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Abstract 

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro 

model systems for drug discovery. For these studies to be meaningful, it is important to 

understand the reproducibility of the iPSC‐derived cultures and their similarity to equivalent 

endogenous cell types. Single‐cell and single‐nucleus RNA sequencing (RNA‐seq) are useful to 

gain such understanding, but they are expensive and time consuming, while bulk RNA‐seq data 

can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, 

inexpensive, and convenient alternative that can leverage bulk RNA‐seq to derive more fine‐

grained information about these cultures. We developed CellMap, a computational tool that 

derives cell type profiles from publicly available single‐cell and single‐nucleus datasets to infer 

cell types in bulk RNA‐seq data from iPSC‐derived cell lines. 

Introduction 

Human induced pluripotent stem cells (iPSC) and cells developed from them are gaining 

widespread acceptance for their use in understanding normal and disease processes in vitro1, 2. 

Derived directly from patient material with an unlimited capacity to proliferate in the 
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undifferentiated state and the theoretical ability to differentiate into any cell type under 

appropriate experimental conditions, iPSCs and their differentiated derivatives represent an 

attractive alternative to traditional in vitro models that rely on cancer cell lines or rodent 

material. Barriers that once limited the use of iPSCs, such as costly reagents, complicated 

culture protocols, or restricted access to high quality, well‐characterized iPSC lines, have 

diminished over the last decade. It has also become increasingly apparent that human biology 

can diverge significantly from rodent and even non‐human primate biology, thus necessitating 

the use of human cells3, 4.  

For in vitro studies using iPSC‐derived cells to be meaningful, it is important to understand the 

relationship of the in vitro generated cells to endogenous cell types. This is particularly true 

during the development of novel iPSC differentiation protocols when seemingly small changes 

in culture conditions can lead to divergent cell fates. Evaluating expression of only a few 

canonical proteins by immunocytochemistry or genes by qPCR may not provide an adequate 

representation of what is in the cell culture dish and it can be technically challenging by these 

methods to test for the presence of off‐target cell fates. A similar issue arises once a 

differentiation protocol has been established and one would like to ensure the reproducibility 

of specific cell type production within the same iPSC line and across different iPSC lines 

differentiated with the same protocol. While iPSC‐derived cell types need not be perfect 

replicas of the endogenous cell type to be useful for disease modeling, they must reproduce the 

mechanism of the endogenous function to be evaluated in an appropriate cellular context to be 

physiologically relevant. 

A variety of cell types exist in biological tissues performing different functions. When a 

biological function is altered or deficient, we need to understand the origin and mechanism of 

this aberration to devise ways of correcting it. However, most of the readily available biological 

samples are composed of a mixture of cell types. Experimentally separating these cell types and 

performing single‐cell sequencing on them is cumbersome and costly. Therefore, developing 

computational approaches for cell type deconvolution from bulk RNA‐seq data has been a 

popular and fruitful endeavor during the past decade5, 6. The earlier methods relied on cell type 
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marker genes or cell‐specific signatures obtained from prior publications or derived from low‐

throughput experiments, such as gene expression profiling on FACS sorted cells. CellMix was 

one such useful toolset that provided access to multiple deconvolution methods allowing the 

user to select the best approach based on the available data7. Unfortunately, the support of this 

public tool has been discontinued and it is incompatible with the latest R libraries. More 

complex and computationally demanding approaches have also been designed to characterize 

engineered cells based on inference of tissue‐specific gene regulatory networks first from 

microarray data and then from bulk RNA sequencing data8, 9.  

The aspiration to eliminate the dependence on prior knowledge of cell type markers or 

expression signatures led to efforts to develop de novo deconvolution algorithms. One such 

example is CellDistinguisher, which mathematically identifies cell type specific patterns in bulk 

expression data obtained from multiple heterogeneous samples10. CellDistinguisher can identify 

the genes that best distinguish a defined number of cell types or biological processes in the 

input data. This type of unsupervised deconvolution, however, cannot tell whether the patterns 

detected are a result of the presence of multiple cell types or subpopulations undergoing 

different biological processes, e.g., apoptosis, different phases of the cell cycle, etc.  Adding 

even limited amount of prior knowledge in the form of marker gene sets can guide such 

methods into the desired direction.  

With the advances of single‐cell and single‐nucleus (sc/sn) RNA sequencing, generating the 

much‐needed prior knowledge to characterize cell types is gradually becoming a reality11, 12. 

These sequencing approaches are still quite expensive and arduous. Consequently, most 

laboratories cannot afford to apply them regularly to characterize iPSCs. But, given even a 

limited number of such datasets for the cell types of interest, they can be leveraged to 

mathematically characterize many samples for which the much easier and more cost‐effective 

bulk RNA‐seq data can be generated.  

