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ABSTRACT  

Bacterial fruit blotch (BFB) is a serious disease of melon and watermelon caused by 

the Gram-negative bacterium Acidovorax citrulli. The strains of the pathogen can be 

divided into two major genetic groups, I and II. While group I strains are strongly 

associated with melon, group II strains are more aggressive on watermelon. Like many 

pathogenic bacteria, A. citrulli secretes a variety of protein effectors to the host cell via 

the type III secretion system. In the present study, we characterized AopW1, an A. 

citrulli type III-secreted effector that shares similarity with the actin cytoskeleton-

disrupting effector HopW1 of Pseudomonas syringae and with effectors from other 

plant-pathogenic bacterial species. aopW1 is present in group I and II strains, encoding 

products of 485 amino acids. Although highly conserved in most of the sequence, 

AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, 

including 14 amino acid differences between groups. Here we show that group I 

AopW1 is more toxic to yeast and plant cells than group II AopW1, having a stronger 

actin filament disruption activity, and increased ability to reduce plant callose 

deposition. We demonstrate the role of some of these 14 amino acid positions in 

determining the phenotypic differences between the two versions of the effector. 

Moreover, cellular analyses revealed that in addition to the interaction with actin 

filaments, AopW1 is localized to the endoplasmic reticulum, chloroplasts, and early and 

recycling plant endosomes, with differences observed between the two AopW1 

versions. Finally, we show that overexpression of the endosome-associated protein 

EHD1 that increases cellular recycling, attenuates the toxic effects exerted by AopW1 

and increases defence responses. This study provides insights into the HopW1 family of 

bacterial effectors and their interactions with the plant cell and provides first evidence 

on the involvement of EHD1 in response to biotic stress.  
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INTRODUCTION 

Bacterial fruit blotch (BFB) of cucurbits is a devastating disease caused by the Gram- 

negative bacterium Acidovorax citrulli. Due to the impact of this disease on the cucurbit 

industry, and more specifically to melon and watermelon production, A. citrulli is 

considered as one of the most important plant-pathogenic species within the Acidovorax 

genus (Burdman and Walcott, 2012; Burdman and Walcott, 2018; Zhao and Walcott, 

2018).  

Acidovorax citrulli strains are divided into two major groups, I and II, that are readily 

distinguishable by carbon substrate utilization, whole cell fatty acid analysis, DNA-

fingerprinting and comparative genome analysis (Burdman et al., 2005; Eckshtain-Levi 

et al., 2016; Feng et al., 2009; Walcott et al., 2000; Walcott et al., 2004). The two 

groups also differ in host preference. Group I strains have been isolated mainly from 

melon, but also from other non-watermelon cucurbit crops, whereas group II strains are 

more strongly associated with watermelon (Burdman et al., 2005; Walcott et al., 2000; 

Walcott et al., 2004). Recent experiments involving natural infection under field 

conditions have strengthened the differences in host preferential association between the 

two groups of strains (Zhao et al., 2020).  

Plants utilize a defence barrier against pathogen infection via recognition of so-called 

pathogen- or microbe-associated molecular patterns (PAMPs and MAMPs, 

respectively). The perception process occurs through specific plant pattern recognition 

receptors (PRRs), that results in PAMP-triggered immunity (PTI), an array of defence 

responses that is able to arrest infection of most potential pathogens (Jones and Dangl, 

2006; Tang et al., 2017). Conversely, pathogenic microbes are able to deliver sets of 

protein effectors into the host cell to promote virulence through alteration of the host 

cell metabolism and suppression of host defence responses (Feng and Zhou, 2012; 

Macho and Zipfel, 2015). Acidovorax citrulli, as similar to several other Gram-negative 

plant-pathogenic bacteria, utilizes a type III secretion system (T3SS) to deliver such 

effectors (Bahar and Burdman, 2010). On the other hand, plants evolved to recognize 

some effectors, initiating a strong defence response that is named effector-triggered 

immunity (ETI) and is often associated with a localized hypersensitive response (HR) 

that arrest pathogen infection (Jones and Dangl, 2006; Mansfield, 2009; Mudgett, 

2005).  

Eckshtain-Levi et al. (2014) carried out a comparative analysis of eleven genes 

encoding type III-secreted effectors (T3Es) of the group II model strain, AAC00-1. This 
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study revealed that group I and II strains differ in their T3E arsenal. First, three of the 

eleven T3E genes of AAC00-1 were conserved in all tested group II strains, but were 

absent or had disrupted open reading frames (ORFs) in all tested group I strains. 

Second, while the other T3E genes were detected and shown to encode likely functional 

products in both groups, most of them were highly conserved within each group, and 

clustered separately across the two groups (Eckshtain-Levi et al., 2014). More recently, 

we used a multifaceted approach combining thorough sequence analysis, 

transcriptomics and machine learning, that led to the identification of 58 T3E genes of 

the group I model strain, M6 (Jiménez-Guerrero et al., 2020). This study ranked A. 

citrulli among the richest pathogenic bacteria in terms of T3E arsenal size, and 

confirmed the dissimilarity among group I and II strains of A. citrulli in terms of T3E 

cargo (Jiménez-Guerrero et al., 2020).  

To date, only few studies were reported on the role of Aop (for Acidovorax outer 

proteins) T3Es in A. citrulli-plant interactions. AopP was shown to suppress reactive 

oxygen species burst and salicylic acid content and to significantly contribute to the 

virulence of a group II A. citrulli strain in watermelon. The authors suggested that AopP 

suppresses plant immunity by targeting ClWRKY6 in the plant nucleus (Zhang et al., 

2020a). In addition, Zhang et al. (2020b) showed that the effector AopN locates to the 

cell membrane of Nicotiana benthamiana and induces a programmed cell death 

response in this plant.  

We are particularly interested in effector AopW1 (Acidovorax outer protein W1). 

The genes encoding this effector are APS58_3289 in the genome of the group I model 

strain M6, and Aave_1548 in the genome of the group II model strain AAC00-1 (NCBI 

accessions CP02973.1 and NC_008752.1, respectively). The effector was named 

AopW1 due to its similarity with the Pseudomonas syringae pv. maculicola T3E, 

HopW1. Lee et al. (2008) showed that expression of hopW1 in P. syringae pv. tomato 

triggers strong immunity in N. benthamiana and in Arabidopsis thaliana Ws, but 

promotes virulence in A. thaliana Col-0. The authors also showed that the C-terminal 

region of HopW1 is needed for triggering defence responses. Later, Kang et al. (2014) 

showed that filamentous actin (F-actin) is a major virulence target of HopW1. They 

showed that HopW1 interacts with and reduces actin filaments in vitro and in planta, 

disrupts the actin cytoskeleton, and affects actin-dependent cell biological processes that 

are critical for plant immunity like endocytosis and protein trafficking into vacuoles. 
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Also, the C-terminal region of HopW1 was needed for these phenotypes (Kang et al., 

2014).  

As similar as several other A. citrulli T3Es, AopW1 is conserved within strains that 

belong to the same group but differ between the two groups. Specifically, group I and II 

versions of this effector are 485 amino acid (a.a.) long, and are highly conserved except 

for a hypervariable region (HVR) between a.a. positions 147 and 192, that shows 14 

differences between the two versions (~30% dissimilarity) (Eckshtain-Levi et al., 2014). 

Traore et al. (2019) demonstrated that both group I and II AopW1 significantly 

contribute to the virulence of A. citrulli in melon and watermelon, respectively. 

Interestingly, in Nicotiana tabacum, group I AopW1 triggered a stronger HR than that 

exerted by group II AopW1, suggesting that the differences in the HVR between the 

two versions correlate with molecular function (Traore et al., 2019). Recently, we 

showed that in A. citrulli M6, expression of the aopW1 gene is regulated by the T3SS 

transcriptional activator HrpX, and validated that AopW1 is translocated to the plant 

cell in a T3SS-dependent manner (Jiménez-Guerrero et al., 2020).  

In the present study, we investigated the sequence-function relationship of AopW1. 

We asked whether differences in the HVR between group I and II AopW1 are 

determinants of their functional performance, including cytotoxicity, actin filament 

disruption ability, interaction with plant cell compartments, and ability to reduce callose 

deposition. Overall, our findings demonstrate that the group I version of AopW1 has 

increased toxicity as compared to group II AopW1. We also identified amino-acid 

residues in the HVR region that are likely critical for the activity of effectors belonging 

to the HopW1 family. Further, we found that the endosome-associated protein EHD1 

attenuates AopW1-induced cytotoxicity. A general model of AopW1 function in the 

plant cell is proposed. 

