

1 High resolution analysis of proteome dynamics during *Bacillus*

2 *subtilis* sporulation

3 Zhiwei Tu^{1,2}, Henk L. Dekker¹, Winfried Roseboom¹, Bhagyashree N. Swarge^{1,2}, Peter Setlow³, Stanley
4 Brul^{2,†}, Gertjan Kramer^{1,†,*}

5 ¹Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, The Netherlands

6 ²Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam,
7 The Netherlands

8 ³Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT USA

9 *Corresponding author information: g.kramer@uva.nl; Tel.: 0205255457

10 †these authors contributed equally

11 Running title: Dynamic protein expression in *B. subtilis* sporulation

12

Dynamic protein expression in *B. subtilis* sporulation

13 **Abstract**

14 *Bacillus subtilis* vegetative cells switch to sporulation upon nutrient limitation. To investigate the
15 proteome dynamics during sporulation, high resolution time-lapse proteomics was performed in a
16 cell population that was induced to sporulate synchronously. Here, we are the first to
17 comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins and
18 other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed
19 four co-expressed modules (blue, brown, green and yellow). Modules brown and green are
20 upregulated during sporulation and contain proteins associated with sporulation. Module blue, is
21 negatively correlated with modules brown and green, and contained ribosomal and metabolic
22 proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several
23 proteins not belonging to any of the known transcription regulons were identified as co-expressed
24 with modules brown and green. We speculate that they may also play roles during sporulation.
25 Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in
26 sporulation. We speculate on their possible role in guiding or helping assembly of other coat
27 proteins, after which they can be disposed of, but such a hypothesis remains to be experimentally
28 addressed.

29 **Keywords**

30 Sporulation; Proteomics; *Bacillus subtilis*

31 **Introduction**

32 In response to unfavorable conditions, vegetative cells of *Bacillus subtilis* can enter the process of
33 sporulation, to form resistant and metabolically dormant spores. A lot of effort has been made to
34 investigate the mechanism of sporulation, and this process has been extensively reviewed in (1–5).
35 As a result of sporulation genes' transcription and mRNA translation, the vegetative cells undergo a
36 series of morphological changes until the release of spores into the environment. All the proteins
37 necessary for a dormant spore are synthesized and deposited in the nascent spore during
38 sporulation. The spore originates from the smaller compartment (forespore) of the asymmetrically

Dynamic protein expression in *B. subtilis* sporulation

39 divided cell formed in an early stage of sporulation. The forespore is then engulfed by the mother
40 cell (the larger compartment). With the assembly of the cortex and coat layers surrounding the
41 forespore, its core begins to dehydrate and takes up CaDPA (calcium dipicolinic acid) leading to
42 further core dehydration. This process makes the forespores become bright under phase-contrast
43 microscopy. Finally, the mature spore is released by lysis of the mother cell.

44 As expected, morphological changes in sporulating cells are highly correlated with gene and protein
45 expression. Activation of specific sporulation transcriptional regulators takes place before forespore
46 engulfment in the mother cell (SigE (RNA polymerase σ factor E)) and in the forespore compartment
47 (SigF), and after forespore engulfment in the mother cell (SigK) and in the forespore (SigG) (6).
48 Several hours after completion of engulfment, metabolic activity in the forespore diminishes (7, 8)
49 and is largely, if not completely absent in the free spore. Both (9) and a study from Swarge *et al.* (10)
50 has demonstrated the presence of many metabolic proteins in the free spores. Spores harboring
51 varied levels of metabolic proteins exhibit different spore outgrowth properties (9). RNA-seq has
52 been a powerful tool in the analysis of sporulation by quantitation of levels of various mRNAs at
53 various periods in this process (11, 12). However, a serious problem with the use of transcriptome or
54 microarray data for research on sporulation is that the performers of spore assembly are proteins.
55 Due to the fact that proteins and mRNA have different lifetimes their concentrations evolve on
56 different time scales. As a consequence, inference of regulatory mechanisms from time series of
57 mRNA data may potentially lead to incomplete conclusions.

58 To facilitate the investigation of protein changeover throughout the sporulation process, and thus
59 directly interrogate the spore proteome, a *kinA*-inducible sporulation system has been set-up (9, 13).
60 This system allows more synchronous initiation of sporulation and leads to a significantly more
61 homogeneous sporulating cell population. This in turn allows us to interrogate the sporulation
62 process with a far greater sensitivity than is possible in the more heterogeneous populations created
63 by traditional sporulation protocols. Using this newly established system we set out to characterize
64 in great detail the sporulation process on the level of the proteome from the initiation of sporulation

Dynamic protein expression in *B. subtilis* sporulation

65 to the release of spores, in order to generate a highly time resolved proteome map of *B. subtilis*
66 sporulation. To this end we used metabolic labelling and mass spectrometry to monitor the
67 proteome changeover during sporulation. This led to the quantification of a total of 2370 proteins.
68 Co-expression network analysis revealed that there were four major modules of co-expressed
69 proteins during sporulation. Two of these were mostly populated with sporulation related proteins.
70 In summary, this study shows for the first time a highly time-resolved view of protein expression
71 changes during sporulation and reveals distinct modules of co-expressed proteins that are activated
72 or depressed during the specific stages of sporulation.

73 **Experimental Procedures**

74 *Experimental Design and Statistical Rationale*

75 Proteome of *B. subtilis* derived from highly synchronized cultures during sporulation (0, 15, 30, 45,
76 60, 75, 90, 105, 120, 135, 150, 165, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480 min) were
77 analyzed using ¹⁵N metabolic labelling MS. Samples with three biological replicates were treated and
78 digested according to “one-pot” method (14), followed by LC-MS analysis. Log₂ average values of the
79 three replicates were used to represent the expression values of a protein at a specific time point.
80 The changeover of sporulation regulatory proteins, coat proteins and other proteins involved in
81 sporulation and spore biogenesis were viewed. Protein co-expression analysis was performed on
82 proteins quantified in at least 46 samples, excluding growing cell-predominant proteins, to
83 investigate the protein expression network of *B. subtilis* sporulation.

84 *Sporulation and Sampling*

85 *KinA*-inducible *Bacillus subtilis* strain 1887 was used in this study, and *kinA* transcription relies on the
86 presence of IPTG in the culture medium (13). The sporulation protocol described in (9) was applied
87 in this study. In short, vegetative cells were grown at 37°C under continuous agitation (200 rpm) in a
88 MOPS (3-[N-Morpholino]propanesulfonic acid) buffered medium containing 40 mM NH₄Cl and 40
89 mM glucose. At exponential phase (OD₆₀₀ = 0.65), the cells were induced to express *kinA* with 100
90 μM IPTG for 90 min. Subsequently, the culture was diluted six-fold with the same, pre-warmed,

Dynamic protein expression in *B. subtilis* sporulation

91 medium now devoid of glucose. Time 0 min was defined as the moment after culture dilution. For
92 proteomic analysis, 10 ml of culture was sampled at 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165,
93 180, 210, 240, 270, 300, 330, 360, 390, 420, 450 and 480 min. Three biological replicates were
94 harvested at each time point. Harvested samples were stored at -80°C before further experiments.
95 For microscopy, 500 µl culture was taken at 0, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420 and 480
96 min from replicate 1 to monitor the process of sporulation.