There are multiple deconvolution methods that rely on single‐cell information to generate cell 

type expression profiles. Providing a thorough review of the field is beyond the scope of this 

work. Here we focus on a few representative examples that we used to benchmark our 
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method. MuSiC uses scRNA‐seq data to estimate cell type composition in samples with bulk 

RNA‐seq data13. One limitation of this approach is that the query bulk needs to have the same 

cell types as the samples from which scRNA‐seq data is derived. A more practical method would 

allow cell type profiles to be derived from sc/sn RNA‐seq datasets of samples with disparate 

compositions of cell types. Bisque is designed to perform a very fast decomposition using non‐

negative least squares (NNLS) regression based on one single‐cell dataset serving as a 

reference14. The constraint with this method, like with MuSiC, is that the user should have a 

single‐cell dataset with cell types matching the bulk samples available before applying it. The 

most recent deconvolution method, SCDC derives expression profiles from multiple scRNA‐seq 

datasets adopting an ensemble framework to implicitly address the batch effects inherent in 

datasets coming from different sources15.  It achieves this by applying different weights to 

different datasets. The reference data most similar to the bulk data overall will have a higher 

weight. A drawback of this method is that all reference datasets need to have the same cell 

types. Meeting this condition is unlikely when using publicly available datasets from multiple 

sources. 

For accurate disease modeling using human iPSCs, we needed a deconvolution tool designed to 

overcome the limitations encountered in existing tools. The new tool should be able to 

characterize a variety of cell types while making it possible to expand the list as needed. It 

should easily incorporate new reference datasets as they become available, allowing the user 

to retrain and retest the tool without modifying the code. To mitigate the batch effects or other 

biases inherent in individual datasets, a requirement has been imposed to have each cell type 

represented in at least three datasets, but we do not impose a constraint that each reference 

dataset need contain all cell types of interest.  

CellMap was developed to meet these requirements. It was aimed mainly at characterizing 

iPSC‐derived cells in terms of their cell type composition, their similarity to previously 

characterized primary cells or other iPSC‐derived datasets, as well as assessing batch‐to‐batch 

variability. One important feature of this tool is the ability to regenerate the cell type profiles 

easily as newer or better‐quality single‐cell and single‐nucleus datasets are produced and 
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published. Here we demonstrate that besides iPSC‐derived cells, CellMap can naturally be 

applied to the deconvolution of any complex samples whose constituent cell types are 

represented in the provided reference datasets.  

Methods 

Workflow 

CellMap employs NNLS regression to decompose a bulk sample into cell type proportions based 

on the gene expression values (𝐺) of a query bulk sample and the cell type specific expression 

profiles as shown in Eq (1): 

𝐺 ൌ 𝛽ଵ ∙ 𝑃ଵ ൅ 𝛽ଶ ∙ 𝑃ଶ ൅ ⋯ ൅ 𝛽௖ ∙ 𝑃௖              (1) 

where 𝐺 is a 𝑔 ൈ 1 query expression vector with 𝑔 denoting the number of genes. P1, P2, …, Pc 

are expression profiles (also 𝑔 ൈ 1 vectors) of c pure cell types derived from single cell or single‐

nucleus RNA‐seq datasets, while β1, β 2, …, β c are the derived non‐negative proportions of 

these cell types in the bulk sample. The overall workflow consists of two major steps: 

generating the cell type profiles and deconvolution of the query bulk sample (Fig. 1). While 

deriving the cell type profiles is the more computationally expensive part, it only needs to be 

carried out once for a given set of input sc/sn datasets. 
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Figure 1. Overview of the CellMap workflow. CellMap includes the steps to generate the cell type 
specific profiles and the deconvolution which uses these profiles to predict the composition of a bulk 
sample. Datasets with samples of known cell‐type compositions are denoted by *. 

 

Generating pseudo‐bulk samples 

The cell type expression profiles were derived from publicly available sc/sn RNA‐seq datasets 

with cell type annotations provided by the authors (Supplementary Table 1). For skeletal 

muscle, we could only find bulk RNA‐seq data and used those as is they were pseudo‐bulk 

generated from single cells to derive the profiles. Since no two cells are identical, even if they 

are labeled as the same type, we attempted to capture this inherent biological heterogeneity 

by generating multiple pure cell type pseudo‐bulk samples from each dataset. Cells were 

randomly selected from the existing pool of a given type and their expression values were 

summed up across the cells for each expressed gene. Similarly, mixed cell type pseudo‐bulk 

samples with known cell type compositions were also generated from each dataset for the 

profile selection training. After the pseudo‐bulk samples were normalized to 1M reads, genes 

with low expression were filtered out. Low expression genes were defined as having less than 4 

counts in more than 20% of pseudo‐bulk samples of any cell type. The expression metric used 

for full length transcript datasets was TPM (Transcripts Per Million), while UMI (Unique 

Molecular Identifier) was used in the case of datasets obtained with 3’ RNA sequencing. 
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Normalization across datasets 

ComBat normalization was used to eliminate batch effects among pure pseudo‐bulk samples 

across reference datasets that can occur due to the differences in sequencing library 

preparation and sc/sn sequencing platforms16. Depending on the extent of overlapping cell 

types among datasets, two different strategies were applied. If shared cell types among 

datasets were sparse (Fig. 2A), ComBat was applied to the pseudo‐bulk pure samples 

independently for each cell type across their source datasets. However, in the preferred 

scenario, when the overlap of cell types among the datasets was high (Fig. 2B, C), the 

normalization was performed across all pseudo‐bulk samples generated for the pure cell types 

in one step. This approach was taken to avoid removing true cell type differences while 

performing batch correction for unbalanced datasets. 

