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Abstract

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro
model systems for drug discovery. For these studies to be meaningful, it is important to
understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent
endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to
gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data
can be generated quicker and at lower cost. /n silico cell type decomposition is an efficient,
inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-
grained information about these cultures. We developed CellMap, a computational tool that
derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer

cell types in bulk RNA-seq data from iPSC-derived cell lines.

Introduction

Human induced pluripotent stem cells (iPSC) and cells developed from them are gaining
widespread acceptance for their use in understanding normal and disease processes in vitro® 2.

Derived directly from patient material with an unlimited capacity to proliferate in the
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undifferentiated state and the theoretical ability to differentiate into any cell type under
appropriate experimental conditions, iPSCs and their differentiated derivatives represent an
attractive alternative to traditional in vitro models that rely on cancer cell lines or rodent
material. Barriers that once limited the use of iPSCs, such as costly reagents, complicated
culture protocols, or restricted access to high quality, well-characterized iPSC lines, have
diminished over the last decade. It has also become increasingly apparent that human biology
can diverge significantly from rodent and even non-human primate biology, thus necessitating

the use of human cells® 4.

For in vitro studies using iPSC-derived cells to be meaningful, it is important to understand the
relationship of the in vitro generated cells to endogenous cell types. This is particularly true
during the development of novel iPSC differentiation protocols when seemingly small changes
in culture conditions can lead to divergent cell fates. Evaluating expression of only a few
canonical proteins by immunocytochemistry or genes by qPCR may not provide an adequate
representation of what is in the cell culture dish and it can be technically challenging by these
methods to test for the presence of off-target cell fates. A similar issue arises once a
differentiation protocol has been established and one would like to ensure the reproducibility
of specific cell type production within the same iPSC line and across different iPSC lines
differentiated with the same protocol. While iPSC-derived cell types need not be perfect
replicas of the endogenous cell type to be useful for disease modeling, they must reproduce the
mechanism of the endogenous function to be evaluated in an appropriate cellular context to be

physiologically relevant.

A variety of cell types exist in biological tissues performing different functions. When a
biological function is altered or deficient, we need to understand the origin and mechanism of
this aberration to devise ways of correcting it. However, most of the readily available biological
samples are composed of a mixture of cell types. Experimentally separating these cell types and
performing single-cell sequencing on them is cumbersome and costly. Therefore, developing
computational approaches for cell type deconvolution from bulk RNA-seq data has been a

popular and fruitful endeavor during the past decade® . The earlier methods relied on cell type
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marker genes or cell-specific signatures obtained from prior publications or derived from low-
throughput experiments, such as gene expression profiling on FACS sorted cells. CellMix was
one such useful toolset that provided access to multiple deconvolution methods allowing the
user to select the best approach based on the available data’. Unfortunately, the support of this
public tool has been discontinued and it is incompatible with the latest R libraries. More
complex and computationally demanding approaches have also been designed to characterize
engineered cells based on inference of tissue-specific gene regulatory networks first from

microarray data and then from bulk RNA sequencing data®°.

The aspiration to eliminate the dependence on prior knowledge of cell type markers or
expression signatures led to efforts to develop de novo deconvolution algorithms. One such
example is CellDistinguisher, which mathematically identifies cell type specific patterns in bulk
expression data obtained from multiple heterogeneous samples®. CellDistinguisher can identify
the genes that best distinguish a defined number of cell types or biological processes in the
input data. This type of unsupervised deconvolution, however, cannot tell whether the patterns
detected are a result of the presence of multiple cell types or subpopulations undergoing
different biological processes, e.g., apoptosis, different phases of the cell cycle, etc. Adding
even limited amount of prior knowledge in the form of marker gene sets can guide such

methods into the desired direction.

With the advances of single-cell and single-nucleus (sc/sn) RNA sequencing, generating the
much-needed prior knowledge to characterize cell types is gradually becoming a reality' 12,
These sequencing approaches are still quite expensive and arduous. Consequently, most
laboratories cannot afford to apply them regularly to characterize iPSCs. But, given even a
limited number of such datasets for the cell types of interest, they can be leveraged to

mathematically characterize many samples for which the much easier and more cost-effective

bulk RNA-seq data can be generated.

