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Abstract

Conventional environmental risk assessment of chemicals is based on a calculated risk
guotient, representing the ratio of exposure to effects of the chemical, in combination with
assessment factors to account for uncertainty. Probabilistic risk assessment approaches can
offer more transparency, by using probability distributions for exposure and/or effects to
account for variability and uncertainty. In this study, a probabilistic approach using Bayesian
network (BN) modelling is explored as an alternative to traditional risk calculation. BNs can
serve as meta-models that link information from several sources and offer a transparent way
of incorporating the required characterization of uncertainty for environmental risk
assessment. To this end, a BN has been developed and parameterised for the pesticides
azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic
(traditional) risk calculation, via intermediate versions, to fully probabilistic risk
characterisation using azoxystrobin as an example. We also demonstrate seasonal risk

calculation for the three pesticides.

Keywords: Probabilistic risk assessment, uncertainty, pesticide, Bayesian network, risk

guotient, species sensitivity distribution

1. Introduction

Pesticides play an important role in food production, by maintaining or enhancing crop yields
and quality in arable farming. However, they can also lead to harmful effects in the
environment and pose risks to human health. There is now a widespread concern about such
regular emission of a substances designed to control specific target organisms and their
effects on ecosystems (Van den Brink et al. (2018), Bradley et al. (2017), Mohaupt et al.
(2020), Szdcs et al. (2017), Boye et al. (2019)). In spite of strict regulations of pesticide use
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(e.g. Directive 2009/128/EC; Regulation (EC) No 1107/2009), there are still knowledge gaps
for potential environmental impact of these pesticides and their mixtures (Bradley et al.
(2017), Szdcs et al. (2017), Mohaupt et al. (2020)). Current risk assessment methods use
conservative assumptions to avoid underestimating the risk (Verdonck et al., 2003) and
decision-makers rely on large safety margins for protective decision making (Fairbrother et
al., 2015).

In general, risk assessment of pesticides is carried out to protect human health as well as the
health and biodiversity of ecosystems (Schéfer et al., 2019). The purpose is to assess the
probability that adverse effects of regulatory concern occur in ecosystems due to the
exposure to one or several chemicals. This can be done as a prospective assessment for
registration of substances before products enter the market, or as a retrospective
assessment for potentially harmful substances that are already in use (Forbes & Calow,
2002). The environmental risk assessment process usually incorporates exposure and effect
assessments as well as a risk characterization (Figure 1). Exposure assessment covers the
estimation of predicted or measured environmental concentration (PEC) of the compound in
the environment (van Leeuwen & Vermeire, 2007). PEC is usually calculated as the
maximum environmental exposure concentration (Finizio & Villa, 2002). Effect assessment is
typically based on the response of species that are exposed to a chemical in toxicity tests,
such as data for toxicity endpoints (e.g. mortality, reproduction and growth) after short term
(acute) or long term (chronic) exposure (van Leeuwen & Vermeire, 2007). Usually, a so-
called predicted no-effect concentration (PNEC) is obtained from the most sensitive no-
observed-effect concentration (NOEC). Alternatively, the PNEC can be calculated from the
hazardous concentration for 5% of the species (HC5) based on the species sensitivity
distribution (SSD) (Commission, 2003). To account for uncertainty, the lowest NOEC
(alternatively the HC5) is divided by an assessment factor (AF) to derive the PNEC, so it can
be considered a safe concentration for non-target organisms (Schéfer et al., 2019). Risk
characterization includes a risk estimation by comparing effect (hazard identification and
characterization) and exposure assessment, some of the metrics used are margin of
exposure, hazard or risk quotient (Committee et al., 2019). To ensure low risk it is required
that the PEC is lower than the PNEC (Commission (2003), Schafer et al. (2019) , so when
using a risk quotient (RQ), it is derived by the ratio PEC/PNEC. If risk quotient exceeds 1 a

risk of harmful effects to the environment is indicated.
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Figure 1 General ecological risk assessment process (RQ = Risk quotient, PEC = predicted or measured
environmental concentration, PNEC = predicted no effect concentration, HC5 = hazardous concentration for 5%
of the species derived from SSD (species sensitivity distribution), AF = assessment factor)

Risk is usually considered an estimation of the likelihood that an adverse effect occurs on a
biological target when being exposed to a chemical (Finizio and Villa (2002), S Jannicke Moe
et al. (2021), Fairbrother et al. (2015)). Nevertheless, in the commonly used framework for
environmental risk assessment, the output of risk characterisation tends to be single value
(the risk quotient) from which the conclusion is a “yes/no” statement (Fairbrother et al.,
2015). It has been argued that such single-value estimates cannot stand alone as a
scientifically defensible characterization of ecological risk (Campbell et al., 2000). The
analysis and quantification of uncertainty is a vital part of risk assessment of environmental
impacts of pesticides, which is not reflected in the single-value risk estimate (USEPA (2014),
Fairbrother et al. (2015)). Based on this, a concerted action was established to develop a
European framework for probabilistic risk assessment of the environmental impacts of
pesticides (EUFRAM). The consortium named several shortcomings of conventional ERA
(EUFRAM 2006), for example: there is no indication of the level of certainty associated with
the risk assessment; no quantification of the risk is carried out; the uncertainty calculation is
not transparent but hidden in assessment factors; and it is difficult to follow all steps of the
risk assessment. Various recommendations were given for development towards
probabilistic risk assessment, mainly based on the use of cumulative probability distributions
(EUFRAM, 2006). Nevertheless, non-probabilistic methods are still more commonly used
(Fairbrother et al., 2015). One reason can be a lack of training in probabilistic methods and