97 *Microscopy*

98 Harvested cells were concentrated by centrifugation at 10,000 rpm for 1 min and immediately
99 loaded on a 3% w/v agarose (in water) pad on a microscope slide supplemented with 5 µg/ml
100 membrane dye Nile Red (Invitrogen). The agarose pad was made following the protocol described
101 previously (15). Phase-contrast and fluorescent images were taken with a Nikon Eclipse Ti
102 microscope. The membrane dye was visualized at an excitation wavelength of 570 ± 10 nm and
103 emission wavelength of 620 ± 10 nm. The Nikon Eclipse Ti was equipped with an Intensilight HG 130
104 W lamp, A Nikon CFI Plan Apo Lambda 100X oil objective, C11440-22CU Hamamatsu ORCA flash 4.0
105 camera, LAMBDA 10-B Smart Shutter form Sutter Instrument, an OkoLab stage incubator and NIS
106 elements software version 4.50.00. Microscopy images were analyzed with ImageJ/Fiji
107 (<http://fiji.sc/Fiji>) (16).

108 *LC-MS/MS*

109 A ¹⁵N metabolic labelling strategy was used to perform proteomic analysis. The strategy applied was
110 previously described by Abhyankar et al. (17). Briefly, an aliquot of 0.5 ml ¹⁵N labelled vegetative
111 cells and 1.5 of ¹⁵N labelled free spores were mixed as a reference sample and added to all ¹⁴N
112 experimental samples to facilitate comparisons between samples. The vegetative cells and spores
113 were made using *Bacillus subtilis* strain 1887. Induced spores were harvested at 8 h after the dilution
114 and were purified from the remaining vegetative cells with Histodenz (Sigma-Aldrich, St. Louis,
115 Missouri, USA) density gradient centrifugation (18). The mixed samples were processed including
116 protease digestion following the “one-pot” sample processing method (14).

Dynamic protein expression in *B. subtilis* sporulation

117 Tryptic samples were reconstituted in 0.1% formic acid in water and 200 ng equivalent (determined
118 by measuring the absorbance at a wavelength of 205 nm (19)) was injected by a Ultimate 3000
119 RSLCnano UHPLC system (Thermo Scientific, Germeringen, Germany) onto a 75 μ m x 250 mm
120 analytical column (C18, 1.6 μ m particle size, Aurora, Ionopticks, Australia) kept at 50°C at 400 nL/min
121 for 15 min in 3% solvent B before being separated by a multi-step gradient (Solvent A: 0.1% formic
122 acid in water, Solvent B: 0.1% formic acid in acetonitrile) to 5% B at 16 min, 17% B at 38 min, 25% B
123 at 43 min, 34% B at 46 min, 99% B at 47 min held until 54 min returning to initial conditions at 55
124 min equilibrating until 80 min.

125 Eluting peptides were sprayed by the emitter coupled to the column into a captive spray source
126 (Bruker, Bremen Germany) with a capillary voltage of 1.5 kV, a source gas flow of 3 L/min of pure
127 nitrogen and a dry temperature setting of 180°C, attached to a timsTOF pro (Bruker, Bremen
128 Germany) trapped ion mobility, quadrupole, time of flight mass spectrometer. The timsTOF was
129 operated in PASEF (parallel accumulation–serial fragmentation) mode of acquisition. The TOF scan
130 range was 100-1700 m/z and a tims range of 0.6-1.6 V.s/cm². In PASEF mode a filter was applied to
131 the m/z and ion mobility plane to select features most likely representing peptide precursors, the
132 quad isolation width was 2 Th at 700 m/z and 3 Th at 800 m/z, and the collision energy was ramped
133 from 20-59 eV over the tims scan range to generate fragmentation spectra. A total of 10 PASEF
134 MS/MS scans scheduled with a total cycle time of 1.16 seconds, scheduling target intensity 2e4 and
135 intensity threshold of 2.5e3 and a charge state range of 0-5 were used. Active exclusion was on
136 (release after 0.4 min), reconsidering precursors if ratio current/previous intensity >4.

137 *Data Processing and Bioinformatics*

138 The raw data were processed with MASCOT DISTILLER (version 2.7.1.0, 64 bits), MDRO 2.7.1.0
139 (MATRIX science, London, UK), including the Search toolbox and the Quantification toolbox. Prior to
140 processing data were converted from Bruker's tdf format to Bruker's baf format by a script provided
141 by Bruker to make raw files compatible with MASCOT DISTILLER. Peaks were fitted to a simulated
142 isotope distribution, with a correlation threshold of 0.6, with minimum signal to noise ratio of 1.3.

Dynamic protein expression in *B. subtilis* sporulation

143 The processed data were searched in a MudPIT approach with MASCOT server 2.7.0 (MATRIX
144 science, London, UK), against the *B. subtilis* 168 ORF translation database. The MASCOT search
145 parameters were as follows: enzyme—trypsin, allowance of two missed cleavages, fixed
146 modification—carbamidomethylation of cysteine, variable modifications—oxidation of methionine
147 and deamidation of asparagine and glutamine, quantification method—metabolic ^{15}N labelling,
148 peptide mass tolerance and peptide fragment mass tolerance—50 ppm. Using the quantification
149 toolbox, the quantification of the light peptides relative to the corresponding heavy peptides was
150 determined as an 14N/15N ratio, using Simpson's integration of the peptide MS chromatographic
151 profiles for all detected charge states. The quantification parameters were: correlation threshold for
152 isotopic distribution fit—0.7, 15N label content—99.6%, XIC threshold—0.1, all charge states on,
153 max XIC width—250 s, elution time shift for heavy and light peptides—20 s. The protein isotopic
154 ratios were then calculated as the median over the corresponding peptide ratios.
155 The output quantitative data with a protein MASCOT score higher than 20 were considered as
156 reliable. Proteins quantified in at least 46 of 69 samples were selected for the protein co-expression
157 analysis. The missing values in the selected proteins were imputed using R software package *Amelia*
158 (20). Log₂ transformation was applied to the data prior to the imputation. Average values over three
159 biological replicates were used for co-expression network analysis utilizing R/Bioconductor software
160 package WGCNA (21). R scripts can be found in Supplementary File S1. The signed network was used
161 in the analysis. The soft threshold and the minimum module size in the analysis were 9 and 15,
162 respectively. Transcriptional regulators of genes, their products and functions were determined
163 according to *SubtiWiki* (<http://subtiwiki.uni-goettingen.de/>) (22). Lists of coat proteins and other
164 proteins involved in sporulation were also acquired from *SubtiWiki*.

