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Abstract

The growing availability of single-cell data has sparked an increased interest in the
inference of cell-cell communication from this data. Many tools have been
developed for this purpose. Each of them consists of a resource of intercellular
interactions prior knowledge and a method to predict potential cell-cell
communication events. Yet the impact of the choice of resource and method on
the resulting predictions is largely unknown. To shed light on this, we created a

framework, available at https:/github.com/saezlab/ligrec _decoupler, to facilitate a

comparative assessment of methods for inferring cell-cell communication from
single cell transcriptomics data and then compared 15 resources and 6 methods.
We found few unique interactions and a varying degree of overlap among the
resources, and observed uneven coverage in terms of pathways and biological
categories. We analysed a colorectal cancer single cell RNA-Seq dataset using all
possible combinations of methods and resources. We found major differences
among the highest ranked intercellular interactions inferred by each method even
when using the same resources. The varying predictions lead to fundamentally
different biological interpretations, highlighting the need to benchmark resources

and methods.

Findings

e Built a framework to systematically combine 15 resources and 6 methods to
estimate cell-cell communication from single-cell RNA data

e Cell-cell communication resources are often built from the same original
databases and very few interactions are unique to a single resource. Yet overlap
varies among resources and certain biological terms are unevenly represented

e Different methods and resources provided notably different results

e The observed disagreement among the methods could have a considerable

impact on the interpretation of results
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1. Introduction

The growing availability of single-cell RNA sequencing (scRNA-Seq) data is helping
us improve our understanding of the cellular heterogeneity of tissues.
Furthermore, Spatial Transcriptomics has recently emerged as a technology to
measure gene expression while preserving the spatial distribution of cells in a
sample, thus providing an unprecedented opportunity to decipher tissue
architecture and organization ! These advancements have in turn led to an
increased interest in the development of tools for cell-cell communication (CCC)
inference. CCC commonly refers to interactions between secreted ligands and
plasma membrane receptors. This picture can be broadened to include secreted
enzymes, extracellular matrix proteins, transporters, and interactions that require
the physical contact between cells, such as cell-cell adhesion proteins and gap
junctions % For simplicity, we refer to all of these events involving protein-protein
interactions as CCC. CCC events are essential for homeostasis, development, and
disease, and their estimation is becoming a routine approach in scRNA-seq data

analysis 2.

A number of computational tools and resources have emerged that can be further
classified as those that predict CCC interactions alone *'3, and those that
additionally estimate intracellular pathway activities related to CCC '*~'8, Here, we
focus on the former (Table1l). These CCC tools typically use gene expression
information obtained by scRNA-Seq. In general, single cells are clustered by their
gene expression profile and cell type identities are assigned to the clusters based on
known gene markers. Then, CCC tools can predict intercellular crosstalk between
any pair of clusters, one cluster being the source and the other the target of a CCC
event. CCC events are thus typically represented as a one-to-one interaction
between a ‘transmitter’ and ‘receiver’ protein, expressed by the source and target
cell clusters, respectively. The information about which transmitter binds to which
receiver is extracted from diverse sources of prior knowledge. Roughly, CCC tools
then estimate the likelihood of crosstalk based on the expression level of the

transmitter and the receiver in the source and target clusters, respectively. Every
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tool has two major components: a resource of prior knowledge on CCC
(interactions), and a method to estimate CCC from the known interactions and the
dataset at hand. Most tools have been published as the combination of one
resource and one method, but in principle any resource could be combined with

any method.

Despite the aforementioned common premises to explore CCC events, each tool
uses a different method, such as permutation of cluster labels, regularizations, and
scaling, to prioritize interactions according to the input datasets (Table 1). In turn,
these different approaches result in diverse scoring systems that are difficult to
compare and evaluate. The difficulties are further exacerbated by the lack of an
appropriate gold standard to benchmark the performance of CCC methods 3.
Nevertheless, different strategies have been used to indirectly evaluate the

methods’ performance, including a presumed correlation between CCC activity

13,18 18

and spatial adjacency "'%, recovering the effect of receptor gene knockouts ",
robustness to subsampling ¥, agreement with proteomics ", simulated scRNA-Seq

data 8, and the agreement among methods %1318,

The available prior knowledge resources, largely composed of ligand-receptor,
extracellular matrix, and adhesion interactions, are typically distinct but often
show partial overlap ?°. Some of these resources also provide additional details for

2,7,13,21,22

the interactions such as information about protein complexes , subcellular

localisation 23

, and classification into signalling pathways and categories 2%
(Supp. Table 1). CCC resources are often manually curated and/or built from other
resources, with varying proportions of expert curation and literature support >2°.
Some databases gather and harmonize the information contained in the individual

resources 2

. Despite the fact that CCC inference is constrained by the prior
knowledge used, the impact of resource choice is largely unexplored, with the only
exception, to our knowledge, of a descriptive comparison of 4 resources with one
method %. It remains thus unclear how the choice of resource and method affects

the results and thereby the biological interpretation of the scRNA-seq data.
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Here, we systematically compared all combinations of 15 resources and 6 CCC
methods (Figure 1). First, we explored the degree of overlap among resources and
whether certain resources are biased toward specific biological terms, such as
pathways and functional cancer states. Then, we analysed how different
combinations of resources and methods influence CCC inference, by decoupling
the methods from their corresponding resources. In particular, we explored their
impact on the predicted CCC using a publicly available colorectal cancer
scRNA-Seq dataset %, Our framework, available at
https:/github.com/saezlab/ligrec decoupler, establishes a uniform interface to all
the resources and methods in any combination. We see this work as a platform for
further analyses, benchmarks, and method development, and we invite all

interested parties to join us in this endeavour.
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Figure 1. The Cell-Cell Communication Framework.
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Table 1. The tools included in the framework.

Each tool uses a resource and a method with a specific scoring system. Each method considers
expression at the cell cluster level, and all of the scoring systems presented here are based on
the expression of transmitters and receiver genes in the source and target cells, respectively.

CellPhoneDBv2 algorithm was included via its implementation in Squidpy #'. For further

details, check the original references.

