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ABSTRACT

Accurate and robust prediction of patient-specific responses to drug treatments is critical for drug
development and personalized medicine. However, patient data are often too scarce to train a
generalized machine learning model. Although many methods have been developed to utilize cell
line data, few of them can reliably predict individual patient clinical responses to new drugs due to
data distribution shift and confounding factors. We develop a novel Context-aware Deconfounding
Autoencoder (CODE-AE) that can extract common biological signals masked by context-specific
patterns and confounding factors. Extensive studies demonstrate that CODE-AE effectively
alleviates the out-of-distribution problem for the model generalization, significantly improves
accuracy and robustness over state-of-the-art methods in both predicting patient-specific ex vivo and
in vivo drug responses purely from in vitro screens and disentangling intrinsic biological signals
from confounding factors. Using CODE-AE, we screened 50 drugs for 9,808 cancer patients and
discovered novel personalized anti-cancer therapies and drug-response biomarkers.

Contact: Ixie @iscb.org
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1 Introduction

Omics profiling, particularly transcriptomics, is a powerful technique to characterize cellular activity under various
conditions, allowing developing machine learning models for personalized phenotype drug screening [1, 2, 3]. How-
ever, the success of such predictive models largely relies on the availability of sufficient amounts of data with coherent
and comprehensive annotations. In clinical, we are often short of a large number of coherent in vivo patient data with
drug treatment and response history. As a result, most drug response predictive studies to date have mainly utilized
transcriptomic profiles from panels of in vitro cancer cell lines. Although such an approach is promising, the utility

*This author is also affiliated with Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University


https://doi.org/10.1101/2021.05.20.445055
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445055; this version posted May 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - MAY 20, 2021

Labeled cell line data with

known drug response CODE-AE Supervised training

using cell line data

Genes 80

ot st 2 o
7 3 9
o His i beddi deconfounding TS 2
e - 58
U N 3
o " £ -

confounding common

factors biomarkers :
e .
embedding deconfounding f \( o
— AN e+ /\_

v

%) "]
c B -
o8 >3 8
& o 2
Distribution of Dlstrlbutlon of Distribution of £ £
: Testing on patient O
Ur.\labeled patient samples reconstructed disentangled aligned common samplis P
without drug response embeddings embeddings embeddings

Figure 1: Illustration of CODE-AE method. Given labeled cell line drug response data, the aim of CODE-AE is to
predict individual patient clinical response to drugs that has been tested in the cell line model but never been tested
in the patient. Conceptually, CODE-AE consists of four steps. (1) The gene expression profile of both cell lines and
patients are mapped into an embedding space. (2) Confounding factors are disentangled from intrinsic biomarkers
in the embedding. (3) The distribution of embeddings of patients is aligned with that of cell lines. (4) A supervised
model is trained based on the deconfounded and aligned embedding of cell lines, and tested using deconfounded and
aligned embedding of patients.

of drug response predictive models built with in vitro data is often limited when applied to actual patients due to the
genetic and environmental differences between in vitro cell lines and patient-derived tissue samples as well as various
confounding factors and overwhelming context-specific patterns that may mask intrinsic biological signals.

The inability to predict patient-specific in vivo drug responses from in vitro screening data using a machine learning
approach originates from a fundamental challenge of out-of-distribution (OOD) problem. The underlying assumption
of existing machine learning methods is that the data distribution of training data and unseen testing data is the same.
When applying the machine learning model trained from cell line in vitro data to patient in vivo samples, the perfor-
mance could significantly deteriorate due to the data distribution shift. Current efforts in solving the OOD problem
include domain adaptation and meta-learning. Many domain adaptation methods have been proposed in computer
vision and natural language processing. However, their application to aligning in vitro with in vivo data could be sub-
optimal due to noisy and heterogeneous nature of omics data. An adversarial deconfounding autoencoder (ADAE)
was proposed to facilitate the domain adaptation of gene expression profiles [4], but ADAE has not been tested for
translating in vitro data to in vivo data. A meta-learning approach named TCRP has recently been proposed [5] to
improve the transferability of predictive drug response models from in vitro screens to in vivo settings. However,
TCRP still requires a certain number of patient data for each drug tested to train the predictive model. It is often
infeasible to obtain such data, especially for new drugs. Thus the actual application of TCRP to clinic is limited. It can
be only applied to the scenario of few-shot learning but not zero-shot learning. Most relevant to this work, Jia et al.
has applied Variational Autoencoder (VAE) pre-training followed by Elastic Net supervised training (VAEN) to learn
cell line models and applied them to impute in vivo drug response [6]. However, VAEN is not optimized to reliably
transfer cell line data to patient samples and disentangle confounding factors [6] due to the fundamental limitation of
VAE.

The unsolved question is how we can robustly predict individual patient response to a new drug that has never been
tested in patients only using in vitro drug screens in the setting of zero-shot learning. To address this problem, we
proposed a Context-aware Deconfounding Autoencoder (CODE-AE). In CODE-AE, we devised a self-supervised
(pre)training scheme to construct a feature encoding module that can be easily tuned to adapt to the different down-
stream tasks. We leverage both unlabeled cell line and tissue samples for the self-supervised (pre)training of the
encoder. The unique features of CODE-AE are that it can extract both common biological signals shared by inco-
herent samples and private representations unique to them, and separate confounding factors from them. CODE-AE
allowed us to generalize existing cell line omics data for the robust prediction of in vivo patient-specific response to
new drugs in the setting of zero-shot learning, a critical component for patient-specific drug screening and personalized
medicine.