165 **Results**

166 *Morphological Stages during Sporulation*

167 *KinA* was artificially expressed to induce sporulation in vegetative cells of strain 1887 of *Bacillus*
168 *subtilis* PY79. During sporulation, phase-contrast and fluorescence microscopy images of cells with

Dynamic protein expression in *B. subtilis* sporulation

169 membranes visualized by the fluorescent membrane dye Nile Red were taken to monitor the
170 morphological changes, and the proportion of different cell types was calculated (**Figure 1**). The
171 asymmetric septum appeared immediately after the glucose dilution (time = 0 min) and was initially
172 seen in approximately 10% of the population. The smaller forespore compartment would then be
173 engulfed to become a phase-dark forespore. The proportion of cells exhibiting polar division,
174 engulfment and phase-dark forespores nearly reached a peak of 80% at 90 min. Phase-bright
175 forespores appeared at 150 min (~ in 30% of the cells) and reached ~80% of the population at 240
176 min. Free spores appeared at 300 min (0.36%) and reached a peak of 70% at 480 min. Vegetative
177 cells that cannot be distinguished as any type of sporulating cell comprised at least 5% of the
178 population at all time points.

179 *Proteome Coverage of Sporulation*

180 In total, 23 samples from 0 to 480 min were harvested from each of the three replicates to perform
181 proteomic analysis. Overall, 2370 proteins were quantified in the analysis (**Figure 2A**). 428 proteins
182 were quantified in all the timepoints with at least one quantification at every timepoint. The
183 proteins were assigned to their transcriptional regulons according to *SubtiWiki* (22) (**Figure 2B**).
184 Among them, key regulons (SpoOA, SigE, SigF, SigG and SigK) of sporulation make up a high
185 proportion of the proteins.

186 *Sporulation Regulatory Proteins*

187 Sporulation is controlled by a hierarchical regulatory network (6). It involves sporulation master
188 regulator SpoOA initiating sporulation and directly and indirectly controlling forespore and mother
189 cell specific regulators, SigE, SigF, SigG, SigK. All these 5 proteins have been quantified in some of the
190 timepoints but failed to show clear expression profiles (**Supplementary table S1**). In the
191 phosphorelay involved in phosphorylating SpoOA, KinA is quantified in all timepoints and its amount
192 gradually decreased (**Figure 3**). Other phosphorelay proteins have only been quantified in a number
193 of timepoints (**Supplementary table S1**). Mother cell early sporulation regulators GerR and SpolIID
194 are transcriptionally activated by SigE and positively or negatively regulate sporulation. Both

Dynamic protein expression in *B. subtilis* sporulation

195 proteins are quantified to upregulate in the first 60 min and gradually decrease after 180 min (**Figure**
196 **3**). SpolIIAH and SpolIQ are members of a feeding tube connecting mother cell and forespore and
197 are important for SigG activation (6, 23). They are upregulated shortly after sporulation initiation,
198 reached a peak amount at 90–105 min and then decreased (**Figure 3**). The SigK activated mother
199 cell late sporulation regulator GerE is upregulated after 120 min and the SigG activated forespore
200 regulator SpoVT is upregulated after 90 min (**Figure 3**).

Spore coat proteins, small acid-soluble spore proteins (SASPs) and other sporulation proteins

201 The spore coat proteins start to express and assemble upon completion of asymmetric division (2, 5).
202 A precoat structure is first assembled to serve as a scaffold for subsequent coat assembly (24, 25).
203 The scaffold includes at least several morphogenetic proteins (SpolVA, SpoVID, SpoVM, SafA, and
204 CotE) which are crucial for subsequent coat layer assembly. SpolVA, SpoVID and SpoVM are the first
205 upregulated morphogenetic proteins (**Figure 4A**), and mutation of any of these three proteins causes
206 improper assembly of overall coat layers (26–28). SafA, the morphogenetic protein for the inner coat
207 (29), is upregulated after the expression of SpolVA, SpoVID and SpoVM (**Figure 4A**). CotE, the
208 morphogenetic protein for the outer coat (30), is expressed following SafA (**Figure 4A**). CotX, CotY
209 and CotZ are morphogenetic proteins for the outmost crust layer (31, 32), and are the last expressed
210 morphogenetic proteins (**Figure 4A**). CotO and CotH also play roles in the proper formation of the
211 outer coat and cooperate with CotE (24, 33, 34), but the expression of CotO and CotH is earlier than
212 CotE (**Figure 4B**). In terms of coat protein assembly, six classes of coat proteins have been identified
213 according to their localization dynamics (22, 35). Quantified proteins of the six classes are visualized
214 in **Figure 4C**. Four distinct time ranges are recognized for the upregulation of coat proteins, 0–45
215 min, Class I; 45–105 min, Class II; 105–180 min, Class III, IV and V; after 180 min, Class VI. Based on
216 the determined time ranges, coat proteins with unassigned classes can be classified into different
217 clusters of candidates for the six classes (**Figure 4D**). A remarkable feature of the coat protein
218 expression is the decrease in the amounts of some coat proteins in the later stage of sporulation, for
219 example proteins in **Figure 4A and 4C**. In the quantification of SASPs, 10 of 16 SASPs show clear

Dynamic protein expression in *B. subtilis* sporulation

221 expression profiles (**Figure 4E**). SspG upregulates after 210 min and others upregulate at 60–105
222 min.

223 Besides sporulation regulatory proteins, spore coat proteins and SASPs, there are a number of other
224 sporulation proteins with known and unknown functions. These proteins are involved in metabolism,
225 resistance to some stresses and some other sporulation processes. These sporulation proteins were
226 manually classified into seven clusters with different expression patterns (**Figure 5**). Some of the
227 proteins are only upregulated in intermediate stages of sporulation and some gradually decrease
228 during sporulation.

229 *Protein co-expression analysis*

230 Proteins showing similar expression profiles are considered to be controlled by the same regulatory
231 system or play roles in related functions. To investigate overall protein expression and identify
232 possible unreported sporulation proteins, a protein co-expression analysis was performed using
233 WGCNA (21). Proteins showing similar expression profiles are clustered into the same co-expressed
234 modules. Four co-expressed modules were detected in the protein co-expression network analysis,
235 where modules are annotated by different colors (**Figure 6A**). The number of proteins per module
236 were 267 (blue), 93 (brown), 27 (green) and 42 (yellow). **Supplementary Table S2** lists the protein
237 members of modules. **Figure 6B** shows the co-expression network of the most abundant co-
238 expressed proteins. Proteins in modules brown and green are upregulated during sporulation. They
239 are involved in sporulation and are members of the SigG, SigK, SigE, SigF, GerE and GerR regulons
240 (**Figure S1**). Proteins in module blue are downregulated during sporulation, and contain proteins
241 involved in metabolism and translation and are mainly regulated by the stringent response (**Figure**
242 **S1**). Module yellow proteins are involved in metabolism and some of these proteins are regulated by
243 the stringent response and SigB (**Figure S1**). Proteins not included in regulons but co-expressed
244 within sporulation modules brown and green are identified and listed in **Table 1**. Perhaps these
245 proteins also have important, but as yet unknown roles in sporulation.