Tool Resource Methods’ scoring systems

CellChat®® CellChatDB 1) Probability - based on the expression of differentially expressed transmitter
and receiver genes and their mediators, calculated with the law of mass action
2) P-valuesf - significance identified via permutation of cell cluster labels and
recalculating the probabilities for each cell pair and each transmitter-receiver
interaction

Squidpy#“ OmniPath or 1) Truncated Mean - average expression of transmitter and receivers, the

(CellPhoneDB CellPhoneDB minimum expression (by default) of heteromeric complex of subunits

7.25,26)
2) P-valuest - significance identified via permutation of cell cluster labels to
determine a null distribution of means for each receiver-transmitter interaction

Connectome?® Ramilowski 1) weight_norm - derived via the product (by default) of the normalized
expression of transmitter and receiver genes
2) weight_scalet - derived from the function (mean, by default) of the z-scores
of the transmitter and the receiver, scaled according to cell cluster specificity

iTALK® iTALK 1) Expression Z-score products - based on the differentially expressed
transmitter and receiver genes between clusters

NATMI?® ConnectomeDB |1) Mean-expression edge weight - transmitter and receiver gene expression

2020 product

2) Specificity-based edge weightj - the mean expression of the transmitter and
receiver are divided by the sum of the means of the same transmitters/receivers
across all cell clusters

SingleCellSignalR" |LRdb 1) LRScore - a regularized score calculated using the squared expression of the

(SCA) transmitter and receiver (sqTRE) divided by sum of the mean of the count
matrix and sqTRE

F Explicitly measures cell-cluster specific communication (referred as “cluster-specific measures”)

# Here we refer to the re-implementation of the CellPhoneDB method as ‘Squidpy’, even though Squidpy is a spatial

transcriptomics framework with a much broader range of functionalities.
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2. Results

2.1 Resource Uniqueness and Overlap

To investigate the lineages of CCC resources, we manually gathered information
about the origins of each resource. Many of these resources share the same original
data sources, including general biological databases such as KEGG ??%, Reactome %,
and STRING ?° (Figure 2A). Moreover, interactions from Guide to Pharmacology #,

32

CellPhoneDB 7, and in particular Ramilowski ?2, were incorporated into

subsequently published resources. All these resources are integrated into
OmniPath’s CCC resource 2

sources (e.g. SIGNOR %, Adhesome ?, SignaLink %, and others). We filtered the
OmniPath CCC interactions by quality (4.1 Methods).

, along with additional CCC interactions from other

As a consequence of their common origins, we noted limited uniqueness across the
resources, with mean percentages of 4.6 unique receivers, 5.3 unique transmitters,
and 16.8% unique interactions, for all resources (Figure 2B; Supp. Table 1).
OmniPath and CellChatDB ' had the largest degree of uniqueness, with 4, 16, and
46% for OmniPath and 17, 12, and 50% for CellChatDB in terms of receivers,
transmitters, and interactions, respectively. Despite the sparse uniqueness among
the resources, the pairwise overlap between them varied (Figure 2C; Supp. Figure
1). Particularly high similarity was observed between CellTalkDB 29,
ConnectomeDB '°, talklr 3¢, iTALK ° LRdb ', and Ramilowski (Figure 2C;
Supp. Figure 2). The aforementioned resources, together with OmniPath,
contained on average more than 65% the interactions present in the other resources
(Supp. Figure 3), largely explained by each including a large proportion (>80%) of
the interactions present in Ramilowski. CellChatDB, CellPhoneDB and Baccin
showed limited similarity with other resources, as each included -45% of the
interactions present in any other resource, on average. These latter resources
include protein complexes, which were dissociated and treated as distinct protein
subunits in our resource analyses. The smaller resources ICELLNET 2, Guide to

Pharmacology, HMPR ¥ and Kirouac2010 * were most dissimilar with the
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remainder of the resources and included on average only 21, 28, 17, and 7% of the
interactions present in the other resources, respectively. The similarity among the
resources was generally higher when considering transmitters, and receivers in

particular (Supp. Figure 1-3).

In summary, our results indicate that many of the transmitters, receivers, and
interactions are not unique to any single resource, due to their common origins.
However, different resources include varying proportions of the collective CCC

prior knowledge.
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Figure 2. Dependencies and overlap between CCC resources. A) The lineages of CCC
interaction database knowledge. General biological knowledge databases, CCC-dedicated resources
used in this work, Literature curation, resources included in iTALK, and OmniPath are in blue,
magenta, yellow, cyan, and green respectively. Arrows show the data transfers between resources. B)
Shared and Unique Interactions, Receivers and Transmitters. G) Similarity between the interactions

Jfrom different resources (Jaccard Index).

2.2 Resource Prior Knowledge Bias

Since CCC inference methods rely on prior knowledge to estimate intercellular
communication events, the choice of resource and any potential bias in it is
expected to impact the results. We therefore explored whether the coverage of
interactions in the resources is biased toward specific subcellular locations or

functional categories when compared to the collection of all resources.

2.2.1 Subcellular Localisation

We obtained protein subcellular localisation annotations from OmniPath 2, which
combines this information from 20 resources. We then matched the localisations

to receivers and transmitters from each resource with the aim to assess the
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localisation profile of different resources. On average 90% of transmitters and 79%
of receivers were annotated as secreted and transmembrane proteins, respectively
(Supp. Figure 4). We further used the localisations of transmitters and receivers to
categorize the interactions as secreted or direct-contact signaling. We reasoned
that, interactions between transmitters annotated as secreted and receivers
annotated as membrane-bound represent solute mediated (secreted) signalling
events. On the contrary, an interaction between two membrane-bound proteins
requires direct contact between cells. Building on this, we observed that all
resources were predominantly (74% on average) composed of interactions
associated with secreted signalling, while direct-contact signalling constituted a
substantially smaller (16% on average) proportion of interactions (Figure 3A;
Supp. Figure 5). Interactions categorized as neither secreted nor direct-contact
were labeled as ‘Other’ and made up the remainder of the interactions (Supp. Note
1). The proportions of secreted and direct-contact signalling varied between
resources, as some of them, such as Baccin, ConnectomeDB, CellPhoneDB, HPMR,
and OmniPath had an over-representation of direct-contact signalling when
compared to the collective, while the opposite was noted for the case of secreted
signalling  (Figure 3B). Direct contact interactions were particularly
under-represented in Guide to Pharmacology (4%), which was more focused on
secreted signalling (87%). CellChatDB showed an overrepresentation of interactions
matched to the category Other.

Our results suggest that localisations of transmitters and receivers were largely
uniformly distributed and that secreted signalling was predominant across all
resources. Yet, differences were noted between the relative abundance of secreted

and direct-contact signalling interactions.

2.2.2 Functional Term Enrichment

To examine whether specific pathways and biological functions are unevenly
represented in specific resources, we matched the interactions, receivers and
transmitters from each resource to well-known pathways and functional categories
from SignaLink ?°, NetPath #°, CancerSEA *°, and HGNC *.