To show the performance lift achieved by CODE-AE, we performed exhaustive comparative studies on CODE-AE
(and variants) and other competing methods over the breast cancer patient-derived tumor xenograft ex vivo PDTC
dataset [7]. Moreover, to demonstrate the potential of CODE-AE in personalized medicine, we apply CODE-AE to
predicting chemotherapy resistance for patients in vivo, which is a significant obstacle to effective cancer therapy.
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Figure 2: COntext-aware Deconfounding AutoEncoder (CODE-AE) framework. a) CODE-AE Base architecture:
A layer-tying shared encoder E; learns to map both cell line and tissue samples to deconfounded common intrin-
sic biological signals. Private encoders E. learn to represent cell line/tissue context-specific information as private
embeddings. A shared decoder D reconstructs the input samples through the concatenation of private and shared em-
beddings and the reconstruction quality is measured with £, ... The private and shared embeddings are pushed apart
through soft subspace orthogonality loss Lg4; ¢ . The shared encoder E; appended with an additional classifier network
will be trained during fine-tuning and perform inference during testing phase. b) CODE-AE-MMD: A variation of
CODE-AE-BASE where the concatenation of private and shared embeddings are kept similar via optimizing Ly p.
c) CODE-AE-ADV: A variation of CODE-AE-BASE where the concatenation of private and shared embeddings are
kept similar via optimizing L, 4,. Lq4y 18 in the form of min-max optimization between a critic network F and encoder
components.

Lack of effective personalized chemotherapy tailored to individual patients often leads to unnecessary suffering and
reduces the chances of patient’s overall survival. Our extensive studies show that CODE-AE effectively alleviates the
out-of-distribution problem when transferring the cell line model to patient samples, significantly outperforms state-of-
the-art methods AD-AE [4], TCRP [5], and VAEN [6] that are specifically designed for transcriptomics data as well as
other popular domain adaptation methods Variational autoencoder (VAE) [8], Denoising autoencoder (DAE) [9], Deep
Coral [10], and Domain Separation Network (DSN) [11] in terms of both accuracy and robustness. Using CODE-AE,
we screened 50 drugs for 9,808 cancer patients. The in vivo drug screening not only further validated CODE-AE but
also discovered novel personalized anti-cancer therapies and drug response biomarkers. Thus CODE-AE provides a
useful framework to take advantage of rich in vitro omics data for developing generalized clinical predictive models.

2 Results and Discussion

2.1 Overview of CODE-AE

As illustrated in Figure 1, given the gene expression profiles of labeled cell lines and unlabeled patients as input,
CODE-AE learns a nonlinear embedding function. The embedding function projects a high-dimensional expression
profile of each cell line or patient to a low-dimensional vector, which distinguishes biological meaningful signals from
confounding factors and transform the embeddings of cell lines and patients into the similar distribution. The embed-
ding function is learned using both labeled and unlabeled data. Thus, CODE-AE is able to generalize to unlabeled
data. Furthermore, aligning the distributions of cell line and patient embeddings across labeled and unlabeled samples
can alleviate the OOD problem.

Algorithmically, CODE-AE pretrains the neural network using an autoencoder that minimizes a data reconstruction
error (See Methods). The pretraining step is useful for generalization to an unlabeled dataset. The brief architecture of
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CODE-AE is shown in Figure 2. Different from conventional autoencoders such as VAE, CODE-AE has two unique
features. Firstly, it learns shared signals between the cell line data and the patient data as well as private signals that
are unique to the cell line and the patient. The rationale is to disentangle common biological signals between data
sets from context-specific patterns that overwhelm drug response biomarkers [5]. Secondly, CODE-AE regularizes the
embeddings of cell lines and patients to have their distributions be similar. In this way, the knowledge learned from the
cell line model can be transferred to patients. We test three regularization methods: simple concatenation of cell line
and patient embeddings (CODE-AE-Base), minimization of their MMD loss (CODE-AE-MMD), and minimization
of their adversarial loss (CODE-AE-ADV). After the unsupervised pretraining, a supervised drug response model can
be trained from the aligned common embedding using the labeled cell line data. When a new patient comes, the drug
response can be predicted from the trained cell line model based on the pretrained common embedding of the patient.
Thus, CODE-AE does not need to use any labeled patient samples to construct the predictive model.

2.2 The optimal configuration of CODE-AE variants

We first studied the performance difference of CODE-AE variants in the combination of different configurations of
the learning paradigm. In particular, the configuration choices we explicitly explored include (1) whether to include
a hidden representation normalization layer, (2) use of only the shared representation or concatenation of private and
shared representation for the downstream task, and (3) loss function for determining the similarity of tissue embeddings
to cell line embeddings. We evaluated the performance of these CODE-AE variants using PDTC test dataset. As shown
in Table 1 and Supplemental Figure S1, the overall best performing CODE-AE variant is the CODE-AE-ADV with
hidden representation normalization, aligned cross-domain features over shared representation, and adversarial loss.
Hidden representation normalization can avoid embeddings being pushed towards meaningless zero-valued vectors
by soft orthogonality loss. The better performance achieved by using only the shared representation in downstream
tasks is aligned with our assumption that shared representation is affluent with transferable deconfounded biological
meaningful information. We will only compare CODE-AE-ADV with other baseline models and apply it to actual
prediction tasks in the following sections.