246 **Discussion**

Dynamic protein expression in *B. subtilis* sporulation

247 Spores are assembled in process named sporulation, and spores' properties and protein composition
248 are highly correlated with sporulation conditions (36–38). To better understand the influence of the
249 sporulation process on spore properties, a time series proteomic analysis is essential. However,
250 sporulation initiation is highly heterogenous. The use of a *kinA*-inducible strain of *Bacillus subtilis*
251 makes the sporulating cell population more homogenous and initiation of sporulation controllable
252 (9). Samples were harvested immediately following the culture dilution which was 90 min after *kinA*
253 was induced. Therefore, the proteome changes during the time of *kinA* induction to SpoOA
254 phosphorylation and thus the threshold of sporulation needs additional study. Transcription of *kinA*
255 is induced by a constant concentration of IPTG. However, the amount of KinA gradually decreased
256 during sporulation. This could be due to the downregulation of proteins involved in translation in
257 module blue.

258 From microscopy results, we can clearly see that sporulation initiates quickly at timepoint 0, as free
259 spores appear at 300 min and reach 70% at 480 min. During this sporulation process, the overall
260 proteome changeover has been investigated in depth for the first time. We validated expression of
261 sporulation regulatory proteins, coat proteins and SASPs, as well as other proteins involved in
262 sporulation. In addition, through protein co-expression analysis, a number of proteins co-expressed
263 within modules of sporulation were identified and could be considered as new proteins potentially
264 involved in sporulation. Besides the sporulation modules (brown and green), module blue comprised
265 quite a number of proteins involved in metabolism, translation, synthesis of antibiotics and amino
266 acids. It shows an opposite expression pattern (gradually decreasing in protein amounts) compared
267 to proteins in modules brown and green. However, they are connected through module yellow in
268 the co-expression network analysis, indicating that regulatory systems of module blue and
269 sporulation modules brown and green may have some sort of cooperation to modulate other
270 activities in sporulation, such as metabolism and protein translation. Remarkably, amounts of some
271 coat proteins, for example morphogenetic coat proteins, decreased late in sporulation. At present it
272 is unclear why these coat proteins needed to decrease, and no previous studies have reported this

Dynamic protein expression in *B. subtilis* sporulation

273 degradation of coat proteins in sporulation. A logical assumption is that such coat proteins could
274 have played roles in guiding or helping assembly of other coat proteins, after which they became
275 “surplus” and were degraded.

276 An outstanding question about sporulation is how spore coat components are dynamically
277 expressed. In a transcriptomics profiling study of *Bacillus anthracis*, it was reported that the genes
278 whose products make up the spore proteome were overrepresented in an earlier phase of the life
279 cycle, indicating that the majority of spore proteins is packaged from pre-existing stocks rather than
280 synthesized de novo (39). In our data, all the coat proteins and SASPs are upregulated after
281 sporulation initiation. Only a small number of sporulation proteins show a decrease during
282 sporulation, indicating they may be present in higher amounts prior to the beginning of sporulation.
283 However, a minimal set of metabolic proteins are enclosed in mature spores (9, 10). Most of these
284 metabolic proteins are members of module blue having a decreased expression profile during
285 sporulation. In coat assembly, some of the coat proteins may also be expressed prior to their
286 assembly, for example, CotO and CotH are associated with CotE in assembly, but are expressed
287 earlier than CotE.

288 All in all, this study sheds light on the dynamics of protein expression during sporulation at high
289 temporal resolution and shows it to be a highly dynamic process. A protein co-expression analysis
290 reveals the global organization of protein expression during sporulation.

291 **Acknowledgements**

292 Thanks for the microscopic support from Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)
293 of University of Amsterdam. A special word of thanks to prof. M. Fujita for providing us with the *B.*
294 *subtilis* strain.

295 **Data Availability**

296 **Supplemental Data**

297 This article contains supplemental data. All raw and processed data have been deposited through
298 the Massive Repository for Mass Spectrometry data and filed at Proteome under PXD025157

Dynamic protein expression in *B. subtilis* sporulation

299

300 Reviewer credentials for the deposited mass spectrometry data:

301 Login: MSV000087154_reviewer

302 PW: Zhiwei

303 <http://massive.ucsd.edu/ProteoSAFe/QueryPXD?id=PXD025157>

304

305 **Author Contributions**

306 S.B. and G.K. contributed equally to this work. S.B. and G.K. participated in the design and
307 coordination of the study and in supervising the drafting of the manuscript. Z.T. performed the
308 experiments and wrote the manuscript. S.B., G.K. and P.S. participated in drafting the manuscript.
309 H.L.D., W.R. and B.N.S. provided expert technical assistance. All authors have given approval to the
310 final version of the manuscript.

311 **Funding and Additional Information**

312 Z.T. was funded by the China Scholarship Council (CSC) for his PhD project.

313 **Conflict of Interest**

314 The authors declare no conflict of interests.

315 **Abbreviations**

316 CaDPA, calcium dipicolinic acid; MOPS, 3-[N-Morpholino]propanesulfonic acid.

317 **References**

- 318 1. Tan, I. S., and Ramamurthi, K. S. (2014) Spore formation in *Bacillus subtilis*. *Environmental
319 microbiology reports* 6, 212–225
- 320 2. McKenney, P. T., Driks, A., and Eichenberger, P. (2013) The *Bacillus subtilis* endospore:
321 assembly and functions of the multilayered coat. *Nature Reviews Microbiology* 11, 33–44
- 322 3. Errington, J. (2003) Regulation of endospore formation in *Bacillus subtilis*. *Nature Reviews
323 Microbiology* 1, 117–126
- 324 4. Higgins, D., and Dworkin, J. (2012) Recent progress in *Bacillus subtilis* sporulation. *FEMS
325 Microbiol. Rev.* 36, 131–148

Dynamic protein expression in *B. subtilis* sporulation

326 5. Henriques, A. O., and Moran, C. P. (2007) Structure, assembly, and function of the spore
327 surface layers. *Annu. Rev. Microbiol.* 61, 555–588

328 6. de Hoon, M. J., Eichenberger, P., and Vitkup, D. (2010) Hierarchical evolution of the bacterial
329 sporulation network. *Curr Biol* 20, R735–R745

330 7. Camp, A. H., and Losick, R. (2009) A feeding tube model for activation of a cell-specific
331 transcription factor during sporulation in *Bacillus subtilis*. *Genes & Development* 23, 1014–1024

332 8. Doan, T., Morlot, C., Meisner, J., Serrano, M., Henriques, A. O., Moran Jr, C. P., and Rudner, D. Z.
333 (2009) Novel secretion apparatus maintains spore integrity and developmental gene
334 expression in *Bacillus subtilis*. *PLoS Genet* 5, e1000566

335 9. Tu, Z., R. Abhyankar, W., N. Swarge, B., van der Wel, N., Kramer, G., Brul, S., and J. de Koning, L.
336 (2020) Artificial sporulation induction (ASI) by *kinA* overexpression affects the proteomes and
337 properties of *Bacillus subtilis* spores. *International Journal of Molecular Sciences* 21, 4315