tools in ecotoxicology.
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The objective of this study was to explore Bayesian network modelling as a tool to combine
probability distributions of pesticide exposure and effects, to facilitate the calculation of the
risk quotient as a probability distribution instead of a single number. We aimed to align the
developed model to the European Union (EU) regulatory requirements and current risk
assessment procedures, to enable comparison of the Bayesian network approach with the
existing approaches. To this end, we present the development from a deterministic towards a
fully probabilistic Bayesian network approach to risk characterisation. The model application

is demonstrated for three examples of pesticides and for different seasons.

2. Approaches to probabilistic risk assessment

2.1 Proposed methods for probabilistic risk assessment

Probabilistic risk assessment has been defined as using “probabilities or probability
distributions to quantify one or more sources of variability and/or uncertainty in exposure
and/or effects and the resulting risk” (EUFRAM, 2006). This allows the inclusion of estimates
of uncertainty and stochastic properties (Solomon et al., 2000). There are now several
probabilistic methods in use for risk characterisation. The species sensitivity distribution
(SSD) (Posthuma et al., 2001) is a probabilistic model for the variation in sensitivity of
biological species to a single or a set of toxicants, which is used in several frameworks
(Belanger & Carr, 2020). Guidance on modelling and data requirements can be found in the
“Technical Guidance for Deriving Environmental Quality Standards” (SCHEER, 2017). Many
of the probabilistic methods currently at hand also incorporate a distribution for the exposure
part. An overview probabilistic methods currently at hand is given Error! Reference source
not found.. Methods such as quantitative overlap and joint probability curves are relatively
easy to construct (Verdonck et al. (2003), Campbell et al. (2000)), and use more available
data for exposure and effect compared to traditional approaches (Campbell et al., 2000).
They also allow for an estimation of likelihood of potential ecosystem impact and their
magnitude (Solomon et al., 1996). Recently, an “Ecotoxicity Risk Calculator” was presented
by Dreier et al. (2020) that uses joint probability curves. It is able to express more information
than a single value risk quotient, as it depicts the relationship between cumulative probability
and magnitude of effect. The use of both effect and exposure distributions enables a more
powerful approach for risk assessment and communication (Dreier et al., 2020). However,
most of these methods do not provide exact quantifications of magnitudes and likelihoods of
potential effects, they do not make quantitative predictions and only estimate relative risks
(Solomon et al. (2000), Hall et al. (2000)), which can be hard for decision-makers to

understand and interpret (Verdonck et al., 2003).
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2.2 From deterministic to probabilistic risk quotient

Another method more consistent with the probabilistic definition of risk is the calculation of
probabilistic risk quotients. It can be useful for ranking of different scenarios as well as
prioritizing among alternative risk scenarios (Campbell et al., 2000). A fully probabilistic risk
guotient calculation requires the quantification of a probability distribution for both exposure
and effect. In cases where exposure or effect data are too limited, an alternative
“intermediate” probabilistic approach could be applied by using a distribution for either the
exposure or effect component (Figure 1). This will allow for some variability to be taken into
account when deriving a distribution for the risk quotient. For example, an intermediate
approach could be applied when an effect concentration distribution can be quantified by a
species sensitivity distribution, although few exposure measurements are available. Figure 2
displays the underlying concepts of the traditional deterministic approach and the
intermediate and fully probabilistic approaches. The traditional deterministic approach
(Figure 2a) used single-value PEC and PNEC single value risk quotient. The second option
(Figure 2b) used an exposure distribution together with a single value PNEC, derived the
same way as in the traditional approach. Though, unlike the traditional approach, here a risk
guotient distribution is derived. The third option (Figure 2c) uses the probability distribution of
effects (corresponding to an SSD). Instead of using the SSD to extract a single-value HC5 as
a basis for a single-value PNEC in combination with an assessment factor, in this case, an
uncertainty factor (UF) is applied to the calculated exposure/effect ratio distribution. The
uncertainty factor plays a similar role as an assessment factor, that is to adjust the predicted
risk to account for uncertainties e.g. associated with extrapolation from laboratory toxicity
tests to environmental effects. However, we chose to use the slightly different term
"uncertainty factor" to avoid misusing the more well-established term "assessment factor".
For the fourth option (Figure 2d), probability distributions are calculated for both exposure
and effect distributions. Again, no PNEC is derived, so after calculating the exposure/effect

ratio distribution, an uncertainty factor is applied to adjust the risk quotient distribution.
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Figure 2 Systematic overview of the traditional approach to derive a risk quotient, compared to two intermediate
probabilistic options and a fully probabilistic option that derive a risk quotient distribution.
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2.3 Probabilistic risk assessment using Bayesian networks