There are multiple deconvolution methods that rely on single-cell information to generate cell
type expression profiles. Providing a thorough review of the field is beyond the scope of this

work. Here we focus on a few representative examples that we used to benchmark our
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method. MuSiC uses scRNA-seq data to estimate cell type composition in samples with bulk
RNA-seq data3. One limitation of this approach is that the query bulk needs to have the same
cell types as the samples from which scRNA-seq data is derived. A more practical method would
allow cell type profiles to be derived from sc/sn RNA-seq datasets of samples with disparate
compositions of cell types. Bisque is designed to perform a very fast decomposition using non-
negative least squares (NNLS) regression based on one single-cell dataset serving as a
reference!®. The constraint with this method, like with MuSiC, is that the user should have a
single-cell dataset with cell types matching the bulk samples available before applying it. The
most recent deconvolution method, SCDC derives expression profiles from multiple scRNA-seq
datasets adopting an ensemble framework to implicitly address the batch effects inherent in
datasets coming from different sources®. It achieves this by applying different weights to
different datasets. The reference data most similar to the bulk data overall will have a higher
weight. A drawback of this method is that all reference datasets need to have the same cell
types. Meeting this condition is unlikely when using publicly available datasets from multiple

sources.

For accurate disease modeling using human iPSCs, we needed a deconvolution tool designed to
overcome the limitations encountered in existing tools. The new tool should be able to
characterize a variety of cell types while making it possible to expand the list as needed. It
should easily incorporate new reference datasets as they become available, allowing the user
to retrain and retest the tool without modifying the code. To mitigate the batch effects or other
biases inherent in individual datasets, a requirement has been imposed to have each cell type
represented in at least three datasets, but we do not impose a constraint that each reference

dataset need contain all cell types of interest.

CellMap was developed to meet these requirements. It was aimed mainly at characterizing
iPSC-derived cells in terms of their cell type composition, their similarity to previously
characterized primary cells or other iPSC-derived datasets, as well as assessing batch-to-batch
variability. One important feature of this tool is the ability to regenerate the cell type profiles

easily as newer or better-quality single-cell and single-nucleus datasets are produced and
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published. Here we demonstrate that besides iPSC-derived cells, CellMap can naturally be
applied to the deconvolution of any complex samples whose constituent cell types are

represented in the provided reference datasets.

Methods

Workflow
CellMap employs NNLS regression to decompose a bulk sample into cell type proportions based
on the gene expression values (G) of a query bulk sample and the cell type specific expression

profiles as shown in Eq (1):
G=p1"PL+P P+ +B:. F (1)

where G isa g X 1 query expression vector with g denoting the number of genes. P1, Pz, ..., Pc
are expression profiles (also g X 1 vectors) of ¢ pure cell types derived from single cell or single-
nucleus RNA-seq datasets, while 51, Sz, ..., fcare the derived non-negative proportions of
these cell types in the bulk sample. The overall workflow consists of two major steps:
generating the cell type profiles and deconvolution of the query bulk sample (Fig. 1). While
deriving the cell type profiles is the more computationally expensive part, it only needs to be

carried out once for a given set of input sc/sn datasets.
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Figure 1. Overview of the CellMap workflow. CellMap includes the steps to generate the cell type
specific profiles and the deconvolution which uses these profiles to predict the composition of a bulk
sample. Datasets with samples of known cell-type compositions are denoted by *.

Generating pseudo-bulk samples

The cell type expression profiles were derived from publicly available sc/sn RNA-seq datasets
with cell type annotations provided by the authors (Supplementary Table 1). For skeletal
muscle, we could only find bulk RNA-seq data and used those as is they were pseudo-bulk
generated from single cells to derive the profiles. Since no two cells are identical, even if they
are labeled as the same type, we attempted to capture this inherent biological heterogeneity
by generating multiple pure cell type pseudo-bulk samples from each dataset. Cells were
randomly selected from the existing pool of a given type and their expression values were
summed up across the cells for each expressed gene. Similarly, mixed cell type pseudo-bulk
samples with known cell type compositions were also generated from each dataset for the
profile selection training. After the pseudo-bulk samples were normalized to 1M reads, genes
with low expression were filtered out. Low expression genes were defined as having less than 4
counts in more than 20% of pseudo-bulk samples of any cell type. The expression metric used
for full length transcript datasets was TPM (Transcripts Per Million), while UMI (Unique