 

RESULTS 

Heterologous expression in yeast reveals differences in cytotoxicity between group 

I and II versions of AopW1 

To assess possible differences in cytotoxicity between group I and II AopW1, we 

used a yeast-based heterologous system that has been used to detect phenotypes of 

bacterial effectors (Salomon and Sessa, 2010; Siggers and Lesser, 2008). The aopW1 

open reading frames (ORFs) of strains M6 and 7a1 (belonging to groups I and II, 
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respectively) were cloned into the yeast expression vector pGML10 and transferred to 

Saccharomyces cerevisiae BY4741 for heterologous expression. It is worth mentioning 

that the 7a1 aopW1 ORF is 100% identical to that of the group II model strain AAC00-1 

(Eckshtain-Levi et al., 2014). 

Growth inhibition assays were carried out in inducing media (supplemented with 2% 

galactose and 1% raffinose), under regular conditions or with the addition of stressing 

compounds or conditions. It has been shown that combination of different stressors may 

increase yeast sensitivity thus aiding to detect effector-induced phenotypes (Salomon et 

al., 2011; Salomon et al., 2012; Siggers and Lesse, 2008). As stressors we used 7 mM 

caffeine, 0.5 M sodium chloride or 1 M sorbitol (Kuranda et al., 2006; Salomon et al., 

2011; Yoon et al., 2003). Controls were yeast plated on repressing media (supplemented 

with 2% glucose).  

Under regular conditions, group I AopW1 (AopW1-M6) exerted strong growth 

inhibition of yeast cells, while the group II version (AopW1-7a1) had a very slight 

effect (Figure 1A). The growth inhibition exerted by group I AopW1 was comparable to 

that observed for P. syringae HopW1 and slightly higher than that exerted by the 

HopW1-homologous effector from Xanthomonas translucens (Figure 1A; 

Supplementary Table S1). Growth inhibition by group I AopW1 was increased when 

combined with NaCl, while the growth inhibition effect of group II AopW1 was 

increased in combination with caffeine, NaCl or sorbitol, though at substantially lower 

levels than the effects exerted by the former (Supplementary Table S1).  

To assess whether yeast growth inhibition was due to cell death or growth arrest, we 

carried out yeast cell viability time-curves. A significant decrease of viable cells was 

detected in yeast expressing group I AopW1, in a similar manner as observed for 

expression of P. syringae HopW1. In contrast, the viability of cells expressing group II 

AopW1 did not significantly differ from controls carrying empty pGML10, 

demonstrating that this version of AopW1 does not exert a strong toxic effect on yeast 

(Figure 1B).  

 

Group I AopW1 strongly affects yeast F-actin organization in vivo and disrupts 

non-muscle F-actin in vitro 

Actin is a highly abundant and conserved protein that is essential for the survival of 

most eukaryotic cells. It occurs in a globular monomeric (G-actin) stage or in a 

filamentous polymeric (F-actin) form (Pollard, 2016; Pollard et al., 2000). The actin 
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cytoskeleton is a complex network of dynamic polymers, which has an important role in 

a wide range of cellular processes (Mishra et al., 2014; Pollard and Borisy, 2003). As 

aforementioned, Kang et al. (2014) showed that P. syringae HopW1 disrupts the actin 

cytoskeleton.  

 
Figure 1. Acidovorax citrulli group I AopW1 is more toxic than group II AopW1 to yeast 
cells. (A) Yeast growth inhibition assays. The open reading frames (ORFs) of aopW1 from A. 
citrulli strains M6 (group I) and 7a1 (group II), and hopW1 from Pseudomonas syringae pv. 
maculicola ES4326 were cloned into pGML10 under the control of a galactose inducible 
promoter. The plasmids were transformed into S. cerevisiae BY4741. Serial dilutions of the 
yeast cultures were spotted in glucose (repressing) or in galactose/raffinose (inducing) media. 
Controls were yeast cells carrying pGML10 (empty vector). Pictures were taken after 3 days of 
growth at 28 °C and are representative of three independent experiments. (B) Cell viability 
assays of yeast expressing the aforementioned effectors. Yeast cells were grown in inducing 
medium, collected at different time points, 10-fold serially diluted, and spotted onto repressing 
medium to assess the number of viable cells. Data represent means and standard errors (SE) 
from one experiment out of three with similar results (with four replicates per treatment per time 
point). Asterisks indicate significant (p=0.05) differences compared to the empty vector each 
time point by Student t- test. 

 

We studied the effects of AopW1 expression in yeast cells. Budding yeast cultures 

were stained with the actin stain TRITC-phalloidin 8 h after expression of group I or II 

AopW1. During budding, the actin filament network of yeast cells presents three 

specific structures: cortical actin patches, actin cables, and the actomyosin ring (Mishra 

et al., 2014; Supplementary Figure 1A). Yeast cells carrying empty pGML10 displayed 

normal formation of actin filaments and migration of actin patches to the daughter cells, 

and a similar picture was observed in cells expressing group II AopW1. In contrast, 

cells expressing group I AopW1 exhibited a strong disorganization of the actin 

structures, with actin patches seeming disorganized thorough the cell (Supplementary 
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Figure 1B). Remarkably, in yeast cells expressing group I AopW1 we were able to 

detect substantially less formation of daughter cells than in the two other treatments.   

To assess whether the effect caused by group I AopW1 is due to actin 

depolymerization activity, we carried out in vitro sedimentation assays with pre-

assembled non-muscle F-actin. In these assays we used purified recombinant AopW1 

from group I and II strains without the first 100 a.a. of their N-terminus (AopW1-M6101-

485 and AopW1-7a1101-485, respectively) fused to a poly-histidine (His) tag in both 

extremes. The N-terminal part of AopW1 was not included because we were not able to 

express sufficient amounts of soluble, full-length AopW1. As shown below, the N-

terminal 100 a.a. of this effector is not needed for cytotoxic activity in yeast. Expression 

and purification of the recombinant proteins were verified by SDS-PAGE and Western 

blot analysis (Supplementary Figure S2). Incubation of pre-assembled non-muscle F-

actin with poly-His-AopW1-M6101-485, but not with α-actinin (which binds to F-actin) or 

bovine serum albumin (BSA; which does not bind to F-actin), led to a reduction of F-

actin (pellet fraction; P), with a concomitant increase of G-actin (supernatant fraction; 

S) (Figure 2). AopW1-M6101-485 could be detected in the supernatant fractions by 

Western blot analysis using a poly-His tag monoclonal antibody (not shown). 

Recombinant group II AopW1 (poly-His-AopW1-7a1101-485) was able to induce actin 

depolymerization, but at substantially lower levels than the group I version (Figure 2).   

 
Figure 2. AopW1 disrupts F-actin in vitro. Preassembled F-actin (filamentous polymer) was 
incubated with 35 µg of AopW1101-485 from strains M6 (group I) or 7a1 (group II), 2 µM α-
actinin or 2 µM BSA for 1.5 h at 24 °C and centrifuged at 150,000 g for 1.5 h. Samples were 
partitioned into supernatant (S) and pellet (P) fractions to separate G-actin (globular subunit) 
and F-actin, respectively. Proteins were separated by SDS-PAGE and stained with Coomassie 
blue. α-actinin was used as positive control for actin binding activity (presence in S or P when 
α-actinin was incubated alone or with F-actin, respectively), and as negative control for actin 
disruption activity (F-actin remained polymerized in P). BSA was used as negative control for 
actin binding and acting disrupting activities (presence in S when BSA was incubated with F-
actin; F-actin remained polymerized in P). Marker molecular masses (kDa) are shown in the 
left. The experiment was performed twice with similar results. 
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Combined substitutions of specific amino acid residues alter yeast cytotoxicity of 

AopW1  

T3Es sharing similarity with AopW1 occur in other plant-pathogenic bacteria. In 

addition to the aforementioned HopW1 from P. syringae and homologous effectors 

from X. transluscens, AopW1 homologs occur in other Pseudomonas spp., in Erwinia 

mallotivora and in other plant-pathogenic Acidovorax species (Figure 3A). As said, the 

aopW1 gene is highly conserved among group I and II strains of A. citrulli, except for a 

138-bp hypervariable region (HVR) located at nucleotide positions 439 to 576 (a.a. 

positions 147 to 192 in the encoded products). Of the 46 a.a. included in the HVR, 

fourteen are different between the group I and II versions of the effector; Figure 3B). 

