

1 **Title**

2 Visualizing the Role of Lipid Dynamics during Infrared Neural Stimulation with Hyperspectral
3 Stimulated Raman Scattering Microscopy

4 **Authors**

5 Wilson R Adams¹, Rekha Gautam¹, Andrea Locke¹, Ana I. Borrachero-Conejo¹, Bryan Dollinger¹,
6 Graham A. Throckmorton¹, Craig Duvall¹, E Duco Jansen^{1,2}, Anita Mahadevan-Jansen^{1,2}

7 **Affiliations**

8 [1] Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

9 [2] Dept. of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA

10 **Abstract**

11 Infrared neural stimulation, or INS, is a method of using pulsed infrared light to yield label-free neural
12 stimulation with broad experimental and translational utility. Despite its robust demonstration, the
13 mechanistic and biophysical underpinnings of INS have been the subject of debate for more than a
14 decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-
15 mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane
16 dynamics during INS remains to be shown in a live neural model system. To directly test the involvement
17 of lipid dynamics in INS, we used hyperspectral stimulated Raman scattering (hsSRS) microscopy to
18 study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell
19 culture model. Findings suggest that lipid bilayer structural changes are occurring during INS *in vitro* in
20 NG108-15 neuroglioma cells. Lipid-specific signatures of cell SRS spectra were found to vary with
21 stimulation energy and radiant exposure. Spectroscopic observations were verified against high-speed
22 ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, di-4-
23 ANNEPS. Overall, the presented data supports the hypothesis that INS causes changes in the lipid
24 membrane of neural cells by changing lipid membrane packing order – which coincides with likelihood of
25 cell stimulation. Furthermore, this work highlights the potential of hsSRS as a method to study
26 biophysical and biochemical dynamics safely in live cells.

27 **Main Text**

28 Neuromodulation using directed energy, including optical, ultrasonic, and radio frequency, have gained
29 notable interest recently due to their spatial precision, noninvasive implementation, and promising
30 potential for clinical translation in therapeutic interventions. Label-free optical neuromodulation with
31 pulsed infrared (IR) light, or infrared neural stimulation (INS), offers a spatially and temporally precise
32 means of contact-free activation of neural cells without the need for genetic modification or exogenous
33 mediators. Similar to most label-free directed energy methods of neuromodulation, the biophysical
34 mechanisms underlying INS have remained elusive for more than a decade (1). In contrast to the tools
35 derived from molecular biology, such as optogenetics or photochemical uncaging, INS appears to act
36 through an entirely different photothermal-based mechanism (1, 2). The role of lipid membrane dynamics
37 are thought to play an important role in how IR light depolarizes neurons photothermally (3), but remains
38 to be directly experimentally validated in a live neural model system.

39
40 Infrared wavelengths generally used for INS are strongly absorbed by water (4, 5). The rapid temperature
41 rise from brief pulses of IR light were experimentally shown to depolarize HEK cells as well as synthetic
42 charged lipid bilayer preparations through a transient increase in membrane capacitance (2).
43 Biomolecular explanations for these observations were unclear. A biophysical explanation of this
44 phenomenon was described computationally by factoring in the thermal dependence of lipid bilayer
45 geometry with a Gouy-Chapman-Stern based electrodynamic model of charged lipid bilayers (3). While
46 the experimental data and computational model agree with each other, the role of lipid dynamics in neural

47 models of INS remain to be directly validated. Lipid dynamics during INS have been probed through
48 electrophysiology and fluorescent membrane structure reporters (2, 6, 7). However, these methods are
49 inherently indirect to lipid molecular dynamics. There remains to be any direct observation of lipid
50 dynamics in live neural cells during INS. Understanding the role of lipid dynamics in the mechanisms of
51 INS would provide both valuable scientific insight and a basis for innovation towards the next generations
52 of neuromodulation technology.

53
54 Conventional methods of directly measuring lipid bilayer geometry, such as x-ray diffraction and small
55 angle neutron scattering, are slow and not biologically compatible (8–10). Optical methods are well
56 suited for high resolution, biologically compatible experiments, but generally lack the spatial resolution
57 necessary to directly resolve lipid bilayer geometry (< 3 nm thick) on millisecond timescales. Fluorescent
58 functional lipid indicators, such as laurdan or di-4-ANNEPS (11), have been shown to be powerful tools
59 in studying lipid membrane biophysics. However, these indicators offer latent readouts of lipid dynamics
60 and are inherently indirect in that they rely on the molecular interaction of reporter molecules with their
61 molecular environment rather than the lipid molecules themselves. Vibrational spectroscopic methods,
62 such as Raman scattering and infrared absorption, can be performed label-free and offer a feature-rich
63 molecular signature useful in studying lipid organization in live cells. Traditionally, vibrational
64 spectroscopic methods have not been biologically compatible on sub-second timescales (12, 13).
65 Stimulated Raman scattering (SRS) microscopy combines label-free vibrational spectroscopic contrast
66 with subcellular spatial resolution and sub-second temporal resolution enabling time resolved vibrational
67 spectral measurements of live neural cells during INS (14, 15). Others have shown that lipid molecular
68 symmetry and ordered molecular interactions of water with lipid bilayers are observable with nonlinear
69 Raman microscopy (16, 17). Moreover, SRS can be implemented fast enough to discern signatures of
70 neuronal action potentials at millisecond timescales (16–18). With this in mind, we set out to employ a
71 hyperspectral SRS (hsSRS) microscopy approach to identify vibrational signatures of lipid bilayer
72 dynamics during INS in live neural cell cultures.

73
74 The goal of this paper is therefore to identify the molecular dynamics of membrane lipids in live neural
75 cells during INS with hsSRS microscopy. We demonstrate a time-resolved hsSRS methodology combined
76 with focus precompensation to obtain SRS spectra of live NG108 cells. Spectra of NG108 cells show
77 significant changes during INS which are attributable to changes in lipid packing order and solvent
78 interactions. Validation of this approach was compared to gold-standard ratiometric fluorescence of a
79 functional lipid packing order indicator – di-4-ANNEPS. We discuss how changes in the vibrational
80 spectral signatures of cells during INS compare to what the current mechanistic hypothesis implies.
81 Furthermore, we offer practical insight to performing high-resolution optical microscopy in dynamically
82 varying optical imaging conditions during INS, as well as offer some thoughts to the potential extensions
83 of this hsSRS methodology as SRS technology continues to develop.

84 Methods

85 ***Cell Culture and Maintenance***

86 Methods for neuronal hybridoma cell cultures were adapted from previous work (19, 20). A spiking
87 neuroma-glioblastoma hybridoma cell line, NG-108-15 (Sigma-Aldrich, St. Louis, MO), were thawed and
88 maintained in culture for 1 week prior to imaging experiments. Cells were maintained in Dulbecco's
89 Modified Eagle Medium supplemented with 4.5g/L of glucose, 20mM of L-glutamine, 15%v/v fetal
90 bovine serum and 1%v/v of penicillin/streptomycin antibiotics. Cells were incubated at 37°C in 5% of
91 CO₂ and 95% relative humidity. Growth medium was completely replaced every 48 hours until cells
92 approached confluence. Once ~80% confluent, cells were mechanically dissociated and propagated onto
93 additional cell culture flasks until experimental use. All cells were imaged within 15 rounds of passage
94 from thawed supplier stocks. Seventy-two hours prior to imaging, cells were passaged and plated onto
95 poly-D-lysine-coated glass-bottom petri dished (Mattek, Natick, MA) to allow for cellular adherence.

96 Twenty-four hours prior to image experiments, the cell culture medium was replaced with an identical
97 DMEM formulation except for the reduction of fetal bovine serum concentration (3%v/v) to promote
98 morphological differentiation into dendritic neuronal phenotypes. During imaging experiments, cells were
99 maintained at room temperature and humidity in neurophysiologically balanced saline free of protein and
100 glucose with the following composition (in mM): 140 NaCl, 4 KCl, 2 MgCl₂, 2 CaCl₂, 10 HEPES, 5
101 glucose, pH 7.4 with NaOH and osmolarity adjusted to ~318 mOsm with mannitol (21). Cells were
102 imaged for 45 minutes before being discarded.
103

104 **Microscope System**

105 The physical layout and capability of the custom-built multimodal imaging platform utilized in this study
106 (**Figure 1A**) was described previously (22). Briefly, a dual output femtosecond near-infrared laser source
107 (Insight DS+, Spectra Physics, Santa Clara, CA) was used to excite nonlinear contrast. Both output beams
108 were spatially and temporally combined, with 20 MHz intensity modulation of the 1040 nm output and a
109 variable linear optical path length on the 798 nm output for temporal collinearity and to facilitate
110 hyperspectral SRS (23). The combined ultrafast laser outputs were subsequently chirped through 150mm
111 of high-index SF11 glass rods (Newlight Photonics, Ontario, Canada) to enable spectral focusing based
112 hsSRS microscopy (23, 24). In summary, chirping the two ultrafast laser pulses through high index glass
113 from ~200 fs to about ~2.5 ps allows for tuning of the relative temporal delay between the ultrafast laser
114 pulses at the sample to variably evoke SRS resonances. The result is improved spectral resolution (~30
115 cm⁻¹) compared to using transform-limited 200 fs pulses (~300 cm⁻¹) without being limited by laser
116 wavelength tuning speed. The result is a video rate nonlinear microscopy platform with 800 nm spatial
117 resolution and approximately 30 cm⁻¹ spectral resolution. After chirping, the beams were directed to a pair
118 of scanning galvanometric mirrors. The face of the first scanning mirror was relayed to the back focal
119 plane of a physiological imaging objective (Olympus XLUMPLN 20X 1.0 NA, water dipping) through a
120 4X magnifying 4-f imaging relay (Thorlabs SL50-2P and TL200-2P).
121

122 Detection for SRS – specifically stimulated Raman loss – was collected via transmission by a high-NA
123 condenser lens (1.4 NA Oil, Nikon Instruments) directing light to a reverse-biased photodiode (APE,
124 GmbH., Berlin) behind an 850 nm centered, 310nm bandwidth optical bandpass filter (Semrock,
125 Brattleboro, VT) to isolate the 798 nm laser line. The detected signal was subsequently demodulated with
126 a lock-in amplifier (APE, GmbH. Berlin) synced against the 20 MHz sinusoid signal driving the 1040 nm
127 beam modulation. Any 20 MHz modulation transfer from the 1040 nm beam to the 798 nm beam was
128 assumed to be attributed to stimulated Raman contrast. The temporal delay between the chirped 798 nm
129 and 1040 nm laser pulses arriving at the sample was carefully tuned by varying the optical path length of
130 the 798 nm laser beam with an optical delay stage (BB201, Thorlabs, Newton, NJ, USA). The relative
131 delay between laser pulses over a span of 0.5 mm (or 1.6 ps) allowed for scanning of SRS resonance
132 contrast over approximately 300 cm⁻¹ between 2800 and 3100 cm⁻¹. Additionally, this system also allows
133 for multiphoton fluorescence microscopy, which can be measured from epidetected light reflected
134 from a 680 nm long pass dichroic mirror (Semrock, Brattleboro, VT) behind the objective lens in a non-
135 descanned configuration. Bandpass filters for multiphoton fluorescence microscopy were selected to
136 collect the green (525 nm center, 50nm passband) and red (625 nm center, 90 nm passband) emission
137 profiles of the lipophilic dye di-4-ANNEPS. Images were acquired in a bidirectional point-scanning
138 configuration. High-speed hsSRS imaging experiments were acquired with a 96x64 px sampling profile
139 with varying pixel sampling densities between 1 and 4 $\mu\text{m}/\text{px}$. Imaging with 2-5 μs pixel dwell time and
140 bidirectional scanning amounts to an effective imaging framerate approaching 150 Hz. Ultrafast laser
141 average powers at the sample plane were measured to be about 10 mW for the 798 nm laser, and 25 mW
142 for the 1040 nm laser – corresponding to 199W/cm² and 497W/cm² irradiances at each pixel, respectively.
143 Assuming a constant 5 μs pixel dwell time, radiant exposures per pixel amount to 1.00 mJ/cm² and 2.49
144 mJ/cm². The substantial increase in power necessary for imaging in this configuration are due to the
145 decrease in peak power within each ultrafast laser pulse during the chirping stage. Live cell viability was

146 verified with all relevant imaging conditions by cellular uptake of propidium iodide (PI) and is described
147 in *Live Cell Hyperspectral SRS Imaging*.
148

149 ***hsSRS Spectral Focusing Calibration***

150 A monolayer preparation of mixed polymer beads were used to calibrate the optical delay between pump
151 and probe laser pulses as a function of SRS resonance. A mixed sample of poly(methyl methacrylate) –
152 PMMA 1-10 μm diameter – and polystyrene – PS, 2 μm diameter – microspheres (PolySciences Ltd.,
153 Warrington, PA, USA) were diluted to a concentration of 0.002% w/v (each) in a solution of methanol
154 (Fisherbrand, St. Louis, MO, USA). After mixing, 10 μL of diluted microbead solution were spread onto
155 a #1.5 glass coverslip and left to evaporate for 25 minutes at room temperature. Once dried, samples were
156 mounted dry onto a standard microscope slide and used for spectral calibration of hyperspectral SRS
157 system by spectral focusing.
158

159 To calibrate the vibrational spectral dimension of hyperspectral imaging space, 50 sequential images were
160 acquired of mounted polymer bead monolayers. Between each acquired image, the optical path length
161 delay of the 798 nm laser line was stepped by 10 μm between each image, over a total of 500 μm or 1.6
162 ps of total optical path length delay. The peak SRS signal for the 2950 cm^{-1} resonance of PMMA was
163 centered in the spectral scanning range to ensure sufficient spectral sampling. Manual segmentation of
164 PMMA and PS beads from spectral stacks were performed and averaged across each spectral frame to
165 provide high-fidelity spectra for both polymers. The known vibrational peaks of PS (2910, 3060 cm^{-1}) and
166 PMMA (2950 cm^{-1}) were used as spectral fiducials (**Figure 1B and C**) to linearly interpolate a
167 relationship between optical path delay of the chirped 798 nm laser pulse and the excited vibrational
168 resonant mode. Calibrations were performed at the beginning of each day's experiments to ensure spectral
169 accuracy. The spectral resolution was observed to be approximately 30 cm^{-1} .
170

171 ***Infrared Neural Stimulation***

172 Neural stimulation was performed by placing a bare 400 μm -diameter core low-OH optical fiber (Ocean
173 Optics, FL, USA) in close proximity to samples (~450 μm) at a 30-degree approach angle into the sample
174 plane of the microscope's field of view (**Figure S1**). The optical fiber used for stimulation is connected to
175 a pulsed laser diode centered at 1875 nm (Capella Nerve Stimulator, Aculight – Lockheed-Martin, Bothel,
176 WA, USA). During imaging experiments, samples were exposed to a pulse train of 188 pulses distributed
177 evenly over 1500 ms). Pulses were 400 μs in duration and were delivered at a repetition rate of 125 Hz.
178 Radiant exposures on samples were varied by adjusting the peak current delivered to the laser diode,
179 holding all dosing and geometric configurations constant. Radiant exposure calculations for stimulation
180 were approximated based on power measurements performed externally in air and employing Beer's law
181 under the assumption of an absorption-dominated photon distribution – described in **Figure S1** and
182 **Figure S2**. Infrared exposure levels for INS were selected based on their ability to elicit dynamic calcium
183 responses (>2% increase, dF/F) in NG108 cells loaded with a calcium dye (Fluo-4-AM at 1 μM ,
184 ThermoFisher, St. Louis, MO, USA). Radiant exposures for no stimulation, sub-threshold, and threshold
185 levels of stimulation used 0, 5.02, and 10.63 J/cm^2 , respectively.
186

187 ***Phospholipid Multilamellar Vesicle Preparation***

188 Multilamellar vesicles were used to obtain lipid-derived SRS spectra free of protein and nucleic acids
189 signal in a biomimetic context. Multilamellar vesicles were prepared according to protocols provided
190 from the supplier (Avanti Polar Lipids, Alabaster, AL, USA). Phosphatidylcholine (PC) derived from
191 porcine brain tissue arrived dissolved in chloroform at a concentration of 2.5 mg/mL. The chloroform was
192 evaporated from the lipid mixture with a stream of dry nitrogen overnight and mechanically resolubilized
193 in phosphate-buffered saline solution at a concentration of 1 mg/mL. Vesicle mixtures were stored at 4°C
194 and imaged within three days of preparation. Imaging was performed at room temperature. Size
195 distribution of the lipid vesicle preparation was verified via dynamic light scattering to contain 1 and 5

196 μm diameter vesicles (Malvern Panalytical, Malvern, UK). MLVs were identified as multilayered
197 spherical structures with SRS contrast tuned to 2910cm^{-1} (**Figure S4A**).
198