Molecular Identifier) was used in the case of datasets obtained with 3’ RNA sequencing.
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Normalization across datasets

ComBat normalization was used to eliminate batch effects among pure pseudo-bulk samples
across reference datasets that can occur due to the differences in sequencing library
preparation and sc/sn sequencing platforms!®. Depending on the extent of overlapping cell
types among datasets, two different strategies were applied. If shared cell types among
datasets were sparse (Fig. 2A), ComBat was applied to the pseudo-bulk pure samples
independently for each cell type across their source datasets. However, in the preferred
scenario, when the overlap of cell types among the datasets was high (Fig. 2B, C), the
normalization was performed across all pseudo-bulk samples generated for the pure cell types
in one step. This approach was taken to avoid removing true cell type differences while

performing batch correction for unbalanced datasets.

Cell type profile genes

To increase the sensitivity of cell type detection, only cell type specific genes were included in
the cell type profiles. Such genes were more highly expressed in one cell type relative to all
others and they were identified by performing pairwise differential expression analysis with
edgeR on the batch-corrected pseudo-bulk datal’. For a balanced approach, an attempt was
made to maintain a similar number of profile genes for all cell types within a group (see
description of cell type groups under Stepwise Deconvolution below). Thus, fewer genes were
kept for the CNS6 profiles than those of Major9, because the more similar cell types in CNS6

resulted in fewer differentially expressed genes.

Training

The goal of the training was to generate a collection of profiles of pseudo-bulk cell types used in
the composition estimation procedure (Eq. 1). The training was performed in iterations until
either the desired performance or the maximum number of iterations was reached. Two
sequential training steps were taken in each iteration: (1) on mixed pseudo-bulk samples and
(2) on real bulk samples, both with known compositions. A detailed description of the training
protocol is provided in the supplementary material. Briefly, top performing sets of profiles in

the mixed pseudo-bulk training were further ranked and filtered in the real bulk training. The
7
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performance was evaluated by the root mean square error (RMSE) between the expected and

predicted proportions:

’ c — N2
RMSE = 2 w (2)

Where Exp; and Est; are the expected and estimated proportions of cell type i when the
evaluation is done across a total number of c different cell types of a sample. At the end of the

training, multiple sets of profiles were kept for deconvolution.

Deconvolution

An ensemble method was adopted to integrate the deconvolution results from different sets of
profiles to optimize the match between the profiles and the query data. For each query bulk
sample, a final cell type composition was calculated from the top N estimated compositions

based on their gene expression goodness-of-fit RMSEs:
Bi=3Npl-wi,vi=12,..c (3)

where ,Bl.j is the proportion of i-th cell type in j-th estimated composition; the weight w/ was
calculated based on the goodness-of-fit RMSEys of each set of profiles (i.e., RMSE from observed

and fitted values of gene expression in Equation (1)):

. |rmsel-mmMsEF|
wi = V=12, ..,N (a)

- ZMRMSE}‘—RMSEf

The results presented here were generated with N=5, that is the lowest 5 RMSE values from all

profile sets.

Stepwise deconvolution

Attempting to decompose samples into a very large number of cell types can be difficult as
multiple small fractions are hard to predict accurately. To avoid this pitfall, we envisioned a
multi-step process: in the first step, the major cell types of interest would be queried, followed
by more refined deconvolution steps querying a narrower set of cell types or subtypes based on

the outcome of the first step. Following this design, we curated two groups of datasets to
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include the cell types of interest. The first group consisted of 17 datasets to account for 9 major
cell types (Major9), including astrocytes, cardiomyocytes, endothelial cells, hepatocytes,
macrophages, neurons, oligodendrocytes, pancreatic and skeletal muscle cells. These are the
main cell types of interest for neurodegenerative disease research as well as unintended types
that might arise as off-target cell fates. The second group of 9 datasets focused on cell types
specific for the central nervous system (CNS). From this dataset, we derived two sets of profiles:
the CNS6 that included neurons, astrocytes, endothelial cells, microglia, oligodendrocytes and
pericytes, as well as Neuron3 representing neuronal progenitors, inhibitory and excitatory

neurons (Fig. 2).