Cell type profile genes 

To increase the sensitivity of cell type detection, only cell type specific genes were included in 

the cell type profiles. Such genes were more highly expressed in one cell type relative to all 

others and they were identified by performing pairwise differential expression analysis with 

edgeR on the batch‐corrected pseudo‐bulk data17. For a balanced approach, an attempt was 

made to maintain a similar number of profile genes for all cell types within a group (see 

description of cell type groups under Stepwise Deconvolution below). Thus, fewer genes were 

kept for the CNS6 profiles than those of Major9, because the more similar cell types in CNS6 

resulted in fewer differentially expressed genes.   

Training 

The goal of the training was to generate a collection of profiles of pseudo‐bulk cell types used in 

the composition estimation procedure (Eq. 1). The training was performed in iterations until 

either the desired performance or the maximum number of iterations was reached. Two 

sequential training steps were taken in each iteration: (1) on mixed pseudo‐bulk samples and 

(2) on real bulk samples, both with known compositions. A detailed description of the training 

protocol is provided in the supplementary material. Briefly, top performing sets of profiles in 

the mixed pseudo‐bulk training were further ranked and filtered in the real bulk training. The 
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performance was evaluated by the root mean square error (RMSE) between the expected and 

predicted proportions: 

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺா௫௣೔ିா௦௧೔ሻమ೎
೔

௖

మ
              (2) 

Where Expi and Esti are the expected and estimated proportions of cell type i when the 

evaluation is done across a total number of c different cell types of a sample. At the end of the 

training, multiple sets of profiles were kept for deconvolution.  

Deconvolution 

An ensemble method was adopted to integrate the deconvolution results from different sets of 

profiles to optimize the match between the profiles and the query data. For each query bulk 

sample, a final cell type composition was calculated from the top N estimated compositions 

based on their gene expression goodness‐of‐fit RMSEs: 

𝛽௜ ൌ ∑ 𝛽௜
௝ ∙ 𝑤௝ே

௝ , ∀𝑖 ൌ 1,2, … , 𝑐              (3) 

where 𝛽௜
௝
 is the proportion of i‐th cell type in j‐th estimated composition; the weight wj was 

calculated based on the goodness‐of‐fit RMSEf of each set of profiles (i.e., RMSE from observed 

and fitted values of gene expression in Equation (1)): 

𝑤௝ ൌ
ቚோெௌா೑

ೕିோெௌா೑തതതതതതതതതതቚ

∑ ቚோெௌா೑
ೖିோெௌா೑തതതതതതതതതതቚಿ

ೖ
, ∀𝑗 ൌ 1,2, … , 𝑁              (4) 

The results presented here were generated with N=5, that is the lowest 5 RMSE values from all 

profile sets. 

Stepwise deconvolution 

Attempting to decompose samples into a very large number of cell types can be difficult as 

multiple small fractions are hard to predict accurately. To avoid this pitfall, we envisioned a 

multi‐step process: in the first step, the major cell types of interest would be queried, followed 

by more refined deconvolution steps querying a narrower set of cell types or subtypes based on 

the outcome of the first step. Following this design, we curated two groups of datasets to 
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include the cell types of interest. The first group consisted of 17 datasets to account for 9 major 

cell types (Major9), including astrocytes, cardiomyocytes, endothelial cells, hepatocytes, 

macrophages, neurons, oligodendrocytes, pancreatic and skeletal muscle cells.  These are the 

main cell types of interest for neurodegenerative disease research as well as unintended types 

that might arise as off‐target cell fates. The second group of 9 datasets focused on cell types 

specific for the central nervous system (CNS). From this dataset, we derived two sets of profiles: 

the CNS6 that included neurons, astrocytes, endothelial cells, microglia, oligodendrocytes and 

pericytes, as well as Neuron3 representing neuronal progenitors, inhibitory and excitatory 

neurons (Fig. 2). 

Comparison to other deconvolution approaches 

The mixed pseudo‐bulk samples with known cell type proportions that were generated as part 

of the CellMap pipeline were also used to compare the performance of CellMap to three 

publicly available methods: MuSiC13, SCDC15 and Bisque14.  