199 ***Live Cell Hyperspectral SRS Imaging***

200 Live cell imaging experiments of endogenous vibrational contrast with hsSRS were conducted with
201 adherent cell preparations imaged in a physiologically balanced saline solution. Following placement of
202 the fiber and calibration of the spectral axis against the known vibrational peaks of PS and PMMA beads,
203 baseline hyperspectral image stacks were acquired for live cell samples. All images were acquired in a
204 point-scanning approach with a $5\text{ }\mu\text{s}$ pixel dwell time and a spatial sampling density of $\sim 500\text{ nm/px}$. To
205 improve signal to noise ratio of higher fidelity images, square fields of view between 320 and 512 pixels
206 in size were acquired and 6 to 10 images were averaged together for each spectral position. For
207 hyperspectral image stacks acquisitions, 50 images were acquired at evenly spaced intervals ($10\text{ }\mu\text{m}$) over
208 $500\text{ }\mu\text{m}$ of optical path length delay – corresponding to a spectral range spanning approximately 2800 to
209 3100 cm^{-1} . The resultant spectral image stack was taken as ground-truth cellular spectra to compare high
210 speed imaging spectra of the cells during INS in subsequent experiments.
211

212 For high-speed imaging during INS on NG108 cells, as well as control samples of multilamellar vesicles
213 and BSA solution, $5\text{ }\mu\text{s}$ pixel dwell time were employed to obtain imaging fields 96×64 pixels in size with
214 a sampling density between 1.5 and $4\text{ }\mu\text{m}$ per pixel - enabling framerates of 33.4 Hz . For each of the 50
215 spectral position, cells were imaged continuously for 5 seconds, during which a train of stimulating
216 infrared pulses is delivered at the first second of the imaging timeframe. Image acquisition and IR
217 stimulation was coordinated through a customized TTL-triggering protocol with an external signal
218 digitizer (Digidata 1550B, Molecular Devices, Sunnyvale, CA, USA). The ultrafast excitation laser is
219 observed to be defocused at the sample plane due to the thermal gradient induced by the stimulating
220 infrared laser (**Figure 2A**) was observable in each imaging timeseries as an exponential decrease, and
221 subsequent return to baseline (**Figure 2B&C**), of nonlinear signal on imaging photodetectors. The shift in
222 focal length as a function of laser power was calibrated using microbead (PMMA and PS) preparations
223 and accounted for prior to each IR-stimulation trial on cells. The defocusing phenomenon allowed for
224 precise temporal synchronization of time series across each spectral channel. After repeating and
225 temporally aligning simultaneous imaging and stimulation time courses on live cells for each SRS
226 spectral position ($n = 50$), the temporal evolution of live cell endogenous vibrational spectra could be
227 observed as a function of irradiation time and deposited energy. For spectral evaluation, the final ten
228 sampling time points within the of IR exposure were averaged and reported – which was found to help
229 reduce high frequency spectral noise to draw conclusions from. Spectra from stimulation experiments
230 were pooled from $n = 24$ cells across ten different individual experiments of IR exposure. Each cell
231 spectrum was normalized with respect to its integrated spectral intensity, and standard deviation of the
232 spectra across all cells in each stimulation condition were calculated. The ‘no stimulation’ conditions are
233 obtained from initial SRS signal from cells prior to each round of IR exposure and pooled from all
234 stimulation conditions being compared. The shape of SRS spectra acquired at high frame rates (**Figure**
235 **3B**) were not found to noticeably differ from higher fidelity spectra (**Figure 1D**).
236

237 To verify cell viability during IR exposure, NG108 cells were subject to the hsSRS and stimulation
238 protocol described above while simultaneously monitoring for cell damage via positive fluorescence
239 staining of cell nuclei with propidium iodide. Imaging protocols were kept identical as previously
240 described while supplementing the cell imaging medium with $1\text{ }\mu\text{M}$ propidium iodide (Thermo-Fisher,
241 Natick, MA, USA). Cell morphology was additionally monitored throughout the experiment by
242 comparing high fidelity images ($< 1\text{ }\mu\text{m/px}$ sampling density) of the cells before and after imaging at their
243 peak SRS resonance contrast at 2930 cm^{-1} .
244

245 ***di-4-ANNEPS Ratiometric Fluorescence Imaging***

246 Imaging protocols were adapted from previously published work (25). Briefly, a loading solution of 4-(2-
247 (6-Dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide (or di-4-ANNEPS)
248 was prepared by diluting an aliquot of 4mM stock solution in dimethyl sulfoxide (DMSO) in
249 neurophysiological saline to a final loading concentration of 2 μ M. NG108 cells were incubated in the
250 dark at 37°C, 5% CO₂ and 95% relative humidity for 25 minutes, before being rinsed and maintained in
251 fresh neurophysiological saline solution free of dye for fluorescence imaging. To image di-4-ANNEPS
252 fluorescence, two photomultiplier tubes (PMTs) configured for non-descanned epifluorescence detection.
253 Fluorescence emission was split by a 593nm long pass dichroic mirror and subsequently filtered with
254 either a 525nm/25, or 625nm/45 optical bandpass filter before reaching PMT detectors (Semrock,
255 Brattleboro, VT, USA). Ultrafast laser excitation for multiphoton fluorescence was tuned to 960 nm to
256 optimally excite di-4-ANNEPS. For high-speed imaging, images were acquired as 96x64 pixel images
257 between 0.5-4.0 μ m/pixel sampling densities with 5 μ s pixel dwell times to yield 33.4 Hz framerates.
258 Excitation laser intensity for imaging was maintained below 10 mW at the sample plane. The SF11 glass
259 rods used to chirp the laser pulses for hsSRS imaging were removed for ratiometric fluorescence imaging,
260 resulting in ultrafast laser pulse width approaching 200 fs at approximately 80 MHz.
261

262 During a 5-second imaging period, stimulating IR light was delivered to di-4-ANNEPS stained NG108
263 cells via a 400 μ m core multimode optical fiber immediately adjacent to the microscope's field of view.
264 Varying levels of radiant exposure were delivered to cells (0-44 J/cm²) and the resulting fluorescence
265 intensity changes were compared across stimulation conditions. Calculations for conventional
266 polarization, as well as a modified version of general polarization (**Figure S6**), were derived to compare
267 conventional assessments of lipid packing with that observed with hsSRS.
268

269 ***Data Processing, Analysis, and Visualization***

270 *Hyperspectral SRS Imaging Data*

271 Raw data acquired from the imaging experiments were collated and sorted into multidimensional stacks
272 of 16-bit TIFF stacks separated by time and wavenumber using a customize processing pipeline in Fiji
273 leveraging the Bioformats plugin (26, 27). Average intensity projections of multidimensional (spectral,
274 temporal) image stacks in time and spectral space were used to generate a mask to segment cells
275 geometries. A general region of interest identified from the resultant masks were applied to the raw
276 multidimensional image stack to extract spectral and temporal data from features of interest (e.g. beads,
277 cells). To segment individual cells, a 2-pixel Gaussian blur was applied to the average intensity projection
278 of the multidimensional image stack and contrast local histogram equalization was performed to reduce
279 cell signal intensity variations between cells. Post-hoc flat field correction of imaging field heterogeneity
280 of images was implemented by scaling pixel intensities relative to the average intensity projection
281 gaussian blurred with a kernel equal to 0.25-0.5x the largest dimension of a particular image. Prominent
282 peak locations in the image are identified. The filtered average intensity projection is subsequently
283 segmented via Otsu segmentation. The resulting mask and previously identified peak locations are fed
284 into an seeded watershed segmentation algorithm which reliably separates and segments individual cells as
285 their own ROIs with minimal cell-to-cell overlap (28). Edge maps of cells were acquired by subtracting
286 the watershed-segmented mask from itself following an erosion operation, which reliably identifies
287 borders in a cell-specific manner. The resultant regions of interest are applied to the raw stacks to extract
288 the mean amplitude, standard deviation of signal or amplitude measurements, and their respective
289 centroid locations in image-space for each spatial and temporal point. This process is automated as a
290 macro procedure in FIJI and is freely available with raw data examples as supplementary information.
291 Depicted images provided in the manuscript are derived either from single frames at specific
292 wavenumbers of interest or maximum intensity projections of spectral image stacks. For visualization
293 purposes in publication, intensity scaling for all images were adjusted linearly.

294 All hsSRS spectra are smoothed with a 3-point sliding Gaussian window and normalized with
295 respect to their integrated spectral area. Since the intent of the study is to compare the relative spectral
296 shapes of each sample, an integrated spectral normalization was chosen to facilitate this interpretation.
297 Error associated with each plot is presented as standard deviation of all averaged spectra obtained for a
298 given experimental trial. Each individual bead was taken as one sample, and different trials were taken as
299 independent observations for statistical analysis purposes. For peak ratio comparisons, vibrational
300 resonance intensities were calculated utilizing a cubic spline interpolation of the measured spectral data
301 and its respective standard deviation. Comparisons of peak ratios were assessed using a student's 2-sided
302 t-test, where errors associated with ratiometric comparisons were calculated based on the propagation of
303 error of the interpolated standard deviations (statistical significance was denoted by * for $p < 0.05$, **
304 for $p < 0.01$). All quantitative work was performed in MATLAB (Mathworks, Natick, MA, USA) using
305 native functions. All bar graphs were created using the superbar package.

306 *Ratiometric Fluorescence Analysis of di-4-ANNEPS Data*

307 Processing of ratiometric fluorescence data is derived in part from previous work (29). Raw
308 image stacks of green (lipid membrane gel phase - ordered) and red (lipid membrane liquid phase -
309 disordered) spectral emission channels are acquired simultaneously at a 33.4 Hz framerate. Conventional
310 general polarization (GP_{conv}) was calculated using the following equation (29): G_{was} calculated using
311 the following equation (ref)

$$312 \quad 313 \quad 314 \quad 315 \quad 316 \quad 317 \quad 318 \quad 319 \quad 320 \quad 321 \quad 322 \quad 323 \quad 324 \quad 325 \quad 326 \quad 327 \quad 328 \quad 329 \quad 330 \quad 331 \quad 332 \quad 333 \quad 334 \quad 335 \quad 336 \quad 337 \quad 338 \quad 339 \quad 340 \quad 341 \quad GP_{conv}(t) = \frac{(O(t) - D(t))}{(O(t) + D(t))}$$

315 The raw image intensity differences between the green (ordered, $O(t)$) and red (disordered, $D(t)$) imaging
316 channels were divided by the sum of both channels for each timepoint in the image stack for each
317 experiment. Decreases in GP_{conv} value generally suggest decreases in membrane packing order. Average
318 GP values as a function of time were calculated and each cell's GP value was taken as an average GP of
319 all pixels contained in each cell's ROI. Cell segmentation similar to those segmented for SRS images
320 utilizing a seeded watershed method was performed. However, since di-4-ANNEPS labels the
321 extracellular membrane preferentially, a Huang threshold mask of raw disordered spectral fluorescence
322 intensity images were obtained to determine cell boundaries and a binary fill operation was employed to
323 identify areas in the image that contained cells. The lack of lipid-stained fluorescence in cell nuclei was
324 used to identify center points of cells. The raw disordered fluorescence channel image was smoothed with
325 a 2-pixel Gaussian filter and local minima in the images were used to approximately localize cell center
326 points. These cell center points, as well as the cell position mask, and a distance map calculated from the
327 cell position mask were fed into a seeded watershed algorithm in FIJI to yield segmentation maps of
328 individual cells in a given experiment (26, 28). The regions of interest derived from the segmentation
329 were subsequently applied to each imaging experiment, where time series of both raw fluorescence
330 channels were obtained per cell and the resultant data was exported for processing and analysis in
331 MATLAB (Mathworks, Natick, MA, USA). Statistical comparison of GP values across stimulation
332 conditions was performed using a 2-sided student's t-test and the magnitudes and standard error of means
333 across the GP values were calculated across all individual cells in a particular experimental condition
(statistical significance denoted as * for $p < 0.05$).

334 For image visualization, adapted from previous work (29), 8-bit depth raw fluorescence intensity
335 images from the disordered fluorescence channel were multiplied by each color channel of an color red-
336 green-blue (RGB) format image representing the calculated GP images with the desired false-colored
337 look-up table of preference. The resulting images yield an image where pixel brightness represents
338 intensity and color represents calculated conventional general polarization – which are used purely for
339 visualization purposes. All rescaling of intensities in images are linear and performed for clarity of
340 cellular morphologies and biophysical properties in print (**Figure 4A**).

342 Due to large variations in total fluorescence measured in any given experiment due to thermal
343 lensing during IR stimulation, the conventional method of calculating GP was found to be unreliable.
344 Since we expect a decrease in overall fluorescence due to the decrease in effective collection efficiency
345 during thermal lensing induced defocusing, the magnitude of changes in the denominator of the GP_{conv}
346 equation are much larger than that of the changes in the numerator of the equation. To account for these
347 effects, we developed an intensity invariant version of GP_{conv} to better reflect these dynamics
348 mathematically over short experimental periods of time undergoing substantial changes in photon
349 collection:
350

$$351 \quad GP_{mod}(t) = \frac{[O_0 - D_0] + [O_{off}(t) - D_{off}(t)]}{[O_0 + D_0]}$$

352

353 Where O_0 represents initial ordered fluorescence levels, D_0 represents initial disordered fluorescence
354 levels

$$355 \quad O_{off}(t) = [O(t) - O_0]$$
$$356 \quad D_{off}(t) = [D(t) - D_0]$$

357

358 $O_{off}(t)$ represent the net change in ordered fluorescence relative to O_0 as a function of time, and $D_{off}(t)$
359 represents the net change in disordered fluorescence as a function of time. $O(t)$ and $D(t)$ are the raw
360 ordered and disordered fluorescence as a function of time, respectively. (**Figure S6B**). The alternative
361 metric of modified GP (GP_{mod}) emphasizes the raw difference in measured fluorescence intensity between
362 the ordered and disordered fluorescence imaging channel without dividing by the sum of both image
363 channels over time. Assuming the defocusing artifact between both channels results in an equal amount of
364 defocusing and signal loss from each fluorescence channel, any changes in the relative difference between
365 the fluorescence signals as a function of time is indicative of functional changes in lipid bilayer packing
366 (**Figure S6**). For the purposes of this study, we are interested in determining the direction of GP changes
367 – positive or negative – rather than its magnitude. This consideration makes GP_{mod} a convenient and
368 applicable tool for our experimental approach.

369 Results

370 *Thermal Lensing during IR Stimulation*

371 Following confirmation of our instrument's ability to obtain hsSRS image stacks from live NG108 cells
372 (**Figure 1D** and **E**), initial experiments with IR stimulation during nonlinear microscopy (i.e. any
373 coherent Raman modality, multiphoton fluorescence, or higher harmonic generation) resulted in a
374 substantial loss in measured signal during IR exposure (**Figure 2B** and **C**) (22). This was apparent in
375 both short periods of heating from a millisecond pulse of IR light (unpublished data), or pulse trains of
376 multiple microsecond pulses of light. The shape of the disappearance and reappearance of the nonlinear
377 signal appears to follow the shape of the expected heating and cooling dynamics that is typically observed
378 during IR mediated heating (30)– suggesting that a temperature related phenomenon may be responsible
379 for the loss in signal. Considering the goal of this work is to image the high-speed chemical dynamics in
380 live cells during IR exposure, the loss of signal during this critical time period posed a challenge. To
381 better understand the role of this signal loss with immersion medium temperature, a vegetable oil sample
382 was imaged with SRS (2885 cm^{-1}) through warmed immersion medium at a range of physiologically
383 relevant temperatures. Temperature of the immersion medium was monitored by a thermocouple placed
384 adjacent to the microscope's field of view at the coverglass-immersion medium interface (**Figure S3**).
385 Warmed deionized water (approximately 50°C) was added between the objective and sample with the
386 edge of vegetable oil sample placed in focus. Images were acquired continuously as the immersion
387 medium slowly cooled to room temperature (22°C). Contrary to the signal decrease observed during
388 rapid IR heating (**Figure 2B** and **C**), this experiment showed that changes in immersion medium
389 temperature revealed a positive correlation with temperature and SRS signal of vegetable oil. This data

390 suggested that changes in immersion medium temperature on its own was not sufficient to explain the
391 decrease in nonlinear optical signal during IR heating.