10
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We observed that the Receptor tyrosine kinase (RTK), JAK/STAT, TGF, and WNT
pathways covered the largest proportions of interactions matched to SignaLink,
with analogous results observed for receivers and transmitters (Supp. Figure 6).
The interactions from Ramilowski, ConnectomeDB, LRdb, iTALK and talklr
showed a similar pattern, which can be explained by the high overlap of these
resources. On the contrary, interactions associated with innate immune pathways
and T-cell receptor categories were under-represented in Guide to Pharmacology,
Baccin2019, EMBRACE, Kirouac2010, ICELLNET, CellPhoneDB, and HMPR
(Figure 3C). The innate immune pathway category was also diminished in
OmniPath. In contrast, when we used NetPath instead of SignaLink to define the
T-cell receptor pathway, the under-representation in Baccin2019 and OmniPath
was not observed, and an over-representation was instead noted for ICELLNET
and CellPhoneDB (Figure 3D; Supp. Figure 7). Moreover, we observed a
considerable over-representation for the RTK pathway in OmniPath. The Signalink
WNT pathway was under-represented in ICELLNET and Guide to Pharmacology,
while for the NetPath WNT pathway this was only true for Guide to Pharmacology.
In contrast, CellChat showed a relative abundance for both the SignaLink and
NetPath WNT pathways. These observations for the WNT pathway were further
supported by the relative abundance of HGNC (Supp. Figure 8). Functional cancer
cell states from CancerSEA were also unevenly represented in sets of receivers and
transmitters across the resources (Supp. Figure 9). For example, Cell Cycle, DNA
repair, and DNA damage states were over-represented in LRdb. Hence, our results
indicated heterogenous biases towards certain pathways and categories across the

different CCC resources.
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resource. Relative abundance of C) SignaLink and D) NetPath annotations matched to interactions

Jfrom each resource.

2.3 Agreement in CCC predictions in a Colorectal Cancer data set

To estimate the relative agreement between CCC methods and the importance of
resources, we developed a framework to decouple tools from their inbuilt
resources. We chose a well-annotated colorectal cancer (CRC) scRNA-Seq dataset 23
with 65,362 cells from a heterogeneous cohort of 23 Korean CRC patients. The 38
cell annotations in the dataset included stromal, immune, tumour and healthy
epithelial cell types/states, as well as 3 unknown subtypes of Myeloid, B and T cells.
We focused on the interactions between tumour cells subclassified by their
resemblance of CRC consensus molecular subtypes (CMS) and immune cells from
tumour samples (Supp. Table 3), reasoning that this subset of cell types represents a
complex example where CCC events are known to have an important role. In

addition to the 15 CCC resources reported in the descriptive resource analysis

12


https://sciwheel.com/work/citation?ids=8958396&pre=&suf=&sa=0
https://doi.org/10.1101/2021.05.21.445160
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.21.445160; this version posted May 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(Supp. Table 2), we also included the default or inbuilt resource for each of the
tools, except Squidpy (Tablel), as well as a reshuffled control resource (4.3

Framework).

2.3.1 Interaction overlap

We then used each method-resource combination to infer CCC interactions,
assuming that different methods should generally agree on the most relevant CCC
events for the same resource and expression data. To measure the agreement
between method-resource combinations, we looked at the overlap between the 500
highest ranked interactions as predicted by each method. Whenever available,

author recommendations were used to filter out the false-positive interactions (4.4

Method-Resource Specifics). Our analysis showed considerable differences in the
interactions predicted by each of the methods regardless of the resource used, as
the mean Jaccard index per resource ranged from 0.0l to 0.06 (mean = 0.024)
when using different methods. These large discrepancies in the results were further
supported by the pairwise comparisons between methods using the same resource,
with mean Jaccard indices ranging from 0.063 (CellChat-SingleCellSignalR) to
0.110 (Connectome-NATMI). The overlap among the top predicted interactions
was slightly higher when using the same method but with different resources, as
Jaccard indices ranged from 0.118 to 0.203 per method (mean = 0.167)
(Supp. Figure 11). Consequently, the highest ranked interactions for each
method-resource combination largely showed stronger clustering by method than
resource (Figure 4), with similar results observed when considering the highest
ranked 100, 250, and 1000 interactions (Supp.Figure 10). In particular,
method-resource combinations involving Squidpy, SingleCellSignalR, and
Connectome clustered exclusively by method, suggesting that the overlap between
these combinations occurs predominantly when using the same method regardless
of the resource (Supp. Figure 11). The combinations involving NATMI also
clustered by method, with the only exceptions being the Kirouac2010 * and
ICELLNET ?! resources, which were the smallest resources (Supp. Table 2).
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Moreover, CellChat and the CellPhoneDB (Squidpy) methods ”?*, account for
heteromeric transmitter-receiver complexes, as such we examined the proportion
of complex-containing interactions for these methods wusing the
complex-containing resources (Supp. Note 2). This analysis showed that the
proportion of complexes among the highest ranked hits was 2-23% for CellChat
and 10-38% for Squidpy, largely reflecting the relative complex content in each

resource.

Our results suggest that the overlap between methods when using the same
resource was low (Supp. Figure 12). This was largely supported by the analysis of
two additional scRNA-Seq data of cord blood mononucleated cells and pancreatic
islet cells (Supp. Figure 13), even though we observed slightly higher agreement
between methods in the former dataset. The overlap when using the same method
with different resources, albeit higher than that between different methods, was
also modest (Supp. Figure 14). Hence, our results indicate that both the method and

the resource had a considerable impact on the predicted interactions.
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Figure 4. Overlap in the 500 highest ranked CCC interactions between different
combinations of methods and resources. Method-resource combinations were clustered
according to binary (Jaccard index) distances. SCA refers to the SingleCellSignalR method.

2.3.2 Communicating cell types

Next, we asked whether the discrepancies observed between the methods stem
from the differences in the cell types inferred as most active in terms of CCC
interactions. To this end, we used the 500 highest ranked interactions to examine
the cell type activities, defined as the proportion of interactions per cell type,
separately as a source and a target of CCC events (Figure 5). The results largely
reiterated our observations from the CCC interaction overlap analysis above, as
each method largely clustered by itself, regardless of the resource used, including
the reshuffled resource. These results were further supported by the average
interaction ranks per communicating pairs of clusters, as again the
method-resource combinations largely grouped by method (Supp. Figure 15). We
reasoned that the observed disagreement in regards to the most actively
communicating cell types was likely caused by the methods’ distinct approaches to
handle cell cluster specificity. We thus performed a complementary analysis using

the alternative, non cell-type specific scoring systems of the methods. The higher
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agreement in this case suggested that these different approaches are indeed in part

responsible for the disagreement (Supp. Note 3).