Although group I and II versions of AopW1 share significantly higher levels of identity 

as compared with homologs from other bacteria, including in the HVR (Figure 3), of the 

aforementioned fourteen positions that distinguish between them, six are conserved 

between group I AopW1 and the homologous T3Es from Pseudomonas, Xanthomonas 

and Erwinia species. These are a.a. positions 154, 162, 167, 174, 177 and 189 (named 

positions 1 to 6, respectively, as indicated in the bottom of Figure 3B). Intriguingly, 

variation in the HVR also occurs among strains of A. avenae, with some variants 

resembling group I AopW1 and others resembling group II AopW1 (Figure 3B).  

We hypothesized that differences in the HVR, and particularly in the aforementioned 

six positions, are important determinants of the distinguished patterns of cytotoxicity 

between group I and II versions of AopW1. In this regard, it is worth mentioning that 

the AopW1 HVR aligns with part of the C-terminal region of P. syringae HopW1, 

which is required for actin cytoskeleton disruption (Kang et al., 2014).    

To assess the importance of these six positions for AopW1 activity, we generated 

several constructs in which the group I and II aopW1 ORFs were altered by site-directed 

mutagenesis to substitute each of these residues by the a.a. present in the other version 

(Supplementary Tables S2 and S3). We also generated group I and II AopW1 carrying 

multiple substitutions (Supplementary Table S3). All constructs were tested in yeast 

growth inhibition assays.  

Most individual substitutions in the HVR did not lead to significant alterations in 

yeast growth inhibition ability in comparison with the corresponding wild-type versions 

(Supplementary Figure S3). The only exception was the AopW1 group II variant 

carrying an individual substitution in position 6 (M-189-T) that reduced cytotoxicity to 

the empty vector level (Supplementary Figure S3B). Besides the HVR, group I and II 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445476doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445476
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

AopW1 differ in position 319 (leucine in group I; serine in group II). Swap substitutions 

in this position (L319S and S319L in group I and II AopW1, respectively; 

Supplementary Table S2) did not alter yeast growth inhibition ability as compared with 

the corresponding wild-type versions (not shown). 

 
Figure 3. Comparison of AopW1 and homologous effectors. (A) AopW1 protein-based 
phylogeny from Acidovorax, Pseudomonas, Xanthomonas and Erwinia species. Sequences were 
aligned using MUSCLE and the phylogeny was reconstructed using maximum likelihood 
methods included in the SeaView program (ref: PMID 19854763). Numbers at nodes are the 
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approximate likelihood ratio test supporting each branch. The scale bar shows amino acid (a.a.) 
substitutions per site. (B) Alignment of the hypervariable region (HVR) of A. citrulli AopW1 
from group I and group II strains with corresponding regions from homologous effectors. The 
alignment corresponds to a.a. positions 147 to 192 of AopW1. The alignment was done using 
ClustalW software. Black asterisks indicate the 14 a.a. differences between the two versions of 
AopW1 in this region. Blue asterisks indicate the strongly conserved positions within 
Acidovorax sp. and that are different in other species. Grey shading and numbers at the bottom 
of the alignment indicate the six conserved a.a. positions between group I AopW1 and 
homologous effectors from other species. 

 

Characterization of combined substitutions in the background of group I AopW1 

showed that only one variant, carrying three substitutions [1 (V-154-I) +2 (R-162-Q) +3 

(P-167-A)], considerably reduced the cytotoxicity of the effector (Figure 4A). 

Surprisingly, adding substitutions in positions 4 (A-174-T) and/or 6 (T-189-M) to the 

above variant, abolished this effect, namely, led to a growth inhibition effect that was 

similar to that of group I AopW1 (Figure 4A).  

 

Figure 4. Effects of combined amino acid substitutions in the AopW1 HVR on yeast 
growth inhibition. Yeast growth inhibition assays of different variants of group I AopW1 (A) 
and group II AopW1 (B) carrying several combinations of a.a. substitutions in the six positions 
that are conserved among group I AopW1 and homologous effectors from other bacterial 
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species (see Figure 4 and Supplementary Table S2 for variant details). S. cerevisiae BY4741 
carrying the ORF of the aopW1 variants in pGML10 were grown in glucose (repressing) and in 
galactose/raffinose (inducing) medium. Pictures were taken after 3 days of growth at 28 °C and 
are representative of three independent experiments. 

 

In the case of group II AopW1, a variant carrying substitutions in positions 1 to 4 [1 

(I-154-V) + 2 (Q-162-R) + 3 (A-167-P) + 4 (T-174-A)], had a substantially higher yeast 

growth inhibition ability as compared with the group II wild-type version (Figure 4B). 

However, adding a fifth substitution to this variant [6 (M-189-T)] abolished this effect. 

In addition, a combination of two substitutions [1 (I-154-V) + 2 (Q-162-R)] and a 

combination of three substitutions [1 (I-154-V) + 2 (Q-162-R) + 3 (A-167-P)] led to a 

subtle increment in the growth inhibition effect as compared with the group II wild-type 

version of AopW1 (Figure 4B). Overall, results from these experiments demonstrated 

that the AopW1 HVR is important for induction of cytotoxicity in yeast. These 

experiments also demonstrated the importance of the six positions that are conserved 

between group I AopW1 and most homologous effectors from other plant-pathogenic 

bacteria. However, it appears that the interactions among these positions are complex 

and not merely additive.   

 

The HVR and the C-terminal part of AopW1 are required for cytotoxic ability 

To learn about the importance of the different parts of AopW1 for its activity, we 

generated pGML10 constructs carrying several N- and C-terminal truncated variants in 

the background of group I AopW1 (Supplementary Table S2; Figure 5). Growth 

inhibition assays with yeast cells carrying these constructs revealed that the N-terminal 

part of the effector (first 135 residues; AopW1-M6Δ1-135) is not important for yeast 

inhibition ability. However, removal of the next 10 residues (AopW1-M6Δ1-145) 

significantly reduced this ability. Further removal of 30 residues (AopW1-M6Δ1-175), 

which also removed part of the HVR, almost abolished yeast growth inhibition ability 

of AopW1. The C- terminal part was found to be critical for the cytotoxic ability of 

AopW1. While removal of the last 10 residues (AopW1-M6Δ476-485) did not affect 

AopW1 activity, removal of the last 25 residues (AopW1-M6Δ461-485) completely 

abolished it (Figure 5).  
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Figure 5. The HVR and the C-terminal region of AopW1 are required for cytotoxicity. 
Wild-type and shortened variants of A. citrulli M6 (group I) aopW1 were cloned in pGML10 
and transformed into S. cereviasiae BY4741 for growth inhibition assays. Yeast were grown in 
glucose (repressing) and in galactose/raffinose (inducing) medium. Pictures were taken after 3 
days of growth at 28 °C and are representative of three independent experiments.  

 

Conserved residues in the HVR are crucial for induction of water-soaking-like cell 

death in Nicotiana benthamiana 

Recently, Traore et al. (2019) showed that transient expression of group I and II 

AopW1 induces a water-soaking-like cell death phenotype in N. benthamiana leaves. 

Here we assessed the effects exerted by selected group I and II AopW1 variants 

carrying substitutions in some of the HVR a.a. positions (based on results from yeast 

inhibition assays). The AopW1 variants were agroinfiltrated into N. benthamiana leaves 

and their expression was verified by Western blot analysis (not shown).  

