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Abstract 

Conventional environmental risk assessment of chemicals is based on a calculated risk 

quotient, representing the ratio of exposure to effects of the chemical, in combination with 

assessment factors to account for uncertainty. Probabilistic risk assessment approaches can 

offer more transparency, by using probability distributions for exposure and/or effects to 

account for variability and uncertainty. In this study, a probabilistic approach using Bayesian 

network (BN) modelling is explored as an alternative to traditional risk calculation. BNs can 

serve as meta-models that link information from several sources and offer a transparent way 

of incorporating the required characterization of uncertainty for environmental risk 

assessment. To this end, a BN has been developed and parameterised for the pesticides 

azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic 

(traditional) risk calculation, via intermediate versions, to fully probabilistic risk 

characterisation using azoxystrobin as an example. We also demonstrate seasonal risk 

calculation for the three pesticides.  

Keywords: Probabilistic risk assessment, uncertainty, pesticide, Bayesian network, risk 

quotient, species sensitivity distribution  

1. Introduction 

Pesticides play an important role in food production, by maintaining or enhancing crop yields 

and quality in arable farming. However, they can also lead to harmful effects in the 

environment and pose risks to human health. There is now a widespread concern about such 

regular emission of a substances designed to control specific target organisms and their 

effects on ecosystems (Van den Brink et al. (2018), Bradley et al. (2017), Mohaupt et al. 

(2020), Szöcs et al. (2017), Boye et al. (2019)). In spite of strict regulations of pesticide use 
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(e.g. Directive 2009/128/EC; Regulation (EC) No 1107/2009), there are still knowledge gaps 

for potential environmental impact of these pesticides and their mixtures (Bradley et al. 

(2017), Szöcs et al. (2017), Mohaupt et al. (2020)). Current risk assessment methods use 

conservative assumptions to avoid underestimating the risk (Verdonck et al., 2003) and 

decision-makers rely on large safety margins for protective decision making (Fairbrother et 

al., 2015). 

In general, risk assessment of pesticides is carried out to protect human health as well as the 

health and biodiversity of ecosystems (Schäfer et al., 2019). The purpose is to assess the 

probability that adverse effects of regulatory concern occur in ecosystems due to the 

exposure to one or several chemicals. This can be done as a prospective assessment for 

registration of substances before products enter the market, or as a retrospective 

assessment for potentially harmful substances that are already in use (Forbes & Calow, 

2002). The environmental risk assessment process usually incorporates exposure and effect 

assessments as well as a risk characterization (Figure 1).  Exposure assessment covers the 

estimation of predicted or measured environmental concentration (PEC) of the compound in 

the environment (van Leeuwen & Vermeire, 2007). PEC is usually calculated as the 

maximum environmental exposure concentration (Finizio & Villa, 2002). Effect assessment is 

typically based on the response of species that are exposed to a chemical in toxicity tests, 

such as data for toxicity endpoints (e.g. mortality, reproduction and growth) after short term 

(acute) or long term (chronic) exposure (van Leeuwen & Vermeire, 2007). Usually, a so-

called predicted no-effect concentration (PNEC) is obtained from the most sensitive no-

observed-effect concentration (NOEC). Alternatively, the PNEC can be calculated from the 

hazardous concentration for 5% of the species (HC5) based on the species sensitivity 

distribution (SSD) (Commission, 2003). To account for uncertainty, the lowest NOEC 

(alternatively the HC5) is divided by an assessment factor (AF) to derive the PNEC, so it can 

be considered a safe concentration for non-target organisms (Schäfer et al., 2019). Risk 

characterization includes a risk estimation by comparing effect (hazard identification and 

characterization) and exposure assessment, some of the metrics used are margin of 

exposure, hazard or risk quotient  (Committee et al., 2019). To ensure low risk it is required 

that the PEC is lower than the PNEC (Commission (2003), Schäfer et al. (2019) , so when 

using a risk quotient (RQ), it is derived by the ratio PEC/PNEC. If risk quotient exceeds 1 a 

risk of harmful effects to the environment is indicated.  
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Figure 1 General ecological risk assessment process (RQ = Risk quotient, PEC = predicted or measured 

environmental concentration, PNEC = predicted no effect concentration, HC5 = hazardous concentration for 5% 

of the species derived from SSD (species sensitivity distribution), AF = assessment factor)  

Risk is usually considered an estimation of the likelihood that an adverse effect occurs on a 

biological target when being exposed to a chemical (Finizio and Villa (2002), S Jannicke Moe 

et al. (2021), Fairbrother et al. (2015)). Nevertheless, in the commonly used framework for 

environmental risk assessment, the output of risk characterisation tends to be single value 

(the risk quotient) from which the conclusion is a “yes/no” statement (Fairbrother et al., 

2015). It has been argued that such single-value estimates cannot stand alone as a 

scientifically defensible characterization of ecological risk (Campbell et al., 2000). The 

analysis and quantification of uncertainty is a vital part of risk assessment of environmental 

impacts of pesticides, which is not reflected in the single-value risk estimate (USEPA (2014), 