338 10. Swarge, B., Abhyankar, W., Jonker, M., Hoefsloot, H., Kramer, G., Setlow, P., Brul, S., and de
339 Koning, L. J. (2020) Integrative analysis of proteome and transcriptome dynamics during
340 *Bacillus subtilis* spore revival. *mSphere* 5,

341 11. Omony, J., de Jong, A., Krawczyk, A. O., Eijlander, R. T., and Kuipers, O. P. (2018) Dynamic
342 sporulation gene co-expression networks for *Bacillus subtilis* 168 and the food-borne isolate
343 *Bacillus amyloliquefaciens*: a transcriptomic model. *Microbial genomics* 4,

344 12. Arrieta-Ortiz, M. L., Hafemeister, C., Bate, A. R., Chu, T., Greenfield, A., Shuster, B., Barry, S. N.,
345 Gallitto, M., Liu, B., and Kacmarczyk, T. (2015) An experimentally supported model of the
346 *Bacillus subtilis* global transcriptional regulatory network. *Molecular systems biology* 11, 839

347 13. Eswaramoorthy, P., Duan, D., Dinh, J., Dravis, A., Devi, S. N., and Fujita, M. (2010) The threshold
348 level of the sensor histidine kinase KinA governs entry into sporulation in *Bacillus subtilis*.
349 *Journal of bacteriology* 192, 3870–3882

350 14. Swarge, B. N., Roseboom, W., Zheng, L., Abhyankar, W. R., Brul, S., de Koster, C. G., and de
351 Koning, L. J. (2018) “One-pot” sample processing method for proteome-wide analysis of

Dynamic protein expression in *B. subtilis* sporulation

352 microbial cells and spores. *Proteomics–Clinical Applications* 12, 1700169

353 15. Pandey, R., Ter Beek, A., Vischer, N. O., Smelt, J. P., Brul, S., and Manders, E. M. (2013) Live cell

354 imaging of germination and outgrowth of individual *Bacillus subtilis* spores; the effect of heat

355 stress quantitatively analyzed with SporeTracker. *PLoS one* 8,

356 16. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,

357 Rueden, C., Saalfeld, S., and Schmid, B. (2012) Fiji: an open-source platform for biological-

358 image analysis. *Nature methods* 9, 676–682

359 17. Abhyankar, W., Stelder, S., de Koning, L., de Koster, C., and Brul, S. (2017) ‘Omics’ for microbial

360 food stability: Proteomics for the development of predictive models for bacterial spore stress

361 survival and outgrowth. *International journal of food microbiology* 240, 11–18

362 18. Ghosh, S., Korza, G., Maciejewski, M., and Setlow, P. (2015) Analysis of metabolism in dormant

363 spores of *Bacillus species* by ³¹P nuclear magnetic resonance analysis of low-molecular-weight

364 compounds. *Journal of bacteriology* 197, 992–1001

365 19. Scopes, R. K. (1974) Measurement of protein by spectrophotometry at 205 nm. *Analytical*

366 *biochemistry* 59, 277–282

367 20. Honaker, J., King, G., and Blackwell, M. (2011) **Amelia** II: A Program for Missing Data. *J. Stat.*

368 *Soft.* 45,

369 21. Langfelder, P., and Horvath, S. (2008) WGCNA: an R package for weighted correlation network

370 analysis. *BMC bioinformatics* 9, 559

371 22. Zhu, B., and Stölke, J. (2018) SubtiWiki in 2018: from genes and proteins to functional network

372 annotation of the model organism *Bacillus subtilis*. *Nucleic acids research* 46, D743–D748

373 23. Meisner, J., Wang, X., Serrano, M., Henriques, A. O., and Moran, C. P. (2008) A channel

374 connecting the mother cell and forespore during bacterial endospore formation. *Proceedings*

375 *of the National Academy of Sciences* 105, 15100–15105

376 24. Kim, H., Hahn, M., Grabowski, P., McPherson, D. C., Otte, M. M., Wang, R., Ferguson, C. C.,

377 Eichenberger, P., and Driks, A. (2006) The *Bacillus subtilis* spore coat protein interaction

Dynamic protein expression in *B. subtilis* sporulation

378 network. *Molecular microbiology* 59, 487–502

379 25. Driks, A., Roels, S., Beall, B., Moran, C. P., and Losick, R. (1994) Subcellular localization of

380 proteins involved in the assembly of the spore coat of *Bacillus subtilis*. *Genes & development* 8,

381 234–244

382 26. Ramamurthi, K. S., Clapham, K. R., and Losick, R. (2006) Peptide anchoring spore coat assembly

383 to the outer forespore membrane in *Bacillus subtilis*. *Molecular microbiology* 62, 1547–1557

384 27. Levin, P. A., Fan, N., Ricca, E., Driks, A., Losick, R., and Cutting, S. (1993) An unusually small

385 gene required for sporulation by *Bacillus subtilis*. *Molecular microbiology* 9, 761–771

386 28. Roels, S., Driks, A., and Losick, R. (1992) Characterization of *spoIVa*, a sporulation gene involved

387 in coat morphogenesis in *Bacillus subtilis*. *Journal of bacteriology* 174, 575–585

388 29. Takamatsu, H., Kodama, T., Nakayama, T., and Watabe, K. (1999) Characterization of the *yrbA*

389 gene of *Bacillus subtilis*, involved in resistance and germination of spores. *Journal of*

390 *Bacteriology* 181, 4986–4994

391 30. Zheng, L. B., Donovan, W. P., Fitz-James, P. C., and Losick, R. (1988) Gene encoding a

392 morphogenic protein required in the assembly of the outer coat of the *Bacillus subtilis*

393 endospore. *Genes & development* 2, 1047–1054

394 31. McKenney, P. T., Driks, A., Eskandarian, H. A., Grabowski, P., Guberman, J., Wang, K. H., Gitai,

395 Z., and Eichenberger, P. (2010) A distance-weighted interaction map reveals a previously

396 uncharacterized layer of the *Bacillus subtilis* spore coat. *Current Biology* 20, 934–938

397 32. Imamura, D., Kuwana, R., Takamatsu, H., and Watabe, K. (2011) Proteins involved in formation

398 of the outermost layer of *Bacillus subtilis* spores. *Journal of bacteriology* 193, 4075–4080

399 33. McPherson, D. C., Kim, H., Hahn, M., Wang, R., Grabowski, P., Eichenberger, P., and Driks, A.