392 The refractive index of the objective immersion medium, water (H_2O), is negatively correlated
393 with temperature (31). This concept suggests that the spatial thermal gradients generated by the IR
394 absorption from IR stimulation would defocus the ultrafast laser driving nonlinear contrast and thus
395 reduce observed nonlinear optical signal. To test this hypothesis, the immersion medium for the objective
396 lens was replaced with heavy water (D_2O), which has a five-fold lower absorption coefficient at 1875nm
397 than deionized water with nearly identical refractive indices (2). If the thermal gradient causes the
398 decrease in nonlinear signal observed in the sample, then reducing the immersion medium's IR absorption
399 properties should reduce the magnitude of the nonlinear signal decrease during stimulation. The results
400 shown in Figure 2B validates this hypothesis (**Figure 2B**) suggesting that the thermal gradient from IR
401 stimulation was defocusing the ultrafast laser source resulting in a decrease in nonlinear signal (**Figure**
402 **2A**).

403 Since water's index of refraction is negatively correlated with temperature, the thermal gradient
404 generated during IR stimulation in front of the stimulation fiber and within the microscope's field of view
405 behaves like a negative lens during imaging. Imaging out of focus samples during IR stimulation would
406 bring samples into focus (**Figure 2A**). This hypothesis was found to be true for both nonlinear imaging
407 and IR transillumination imaging. By moving the microscope's focal plane above the sample by a few
408 microns prior to IR exposure, the samples (polymer microbeads in this case) would come into focus
409 (**Figure 2C**). This precompensation of defocus was applied repeatedly across numerous spectral channels
410 to generate a time resolved hsSRS profile of samples during IR stimulation, similar to previously
411 employed approaches with hsSRS and electrophysiology (18, 32). This approach was verified by
412 measuring several control samples: PS/PMMA microbead monolayer mixtures, 10%w/v bovine serum
413 albumin solution in PBS, and large multilamellar vesicles of neurologically derived phosphatidylcholine
414 (PC) and phosphatidylethanolamine (PE) in physiologically balanced neural saline solution before
415 conducting experiments using live cellular samples.

416 ***Verifying pre-compensation for thermal defocusing during hsSRS***

417 **Figure 2D** shows a representative image of mixed microbead monolayers, highlighting PMMA in
418 cyan using the band at 2950 cm^{-1} (terminal methyl C-H resonance) and PS in orange using the band at
419 3050 cm^{-1} (aromatic C-H stretch resonance). The mixed bead sample was exposed to $\sim 12\text{ J/cm}^2$ IR
420 stimulation and the resultant spectra for both bead types are shown in **Figure 2E&F**. Relevant spectral
421 band assignments for polymer microbead samples are summarized in **Table 1**. Infrared-exposed PMMA
422 beads exhibit several distinct spectral changes upon heating – decreases in the 2880 and 2910 cm^{-1}
423 resonances of skeletal C-H stretching, as well as relative increases in resonances at 3000 cm^{-1} and
424 decreases at 3050 cm^{-1} . Shifts in PS hsSRS spectra during IR exposure show relative increased vibrational
425 activity around 2850 cm^{-1} , implying the possibility of relaxed steric hinderance of skeletal $sp^3\text{ CH}_2$
426 symmetric stretching modes, while broadening the 3050 cm^{-1} peak attributable to aromatic $sp^2\text{ C-H}$
427 stretching and suggesting reduced steric hinderance around aromatic side chains. These observations
428 show that utilizing a time resolved approach to obtaining hsSRS spectra of samples heated by pulsed IR
429 light is feasible in highly Raman active idealized chemical samples.

430 The dominant Raman scatterers in the 2800 - 3100 cm^{-1} spectral region primarily include lipids
431 and proteins – with some marginal nucleic acid contribution (33, 34). Spatially and spectrally, nucleic
432 acids are easy to separate in cellular images (35). However, since proteins and lipids in cells do not
433 appear as spatially distinct as the resolution of our microscope, their distinct spectral information must be
434 used to draw conclusions about their molecular dynamics. Understanding how proteins and lipids are
435 separately affected by IR stimulation provides insight to the spectral shifts can be attributed to each
436 biomolecule during live cell imaging. hsSRS imaging with IR stimulation was performed on separate
437 aqueous preparations of biomimetic multi-lamellar vesicles (phosphatidylcholine - PC, neurologically
438 derived, porcine sourced, Avanti Polar Lipids, Alabaster, AL, USA) and bovine serum albumin (BSA,
439 10%w/v) solutions.

440 An emulsion of multilamellar vesicles (MLVs) were imaged with hsSRS and focus
441 precompensation during radiant exposures equivalent to threshold levels (10.63 J/cm^2) of IR exposures in
442 live cells. These vesicles serve as a coarse chemical representation of cells to provide an isolated lipid
443 preparation, free of protein or carbohydrate contribution to vibrational spectra. Infrared-exposed MLV
444 spectra (**Figure S4A, B**) show distinct shifts in lipid molecule resonances relevant to lipid molecular
445 packing order. Relevant spectral band assignments for biological lipid samples are summarized in **Table**
446 1. The 2850 cm^{-1} symmetric aliphatic C-H stretch resonance is markedly decreased, along with its Fermi
447 resonance at 2880 cm^{-1} . Meanwhile, sp^2 C-H stretching resonances associated with unsaturated aliphatic
448 chain motifs at 3010 cm^{-1} are substantially decreased. Crucially, ratiometric comparison of 2880 and 2850
449 cm^{-1} shows reduced rotational restriction in alkane chains, or a decrease in aliphatic tail packing order
450 within the hydrophobic region of the membrane (**Figure S4C**). This is further supported by the observed
451 decrease in the ratio of 2940 to 2830 cm^{-1} , which relates to increases in the solvent interaction with lipids
452 (**Figure S4C**). These observations suggest that thermodynamic changes in lipid vibrational signatures
453 during IR stimulation are discernable with hsSRS.

454 To characterize protein vibrational signature changes during IR-induced heating, the edge of a
455 10%w/v BSA solution meniscus was imaged with hsSRS using radiant exposures equivalent to threshold
456 levels of IR exposures in live cells (**Figure S4D**). Changes in protein spectra during IR exposure appear
457 to be negligible (**Figure S4E**). Furthermore, the contribution of protein vibrational spectra in ratiometric
458 comparisons that reveal significant changes in MLV samples appear to contribute negligibly to IR-
459 exposed changes in the BSA sample (**Figure S4F**). It is worth noting that the amino acid constituents of
460 BSA, a water-soluble protein, may not be directly representative of a transmembrane protein one would
461 observe as a component of the extracellular membrane or intracellular organelles. However, the data
462 supports previous work showing that the shape of protein spectra in the CH-band region of the Raman
463 spectrum do not appreciably change with temperature (36, 37).
464

465 **hsSRS of Neural Cell Models during INS**

466 With the spectral changes in biomimetic samples established, hsSRS imaging during IR stimulation was
467 conducted in an *in vitro* neural cell model - a neuroma-glioblastoma hybridoma cell line (NG-108-15,
468 Sigma-Aldrich, MO, USA). The NG-108 cell line was used as a practically robust and experimentally
469 resilient neuronal cell model for hsSRS imaging. These cells are an accepted electrodynamic model of *in*
470 *vitro* neurons and have been used in the past successfully to study electrodynamics evoked by IR
471 stimulation (19, 20, 38). **Figure 3A** shows a maximum intensity projection of an hsSRS spectral image
472 stack to highlight the morphology of NG-108 cells. Successful stimulation with pulsed IR light were
473 verified in separate experiments (unpublished) of NG108 cells loaded with a calcium-sensitive dye, Fluo-
474 4-AM at $1\mu\text{M}$ in balanced saline for 45 minutes. Two-photon fluorescence and SRS centered at 2880 cm^{-1}
475 – an asymmetric sp^3 CH_2 resonance dominantly from lipids –images were acquired simultaneously during
476 IR stimulation of NG108s at a range of IR doses until noticeable increases in calcium-dependent
477 fluorescence responses were evoked ($>2\%$ increase in dF/F). Levels of IR evoking consistent intracellular
478 calcium responses across the microscope’s field of view were referred to as threshold levels of exposure.
479 Cells were imaged with hsSRS during IR stimulation with threshold and subthreshold (about half of
480 threshold levels) doses of IR light.

481 The resultant area-normalized hsSRS spectra of NG108 cells under baseline (unstimulated),
482 subthreshold, and threshold stimulation conditions are shown in **Figure 3B**. Relevant spectral band
483 assignments for biological samples in the CH-stretch region are summarized in **Table 1**. Shoulders
484 appearing at 2850 cm^{-1} during stimulation are indicative of relatively increased vibrational resonant
485 activity from symmetric aliphatic C-H stretching in lipid tail chains. Decreases in the relative intensity
486 ratio between 2940 and 2885 cm^{-1} (**Figure 3C**) suggest a decrease in packing order within the
487 hydrocarbon tails of the lipid molecules due to *trans-gauche* isomerization of sp^3 hydrocarbon chains.
488 Interestingly, the 2850 cm^{-1} shoulder appears to increase in spectral intensity relative to the associated
489 Fermi resonance at 2880 cm^{-1} , possibly suggesting a reduction of intermolecular steric hindrance between

490 aliphatic lipid tails, or more rotational freedom of hydrocarbon chains. These observations were
491 quantified by calculating the intensity ratio between 2850 and 2940 cm⁻¹ (**Figure 3D**), as well as 2880 and
492 2850 cm⁻¹ (**Figure 3E**). These metrics respectively offer a quantification of lipid tail chain packing order
493 – which was previously hypothesized to decrease during IR stimulation (3). **Figure 3C-E** shows these
494 intensity ratios from NG-108 whole cell spectra obtained at baseline, sub-threshold, and threshold levels
495 of INS previously established to elicit calcium transients. Statistically significant differences ($p < 0.05$,
496 indicated with asterisk) in these ratios suggest decreased hydrocarbon tail chain packing in cellular lipid
497 membranes. Notably, in each comparison, the ratios calculated for subthreshold exposure fall between
498 unstimulated and stimulated conditions. Of particular note, the shoulder around 3030 cm⁻¹ – which is a sp²
499 CH (methylene) resonance assignable to CH bonds at points of unsaturation in lipid hydrocarbon tails –
500 appears at the threshold stimulation but is reduced in the subthreshold and no stimulation cases (**Figure**
501 **3B**).

502 The hsSRS spectral acquisition as described above requires cells to be exposed to 50 different
503 rounds of IR stimulation – possibly damaging the cells and yielding biologically irrelevant observations.
504 Though no morphological changes were observed in the stimulation experiments, cell viability was
505 verified after repeated IR exposure. Exposed NG108 cells were imaged with multiphoton fluorescence to
506 track the uptake of a cell damage indicator – propidium iodide (PI) – simultaneously with SRS tuned to
507 the 2940 cm⁻¹ CH₃ resonance. Cells were imaged through 50 rounds of stimulation, using parameters
508 similar to those used during a live cell hsSRS imaging experiment (

509
510 **Figure S5A**). Some cell swelling was observed morphologically, but no uptake of PI was observed (

511
512 **Figure S5B**) – suggesting that the repetitive nature of hsSRS acquisition did not have any immediate
513 impact on acute cell viability.

514 **Ratiometric fluorescence imaging of functional lipid dye during INS verify changes in** 515 **lipid bilayer packing order**

516 Ratiometric fluorescence of di-4-ANNEPS emission, a probe of membrane packing order, was employed
517 to verify cellular lipid dynamics as observed in vibrational spectra (25). Di-4-ANNEPS rototomerization
518 is known to be dependent on fatty acid tail chain packing order in lipid membranes. During IR
519 stimulation, if lipid tail chain packing order is decreased, a similar decrease in general polarization (GP)
520 metric should follow. In place of the conventional approach for calculating GP, intensity-invariant
521 adaptation of GP was utilized to circumvent the defocusing effect during IR stimulation (detailed in
522 Methods and **Figure S6**). **Figure 4A** depicts an intensity image of di-4-ANNEPS loaded NG-108 cells
523 overlaid with color denoting GP calculation at each pixel. **Figure 4B** and **C** show the mean single cell GP
524 time traces and their standard deviations for each dosing condition. The intensity-invariant GP of di-4-
525 ANNEPS (**Figure S6**, see Methods) shows substantial decrease in GP as a function of IR stimulation
526 dosage (**Figure 4C**). A decrease in GP suggests a decrease in lipid chain packing order during IR
527 stimulation supporting the hsSRS observations.

528 **Discussion**

529 Our current understanding of label-free directed energy neuromodulation continues to raise questions
530 about their mechanistic bases. An improved understanding of INS mechanisms provides a fundamental
531 framework for the development of future innovative neuromodulation technologies. Here, we provide an
532 approach that uses hsSRS microscopy to gain insight to the role of lipid dynamics in live neural cells
533 during INS. Most traditional methods to observe lipid-specific dynamics (e.g. isolated lipid preparations,
534 electrophysiology, x-ray diffraction, neutron scattering) in cells in real time suffer from lack of specificity
535 or biological compatibility. Methods that utilize fluorescent tags (e.g. fluorescence correlation
536 spectroscopy, fluorescence recovery after photobleaching) provide insight into the dynamics of lipids in
537 live cells but are inherently indirect. The goal of this work was to directly observe the biophysical
538 dynamics of INS with a vibrational spectroscopic approach in live neural cells. Using the intrinsic Raman

539 contrast of lipids, spectroscopic insight would help clarify the mechanistic role of lipid dynamics in INS.
540 Our demonstration of characterizing and precompensating for dynamic defocus during INS with hsSRS is
541 a novel approach in biomedical microscopy that is applicable to studying the molecular biophysics of live
542 cell models more generally.
543

544 Photothermal events are notoriously difficult to address with biological microscopy due to the
545 relationship between temperature and refractive index in water. While bulk changes in sample
546 temperature can impact optical aberrations in microscopes, spatial thermal gradients that vary on the order
547 of the microscope's field of view can have significant impacts on the refraction of light into the sample
548 (**Figure 2B**). Accounting for defocusing actively on millisecond timescales may be possible with dynamic
549 adaptive optics approaches but is far from trivial to implement. Instead, our approach to adjust for IR-
550 induced defocusing of the fluorescence excitation empirically (**Figure 2A, C**) – though coarse compared
551 to adaptive optics – enables us to gather useful insight to the biophysical phenomena associated with INS
552 (**Figure 3**). The reliable timing of stimulation can be leveraged to employ a time-resolved spectroscopy
553 approach to hsSRS imaging at high framerates. In doing so, we demonstrate that high-speed vibrational
554 dynamics can be resolved in live cell preparations safely to yield biologically meaningful observations. In
555 studying INS using high numerical aperture microscopy, where IR induced deflections in focal length can
556 equal or exceed the depth of focus of a particular imaging objective, we urge others to interpret their
557 results cautiously. Thermal defocusing can have a disproportionate impact on single-channel
558 intensiometric-based measurements and need to be carefully accounted for (**Figure S6**). In cases where
559 intensity noticeably changes during exposure, we encourage others to employ ratiometric or multi-
560 spectral approaches to allow for defocusing artifacts to be readily accounted for. With fluorescence
561 microscopy, where quantum yield, fluorescence intensity, and spectral profiles are well known to be
562 sensitive to both heating and defocusing (39–41), having simultaneous or time-resolved multispectral
563 reference bases will allow for such artifacts to be accounted for in post-processing.
564

565 There are several spectral changes in the CH-stretch region of the Raman spectrum (2800–3100 cm^{-1}) that
566 one might expect to see if the current INS mechanistic model was valid. *Trans-gauche* isomerization, or
567 rototomerization, of sp^3 hydrocarbon chains – primarily associated with lipid hydrophobic tail groups in
568 Raman imaging – can give rise to a number of steric effects that drive lipid membrane deformations (36,
569 37, 42, 43). Specifically, lipid packing order – or the ability for lipid molecules to stack neatly alongside
570 each other within the membrane leaflets – was hypothesized to decrease with elevated temperature during
571 INS. Rototomerization in membrane lipids geometrically shortens acyl tail groups, resulting in
572 membrane thinning. While quantifying the absolute deformation of lipid membrane thickness with SRS
573 would require additional calibration experiments, relative indicators of molecular interactions can be
574 quantified with hsSRS. An increased quantity of gauche rotamer within the hydrophobic region of the
575 membrane leads to geometric acyl tail shortening and sterically drives lipid molecules apart from each
576 other. The result is a decrease in membrane packing order. In the CH-stretch region of the Raman
577 spectrum, relative changes in symmetric (2850 cm^{-1}) and asymmetric (2880 cm^{-1}) aliphatic C-H stretching
578 indicate shifts in molecular packing order due to changes in the rotational freedom of hydrocarbon chains
579 in lipid tails. Raman signal at these resonances is largely attributed to biological lipids (**Figure S4**) (33).
580 A decrease in the ratio of 2880 and 2850 cm^{-1} during INS (**Figure 3E**) is indicative of a ‘loose’ packing
581 order between lipid molecules or an increase in *trans-gauche* isomerization (44, 45). The
582 rototomerization of lipid tails is well known to both decrease membrane thickness and increase the area
583 of each lipid molecule’s solvent interactions (46–48). Changes in the ratio between 2940 and 2885 cm^{-1}
584 offer insight to water interaction with lipid molecules, which should increase with temperature. The data
585 show a decrease in the ratio between 2940 and 2885 cm^{-1} (**Figure 3C**), which is in line with the idea that
586 lipid molecules expand within the membrane leaflets to leave room for more potential solvent interactions
587 (e.g. hydrogen bonding) with elevated temperatures. The IR dose dependence of this observation further
588 suggests that the relative degree of isomerization correlates with levels of IR exposure that would evoke
589 neural activity *in vitro*. The observations of a progressive increase in isomerization with IR exposure