Even though multiple sc/sn datasets were used for the profile generation, the input to the 

CellMap deconvolution step was a reduced data bundle comprised of the cell type profiles. The 

other three methods (MuSiC, SCDC and Bisque) work directly with sc/sn datasets instead of the 

pre‐generated profiles. To avoid loading all input sc/sn datasets into the memory for the 

comparisons, an expression matrix was created by merging subsets of cells from them. At least 

half of the cells were randomly selected for each cell type from each dataset, not to exceed 

20M cells of a certain type. Three such input sc/sn expression matrices were created 

corresponding to the three CellMap profile sets.  

The implementations of MuSiC, SCDC and BiSque were slightly modified from their published 

versions deposited in GitHub. The changes included adjustments to the output format and 

enabling parallel computing. The modified applications are also available from GitHub together 

with the expression matrices of the pseudo‐bulk samples used for the benchmarking. 

The comparison was performed for each cell type separately. The RMSE values were calculated 

across each cell type by comparing the expected and predicted compositions of the pure and 
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mixed pseudo‐bulk training samples. The RMSE was also computed for each pseudo‐bulk 

sample across all cell types of a cell type group (Major9, CNS6, Neuron3). 

Training datasets 

The sc/sn RNA‐seq datasets (bulk RNA‐seq for muscle cells) used to generate the cell type 

profiles were also used for the pseudo‐bulk training (Supplementary Table 1). Multiple rounds 

of random selections of cells minimized the overlap between the cells used for profile 

generation (from pseudo‐bulk pure samples) and training (on pseudo‐bulk mixed samples). 

Diseased samples were excluded when appropriate annotations were provided. For 

consistency, we reran the RNA‐seq pipeline on these datasets when the raw data was available, 

as noted in Supplementary Table 1. In addition to these pseudo‐bulk samples, true bulk samples 

from public repositories were used for the true bulk training. 

Testing datasets 

To evaluate the performance of CellMap, we assembled a collection of true bulk RNA‐seq 

datasets of purified primary cells and iPSC‐derived cell lines, independent from the training sets 

used in CellMap. For the datasets with primary cells, the information provided by the authors 

about the cell type composition of the samples was accepted to be the ground truth. In the 

case of the iPSC‐derived cells, the entire target cell type was used as expected composition for 

the purpose of computing an RMSE. Even though these RMSE values reflected more on the 

deviation of cell line from the target cell type than on the performance of CellMap, they were 

deemed to be useful for detecting the changes in composition and similarity of iPSC derived 

cells relative to the primary cell types. In addition, we used bulk RNA‐seq data from brain 

tissues of the ROSMAP dataset with matching immunohistochemistry (IHC) and snRNA‐seq data 

as ground truth18, 19 (Supplementary Table 2).   
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Figure 2. Single‐cell and single‐nuclei datasets used for cell type profile generation. (A) Datasets used 
for the 9 major cell types. (B) Datasets used for the 6 CNS cell types. (C) Datasets used for the neuronal 
subtypes of interest. The numbers in the colored boxes indicate the number of cells contained in each 
category after curation. 
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Results 

Normalization across datasets 

As revealed by principal component analysis (PCA), the pure pseudo bulk samples without any 

prior normalization tended to cluster by data sources rather than by cell types (Fig. 3A, B, 

Supplementary Figures S1‐S2). This was not surprising, given the differences in sequencing 

library preparation and various sc/sn sequencing platforms employed to generate the datasets. 

This strong batch effect would have adversely affected the performance of the decomposition 

algorithm. Depending on the presence of overlapping cell types among datasets, two different 

ComBat normalization strategies were deployed to eliminate batch effects. The overlap of cell 

types among the reference datasets used to generate the Major9 cell type profiles was sparse 

(Figure 2A). In this scenario, ComBat was applied to the pseudo‐bulk pure samples for each cell 

type separately across their source datasets. The pseudo‐bulk samples, that clustered by 

sequencing platforms originally, became clearly grouped by cell types after this batch 

correction (Fig. 3D).  This strategy proved to be necessary because a normalization across all 

datasets and all cell types tended to remove cell type specific expression patterns (Fig. 3C).  On 

the contrary, the datasets used for the CN6 and Neuron3 profiles had highly overlapping cell 

types (Fig. 2B, C). In this case, ComBat normalization across all pseudo‐bulk samples in one step 

was sufficient to remove the batch effects without reducing signals due to real cell type 

differences. As shown on the corresponding PCA plots, the samples that originally grouped by 

datasets and sequencing technologies were properly clustered by cell types after normalization 

(Supplementary Figures S1‐S2). 
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Figure 3. Major9 cell type profiles. (A, B) The first two principal components of the pseudo‐bulk 
expression profiles of the Major9 cell types before normalization colored by sequencing platforms of the 
source datasets (A) and by cell types (B) showed the samples grouping by sequencing platforms. (C) 
After ComBat normalization across all datasets, cell type information was lost. (D) After ComBat 
normalization separately on each cell type, the pseudo‐bulk samples grouped by cell types, as expected. 
(E) Expression profiles of all genes in the pure pseudo‐bulk samples. (F) A subset of profile genes was 
selected such that their expression levels were comparable across cell types. (G) The expression of the 
profile genes was higher in their respective cell type compared to all other types.  
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Performance on the training data 

Using the Major9 profiles, CellMap predicted the composition of the pseudo‐bulk mixed 

samples with median RMSE values below 0.1 for all the 9 cell types (Fig. 4A). The lowest 

performance was observed on endothelial cells and macrophages. When computed across cell 

types in each dataset, the median RMSE was below 0.1 for the pseudo bulk samples generated 

from all but one dataset (Fig 4B). The median RMSE was the highest for the true bulk samples 

(Fig. 4B last column). This latter is not surprising because, even though these true bulk samples 

contain purified cell types, they are rarely 100% pure and homogeneous.  