Fairbrother et al. (2015)). Based on this, a concerted action was established to develop a 

European framework for probabilistic risk assessment of the environmental impacts of 

pesticides (EUFRAM). The consortium named several shortcomings of conventional ERA 

(EUFRAM 2006), for example: there is no indication of the level of certainty associated with 

the risk assessment; no quantification of the risk is carried out; the uncertainty calculation is 

not transparent but hidden in assessment factors; and it is difficult to follow all steps of the 

risk assessment. Various recommendations were given for development towards 

probabilistic risk assessment, mainly based on the use of cumulative probability distributions 

(EUFRAM, 2006). Nevertheless, non-probabilistic methods are still more commonly used 

(Fairbrother et al., 2015). One reason can be a lack of training in probabilistic methods and 

tools in ecotoxicology. 
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The objective of this study was to explore Bayesian network modelling as a tool to combine 

probability distributions of pesticide exposure and effects, to facilitate the calculation of the 

risk quotient as a probability distribution instead of a single number. We aimed to align the 

developed model to the European Union (EU) regulatory requirements and current risk 

assessment procedures, to enable comparison of the Bayesian network approach with the 

existing approaches. To this end, we present the development from a deterministic towards a 

fully probabilistic Bayesian network approach to risk characterisation. The model application 

is demonstrated for three examples of pesticides and for different seasons.  

2. Approaches to probabilistic risk assessment 

2.1 Proposed methods for probabilistic risk assessment  

Probabilistic risk assessment has been defined as using “probabilities or probability 

distributions to quantify one or more sources of variability and/or uncertainty in exposure 

and/or effects and the resulting risk” (EUFRAM, 2006). This allows the inclusion of estimates 

of uncertainty and stochastic properties (Solomon et al., 2000). There are now several 

probabilistic methods in use for risk characterisation. The species sensitivity distribution 

(SSD) (Posthuma et al., 2001) is a probabilistic model for the variation in sensitivity of 

biological species to a single or a set of toxicants, which is used in several frameworks 

(Belanger & Carr, 2020).  Guidance on modelling and data requirements can be found in the 

“Technical Guidance for Deriving Environmental Quality Standards” (SCHEER, 2017). Many 

of the probabilistic methods currently at hand also incorporate a distribution for the exposure 

part. An overview probabilistic methods currently at hand is given Error! Reference source 

not found.. Methods such as quantitative overlap and joint probability curves are relatively 

easy to construct (Verdonck et al. (2003), Campbell et al. (2000)), and use more available 

data for exposure and effect compared to traditional approaches (Campbell et al., 2000). 

They also allow for an estimation of likelihood of potential ecosystem impact and their 

magnitude (Solomon et al., 1996). Recently, an “Ecotoxicity Risk Calculator” was presented 

by Dreier et al. (2020) that uses joint probability curves. It is able to express more information 

than a single value risk quotient, as it depicts the relationship between cumulative probability 

and magnitude of effect. The use of both effect and exposure distributions enables a more 

powerful approach for risk assessment and communication (Dreier et al., 2020). However,  

most of these methods do not provide exact quantifications of magnitudes and likelihoods of 

potential effects, they do not make quantitative predictions and only estimate relative risks 

(Solomon et al. (2000), Hall et al. (2000)), which can be hard for decision-makers to 

understand and interpret (Verdonck et al., 2003).  
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2.2 From deterministic to probabilistic risk quotient 

Another method more consistent with the probabilistic definition of risk is the calculation of 

probabilistic risk quotients. It can be useful for ranking of different scenarios as well as 

prioritizing among alternative risk scenarios (Campbell et al., 2000). A fully probabilistic risk 

quotient calculation requires the quantification of a probability distribution for both exposure 

and effect. In cases where exposure or effect data are too limited, an alternative 

“intermediate” probabilistic approach could be applied by using a distribution for either the 

exposure or effect component (Figure 1). This will allow for some variability to be taken into 

account when deriving a distribution for the risk quotient. For example, an intermediate 

approach could be applied when an effect concentration distribution can be quantified by a 

species sensitivity distribution, although few exposure measurements are available. Figure 2 

displays the underlying concepts of the traditional deterministic approach and the 

intermediate and fully probabilistic approaches. The traditional deterministic approach 

(Figure 2a) used single-value PEC and PNEC single value risk quotient. The second option 

(Figure 2b) used an exposure distribution together with a single value PNEC, derived the 

same way as in the traditional approach. Though, unlike the traditional approach, here a risk 

quotient distribution is derived. The third option (Figure 2c) uses the probability distribution of 

effects (corresponding to an SSD). Instead of using the SSD to extract a single-value HC5 as 

a basis for a single-value PNEC in combination with an assessment factor, in this case, an 

uncertainty factor (UF) is applied to the calculated exposure/effect ratio distribution. The 

uncertainty factor plays a similar role as an assessment factor, that is to adjust the predicted 

risk to account for uncertainties e.g. associated with extrapolation from laboratory toxicity 

tests to environmental effects. However, we chose to use the slightly different term 

"uncertainty factor" to avoid misusing the more well-established term "assessment factor". 