Table 1: Average rank of CODE-AE variants on PDTC dataset
Normalization Non-normalization

CODE-AE-ADV 1.70+1.27 3.80+2.22
CODE-AE-BASE 6.34+3.26 9.02+£2.22
CODE-AE-MMD 7.08+3.91 6.32£2.65
CODE-AE-ADV(CONCAT)  6.50+2.76 4.40+2.58
CODE-AE-BASE(CONCAT) 9.20+3.42 7.52+2.52
CODE-AE-MMD(CONCAT) 8.70+2.62 6.90+2.50

2.3 CODE-AE-ADYV alleviates the out-of-distribution problem on transferring cell line models to patient data

We used the shared encoder from pre-trained CODE-AE-ADV to generate the new representations for in vivo TCGA
patient samples and in vitro CCLE cell line samples. To inspect how well the embeddings of cell line data and patient
samples are aligned, we generated tSNE plots to visualize their embeddings, as shown in Figure 3. The embeddings of
TCGA and CCLE samples largely overlap in tSNE manifolds. It indicates that CODE-AE-ADV is effective in aligning
cell lines and patients’ representations. As a comparison, the low-dimensional representations of CCLE and TCGA
data are clearly separated when using original gene expression profiles or vanilla autoencoder. Thus, CODE-AE-ADV
is more effective in addressing OOD problem than the embedding algorithms that are used by the state-of-the-art
method VAEN [6].

2.4 CODE-AE-ADV significantly outperforms baseline models when predicting ex vivo drug responses

We then compared CODE-AE-ADV with baseline models using ex vivo drug response data from PDTC. As shown in
Table 2, CODE-AE-ADV is overall the best performer for PDTC test dataset. The second best performer is ADAE
that is specially design to remove confounders [4]. Interestingly, the state-of-the-art domain adaptation methods DSN,
CORAL, and DANN in computer vision and natural language processing do not perform well, even worse than the
standard VAE. This observation suggests that omics data could be fundamentally different from images and human
languages. Specially designed deep learning model is needed to address the challenges in omics data integration and
predictive modeling. Among these domain adaptation methods, DSN performs the best, suggesting the importance in
disentangling shared and private information between cell line and patient samples. It is not surprising that models
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Figure 3: tSNE plots of a) original expression b) embeddings generated by standard autoencoder ¢) embeddings
generated by CODE-AE-ADV

Table 2: Average rank of different methods on PDTC test dataset and patient chemotherapy response prediction

PDTC Chemotherapy Prediction
Method Rank (Average) Rank (Average)

CODE-AE-ADV 1.70+0.99 1.40+0.55
VAEN 5.284+2.58 4.00+3.67
ADAE 3.22+1.33 4.60+2.61
DSN-MMD 4.82+2.90 5.40+3.97
With Pre-training DSN-DANN 6.26+2.09 5.40+2.07
CORAL 7.00+2.25 6.20+3.11
AE 7.70+2.41 5.80+1.92
DAE 7.86+1.99 7.40+2.41
VAE 3.50+2.32 7.20+1.10

TCRP 9.86+2.19 10.20+2.28

Without Pre-training MLP 11.36+1.47 11.20+0.84

Elastic Net 10.74+2.45 10.20+3.70

Random Forest 11.48+1.63 12.00+1.00

incorporated unlabeled pre-training clearly outperform the ones without. TCRP on average is the best performer
among models without unlabeled pre-training.

Figure 4 shows the drug-wise performance of each algorithm. Among 50 drugs tested, CODE-AE-ADV ranks as
the best, the second best, and the third best for 29, 11, 7 times, respectively. It performs the best for three drugs
BX795, Obatoclax Mesylate, and Axitinib with the AUROC above 0.8. The worst ranked drugs by CODE-AE-ADV
are PD0325901, SB216763 and AZD7762. The reason for this performance disparity is unclear and worth further
investigation.

2.5 CODE-AE-ADV significantly outperforms baseline models when predicting patient chemotherapy
resistance

We further evaluated the performance of CODE-AE-ADV for predicting clinical chemotherapy resistance in two as-
pects: either a lack of reduction in tumor size following chemotherapy or the occurrence of clinical relapse after an
initial “positive response to treatment” [12] as detailed in Method section. The results are shown in Figure 5. Con-
sistent with the results from the PDTC data set, CODE-AE-ADYV significantly outperforms baseline models. CODE-
AE-ADV achieved the highest value of AUROC in 5 out of 7 cases with statistically significant (p-value < 0.05)
performance gain, and second highest in the other 2 but without statistically significant difference from the best one.
CODE-AE-ADV is overall the best performer in this task as shown in Table 2. VAEN performs relatively well in the
case of relapse days after treatment, but much worse than CODE-AE-ADV, ADAE, and TCRP when evaluated by the
clinical diagnosis. Furthermore, CODE-AE-ADV significantly outperforms ADAE by a large margin in all cases. This
observation further supports that CODE-AE-ADV can enhance the signal-to-noise ratio in the biomarker identification
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Figure 4: Performance comparison of PDTC drug response classification

because the major difference between CODE-AE-ADV and ADAE is to disentangle shared and private embeddings
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between cell lines and patient tissues. TCRP is inferior to the other methods that take advantage of the pre-training
using unlabeled data, demonstrating the importance of the pre-training in few-shot and zero-shot learning.
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Figure 5: Performance comparison of patient chemotherapy response prediction based on (A) clinical diagnosis, and
(B) relapse days after treatment. When classifying the clinical diagnosis for drug 5-Fluorouracil and Gemcitabine,
CODE-AE-ADV outperforms the second best performer statistically significant with a p-value of 0.0399 and 0.0290,
respectively. For the classification based on relapsed days after first treatment, CODE-AE-ADV significantly outper-
forms the second best performer for drug 5-Fluorouracil, Temozolomide, Sorafenib with a p-value of 0.0028, 0.0483
and 0.0420, respectively. In the case of drug Gemcitabine and Cisplatin, CODE-AE-ADV ranked the second best,
while its performance difference with the respective best performing methods is not statistically significant with a
p-values of 0.8746 and 0.3102, respectively.