The early efforts of probabilistic risk assessment for pesticides, which were usually visualised
by cumulative distribution curves, were sometimes difficult to interpret for both for advanced
users and the general public (EUFRAM 2006). As an alternative, Bayesian networks may
provide a way to overcome limitations associated with visualization of risk estimations while
accounting for uncertainties when using probabilistic approaches. They have been
recognized as a tool to analyse complex environmental problems and support decision
making while considering uncertainty (Sperotto et al., 2017), and have lately been
increasingly used for environmental risk assessments (Moe et al. 2021). A Bayesian network
can characterize a system by showing its interactions between variables in a network (Chen
& Pollino, 2012) through a directed acyclic graph (Kanes et al., 2017). They are probabilistic
graphical models implementing Bayes’ rule for updating probability distributions based on
evidence. The nodes (variables) have discrete states (e.g. intervals), quantified by discrete
probability distributions. The causal links (arrows) represent conditional probability tables
(CPT) which can be based on equations. The degree of belief (probability) that a variable will
be in a particular state given the state of the parent variables, as specified by the conditional
probability table (Chen & Pollino, 2012), and by using Bayes’ rule for updating probability
distributions based on new evidence (Molina et al., 2010). In this project, Bayesian network
construction followed guidelines provided by Marcot et al. (2006) and Pollino and Henderson
(2010).

Bayesian networks have an integral feature suitable for risk estimation as they present
results in probability distribution form instead of point estimates. They can accommodate
different kind of data; its sources can include both direct measurements and output from
models. Also, if data are limited or non-existent, it is possible to include expert opinions
instead (Pitchforth & Mengersen, 2013). The models can be updated with new information on
pesticide exposure and effects whenever it becomes available. Model updates are carried
out by combining prior probabilities and new data so that an update of the network posterior
probabilities can take place as a response to the added observational information (Franco et
al., 2016). Bayesian networks are especially useful for pesticide risk assessment and
management tasks as these require characterisation of the uncertainties (Carriger and
Newman (2012)). Focusing on a terrestrial species (puma), Carriger & Barron (2020)
displayed a process of mapping cause-effect relations into a quantitative model. This is
supported by Catenacci & Giupponi (2013) who found that the Bayesian network approach
can examine different phenomena due to its flexibility for interdisciplinary integration, e.g.

climatic, physical, ecological, and socio-economic (Catenacci & Giupponi, 2013). They also
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have the ability to perform predictive (forward), diagnostic (backward), and mixed (forward

and backward) inference (Carriger & Barron, 2020).

3. Methods
3.1 Study area

The model was developed based on monitoring data from a catchment within the Norwegian
Agricultural Environmental Monitoring Program (JOVA) located in South-East Norway (Heia,
location: 59°21'29”N, 10°47°52”E). The monitoring catchment has a total area of 1,7 km? of
which 62% are cropland. As the catchment is located in a coastal climate, winters are mild
and the growing season starts relatively early as compared to Norwegian conditions in
general. The catchment has an annual rainfall of 829 mm and a mean annual temperature of
5.6 °C (in 2016). The crop production in the catchment is mostly grain (up to 75%). Potato
and vegetable production made up about 40% until 2007 and had decreased to about 25% in
2015. The catchment’s use of plant protection products and exposure data are recorded in
the JOVA program (Bechmann et al., 2017). Flow-proportional composite sampling of stream
water at the catchment outlet was performed in the JOVA program throughout the spraying
season and the analysis of concentrations of a wide range of current and previously used
pesticides were included. Based on these data, exceedance of environmental safety
thresholds are identified for different agricultural management practices for key agricultural
production systems in various catchments in Norway (Stenrgd, 2015). The JOVA monitoring
data for pesticides has been collected through 25 years (1995 onwards) and thus also
support the retrospective assessment of ecological risk and temporal trends (Bechmann et
al., 2017).

3.2 Pesticides - exposure and effect data

The chemicals selected for analysis in this study are most frequently occurring pesticides
and highest in concentration in the study catchment (Table 1). Azoxystrobin and metribuzin
are approved chemicals for use in the EU and Norway. Since 2013 the use and sale of
Imidacloprid is prohibited in the EU (Commission, 2013). Of the selected chemicals, only the
fungicide azoxystrobin has low solubility in water at 20 °C (6.7 mg L), whereas metribuzin

and imidacloprid have high solubility in water. All pesticides form metabolites primarily in soil.
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Table 1 Information about selected pesticides their Chemical Abstract Service (CAS), pesticide type, mode of
action and common application crop.

Substance CAS Type Mode of Action Approved use (crop)

Azoxystrobi , Wheat; Fruit (grapes,
Systemic ] )

n citrus, strawberries,

translaminar and
_ peaches); Sunflowers;
protectant action

13186 _ N Vegetables (onions,
o having additional _ _
0-33- Fungicide _ brassicas, curcubits);
curative and
8 _ Potatoes; Cotton; pecans;
eradicant

_ Canola; Soybeans;
properties.
S Peanuts; Turf;
Respiration inhibitor

Ornamentals
Metribuzin Selective, systemic
with contact and Soybeans; Potatoes;
21087 o residual activity. Barley, Wheat; Asparagus;
Herbicide o
-64-9 Inhibits Sugarcane; Tomatoes;
photosynthesis Peas; Lentils
(photosystem |I).
Imidacloprid Systemic with
o contact and _
13826 Insecticide, _ Lawns and turf; Domestic
_ stomach action. _ _
1-41- Veterinary ) pets; Rice, Cereals; Maize;
Acetylcholine
3 substance Potatoes; Sugar beet
receptor (nAChR)
agonist.