In line with the results reported by Traore et al. (2019), both group I and II AopW1 

induced water soaking in N. benthamiana leaves, with group I AopW1 inducing a much 

stronger effect (Figure 6). The group I variant of AopW1 carrying the three HVR 

substitutions that reduced cytotoxic activity in yeast [1 (V-154-I) + 2 (R-162-Q) + 3 (P-

167-A)] did not differ considerably in terms of water soaking induction as compared 

with group I AopW1. However, the group II variant of AopW1 carrying the four 

substitutions that increased cytotoxicity of this effector in yeast [1 (I-154-V) + 2 (Q-

162-R) + 3 (A-167-P) + 4 (T-174-A)] induced a stronger water-soaking phenotype in N. 

benthamiana leaves as compared with group II AopW1 (Figure 6). This result 

demonstrates the importance of the above a.a. positions for in planta cytotoxic activity 

of AopW1. 
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Figure 6. Transient expression of AopW1 and EHD1 in N. benthamiana leaves. (A) Wild-
type or mutated variants of A. citrulli M6 (group I) and 7a1 (group II) AopW1 were transiently 
expressed in N. benthamiana leaves following agroinfection. See AopW1 variant details in 
Supplementary Table S2. Pictures were taken 3 days after infiltration.  
 

AopW1 localizes to the plant cell cytoplasm and interacts with chloroplasts 

The subcellular localization of group I and II AopW1 was studied by confocal 

microscope analysis following agroinfiltration of N. benthamiana leaves. AopW1 ORFs 

were fused to yellow fluorescent protein (YFP) (Supplementary Table S2) for 

localization analyses. Overall, the work with group II AopW1 was easier than with 

group I AopW1, due to the extensive damage caused in N. benthamiana infiltrated sites 

by the latter, which challenged co-localization analysis.     

Both group I and II AopW1 were located in the cytoplasm, with no nuclear 

localization being detected (Figure 7A and B). Interestingly, both effectors were shown 

to co-localize with chloroplasts. This was more clearly detected for group II AopW1 

(Figure 7B), probably because of the aforementioned extensive damage caused by group 

I AopW1 to N. benthamiana cells. Co-localization of AopW1 with chloroplasts was in 

agreement with the detection of a chloroplast transit peptide (cTP) in the N-terminus of 

the effector, as detected by ChloroP 1.1 (Emanuelsson et al., 1999), WoLF PSORT 

(Horton et al., 2007) and Localizer (Sperschneider et al., 2017) softwares 

(Supplementary Appendix S1). Deletion of the first N-terminal 85 residues from group 

II AopW1, which contains the cTP sequence, abolished the co-localization of AopW1 

with chloroplasts (Figure 7C). 
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Figure 7. Subcellular localization of AopW1 in N. benthamiana leaf cells. Confocal images 
of N. benthamiana leaves 24 h after agroinfiltration. YFP-fused AopW1 from strains M6 (group 
I) and 7a1 (group II) are shown in yellow. Nuclei are shown in blue. Chloroplasts are shown in 
red. (A) Group I AopW1. (B) Group II AopW1. (C) A short variant of group II AopW1 lacking 
the predicted chloroplast transit peptide (cTP) in its N-terminus (AopW1Δ1-85). Removal of this 
region causes a delocalization of AopW1 into chloroplasts. White arrows indicate co-
localization of AopW1 with chloroplasts. Scale bars indicate 20 µm.  
 

Group I AopW1 disrupts the plant actin cytoskeleton and affects endoplasmic 

reticulum organization  

To evaluate the interaction of AopW1 with the plant actin cytoskeleton, we co-

expressed AopW1 fused with YFP with the plant actin marker, DsRed-ABD2 (Voigt et 

al., 2005a) following agroinfiltration of N. benthamiana leaves. While both group I and 

II AopW1 co-localized with the actin marker, only group I AopW1 disrupted the actin 

cytoskeleton in planta (Figure 8A).  

Proteins involved in actin polymerization are often associated with the endoplasmic 

reticulum (ER) (Zhang et al., 2013). To assess whether AopW1 interacts with the ER, 

we carried out co-expression assays of AopW1-YFP with the ER marker mRFP-HDEL 

(Runions et al., 2006; Schoberer et al., 2009). While both versions of AopW1 co-

localized with the ER, only group I AopW1 caused a disorganization of the usual ER 

architecture (Figure 8B).  
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Figure 8. Group I AopW1 disrupts the actin cytoskeleton and alter the endoplasmic 
reticulum (ER) distribution in N. benthamiana leaf cells. Confocal images of N. benthamiana 
leaves 48 and 24 h after agroinfiltration with plant markers and AopW1, respectively. YFP-
fused AopW1 from strains M6 (group I) and 7a1 (group II) are shown in yellow. The actin 
marker DsRed-ABD2 (A) and the ER marker mRFP-HDEL (B) are shown in red. Scale bars 
indicate 20 µm.  
 

AopW1 co-localizes with plant endosomes  

The plant actin cytoskeleton plays an essential role in several biological processes in 

plants, including endocytosis and endosomal trafficking (Paez-Garcia et al., 2018; 

Thomas et al., 2009). We tested co-localization of AopW1-YFP with various plant 
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endosome markers fused with several fluorescent proteins in N. benthamiana leaf cells. 

The tested markers were FYVE-DsRed, which binds phosphatidyl inositol (Voigt et al., 

2005a); AtEHD1-CFP, which partially co-localizes with FYVE, RabD2b (Wave33) and 

RabA1e (Wave34), and functions in endocytic recycling (Bar et al., 2008a,b; Bar et al., 

2013); mCherry-Wave33, which possesses endosomal and trans-Golgi localization (Bar 

et al., 2013); and Ara7 (RabF2b)-CFP, which likely localizes to recycling and late 

endosomes (Bar et al., 2013; Lee et al., 2004). 

Expression of group I AopW1 in N. benthamiana leaves revealed this effector 

partially co-localizes with all tested endosome markers, suggesting AopW1 possibly 

interferes with early and recycling endosomes (Figure 9A). In contrast, we were not 

able to detect co-localization of group II AopW1 with DsRed-FYVE (Figure 9B). The 

pattern of distribution of group II AopW1 appeared to be similar to those of markers 

mCherry-Wave33 or Ara7-CFP, which could be due to their actin-dependent 

localization. Nevertheless, unlike the observed for group I AopW1, no clear co-

localization signals were detected between these markers and group II AopW1 (Figure 

9). 

 

Figure 9. AopW1 co-localizes with plant endosomes in N. benthamiana leaf cells. Confocal 
images of N. benthamiana leaves 48 and 24 h after agroinfiltration with plant markers and 
AopW1, respectively. YFP-fused AopW1 from strains M6 (group I, A) and 7a1 (group II, B) 
are shown in yellow. Endosome markers DsRed-FYVE and mCherry-Wave33 (RabD2b) are 
shown in red. Endosome markers Ara7-CFP (RabF2b) and AtEHD1-CFP are shown in blue. 
White arrows indicate co-localization of AopW1 with plant endosomes. Scale bars indicate 20 
µm.  
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EHD1 attenuates AopW1 cytotoxicity and increases immune responses  

Observation of leaves used in co-localization experiments suggested that co-

infiltration of group I AopW1 with the AtEHD1-CFP marker attenuated the toxic effect 

induced by the effector. To verify these findings, we carried out additional leaf 

infiltration assays in which A. tumefaciens carrying group I or II AopW1 were 

infiltrated alone or in combination with A. tumefaciens carrying AtEHD1. Co-

infiltrations were carried out at the same site or at a close distance between bacteria 

carrying the two proteins. Results from these experiments confirmed that expression of 

EHD1 in N. benthamiana attenuated the toxic effect induced by group I AopW1, and 

completely abolished the toxicity induced by group II AopW1 (Figures 10A and B). 

 

Figure 10. EHD1 attenuates AopW1 cytotoxicity and increases defence responses.  Transient 
expression of EHD1 in N. benthamiana attenuates or abolishes the water soaking phenotype 
triggered by group I and group II AopW1, respectively. Agrobacterium-mediated transient 
expression of EHD1 and AopW1 from A. citrulli M6 (group I) and 7a1 (group II) by infiltration of 
individually (A) or overlapping (B) A. tumefaciens cultures. Pictures were taken 3 days after 
infiltration. Transient expression of EHD1 in N. tabacum leaves increases EIX-induced cell death 
(hypersensitive response, HR) (C) and EIX-induced ethylene biosynthesis (D). For HR assays, N. 
tabacum leaves were transiently transformed to co-express EIX and EHD1-GFP or free GFP 
(mock). HR development was quantified 72 h post-injection. Mock average HR level was defined 
as 1. Data are means and SE of 3 independent experiments, with asterisks denoting significant 
difference from mock in a two-tailed t-test (N=3, **p=0.0062). For ethylene biosynthesis assays, 
leaf disks of transiently transformed N. tabacum leaves with EHD1 or mock (free GFP) were 
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floated on a solution with 250 mM sorbitol without (wounding) or with 1 µg/mL EIX, 48 h post 
transformation. Ethylene biosynthesis was measured after 4 h. The mock + EIX average induction 
value was defined as 1. Data represent means and SE of 3 independent experiments, with letters 
denoting significant differences among treatments in a one-way ANOVA with a Dunnett post-hoc 
test (N=21, p<0.0001). Box-plots display minimum to maximum values, with inner quartile ranges 
indicated by box and outer-quartile ranges by whiskers. Line indicates median, "+" indicates mean.  
 