Comparison to other deconvolution approaches
The mixed pseudo-bulk samples with known cell type proportions that were generated as part
of the CellMap pipeline were also used to compare the performance of CellMap to three

publicly available methods: MuSiC*3, SCDC* and Bisque'®.

Even though multiple sc/sn datasets were used for the profile generation, the input to the
CellMap deconvolution step was a reduced data bundle comprised of the cell type profiles. The
other three methods (MuSiC, SCDC and Bisque) work directly with sc/sn datasets instead of the
pre-generated profiles. To avoid loading all input sc/sn datasets into the memory for the
comparisons, an expression matrix was created by merging subsets of cells from them. At least
half of the cells were randomly selected for each cell type from each dataset, not to exceed
20M cells of a certain type. Three such input sc/sn expression matrices were created

corresponding to the three CellMap profile sets.

The implementations of MuSiC, SCDC and BiSque were slightly modified from their published
versions deposited in GitHub. The changes included adjustments to the output format and
enabling parallel computing. The modified applications are also available from GitHub together

with the expression matrices of the pseudo-bulk samples used for the benchmarking.

The comparison was performed for each cell type separately. The RMSE values were calculated

across each cell type by comparing the expected and predicted compositions of the pure and
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mixed pseudo-bulk training samples. The RMSE was also computed for each pseudo-bulk

sample across all cell types of a cell type group (Major9, CNS6, Neuron3).

Training datasets

The sc/sn RNA-seq datasets (bulk RNA-seq for muscle cells) used to generate the cell type
profiles were also used for the pseudo-bulk training (Supplementary Table 1). Multiple rounds
of random selections of cells minimized the overlap between the cells used for profile
generation (from pseudo-bulk pure samples) and training (on pseudo-bulk mixed samples).
Diseased samples were excluded when appropriate annotations were provided. For
consistency, we reran the RNA-seq pipeline on these datasets when the raw data was available,
as noted in Supplementary Table 1. In addition to these pseudo-bulk samples, true bulk samples

from public repositories were used for the true bulk training.

Testing datasets

To evaluate the performance of CellMap, we assembled a collection of true bulk RNA-seq
datasets of purified primary cells and iPSC-derived cell lines, independent from the training sets
used in CellMap. For the datasets with primary cells, the information provided by the authors
about the cell type composition of the samples was accepted to be the ground truth. In the
case of the iPSC-derived cells, the entire target cell type was used as expected composition for
the purpose of computing an RMSE. Even though these RMSE values reflected more on the
deviation of cell line from the target cell type than on the performance of CellMap, they were
deemed to be useful for detecting the changes in composition and similarity of iPSC derived
cells relative to the primary cell types. In addition, we used bulk RNA-seq data from brain
tissues of the ROSMAP dataset with matching immunohistochemistry (IHC) and snRNA-seq data

as ground truth® 19 (Supplementary Table 2).
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Figure 2. Single-cell and single-nuclei datasets used for cell type profile generation. (A) Datasets used
for the 9 major cell types. (B) Datasets used for the 6 CNS cell types. (C) Datasets used for the neuronal
subtypes of interest. The numbers in the colored boxes indicate the number of cells contained in each

category after curation.
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Results

Normalization across datasets

As revealed by principal component analysis (PCA), the pure pseudo bulk samples without any
prior normalization tended to cluster by data sources rather than by cell types (Fig. 3A, B,
Supplementary Figures S1-S2). This was not surprising, given the differences in sequencing
library preparation and various sc/sn sequencing platforms employed to generate the datasets.
This strong batch effect would have adversely affected the performance of the decomposition
algorithm. Depending on the presence of overlapping cell types among datasets, two different
ComBat normalization strategies were deployed to eliminate batch effects. The overlap of cell
types among the reference datasets used to generate the Major9 cell type profiles was sparse
(Figure 2A). In this scenario, ComBat was applied to the pseudo-bulk pure samples for each cell
type separately across their source datasets. The pseudo-bulk samples, that clustered by
sequencing platforms originally, became clearly grouped by cell types after this batch
correction (Fig. 3D). This strategy proved to be necessary because a normalization across all
datasets and all cell types tended to remove cell type specific expression patterns (Fig. 3C). On
the contrary, the datasets used for the CN6 and Neuron3 profiles had highly overlapping cell
types (Fig. 2B, C). In this case, ComBat normalization across all pseudo-bulk samples in one step
was sufficient to remove the batch effects without reducing signals due to real cell type
differences. As shown on the corresponding PCA plots, the samples that originally grouped by
datasets and sequencing technologies were properly clustered by cell types after normalization

(Supplementary Figures S1-S2).