(PubChem (2021c); PubChem (2021b); PubChem (2021a); Lewis et al. (2016))

The data used in this study were obtained from the NIVA Risk Assessment database (NIVA

RAdb, www.niva.no/radb), which hosts exposure and effect data from a wide variety of

sources. Moreover, this database provides transparent and harmonized cumulative risk
predictions according to international recommendations for harmonised approaches for
human and ecological risk assessment (Tollefsen, 2021). Exposure data for the period
11.05.2011 to 06.12.2016 from the JOVA monitoring program were extracted from NIVA
RAdb database.

The total number of measured environmental concentrations was 55 for azoxystrobin, and 59
for metribuzin and imidacloprid. There is large variation in the measured concentration levels

during the season and years for each of the pesticides. The percentage measurements
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below the limit of quantification (LOQ) were 53%, 16, % and 11% for azoxystrobin,
metribuzin and imidacloprid respectively. In general, sampling of pesticides varied greatly
between the years and month with higher concentrations in summer and autumn and lower

concentrations in spring and winter.

For the selected pesticides, toxic effects data for several freshwater species representing
various taxonomic groups were extracted from the NIVA RAdb. The data set consisted of
NOECs (no observed effect concentration) for adverse effects such as growth, reproduction,
and population. For each chemical, multiple NOEC values from the same species were used
in our analysis (see Table 2). In traditional effect assessment, only the most sensitive value
per species is often chosen to derive an SSD, although in some cases an average is also

used.

Table 2 Overview of collected effect/ toxicity data for the selected pesticides, also showing their adverse effect
endpoint, n = number of means used to fit the distribution and species with multiple NOECs for the same
substance

Substance Endpoints n
Metribuzin Growth
Population 1
Azoxystrobin Growth 13
Population
Imidacloprid Growth
Population 11
Reproduction

3.3 Data Processing

Data preparation was carried out with R version 4.0.2 (Team, 2020) using packages
including tidyverse (version 1.3.0) (Wickham et al., 2019), dplyr (version 1.0.2) (Wickham et
al., 2020) and readxl (version 1.3.1) (Wickham & Bryan, 2019). To obtain probability
distributions for the BN model from the exposure and effects data, log-normal distribution
models were fitted to the data using the R package MASS (version 7.3-51.6) (Venables &
Ripley, 2002).

In the case of exposure data below Limit of Quantification (LOQ), new values in the range
from O to LOQ were simulated using mean and standard deviation from the fitted log-normal

distribution. To take into account the seasonal variation in pesticide exposure, a separate

10
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probability distribution was estimated for each season, defined as follows: Winter = Dec-Feb;

Spring = Mar-May; Summer = Jun- Aug; Autumn = Sep-Nov.

For the effect distribution, likewise, a log-normal distribution was fitted to the NOEC values
available for each pesticide. In cases where multiple NOEC values of the same species were
present, the mean NOEC was used. The fitted distribution corresponds to a species
sensitivity distribution (SDD), which is often fitted as a log-normal distribution (Belanger &
Carr, 2020). However, while SSDs are traditionally used to derive a single PNEC value
(Figure 1), we used the whole probability distribution of effects data in this study. For
comparison with the traditional risk quotient calculation based on a PNEC, as described in
introduction a HC5 was derived from a species sensitivity distribution using the package
ssdtools (Thorley & Schwarz, 2018).

3.4 Parameterization of the Bayesian networks

The Bayesian networks were built in Netica (Norsys Software Corp., www.norsys.com). For

each pesticide, a BN was built with identical structure except for the range the exposure and
effect concentrations were discretized. The individual node description can be found in Table

3; further detailed information can be found in the Supplementary material.

Table 3 Node description for the example of Option d the fully probabilistic approaches (see Figure7d), also
describing the discretization type, number of states, conditional probability table input and parent relation

Node / Variable Type of discretisation States
Exposure concentration distribution C 10
Effect concentration

o C 10
distribution
Exposure - effect - ratio distribution C 8
Uncertainty factor D
Risk quotient distribution C

* D: Discretized discrete
** C: discretized continuous; continuous variables were binned into the states
*** States: number of intervals of each node

**** further details about the Node input and assumption see Supplement Information

For both exposure and effects nodes, the range was defined by the observed values of the
given pesticide, and the intervals were discretized into 12 equidistant bins in log10-scale.
The fitted log-normal distributions were used to parameterize the parent nodes (for more
information about input and equations used see Supplementary material). The probability

distribution of the nodes "Exposure Concentration (pg/L)" and "Effects Concentration (ug/L)"

11
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was calculated from their respective parent nodes by 10exp-transformation. The node
"Exposure/Effect Ratio" was discretized in 8 equidistant bins and calculated by the equation
[Exposure Concentration (ug/L)]/ [Effects Concentration (ug/L)]. Thereafter, the risk quotient
distribution was derived by multiplying the "Exposure/ Effect Ratio" with an uncertainty factor.
The uncertainty factor can be applied to account for uncertainties in the effect assessment,
similar to the use of an assessment factor in traditional risk assessment (Figure 1).This factor
can be transparent and standardized in a simple manner by considering the information used
during the effect assessment e.g. number of data points (Figure 3). In our model (Figure 1),
the node "Uncertainty factor" have alternative levels that can be selected by the risk
assessor, depending on the sources of uncertainty to be accounted for in the risk

assessment.