The predictions using the CNS6 profiles were slightly less accurate on average. Having to 

combine single‐cell and single‐nuclei datasets for the CNS6 profile set increased the variability 

of the expression profiles. As a result, predicting the neuronal fractions accurately proved to be 

more challenging, with RMSE values reaching 0.2 (Fig. 4C). The prediction accuracy across 

datasets was relatively similar since they tended to have most of the CNS6 cell types: four 

datasets had median RMSE below 0.1 and five datasets had median RMSE between 0.1 ‐ 0.2.  

The median RMSE of the predictions of the true bulk samples was well below 0.1, but the 

individual RMSE values fell into a wide range from 0.01 to slightly over 0.3 (Fig. 4D).  

Predicting the neuronal subtypes in Neuron3 proved to be the most difficult task. The median 

RMSE values ranged from 0.02 to 0.15 for the three subtypes: inhibitory, excitatory and 

progenitors (Fig. 4E). On a dataset‐by‐dataset level, 4 datasets yielded accurate predictions with 

median RMSEs at or below 0.1, while the other 5 had higher RMSE values with larger spread 

(Fig. 4F). We attribute this increased difficulty to the often‐subtle differences between the 

expression profiles of inhibitory and excitatory neurons that sometimes result in inconsistent 

labeling of these neuronal subtypes in different datasets. Cell type identification in scRNA‐seq 

dataset clusters, whether it is done manually or by automated annotation tools, is a challenge 

because the clusters are not completely homogeneous. Slight differences in the selection of 

cluster marker genes can lead to discrepancies in cell type annotations, especially when these 

cell types are very similar to each‐other, as pointed out by authors working on methods for 

automated annotation of cell types in sc/sn RNA‐seq data20, 21. Furthermore, the neuronal 
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progenitors correspond to a continuum of cells at different stages of maturity which makes 

their characterization difficult. This is reflected in the variability of the prediction accuracy of 

these cell types across datasets (Fig. 4E). 
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Figure 4. The performance of CellMap on pseudo‐bulk mixed samples and true bulk using the three 
sets of profiles. (A.B) Datasets used for Major9 profiles; (C, D) for CNS6 profiles; (E, F) for Neuron3 
profiles. (A, C, E) RMSE values by cell types with each data point representing one dataset; (B, D, F) 
RMSE values by test datasets with each data point representing one pseudo‐bulk mixed or one true bulk 
sample. 

 

Testing results 

The performance of CellMap was evaluated on independent bulk RNA‐seq datasets by 

computing the RMSE between the predicted and expected compositions. We performed the 

tests with both sets of profiles that contained the cell types matching those expected to be 

found in the test datasets, the Major9 and CNS6. The calculated RMSE values were grouped by 

purified primary cell types, bulk samples from the ROSMAP dataset, and iPSC‐derived cell types. 

Given a lack of quantitative information about the true cell type content, the expected 

composition of the iPSC‐derived cells was set to 100% of the target cell type in order to allow 

the calculation of the RMSE. 

On the primary cells, the performance of CellMap, as measured by RMSE, was comparable to 

the performance on the training datasets. Generally, higher RMSE values were obtained on the 

iPSC‐derived cell lines, reflecting their imperfect resemblance to the target primary cell types. It 

might also be the case that such cell cultures include cells that are not fully differentiated or 

have stray fates. Median RMSE values were below 0.2 for the purified primary cell type samples 

using either set of profiles, except for pericytes, while the median RMSE of iPSC‐derived 

samples were below 0.3, except for a subset of iPSC‐derived astrocytes (Fig. 5A, B). The neurons 

and microglia (or macrophages in the case of Major9) were predicted close to the expected 

100% purity. The astrocytes and pericytes proved to be the most challenging. The availability of 

reference purified pericyte datasets was limited. The ones we identified contained less than 

100% pericyte‐like cells and expressed genes also considered to be fibroblast and 

oligodendrocyte markers22. 