400 (2005) Characterization of the *Bacillus subtilis* spore morphogenetic coat protein CotO. *Journal*

401 *of bacteriology* 187, 8278–8290

402 34. Naclerio, G., Baccigalupi, L., Zilhao, R., De Felice, M., and Ricca, E. (1996) *Bacillus subtilis* spore

403 coat assembly requires *cotH* gene expression. *Journal of Bacteriology* 178, 4375–4380

Dynamic protein expression in *B. subtilis* sporulation

404 35. McKenney, P. T., and Eichenberger, P. (2012) Dynamics of spore coat morphogenesis in *Bacillus*
405 *subtilis*. *Molecular microbiology* 83, 245–260

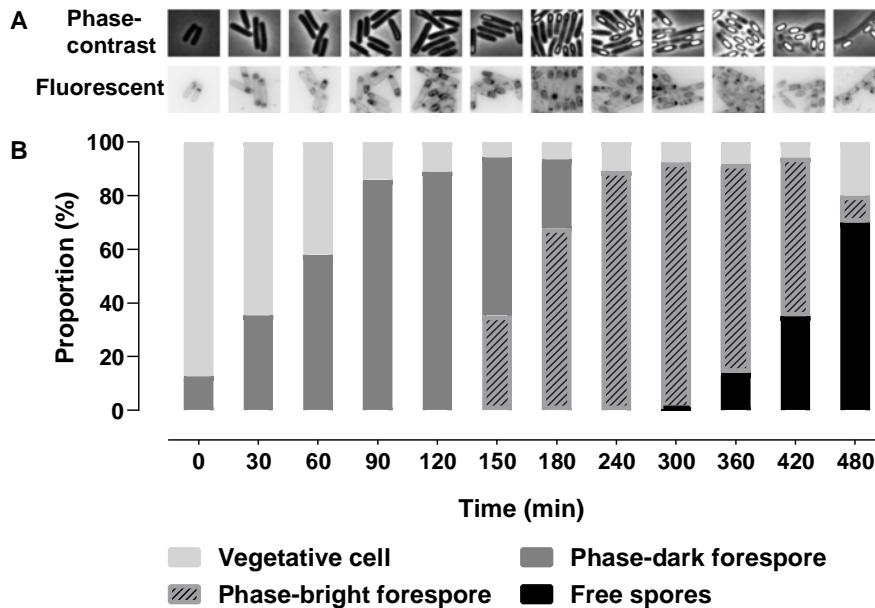
406 36. Melly, E., Genest, P. C., Gilmore, M. E., Little, S., Popham, D. L., Driks, A., and Setlow, P. (2002)
407 Analysis of the properties of spores of *Bacillus subtilis* prepared at different temperatures.
408 *Journal of applied microbiology* 92, 1105–1115

409 37. Iстicato, R., Lanzilli, M., Petrillo, C., Donadio, G., Baccigalupi, L., and Ricca, E. (2020) *Bacillus*
410 *subtilis* builds structurally and functionally different spores in response to the temperature of
411 growth. *Environmental Microbiology* 22, 170–182

412 38. Abhyankar, W. R., Kamphorst, K., Swarge, B. N., van Veen, H., van der Wel, N. N., Brul, S., de
413 Koster, C. G., and de Koning, L. J. (2016) The influence of sporulation conditions on the spore
414 coat protein composition of *Bacillus subtilis* spores. *Frontiers in microbiology* 7, 1636

415 39. Bergman, N. H., Anderson, E. C., Swenson, E. E., Niemeyer, M. M., Miyoshi, A. D., and Hanna, P.
416 C. (2006) Transcriptional profiling of the *Bacillus anthracis* life cycle in vitro and an implied
417 model for regulation of spore formation. *Journal of bacteriology* 188, 6092–6100

418 40. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski,
419 B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of
420 biomolecular interaction networks. *Genome research* 13, 2498–2504

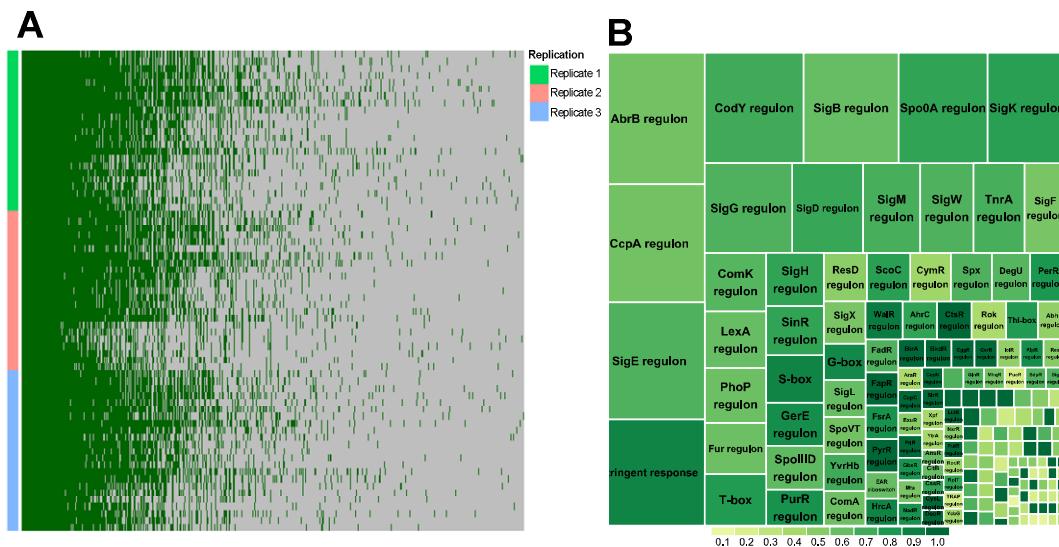

421 **Table 1. Co-expressed proteins in modules brown and green without assigned regulons**

Module	UniProt ID	Gene	Function	Product
Brown	P50727	<i>fer</i>	Electron transfer	Ferredoxin
Brown	O31796	<i>hfq</i>	Unknown	RNA chaperone
Brown	O07609	<i>yhfK</i>	Unknown	Unknown
Brown	P45872	<i>prfA</i>	Translation	Peptide chain release factor 1
Brown	P94521	<i>ysdC</i>	Unknown	Unknown

Dynamic protein expression in *B. subtilis* sporulation

Brown	P54550	<i>yqjM</i>	Reduction of double bonds of nonsaturated aldehydes	NADPH-dependent flavin oxidoreductase
Brown	O34389	<i>malS</i>	Malate utilization	Malate dehydrogenase (decarboxylating)
Brown	P28619	<i>rph</i>	3-5 exoribonuclease	RNase PH (EC 2.7.7.56)
Brown	O34503	<i>ytzD</i>	Unknown	Unknown
Brown	P94425	<i>ycnE</i>	Unknown	Unknown
Brown	O31509	<i>yeel</i>	Unknown	Unknown
Brown	C0H447	<i>ypzJ</i>	Unknown	Unknown
Brown	O34600	<i>nrrA</i>	Degradation of RNA oligonucleotides	Oligoribonuclease (nanoRNase), 3,5-bisphosphate nucleotidase
Brown	P46343	<i>phoH</i>	Unknown	Unknown
Brown	P70949	<i>yitW</i>	Assembly of iron-sulphur clusters	Iron-sulphur cluster assembly factor
Green	P49778	<i>efp</i>	Translation	Elongation factor P
Green	Q45495	<i>def</i>	Utilization of S-methyl-cysteine	N-formylcysteine deformylase
Green	P54457	<i>yqeL</i>	Translation	Ribosomal silencing factor
Green	P40737	<i>yxxD</i>	Inhibition of the cytotoxic activity of YxiD	Antitoxin
Green	O31976	<i>yoml</i>	Cell wall turnover	Cell wall hydrolase