Number of species

Uncertainty ¢ | Number of taxonomic |

Factor o group ;
Risk Quotient }_ e
Distribution

‘* Region specific species

Figure 3 Possible sources of uncertainty that can be incorporated in the uncertainty factor

After the Bayesian network was constructed and parameterized a sensitivity analysis was
carried out in Netica (Norsys Software Corp., www.norsys.com). One of the benefits of using

this software is the simple execution of sensitivity analysis that can easily selected from the
menu bar. The report displayed that the risk quotient distribution is dominated by the
exposure side over the effect side, which is most likely due to the wider range of

concentrations.

This way, a Bayesian network model is intended as a tool for calculating the risk quotient as
a probability distribution, to account for e.g. temporal variability in exposure, taxonomic

variability in effects, and other types of uncertainty.

4 Results and Discussion
4.1 Input values, distributions and uncertainty factor used of the Bayesian network
This section describes the parameterised version of the Bayesian network for each of the

three pesticides, illustrated with azoxystrobin as an example. For comparison, the risk

guotient was also calculated by the traditional single-values method (Figure 2a) as well as by

12
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the two intermediate options (Figure 2b and c). For the single-value exposure versions
(Options a and c), the minimum (0.01 ug/L), mean (0.063 ug/L) and maximum (0.660 ug/L) of
the measured concentrations were selected as alternative PEC values. The highest
exposure concentration is usually used as the more conservative or protective choice. For
the single-value effect version (Options a and b), the PNEC values were derived from an

HC5 of 3.87 pg/L divided by an assessment factor of 10, 5, 3 and 1 (Figure 4).

The probability distributions of exposure and/or effects data in Options b, ¢ and d were based
on the fitted log-normal distribution with mean and standard deviation. The exposure
distribution had a mean of -4.148 In (ug/L) with a standard deviation of 1.484 In (ug/L). The
effect distribution had a mean of 2.322 In (ug/L) with a standard deviation of 0.56 In (ug/L).

The seasonal version of the Bayesian network was parameterized with exposure
distributions based on seasonal mean values for the three pesticides. Winter season had too
few measured environmental concentrations to derive a distribution for all three chemicals
and was therefore excluded from further analysis. In general, mean concentration in summer
were higher than in spring and intermediate in autumn (Table 4). Except from Imidacloprid

which has higher concentrations in autumn.

Table 4 Estimated mean and standard deviation of the exposure by season and effect distributions, which are
used as input for the nodes in the Bayesian network.

Exposure Effect
Compound Spring Summer Autumn
In (ug/L) In (ug/L) In (ug/L) In (ug/L)

Azoxystrobin mean -5.029 -3.939 -4.018 2.322

sd 0.712 1.529 1.541 0.568
Metribuzin mean -4.357 -2.794 -3.292 4.946

sd 0.966 1.416 1.363 2.432
Imidacloprid mean -3.902 -3.404 -1.783 6.484

sd 1.481 1.116 1.743 4.004

Before the parameterised Bayesian network model can be used to calculate the risk quotient,
an appropriate uncertainty factor should be set by the risk assessor. In our example, to follow
a regulatory accepted method as closely as possible, we selected an uncertainty factor that
would yield a similar risk quotient as the SSD-based approach (Fig. 2a). The derived risk

guotient are displayed in Figure 4.
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RQ_min RQ_avg RQ_max
AF PNEC | PEC min PEC avg PEC_max

0.01 0.063 0.66
10 0.387 | 0.0258 0.1627 -
5 0.775 | 0.0129 0.0813 0.8521
3 1.291 0.0488 0.5112
1 3.873 0.0163 0.1704

Figure 4 Risk quotient derived for minimum, average and maximum PEC and a PNEC (for Assessment factor of
1, 3,5, and 10)

The uncertainty factor was derived by diagnostic inference by instantiating the nodes for
exposure, effect and risk quotient (Figure 5). For the exposure and effect concentrations, the

intervals were set according to the mean of the observed values.

Y ¥
Exposure Concentration (pg/L) Effect Concentration (ug/L)

0.0025 to 0.0044 0

0.0044 to 0.0080 0 1 ?7153-: a3 g

0.0080 to 0.0143 0 188 to 259 0

0.0143 10 0.0256 100 —— 960 [0 355 0

0.0256 to 0.0458 0 355t 4.87 0

0.0458 to 0.0821 0 487 to 6.69 0

0.0821 to 0.1471 0 6.69 o 9.18 0

0.1471 to 0.2636 0 ) :

0.2636 to 0.4724 0 ?’;25‘}01 %?gg mg [

0.4724 to 0.8465 0 1729t0 2373 0

0.8465 1o 1.5169 0 2373t0 32.57 0

15169 10 2.7183 0 325710447 0
0.0199 £ 0.0033 10.89 £ 0.99

N Y

Exposuref Effect Ratio
Oto 3e4 o) ¢
3e-4 1o 0.001 0| ¢
000110 0.003 100
0.003to 0.01
0.011t00.03
00310 0.1
01t01
1t03

oococoo

Uncertainty Factor
I 1 of ¢ ¢ i
0001719+ 0 3 0

T 10 0

Risk Quotient 30 0
0to 0.003 P
0003 to 0.01
0.01t00.03
003to 01
0.1t 0.3
0301
1t03
3to 3000

Figure 5 Example of diagnostic inference for this case study for a mean exposure and effect interval.