The differences in performance with the Major9 and CNS6 profile sets confirmed that the input 

datasets used for generating the cell type expression profiles had a substantial influence on the 

outcome. 
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Figure 5. CellMap performance on testing datasets. (A, C) Independent datasets used for the evaluation 
of the performance by using the Major9 and (B, D) CNS6 cell type profiles. (A, B) RMSE values by cell 
types with each data point representing one dataset, separated by type of culture into Primary and iPSC 
datasets. (C, D) RMSE values by datasets with each data point representing one independent reference 
bulk sample. Datasets denoted by * refer to in‐house characterized cell lines (GSE174379).   
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Examples of CellMap applications 

The iPSC‐derived cardiomyocyte dataset (GSE122380) was generated from a time course with 

16 time points and 19 human cell lines capturing differentiation from iPSCs to mature 

cardiomyocytes23. Despite variable cardiomyocyte purity and marker gene expression levels 

across samples, CellMap clearly revealed the increasing cardiomyocyte fraction with time (Fig. 

6A). 

Microglia were derived from iPSCs in‐house and the effects of different conditions and 

treatments during differentiation were tested.  CellMap was applied to this dataset to 

determine the optimal time frame for differentiation and to assess how the treatments that 

such cell lines might have to be subjected to would alter the outcome. CellMap correctly 

indicated that the precursors were already microglia‐like, and the microglia content increased 

to nearly 100% by day 7 of the differentiation.  Additionally, the cells were resistant to both 

replating and freeze‐thaw cycles as indicated by the unaltered microglia composition (Fig. 6B).  

Another in‐house bulk RNA‐seq dataset was generated to assess batch‐to‐batch variability of 

iPSC‐derived NGN2 neurons similar to those described by Schmid et al. 24. The CellMap output 

indicated low batch‐to‐batch variability and the cells reaching fully differentiated states by day 

21 (Fig. 6C). The results showed not only the increasing predicted percentages of neurons as 

the cultures differentiated, but also the decreases in p‐values, indicating that the maturing cells 

were acquiring transcriptomic profiles more closely resembling those of the primary neurons. 

We applied CellMap to samples from the ROSMAP dataset that had matching 

immunohistochemistry (IHC) and snRNA‐seq data available that we used as the ground truth 

regarding their cell type compositions18. What is accepted as the ground truth also affects the 

apparent success of the prediction. In the case of the ROSMAP samples, comparing the 

predicted composition to the IHC data resulted in better predictions than using the cell type 

information from the matched snRNA‐seq data, as there are cell type biases introduced during 

nuclei isolation (Fig. 6E, F). Similar observations were made previously by Patrick et al.19 Based 

on their analysis and the technical variability of snRNA‐seq data, we anticipate the IHC 

proportions to be closer to the true composition. A good overall correlation was achieved 
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between the predicted cell type fractions and the IHC ground truth. CellMap tended to 

underpredict the neuronal content, while quite accurately predicted the astrocyte components. 

The oligodendrocyte and endothelial contents were underestimated, seemingly substituted by 

other cell types. Endothelial cells are especially easily confounded with other cell types. While 

they present a set of common features, they also possess considerable heterogeneity 

depending on their local environment in various organs and tissues25. Furthermore, differences 

in size and RNA content of various cell types can also influence the accuracy of the prediction of 

cell type proportions26. 
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Figure 6. CellMap predictions on bulk RNA‐seq data from iPSC‐derived cell types and ROSMAP brain 
samples. (A) Time course of iPSC‐derived cardiomyocytes from GSE122380. (B) Multiple treatments of 
iPSC‐derived Microglia.  (C, D) Comparing five batches of iPSC derived NGN2 neurons.  (E, F) Sample 
composition predictions for ROSMAP samples relative to composition measured by IHC and snRNA‐seq. 
Error bars represent the standard deviations across samples for each cell type. 
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Comparison to other deconvolution tools 

CellMap performed better than Bisque in each of the categories based on RMSE value, while its 

performance was very similar or slightly better than that of MuSiC and SCDC in predicting the 

composition of the pseudo‐bulk samples (Fig 7).  The range of RMSE values was smallest for 

CellMap, indicating more consistent predictions across different reference data platforms and 

cell types. We attribute this robustness to the use of normalization applied to the pseudo‐bulk 

samples as part of the cell type profile generation. In the most difficult task of differentiating 

between neuronal subtypes (Neuron3 set), CellMap outperformed each of the other three 

methods (Fig.7C, F). More detailed comparisons by cell types and by input datasets are 

provided in the supplementary material separated by input datasets used for the Major9, CNS6 

and Neuron3 profile sets (Figures S3, S4). While its performance is on par with other existing 

methods, CellMap has the major advantage of flexibility in using reference datasets with non‐

overlapping cell types and the ability to expand the cell type repertoire with more cell types of 

interest as reliable and good quality sn/sc RNA‐seq datasets become available. 
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Figure 7. Prediction RMSE values obtained with CellMap, MuSiC, Bisque and SCDC. (A, B, 
C) Comparisons done using the pseudo‐bulk pure samples. (D, E, F) Comparisons across the pseudo‐bulk 
mixed samples. The tests were performed separately on the training datasets used for generating (A, D) 
the Major9, (B, E) CNS6 and (C, F) Neuron3 profile sets. Each dot represents one pseudo‐bulk sample 
generated with cells from one of the training datasets. 