EHD1 is known to affect endosomal recycling in Arabidopsis (Bar et al., 2008a; Bar 

et al., 2013). We asked whether EHD1 could be directly involved in plant immunity. 

For this purpose, we transiently co-expressed EHD1 and the fungal defence elicitor 

ethylene-inducing xylanase (EIX; Dean et al., 1991; Ron and Avni, 2004) in leaves of 

Nicotiana tabacum, and monitored EIX-induced cell death 72 h post-transformation. 

Leaves co-expressing EIX and EHD1 showed significantly higher levels (p=0.0062) of 

induced cell death than leaves expressing EIX alone (Figure 10C). Similarly, N. 

tabacum leaves transiently transformed with EHD1 showed significantly increased 

levels (p<0.0001) of ethylene biosynthesis than non-transformed leaves following 

treatment with EIX (Figure 10D).       

 

Group I AopW1 reduces callose deposition in N. benthamiana leaves after PTI 

induction 

Increased callose deposition is a common marker of PTI and many pathogen 

effectors are able to reduce callose deposition upon induction of PTI (Voigt, 2014; 

Wang et al., 2021). To assess whether AopW1 affects callose deposition, N. 

benthamiana leaves were treated with the flagellin-derived PTI elicitor flg22 (Felix et 

al., 1999). After 24 h, leaves were agroinfiltrated with group I or II AopW1. Leaf 

samples were collected after 24 h for assessment of callose deposition. As controls, 

leaves were left untreated or infiltrated with A. tumefaciens GV3101 carrying 

pEarleyGate 101 (empty vector). Group I AopW1 significantly (p < 0.05) reduced the 

number of callose deposits induced by flg22, as compared with controls. In contrast, 

group II AopW1 did not significantly affect callose deposition as compared with 

controls (Figure 11).  
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Figure 11. Group I AopW1 reduces callose deposition in N. benthamina cells after PTI 
induction. Nicotiana benthamiana leaves were treated with 40 µM flg22 for 24 h and then co-
infiltrated with A. tumefaciens GV3101 carrying pEarleyGate101, either empty or containing 
the aopW1 ORFs of A. citrulli M6 (group I) or 7a1 (group II). After 24 h post agroinfiltration, 1 
cm- diameter disks were collected, stained with aniline blue and callose deposits were 
quantified. Callose deposits were counted from 6 areas/3 leaves/3 plants. Data represent means 
and SE from one experiment out of two with similar results. Letters indicate significant 
(p=0.05) differences among treatments by ANOVA, using both Bonferroni and HSD Tukey 
tests. 

 

DISCUSSION 

Acidovorax citrulli requires a functional T3SS to cause disease (Bahar and Burdman, 

2010; Johnson et al., 2011). A large number of novel T3E genes have been recently 

identified in the genome of the A. citrulli model strain M6 (Jiménez-Guerrero et al., 

2020). M6 belongs to one of the two predominant groups of A. citrulli strains, group I, 

which is composed of strains that were mainly isolated from melon but also from other 

non-watermelon cucurbits. The second major group of strains, group II, is composed of 

strains that show preferential association with watermelon, and can be clearly 

distinguished by genetic and biochemical traits from group I strains (Burdman et al., 

2005; Eckshtain-Levi et al., 2016; Feng et al., 2009; Walcott et al., 2000; Walcott et al., 

2004). We have shown that group I and II strains differ in their T3E arsenal. Firstly, 

several T3Es appear to be group-specific. Secondly, many T3E genes that are shared by 

the two groups show significant differences in their sequences (Eckshtain-Levi et al., 
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2014; Jiménez-Guerrero et al., 2020). In this study, we characterized an A. citrulli T3E, 

AopW1, which belongs to the second category. 

AopW1 shares similarity with P. syringae HopW1, and with T3Es from other plant-

pathogenic bacterial species, including Acidovorax spp. (Jiménez-Guerrero et al., 2020; 

Figure 3). This effector was recently shown to contribute to A. citrulli virulence (Traore 

et al., 2019). In the present study, heterologous expression in yeast revealed that while 

group I AopW1 is extremely toxic to these cells, the group II version of this effector has 

only a minor toxic effect (Figure 1).  

Among AopW1 homologous effectors, the only one that was well characterized is P. 

syringae HopW1. While aopW1 encodes a product of 485 amino acids (a.a.), HopW1 is 

774 a.a-long. In fact, AopW1 shares similarity with the central and C-terminal parts of 

HopW1. Lee et al. (2008) showed that HopW1 triggers immunity responses in the 

Arabidopsis Ws ecotype and in N. benthamiana. The authors also showed that HopW1 

interacts with a putative acetylornithine transaminase (WIN1), a protein phosphatase 

(WIN2) and a firefly luciferase superfamily protein (WIN3) of Arabidopsis, with the 

HopW1 C-terminal domain being required for these interactions. Later, Kang et al. 

(2014) showed that HopW1 promotes virulence in a different Arabidopsis ecotype, Col-

0, by inhibiting actin polymerization and severely disrupting endosome trafficking.  

AopW1 is highly conserved among group I and II strains of A. citrulli, except for a 

hypervariable region (HVR) located at a.a. positions 147-192, and showing 14 a.a. 

differences between group I and II strains (Figure 3B). Importantly, the HVR is 

included in the part of AopW1 that shares similarity with the central/C-terminal regions 

of HopW1 that are required for cytotoxic activity. Here we showed that deletion of the 

HVR abolishes the ability of group I AopW1 to exert toxic effects on yeast (Figure 5). 

We also noticed that among the 14 variable a.a. positions between group I and II 

AopW1 in the HVR, six are well conserved between group I AopW1, HopW1 and other 

HopW1 homologs (Figure 3B). We therefore hypothesized that these positions are 

critical for the activity of AopW1 and other effectors of this family. In support of this 

notion, growth inhibition assays of yeast expressing mutated versions of AopW1 

revealed that a combination of three substitutions in the HVR (V-154-I, R-162-Q and P-

167-A) were sufficient to cause a significant reduction of cytotoxicity exerted by group 

I AopW1. On the other hand, combination of four substitutions (I-154-V, Q-162-R and 

A-167-P and T-174-A) conferred high cytotoxic ability to the group II version of 
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AopW1 (Figure 4). These findings demonstrate the important role of the above a.a. 

positions for the cytotoxic activity of effectors belonging to the HopW1 family.  

The actin cytoskeleton is a complex network of dynamic polymers that play 

important roles in a wide range of cellular processes (Mishra et al., 2014; Pollard and 

Borisy, 2003). The actin cytoskeleton also plays an essential role in plant immunity, 

assisting in multiple defence functions in both early and late defence responses, such as 

vesicle trafficking and endo/exocytosis, fortification of the cell wall and deposition of 

callose (Hardham et al., 2007; Li and Staiger, 2018). Upon bacterial infection, 

epidermal cells of Arabidopsis leaves show early increase in density of actin filaments 

and late actin remodelling, with these responses being correlated with PTI and effector-

triggered susceptibility, respectively (Henty-Ridilla et al., 2013). Therefore, it is not 

surprising that pathogen effectors target host cytoskeletal organization in order to 

subvert plant defence responses, as demonstrated for HopW1 (Kang et al., 2014) but 

also for a different P. syringae effector, HopG1 (Shimono et al., 2016). In addition, 

several studies indicate that other P. syringae effectors, HopAV1, HopAZ1, HopZ1a 

and HopE1, as well as AvrBsT from Xanthomonas euvesicatoria, or the powdery 

mildew effector ROPIP1, could be acting to some extent on the plant cell cytoskeleton 

(Cheong et al., 2014; Choi et al., 2017; Guo et al., 2016; Lee et al, 2012; Nottensteiner 

et al., 2018). Accordingly, we showed that group I AopW1 disrupts muscle F-actin in 

vitro (Figure 2), and affects yeast and plant filamentous actin (F-actin) in vivo (Figures 

8A and 11; Supplementary Figure S1). Findings from our study also support the notion 

that group II AopW1 is an attenuated version of this effector in terms of actin disruption 

ability (Figures 2 and 8A; Supplementary Figure S1).  