12


https://doi.org/10.1101/2021.05.24.445360
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445360; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

=
m
O

& - 0.2
[ L
. . @
—_ ] » —_ 4 -
%10.1 . . %0.1 Ry, é 0.1 .
) L 3 . I} ﬁ . = P ]
= = = AEH i
S 0.0 00 ! § 0o e *
o o . g B masy
a » [ Sor a3
v®y & r
X 0.1 g™
-0.10-0.05 0.00 0.05 010 —0.10-005 000 005 010 0.1 0.0 0.1
PC1 (24.38%) PCA (24.38%) PC1 (15.49%)
D E F
Astrocytas | Candlomyocytas | Endothalial AELI344 Car334 End.248
0.10 o 0.4 04
0.3 03
—_ 0.2 02
T o0 p m’\&& “-‘A_/\_f\
& 0.0 0.0
g 0.00 Hepalocyles | | Macrophage Hep 317 Mac. 328
N 04 04
o 203 203
a ! v c02 202
-0.05 & 0.1 &o1 A
| 0.0 0.0
bigodendrocyts Panciaatic Pan.348 S%8.:313
—-0.05 0.00 005 010 0.4 04
PC1 (36.33%) 0.3 03
0.2 02
0.1 k 01
0.0 00
4812 4812 4812 4812 4812 4812
technology log2(TPM+1) (2790genes) log2(TPM+1)
10X M fluidigm C1
Bulk SMART:
B e weq G
dataset -
© E_MTAB_7407 % GSE121883
A GSE10E723 ¥ GSE130977
+ GSE104276 B GSE136103
*x @ESE106118 B GSEGTE35
< GSE107T934 B GSEZ1608
W GSE108816 B GSEZ3138
= GSE115468 * GSES0460
* GSE120842 & pha001835
4 GSE120862
cell_type
® Astiocytas * Meuwion
® Cardiomyocytas Oligodendiocyies
® Endothalial #® Panciaatic
# Hepatocytes Shalstal
® Maciophage

Figure 3. Major9 cell type profiles. (A, B) The first two principal components of the pseudo-bulk
expression profiles of the Major9 cell types before normalization colored by sequencing platforms of the
source datasets (A) and by cell types (B) showed the samples grouping by sequencing platforms. (C)
After ComBat normalization across all datasets, cell type information was lost. (D) After ComBat
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Performance on the training data

Using the Major9 profiles, CellMap predicted the composition of the pseudo-bulk mixed
samples with median RMSE values below 0.1 for all the 9 cell types (Fig. 4A). The lowest
performance was observed on endothelial cells and macrophages. When computed across cell
types in each dataset, the median RMSE was below 0.1 for the pseudo bulk samples generated
from all but one dataset (Fig 4B). The median RMSE was the highest for the true bulk samples
(Fig. 4B last column). This latter is not surprising because, even though these true bulk samples

contain purified cell types, they are rarely 100% pure and homogeneous.

The predictions using the CNS6 profiles were slightly less accurate on average. Having to
combine single-cell and single-nuclei datasets for the CNS6 profile set increased the variability
of the expression profiles. As a result, predicting the neuronal fractions accurately proved to be
more challenging, with RMSE values reaching 0.2 (Fig. 4C). The prediction accuracy across
datasets was relatively similar since they tended to have most of the CNS6 cell types: four
datasets had median RMSE below 0.1 and five datasets had median RMSE between 0.1 - 0.2.
The median RMSE of the predictions of the true bulk samples was well below 0.1, but the

individual RMSE values fell into a wide range from 0.01 to slightly over 0.3 (Fig. 4D).