We further argued that the choice of method can have a major impact on the
interpretation of CCC results. For example, regardless of the resource,
SingleCellSignalR predicted CMS4-like cells to be a major source of signalling
within the system, which was in disagreement with the majority of
method-resource combinations (Figure 5). Nevertheless, given that CMS4 is
characterized by the exertion of immunosuppressive pressure on immune cells via
stromal cells *?, it can be argued that SingleCellSignalR appropriately recognized
CMS4 as the most active source of signalling. Regardless of the resource, NATMI
highlighted CMSI1-, CMS2-, and CMS3-like tumour cells as both major sources and
targets of signalling, while the inferred activity of immune cells was overall sparse.
NATMTI’s predictions were supported by CMS2 and CMS3 tumor subtypes being
associated with having low immune and inflammatory molecular signatures *. Yet,
this is not expected to be the case for CMSI-like cells, as CMSI tumors are
characterized by the infiltration of cytotoxic lymphocytes *243, Moreover, CD4+ T
cells and CD8+ T cells were the two most abundant immune cell types within the
dataset (Supp. Table 3), but they were estimated to be among the least active cell
types in the system across most method-resource combinations. Secreted
phosphoprotein 1 (SPP1)" macrophages were observed to be important sources and
targets of cell-cell communication in the system across most method-resource
combinations. This observation is largely supported by the enrichment of SPP1+
macrophages in tumour tissues, and their potential key role in tumor progression

and immune suppression %,

The analysis of activities per cell type largely reiterated the results from the
interaction overlap analysis, particularly as each method largely clustered by itself,
regardless of the resource. As a consequence, the disagreement between the
methods in which cell types are the most active is expected to have a major impact

on the biological interpretation of CCC communication predictions.
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Figure 5. Activity per Cell type, inferred as the proportion of interaction edges that stem from Source

Cell clusters or lead to Target Cell clusters in the highest ranked interactions.

3. Discussion

The growing interest in CCC inference has led to the recent emergence of multiple
methods and prior knowledge resources dedicated to studying intercellular
crosstalk. To shed light on the impact of the choice of method and resource on the
inference of CCC events, we built a framework to systematically combine 15
resources and 6 methods. We used this framework to describe in detail the content
of the different resources and to estimate cell-cell communication from
scRNA-Seq in a colon cancer case study. Our results suggest that both the method

and resource can considerably impact CCC inference.

3.1. Resource Overlap and Bias

Despite their common origins, different resources cover varying proportions of the

collective prior knowledge. Particularly, a large share of the observed overlap

32

among resources stemmed from the inclusion of Ramilowski into other
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resources. Moreover, across the resources, the WNT, RTK, T-cell receptor and
Innate immune pathways, among others, were present in varying proportions. The
high abundance of interactions associated with the RTK pathway in OmniPath
could be due to the ~1,600 expert curated RTK ligand-receptor interactions from
SIGNOR 2 and the large size of RTK pathway in SignaLink #. The results
presented here highlight an inherent limitation of knowledge-based inference, and
hence of CCC methods, as any prior knowledge resource has its own biases and
only represents a limited proportion of biological actuality. Consequently, these
inherent limitations should be kept in mind for the interpretation of CCC

predictions.

3.2. Impact of Methods and Resources

As a further step, we carried out a systematic analysis of the impact of resources
and methods on CCC inference results using a public colorectal cancer dataset .
Although possibly over-simplistic, our binary overlap assessment enabled the
direct comparison of the diverse scoring systems of the methods. We found that
both resources and methods had a considerable effect on the predicted

interactions, and the impact of methods outweighed that of the resource.

A potential explanation for the disagreement among the methods could be the
distinct approaches they use to identify the most relevant interactions (Table 1). A
common assumption among the methods is that cluster-specific interactions are
more informative than those related to multiple clusters **'°, An experimental
proof of this assumption and an evaluation of the distinct approaches is yet to be
carried out. By focusing on the cluster-specific interactions in the dataset, these
methods report the most specifically-interacting cell types !, rather than the most
actively communicating ones. Hence, the predicted CCC events typically do not
capture processes that are common between multiple cell types. As an example,
CD4+ T cells and CD8+ T cells, the two most abundant immune cell types found
within tumours, were assigned a low CCC communication activity. In terms of the
agreement in CCC event predictions we found that only a few biological patterns

are robust across many methods, namely the SPP1+ macrophages have been
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predicted to be main players of CCC signalling, supported by their enrichment in

23 44,45

CRC tumour tissues and frequent association with pro-metastatic role
Nevertheless, we acknowledge that the pooled analysis of the CRC dataset largely
limits the interpretation of results and warrants the future analysis of the same
dataset on a per-patient/phenotype basis. Collectively, these results suggest that the
common practice to highlight the most actively communicating cell clusters based

23,46

on the CCC inference should be considered with caution.

3.3. Previous Comparisons and limitations of our integration

Interestingly, our results did not recover some of the previously reported
agreement between tools '3, Contrary to previous comparisons”, we saw little
overlap between the SingleCellSignalR, CellPhoneDB and iTALK methods.
Furthermore, despite their relatively similar approaches, the limited agreement
between CellChat and CellPhoneDB was not observed here . It is to note that we
used CellChat’s probabilities instead of p-values to obtain the highest ranked
interactions. These probabilities do not deliberately reflect cell cluster specificity in
regards to the inferred interactions'®. However, our results support the previously
observed low agreement between CellChat and both iTALK and
SingleCellSignalR"™.

Some methods, namely CellChat ** and the CellPhoneDB algorithm 7, as well as
resources, such as Baccin, CellChatDB, CellPhoneDB, and ICELLNET, take protein
complexes into account. This largely complicates the conversion of the resources
and hence the comparison with methods and resources which do not consider
complexes. Furthermore, CellChat, and hence CellChatDB, goes a step further than
other methods and resources, as it considers interaction mediator molecules,
which are absent in the remainder of the resources . Thus, even though any
resource can be used with any method, we acknowledge that some combinations

put certain methods at a disadvantage.
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3.4. CCC Inference Assumptions and Benchmarking

Our results further point to certain limitations of the CCC inference methods. In
particular, CCC events are mainly predicted based on the average gene expression
at the cluster or cell type/state level. Such an assumption inherently suggests that
gene expression is informative of the activity of transmitters and receivers.
However, gene expression provided by scRNA-Seq is typically limited to protein
coding genes and the cells within the dataset, and hence does not capture secreted
signalling events driven by non-protein molecules or long-distance endocrine
signalling events. Further, CCC inference from scRNA-Seq data assumes that the
product of the gene expression of a transmitter and a receiver is a good proxy for
their joint activity, and thus does not consider any of the processes preceding
transmitter-receiver interactions, including protein translation and processing,

secretion, and diffusion.