Discussion 

We have demonstrated that CellMap can be applied with good accuracy to evaluate cell 

composition in bulk RNA‐seq data. A key feature of CellMap is its ability to be readily re‐trained 

as new sc/sn RNAseq datasets become available and therefore improve the predictions.  This 

information may come “for free” as CellMap is a downstream analysis on RNA‐seq data that 

may have been generated for other purposes (e.g., differential expression or pathway analysis). 

Discrepancies between cell type labeling in different sc/sn datasets can result in inaccurate cell 

type profiles which have a detrimental effect on the deconvolution accuracy20, 21. Instead of 
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discarding such datasets, a possible solution is to test the consistency of cell type assignments 

across reference datasets with the help of label transfer algorithms and eliminating only the 

cells that have conflicting annotations27, 28.  

CellMap was designed with the characterization of human iPSC‐derived cell types in mind. 

However, it is necessary to acknowledge that iPSC‐derived cells may not match primary cells 

exactly. Even primary cells kept in culture for a relative short time differ from their freshly 

isolated counterparts. When we compared the transcriptome profile of our in‐house generated 

iPSC‐derived microglia to the primary microglia dataset generated by Gosselin and his 

colleagues, it was not surprising to find out that our iPSC‐derived cells were more similar to the 

cultured primary cells than the freshly isolated ones29. It would therefore be unreasonable to 

expect perfect predictions on iPSC‐derived cells when training on the transcriptomic profiles of 

fully differentiated, mature primary cells.  

Despite these shortcomings, deconvolution tools like CellMap are very useful and readily 

deployed in a cell line development workflow. In combination with microscopic observations of 

morphological features, they allow us to evaluate the progression of the differentiation in a 

time‐course experiment to ensure correct cell fate. They are excellent quality control methods 

for verifying batch‐to‐batch consistency of iPSCs and provide valuable guidance in 

differentiation protocol optimization.  

Data Availability and Computer Code 

The CellMap R package, including the R code to generate the manuscript figures, is available 

from https://github.com/interactivereport/CellMap. The in‐house RNA‐seq data generated 

from iPSC‐derived cell lines has been deposited in the Gene Expression Omnibus (GEO tracking 

number GSE174379). All other datasets are publicly available and are listed in the 

supplementary material.  
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Supplementary Data 

Supplementary Figures 

Figure S1. CN6 cell type profiles. (A, B) The first two principal components of the pseudo‐bulk 

expression profiles of the CNS6 cell types before normalization colored by sequencing platforms 

of the source datasets and by cell types showed the samples grouping by sequencing platforms. 

(C) After cell type ComBat normalization, the pseudo‐bulk samples grouped by cell types, as 

expected. (D) Expression profiles of all genes in the pseudo‐bulk samples. (E) A subset of profile 

genes was selected such that their expression levels were comparable across cell types. (F) The 

expression of the profile genes was higher in their respective cell type compared to all other 

types.  

Figure S2. Neuron3 cell type profiles. (A, B) The first two principal components of the pseudo‐

bulk expression profiles of the Neuron3 cell types before normalization colored by sequencing 

platforms of the source datasets and by cell types showed the samples grouping by sequencing 

platforms. (C) After cell type ComBat normalization, the pseudo‐bulk samples grouped by cell 

types, as expected. (D) Expression profiles of all genes in the pseudo‐bulk samples. (E) A subset 

of profile genes was selected such that their expression levels were comparable across cell 
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types. (F) The expression of the profile genes was higher in their respective cell type compared 

to all other types.  

Figure S3. Comparison between CellMap, MuSiC, Bisque and SCDC by Major9 cell types. (A, B, 

C, D) RMSE values between predicted and expected compositions on the pseudo‐bulk pure 

samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo‐

bulk mixed samples. The tests were performed on the training datasets used for generating the 

Major9 profiles. Each data point represents a dataset. 

Figure S4. Comparison between CellMap, MuSiC, Bisque and SCDC by CNS6 cell types. (A, B, C, 

D) RMSE values between predicted and expected compositions on the pseudo‐bulk pure 

samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo‐

bulk mixed samples. The tests were performed on the training datasets used for generating the 

CNS6 profiles. Each data point represents a dataset. 

Figure S5. Comparison between CellMap, MuSiC, Bisque and SCDC by Neuron3 cell types. (A, 

B, C, D) RMSE values between predicted and expected compositions on the pseudo‐bulk pure 

samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo‐

bulk mixed samples. The tests were performed on the training datasets used for generating the 

Neuron3 profiles. Each data point represents a dataset. 

Supplementary Tables 

Table 1. Datasets used as input for cell type profile generation and performance comparison of 

CellMap, MuSiC, Bisque and SCDC. 

Table 2. Datasets used for testing. 