One of the plant responses to pathogen invasion is fortification of the cell wall 

through callose deposition (Voigt, 2014). This immune response is assisted by the actin 

cytoskeleton (Li and Staiger, 2018). Pathogens utilize protein effectors to suppress plant 

immune response, including reduction of callose deposition (Wang et al., 2021). Here 

we showed that group I but group II AopW1 is able to significantly reduce callose 

deposition in N. benthamiana leaves pre-treated with the PTI elicitor flg22 (Figure 11). 

This finding could be explained, at least partially, by the severe disruption of the actin 

cytoskeleton by group I but not by group II AopW1. Differences between the two 

versions of the effector were also observed in alteration of the ER structure, which 

could be indirectly associated with the differences between the effectors in actin 

disruption ability (Figure 8B).  
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Actin is directly involved in vesicle trafficking and endo/exocytosis processes that 

are essential for the delivery of specialized proteins and defence molecules to the 

cytoplasmic membrane (Li and Staiger, 2018). Several defence receptors are 

internalized into early endosomes, and further recycled back to the membrane via 

recycling endosomes, or targeted for degradation via the late endosome pathway. 

Increase of the amount of a receptor in endosomes causes a concomitant signalling 

enhancement, whereas abolishment of endosome formation once the receptor is 

internalized causes signalling attenuation (Bar and Avni, 2014). Therefore, endosome 

components appear to be attractive targets of pathogen effectors. As mentioned above, 

HopW1 was shown to reduce the number of endosome vesicles in planta (Kang et al., 

2014). Other T3Es seem to be associated with plant endosomes, such as HopM1 from P. 

syringae, which interferes with AtMIN7/BEN1 function at the early endosome/trans-

Golgi network (TGN) (Nomura et al. 2006; Nomura et al. 2011). Here we showed that 

group I AopW1 clearly co-localizes with the endosome markers FYVE, Ara7, Wave33 

and EHD1, supporting that it acts in some way in early and recycling endosome 

functioning (Figures 9 and 12).  

Co-localization of EHD1with FYVE and Wave33 was reported by Bar et al. (2008; 

2013), who suggested a role for this protein in endocytic recycling. The mammalian 

EHD1 homologs are known to be involved in endocytic recycling (Galperin et al., 2002; 

Grant and Caplan, 2008). Moreover, it has been shown that overexpression of EHD1 

protects against salinity stress, suggesting an association between endocytic recycling 

and plant stress coping mechanisms (Bar et al., 2013). Here we showed that 

overexpression of EHD1 attenuates the cytotoxic effect of group I AopW1 and 

abolishes the cytotoxic effect of group II AopW1 in N. benthamiana leaves (Figures 

10A and B), thus supporting the involvement of this effector in endocytic recycling. In 

addition to the recycling mechanism which may underlie the attenuated effector 

cytotoxicity, we show that transient expression of EHD1 in N. tabacum leaves increases 

defence responses induced by the EIX elicitor (Figures 10C and D), suggesting that 

increased endocytic recycling may increase plant immunity. Overall, our study provides 

first evidence on the potential role of the endosome-associated protein EHD1 in 

regulating immune responses. The attenuating effect of AopW1 exerted by EHD1 could 

be mediated by different mechanisms such as toxicity relief through endocytic re-

cycling and/or induction of host immunity. 
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Chloroplasts play an important role in plant immunity as they are the source of 

important defence signalling molecules (Nomura et al., 2012; Serrano et al., 2016; 

Singh et al., 2018). AopW1 possesses a predicted cTP signal in its N-terminal part 

(Supplementary Appendix 1) and co-localization of AopW1 to chloroplasts in a cTP 

signal-dependent manner was demonstrated in this study (Figures 7C). Whether AopW1 

interferes with chloroplast functioning or with a chloroplast signalling pathway is yet to 

be determined. 

In conclusion, our study provides insights into mechanistic features of T3Es 

belonging to the HopW1 family. While it was previously shown that group I and II 

strains of A. citrulli possess different versions of AopW1 (Eckshtain-Levi et al., 2014), 

here we show that these versions substantially differ in their ability to interact with plant 

cell compartments and disrupt the actin cytoskeleton (Figure 12). It is yet to be 

elucidated whether the differences between the two versions of AopW1 are important 

determinants for the distinguished patterns of host preferential association of the two 

groups of A. citrulli strains. Considering the subtle contribution of most bacterial 

effectors (including AopW1) to virulence, and the high amount of T3Es in A. citrulli, 

this is a very challenging task. The question also remains whether the variation in 

AopW1 is among the significant evolutionary alterations that occurred during the 

process of adaptation of A. citrulli to different hosts. In this regard, it is worth 

remarking that a similar variation in the AopW1 HVR could be detected among strains 

of A. avenae, which are able to infect several graminaceous plants.    

 

Figure 12. Schematic representation of AopW1 localization and targeting in the plant cell. 
AopW1 localizes at the cell cytoplasm, where it disrupts actin filaments and co-localizes to 
early and recycling endosomes. AopW1 also localizes to chloroplasts. Co-localization with 
known markers is indicated in red (AtEHD1, FYVE, Ara7 and Wave33). Arrows point to 
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trafficking pathways from the membrane to the early/re-cycling endosome and back to the 
membrane. TGN/EE, trans-Golgi network/early endosome; MVBs/LE, multivesicular 
bodies/late endosome. 
 

EXPERIMENTAL PROCEDURES 

Strains, plant material and growth conditions 

Strains and plasmids used in this study are listed in Supplementary Table S2. 

Escherichia coli and Agrobacterium tumefaciens as well as derived strains were 

cultured in Luria-Bertani (LB; Difco Laboratories, USA) medium at 37 ºC and 28 ºC, 

respectively. Acidovorax citrulli strains were grown in nutrient broth (NB; Difco 

Laboratories) or nutrient agar (NA; NB containing 15 g/l agar) at 28 ºC. When required, 

the media were supplemented with the antibiotics ampicillin (Ap, 100 µg ml-1 for E. 

coli, and 200 µg ml-1 for A. citrulli), rifampicin (Rif, 50 µg ml-1), kanamycin (Km, 30 

µg ml-1 for E. coli and 50 µg ml-1 for A. tumefaciens), and gentamycin (Gm, 10 µg ml-

1). Saccharomyces cerevisiae BY4741 (Brachmann et al., 1998) was grown at 30 °C on 

YPD medium (Rédei, 2008). For repressing and inducing conditions, BY4741 derivate 

strains were grown in selective synthetic complete medium without leucine 

supplemented with 2% glucose or 2% galactose and 1% raffinose, respectively 

(Salomon and Sessa, 2010). Nicotiana benthamiana plants (Goodin et al., 2008) were 

grown in a growth chamber under the following controlled conditions: 16�h at 26�°C 

in the light and 8�h at 18�°C in the dark, 70% humidity. Nicotiana tabacum cv. 

Samsun NN plants were grown from seeds under greenhouse long day conditions (16 h 

light/ 8 h dark), at 25�°C. 

 

Molecular manipulations 

Routine molecular manipulations and cloning procedures were carried out by 

standard techniques unless stated otherwise. Restriction enzymes and T4 DNA ligase 

were purchased from Fermentas (Thermo Fisher Scientific, USA). AccuPrep® Plasmid 

Mini Extraction Kit (Bioneer Corporation, Republic of Korea) and Wizard® SV Gel 

and PCR Clean-Up System (Promega Corporation, USA) were used for plasmid and 

PCR product extraction and purification, respectively. Bacterial DNA was extracted 

using the GeneElute Bacterial Genomic DNA Kit (Sigma-Aldrich, USA). All constructs 

were verified by DNA sequencing at Hy Laboratories (Israel). PCR primers were 

purchased from Hy Laboratories or Sigma-Aldrich Israel. All oligonucleotides primers 

used in this study are listed in Supplementary Table S4. PCR reactions were performed 
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with the Readymix Red Taq PCR reactive mix (Sigma-Aldrich), Phusion high-fidelity 

DNA polymerase (Fermentas) or with the Q5® High-Fidelity DNA Polymerase (New 

England Biolabs, USA) using an Eppendorf (Germany) thermal cycler. 