We therefore believe that it is essential to establish a benchmark to
comprehensively assess the predictive power of CCC methods. However, a gold
standard for benchmarking is currently not available and the biological ground
truth is largely unknown 3. The field needs to identify experimental settings
capable of establishing the biological ground truth. So far, intercellular interactions
were mainly supported by the spatial colocalization of proteins and the functional
deregulation of intracellular signalling ¥/, and the physical-interaction of cell types
8 Yet these approaches are only applicable for the post-hoc and indirect validation
of CCC interactions. Thus, until an experimental gold standard becomes available,
simulated datasets might be used instead. However, any in silico benchmark is by
definition only a simplified approximation of reality, with its own biases *°. To our
knowledge, appropriate benchmarks for resources and methods used in CCC
inference are yet to be defined, although some proposals exist ', that we elaborate

on in Supp. Note 4.
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3.5. Conclusion

Considerable efforts have been made to develop CCC inference, and we believe
that further advancements will be key for the systems-level analysis of single-cell
data. This will likely further increase by the rapidly emerging spatial
transcriptomics ! and single-cell proteomics °°, and the future applications of CCC

51,52

inference approaches to interspecies communication Acknowledging the
limitations of our work, we believe that it points at the interpretation
inconsistencies that could arise as a consequence of the method and resource of
choice. We thus regard the results and comparative framework presented here as
steps towards an understanding of the strengths and weaknesses of CCC methods,
and thereby towards their improvement. Future developments of this work will
include extending the number of datasets in the comparative analysis as well as the
benchmark of methods and resources. As such, we here extend an open invitation

to all interested parties willing to join us in this endeavour.

4. Methods

4.1. Descriptive analysis of resources

The connections between resources shown in the dependency plot were manually

gathered from the publications and the web pages of each CCC resource.

The CCC resources used in the analyses were queried from the OmniPath database
2. The contents of the resources are identical to their original formats, apart from

minor processing differences (Supp. Table 2).

The OmniPath CCC resource is a composite resource which contains interactions
from all of the CCC dedicated resources compared here, along with some
additional resources’. OmniPath’s interactions were filtered according to the

following criteria: i) we only retained interactions with literature references, ii) we
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kept interactions only where the receiver protein was plasma membrane
transmembrane or peripheral according to at least 30% of the localisation
annotations, and 1iii) we only considered interactions between single proteins
(interactions between complexes are also available in OmniPath). OmniPath’s
intra- and intercellular components are both available via the OmnipathR package
(https:/github.com/saezlab/OmnipathR).

We defined unique and shared interactions, receivers and transmitters between the
CCC resources if they could be found in only one or at least two of the resources,

3

respectively. We used pheatmap * and UpSetR * to generate the heatmaps and

upset plots, respectively.

To identify uneven distributions of transmitters, receivers, and interactions toward
biological terms or protein localisations, we used Fisher's exact test to compare
each individual resource to the collection of all the resources. We obtained protein
localisations from OmniPath which collects this information from 20 databases®.
Then we kept consensus protein localisations where at least 50% of the annotations
agreed. We classified CCC interactions using the localisation combinations of
proteins involved in the interactions, which included secreted, plasma membrane
peripheral and transmembrane proteins. Interactions, receivers and transmitters
were independently matched to the 10 pathways from SignaLink #, and the 15
largest categories from CancerSEA *°, HGNC *, and NetPath . Each of the
aforementioned general functional annotation databases was also obtained via
OmniPath. In case of signalling pathway databases (Signalink and NetPath), we
focused on the enrichment of annotations matched to interactions, while for the
functional state databases (CancerSEA and HGNC), we presented the merged sets
of transmitters and receivers matched to functional categories. Annotation
matches for transmitters and receivers were examined independently using the
aforementioned functional annotation databases, but they were not the focus of
discussion presented here. Our approach allowed the same protein or interaction
to be matched to multiple pathways or functional categories from the same

database.
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To enable a comparison of annotations across resources, we expanded protein
complexes from Baccin2019 22, CellChatDB 3, CellPhoneDB 7, and ICELLNET ©.

4.2. Single-cell Transcriptomics data

The processed single cell RNA-Seq data ?* for 28 Korean colorectal cancer patients
is available at GSE132465. The analysis presented here focused on the CCC
interactions between colorectal cancer subtypes and immune cells, and the
remainder of cell types, including unknown immune cell subtypes, were filtered
out. This resulted in a subset of 18 cell types and 42,544 cells. We kept the original
subtype labels, reformatted the names to work with each CCC method

(Supp. Table 3), and sparsified the counts into a Seurat®

object.
The labelled scRNA-Seq data for pancreatic islet *° and cord blood mononuclear
cells ¥ were obtained via SeuratData, normalized with Seurat %, and used for CCC

inference without any further formatting and filtering.

4.3. Framework

For the method-resource comparison, we used Seurat ¢

objects which were
converted into the appropriate data format when calling each method. We used the
recommended conversion method or wrapper whenever available.

The resources were obtained from OmniPath and then converted to the
appropriate format for each method. A reshuffled version of ConnectomeDB2020
was generated with BiRewire *® and referred to as the reshuffled control resource.
Each tool was run with its default or inbuilt resource, except Squidpy. The Default
resource of Squidpy’s ligrec function is OmniPath, which is already part of our
benchmark set. The framework enabling the use of any resource and method
combination, as well as the results, are available at

https:/github.com/saezlab/ligrec _decoupler.

23


https://sciwheel.com/work/citation?ids=7977486&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10691771&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8312724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8958396&pre=&suf=&sa=0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132465
https://sciwheel.com/work/citation?ids=112055&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5027067&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4006944&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=112055&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=112055,5027067&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3047470&pre=&suf=&sa=0
https://github.com/saezlab/ligrec_decoupler
https://doi.org/10.1101/2021.05.21.445160
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.21.445160; this version posted May 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4.4. Overlap Analysis

To compare the overlap between the interactions predicted by each
method-resource combination, as a default we kept the 500 highest ranked
interactions. We also considered the highest ranked 100, 250, and 1000 interactions
for the CRC scRNA-Seq dataset. In case of ties, we considered the higher number
of predicted interactions. We then generated a presence-absence matrix of
predicted interactions with method-resource combinations. These matrices were

subsequently used to calculate Jaccard indices and to cluster the results.