References 

1.  Chang CY, et al. Induced Pluripotent Stem Cell (iPSC)‐Based Neurodegenerative Disease 
Models for Phenotype Recapitulation and Drug Screening. Molecules 25,  (2020). 

 
2.  Engle SJ, Puppala D. Integrating human pluripotent stem cells into drug development. 

Cell Stem Cell 12, 669‐677 (2013). 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445360
http://creativecommons.org/licenses/by/4.0/


26 

 

3.  Hodge RD, et al. Conserved cell types with divergent features in human versus mouse 
cortex. Nature 573, 61‐68 (2019). 

 
4.  Knight A. Animal experiments scrutinised: systematic reviews demonstrate poor human 

clinical and toxicological utility. ALTEX 24, 320‐325 (2007). 
 
5.  Avila Cobos F, Alquicira‐Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking 

of cell type deconvolution pipelines for transcriptomics data. Nat Commun 11, 5650 
(2020). 

 
6.  Jin H, Liu Z. A benchmark for RNA‐seq deconvolution analysis under dynamic testing 

environments. Genome Biol 22, 102 (2021). 
 
7.  Gaujoux R, Seoighe C. CellMix: a comprehensive toolbox for gene expression 

deconvolution. Bioinformatics 29, 2211‐2212 (2013). 
 
8.  Radley AH, Schwab RM, Tan Y, Kim J, Lo EKW, Cahan P. Assessment of engineered cells 

using CellNet and RNA‐seq. Nat Protoc 12, 1089‐1102 (2017). 
 
9.  Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network 

biology applied to stem cell engineering. Cell 158, 903‐915 (2014). 
 
10.  Newberg LA, Chen X, Kodira CD, Zavodszky MI. Computational de novo discovery of 

distinguishing genes for biological processes and cell types in complex tissues. PLoS One 
13, e0193067 (2018). 

 
11.  Regev A, et al. The Human Cell Atlas. Elife 6,  (2017). 
 
12.  Hawrylycz MJ, et al. An anatomically comprehensive atlas of the adult human brain 

transcriptome. Nature 489, 391‐399 (2012). 
 
13.  Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi‐

subject single‐cell expression reference. Nat Commun 10, 380 (2019). 
 
14.  Jew B, et al. Accurate estimation of cell composition in bulk expression through robust 

integration of single‐cell information. Nat Commun 11, 1971 (2020). 
 
15.  Dong M, et al. SCDC: bulk gene expression deconvolution by multiple single‐cell RNA 

sequencing references. Briefings in bioinformatics 22, 416‐427 (2021). 
 
16.  Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics 8, 118‐127 (2007). 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445360
http://creativecommons.org/licenses/by/4.0/


27 

 

17.  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139‐140 (2010). 

 
18.  De Jager PL, et al. A multi‐omic atlas of the human frontal cortex for aging and 

Alzheimer's disease research. Sci Data 5, 180142 (2018). 
 
19.  Patrick E, et al. Deconvolving the contributions of cell‐type heterogeneity on cortical 

gene expression. PLoS Comput Biol 16, e1008120 (2020). 
 
20.  Pasquini G, Rojo Arias JE, Schafer P, Busskamp V. Automated methods for cell type 

annotation on scRNA‐seq data. Comput Struct Biotechnol J 19, 961‐969 (2021). 
 
21.  Shao X, Liao J, Lu X, Xue R, Ai N, Fan X. scCATCH: Automatic Annotation on Cell Types of 

Clusters from Single‐Cell RNA Sequencing Data. iScience 23, 100882 (2020). 
 
22.  Sun J, et al. Transplantation of hPSC‐derived pericyte‐like cells promotes functional 

recovery in ischemic stroke mice. Nat Commun 11, 5196 (2020). 
 
23.  Strober BJ, et al. Dynamic genetic regulation of gene expression during cellular 

differentiation. Science 364, 1287‐1290 (2019). 
 
24.  Schmid B, et al. Generation of two gene edited iPSC‐lines carrying a DOX‐inducible 

NGN2 expression cassette with and without GFP in the AAVS1 locus. Stem Cell Res 52, 
102240 (2021). 

 
25.  Garlanda C, Dejana E. Heterogeneity of endothelial cells. Specific markers. Arterioscler 

Thromb Vasc Biol 17, 1193‐1202 (1997). 
 
26.  Zaitsev K, Bambouskova M, Swain A, Artyomov MN. Complete deconvolution of cellular 

mixtures based on linearity of transcriptional signatures. Nat Commun 10, 2209 (2019). 
 
27.  Aran D, et al. Reference‐based analysis of lung single‐cell sequencing reveals a 

transitional profibrotic macrophage. Nat Immunol 20, 163‐172 (2019). 
 
28.  Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single‐cell transcriptomic 

data across different conditions, technologies, and species. Nat Biotechnol 36, 411‐420 
(2018). 

 
29.  Gosselin D, et al. An environment‐dependent transcriptional network specifies human 

microglia identity. Science 356,  (2017). 
 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445360
http://creativecommons.org/licenses/by/4.0/