590 support the existing mechanistic model of INS, where transient temperature changes are accompanied by
591 changes in physical bilayer geometry.
592

593 The shoulder appearing around 2990 and 3030 cm⁻¹ during INS in cells (**Figure 3B**) arise from relative
594 increases in vinyl C-H resonances, which correspond to points of unsaturation in lipid tail acyl chains.
595 Relative increases in vinyl C-H signal can arise from reduced steric hinderance of sp² C-H stretching as
596 well as compositional or membrane potential related changes when the lipid bilayer undergoes thermal
597 changes. Curiously, the appearance of the 3030 cm⁻¹ shoulder in threshold stimulated cells was reduced in
598 sub-threshold levels of stimulation. This resonance at 3030 cm⁻¹ may provide a key marker for neural
599 biophysics during INS.
600

601 The vinyl C-H portion (2980-3100 cm⁻¹) of the C-H stretch region does contain SRS signal contributions
602 from proteins—particularly from amino acid residues such as tyrosine, phenylalanine, and tryptophan.
603 These amino acids play a key structural role in stabilizing hydrophobic domains of transmembrane
604 proteins in the cell membrane. Control experiments observing the IR-related dependence of BSA SRS
605 spectra in solution (**Figure S4**) as well as evidence from others (36, 37, 49) reinforce that thermally-
606 mediated changes in protein dynamics are not major contributors in the CH stretch region of the Raman
607 spectrum. As such, we conclude protein signal contributes minimally to the photothermal mediated SRS
608 changes that would be expected during INS. Others have attributed relative decreases in 2930 cm⁻¹ signal
609 to changes in cellular membrane potential, enabling the visualization of neuronal action potentials with
610 SRS microscopy (18, 32). These spectral changes were attributed to the decrease in positively-charge
611 proteins electrostatically accumulating at the extracellular membrane surface when a cell is at its resting
612 membrane potential. A reduction in membrane potential was suspected to reduce membrane-associated
613 proteins in solution at the cell membrane surface. Our results show a considerable reduction in relative
614 2930-2940 cm⁻¹ signal during INS (**Figure 3B**), thus electrostatic association of soluble proteins with cell
615 surfaces may play some role in our results. Several experimental details suggest that membrane potential
616 changes from electrostatic protein association would not be contributing to our spectra. Defocusing
617 artifacts make it difficult to obtain conclusions about absolute molecular concentrations during INS
618 (**Figure 2A-C**). Practically, our approach to region of interest selection, non-balanced detection, and
619 imaging medium formulation confounds any comparability of our results with these previous studies.
620 However, Lee et al. did employ a similar time-resolved approach for acquiring SRS spectra as a function
621 of membrane potential – demonstrating the utility of such an approach for certain types of experiments
622 beyond photothermal phenomena.
623

624 The physical changes in the lipid bilayer during rapid heating with IR light are thought to give rise – at
625 least in part – to the cell capacitance increase that drives cellular depolarization during INS (2, 3). Our
626 results (**Figure 3**) support the idea that the lipid bilayer undergoes some thermally mediated chemo-
627 physical change during INS that is observable via vibrational imaging and correlate with the level of
628 delivered stimulus. While these findings are promising, they do not definitively support that bilayer
629 deformation is directly causal to the stimulatory effect of INS. Though beyond the scope of this work,
630 questions remain about how transmembrane ion channels may be independently sensitive to lipid
631 membrane geometry and thermodynamics. Lipid thermodynamics are known to affect the conformational
632 and functional properties of transmembrane ion channels (50–53). It is not clear whether the capacitive
633 effect or the actual physical change in the lipid bilayers themselves give rise to stimulatory phenomenon.
634 It is difficult to decouple chemo-physical and thermal electrodynamic changes in biologically relevant
635 preparations. A preparation of lipid vesicles or cells expressing voltage gated ion channels loaded with a
636 UV photo-switchable lipid analogue (e.g., containing an azobenzene moiety in the tail group) may be a
637 useful experiment. The photo-switching property of such synthetic lipids would allow for optical control
638 of membrane packing order with substantially reduced photothermal effects.
639

640 The current hypothesis for how INS occurs is that rapid heating causes a capacitive inward current that
641 can depolarize neurons and lead to action potential generation (2). This capacitive current is thought to
642 arise from biophysical changes within the extracellular membrane – namely *trans-gauche* isomerization
643 of lipid acyl tail chains – that change the physical dimensions of the extracellular membrane due to
644 temperature elevations (3). This deformation is accompanied by a movement of membrane-associated
645 charge that – when hot and fast enough – can generate an inward current that depolarizes cells. The model
646 of this phenomenon relies on steady-state chemical assessments of synthetic lipid bilayer geometry (54,
647 55). The changes in bilayer geometry are used to inform a computational electrodynamic model that is
648 compared against previous experimental work (2, 38). While the model of chemo-physical and
649 electrodynamic phenomena convincingly reproduces experimental data, capacitance changes and cellular
650 electrodynamics are ultimately influenced by more than lipid dynamics alone *in vitro* and *in vivo*. Our
651 work here provides direct evidence that lipid membrane dynamics are actively changing during INS in
652 neural cells *in vitro*. The causality of this phenomena remains to be proven. But the insight provided by
653 our work shows how lipid membrane dynamics can be leveraged to selectively modulate cellular
654 physiology.

655
656 Our SRS spectral observations are supported by an additional gold standard means of measuring lipid
657 dynamics in real-time – ratiometric fluorescence of a lipophilic dye, di-4-ANNEPS (**Figure 4**, **Figure**
658 **S6**). The negative changes in GP during INS affirm the decrease in membrane packing order observed
659 with hsSRS. The magnitude of the changes in GP scaled with the level of stimulus delivered (**Figure 4B**
660 and **C**). The data further suggests that hsSRS can be leveraged as a complementary tool to study lipid
661 biophysics alongside traditional fluorescence approaches. Others have applied hsSRS to observe lipid
662 biophysics in synthetic preparations (16, 17), or to study lipid metabolism at the biomolecular level (56,
663 57). Stimulated Raman microscopy has not previously been applied to the study of biophysical
664 thermodynamics at sub-second timescales. Our work explores a temporal regime of live cell biophysics
665 that few have ventured into with SRS. This work provides a practical extension to the existing work
666 around hsSRS development while shedding light on a question pertinent to the field of optical
667 neuromodulation.

668
669 While the implementation of hsSRS here can resolve high speed spectral dynamics well below a second,
670 it does take several minutes to build observations of events on a spectral basis. In situations where
671 repeated perturbation of cells is not practical, the same approach can be implemented with a drastically
672 reduced number of spectral channels. Alternatively, multispectral approaches leveraging simultaneous
673 acquisition of multiple resonances would be advantageous. To account for the defocusing artifacts
674 described here, at least two spectral channels need to be acquired to accurately draw conclusions – thus
675 single-shot perturbations are not readily applicable with the demonstrated approach here. The fast rates of
676 development in bioimaging with SRS show promise in pushing SRS based imaging methods to their
677 limits. Our work shows that hsSRS can be applied to a range of lipid biophysics experiments as a
678 complement to more conventional fluorescence-based approaches. In contrast to fluorescence-based
679 approaches that rely on indirect readout from reporter molecules interacting with lipids in the cell
680 membrane, vibrational contrast like that of hsSRS enables direct inference to be made specific to lipids at
681 the intra- and intermolecular levels. As technology in coherent Raman imaging continues to improve with
682 better lasers, detectors, and signal processing strategies, we can expect to see extensions of hsSRS to
683 address many other areas of lipid biophysics and beyond. Currently, signal to noise limits the real-time
684 performance of hsSRS in the fingerprint region of the Raman spectrum ($400\text{-}1700\text{ cm}^{-1}$). In future studies
685 we propose to study the fingerprint region which provides more information about other biomolecules,
686 such as DNA, RNA, and carbohydrates, which can be used to study macromolecular phase separation
687 phenomena, chromatin dynamics, or glycogen metabolism directly without exogenous labeling.
688 Furthermore, coherent Raman imaging can be readily performed simultaneously with other nonlinear
689 microscopy modalities (22). Multiplexing modalities might enable studies into how lipid membrane

690 biophysics can influence biological dynamics with conventionally accepted molecular reporters. With this
691 in mind, hsSRS has promising potential for a diverse range of bioimaging applications.
692

693 Alternative approaches utilizing deuterated lipid preparations to shift lipid-specific resonances into the
694 “silent window” of the Raman spectrum ($1700\text{-}2700\text{ cm}^{-1}$) may offer additional insight into the role of
695 vinyl C-D resonances in the biophysics of INS (12, 58–60). However, the applications of deuterated
696 lipids may not be easily replicable in live cells as it can interfere with the hydrogen bonding dynamics
697 crucial to cell membrane integrity. Currently, fast implementation of hsSRS is technically hampered by
698 the signal-to-noise performance in the fingerprint window of the Raman spectrum ($400\text{-}1700\text{ cm}^{-1}$).
699 Utilizing other features of the Raman spectrum that are more directly attributed to lipid tail chain
700 rototisomerization (e.g. the skeletal vibrational C-C modes between 1030 and 1150 cm^{-1} , as well as C=C
701 stretching modes around 1650 cm^{-1}) might provide more direct mechanistic insight to INS once possible
702 (44). Some promising newer spectroscopic and computational denoising methods that circumvent these
703 noise issues are gaining popularity, but still require careful validation for high-speed imaging of cellular
704 dynamics (61–64). Ongoing work continues to improve the technical capabilities of SRS such that real
705 time imaging of fingerprint spectral features within live cells may be possible. Coherent anti-Stokes
706 Raman scattering, or CARS - a similar contrast modality to SRS – has achieved considerably fast imaging
707 throughput at high spectral resolution over the span of the CARS spectrum (5ms/px dwell times over
708 $>3000\text{ cm}^{-1}$ bandwidth) (61, 65). While this approach was too slow for spatially resolving cellular
709 dynamics in real time for our study, broadband CARS approaches may be suitable for numerous other
710 biological applications with different instrument performance needs.
711

712 Though the data presented here offer support for the involvement of lipid dynamics in INS, it needs to be
713 noted that focus precompensation and hsSRS does not readily show the absolute magnitude of
714 deformation in the cell membrane during INS. With a molecular dynamic model of INS biophysics,
715 simple bilayer geometry simulations may enable some degree of calibration to correlate observed hsSRS
716 spectra with lipid bilayer physical properties. Without clear approximations of lipid bilayer physical or
717 electrical properties, it becomes difficult to judge or estimate the cell capacitance changes postulated to
718 depolarize cells from SRS data alone. Integrating voltage imaging or electrophysiology alongside our
719 existing hsSRS experimental preparation may be helpful in identifying a relationship between lipid
720 dynamics and capacitance. Imaging systems with framerates exceeding 1 kHz can provide a window into
721 these dynamics – however we were unable to reach such high framerates with our system without
722 damaging cells. More generally, our results provide supportive evidence of the role lipids play in INS
723 however, the data does not show a causal relationship between lipid dynamics and INS. Further, our
724 imaging approach does not differentiate between extracellular membranes and intracellular organelle
725 membranes. Transmembrane protein sensitivity to INS phenomena is still not clear, though it is known
726 that different molecular pathways can be actuated depending on cell phenotype (20, 21, 66–70). Despite
727 these caveats, the provided data clearly demonstrates that lipid bilayer dynamics are changing during INS
728 and these changes track with magnitude of stimulus. These results provide validation of the current
729 mechanism’s key assumptions in a live neural cell model. The understanding of this concept serves as a
730 crucial basis for understanding of label free neuromodulation more broadly. Further, the general
731 experimental framework presented here is readily applicable to other methods of directed energy
732 neuromodulation as well as in the study of other dynamic processes.
733

734 The mechanistic basis of directed energy label-free neuromodulation has long been a question lacking
735 complete answers (71, 72). Having a better understanding of how directed energy in the optical domain
736 can be used to modulate brain function opens the door for innovation in neuromodulation to improve
737 spatial targeting, temporal accuracy, and long-term utility, optically or otherwise. Extending these
738 understandings to the development of new neuromodulation methods, neural prostheses, and therapeutic
739 interventions provides a promising outlook for directed energy approaches. Whether the mechanistic basis
740 for methods of directed energy neuromodulation, such as infrared, ultrasonic, or radio frequency-based

741 approaches, are shared remains to be demonstrated. Our approach may serve as a valuable benchmark for
742 answering such questions in the future as technology in neuromodulation and hsSRS imaging continues to
743 develop.

744 **Conclusion**

745 We have used hsSRS to experimentally demonstrate the mechanistic involvement of lipid dynamics in
746 INS in live neural cells. Our results provide direct supportive evidence of lipid bilayer structural changes
747 related to thermally induced *trans-gauche* isomerization of lipid tail hydrocarbon chains during INS. The
748 These experimental observations are in line with the currently proposed mechanistic model of INS. The
749 implications from our results reinforce the idea that the photothermal basis of INS may be driving a
750 general, nonspecific effect in live cells that evokes a multitude of physiological responses. The
751 experimental framework also highlights the utility of hsSRS microscopy in addressing questions with
752 high temporal resolution requirements and will continue to provide fruitful information about live cell
753 biophysics beyond neuromodulation.

754 **Funding**

755 Funding for this work was provided by the following grants: AFOSR DURIP FA9550-15-1-0328,
756 AFOSR FA9550-14-1-0303, AFOSR FA 9550-17-1-0374. Additional support was provided from funding
757 through the Vanderbilt University Trans-Institutional Partnership (TIPS) Program. WRA was supported
758 through the ASEE NDSEG Fellowship.

759 **Acknowledgements**

760 The authors wish to thank Dr. Manqing Wang, Dr. Paul Stoddart, Dr. William Patrick Roach, Dr. Mark
761 Hutchinson, and Dr. Valentina Benfenati for their discussion and guidance that formed the early basis for
762 this work. The authors would also like to thank Dr. Bruce Tromberg for his suggestions and guidance for
763 the ratiometric fluorescence imaging experiments presented in this study. The authors also thank Dr.
764 Bryan Millis for his input on the manuscript.

765 **Author Contributions**

766 AMJ, EDJ, and WRA conceived the idea for the manuscript. AMJ and EDJ secured funding support for
767 the published work. AMJ, EDJ, GT, RG, and WRA designed the experiments. AL assisted in identifying,
768 preparing, imaging the control samples for the study, and interpreting the results. AIBC assisted in
769 preparing cell cultures, formulating experimental approaches, and data analysis. RG, AL, and GT
770 contributed to data processing and analysis. BRJ, CD, AL, and WRA prepared the multilamellar vesicles.
771 WRA assisted in all sample preparations, performed all imaging experiments, image processing, data
772 analysis, data visualization, and wrote the manuscript. All authors contributed to editing manuscript.

773 **Conflicts of Interest**

774 The authors declare no conflicts of interest.

775 **Data Availability**

776 Any raw or processed data, processing, and analysis code are available upon request from the
777 corresponding authors.