Activity per cell type was calculated using the highest ranked 500 hits for each
method-resource combination. Cell type activity represents the proportion of
interactions (or edges) that stem from or lead to a Source or Target cell type,
respectively. In other words, a Source cell with a high cell type activity, in the
broadest terms, can be inferred as an active ‘secretor of ligands. We used the
z-normalized average interaction rank for each possible combination of
communicating cell types to estimate the cell pair ranks for each method-resource
combinations. These patterns of pairwise communication activities we presented
in a PCA plot. We created the heatmaps with pheatmap * (v1.0.12), using binary

distances for the overlap heatmaps and euclidean distances for the other heatmaps.

Connectome, NATMI, and iTALK do not provide an explicit threshold to control
for false positives and the highest ranking 500 hits were kept for each without any
preceding filtering. For methods where a threshold was proposed by the authors, as
in the case of CellChat, Squidpy, and SingleCellSignalR, we first filtered their
results accordingly and the highest ranked interactions were obtained afterwards.

Further, we used cluster-specific interaction measures for each method whenever
available (Table 1).

The same analysis was also carried out using the cluster-unspecific measures from

each method. The scaling done in Connectome (weight_scale) and NATMI

(Specificity-based edge weight), and in particular the cluster label permutation of
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CellChat (p-values) and CellPhoneDB (p-values), explicitly reflect cell-cluster
specific  communication, thus we used their alternative measures.
SingleCellSignalR and iTALK provide a single measure each and were hence

excluded from this analysis.

4.5. Method Specifics
4.5.1 CellChat

CellChat was run using default settings with 1000 permutations and the gene
expression diffusion-based smoothing process was omitted. CellChat returned a
number of significant interactions with p-values of O ranging from 221 to 12,208
depending on the resource (2,988 with its inbuilt resource), these made a
considerable proportion of the significant hits (p-value <= 0.05), as they ranged
from 237 to 12,971 (3,041 with its inbuilt resource). As such, because obtaining the
highest ranked interactions based on p-values was infeasible, CellChat results were
filtered according to p-values (p-value <= 0.05) and the highest probability scores

were instead used in the method-resource analysis.

4.5.2 Connectome

Connectome was run with its default settings using a Seurat object with processed
gene expression counts. Results were filtered for differentially expressed genes
(p-value <= 0.05), as identified via a Wilcoxon test, and Connectome’s scaled

weights were used in the method-resource analysis.

4.5.3 iTALK

iTALK was run with its default settings using the ‘DEG’ option which returns
corrected p-values and logFold changes for each gene. Then transmitters and
receivers with g-value <= 0.05 were kept. A differential expression product was
calculated using z-scores of transmitters and receivers and subsequently used in

the method-resource analysis.
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4.5.4 SingleCellSignalR

SingleCellSignalR was run with the processed gene counts, considering
differentially expressed genes with a log2 fold change threshold of 1.5 or above.
The highest LRscores which passed the recommended threshold of 0.5 were used
in the method-resource comparison. The number of interactions predicted by
SingleCellSignalR ranged between 159 to 7,240 (LRscore >= 0.5). The source code of
SingleCellSignalR was modified to work with external resources (available at
https:/github.com/Costal.ab/SingleCellSignalR vl).

4.5.5 NATMI

NATMTI’s implementation is command-line based, thus a system command is
invoked via R that calls the NATMI python module and passes the appropriate
command line arguments. NATMI was run with its default settings using the
processed gene expression matrix, converted from Seurat, and the
specificity-based edge weights were used in the method-resource comparison.

NATMTI’s Irc2p resource was used as the default.

4.5.6 Squidpy
Squidpy is called via reticulate * (https:/rstudio.github.io/reticulate/) and the

Seurat object is converted to anndata ®° (https:/anndata.readthedocs.io/) format in

Python. The CellPhoneDB algorithm implementation was run via the Squidpy
framework with 10,000 permutations, threshold of cells expressing transmitters
and receivers of 0.1, and the minimum component expression was considered for
complexes. For the method-resource comparison, we used the rank of p-values
(p-value <= 0.05). Squidpy’s number of significant hits ranged between 60 to 2,927

depending on the resource.
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Supplementary Materials

Supplementary Figure Sl. Jaccard Indices of A) Receivers and B) Transmitters from different

resources.
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Supplementary Figure S2. Upset plots representing the shared Interactions, Receivers, and

Transmitters between all resources (A-C) and all resources except OmniPath (D-F).
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Supplementary Figure S3. A) Interactions B) Receivers and C) Transmitters present in each
resource when taken from the rest of the resources. Note these plots are asymmetric and represent the

% of interactions from the resources on the X axis found in each resource on the Y axis.
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Supplementary Figure S4. Numbers and Percentages of Subcellular locations annotations of
Receivers (A-B) and Transmitters (C-D) for each CCC resource. S, P and T stand for Secreted,
Peripheral plasma membrane, and Transmembrane plasma membrane proteins, respectively.
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Supplementary Figure S5. Percentages per Signalling category according to OmniPath locations
(OP-L) for each CCC resource.
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Supplementary Figure S6. Number of matches to A) Interactions, B) Receivers and C)
Transmitters, Enrichment Scores for their Receivers and Transmitters (D-E), and the Percentages of

Interactions, Receivers and Transmitters (F-H) matched to the SignaLink database per resource.
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Transmitters, Enrichment Scores for their Receivers and Transmitters (D-E), and the Percentages of

Interactions, Receivers and Transmitters (F-H) matched to the NetPath database per resource.
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Supplementary Figure S8. Number of matches to A) Merged Sets of Receivers and Transmitters, B)

Receivers and C) Transmitters, their corresponding Enrichment Scores (D-F), and Percentages (G-I)

per resource matched to the HGNC database.
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Supplementary Figure S9. Number of matches to A) Merged Sets of Receivers and Transmitters, B)
Recervers and C) Transmitters and their corresponding (D-F) Enrichment Scores, and Percentages
(G-1) per resource matched to the CancerSEA database.
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Supplementary Figure S10. Overlap in the A) 100, B) 250, and C) 1000 highest ranked CCC
interactions between different combinations of methods and resources. Method-resource
combinations were clustered according to binary (Jaccard index) distances. SCA refers to
the SingleCellSignalR method.
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Supplementary Figure S11. Jaccard indices for the 500 highest ranked interactions obtained from
each method-resource combination.
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Supplementary Figure S12. - Upset plot showing the overlap between the 500 highest ranked
interactions using the same method with all resources.
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E) Using SingleCellSignalR with all resources.
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Supplementary Figure S13. Overlap, Jaccard indices, and Activity per Cell type in the 500 highest

ranked interactions between different combinations of methods and resources for Pancreatic islet
(A-C) and Cord Blood Mononuclear Cells (D-F) scRNA-Seq datasets, respectively.
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Supplementary Figure S14. Upset plot showing overlap of most relevant interactions for each

method with the same resource
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Supplementary Figure S15. PCA of normalized average interaction rank frequencies per cell pair
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Supplementary Figure S16. Cluster-unspecific communication agreement A) Overlap in
500 highest ranked interactions between different combinations of methods and resources. B)
Similarity among the highest ranked interactions for each method-resource combination, as measured
by Jaccard index. C) Activity per Cell type, inferred as the proportion of interaction edges that stem
Jfrom Source Cell types or lead to Target Cell types in the highest ranked interactions.
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Supplementary table 1. Unique and shared Transmitters, Receivers, and interactions in each
resource. We defined unique and shared interactions, receivers and transmitters between the CCC

resources if they could be found in only one or at least two of the resources, respectively.