Predicting the neuronal subtypes in Neuron3 proved to be the most difficult task. The median
RMSE values ranged from 0.02 to 0.15 for the three subtypes: inhibitory, excitatory and
progenitors (Fig. 4E). On a dataset-by-dataset level, 4 datasets yielded accurate predictions with
median RMSEs at or below 0.1, while the other 5 had higher RMSE values with larger spread
(Fig. 4F). We attribute this increased difficulty to the often-subtle differences between the
expression profiles of inhibitory and excitatory neurons that sometimes result in inconsistent
labeling of these neuronal subtypes in different datasets. Cell type identification in scRNA-seq
dataset clusters, whether it is done manually or by automated annotation tools, is a challenge
because the clusters are not completely homogeneous. Slight differences in the selection of
cluster marker genes can lead to discrepancies in cell type annotations, especially when these
cell types are very similar to each-other, as pointed out by authors working on methods for

automated annotation of cell types in sc/sn RNA-seq data?® %, Furthermore, the neuronal
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progenitors correspond to a continuum of cells at different stages of maturity which makes
their characterization difficult. This is reflected in the variability of the prediction accuracy of
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these cell types across datasets (Fig. 4E).
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Figure 4. The performance of CellMap on pseudo-bulk mixed samples and true bulk using the three
sets of profiles. (A.B) Datasets used for Major9 profiles; (C, D) for CNS6 profiles; (E, F) for Neuron3
profiles. (A, C, E) RMSE values by cell types with each data point representing one dataset; (B, D, F)
RMSE values by test datasets with each data point representing one pseudo-bulk mixed or one true bulk
sample.

Testing results

The performance of CellMap was evaluated on independent bulk RNA-seq datasets by
computing the RMSE between the predicted and expected compositions. We performed the
tests with both sets of profiles that contained the cell types matching those expected to be
found in the test datasets, the Major9 and CNS6. The calculated RMSE values were grouped by
purified primary cell types, bulk samples from the ROSMAP dataset, and iPSC-derived cell types.
Given a lack of quantitative information about the true cell type content, the expected
composition of the iPSC-derived cells was set to 100% of the target cell type in order to allow

the calculation of the RMSE.

On the primary cells, the performance of CellMap, as measured by RMSE, was comparable to
the performance on the training datasets. Generally, higher RMSE values were obtained on the
iPSC-derived cell lines, reflecting their imperfect resemblance to the target primary cell types. It
might also be the case that such cell cultures include cells that are not fully differentiated or
have stray fates. Median RMSE values were below 0.2 for the purified primary cell type samples
using either set of profiles, except for pericytes, while the median RMSE of iPSC-derived
samples were below 0.3, except for a subset of iPSC-derived astrocytes (Fig. 5A, B). The neurons
and microglia (or macrophages in the case of Major9) were predicted close to the expected
100% purity. The astrocytes and pericytes proved to be the most challenging. The availability of
reference purified pericyte datasets was limited. The ones we identified contained less than
100% pericyte-like cells and expressed genes also considered to be fibroblast and

oligodendrocyte markers?2.

The differences in performance with the Major9 and CNS6 profile sets confirmed that the input
datasets used for generating the cell type expression profiles had a substantial influence on the

outcome.
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Figure 5. CellMap performance on testing datasets. (A, C) Independent datasets used for the evaluation
of the performance by using the Major9 and (B, D) CNS6 cell type profiles. (A, B) RMSE values by cell
types with each data point representing one dataset, separated by type of culture into Primary and iPSC
datasets. (C, D) RMSE values by datasets with each data point representing one independent reference
bulk sample. Datasets denoted by * refer to in-house characterized cell lines (GSE174379).
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Examples of CellMap applications

The iPSC-derived cardiomyocyte dataset (GSE122380) was generated from a time course with
16 time points and 19 human cell lines capturing differentiation from iPSCs to mature
cardiomyocytes?3. Despite variable cardiomyocyte purity and marker gene expression levels
across samples, CellMap clearly revealed the increasing cardiomyocyte fraction with time (Fig.

6A).

Microglia were derived from iPSCs in-house and the effects of different conditions and
treatments during differentiation were tested. CellMap was applied to this dataset to
determine the optimal time frame for differentiation and to assess how the treatments that
such cell lines might have to be subjected to would alter the outcome. CellMap correctly
indicated that the precursors were already microglia-like, and the microglia content increased
to nearly 100% by day 7 of the differentiation. Additionally, the cells were resistant to both

replating and freeze-thaw cycles as indicated by the unaltered microglia composition (Fig. 6B).