778 **Figure Legends**

779 **Table 1:** Raman spectral band assignments in the CH stretch region for control (23, 73, 74) and cellular
780 (36, 37, 43, 75) samples

Wavenumber	Chemical	Assignment
Polymer Microbeads		
2847	PMMA	C-H stretching of O-CH ₃
2885	PMMA	C-H stretching of α -CH ₃
2910	PMMA	symmetric C-H of -CH ₂ ; C-H stretching of O-CH ₃
2950	PMMA	symmetric C-H of α -CH ₃ ; symmetric C-H of O-CH ₃ ; asymmetric C-H of -CH ₂
3000	PMMA	asymmetric C-H of O-CH ₃ , asymmetric C-H of α -CH ₃
3050	PMMA	asymmetric C-H of O-CH ₃
2850	Polystyrene	symmetric C-H of CH ₂
2915	Polystyrene	asymmetric C-H of CH ₂
3050	Polystyrene	=C—H stretching of aromatic ring
Biological Lipids		
2850	Lipids	Symmetric C-H stretch of aliphatic -CH ₂
2880 or 2885	Lipids	asymmetric C-H of aliphatic -CH ₂ ; Fermi resonance between the symmetric C-H stretching mode and the overtone of the C-H bending vibrations
2970 or 2960	Lipids	Asymmetric C-H stretch of -CH ₃
3015 or 3023	Lipids	Alkyl =C—H stretches
Biological Proteins		
2940 or 2930	Proteins	Symmetric C-H stretch of -CH ₃ Asymmetric C-H stretch of -CH ₂ 2930 cm ⁻¹ corresponds to the overtone of the CH ₂ scissoring (δ (CH ₂)) enhanced by Fermi resonance with the ν_s -(CH ₂) mode.
3000 - 3060	Proteins	sp ² C-H stretch of aromatic/vinyl amino acid residues (=C—H)

Wavenumber	Chemical	Assignment
Polymer Microbeads		
2847	PMMA	C-H stretching of O-CH ₃
2885	PMMA	C-H stretching of α -CH ₃
2910	PMMA	symmetric C-H of -CH ₂ ; C-H stretching of O-CH ₃
2950	PMMA	symmetric C-H of α -CH ₃ ; symmetric C-H of O-CH ₃ ; asymmetric C-H of -CH ₂
3000	PMMA	asymmetric C-H of O-CH ₃ , asymmetric C-H of α -CH ₃
3050	PMMA	asymmetric C-H of O-CH ₃
2850	Polystyrene	symmetric C-H of CH ₂
2915	Polystyrene	asymmetric C-H of CH ₂
3050	Polystyrene	=C—H stretching of aromatic ring
Biological Lipids		
2850	Lipids	Symmetric C-H stretch of aliphatic -CH ₂
2880 or 2885	Lipids	asymmetric C-H of aliphatic -CH ₂ ; Fermi resonance between the symmetric C-H stretching mode and the overtone of the C-H bending vibrations
2970 or 2960	Lipids	Asymmetric C-H stretch of -CH ₃
3015 or 3023	Lipids	Alkyl=C—H stretches
Biological Proteins		
2940 or 2930	Proteins	Symmetric C-H stretch of -CH ₃ Asymmetric C-H stretch of -CH ₂ 2930 cm ⁻¹ corresponds to the overtone of the CH ₂ scissoring (δ (CH ₂)) enhanced by Fermi resonance with the ν_s -(CH ₂) mode.
3000 - 3060	Proteins	sp ² C-H stretch of aromatic/vinyl amino acid residues (=C—H)

782

783 **Figure 1: Experimental setup for SRS and fluorescence imaging of samples during IR exposure.** (A)
784 Imaging system schematic, (B) Standard poly(methyl methacrylate) and polystyrene (PMMA | PS)
785 monolayer demonstrating spatial and (C) spectral performance of imaging system. (D) Maximum-
786 intensity projection of the hyperspectral SRS image stack of live NG108 cells alongside their respective
787 (E) whole-cell SRS spectra.

788

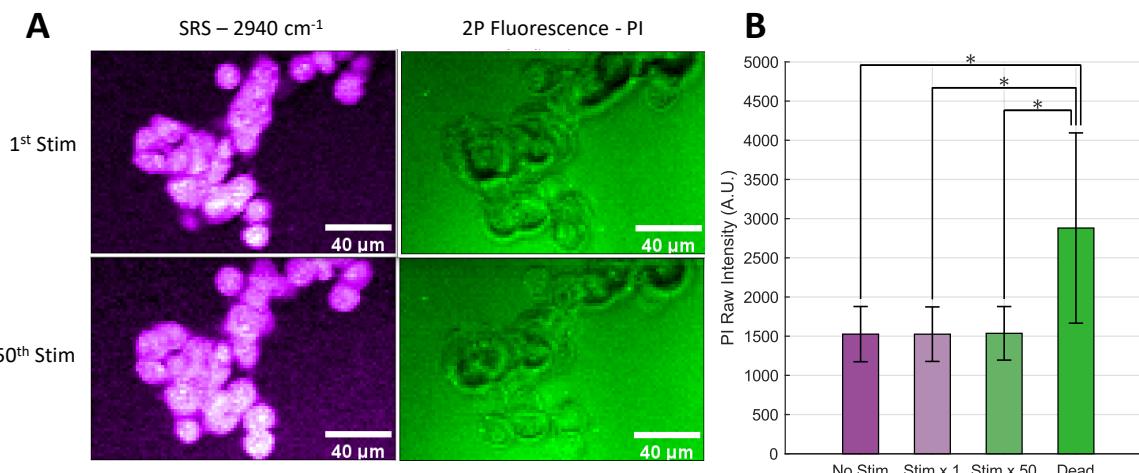
789 **Figure 2: Explanation of defocusing phenomenon and the proposed experimental approach to**
790 **circumvent it.** (A) By adjusting the microscope focal plane to accommodate focal shifts induced by
791 pulsed-IR neurostimulation within the microscope's field of view, it is possible to recover some lost
792 nonlinear signal due to defocusing. (B) The thermal gradient and subsequent defocusing artifact generated
793 by INS in the microscope's field of view is due to water absorption of INS light. Replacing H₂O
794 immersion with D₂O immersion for imaging demonstrates that absorption of IR light is the driving force
795 behind defocusing and signal loss. (C) Pre-compensating for INS-induced defocus by adjusting the focal
796 plane position relative to our sample allows for nonlinear signal during INS. (D-F) Extrapolating this
797 experimental approach across the wavenumber regions of interest allows for reconstruction of vibrational
798 spectral dynamics during fast biophysical thermal events such as INS. **D)** Composite SRS image of
799 PMMA and PS beads at 2950 and 3050 cm⁻¹, respectively. Baseline and IR-stimulated spectra for **E)**
800 PMMA, and **F)** PS reconstructed using the focus pre-compensation approach, with respective chemical
801 structures for reference.

802

803 **Figure 3: Vibrational Spectroscopic Imaging of NG108 Cells during infrared neural stimulation:**
804 (A) Maximum Intensity projection of NG108 spectral image stack from 2800-3150 cm⁻¹ [n = 50 images].
805 (B) Average SRS spectra obtained from NG108 cells during infrared neural stimulation of at and above

804 activation threshold radiant exposures [$n = 10-24$ cells per group]. Peak ratio comparisons indicative (C)
805 asCH₂/asCH₃ as a measure of trans-to-gauche isomerization of lipid tail groups, (D) symCH₂/symCH₃ as a
806 measure of increased polar headgroup association with water due to membrane packing order decrease,
807 and (E) asCH₂/symCH₂ as an indicator of decreasing acyl chain packing order. *indicates $p < 0.05$

808 **Figure 4: Relative changes in general polarization (GP) measurements in NG108 cells measuring
809 dual-band fluorescence of di-4-ANNEPS verify changes in membrane order during INS. (A)**


810 Fluorescence intensity images overlaid with calculated initial GP values of NG108 cell cultures loaded
811 with di-4-ANNEPS. (B) Relative changes in adapted general polarization metrics NG108 cells during
812 varied doses of IR stimulation. Decreases in relative general polarization are indicative of decreases in
813 relative extracellular lipid membrane packing order which agree with hsSRS observations. Error traces
814 represent standard deviation across all cell responses [$n = 50-109$ cells]. (C) Magnitude of GP decreases
815 across sub-threshold [5.02J/cm²] and threshold [10.63 J/cm²] levels of radiant exposure. Error bars
816 represent SEM across all cells within each condition. * indicates $p < 0.05$.

817 **Figure S1: A) Illumination geometry and B) calculation of approximate fiber distance for estimating
818 radiant exposure – where d_{fiber} is the optical fiber diameter, r_{fiber} is the optical fiber radius, θ_A is the fiber
819 approach angle, d_{cs+} is the fiber edge's distance off of the surface of the cover slip, and l is the normal
820 distance from the optical fiber face to the cover slip plane.**

821 **Figure S2: Optical dosage calculations at the cell imaging plane based on an absorption-dominated
822 photon distribution in homogenous medium, assuming negligible scattering and non-angled fiber
823 approach to the sample**

824 **Figure S3: Temperature dependence of 2930 cm⁻¹ CARS and SRS signal.** A) experimental imaging
825 and temperature measurement setup. B) Raw intensity measurements of vegetable oil meniscus as a
826 function of temperature.

827 **Figure S4: Validation of IR stimulated hsSRS images on isolated control sample preparations of
828 major biological Raman scatterers.** (A) SRS image of a 10% bovine serum albumin (BSA) sample in
829 phosphate buffered saline as a control sample to measure protein SRS spectra (B) baseline and IR-
830 stimulated SRS spectra observed in BSA solution. (D) SRS image of multilamellar vesicles at 2930 cm⁻¹
831 resonance. (E) SRS spectra of baseline and IR-stimulated MLVs. (C, F) Ratiometric comparison of BSA
832 and MLV SRS spectra, respectively, of resonances indicative of lipid membrane biophysical dynamics.

833
834
835 **Figure S5: NG108 Cell Viability following hsSRS and repeated INS – (A) Representative average
836 intensity projection images of NG108 cells with SRS (left, magenta) and 2P fluorescence (green, right,
837 identical intensity image scaling) of a cell viability indicator, propidium iodide (PI). Slight differences in
838 cell morphology appear after 50 rounds of INS (bottom) compared to 1 round of INS (top). No substantial
839 update of PI was observable. Scale bars are all 40 μ m in width. (B) Intensity level comparison of PI**

840 fluorescence in cells exposed to different amounts of threshold INS events. No significant differences
841 observed between non-stimulated and stimulated conditions. Significantly lower fluorescence compared
842 to positive control of dead cells across all conditions. Asterisk indicates $p < 0.05$ based on a 2-sided
843 student's t-test comparisons of cell intensity means and standard deviations across all measured cells ($n =$
844 38).

845 **Figure S6: An intensity-invariant metric of general polarization for di-4-ANNEPS imaging of cells**
846 **during IR stimulation, where signal loss from thermal lensing significantly impacts perceived signal**
847 **interpretation.** A) di-4-ANNEPS loaded NG108 cells. B) Baseline-offset mean detected intensities of
848 mean disordered (black line) and ordered (red line) of all cells in a given experiment, plotted alongside
849 the difference of detected intensities (Ordered – Disordered) C) Calculated conventional general
850 polarization timeseries during IR stimulation alongside adapted general polarization calculation. D)
851 Conventional and adapted GP metric calculations alongside each other. Eliminating the time dependance
852 of the denominator term circumvents the defocusing artifact's impact on the GP calculation.

853

854 **References**

- 855 1. Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., Mahadevan-Jansen, A., and Jansen, E. D. (2007)
856 Biophysical mechanisms of transient optical stimulation of peripheral nerve. *Biophys. J.* 93, 2567–
857 2580
- 858 2. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P., and Bezanilla, F. (2012) Infrared light
859 excites cells by changing their electrical capacitance. *Nat. Commun.* 3, 736
- 860 3. Plaksin, M., Shapira, E., Kimmel, E., and Shoham, S. (2018) Thermal Transients Excite Neurons
861 through Universal Intramembrane Mechanoelectrical Effects. *Phys. Rev. X* 8, 011043
- 862 4. Throckmorton, G., Cayce, J., Ricks, Z., Adams, W. R., Jansen, E. D., and Mahadevan-Jansen, A.
863 (2021) Identifying optimal parameters for infrared neural stimulation in the peripheral nervous
864 system. *Neurophotonics* 8, 015012
- 865 5. Wells, J., Kao, C., Mariappan, K., Albea, J., Jansen, E. D., Konrad, P., and Mahadevan-Jansen, A.
866 (2005) Optical stimulation of neural tissue in vivo. *Opt. Lett.* 30, 504–506
- 867 6. Moen, E. K., Beier, H. T., Ibey, B. L., and Armani, A. M. (2016) The role of membrane dynamics
868 in electrical and infrared neural stimulation. presented at the SPIE BiOS
- 869 7. Walsh, A. J., Cantu, J. C., Ibey, B. L., and Beier, H. T. (2017) Short infrared laser pulses increase
870 cell membrane fluidity. presented at the SPIE BiOS
- 871 8. Nagle, J. F. and Tristram-Nagle, S. (2000) Structure of lipid bilayers. *Biochimica et Biophysica
872 Acta (BBA) - Reviews on Biomembranes* 1469, 159–195
- 873 9. Lyatskaya, Y., Liu, Y., Tristram-Nagle, S., Katsaras, J., and Nagle, J. F. (2001) Method for
874 obtaining structure and interactions from oriented lipid bilayers. *Physical review. E, Statistical,
875 nonlinear, and soft matter physics* 63, 011907–011907
- 876 10. Kucerka, N., Nagle, J. F., Sachs, J. N., Feller, S. E., Pencer, J., Jackson, A., and Katsaras, J. (2008)
877 Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering
878 data. *Biophys. J.* 95, 2356–2367
- 879 11. Amaro, M., Reina, F., Hof, M., Eggeling, C., and Sezgin, E. (2017) Laurdan and Di-4-ANEPPDHQ
880 probe different properties of the membrane. *J. Phys. D, Appl. Phys.* 50, 134004
- 881 12. Syed, A. and Smith, E. A. (2017) Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and
882 Lipid Bilayers. *Annu. Rev. Anal. Chem. (Palo Alto, Calif.)* 10, 271–291
- 883 13. Köhler, M., Machill, S., Salzer, R., and Krafft, C. (2009) Characterization of lipid extracts from
884 brain tissue and tumors using Raman spectroscopy and mass spectrometry. *Anal. Bioanal. Chem.*
885 393, 1513–1520
- 886 14. Freudiger, C. W., Min, W., Holtom, G. R., Xu, B., Dantus, M., and Xie, X. S. (2011) Highly
887 specific label-free molecular imaging with spectrally tailored excitation stimulated Raman
888 scattering (STE-SRS) microscopy. *Nat. Photonics* 5, 103–109
- 889 15. Lee, H. J. and Cheng, J.-X. (2017) Imaging chemistry inside living cells by stimulated Raman
890 scattering microscopy. *Methods* 128, 119–128
- 891 16. Duboisset, J., Berto, P., Gasecka, P., Bioud, F.-Z., Ferrand, P., Rigneault, H., and Brasselet, S.
892 (2015) Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and
893 stimulated Raman scattering (SRS) microscopy: a spectral comparative study. *J. Phys. Chem. B*
894 119, 3242–3249
- 895 17. Cheng, J.-X., Pautot, S., Weitz, D. A., and Xie, X. S. (2003) Ordering of water molecules between
896 phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. *Proc. Natl.
897 Acad. Sci. USA* 100, 9826–9830
- 898 18. Lee, H. J., Zhang, D., Jiang, Y., Wu, X., Shih, P.-Y., Liao, C.-S., Bungart, B., Xu, X.-M., Drenan,
899 R., Bartlett, E., and Cheng, J.-X. (2017) Label-Free Vibrational Spectroscopic Imaging of Neuronal
900 Membrane Potential. *J. Phys. Chem. Lett.* 8, 1932–1936
- 901 19. Paviolo, C., Haycock, J. W., Cadusch, P. J., McArthur, S. L., and Stoddart, P. R. (2014) Laser
902 exposure of gold nanorods can induce intracellular calcium transients. *J. Biophotonics* 7, 761–765

903 20. Tolstykh, G. P., Olsovsky, C. A., Ibey, B. L., and Beier, H. T. (2017) Ryanodine and IP3 receptor-
904 mediated calcium signaling play a pivotal role in neurological infrared laser modulation.
905 *Neurophotonics* 4, 025001

906 21. Borrachero-Conejo, A. I., Adams, W. R., Saracino, E., Mola, M. G., Wang, M., Posati, T.,
907 Formaggio, F., Bellis, M., Frigeri, A., Caprini, M., Hutchinson, M. R., Muccini, M., Zamboni, R.,
908 Nicchia, G. P., Mahadevan-Jansen, A., and Benfenati, V. (2020) Stimulation of water and calcium
909 dynamics in astrocytes with pulsed infrared light. *FASEB*

910 22. Adams, W. R., Mehl, B., Lieser, E., Wang, M., Patton, S., Throckmorton, G. A., Jenkins, J. L.,
911 Ford, J. B., Gautam, R., Brooker, J., Jansen, E. D., and Mahadevan-Jansen, A. (2021) Multi-modal
912 nonlinear optical and thermal imaging platform for label-free characterization of biological tissue.
913 *Sci. Rep.* 11, 8067

914 23. Fu, D., Holtom, G., Freudiger, C., Zhang, X., and Xie, X. S. (2013) Hyperspectral imaging with
915 stimulated Raman scattering by chirped femtosecond lasers. *J. Phys. Chem. B* 117, 4634–4640