Dynamic protein expression in *B. subtilis* sporulation

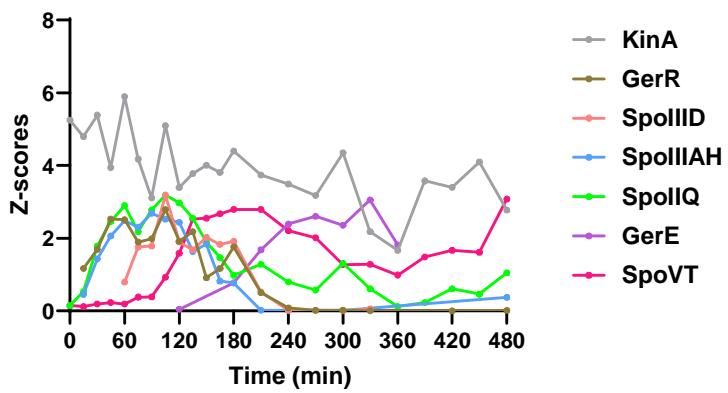


422

423 **Figure 1. Morphological images of the sporulation process (A) and the proportions of different cell types (B).**

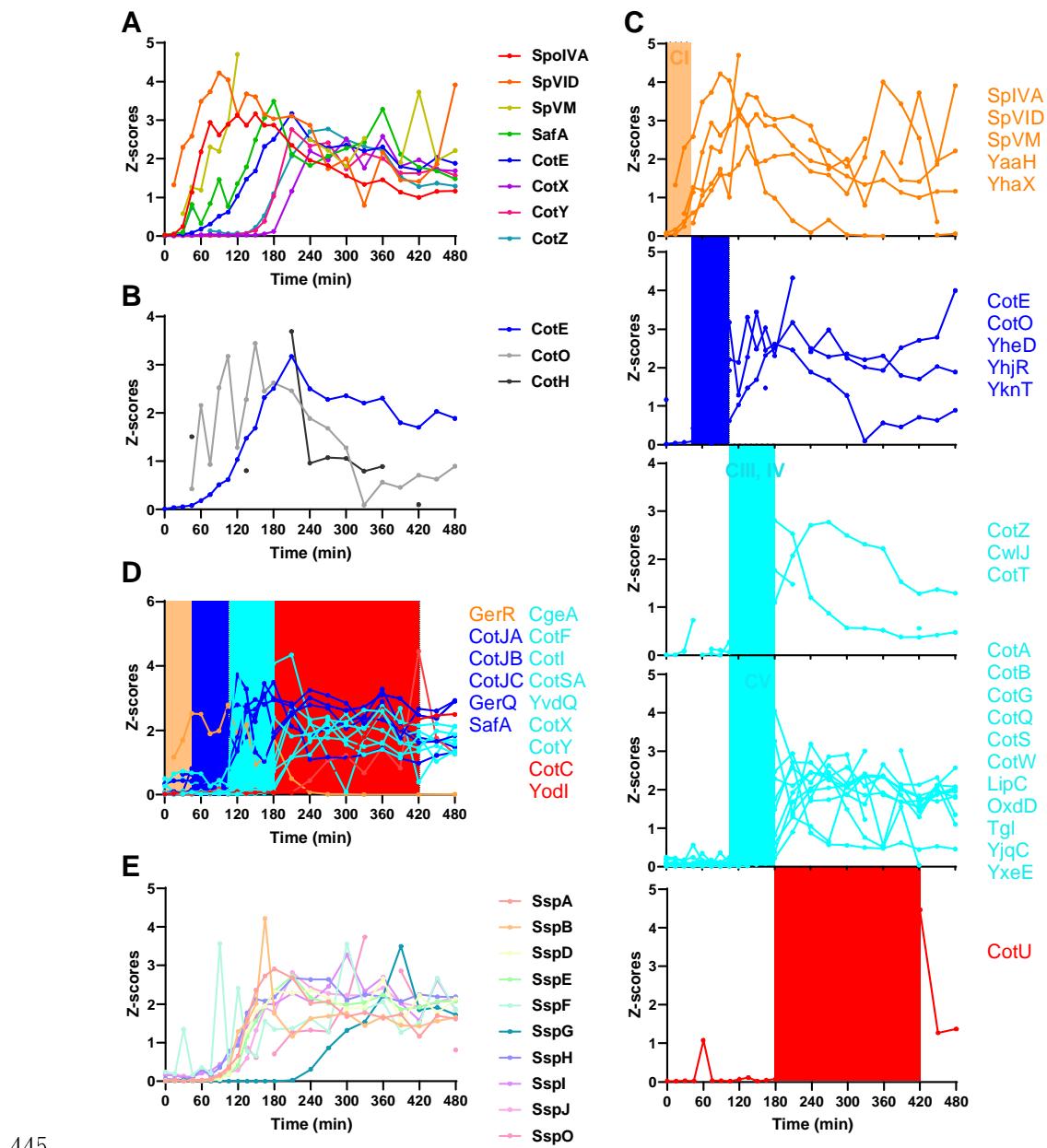
424 Time 0 is the moment after the cell culture is diluted. Phase-dark forespores include cells exhibiting polar
425 division, engulfment and engulfed forespores before becoming phase-bright. Fluorescent images were
426 visualized with the membrane dye Nile Red.

427



429

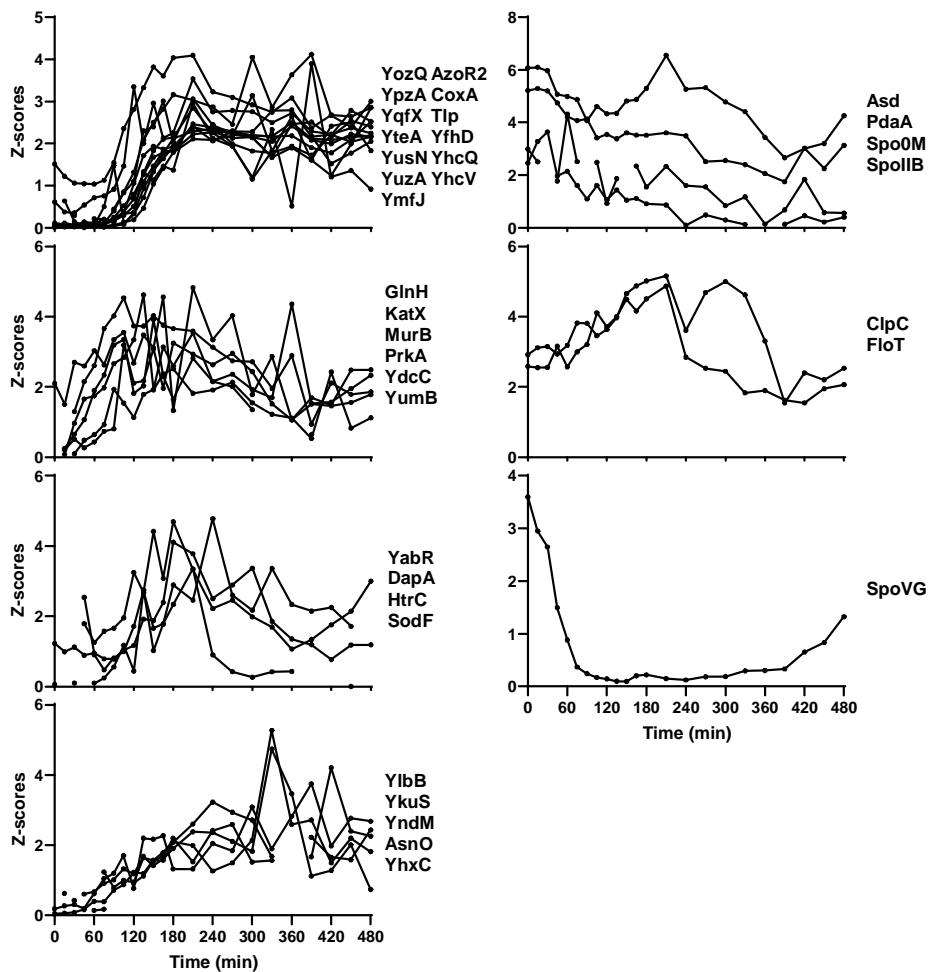
429 **Figure 2. Overview of the quantification of proteins during sporulation (A) and their involved transcriptional
430 regulons (B).** A. Visualization of data completeness of the quantified proteins. Columns indicate proteins, in
431 total 2370 proteins, and rows indicate samples from three replicates with 23 timepoints in each (from top to