Another in-house bulk RNA-seq dataset was generated to assess batch-to-batch variability of
iPSC-derived NGN2 neurons similar to those described by Schmid et al. 24, The CellMap output
indicated low batch-to-batch variability and the cells reaching fully differentiated states by day
21 (Fig. 6C). The results showed not only the increasing predicted percentages of neurons as
the cultures differentiated, but also the decreases in p-values, indicating that the maturing cells

were acquiring transcriptomic profiles more closely resembling those of the primary neurons.

We applied CellMap to samples from the ROSMAP dataset that had matching
immunohistochemistry (IHC) and snRNA-seq data available that we used as the ground truth
regarding their cell type compositions!®. What is accepted as the ground truth also affects the
apparent success of the prediction. In the case of the ROSMAP samples, comparing the
predicted composition to the IHC data resulted in better predictions than using the cell type
information from the matched snRNA-seq data, as there are cell type biases introduced during
nuclei isolation (Fig. 6E, F). Similar observations were made previously by Patrick et al.'° Based
on their analysis and the technical variability of snRNA-seq data, we anticipate the IHC

proportions to be closer to the true composition. A good overall correlation was achieved
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between the predicted cell type fractions and the IHC ground truth. CellMap tended to
underpredict the neuronal content, while quite accurately predicted the astrocyte components.
The oligodendrocyte and endothelial contents were underestimated, seemingly substituted by
other cell types. Endothelial cells are especially easily confounded with other cell types. While
they present a set of common features, they also possess considerable heterogeneity
depending on their local environment in various organs and tissues?. Furthermore, differences
in size and RNA content of various cell types can also influence the accuracy of the prediction of

cell type proportions?®.
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Figure 6. CellMap predictions on bulk RNA-seq data from iPSC-derived cell types and ROSMAP brain
samples. (A) Time course of iPSC-derived cardiomyocytes from GSE122380. (B) Multiple treatments of
iPSC-derived Microglia. (C, D) Comparing five batches of iPSC derived NGN2 neurons. (E, F) Sample
composition predictions for ROSMAP samples relative to composition measured by IHC and snRNA-seq.
Error bars represent the standard deviations across samples for each cell type.
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Comparison to other deconvolution tools

CellMap performed better than Bisque in each of the categories based on RMSE value, while its
performance was very similar or slightly better than that of MuSiC and SCDC in predicting the
composition of the pseudo-bulk samples (Fig 7). The range of RMSE values was smallest for
CellMap, indicating more consistent predictions across different reference data platforms and
cell types. We attribute this robustness to the use of normalization applied to the pseudo-bulk
samples as part of the cell type profile generation. In the most difficult task of differentiating
between neuronal subtypes (Neuron3 set), CellMap outperformed each of the other three
methods (Fig.7C, F). More detailed comparisons by cell types and by input datasets are
provided in the supplementary material separated by input datasets used for the Major9, CNS6
and Neuron3 profile sets (Figures S3, S4). While its performance is on par with other existing
methods, CellMap has the major advantage of flexibility in using reference datasets with non-
overlapping cell types and the ability to expand the cell type repertoire with more cell types of

interest as reliable and good quality sn/sc RNA-seq datasets become available.
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Figure 7. Prediction RMSE values obtained with CellMap, MusSiC, Bisque and SCDC. (A, B,

C) Comparisons done using the pseudo-bulk pure samples. (D, E, F) Comparisons across the pseudo-bulk
mixed samples. The tests were performed separately on the training datasets used for generating (A, D)
the Major9, (B, E) CNS6 and (C, F) Neuron3 profile sets. Each dot represents one pseudo-bulk sample
generated with cells from one of the training datasets.

Discussion

We have demonstrated that CellMap can be applied with good accuracy to evaluate cell
composition in bulk RNA-seq data. A key feature of CellMap is its ability to be readily re-trained
as new sc/sn RNAseq datasets become available and therefore improve the predictions. This
information may come “for free” as CellMap is a downstream analysis on RNA-seq data that

may have been generated for other purposes (e.g., differential expression or pathway analysis).