916 24. Hellerer, T., Enejder, A. M. K., and Zumbusch, A. (2004) Spectral focusing: High spectral
917 resolution spectroscopy with broad-bandwidth laser pulses. *Appl. Phys. Lett.* 85, 25–27

918 25. Parasassi, T., Gratton, E., Yu, W. M., Wilson, P., and Levi, M. (1997) Two-photon fluorescence
919 microscopy of laurdan generalized polarization domains in model and natural membranes. *Biophys. J.* 72, 2413–2429

920 26. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
921 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K.,
922 Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis.
923 *Nat. Methods* 9, 676–682

924 27. Hiner, M. C., Rueden, C. T., and Eliceiri, K. W. (2016) SCIFIO: an extensible framework to
925 support scientific image formats. *BMC Bioinformatics* 17, 521

926 28. Legland, D., Arganda-Carreras, I., and Andrey, P. (2016) MorphoLibJ: integrated library and
927 plugins for mathematical morphology with ImageJ. *Bioinformatics* 32, 3532–3534

928 29. Owen, D. M., Rentero, C., Magenau, A., Abu-Siniyeh, A., and Gaus, K. (2011) Quantitative
929 imaging of membrane lipid order in cells and organisms. *Nat. Protoc.* 7, 24–35

930 30. Ford, J. B., Ganguly, M., Poorman, M. E., Grissom, W. A., Jenkins, M. W., Chiel, H. J., and
931 Jansen, E. D. (2020) Identifying the role of block length in neural heat block to reduce temperatures
932 during infrared neural inhibition. *Lasers Surg Med* 52, 259–275

933 31. Schiebener, P., Straub, J., Levelt Sengers, J. M. H., and Gallagher, J. S. (1990) Refractive index of
934 water and steam as function of wavelength, temperature and density. *J. Phys. Chem. Ref. Data* 19,
935 677–717

936 32. Liu, B., Lee, H. J., Zhang, D., Liao, C.-S., Ji, N., Xia, Y., and Cheng, J.-X. (2015) Label-free
937 spectroscopic detection of membrane potential using stimulated Raman scattering. *Appl. Phys. Lett.*
938 106, 173704

939 33. Zhang, D., Wang, P., Slipchenko, M. N., Ben-Amotz, D., Weiner, A. M., and Cheng, J.-X. (2013)
940 Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and
941 multivariate curve resolution analysis. *Anal. Chem.* 85, 98–106

942 34. Wang, K., Zhang, D., Charan, K., Slipchenko, M. N., Wang, P., Xu, C., and Cheng, J.-X. (2013)
943 Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral
944 analysis. *J. Biophotonics* 6, 815–820

945 35. Lu, F.-K., Basu, S., Igras, V., Hoang, M. P., Ji, M., Fu, D., Holtom, G. R., Neel, V. A., Freudiger,
946 C. W., Fisher, D. E., and Xie, X. S. (2015) Label-free DNA imaging in vivo with stimulated Raman
947 scattering microscopy. *Proc. Natl. Acad. Sci. USA* 112, 11624–11629

948 36. Pézolet, M. and Georgescauld, D. (1985) Raman spectroscopy of nerve fibers. A study of
949 membrane lipids under steady state conditions. *Biophys. J.* 47, 367–372

950 37. Taraschi, T. and Mendelsohn, R. (1980) Lipid-protein interaction in the glycophorin-
951 dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation. *Proc. Natl. Acad. Sci.*
952 *USA* 77, 2362–2366

953

954 38. Brown, W. G. A., Needham, K., Nayagam, B. A., and Stoddart, P. R. (2013) Whole cell patch
955 clamp for investigating the mechanisms of infrared neural stimulation. *J. Vis. Exp.*
956 39. Walsh, A. J., Masters, D. B., Jansen, E. D., Welch, A. J., and Mahadevan-Jansen, A. (2012) The
957 effect of temperature on the autofluorescence of scattering and non-scattering tissue. *Lasers Surg
958 Med* 44, 712–718
959 40. Zaman, R. T., Rajaram, N., Walsh, A., Oliver, J., Rylander, H. G., Tunnell, J. W., Welch, A. J., and
960 Mahadevan-Jansen, A. (2011) Variation of fluorescence in tissue with temperature. *Lasers Surg
961 Med* 43, 36–42
962 41. Moreau, D., Lefort, C., Burke, R., Leveque, P., and O'Connor, R. P. (2015) Rhodamine B as an
963 optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric
964 fields. *Biomed. Opt. Express* 6, 4105–4117
965 42. Minamikawa, T., Niioka, H., Araki, T., and Hashimoto, M. (2011) Real-time imaging of laser-
966 induced membrane disruption of a living cell observed with multifocus coherent anti-Stokes Raman
967 scattering microscopy. *J. Biomed. Opt.* 16, 021111
968 43. Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., and Singh, S. (2011) In vivo
969 lipidomics using single-cell Raman spectroscopy. *Proc. Natl. Acad. Sci. USA* 108, 3809–3814
970 44. Gaber, B. P. and Peticolas, W. L. (1977) On the quantitative interpretation of biomembrane
971 structure by Raman spectroscopy. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 465, 260–
972 274
973 45. Snyder, R. G., Scherer, J. R., and Gaber, B. P. (1980) Effects of chain packing and chain mobility
974 on the raman spectra of biomembranes. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 601,
975 47–53
976 46. Szekely, P., Dvir, T., Asor, R., Resh, R., Steiner, A., Szekely, O., Ginsburg, A., Mosenkis, J.,
977 Guralnick, V., Dan, Y., Wolf, T., Tamburu, C., and Raviv, U. (2011) Effect of temperature on the
978 structure of charged membranes. *J. Phys. Chem. B* 115, 14501–14506
979 47. Zhuang, X., Makover, J. R., Im, W., and Klauda, J. B. (2014) A systematic molecular dynamics
980 simulation study of temperature dependent bilayer structural properties. *Biochim. Biophys. Acta*
981 1838, 2520–2529
982 48. Kučerka, N., Nieh, M.-P., and Katsaras, J. (2011) Fluid phase lipid areas and bilayer thicknesses of
983 commonly used phosphatidylcholines as a function of temperature. *Biochim. Biophys. Acta* 1808,
984 2761–2771
985 49. Laroche, G., Carrier, D., and Pézolet, M. (1988) Study of the effect of poly(L-lysine) on
986 phosphatidic acid and phosphatidylcholine/phosphatidic acid bilayers by raman spectroscopy.
987 *Biochemistry* 27, 6220–6228
988 50. Startek, J. B., Boonen, B., López-Requena, A., Talavera, A., Alpizar, Y. A., Ghosh, D., Van Ranst,
989 Nilius, B., Voets, T., and Talavera, K. (2019) Mouse TRPA1 function and membrane
990 localization are modulated by direct interactions with cholesterol. *Elife* 8
991 51. Antonov, V. F., Petrov, V. V., Molnar, A. A., Predvoditelev, D. A., and Ivanov, A. S. (1980) The
992 appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition
993 temperature. *Nature* 283, 585–586
994 52. Levi, V., Rossi, J. P. F. C., Echarte, M. M., Castello, P. R., and González Flecha, F. L. (2000)
995 Thermal Stability of the Plasma Membrane Calcium Pump. Quantitative Analysis of Its
996 Dependence on Lipid-Protein Interactions. *Journal of Membrane Biology* 173, 215–225
997 53. Cantu, J. C., Tarango, M., Beier, H. T., and Ibey, B. L. (2016) The biological response of cells to
998 nanosecond pulsed electric fields is dependent on plasma membrane cholesterol. *Biochim. Biophys.
999 Acta* 1858, 2636–2646
1000 54. Lyatskaya, Y., Liu, Y., Tristram-Nagle, S., Katsaras, J., and Nagle, J. F. (2001) Method for
1001 obtaining structure and interactions from oriented lipid bilayers. *Phys. Rev. E, Stat. Nonlin. Soft.
1002 Matter. Phys.* 63, 011907
1003 55. Kucerka, N., Tristram-Nagle, S., and Nagle, J. F. (2005) Structure of fully hydrated fluid phase
1004 lipid bilayers with monounsaturated chains. *J. Membr. Biol.* 208, 193–202

1005 56. Zhang, C., Li, J., Lan, L., and Cheng, J.-X. (2017) Quantification of Lipid Metabolism in Living
1006 Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging.
1007 *Anal. Chem.* 89, 4502–4507

1008 57. Li, J., Condello, S., Thomes-Pepin, J., Ma, X., Xia, Y., Hurley, T. D., Matei, D., and Cheng, J.-X.
1009 (2017) Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells.
1010 *Cell Stem Cell* 20, 303–314.e5

1011 58. Mendelsohn, R. and Maisano, J. (1978) Use of deuterated phospholipids in raman spectroscopic
1012 studies of membrane structure. I. Multilayers of dimyristoyl phosphatidylcholine (and its -d54
1013 derivative) with distearoyl phosphatidylcholine. *Biochimica et Biophysica Acta (BBA) -*
1014 *Biomembranes* 506, 192–201

1015 59. Fu, D., Yu, Y., Folick, A., Currie, E., Farese, R. V., Tsai, T.-H., Xie, X. S., and Wang, M. C.
1016 (2014) In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman
1017 scattering microscopy. *J. Am. Chem. Soc.* 136, 8820–8828

1018 60. Hu, F., Lamprecht, M. R., Wei, L., Morrison, B., and Min, W. (2016) Bioorthogonal chemical
1019 imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman
1020 scattering. *Sci. Rep.* 6, 39660

1021 61. Camp, C. H., Lee, Y. J., Heddleston, J. M., Hartshorn, C. M., Hight Walker, A. R., Rich, J. N.,
1022 Lathia, J. D., and Cicerone, M. T. (2014) High-Speed Coherent Raman Fingerprint Imaging of
1023 Biological Tissues. *Nat. Photonics* 8, 627–634

1024 62. Liao, C.-S., Choi, J. H., Zhang, D., Chan, S. H., and Cheng, J.-X. (2015) Denoising stimulated
1025 raman spectroscopic images by total variation minimization. *J. Phys. Chem. C, Nanomater.*
1026 *Interfaces* 119, 19397–19403

1027 63. Feizpour, A., Marstrand, T., Bastholm, L., Eirefelt, S., and Evans, C. L. (2020) Label-free
1028 Quantification of Pharmacokinetics in Skin with Stimulated Raman Scattering Microscopy and
1029 Deep Learning. *J. Invest. Dermatol.*

1030 64. Manifold, B., Thomas, E., Francis, A. T., Hill, A. H., and Fu, D. (2019) Denoising of stimulated
1031 Raman scattering microscopy images via deep learning. *Biomed. Opt. Express* 10, 3860–3874

1032 65. Liu, Y., Lee, Y. J., and Cicerone, M. T. (2009) Broadband CARS spectral phase retrieval using a
1033 time-domain Kramers–Kronig transform. *Opt. Lett.* 34, 1363

1034 66. Barrett, J. N., Rincon, S., Singh, J., Matthewman, C., Pasos, J., Barrett, E. F., and Rajguru, S. M.
1035 (2018) Pulsed infrared releases Ca²⁺ from the endoplasmic reticulum of cultured spiral ganglion
1036 neurons. *J. Neurophysiol.* 120, 509–524

1037 67. Albert, E. S., Bec, J. M., Desmadryl, G., Chekroud, K., Travó, C., Gaboyard, S., Bardin, F., Marc,
1038 I., Dumas, M., Lenaers, G., Hamel, C., Muller, A., and Chabbert, C. (2012) TRPV4 channels
1039 mediate the infrared laser-evoked response in sensory neurons. *J. Neurophysiol.* 107, 3227–3234

1040 68. Lumbrieras, V., Bas, E., Gupta, C., and Rajguru, S. M. (2014) Pulsed infrared radiation excites
1041 cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium
1042 cycling. *J. Neurophysiol.* 112, 1246–1255

1043 69. McPheeters, M. T., Wang, Y. T., Werdich, A. A., Jenkins, M. W., and Laurita, K. R. (2017) An
1044 infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes.
1045 *PLoS One* 12, e0183761

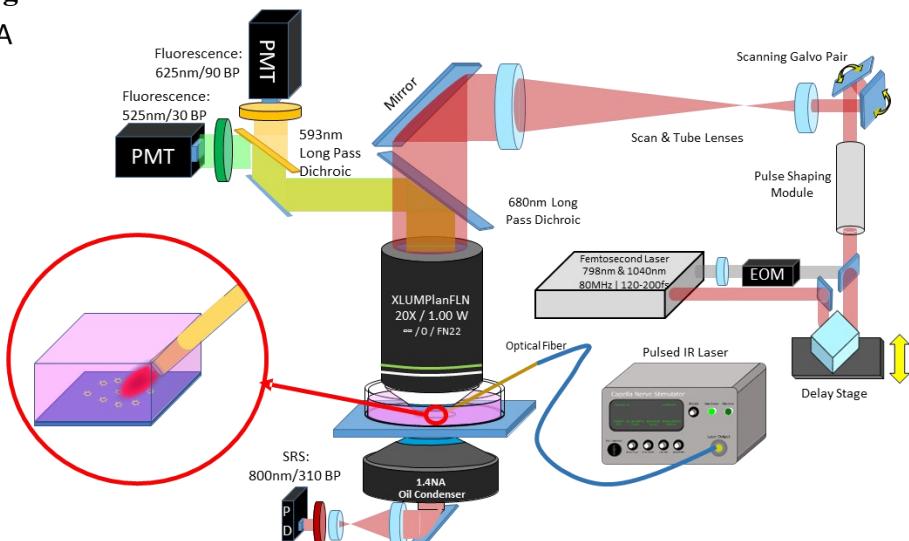
1046 70. Moreau, D., Lefort, C., Pas, J., Bardet, S. M., Leveque, P., and O'Connor, R. P. (2018) Infrared
1047 neural stimulation induces intracellular Ca²⁺ release mediated by phospholipase C. *J. Biophotonics*
1048 11

1049 71. Blackmore, J., Shrivastava, S., Sallet, J., Butler, C. R., and Cleveland, R. O. (2019) Ultrasound
1050 neuromodulation: A review of results, mechanisms and safety. *Ultrasound Med Biol* 45, 1509–
1051 1536

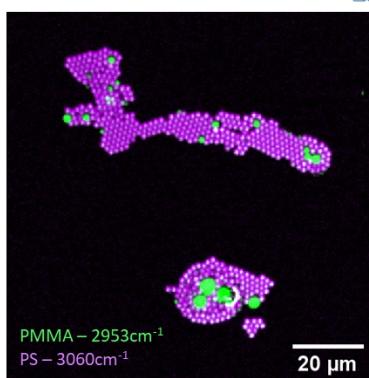
1052 72. Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H.-J., Cassara, A.
1053 M., Neufeld, E., Kuster, N., Tsai, L.-H., Pascual-Leone, A., and Boyden, E. S. (2017) Noninvasive
1054 deep brain stimulation via temporally interfering electric fields. *Cell* 169, 1029–1041.e16

1055 73. Nandakumar, P., Kovalev, A., and Volkmer, A. (2009) Vibrational imaging based on stimulated
1056 Raman scattering microscopy. *New J Phys* 11, 033026
1057 74. Kerdoncuff, H., Pollard, M. R., Westergaard, P. G., Petersen, J. C., and Lassen, M. (2017) Compact
1058 and versatile laser system for polarization-sensitive stimulated Raman spectroscopy. *Opt. Express*
1059 25, 5618–5625
1060 75. Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A., and Baranska, M. (2015) Raman
1061 spectroscopy of lipids: a review. *J. Raman Spectrosc.* 46, 4–20
1062
1063

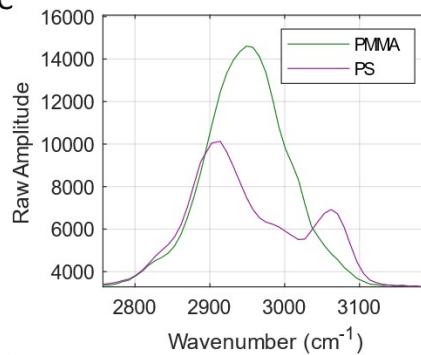
1064 **Tables**

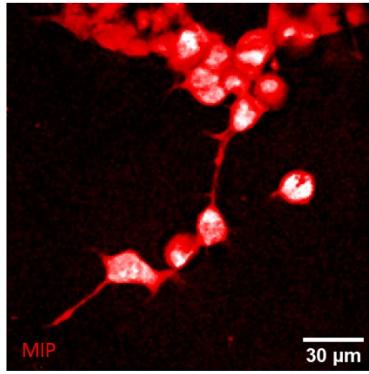

1065 **Table 1:** Raman spectral band assignments in the CH stretch region for control (23, 73, 74) and cellular
 1066 (36, 37, 43, 75) samples