Dynamic protein expression in *B. subtilis* sporulation

432 bottom in each replicate is timepoints from 0 to 480 min). Dark green and grey indicates observed and missing
433 values, respectively. **B.** Tree-map summary of regulons of the quantified proteins. Sizes of the squares
434 correspond to the number of quantified proteins controlled by the regulon; the color of the squares indicates
435 the ratio of the fractions of the quantified proteins belonging to the regulon to the total protein number in the
436 regulon according to the color legend. Regulon names are not shown throughout for graphical reasons. Note
437 that proteins could occupy more than one regulon.

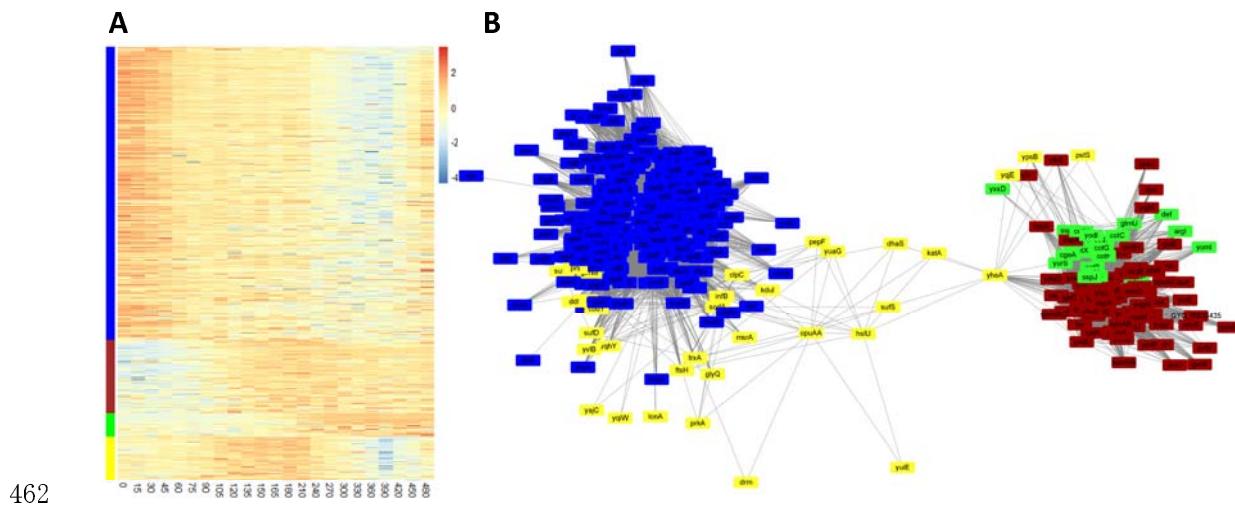
438
439 **Figure 3. Changes in levels of sporulation regulatory proteins.** KinA is artificially induced to express
440 and finally phosphorylates SpoOA through SpoOF and SpoOB. GerR and SpolIID are two SigE
441 controlled mother cell regulators. SpolIQ and SpolIIAH are members of a feeding tube between
442 mother cell and forespore. GerE is a SigK controlled mother cell regulator. SpoVT is a SigG controlled
443 forespore regulator. Z-scores on the Y-axis represent the quantified value of every protein
444 normalized to have a standard deviation of 1.

Dynamic protein expression in *B. subtilis* sporulation



445

446 **Figure 4. Expression of spore coat proteins and small acid soluble proteins.** For point-to-point connection, a
447 gap is left at each missing value. **A.** Expression of morphogenetic coat proteins. **B.** Expression of CotE, CotO
448 and CotH. CotO is expressed earlier than CotE. CotH has a higher-level of protein than CotE at 45 min. **C.**
449 Classification of coat proteins according to their localization dynamics. Adapted from *SubtiWiki*
450 (<http://subtiwiki.uni-goettingen.de/>)(22). Class I (Cl), early localizing spore coat proteins cover the outer
451 forespore membrane; Class II (CII), early localizing spore coat proteins begin to encase the spore only after
452 engulfment is complete; Class III, IV (CIII, IV), early and late localizing spore coat proteins start to encase the


Dynamic protein expression in *B. subtilis* sporulation

453 spore only after completion of engulfment and the appearance of phase dark spores; Class V (CV), late
454 localizing spore coat proteins localize exclusively to phase dark spores; Class VI (CVI), late localizing spore coat
455 proteins localize exclusively to phase bright spores. Proteins upregulated in a similar time period are denoted
456 with the same color. **D. Classification of the unassigned coat proteins. E. Expression of small acid-soluble spore
457 proteins (SASPs). Z-scores on the Y-axis represent the quantified value of every protein normalized to have a
458 standard deviation of 1.**

459
460 **Figure 5. Classification of other sporulation proteins.** Z-scores on the Y-axis represent the quantified value of
461 every protein normalized to have a standard deviation of 1.

Dynamic protein expression in *B. subtilis* sporulation

463 **Figure 6. Heatmap visualization of the protein expression profiles (A) and network of the most abundant co-**
464 **expressed proteins (B).** The color in (A) represents Z-transformed expression values according to the color
465 legend. Columns and rows indicate timepoints (specified on the bottom) and proteins, respectively. The
466 assigned modules are colored on the left side. **B**, generated by Cytoscape (version 3.8.0)(40). Nodes represent
467 expression profiles of corresponding proteins and edges indicate the proteins, which to some extent, are co-
468 expressed. The edges shown have a threshold of greater than 0.2.