entropy loss. Most of the classes are
not stable during training, and they tend to be up and down many times. It
can only classify large particle class well. And it is hard to pick the best-
fit model for all classes. The bottom figure depicts the class accuracy for
weighted focal loss. All the classes become steady after 250 epochs. Table
3 compares 100 layers of 3D MSDNet with cross-entropy loss and
weighted focal loss. Particles are grouped into four sets according to sizes.
The network with weighted focal loss has the highest class accuracy for
small, medium, large particles.

The weighted focal loss function performs better than the cross-entropy
loss function in terms of loss and class accuracy during training. The cross-
entropy loss is dominated by prevalent labels of large particle class, which
lacks training on small particle class. In contrast, weighted focal loss can
pay more attention to hard classes by adding a weight factor. Each class
can be fully learned during training, no matter how small. The classifica-
tion confusion matric of our VP-Detector is offered as shown in Figure 7.
Although we add more weight to the loss of small classes, it is difficult for
our network to identify between 1s3x and 3qm1. Sometimes our network
may confuse 2cg9 with 3gll, 3h84 with 3d2f, and lu6g with 2cg9. We
find that the confused pair have a similar effective radius. The high noise
of tomograms increases difficulty for confused pairs.

3.4.2 Influence of hyperparameters

The classification result on a test tomogram is presented in Table 3. We
discuss the influence of layers and the sizes of training sets. The number
of layers is not sensitive to three classes (1bxn, 4d8q, 4cr2), and shallow
networks can recognize them effectively. 1s3x and 3qmlare the hardest
classes for both shallow and deep networks. We divide 12 classes into four
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groups based on their difficulty, as shown in Table 4. We find that the
difficulty
R, = 3V /A, where V is the volume and 4 is the surface area. The smaller

classification depends on the effective radius,
the effective radius, the harder it is to identify.

There are seven sets of tomograms for us to prepare the training sets.
When we use only two sets of tomograms for training, the large classes
have almost the same accuracy, and the small classes and medium classes
have a slight decline. In this way, our proposed 3D MSDNet supports
training on small datasets since we combine HDC module and dense con-

nection to design the network with fewer parameters.

Table 5. Run time for particle detection on a test tomogram.

Method Inference time
3D MSDNet 13m44s = 8m16s(localization) + 5m28s(classification)
DeepFinder 20m
3D ResNet 2h
YOPO 40m
Dn3DUnet Im 41s
UMC 42m
TM-T 27h 24m
TM-F 1h 24m

3.5 Run Time for inference

Table 5 shows the run time for different methods. The test tomogram has
a size of 512 X 512 x 512 voxels with 2782 particles. The traditional
template matching methods are the most time-consuming methods, which
cost a few hours. The CNNs based method using slide window needs about
an hour or more to finish particle detection. Our method uses only 13
minutes 44 seconds to achieve accurate particle detection, which creates a
balance between efficiency and accuracy. Our fast detection has two
stages. The localization stage costs about 8 minutes, and the classification
stage costs about 5 minutes. Our two-stage detection approach is fast be-
cause the classification is only performed on given positions.

4 Discussion

In this paper, we present an automatic and accurate CNNs based approach
for volumetric particle detection in cryo-electron tomogram. To solve the
problem of training on relatively small datasets, we design a novel 3D
convolutional network architecture with HDC modules and dense connec-
tivity. The 3D HDC module is a set of dilated convolutional layers with
various dilation factors to capture multi-scale objects and contextual in-
formation. Dense connectivity enhances the re-use of feature maps. We
evaluated the VP-Detector on the simulated tomograms. Comparing to the
state-of-the-art methods, our method achieved the best localization perfor-
mance with the highest F1-score. The mean shift clustering also helps a
better F1-score. Experimental results also demonstrate that our network
can train on small datasets. Moreover, our two-stage detection approach
can achieve fast detection for about 14 minutes. In future work, we plan
to improve memory efficiency by sharing the memory of the same features
(Pleiss et al., 2017). Besides, there is still room for improvement towards
small object detection. We can explore more future fusion techniques fo-
cusing on detailed information. In addition, preprocessing for input tomo-
grams may improve the performance of particle detection, such as image
denoising (Zhang et al., 2017).
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