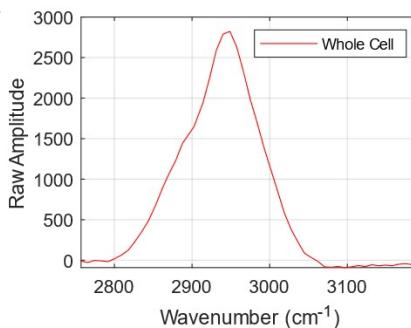
Wavenumber	Chemical	Assignment
Polymer Microbeads		
2847	PMMA	C-H stretching of O-CH ₃
2885	PMMA	C-H stretching of α -CH ₃
2910	PMMA	symmetric C-H of -CH ₂ ; C-H stretching of O-CH ₃
2950	PMMA	symmetric C-H of α -CH ₃ ; symmetric C-H of O-CH ₃ ; asymmetric C-H of -CH ₂
3000	PMMA	asymmetric C-H of O-CH ₃ , asymmetric C-H of α -CH ₃
3050	PMMA	asymmetric C-H of O-CH ₃
2850	Polystyrene	symmetric C-H of CH ₂
2915	Polystyrene	asymmetric C-H of CH ₂
3050	Polystyrene	=C—H stretching of aromatic ring
Biological Lipids		
2850	Lipids	Symmetric C-H stretch of aliphatic -CH ₂
2880 or 2885	Lipids	asymmetric C-H of aliphatic -CH ₂ ; Fermi resonance between the symmetric C-H stretching mode and the overtone of the C-H bending vibrations
2970 or 2960	Lipids	Asymmetric C-H stretch of -CH ₃
3015 or 3023	Lipids	Alkyl =C—H stretches
Biological Proteins		
2940 or 2930	Proteins	Symmetric C-H stretch of -CH ₃ Asymmetric C-H stretch of -CH ₂ 2930 cm ⁻¹ corresponds to the overtone of the CH ₂ scissoring (δ (CH ₂)) enhanced by Fermi resonance with the ν_s -(CH ₂) mode.
3000 - 3060	Proteins	sp ² C-H stretch of aromatic/vinyl amino acid residues (=C—H)


1067

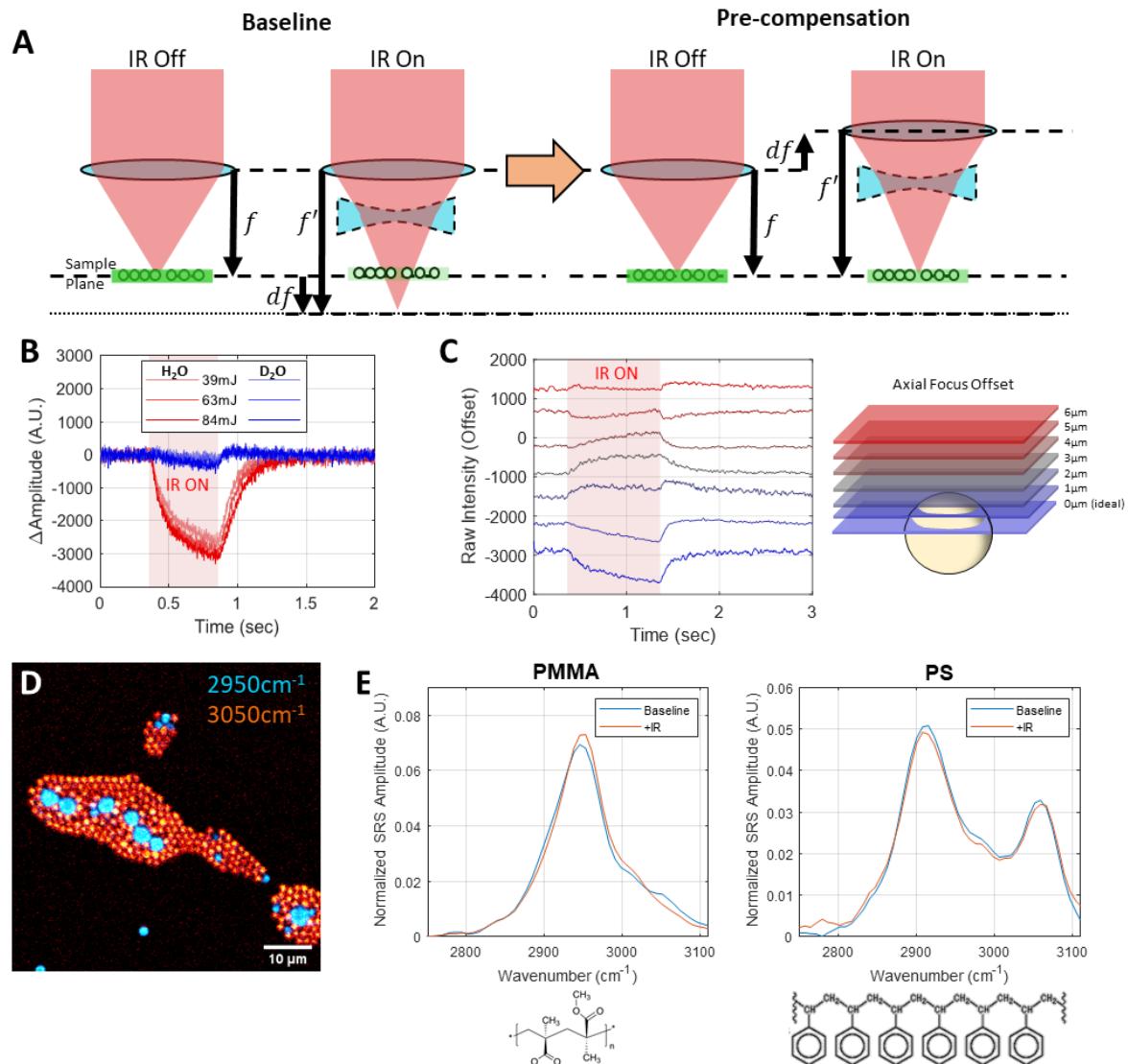
1068 **Figures**


A

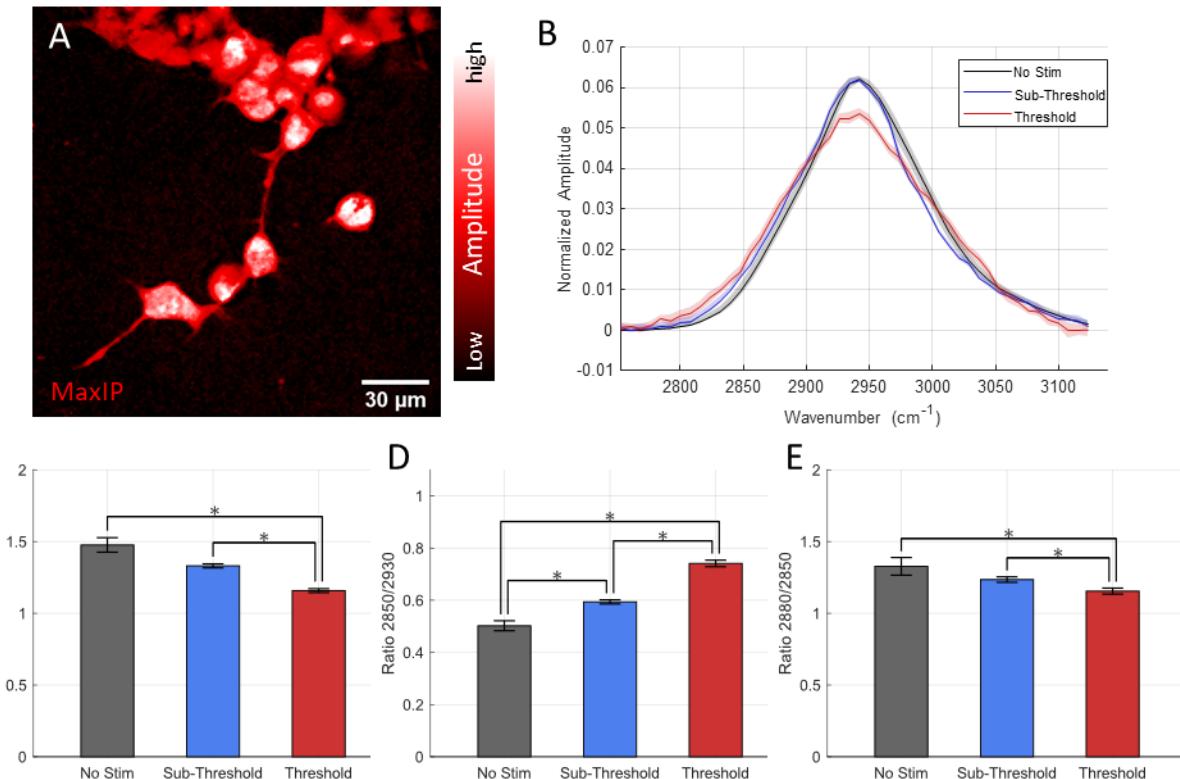

B


C

D


E

1069


1070 **Figure 1: Experimental setup for SRS and fluorescence imaging of samples during IR exposure. (A)**
1071 Imaging system schematic, (B) Standard poly(methyl methacrylate) and polystyrene (PMMA | PS)
1072 monolayer demonstrating spatial and (C) spectral performance of imaging system. (D) Maximum-
1073 intensity projection of the hyperspectral SRS image stack of live NG108 cells alongside their respective
1074 (E) whole-cell SRS spectra.

1075

1076
1077 **Figure 2: Explanation of defocusing phenomenon and the proposed experimental approach to**
1078 **circumvent it.** (A) By adjusting the microscope focal plane to accommodate focal shifts induced by
1079 pulsed-IR neurostimulation within the microscope's field of view, it is possible to recover some lost
1080 nonlinear signal due to defocusing. (B) The thermal gradient and subsequent defocusing artifact generated
1081 by INS in the microscope's field of view is due to water absorption of INS light. Replacing H₂O
1082 immersion with D₂O immersion for imaging demonstrates that absorption of IR light is the driving force
1083 behind defocusing and signal loss. (C) Pre-compensating for INS-induced defocus by adjusting the focal
1084 plane position relative to our sample allows for nonlinear signal during INS. (D-F) Extrapolating this
1085 experimental approach across the wavenumber regions of interest allows for reconstruction of vibrational
1086 spectral dynamics during fast biophysical thermal events such as INS. (D) Composite SRS image of
1087 PMMA and PS beads at 2950 and 3050 cm⁻¹, respectively. Baseline and IR-stimulated spectra for E)
1088 PMMA, and F) PS reconstructed using the focus pre-compensation approach, with respective chemical
1089 structures for reference.

1090

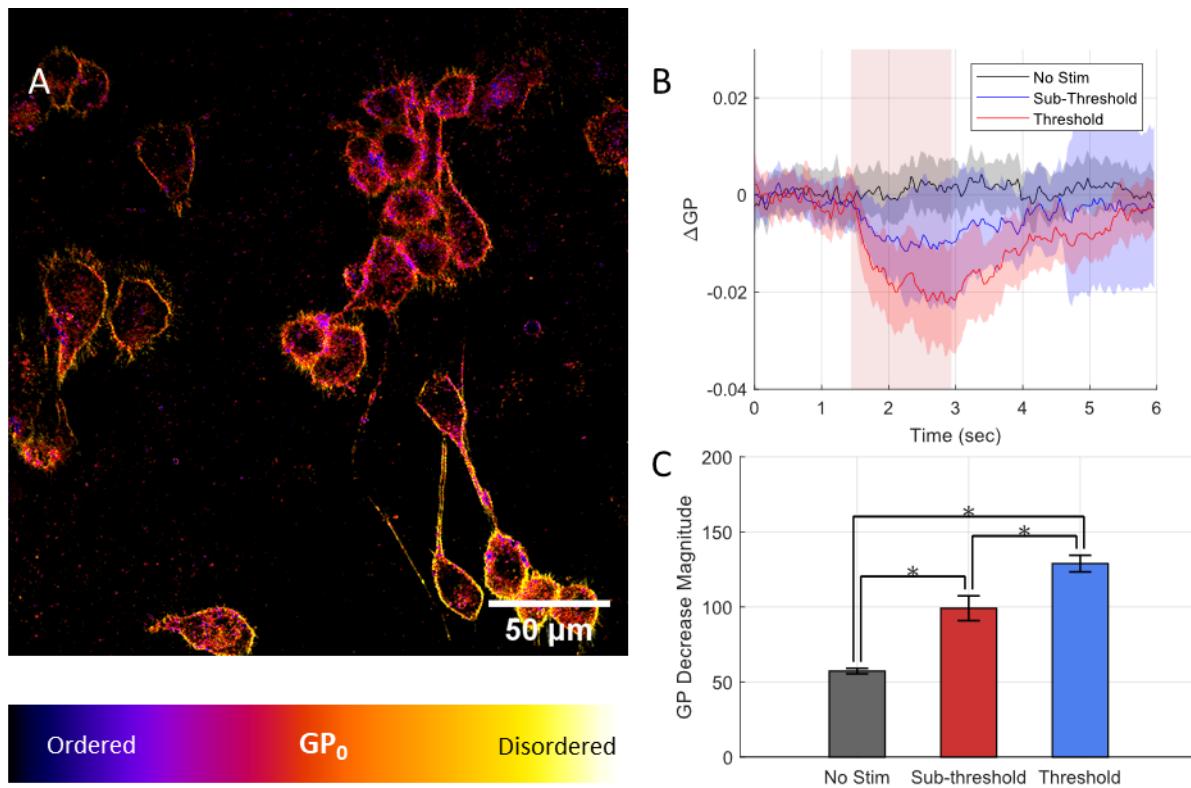
Figure 3: Vibrational Spectroscopic Imaging of NG108 Cells during infrared neural stimulation:
(A) Maximum Intensity projection of NG108 spectral image stack from $2800\text{-}3150\text{ cm}^{-1}$ [$n = 50$ images].
(B) Average SRS spectra obtained from NG108 cells during infrared neural stimulation of at and above activation threshold radiant exposures [$n = 10\text{-}24$ cells per group]. Peak ratio comparisons indicative (C) asCH₂/asCH₃ as a measure of trans-to-gauche isomerization of lipid tail groups, (D) symCH₂/symCH₃ as a measure of increased polar headgroup association with water due to membrane packing order decrease, and (E) asCH₂/symCH₂ as an indicator of decreasing acyl chain packing order. *indicates $p < 0.05$

1091

1092

1093

1094


1095

1096

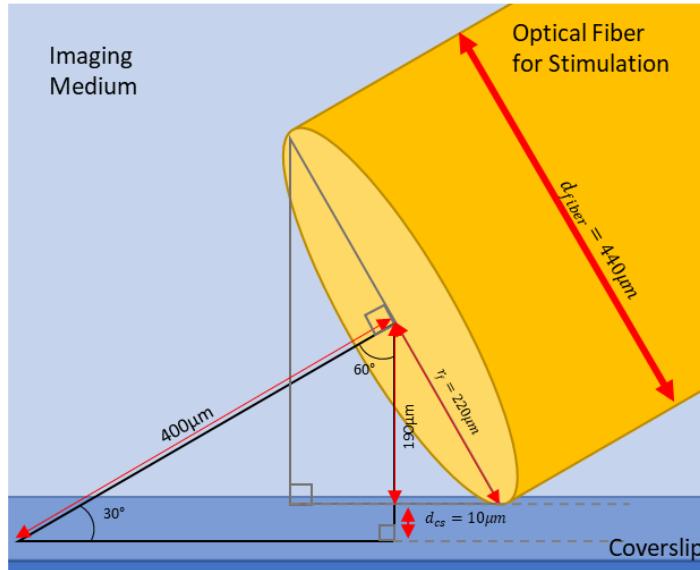
1097

1098

1099

1100
1101 **Figure 4: Relative changes in general polarization (GP) measurements in NG108 cells measuring**
1102 **dual-band fluorescence of di-4-ANNEPS verify changes in membrane order during INS. (A)**
1103 Fluorescence intensity images overlaid with calculated initial GP values of NG108 cell cultures loaded
1104 with di-4-ANNEPS. (B) Relative changes in adapted general polarization metrics NG108 cells during
1105 varied doses of IR stimulation. Decreases in relative general polarization are indicative of decreases in
1106 relative extracellular lipid membrane packing order which agree with hsSRS observations. Error traces
1107 represent standard deviation across all cell responses [$n = 50-109$ cells]. (C) Magnitude of GP decreases
1108 across sub-threshold [5.02J/cm^2] and threshold [10.63 J/cm^2] levels of radiant exposure. Error bars
1109 represent SEM across all cells within each condition. * indicates $p < 0.05$.