The appropriate uncertainty factors found corresponding to the assessment factors are
displayed in the following Table 5. We chose uncertainty factors of 10, 30 and a 100 for the
first example with Azoxystrobin and an uncertainty factor of 100 for all the seasonal versions

of the Bayesian network.
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Table 5 Uncertainty factors corresponding to assessment factors

PEC_min PEC_avg PEC_max
AF 0.01 0.063 0.66
10 10 100 1000
5 10 30 300
3 3 30 300
1 1 10 100

4.2 Risk quotient distributions predicted by the Bayesian network

The Bayesian networks for the different options for the risk quotient calculation were carried
out for azoxystrobin and are displayed in Figure 6. For the Bayesian network approach, the
risk quotient distribution node output was displayed for the different events and node
settings. The colours range from green (no risk) to red (posing a risk) (Figure 7). The risk
guotient distribution for the approaches ranged from 0 to 3000. Higher assessment factor
and uncertainty factor can lead to the risk quotient > 1. The calculated risk quotients can be
found in in Figure 4. An example using a BN approach for Option a, is displayed in Figure 6a.
In this example the risk quotient was calculated using a mean PEC and a PNEC with an
applied assessment factors of 5 and 10. The risk quotient distribution is estimated to be
within the interval “0.03 to 0.1”.
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Figure 6 Example of Bayesian network for both intermediate and the fully probabilistic approach for the fungicide
azoxystrobin, b) risk quotient distribution is derived for the PNEC derived with an Assessment factor of 5, c) for a
mean PEC and uncertainty factor of 100, and d) distributed exposure and effect concentration, and uncertainty
factor of 100.

When using an assessment factor of 1 and 10 the probability for the risk quotient to be in the
interval of “0.01 t0 0.03” and “0.1 0 0.3” is 100% (Figure 7a). Option b uses an exposure
distribution and the same assessment factors as in Option a to derive the risk quotient, which
is distributed over the intervals “0 to 0.0003” and “1 to 3”. For an assessment factor of 1 the
probability for the risk quotient to be in an interval higher than 0.1 is about 3.2 % whereas for
an assessment factor of 5 it is 26.4%. Option c in this example uses uncertainty factors
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calculated in Table 5. For the events of a mean PEC with an uncertainty factor of 100 the
interval of “0.03 to 1” has the highest probability. If a uncertainty factor of 30 is chosen the
interval of “0.1 to 0.3” instead has the highest probability (Figure 7c). The probability for the
risk quotient to be above 0.3 with an uncertainty factor of 10 is less than 1%, with one of 30 it
is about 23% and with one of 100 it is about 83%. The fully probabilistic approach — Option d
uses distributions for both exposure and effect, when using an uncertainty factor of 10, 30
and 100. The probability for the risk quotient to be above 0.3 is about 4% with an uncertainty
factor of 10, 12 % with one of 30 and about 40 with one of 100 (Figure 7d).

a) Traditional approach c) Intermediate approach effect distribution
100 % 100 %
90 % 90 %
w 80% o 80 %
g 70 % RQ Interval g 70 % RQ Interval
5 w3 103000 g =3 103000
€ 60% mifo3 £ 60% mito3
S 509 03101 S 5y 03101
= 011003 2 011003
= 0% 003001 F W% 0.03 10 0.1
T 359 0.01100.03 § 30 % 0.01100.03
g .. mo003too0t B =0.003 to 0.01
20 % =0100.003 20 % =0100.003
10 % 10 %
0% 0%
AF1 AF5 AF10 UF10 UF30 UF100
Assessment factor Uncertainty factor
b) Intermediate approach exposure distribution d) Fully probabilistic approach
100 % 100 % — —
90 % 90 % -
o 80% wn 80%
[} @
g w0 RQ Interval g g RQ Interval
S =310 3000 g =3 103000
£ 60 % mifo3 £ 60% milo3
B 509 03101 B 5y 03101
o) 0.1100.3 2 011003
B W% 003001 F 0% 0.03t0 0.1
R 00110003 8§ 359 0.01100.03
=] =0.003t00.01 £ =0.003 to 0.01
o 20% . woto0nos - 0% 20100003
10 % 10 %
0u . 0s -
AF1 AF5 AF10 UF10 UF30 UF100
Assessment Factor Uncertainty factor

Figure 7 Risk quotient derived from the traditional approach using single mean PEC and PNEC values (a), and
risk quotient distribution output from the Bayesian network for intermediate approaches with exposure distribution
and PNEC (b), and mean PEC and effect distribution, with uncertainty factor 10, 30 and 100 (c), and a fully
probabilistic approach with exposure and effect distribution and uncertainty factors 10, 30 and 100 (d).