For immunostaining, proteins were separated by SDS-PAGE and electroblotted using 

the iBlot Gel Transfer Stacks (Invitrogen, USA) and iBlot Transfer Device (Invitrogen), 

following manufacturer’s instructions. Nitrocellulose membranes were blocked with 

TBS containing 0.1 % (v/v) Tween 20 and 3% (w/v) skim milk and incubated with 

antibodies raised against c-Myc, His and HA (Cell Signalling Technology, USA) 

diluted 1:1000 in the same solution. Anti-mouse or anti-rabbit HRP-linked antibodies 

(Cell Signalling Technology) were used as secondary antibodies. Reactions were 

visualized using a chemiluminescent substrate (Cyanagen, Italy) in a LAS500 apparatus 

(GE Healthcare, USA). 

 

Cloning and transformation of yeast and bacteria 

For expression in yeast, the aopW1 ORFs of A. citrulli M6 and 7a1 were PCR-

amplified with specific primers. The obtained products were inserted into the 

BamHI/EcoRI sites of pGML10 (Iha and Tsurugi, 1998), following pretreatment of the 

inserts and plasmids with the same restriction enzymes. The ORFs of the hopW1 gene 

of P. syringae pv. maculicola ES4326 and of the hopW1 homologous gene of X. 

translucens pv. translucens (Xtt) DSM 18974 were cloned into pGML10 by restriction 

free (RF) method (van den Ent and Lowe, 2006) using appropriate primers, and plasmid 

pBAV154-dexHopW1-HA or genomic DNA of Xtt DSM 18974 as templates, 

respectively. The mutated variants of AopW1 were generated by inserting mutations in 

the corresponding primers in combination with the Quick Change Lightening Site 

Directed Mutagenesis kit (Agilent Technologies, SC, USA). For this purpose, PCR 

reactions for each mutation were carried out in 50 µl reaction mixture containing 5 µl of 

10X reaction buffer, 100 ng of template DNA, 125 ng of both oligonucleotide primers, 

1 µl of dNTP mix, 1.5 µl of Quickchange Solution reagent and 1 µl of Quick Change 

lightening enzyme. The final volume was made with sterilized distilled water (SDW). 

The cycling parameters included an initial denaturation step at 95 ºC for 2 min, 18 

cycles of denaturation (at 95 ºC for 20 s), annealing (at 60 ºC for 10 s) and extension (at 

68 ºC for 2.5 min), and final extension at 68 ºC for 5 min. Then, the amplified plasmid 

DNA product was digested with DpnI provided with the kit. Effector gene variants 

carrying combinations of individual mutations in the background of the M6 and 7a1 
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aopW1 genes were generated using the same procedure. The resulting plasmids were 

mobilized into S. cerevisiae BY4741 by the lithium acetate yeast transformation method 

(Gietz et al., 1992). Transformed yeast cells were plated onto selective synthetic 

complete without leucine medium supplemented with 2% glucose. 

For Agrobacterium-mediated transient expression, the aopW1 ORFs of strains M6 

and 7a1 were amplified with appropriate primers. The resulting products were cloned 

into pDONR207 entry vector and then mobilized into pEarlyGate 101 binary vector 

(Earley et al., 2006) by the Gateway cloning system (Thermo Fisher Scientific). The 

generated plasmids were then transformed into A. tumefaciens GV3101 by heat shock 

transformation as described (Zhou et al., 2009).  

For expression and purification of recombinant AopW1 to assess F-actin in vitro 

disruption activity, the aopW1 ORFs without their 300-bp N-terminal region were 

amplified by PCR with specific primers. The resulting fragments were cloned into the 

EcoRI/XhoI site of pET28a, leading to generation of recombinant AopW1 fused to 

polyhistidine tag (His-tag) in both extremes. The generated plasmids were mobilized 

into E. coli BL21(DE3) (Studier and Moffatt, 1986) by the heat shock method (Froger 

and Hall, 2007). 

 

Yeast growth inhibition and viability assay 

Growth inhibition assays were performed as described (Salomon et al., 2011). 

Saccharomyces cerevisiae BY4741 carrying pGML10 with aopW1 ORFs were grown at 

30 °C overnight in liquid selective medium containing 2 % glucose. Cultures were 

centrifuged (800 g, 5 min, at room temperature; twice) and pellets were suspended with 

SDW to an optical density at 600 nm (OD600) of 1.0. For each culture, four serial 

dilutions were prepared and 10-µl aliquots from each dilution were spotted onto solid 

selective medium containing 2% glucose (repressing medium), or 2% galactose and 1% 

raffinose (inducing medium), or onto inducing medium supplemented with 7 mM 

caffeine, 1 M sorbitol or 0.5 M sodium chloride. Yeast cells were incubated at 30 °C for 

3 days.  

For yeast viability assays, overnight cultures of yeast (as detailed above for growth 

inhibition assays) were diluted with fresh repressing medium to an OD600 of 0.5, and 

incubated for 2 h at 30 °C with shaking (200 rpm). Yeast cells were washed as 

described above but pellets were resuspended in 2 ml of induction medium to an OD600 

of 0.2. The resulting cultures were incubated at 30 °C with shaking (200 rpm) and 0.1-
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ml aliquots were collected at different time points. The concentrations of viable cells 

were determined by plating of serial dilutions on selective repressing medium, with 

plates being incubated for 2 days at 30 °C. Data was analysed by Student t-test. The 

expression of the effectors was validated by Western blot analysis, following the 

procedure described by Salomon and Sessa (2010), using a c-Myc primary antibody 

(not shown). 

 

Yeast actin staining  

Yeast actin staining was performed as described (Adams and Pringle, 1991), with 

some modifications. Briefly, yeast overnight cultures grown as described above were 

diluted with fresh repressing medium to and OD600 of 0.4 and incubated for 2 h at 30 °C 

with shaking (200 rpm). Yeast cells were washed as described above and pellets were 

resuspended in 4 ml inducing medium to an OD600 of 0.2. Cultures were incubated at 

the same conditions for 8 h to allow effector expression. During this period, cultures 

were refreshed with inducing medium at least once. Cultures were then centrifuged (800 

g, 5 min, at room temperature), and pellets were washed with phosphate buffered saline 

solution (PBS; 137 mM NaCl, 2.7 mM KCI, 8 mM Na2HPO4 and 2 mM KH2PO4; pH 

7.2). Pellets were carefully resuspended in 1 ml of fresh paraformaldehyde 4% solution 

in PBS. Fixation was done by incubation at 4 ºC for 15 min with soft rotation. Cells 

were washed by centrifugation (500 g, 5 min, at room temperature) and resuspension 

with PBS twice, and finally resuspended in 1 ml of fresh PBS with 0.1% Triton X-100. 

The suspensions were incubated at room temperature for 20 min, after which the cells 

were washed as described above with PBS (twice). For staining of yeast cell actin and 

nucleus, the pellets were resuspended with 100 µl of blocking solution (1X PBS, 1% 

BSA and 0.1% saponin) containing 50 µg/ml of TRITC-phalloidin (Sigma-Aldrich) and 

2.5 µg/ml of 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) (Kapuscinski and 

Skoczylas, 1977). The suspensions were incubated for 1 h at 4 °C, at dark conditions. 

Cells were then washed twice by centrifugation and resuspension with PBS as described 

above, and finally resuspended in 5-10 µl of 0.1 M propyl gallate in 100% glycerol. 

One-microliter drops of the suspensions were visualized in a Leica SPE Confocal 

Microscope (Leica Microsystems, Germany), using poly-L-lysine microscope slides.  

 

Expression and purification of recombinant AopW1  
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Expression and purification of recombinant His-tagged AopW1 was performed 

following the protocol described by the Macherey Nagel (Germany) purification of His-

tag protein manual. For expression of AopW1, Escherichia coli BL21(DE3) carrying 

plasmids pET28a::M6aopW1-M6Δ1-100 or pET28a::7a1aopW1-7a1Δ1-100 (encoding His-

tagged AopW1101-485 from strains M6 and 7a1, respectively) were grown in 5 ml of LB 

supplemented with kanamycin at 37 ºC overnight. Cultures were then transferred to 100 

ml of the same medium and incubated at 37 ºC until the OD600 reached to 0.6. 