Resource Transmitters |Receivers |[Interactions
Baccin2019 10.29% 7.98% 10.52%
CellChatDB 11.73% 17.17% 50.29%
CellPhoneDB 5.55% 14.31% 15.27%
CellTalkDB 3.70% 6.93% 6.28%
ConnDB2020 7.41% 6.04% 9.14%
EMBRACE 1.16% 0.00% 3.42%
GuidePharm 0.69% 0.41% 5.89%
HPMR 10.56% 4.67% 15.84%
ICELLNET 1.38% 2.53% 3.64%
iTALK 0.00% 0.00% 0.08%
Kirouac2010 2.84% 0.00% 9.33%
LRdb 0.88% 0.00% 1.61%
OmniPath 16.28% 4.29% 45.70%
Ramilowski 0.00% 0.00% 0.00%
talkir 0.00% 0.00% 0.00%
Total 5.30% 4.57% 16.77%
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Supplementary table 2. Description of existing resources for measuring cell—cell communication.

Resource Further curation Sources Interactions*
Baccin2019(a)?2 Murine identifiers (only), | Ramilowski2015, KEGG | 1978 (1418)
Multimeric complexes reactome database, Literature
CellChatDB* Multimeric complexes, 229 | KEGG, Literature 2551 (2551)
signaling  pathway  families,
agonists and antagonists,
co-receptors, localisations,

Murine identifiers

CellPhoneDB"?5%6 Multimeric complexes, | Guide2Pharma, 12D, IMEx, | 1397 (1312)
intercellular communication | InnateDB, IntAct, MatrixDB,
roles MINT, UniProt, Literature
CellTalkDB*° Murine identifiers STRING, Literature 3398 (3390)
ConnectomeDB2020" | - Ramilowski2015, 2293 (2264)

CellphoneDB, Baccin2019,
LRdb, ICELLNET, Literature

EMBRACE(a)® Murine identifiers Ramilowski2015 1710 (1489)

Guide2Pharma(b)® - Literature 740 (662)

HPMR?¥ - PubMed, GenBank 527 (461)

ICELLNET# Multimeric complexes, STRING, Ingenuity, BioGRID, | 380 (871)
Signalling families, Reactome, CellPhoneDB

Cytokine-focus

iTALK (¢) Ligand categories Ramilowski2015, HPMR, 2648 (2565)
IUPHAR-DB, Graeber2001,
Griffith2014, Cameron2003,
Zhou2017, Auslander2018

Kirouac2010328 - Literature, COPE 270 (150)
LRdb" - cellsignal.com, 3251 (3226)
Ramilowski2015,
Guide2Pharma, HPMR,
HPRD, Reactome, UniProt,
Literature
Ramilowski2015% - DLRP, HPMR, IUPHAR, | 1894 (1888)
HPRD, STRING, Literature
talklr3® - - 2422 (2411)
OmniPath#? Combines data from more than | Composite resource | 6103

100 resources and contains | combining all of the CCC

protein-protein and gene | dedicated resources listed
regulatory interactions, | here, along with some
enzyme-PTM relationships, | additional interactions.

multimeric complexes, protein
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annotations, and a

CCC-dedicated composite DB

# All the resources above were retrieved from the OmniPath database (https:/omnipathdb.org/). We also refer to
the composite CCC resource presented here as OmniPath. The OmniPath presented in the analyses we filtered
according to: i) we only retained interactions with literature references, ii) we kept interactions only where the
receiver protein was plasma membrane transmembrane or peripheral according to at least 30% of the localisation
annotations, and iii) we only considered interactions between single proteins

* The number of original interactions for each CCC dedicated resource covered in OmniPath is shown in brackets.
(a) Translated from murine identifiers to human, which accounts for the lower number of obtained interactions.

(b) Kept only the unique human-annotated interactions between transmitter and receiver proteins.

(c) Duplicates present in the original resource were excluded when imported via OmniPath
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Supplementary table 3. Formaited Korean CRC data set cell type counts and full names.

Cell type Cell subtype Complete Name Cell Count

B cells CD19CD20 B B cells_ CD19+CD20+ 2,049

T cells CD4 T cells CD4+ T cells 3,980

T cells CD8 T cells CDS8+ T cells 4,647
Conventional Dendritic

Myeloids cDC Cells 353

Epithelial Consensus Molecular

cells CMS1 Subtype 1 1,201

Epithelial Consensus Molecular

cells CMS2 Subtype 2 10,771

Epithelial Consensus Molecular

cells CMS3 Subtype 3 5,486

Epithelial Consensus Molecular

cells CMS4 Subtype 4 11

gamma delta T

T cells cells v& T cells 219

B cells IgA Plasma IgA+ Plasma Cells 180

B cells IgG Plasma IgG+ Plasma 1,661

T cells NK cells Natural Killer Cells 948

Pro-inflammatory

Myeloids Pro-inflammatory |Macrophages 2,325

Myeloids Proliferating Proliferating Macrophages 165

T cells Regulatory T cells |Regulatory T cells 2,943

Myeloids SPP1 SPP1+ Macrophages 3,096
T follicular helper

T cells cells T follicular helper cells 548

T cells T helper 17 cells T helper 17 cells 1,961
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Supplementary Note 1. Protein localisation to categorize CCC

To estimate the localisation distributions of transmitters and receivers as well as to
categorize CCC interactions according to signalling categories we obtained protein
subcellular localisation annotations via OmniPath?. These annotations were
gathered from sources such as UniProt, the Cell Surface Protein Atlas®’, and
Membranome®. The localisation annotations were then filtered according to a

consensus threshold (4.1. Descriptive analysis of resources). We then used the

localisations of transmitters and receivers to approximate the categories of
interactions. The largest part of interactions were those between secreted proteins
targeting transmembrane proteins (S -> T), which we referred to as the secreted
signalling category in Figure 3. Further, we attributed interactions between and
within the transmembrane and peripheral plasma membrane proteins (T -> T, P ->
T, T -> P, P -> P) to intercellular signalling events that require physical contact
between cells.