4.3 Seasonal variation in risk quotients

A more temporally refined version of the Bayesian network is displayed for the compound
azoxystrobin (Figure 8), and used for calculating seasonal risk quotients for all three
pesticides. The uncertainty factor was set to 100 as this was found to be most appropriate in
comparison with the deterministic method Table 5. According to this model (Figure 8), the
probability of the risk quotient for azoxystrobin exceeding 0.1 during summer is about 72%,

while the probability of risk quotient exceeding 1 is about 15%.
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Figure 8 Example of a seasonal version of the Bayesian network model parameterised for the fungicide
azoxystrobin, with application of an uncertainty factors of 100 for summer season.

In comparison with the two other pesticides, azoxystrobin clearly imposed a higher
probability of exceeding the risk quotient levels of 0.1 to 0.3, especially in summer and
autumn (Figure 9). Metribuzin and imidacloprid have a wider distribution for the risk quotient,
mainly ranging from 0.0001 to 0.001. Spring and autumn distribution of probability in the case
of imidacloprid are more similar, unlike azoxystrobin and metribuzin where summer and
autumn appear to be more similar. These two seasons have higher probabilities for the risk

quotient to be between above 1 than the spring season.
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Figure 9 Calculated probability distribution of risk quotient, for spring, summer, autumn and uncertainty factors 10
for a) azoxystrobin, b) metribuzin and c¢) imidacloprid.

4.4 Evaluation of the Bayesian networks approach for risk characterisation

This study has demonstrated that Bayesian networks can account for quantified uncertainties
and variabilities in a more coherent and transparent way than traditional risk characterisation.
When developing this Bayesian network approach, we aimed at following important

recommendations for probabilistic risk estimation described by EUFRAM (2006). We tried to
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accomplish these by accompanying the new methods with the conventional “deterministic”
assessment, to enable that end-user (e.g. regulators) can become acquainted with the new
methodology. Furthermore, the developed models follow well-known concepts described in
the Technical Guidance Document (TGD) for whenever it was possible and logical. The TGD
for example describes what an appropriate assessment factor is depending on the available
data and mentions requirements for the used data for minimum amount of taxonomic and
species used for SSD modelling (Committee et al., 2019). In addition, we tried to display the
results in bar plots instead of cumulative probability. This was also pointed out by EUFRAM
(2006) which mentioned stakeholders being more likely to take up results if they and the
concepts used are as simple a possible and aligned with existing frameworks (EUFRAM,
2006).

Bayesian networks are increasingly used in environmental risk assessment (S. J. Moe et al.,
2021). They can offer a transparent way of evaluating the required characterization of
uncertainty for pesticide risk assessment as well as for ecological risk assessment in general
(Carriger & Newman, 2012). Moreover, their application is not only carried out for risk
estimation (e.g. risk quotient) it is also used to predict ecological effect more directly (e.g.
decline in species abundance (Mitchell et al., 2021). Dreier et al. (2020) pointed out that the
use of effect and exposure distribution allow for a competent risk assessment and
communication approach. In their “ecotoxicity risk calculator”, they used joint probability
curves/ risk curve based approach that is able to show the connection between cumulative
probability and magnitude of effect (Dreier et al., 2020). Although this might be an advantage
of using joint probability curves, probabilistic risk quotients can give a better sense of the risk
estimates and are useful for ranking of different scenarios as well as prioritizing among
alternative risk scenarios (Campbell et al., 2000).

Especially in ecological systems, limited data and knowledge can hinder modelling efforts, as
they constrain it to simpler model structures that involve more assumptions, in these cases
the Bayesian network approach can still be applied (Hamilton & Pollino, 2012). Also,
Bayesian networks can be developed as casual models, which can be used to assist risk
prioritization to help understand pathways of hazard and vulnerability relations better
(Sperotto et al., 2017).

A recent paper by Carriger & Barron (2020) showed how Bayesian network estimated the
risk quotient by calculating the probability of an exposure distribution exceeding an effect
distribution. Their Bayesian network estimated the risk by expanding the standard risk
equation to include more uncertainties and variables that influence the risk (Carriger &
Barron, 2020). The networks we have created used similar risk quotient calculations though

instead on focusing on one terrestrial species, we have included multiple species (e.g. SSD)
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and tried to carry out a risk characterization for the aquatic environment.

Carriger & Barron (2020) also stated that “the capabilities for performing diagnostic, mixed,
and predictive inference make Bayesian networks especially useful for examining the causal
factor that could lead to higher or lower risk outcomes”. The networks we developed use
discretisation of continuous variables and with that lose some of the initial precision and
information. Nevertheless, another benefit of using Bayesian networks over other
probabilistic methods mentioned is the possibility to use dynamic discretization to enable
higher resolution and fewer uncertainties associated with the estimations (Carriger & Barron,
2020).

Furthermore, Verdonck et al. (2005) pointed out that there are some ungquantifiable
uncertainties such as the choice of distribution, model and extrapolation uncertainties that
remain difficult to quantify some of which may be overcome by using different distribution
models than the ones used in this study. An alternative to the exposure modelling we have
carried out in this study was presented by Wolf and Tollefsen (2021) showing how Bayesian
distributional regression models could be used to better include spatiotemporal conditional
variances in exposure assessment and still allow for a distributed PEC (Wolf & Tollefsen,
2021). Therefore, there is possibility and need for further development, e.g. to better account
for spatial and temporal variation in exposure and inter- vs. intra-species variation in
sensitivity in effect assessment. Anyhow, Bayesian networks ability to perform predictive and
diagnostic inference (Carriger & Barron, 2020) still enable a good understanding of the
network and transparency. Thus, they can offer a transparent way of evaluating the required
characterization of uncertainty for pesticide risk assessment as well as for ecological risk

assessment in general (Carriger & Newman, 2012).