1110


1111 **Supplemental Figures**

$$d_{fiber} = 440\mu m \quad r_f = 220\mu m$$

$$\theta_A = 30^\circ \quad \sin \theta_A = \frac{1}{2} \quad \cos \theta_A = \frac{\sqrt{3}}{2}$$

$$d_{cs} = 10\mu m$$

$$l = \frac{(r_f \cos \theta_A) + d_{cs}}{\sin \theta_A} = 400\mu m$$

1112
1113
1114
1115
1116

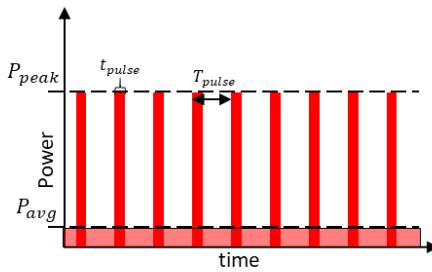
Figure S1: A) Illumination geometry and B) calculation of approximate fiber distance for estimating radiant exposure – where d_{fiber} is the optical fiber diameter, r_{fiber} is the optical fiber radius, θ_A is the fiber approach angle, d_{cs+} is the fiber edge's distance off of the surface of the cover slip, and l is the normal distance from the optical fiber face to the cover slip plane.

1117

$$DC = \frac{t_{pulse}}{T_{pulse}}$$

$$P_{peak} = \frac{P_{avg}}{DC}$$

$$E_{pulse} = t_{pulse} \cdot P_{peak}$$


$$E_T = N \cdot E_{pulse}$$

$$E_s = E_T \cdot e^{-\alpha \cdot d_s}$$

$$D_{spot} = D_{fiber} \cdot 2 \cdot \delta D \\ = D_{fiber} + 2(d_s \cdot \tan(\theta))$$

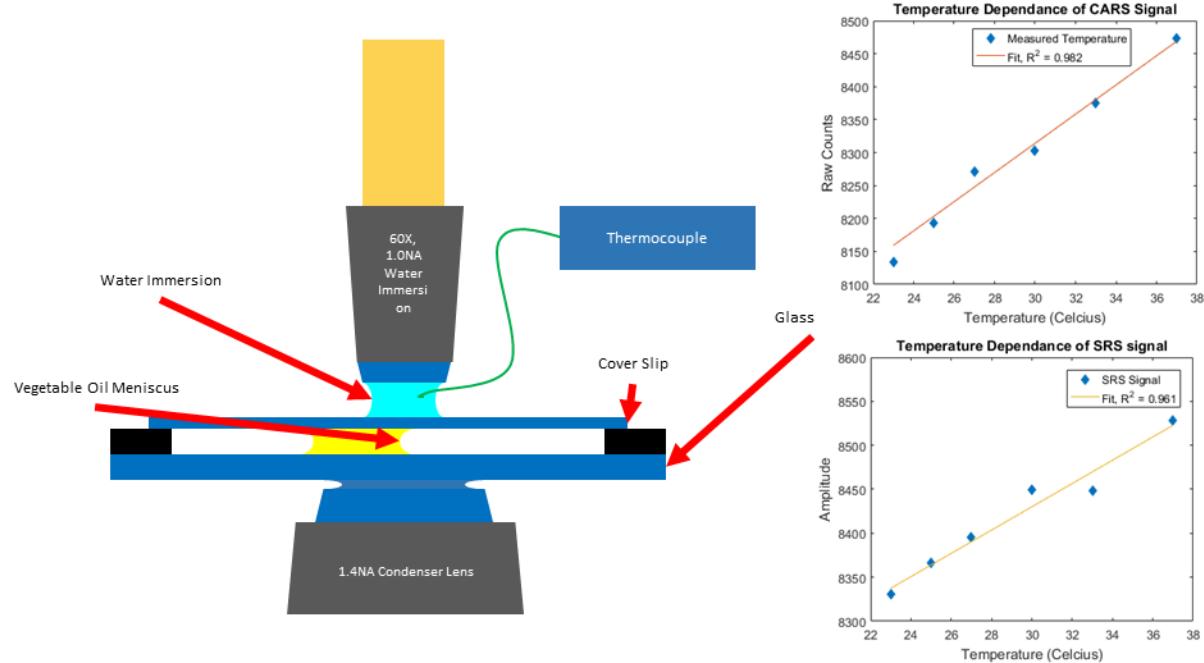
$$RE_{fiber} = \frac{E_t}{\pi \cdot \left(\frac{D_{fiber}}{2}\right)^2}$$

$$RE_{sample} = \frac{E_s}{\pi \cdot \left(\frac{D_{spot}}{2}\right)^2} \\ = \frac{E_T \cdot e^{-\alpha \cdot d_s}}{\pi \cdot \left(\frac{D_{fiber} + 2(d_s \cdot \tan(\theta))}{2}\right)^2}$$

Variable	Definition	Variable	Definition
T_{pulse}	Pulse period, time between pulses	N	Number of pulses delivered
t_{pulse}	Pulse width / duration	α	Absorption coefficient of 1875nm light in water (~26cm ⁻¹ per Hale and Querry, 1973)
DC	Duty Cycle of IR pulses (0.05)	D_{fiber}	Optical fiber output diameter
P_{peak}	Peak Power of IR pulses	D_{spot}	Effective spot size or diameter (without absorption)
P_{avg}	Average power measured from a train of IR pulses	δD	Change in diameter between sample and fiber face, based on the NA of optical fiber output
E_{pulse}	Optical Energy per IR pulse	θ	Angle of divergence of light from the optical fiber, calculated from the NA of the optical fiber.
E_T	Total Optical Energy	RE_{fiber}	Radiant exposure calculated ex fiber
E_s	Optical Energy observed at the sample, d_s away from fiber output.	RE_{sample}	Radiant Exposure calculated at the sample positioned d_s away from fiber face.
d_s	Distance between fiber output and sample		

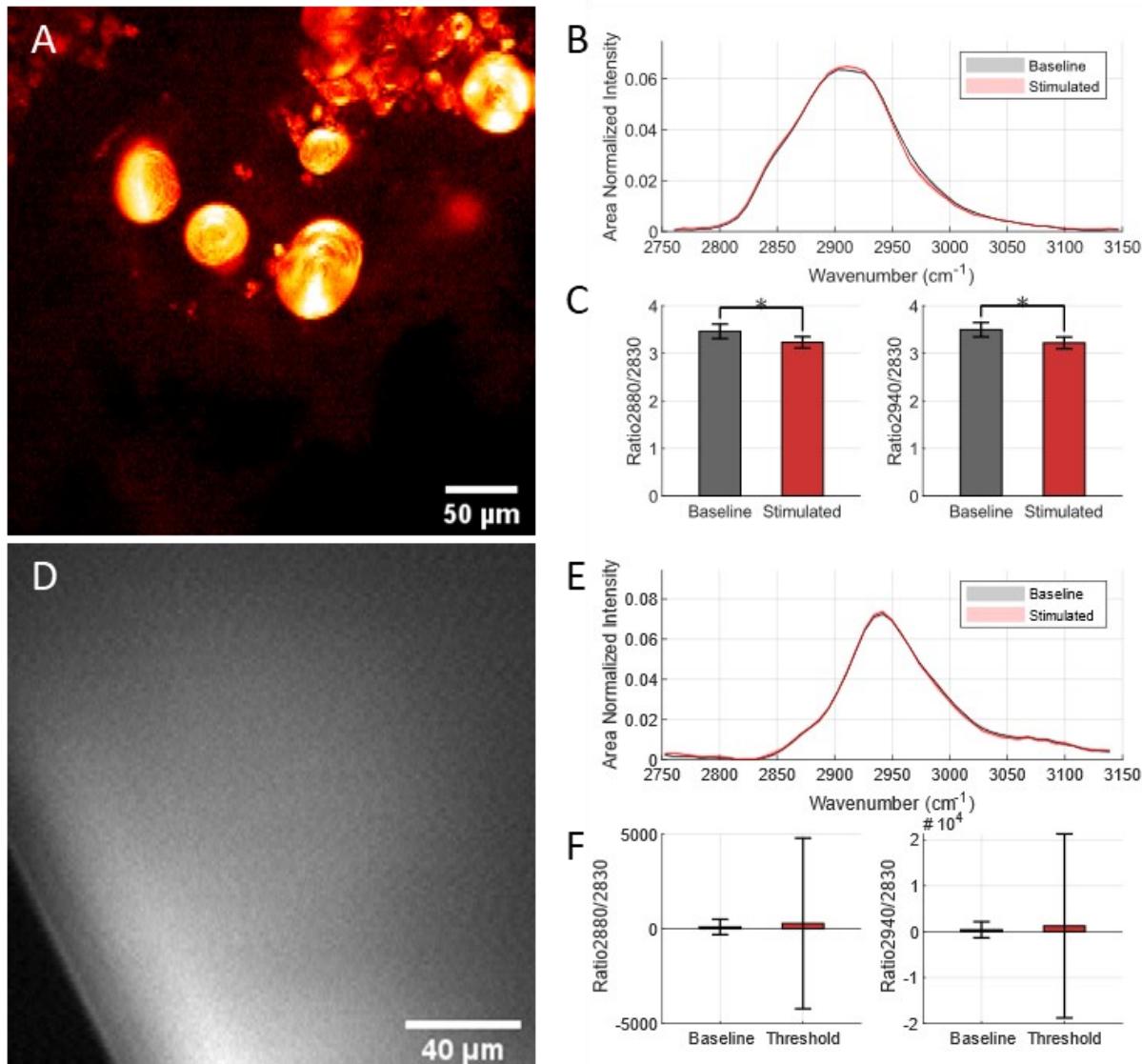
1118

1119


1120

1121

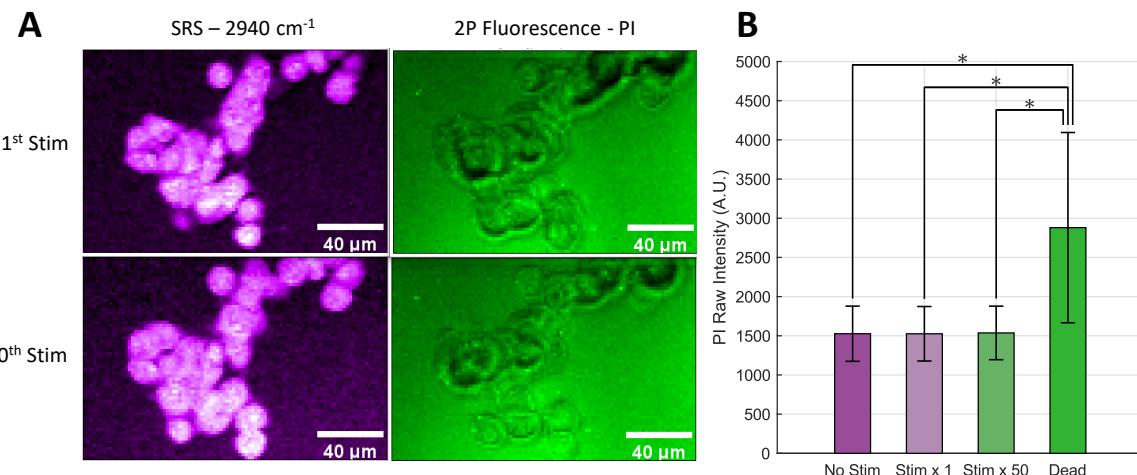
Figure S2: Optical dosage calculations at the cell imaging plane based on an absorption-dominated photon distribution in homogenous medium, assuming negligible scattering and non-angled fiber approach to the sample


1122

1123

1124
1125 **Figure S3: Temperature dependence of 2930 cm^{-1} CARS and SRS signal. A) experimental imaging**
1126 **and temperature measurement setup. B) Raw intensity measurements of vegetable oil meniscus as a**
1127 **function of temperature.**

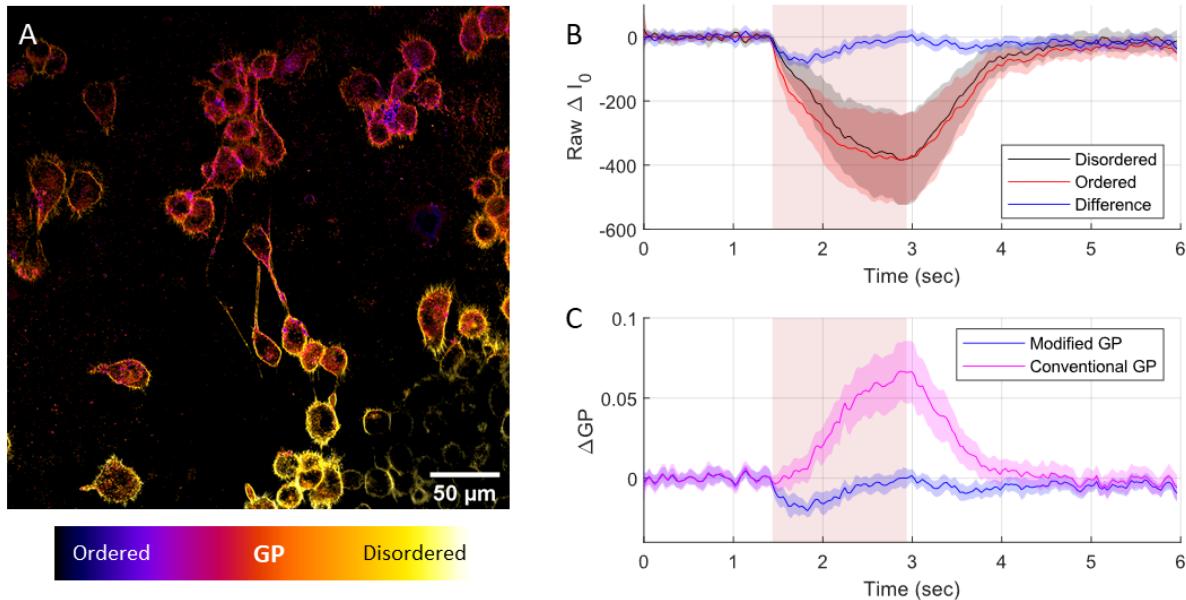
1128



1129
1130
1131
1132
1133
1134
1135

Figure S4: Validation of IR stimulated hsSRS images on isolated control sample preparations of major biological Raman scatterers. (A) SRS image of a 10% bovine serum albumin (BSA) sample in phosphate buffered saline as a control sample to measure protein SRS spectra (B) baseline and IR-stimulated SRS spectra observed in BSA solution. (D) SRS image of multilamellar vesicles at 2930 cm⁻¹ resonance. (E) SRS spectra of baseline and IR-stimulated MLVs. (C, F) Ratiometric comparison of BSA and MLV SRS spectra, respectively, of resonances indicative of lipid membrane biophysical dynamics.

1136


1137

1138

1139

1140 **Figure S5: NG108 Cell Viability following hsSRS and repeated INS –**(A) Representative average
1141 intensity projection images of NG108 cells with SRS (left, magenta) and 2P fluorescence (green, right,
1142 identical intensity image scaling) of a cell viability indicator, propidium iodide (PI). Slight differences in
1143 cell morphology appear after 50 rounds of INS (bottom) compared to 1 round of INS (top). No substantial
1144 update of PI was observable. Scale bars are all 40 μ m in width. (B) Intensity level comparison of PI
1145 fluorescence in cells exposed to different amounts of threshold INS events. No significant differences
1146 observed between non-stimulated and stimulated conditions. Significantly lower fluorescence compared
1147 to positive control of dead cells across all conditions. Asterisk indicates $p < 0.05$ based on a 2-sided
1148 student's t-test comparisons of cell intensity means and standard deviations across all measured cells ($n =$
1149 38).
1150

$$GP_{conv}(t) = \frac{(O(t) - D(t))}{(O(t) + D(t))} \quad GP_{mod}(t) = \frac{[O_0 - D_0] + [O(t) - D(t)]}{[O_0 + D_0]}$$

O_0 = Ordered (Green) Channel Fluorescence

D_0 = Disordered (Red) Channel Fluorescence

1151
 1152 **Figure S6: An intensity-invariant metric of general polarization for di-4-ANNEPS imaging of cells**
 1153 **during IR stimulation, where signal loss from thermal lensing significantly impacts perceived signal**
 1154 **interpretation.** A) di-4-ANNEPS loaded NG108 cells. B) Baseline-offset mean detected intensities of
 1155 mean disordered (black line) and ordered (red line) of all cells in a given experiment, plotted alongside
 1156 the difference of detected intensities (Ordered – Disordered) C) Calculated conventional general
 1157 polarization timeseries during IR stimulation alongside adapted general polarization calculation. D)
 1158 Conventional and adapted GP metric calculations alongside each other. Eliminating the time dependance
 1159 of the denominator term circumvents the defocusing artifact's impact on the GP calculation.

1160