As a consequence of the protein localisation annotation process, some annotations
were expected to be unsuitable in the context of CCC signalling. For example, a
ligand can be annotated as both secreted and membrane-bound, depending on the
context of the observation. This was the case for EFNAl, a membrane-bound
ligand which binds to the EPH receptors, also observed to be released as a soluble
protein in breast adenocarcinoma cells®. Moreover, splicing variants of the same
protein can have different subcellular localisations, with one variant being
membrane-bound and the other secreted. For instance, FGF17 binds to
membrane-bound FGFR2, but since FGFR2 also has secreted isoforms (UniProtKB
- P21802), this interaction can be mislabeled as an interaction between two secreted
proteins. These misannotations in the context of CCC interactions made up only a
small proportion of all annotations and were grouped into the “Other” category
(Figure 3), which represented interactions which did not fit as secreted or

direct-contact signalling (T->S; S->S; P->S).
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Supplementary Note 2. Protein Complexes

We further assessed the predicted proportions of interactions containing
complexes from CellChat and Squidpy using Baccin, CellChatDB, CellPhoneDB,
and ICELLNET resources. This analysis showed that the proportion of complexes
among the highest ranked 500 hits for CellChat ranged from 1.8% (with
ICELLNET) to 23.0% (with the original CellChatDB) and that of Squidpy ranged
from 9.7% with ICELLNET) to 38.1% (with CellChatDB).
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Supplementary Note 3. Cluster Specificity and Method Dissimilarity

As a consequence of the disagreement between methods in regards to the most
actively communicating cell types, we reasoned that a possible cause was the
different approaches used to assign cell cluster specificity to the interactions. To
this end, we conducted the same analyses presented in the main text, but instead
using the measures from each method which do not explicitly reflect the cell-type
specific communication (i.e. Squidpy means; unfiltered CellChat probabilities;
Connectome.weight.norm; NATMI.edge.avg.expr) (Table 1). Since
SingleCellSignalR and iTALK provide a single scoring system, they were excluded
from this analysis. We observed an increase in the agreement between methods
(Supp. Figure 16A), as the mean Jaccard index when using the same resource with
different methods ranged from 0.277 to 0.618 (mean = 0.404) (Supp. Figure 16B).
The overlap between these methods when using the same resource was hence
considerably higher than that observed when using cluster-specific measures
(mean = 0.0247). On the contrary, the mean Jaccard index per method when using
the same resource remained relatively unchanged when compared to the scoring
systems that reflect cell cluster specific communication (0.118 for non-specific
measures versus 0.167 for specific). Moreover, analogously to the agreement
analysis, we used the cluster-unspecific measures to estimate the active cell types.
As a result, methods were observed to largely agree in terms of the most active cell
types (Supp. Figure 16C). Thus, this analysis suggests that the distinct approaches
used to assign cell cluster specificity to the interactions explain some of the
disagreement between methods for our dataset. Furthermore, when using the
cluster-unspecific measures, the differences in resources were the main source of

dissimilarity between the results.
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Supplementary Note 4. Single-cell CCC Benchmark Directions

As a consequence of the observed disagreement in the results obtained when using
different methods and resources, we argue that an appropriate benchmark is
paramount for the future development of the CCC inference field. Some effort has
already been directed to the assessment of different methods and specific
directions were already proposed. To this end, we also share our current

benchmark ideas.

I.  Associations between CCC activity and Spatial-Adjacency

Assumptions: Cell clusters that are spatially adjacent should be communicating
more actively than those that are spatially distant; Confining CCC inference to

spatial adjacency should reduce false positives.

Limitations: Difficult to distinguish cell-cell communication and cellular program
coregulation.

Examples: This approach was already used as a way to validate some methods'®®,
while other methods explicitly take spatial information into account for CCC
inference'. Another example is confining CCC inference to cells that are expected
to be in close contact, e.g. according to co-localizing cells in visium spots to reduce
false positive interactions®. In a similar way, 10x Visium data can be used to
identify cell types that are known to be co-located in visium spots, and are hence in

close contact.

Metrics:

A benchmark focused on the relationship between Cell Pair Activity™ and Cell
Distance™ composed by three main steps:

(1) Cell Pair Activity reported by different methods (*1);

(2) Cell-cell Spatial Distance or Colocalization (*2);

(3) Relationship between CCC method output and distance (*3).
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*1. Number of Inferred interactions between Cell Clusters; Average Cell Inference

Ranks per Communicating Cell Types

*2. Physical distance, measured by Euclidean distance between the closest cell
types, was already reported to be an appropriate proxy of cell pair communication
activity®. Other measures can be the neighbourhood enrichment or spatial
co-occurrence of cells?®®. An alternative approach would be to discretise distance

according to e.g. spatially-adjacent and spatially-distant cell types'>®.

*3. Correlation or Regression Coefhicients, or any other measure used as a proxy of

the relationship between the two variables.

II. Data-driven Inference of Spatial Covariance to  explain

Transmitter-Receiver interactions

Assumptions: Receiver and transmitter gene expression covariance with spatial

distance is a proxy of CCC events.

Limitations: Difficult to distinguish cell-cell communication and cellular program
coregulation; Possibly biased towards CCC events in which the transmitter and

receiver regulate each other’s expression.

Approach:

1) The expression of a receiver is spatially explainable by the expression of a
transmitter and vice versa. Thus, a threshold signifying conserved spatial gene
regulation between transmitters and receivers (with e.g. mistyR%) can be used to

define putative true positive interactions.

2) Downstream signalling models to explain transmitter and receiver activity.
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Some tools already utilize downstream signalling as an attempt to better model
CCC interactions''®!®, In a similar way prior knowledge of downstream transmitter
and receiver activity models”, can be used to spatially explain the activity of
transmitter and receiver. Alternatively, one can build naive protein-protein

interaction models from existing databases?.

Metrics:
Methods’ (and Resources’) coverage of the spatially explainable CCC events. In
other words, we expect a method to assign preferentially high ranks to spatially

explainable transmitter-receiver interactions.

AUROC can be calculated according to different thresholds of spatial covariance
for transmitter/receiver genes involved in CCC interactions. Thus, a reliable tool
and resource should be able to pick up spatial covariance better than a randomized
resource, and better than a resource composed of genes that are not explainable by

space (e.g. housekeeping genes).
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