Expression was induced by addition of 1 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG). After 4 h, cells were resuspended in NPI buffer (50 mM NaH2PO4, 300 mM 

NaCl; pH 8.0), containing 10 mM imidazole (BioWorld, USA), harvested by 

centrifugation at 6,000 g for 15 min at 4 ºC, and stored at -80 ºC until use.  

For purification of recombinant proteins, pellets from 100 ml of IPTG-induced 

cultures were resuspended in 3 ml of NPI buffer containing 1 mM imidazole, 1 mM 

phenylmethanesulfonyl fluoride (PMSF), 1X protease inhibitor cocktail (Bimake, USA) 

and 1 mg/ml lysozyme. Suspensions were incubated on ice for 30 min, and then 

sonicated on ice ten times for 15 s, with 15-s cooling intervals between sonication 

treatments. The lysate was clarified by centrifugation at 10,000 g (30 min, at 4 °C). Half 

of the clarified lysate was incubated at 4 °C for 90 min in a column containing 130 µl of 

Protino Ni-NTA agarose (Macherey Nagel), previously equilibrated with NPI buffer 

(pH 8.0), containing 10 mM imidazole, allowing binding of His-tagged AopW1 to 

Protino Ni-NTA agarose. Columns were washed twice with 500 µl of NPI buffer 

containing 100 mM imidazole, and once with 500 µl of NPI buffer containing 200 mM 

imidazole. His-tagged AopW1 was eluted by adding twice 50 µl of NPI buffer 

containing 500 mM imidazole. Purified proteins were dialyzed using 10,000 MWCO 

Slide-A-Lyzer Dialysis Cassettes (Thermo Fisher Scientific) and concentrated using 

Amicon Ultra-4 Centrifugal Filter Unit (Millipore Sigma, USA), following the 

manufacturer´s instructions. Expression and purification of His-tagged AopW1 were 

verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and confirmed by Western blot using His-tag monoclonal antibodies. 

 

Non-muscle F-actin disruption assays  

F-actin disruption assays were carried out using the Actin Binding Protein Spin-

Down Assay Biochem kit (Cytoskeleton, USA) following manufacturer’s instructions, 

in the presence of purified recombinant AopW1101-485. Non-muscle actin was 
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polymerized to actin filaments (F-actin) in 10 mM Tris pH 7.0, 1 mM ATP, 50 mM 

KCl, 1 mM EGTA, 0.2 mM CaCl2 and 2 mM MgCl2 for 1.5 h at 24 °C. Then, 10 mM of 

preassembled F-actin were incubated with 35 µg of AopW1101-485, 2 µM α-actinin 

(positive control) or 2 µM BSA (negative control) for 1 h at 24 °C and centrifuged at 

150,000 g for 1.5 h. Proteins from 20-µl aliquots from pellet or supernatant fractions 

were separated in a 4-20% SDS-PAGE gel and stained with Coomassie blue solution 

(Fermentas). To check the presence of AopW1101-485 in the supernatant fraction, Western 

blots were performed using His-Tag monoclonal antibodies.  

 

Agrobacterium-mediated transient expression on N. benthamiana leaves and 

assessment of subcellular localization  

Transient expression experiments were carried out as described by Roden et al. 

(2004) with some modifications. Briefly, overnight cultures of A. tumefaciens GV3101 

carrying the different plasmids were washed with a 10 mM MgCl2 solution, centrifuged 

at 3,500 g for 5 min and resuspended in induction solution containing 10 mM MgCl2, 

200 mM acetosyringone and 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES) (pH 

5.6). The suspensions were then incubated at 25 ºC without shaking for 3 h. Bacterial 

cultures were diluted to OD600 of 0.6 and infiltrated with a needleless syringe into the 

abaxial part of leaves of 4-week-old N. benthamiana plants. 

Subcellular localization of AopW1 was assessed 24 and 48 h after inoculation with 

A. tumefaciens GV3101 carrying plasmid pEarleyGate 101 with aopW1 fused in frame 

with the yellow fluorescent protein (YFP) gene and a HA tag, and the same strain 

carrying vectors with different plant markers, respectively. The tested markers were: 

Discosoma red fluorescent protein (DsRed) fused in frame with the actin binding 

domain 2 (ABD2) (DsRed-ABD2; Voigt et al., 2005b); monomeric red fluorescence 

protein (mRFP) fused in frame with the ER marker HDEL (mRFP-HDEL; Runions et 

al., 2006; Schoberer et al., 2009); monomeric Cherry Fluorescent Protein (mCherry) 

fused in frame with the endosome marker Wave33 (RabD2b) (Bar et al., 2013); the 

endosome marker FYVE fused in frame with DsRed (Voigt et al., 2005a); and the 

endosome markers Ara7 (RabF2b) and AtEHD1  fused in frame with cyan fluorescent 

protein (CFP) (Bar et al., 2008a; Bar et al., 2013; Lee et al., 2004). Alternatively, 

samples were stained with 1 mg/ml 4′,6-diamidino-2-phenylindole (DAPI) for detection 

of the plant cell nucleus. Detection with infrared emission was used to locate the 

chloroplasts. Agrobacterium tumefaciens GV3101 derivative strains carrying 
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pEarleyGate 104 and pEarleyGate 100 were used as positive and negative controls, 

respectively. Functional fluorophores were visualized using a SPE confocal microscope 

(Leica Microsystems). Contrast and intensity for each image were manipulated 

uniformly using ImageJ software (Schneider et al., 2012). Experiments were carried out 

at least twice for each effector/marker combination. Expression of AopW1-YFP on N. 

benthamiana leaves was validated by Western blot analysis using an HA primary 

antibody.  

 

Hypersensitive response (HR) and ethylene biosynthesis assays in N. tabacum 

leaves 

For HR assays, leaves of 5-6-week-old N. tabaccum cv. Samsun NN were transiently 

transformed with A. tumefaciens GV3101 harboring 35S::TvEIX and 35S::EHD1-GFP 

or 35S::free-GFP (mock). HR development was quantified 72 h post injection using 

ImageJ. Plants were kept in a greenhouse under long day conditions (16h light/ 8h 

dark), at 25 °C. Ethylene biosynthesis was measured as previously described by 

Leibman-Markus et al. (2017). Briefly, leaf disks (0.9 cm diameter) were taken from 

EHD1-GFP transiently expressing N. tabaccum cv. Samsun NN plants (same construct 

as described above), 40 h post injection. Free-GFP (empty vector) was injected as mock. 

Five disks were sealed in each 10 ml flasks containing 1 ml assay medium (with or 

without 1 μg/ml EIX) and incubated with shaking for 4 h at room temperature. Ethylene 

production was measured by Gas chromatography (Varian 3350, Varian, USA). 

 

Detection of callose deposition in N. benthamiana leaves 

Callose deposition assays were carried out by the procedure described by Nguyen et 

al. (2010), with some modifications. Briefly, N. benthamiana leaves were infiltrated 

with 40 µM flg22 (Felix et al., 1999) with a needleless syringe. After 24 h, treated 

leaves were agroinfiltrated with A. tumefaciens GV3101 strain carrying pEarleyGate 

101 vector, either empty or containing aopW1 fused to the YFP gene (OD600 adjusted to 

0.6). After 24 h, 1-cm diameter disks were collected and serially incubated in 95%, 70% 

and 50% ethanol solutions, for 6, 12 and 2 h, respectively, at 37 ºC with shaking. The 

ethanol solutions were replaced several times. Then, disks were washed with double 

distilled water (DDW) and stained for 2 h with 1% aniline blue in 150 mM K2HPO4 (pH 

9.5). Disks were then transferred to a slide containing 60% glycerol in PBS, and callose 

deposits were visualized using a SPE confocal microscope using 405 nm laser for 
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aniline blue excitation and a 475-525 nm band-pass emission filter for aniline blue 

fluorescence collection. Contrast and intensity for each image were manipulated 

uniformly using ImageJ and deposits were counted from 6 areas from 3 different leaves 

from 3 plants (54 total areas per experiment).  

 

SUPPLEMENTARY MATERIAL 

Supplementary material is provided in a separate pdf file.  
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