Discrepancies between cell type labeling in different sc/sn datasets can result in inaccurate cell

type profiles which have a detrimental effect on the deconvolution accuracy?® 21, Instead of
22
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discarding such datasets, a possible solution is to test the consistency of cell type assignments
across reference datasets with the help of label transfer algorithms and eliminating only the

cells that have conflicting annotations?” 28,

CellMap was designed with the characterization of human iPSC-derived cell types in mind.
However, it is necessary to acknowledge that iPSC-derived cells may not match primary cells
exactly. Even primary cells kept in culture for a relative short time differ from their freshly
isolated counterparts. When we compared the transcriptome profile of our in-house generated
iPSC-derived microglia to the primary microglia dataset generated by Gosselin and his
colleagues, it was not surprising to find out that our iPSC-derived cells were more similar to the
cultured primary cells than the freshly isolated ones®. It would therefore be unreasonable to
expect perfect predictions on iPSC-derived cells when training on the transcriptomic profiles of

fully differentiated, mature primary cells.

Despite these shortcomings, deconvolution tools like CellMap are very useful and readily
deployed in a cell line development workflow. In combination with microscopic observations of
morphological features, they allow us to evaluate the progression of the differentiation in a
time-course experiment to ensure correct cell fate. They are excellent quality control methods
for verifying batch-to-batch consistency of iPSCs and provide valuable guidance in

differentiation protocol optimization.

Data Availability and Computer Code

The CellMap R package, including the R code to generate the manuscript figures, is available

from https://github.com/interactivereport/CellMap. The in-house RNA-seq data generated

from iPSC-derived cell lines has been deposited in the Gene Expression Omnibus (GEO tracking
number GSE174379). All other datasets are publicly available and are listed in the

supplementary material.
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Supplementary Data

Supplementary Figures

Figure S1. CN6 cell type profiles. (A, B) The first two principal components of the pseudo-bulk
expression profiles of the CNS6 cell types before normalization colored by sequencing platforms
of the source datasets and by cell types showed the samples grouping by sequencing platforms.
(C) After cell type ComBat normalization, the pseudo-bulk samples grouped by cell types, as
expected. (D) Expression profiles of all genes in the pseudo-bulk samples. (E) A subset of profile
genes was selected such that their expression levels were comparable across cell types. (F) The

expression of the profile genes was higher in their respective cell type compared to all other

types.

Figure S2. Neuron3 cell type profiles. (A, B) The first two principal components of the pseudo-
bulk expression profiles of the Neuron3 cell types before normalization colored by sequencing
platforms of the source datasets and by cell types showed the samples grouping by sequencing
platforms. (C) After cell type ComBat normalization, the pseudo-bulk samples grouped by cell
types, as expected. (D) Expression profiles of all genes in the pseudo-bulk samples. (E) A subset

of profile genes was selected such that their expression levels were comparable across cell
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types. (F) The expression of the profile genes was higher in their respective cell type compared

to all other types.

Figure S3. Comparison between CellMap, MuSiC, Bisque and SCDC by Major9 cell types. (A, B,
C, D) RMSE values between predicted and expected compositions on the pseudo-bulk pure

samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo-
bulk mixed samples. The tests were performed on the training datasets used for generating the

Major9 profiles. Each data point represents a dataset.

Figure S4. Comparison between CellMap, MusSiC, Bisque and SCDC by CNS6 cell types. (A, B, C,
D) RMSE values between predicted and expected compositions on the pseudo-bulk pure
samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo-
bulk mixed samples. The tests were performed on the training datasets used for generating the

CNS6 profiles. Each data point represents a dataset.

Figure S5. Comparison between CellMap, MusSiC, Bisque and SCDC by Neuron3 cell types. (A,
B, C, D) RMSE values between predicted and expected compositions on the pseudo-bulk pure
samples with single cell types. (E, F, G, H) Prediction accuracies measured by RMSE on pseudo-
bulk mixed samples. The tests were performed on the training datasets used for generating the

Neuron3 profiles. Each data point represents a dataset.

Supplementary Tables

Table 1. Datasets used as input for cell type profile generation and performance comparison of

CellMap, MuSiC, Bisque and SCDC.

Table 2. Datasets used for testing.
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