2.6 CODE-AE-ADV is successful in deconfounding omics data

To show that CODE-AE-ADYV can generate transferable embedding through deconfounding uninteresting confounders
while preserving true biological signals present in expression data even outside the in-vivo and in-vitro setting. We
selected the gene expression data sets used in ADAE [4] to perform a similar evaluation process. Specifically, we
chose the brain cancer expression data set with gender information as confounding factors and brain cancer subtype
classification as target downstream tasks. We first performed encoder training with all unlabeled gene expression pro-
files regardless of gender. For ADAE [4] and CODE-AE, we selected the binary gender variable as the deconfounding
target. After encoder training, we generated the latent embedding for all original gene expression profiles using differ-
ent encoders. Then, we built elastic net classifiers for cancer subtype prediction using the latent embedding of samples
of one gender to predict the other gender samples. Following the evaluation procedure described in [4], the classifi-
cation performance measured in the area under the precision-recall curve (AUPRC) as well as area under the receiver
operating curve (AUROC) of ten-fold cross-validation was reported in Table 3. Besides, we performed a two-sample
t-test on the average performance between CODE-AE-ADV and the best non-CODE-AE method in each setting, and
its results are shown on the last row of Table 3. We observed the same trends as those in the drug resistance prediction.
Using the model built from female data to predict male data, CODE-AE-ADV significantly outperforms ADAE, the
second-best performer measured by both AUROC and AUPRC. When applying the model trained from male data to
predict female data, the performance of CODE-AE-ADV is slightly worse than CORAL, but the difference is not sta-
tistically significant. Both CODE-AE-ADV and CORAL significantly outperform the state-of-the-art deconfounding
method ADAE (p-value < 0.05). Additionally, two other observations from the drug response experiments hold. Dis-
entangling common and private features of different data modalities is essential for cell line to tissue transfer learning,
and adversarial loss is more effective than MMD loss.
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Table 3: Performance comparison on cancer subtype prediction with the gender as a confounding factor. The best and
the second best performances are highlighted and underlined, respectively.

Female->Male

Male->Female

AUROC AUPRC AUROC AUPRC
ADAE 0.9038+0.0081  0.9621+0.008  0.9264+0.0043  0.975540.0018
CORAL 0.8793+0.0208  0.9432£0.0042  0.9444+0.0057  0.9862+0.002
DSN-MMD 0.6772+0.0187  0.8715+0.026  0.6693+0.0584 0.9145+0.0189
DSN-DANN 0.6573+0.0181 0.8612+0.0104  0.7233+£0.041  0.9102+0.0267
CODE-AE-BASE  0.6034+0.0437  0.86134+0.0001 0.6276+0.0687 0.9112+0.0079
CODE-AE-MMD  0.9221£0.0186  0.9683+0.0056  0.939+0.0039  0.9826+0.0021
CODE-AE-ADV  0.9319+0.0018 0.9730+0.0007 0.9400+0.0074  0.9840+£0.0033

P value of t-test 9.609e-07 0.0018956 0.157513 0.08213

2.7 Application of CODE-AE-ADYV to personalized medicine

To further validate CODE-AE-ADV with patient data and demonstrate its utility in personalized medicine, we applied
CODE-AE-ADV (per-drug) trained with CCLE data to screen 50 drugs for 9,808 cancer patients from TCGA. Our
major findings are summarized below.

2.7.1 Gene expression differential analysis of drug target verifies predicted patient drug responses from
CODE-AE-ADV

We first verify our predictions by checking the association of our predicted drug response with the gene expression
values of drug targets. If the predicted patient response on the targeted therapy is correlated with the drug target, it
provides the validation of our prediction. We select the top 5% predicted drug sensitive patients as our responsive
patient set and bottom 5% as the resistant patient set. We found that 47 out of 50 targeted therapies are statistically
significantly (p-value < 0.05) associated with the drug target expression (Supplemental Table S1 and Supplemental
Figure S2). For instance, three drugs targeting RTK signaling pathway, Sorafenib, AMG-706 and Axitinib, consis-
tently have strong association between predicted drug response and their target gene expression (Supplemental Figure
S3). The targets of these drugs include KIT, KDR, PDGFRA and PDGFRB, which are all key components in the
RTK signaling pathway. The same phenomenon could also be noticed for other targeted drugs. This indicates that
CODE-AE-ADV could well capture the drug mode of action.

2.7.2 Gene Set Enrichment Analysis of predicted patient drug response gene expression profile identifies
drug response biomarkers

We further conducted a Gene Set Enrichment Analysis (GSEA) for the gene expression profile of sensitive and insen-
sitive patients for each drug to elucidate biological mechanisms underlying the predicted drug-patient association. For
example, three enriched gene sets were identified for the Gefitinib-sensitive patients including down-regulated genes
when KRAS is overexpressed. On the other hand, the up-regulated genes for tissues with overexpressed mutated
KRAS are enriched for the Gefitinib-resistant patients. It has been well known that patients with mutated KRAS have
significantly worse prognosis to EGFR-inhibition cancer therapy [13, 24, 14]. Our results are consistent with these
observations. For IGF-IR inhibitor GSK1904529, the top-rank gene sets in the resistant patients include up-regulated
genes by the over-expression of AKT, MET or ERBB genes. Because receptor tyrosine kinases, like IGF-IR, MET
and ERBB, can regulate PI3K/AKT/mTOR pathway, JAK/STAT pathway and Ras/Raf/Mek/Erk pathway[15], whose
functions overlap with each other. Therefore, the effect caused by inhibition of IGF-IR could be compensated by
other kinases that are up-regulated in GSK1904529-resistant patient tissues. Another statistically significant example
is TAKI1 inhibitor (5Z)-7-Oxozeaenol. We found that the down-regulated and up-regulated gene set in mutated P53
cell line were enriched in the (5Z)-7-Oxozeaenol-sensitive and -resistant patients, respectively. This indicates that
P53 might play an important role for patient response to (5Z)-7-Oxozeaenol. Interestingly, it is reported that TAK1
signaling pathway can regulate p53 [22]. Thus, p53 expression level could be a drug response biomarker for (5Z)-7-
Oxozeaenol. The predicted gene set enrichment of several other drugs (AXD6482, SL0101-1, AICAR, and NU7441)
is also supported by existing experimental evidences.
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Table 4: Summarized GSEA results of predicted patient drug response gene expression profile