5 Conclusion

This study demonstrates that Bayesian network modelling is a promising tool for probabilistic
calculation of a risk quotient, which is commonly used in environmental risk assessment of
pesticides and other chemicals. A probabilistic risk quotient is a more informative alternative
to the traditional single-value risk quotient, which is often interpreted as a binary outcome.
The Bayesian network approach provides more opportunities for interpretation, such as the
probability of the risk quotient that exceeds not only 1 but also other specified threshold
values. The Bayesian network model presented here can easily be mapped to the main
steps of traditional risk characterisation frameworks. The Bayesian network approach can
still apply an uncertainty factor to account for additional uncertainties that are not captured by
the exposure and effects distributions, corresponding to the assessment factor used in

traditional risk assessment. Thus, Bayesian networks can offer a transparent way of
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evaluating the characterization of uncertainty required for pesticide risk assessment as well

as for ecological risk assessment in general (Carriger & Barron, 2020).

Our planned further development of this Bayesian network includes extending the model for
cumulative risk assessment of pesticide mixtures in the aquatic ecosystem. Furthermore, we
will incorporate climate and agricultural scenarios to predict environmental risk of pesticides

under future conditions.
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Appendix A

Table A. 1 Overview of several probabilistic assessment methods

control)

Reference Method title Risk Ecosystem Stressor Effect, Used Exposure Effect distribution | Exposure, Non-
uncertainty endpoint distribution type detects
type
Solomon et al. (1996) Quantitative No aquatic Triazine herbicide EC50, LC50, log-normal log-normal assigning a zero
Overlap ecosystems atrazin some NOEC or threshold
value to the
results
Manz et al. (1999) Quantitative No soil Heavy metal NOEC logarithmic cumulative NOEC NA
Overlap curve, bell- distributions, log-
shaped logistic distribution
functions
Cardwell et al. (1999) Some type of Qualitative surface water Tributyltin (TBT) NOEC, probability probability density associated with
Joint expected LOEC density function, logistic zero risk
probability function, regression model
curve logistic
regression
model
Moore et al. (1999) Risk function Qualitative piscivorous Methylmercury and LOAELs, log-normal & NA NA
species: mink PCBs NOAELs point
and belted estimate
kingfisher
Giddings et al. (2000) Joint Qualitative arthropods Diazinon (general- NOEC, LC50 log-normal log-normal assigned the
probability purpose gardening regression regression lines dummy value of
curve use and indoor pest line zero
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Campbell et al. (2000) Probabilistic No aquatic Diquat dibromide LC50/ EC50 cumulative cumulative NA
risk quotient environment (contact herbicide) probability probability
distributions, distributions,
custom lognormal
distribution distribution
Solomon et al. (2000) Quantitative No NA NA LOAEL or (cumulative) (cumulative) log- NA
Overlap extrapolated log-normal normal distribution
ECO distribution
Quantitative No aguatic species Chlorpyrifos LOAEL or linearized linearized assigned a
Overlap (insecticide) extrapolated probability probability dummy value of
ECO zero
Duvall and Barron Probabilistic semi- aquatic food Mercury NOEC, triangular triangular NA
(2000) risk quotient quantitative web LOEC and uniform distribution
distribution, (probability
probability distribution
distribution function)
function
Maund et al. (2001) PRQ based on No aquatic synthetic pyrethroid | EC50, LC50 "custom "custom NA
SSD and an ecosystems, insecticides distribution” distribution"
ECD point toxicity to fish
estimate and aquatic
invertebrates
Aldenberg et al., 2002 Mathematical Qualitative NA Cadmium NOEC ECs as log- normal (Gaussian) NA
(Posthuma et al. Risk normal PDF, normally
(2001)) framework distributions distributed SSDs
Poletika et al. (2002) Quantitative No aquatic organophosphorous EC50/LC50 cumulative linear regression NA
Overlap organisms (OP) insecticide distributions from a probability-
residing in a chlorpyrifos
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river basin (fish

log concentration

and benthic plot
invertebrates)
Schwacke et al. Risk function Yes marine PCB NA log-normal log-normal
(2002) mammals
Hall et al. 2000 Quantitative NA saltwater Tributyltin (e.g. used acute and probability probability assumed to be
Overlap community, for antifouling for chronic data, distribution, distribution, log- distributed along
long-term boats) NOEL log-normal normal distributions a lower
viability of distributions extension of the
aquatic distribution.
communities in
the case area
Verdonck (2003) Joint NA NA NA chronic effect | cumulative cumulative NA
probability on distribution distribution
curve/ Risk reproduction functions, functions, log-
quotient log-normal normal distributions
distribution distributions
Probabilistic NA NA Atrazine (herbicide) NOEC log-normal cumulative random number
risk quotient distribution probability between zero
distribution and the
detection limit
Dreier et al. (2020) Joint NA aquatic Thiamethoxam, EC50, LC50 "custom cumulative
probability ecosystem Chlorothalonil, distribution™ probability
curve Atrazine distribution
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