Drug Gene Set Patient type P-val FDR Reference
Gefitinib KRAS.LUNG_UP.V1_DN Sensitive 0.021  0.271 [13, 14]
Gefitinib SINGH_KRAS_DEPENDENCY _SIGNATURE Sensitive 0.023  0.151 [13, 14]
Gefitinib KRAS.50_UP.V1_DN Sensitive 0.047 0.229 [13, 14]
Gefitinib KRAS.KIDNEY_UP.V1_UP Resistant 0.027  0.229 [13, 14]
Gefitinib KRAS.PROSTATE_UP.V1_UP Resistant 0.002  0.171 [13, 14]
Gefitinib KRAS.300_UP.V1_UP Resistant 0.034 0.143 [13, 14]

GSK1904529 AKT_UP_.MTOR_DN.V1_UP Resistant <0.001 0.009 [15]
GSK1904529 MEK_UP.V1_UP Resistant <0.001 0.006 [15]
GSK1904529 ERBB2_UP.V1_UP Resistant <0.001 0.006 [15]
AZD6482 AKT_UP.V1_DN Sensitive 0.002 0.016 [16]
AZD6482 MTOR_UP.V1_DN Sensitive 0.008  0.036 [16]
AZD6482 AKT_UPV1_UP Resistant 0.018 0.235 [16]
AZD6482 MTOR_UP.VI_UP Resistant 0.025 0.24 [16]
SLO0101-1 SNF5_DN.V1_UP Sensitive 0.002  0.096 [17]
SLO0101-1 P53_DN.VI_DN Sensitive 0.045 0.236 [18, 19]
SLO0101-1 KRAS.PROSTATE_UP.V1_UP Sensitive 0.036  0.356 [20]
AICAR PRC2_EZH2_UP.V1_DN Sensitive 0.014  0.136 [21]
(5Z)-7-Oxozeaenol P53_DN.V1_DN Sensitive <0.001 0.001 [22]
NU7441 RB_P107_DN.V1_UP Sensitive 0.03 0.077 [23]

2.7.3 Clustering analysis of drug response profiles reveals novel connections between drugs and between
tumor types

We performed clustering analysis on the predicted drug response matrix as shown in Figure 6, within which the rows
and columns are corresponding to drugs and patients, respectively. Specifically, we grouped 50 drugs into 16 clusters
with Spectral Co-clustering [25] and stratified 9,808 patients into 33 clusters with Kmeans++ clustering [26]. Notably,
each patient cluster is dominated by one of the patient tumor types, suggesting the clustering is clinically meaningful.
However, patients with different tumor types could be grouped into the same cluster. For example, the cluster shown
in Figure 6 consists of adrenal gland tumors besides the brain tumor. It implies that clinical diagnosis itself may
not identify the best therapy for the patient. The stratification of patients based on the drug response profile could
be a more effective strategy for personalized medicine. Detailed inspection of drug clusters reveal that drugs with
different primary targets may lead to the similar drug response. For example, the largest drug cluster consists of 15
drugs (SB 216763, AZD8055, BMS-754807, PF-4708671, JNK Inhibitor VIII, PLX4720, AG-014699, AMG-706,
TW 37, PD-0325901, GDC0941, GW 441756, Bosutinib, PAC-1 and BI-2536). These drugs are designed to target
several pathways, notably, RTK signaling, IGF1R/PI3K signaling, and ERK/MAPK signaling. On the one hand, these
pathways are strongly inter-connected. RTK activates PI3K or MAPK pathways [27]. On the other hand, it is likely
that multi-target bindings may contribute to the similar clinical response of these drugs [28].

2.7.4 CODE-AE-ADY identifies precision anti-cancer therapy

We ranked drugs based on their mean predicted responses for each patient cluster (Supplemental Table S2) to identify
the precision anti-cancer therapy. Intriguingly, we found that the glioblastoma (GBM) patient shows high sensitivity
to PD173074, a fibroblast growth factor receptors (FGFR) inhibitor. Several studies have shown that even though
FGFR gene mutation is rare in GBM, the FGFR is crucial in the regulation of many downstream functions, includ-
ing cell survival, cell proliferation and cytoskeletal regulation etc [29]. The FGFR3-TACC complex has also been
demonstrated to be carcinogenic in GBM [30]. Given that the FGFR inhibitor has been determined to hinder the
pediatric glioma cells growth, PD173074 could be a potential anti-cancer therapy for GBM [31]. Liver cancer and
acute myeloid leukemia (AML) are also predicted to be sensitive to PD173074. Experimental studies have shown that
FGFR4 is over-expressed in livers and indicated that its up-regulation contributes to the progression of hepatocellular
carcinoma [32]. For AML, previous study has demonstrated the FGFR inhibitors could suppress the leukemogenesis,
especially for FGFR1 overexpressed AML [33]. Thus, our top ranked predictions are supported by existing experi-
mental and clinical evidences. CODE-AE-ADV also predicted that pheochromocytoma & paraganglioma and ovarian
serous cystadenocarcinoma are sensitive to PD173074. In addition to PD173074, several other drugs, notably, Camp-
tothecin, Vorinostat, and Sorfenib, were predicted to be effective on multiple tumors. These predictions warranty
further experimental validations.
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Figure 6: Co-clustering results on complete patient drug response prediction. Yellow dashed boxes indicate the iden-
tified clusters. Top two figures demonstrate the composition of cluster O which include only drug PD173074. Top left
figure shows the prediction score distribution within this cluster, which indicates the high sensitivity of patients within
this cluster under the treatment of PD173074. Top right figure shows the tissue origin of samples within this cluster.
415/457 samples are from brain lower grade glioma tissue.

3 Conclusion

In this paper, we introduce a new transfer learning framework CODE-AE to predict individual patient drug response
from a supervised neural network model trained from cell line data. Extensive benchmark studies demonstrate the
advantage of CODE-AE over the state-of-the-art in terms of both accuracy and robustness. The performance gain of
CODE-AE mainly comes from (1) the unsupervised learning that combines unlabeled data from both cell lines and
patient samples, (2) separation of shared common features cross cell lines and patient samples with unique embedding
for cell lines or patients, and (3) adversarial training to optimize the similarity and difference between incoherent data
sets. CODE-AE could be further improved in several directions. In contrast with cell line data from a pure population
of cells, patient tissue data are mixtures of normal, abnormal, and infiltrated immune cells. We can further improve
the CODE-AE by the deconvolution of patient gene expression data. We only use transcriptomics profiles to build the
predictive model in this study. We can integrate additional omics data such as somatic mutations and copy number
variants in the framework of cross-level information transmission [34]. Finally, we only apply CODE-AE to cancers.
It will be interesting to test the performance of CODE-AE in other diseases besides cancers, which even do not have
a large number of cell line data. In principle, CODE-AE can be applied to other transfer learning tasks with two data
modalities with shared and unique features.
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4 Methods

4.1 Our Approach: COntext-aware DE-confounding AutoEncoder (CODE-AE)

We proposed a novel CODE-AE to generate biologically informative gene expression embeddings to transfer knowl-
edge from in-vitro data into patient samples. CODE-AE employed the standard auto-encoder as the backbone to
leverage the unlabeled gene expression data sets. Inspired by the work on factorized latent space [35] and domain
separation network [11], we encoded the samples (from cell lines or tumor tissues) into two orthogonal embeddings,
namely private embeddings and shared embeddings. The first one is designed to separate the context-specific signals
that overwhelm the common biomarkers. The latter contains the deconfounded common intrinsic biological signals
used to transfer knowledge across cell lines and tissues.

4.1.1 CODE-AE Base

As shown in Figure 2, the CODE-AE takes expression vectors from in vitro cell lines and patient tumor tissue samples

Ny Ny Y Ne
as input. Let X; = {xﬁ”} and X, = {xg)} represent the unlabeled data set of IV, patient tumor tissue
i=1 i=1
samples and N, in vitro cancer cell line samples, respectively. Each sample x will be encoded into two separate
embeddings through its corresponding cell line or tissue private encoder E. | and also the weight-sharing encoder Es.
The concatenation of these two embeddings of each sample is expected to be able to reconstruct the original gene

expression vector x through a shared decoder D, and the reconstruction is done as,

0 = D(E,(x") PDE., x")) (1

where x'*) represents the input gene expression profile, x is the corresponding reconstructed input sample through
the autoencoder component. € stands for the vector concatenation operation. We measure the quality of autoencoder

reconstruction through the mean squared error between the original samples and the reconstruction output as below,

R (Rl A o RS B
£7’econ:7 Xg)_xl + = XZ _XZ (2)

In our formulation, we factorized each sample’s latent space into two different subspaces to capture both domain
specific and common information separately. To minimize the redundancy between the factorized latent spaces, we
included an additional penalty term, Lg; sy in the form of orthogonality constraint. The difference loss Lg;  is applied
to both cell line and tissue samples and encourages the shared and private encoder to encode different aspects of the
inputs. We define the loss via soft subspace orthogonality constraint as below,

Liigs = |22, |+ 12820, | ®

where Z._ are the embedding matrices whose rows are the shared embedding for cell line or tissue samples, while
7., are the embedding matrices whose rows are the private embedding for cell line or tissue samples. It is obvious
that L4, ¢y tends to push the embeddings to meaningless all-zero-valued vectors. To avoid such scenario, we append
an additional instance normalization layer after the output layer of each encoder to avoid embeddings with minimal
norm. Lastly, the loss for CODE-AE-BASE is defined with the weighted combination between L,ccon and Lg;fr as
below,

‘Ccodefaefbase = ‘Crecon + aﬁdiff (4)

where « is the embedding difference loss coefficient.

4.1.2 CODE-AE Variants

With CODE-AE-BASE, we could split cell line or tissue sample’s inherent information into the private and shared
streams. However, in our baseline experiments, we often found that it was sub-optimal or demonstrated varied per-
formance. Thus, we proposed two variants that showed better and generally more stable performance. Under the
CODE-AE framework, for each input sample, CODE-AE factorized it into two orthogonal embeddings. The concate-
nation of these two embeddings is considered as the new representation of the original input. Given that all samples in
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our consideration are gene expression profiles regardless of cell line or patient, we assumed that the new representation
of original input in the factorized latent space close to each in terms of distributional differences. Hence, we incor-
porated additional feature alignment component into the CODE-AE-BASE framework. Specifically, the distributional
difference of the concatenated representation of private and shared embeddings from both cell line and tumor tissue
samples are minimized via the following two approaches.

CODE-AE-MMD. The first variant, named CODE-AE-MMD, utilized the well known maximum mean discrepancy
[36] as the distance measurement between the latent representation of cell line and tissue samples. Maximum Mean
Discrepancy (MMD) loss [36] is a kernel-based distance function between samples from two distributions. In partic-
ular, we used an approximate version of exact MMD loss in CODE-AE-MMD as below,

N N
1
Lyvivp(Ze, Ze) = A Z k(2 29)) + N2 Z w(z”, z)

9 N
- Z I{(ZS.Z) (J)) (5)

where Z., Z; are embedding matrices for cell line and tissue samples respectively, whose rows are the concatenations
of each sample’s private and shared embedding. z.(z), 29 are the i-th or j-th samples’ corresponding embedding
vectors. In practice, N will be the batch size. Accordingly, the loss of CODE-AE-MMD is given as below,

Ecode—ae—mmd = Ecode—ae—base + BACJV[JWD (6)

where (3 is the MMD loss coefficient.

CODE-AE-ADV The second variant, CODE-AE-ADYV, employed adversarial training to push the representations of
cell line and tissue samples to be similar to each other. Specifically, we appended a critic network F' that scores
representations with the objective that consistently gives higher scores for representations of cancer cell line samples.
The encoders for tissue samples are given an additional objective to generate the embedding that could fool the critic
network to produce high scores. In this manner, critic network and tissue sample encoders will play a min-max game
in the form of an alternative training schedule, which is adopted by Wasserstein generative adversarial networks [37].
To avoid unstable training commonly existing in alternative training schedules, instead of standard WGAN [37], we
used the WGAN with gradient penalty [38]. Its affiliated loss terms are defined as below,

Leritic = = X0 F(z) — = N F(2) + M VP @)l — 1)2
Lado N (7N
Lgen = Nt Z ‘ F( )

where z. = z., @z, stands for new representation of input and Z = ez. + (1 — €)z; and € ~ U(0,1). A detailed
CODE-AE-ADV learning procedure can be found in (Procedure 1).
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Procedure 1 CODE-AE-ADV training

Input: {x{" 1, {x{"}}V,
Require: N, the batch size
A, generator loss coefficient
Nnw, number of warm-up epochs
n¢, number of training epochs
Neritic, Number of steps per encoders update

1: for epoch = 1 to n, do

2 fort =1to 77"’"(%“%) do

3 sample {x.} of size N from {x&” }Ne (wio. rep)
4: sample {x;} of size N from {XEZ)}?ZI (w/o. rep)
5: Update Ey,, E.,, Es, D with Lcode—ae—base

6: end for

7: end for

8: for epoch = 1 to n; do

9 fort =1to W do
10: sample {X.} of size NV from {Xﬁl)}iv;l (w/o. rep)
11: sample {x; } of size N from {Xi’)}ﬁv:tl (w/o. rep)
12: Update F' with Leritic
13: if t %oncritic == 0 then
14: Update Etp7 Ecp, Es, D with Leode—ae—base + )\Lgen
15: end if
16: end for
17: end for

After the encoder training with unlabeled data as mentioned above, the shared encoder E; could be used to directly
generate the deconfounded biological meaningful embedding vectors or append a neural network module for specific
downstream tasks. In the latter case, strategies such as gradual unfreezing and decayed learning rate schedule could
be adopted to improve task-specific performance further, as shown in our following experiments.

4.2 Gene set enrichment analysis

For each drug in consideration, we select the top 5% predicted drug sensitive patients as our responsive patient set and
bottom 5% as the resistant patient set. Then, we input each responsive/resistant patient tumor tissue gene expression
profiles ( 20000 genes) and their respective predicted response label into GSEA[39, 40]. Our enrichment analysis is
focused on the oncogenic signature gene sets. Each gene set includes a list of genes that are regulated after perturbation
of some cancer related genes. For each drug, the statistically enriched gene set for sensitive and resistant patient tissues
are used to be explored further.

4.3 Clustering analysis

We separated 50 drugs into 16 clusters with Spectral Co-clustering methods based on the predicted drug responses
profiles. Then we applied Kmeans++ clustering to group 9,808 patients into 33 clusters. For each cluster, we averaged
tissues drug response score profiles and then ranked the drugs based on the average scores. The higher score indicates
that this cluster of patient is more sensitive to the drug.

4.4 Experiments Setup
4.4.1 Data sets

Training Dataset

Unlabeled pre-training (in vitro and in vivo). The unlabeled datasets used for encoder pre-training include cancer
cell line and patient tumor tissue gene expression profiles. Specifically, we collected 1,305 cancer cell line samples
with corresponding gene expression profiles from the DepMap portal [41] and 9,808 patient tumor tissue samples from
the Xena portal [42]. All gene expression data are metricized by the standard transcripts per million base for each gene,
with additional log transformation. In addition, we selected the top 1000 varied genes measured by the percentage of
unique values in gene expression samples for cancer cell lines and tumor tissue samples separately. Then we combined
the two sets of top 1000 varied genes as the input features. There are a total of 1426 genes in the feature set.
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Labeled fine-tuning(in vitro). The labeled dataset used for fine-tuning phase is collected from GDSC [43, 44]. GDSC
recorded the cellular growth responses of cancer cell lines against a panel of drugs as the area under the drug response
curve (AUC), which is defined as the fraction of the total area under the drug response curve between the highest and
lowest screening concentration in GDSC. For each drug of interest, we first identified all cell lines with corresponding
drug sensitivity measured in the area under the drug response curve (AUC) and then split these cancer cell lines’
sensitivity against this drug into binary labels, namely responsive or non-responsive (resistant). The categorization
threshold is selected as the average AUC value of all available cell line drug sensitivity for each drug of interest.

Test Dataset

We evaluated the performance of CODE-AE in the setting of zero-shot learning, i.e., the unseen OOD data have never
been used in training. It is a more difficult but more realistic scenario than the state-of-the-art method TCRP [5] in
which a small set of OOD data was used during the training. Specifically, the predictive model for each drug of interest
was learned only with the aforementioned in vitro dataset. While in testing time, we evaluated the model performance
with the following ex vivo and in vivo labeled datasets that were not used in the training phase on the prediction task
of drug response classification in pre-clinical and clinical scenarios, respectively.

Pre-clinical (ex vivo). We used data from breast cancer PDTC [7] to evaluate the performance of drug response
classification in a pre-clinical context. The previous study collected 83 human breast tumor biopsies and established
human cell culture from these tumors with mice as intermediaries. Each of these human cell cultures was exposed to
a list of drugs. From the list of drugs available in PDTC, we further selected 50 drugs with known protein targets for
which cell-line responses had also been recorded in GDSC as drugs of interest. The drug sensitivity classification of
each drug was considered as a separate learning task. Similar to the labeled GDSC dataset used during training, the
PDTC responses were categorized into binary labels using PDTC AUCs, where the classification threshold is specified
as the median AUC value of all available PDTC AUCs of each drug of interest.

Clinical (in vivo). To evaluate the performance of drug response classification in a clinical context, we primarily
consider a practical problem: predict chemotherapy resistance given gene expression profiles of patients while training
the predictive model only using the gene expression profile of cancer cell lines.

Clinical chemotherapy resistance can be defined as either a lack of reduction in tumor size following chemotherapy or
the occurrence of clinical relapse after an initial “positive response to treatment” [12]. Hence, we extracted data sets
to assess these two aspects. The patient clinical drug response was acquired from a recent work [45], where patients’
clinical response records of two chemotherapy agents Gemcitabine and Fluorouracil from The Cancer Genome Atlas
(TCGA) [46] were extracted. The patients were split into two groups: responders who had a partial or complete
response and non-responders who had progressive clinical disease or stable disease diagnosis. Only patients on single-
drug therapy through the entire duration of treatment were retained in the study.

In addition to using clinical diagnosis to indicate patients’ drug responses towards a particular drug, we extracted
patients’ “new tumor events days after treatment” from TCGA [46] as the standard to divide patients into responders
and non-responders. The median number of days of new tumor events was used as the threshold. Similar to the above
data set from [45], we only included patients on single-drug therapy through the entire treatment duration in this test
data set. For the list of drugs included in this test dataset, the drugs with more than 20 labeled samples are kept.

4.4.2 Baseline models

We compared CODE-AE with the following base-line models that include unlabeled pre-training: VAEN [6], standard
autoencoder (AE) [47], denoising autoencoder (DAE) [9], and variational autoencoder (VAE) [8] as well as represen-
tative domain adaptation methods including deep coral (CORAL) [10] and domain separation network (DSN) [11] of
both MMD (DSN-MMD) and adversarial (DSN-DANN) training variants. Furthermore, we included a more recent
adversarial deconfounding autoencoder (ADAE) [4] given its similar formation as DANN [48] and state-of-the-art per-
formance in transcriptomics data sets. In addition, for CODE-AE variants, we also explored different configurations,
such as with/without hidden layer normalization, performing a downstream task with concatenated representation, or
shared representation in an ablation study with PDTC test dataset.

For fair comparisons, all the encoder and decoder trained in the experiments share the same architecture. Specifically,
the hidden representation is of dimension 128. The encoders and decoder are 2-layer neural network modules of
dimension (512, 256) and (256, 512), respectively, with the rectified linear activation function. Appended modules
such as critic network in CODE-AE-ADV and classifier network used for fine-tuning are 2-layer neural networks of
dimension (64, 32) with rectified linear activation, have one output node with linear activation in critic network, and
sigmoid activation in classifier networks. Further, the loss weight terms in CODE-AE-MMD and CODE-AE-ADV are
all specified as 1.0.
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Moreover, for models that do not include unlabeled pre-training, we compared CODE-AE with TCRP[5] as well as
vanilla neural network (denoted as MLP), elastic net classifier (denoted as EN), and random forest classifier (denoted
as RF ). TCRP incorporates model agnostic meta-learning technique and is the most successful method for predicting
individual patient drug response from the cell line data so far.

4.4.3 Training procedure

For models that include an unlabeled pre-training phase, We first pre-train them for IV epochs using the same unla-
beled samples from both cancer cell lines and tumor tissues. With parameter grid search, N is selected based on the
downstream task performance (over validation set). The pre-trained encoders will then be appended with a classifi-
cation module to perform the downstream drug sensitivity classification task in the following fine-tuning step. We
adopted the early stopping with validation performance in the fine-tuning phase (training phase for the model without
unlabeled pre-training). Specifically, the labeled cell line samples were split into five stratified folds (according to
drug sensitivity categorization). In one evaluation iteration, four out of five folds of the samples were used as the
training set. The remaining one-fold of samples was used as the validation data set for early stopping. At last, the test
performance of the classifier in each evaluation iteration was recorded.

4.4.4 Performance evaluation

We choose the area under the receiver operating curve (AUROC) as the measurement metric due to their insensitivity
to changes in the test data set’s class distribution [49]. The model performance was measured in AUROC over the
patient tissue expression data and corresponding drug response records. The performance of different methods was
compared by the average of AUROC:S of five iterations. It is noted that only cell line data were used for the model
training and hyperparameter selections, and all ex vivo tissues and patient data were purely used for the testing.

Data availability

The original CCLE, GDSC, PDTC and TCGA data are publicly available datasets. CCLE data were down-
loaded from DepMap portal https://depmap.org/portal/download/. GDSC data were downloaded from the
GDSC Website https://www.cancerrxgene.org/. PDTC datasets were obtained from Breast Cancer PDTX
Encyclopaedia (https://caldaslab.cruk.cam.ac.uk/bcape/). =~ TCGA data were downloaded from UCSC Cancer
Genome Browser Xena [42]. Other intermediate files and TCGA tissue sample predictions can be found at
https://github.com/XieResearchGroup/CODE-AE.

Code availability

The source code and data are available at https://github.com/XieResearchGroup/CODE-AE.
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