For the fourth option (Figure 2d), probability distributions are calculated for both exposure 

and effect distributions. Again, no PNEC is derived, so after calculating the exposure/effect 

ratio distribution, an uncertainty factor is applied to adjust the risk quotient distribution.  
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Figure 2 Systematic overview of the traditional approach to derive a risk quotient, compared to two intermediate 

probabilistic options and a fully probabilistic option that derive a risk quotient distribution. 
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2.3 Probabilistic risk assessment using Bayesian networks  

The early efforts of probabilistic risk assessment for pesticides, which were usually visualised 

by cumulative distribution curves, were sometimes difficult to interpret for both for advanced 

users and the general public (EUFRAM 2006). As an alternative, Bayesian networks may 

provide a way to overcome limitations associated with visualization of risk estimations while 

accounting for uncertainties when using probabilistic approaches. They have been 

recognized as a tool to analyse complex environmental problems and support decision 

making while considering uncertainty (Sperotto et al., 2017), and have lately been 

increasingly used for environmental risk assessments (Moe et al. 2021). A Bayesian network 

can characterize a system by showing its interactions between variables in a network (Chen 

& Pollino, 2012) through a directed acyclic graph (Kanes et al., 2017). They are probabilistic 

graphical models implementing Bayes’ rule for updating probability distributions based on 

evidence. The nodes (variables) have discrete states (e.g. intervals), quantified by discrete 

probability distributions. The causal links (arrows) represent conditional probability tables 

(CPT) which can be based on equations. The degree of belief (probability) that a variable will 

be in a particular state given the state of the parent variables, as specified by the conditional 

probability table (Chen & Pollino, 2012), and by using Bayes’ rule for updating probability 

distributions based on new evidence (Molina et al., 2010). In this project, Bayesian network 

construction followed guidelines provided by Marcot et al. (2006) and Pollino and Henderson 

(2010).  

Bayesian networks have an integral feature suitable for risk estimation as they present 

results in probability distribution form instead of point estimates. They can accommodate 

different kind of data; its sources can include both direct measurements and output from 

models. Also, if data are limited or non-existent, it is possible to include expert opinions 

instead (Pitchforth & Mengersen, 2013). The models can be updated with new information on 

pesticide exposure and effects whenever it becomes available. Model updates are carried 

out by combining prior probabilities and new data so that an update of the network posterior 

probabilities can take place as a response to the added observational information (Franco et 

al., 2016). Bayesian networks are especially useful for pesticide risk assessment and 

management tasks as these require characterisation of the uncertainties (Carriger and 

Newman (2012)). Focusing on a terrestrial species (puma), Carriger & Barron (2020) 

displayed a process of mapping cause-effect relations into a quantitative model. This is 

supported by Catenacci & Giupponi (2013) who found that the Bayesian network approach 

can examine different phenomena due to its flexibility for interdisciplinary integration, e.g. 

climatic, physical, ecological, and socio-economic (Catenacci & Giupponi, 2013). They also 
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have the ability to perform predictive (forward), diagnostic (backward), and mixed (forward 

and backward) inference (Carriger & Barron, 2020). 

3. Methods 

3.1 Study area  

The model was developed based on monitoring data from a catchment within the Norwegian 

Agricultural Environmental Monitoring Program (JOVA) located in South-East Norway (Heia, 

location: 59°21’29’’N, 10°47’52’’E). The monitoring catchment has a total area of 1,7 km2 of 

which 62% are cropland. As the catchment is located in a coastal climate, winters are mild 

and the growing season starts relatively early as compared to Norwegian conditions in 

general. The catchment has an annual rainfall of 829 mm and a mean annual temperature of 

5.6 °C (in 2016). The crop production in the catchment is mostly grain (up to 75%). Potato 

and vegetable production made up about 40% until 2007 and had decreased to about 25% in 

2015. The catchment’s use of plant protection products and exposure data are recorded in 

the JOVA program (Bechmann et al., 2017). Flow-proportional composite sampling of stream 

water at the catchment outlet was performed in the JOVA program throughout the spraying 

season and the analysis of concentrations of a wide range of current and previously used 

pesticides were included. Based on these data, exceedance of environmental safety 

thresholds are identified for different agricultural management practices for key agricultural 

production systems in various catchments in Norway (Stenrød, 2015). The JOVA monitoring 

data for pesticides has been collected through 25 years (1995 onwards) and thus also 

support the retrospective assessment of ecological risk and temporal trends (Bechmann et 

al., 2017).    

3.2 Pesticides - exposure and effect data 

The chemicals selected for analysis in this study are most frequently occurring pesticides 

and highest in concentration in the study catchment (Table 1). Azoxystrobin and metribuzin 

are approved chemicals for use in the EU and Norway. Since 2013 the use and sale of 

Imidacloprid is prohibited in the EU (Commission, 2013). Of the selected chemicals, only the 

fungicide azoxystrobin has low solubility in water at 20 °C (6.7 mg L-1), whereas metribuzin 

and imidacloprid have high solubility in water. All pesticides form metabolites primarily in soil. 
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Table 1 Information about selected pesticides their Chemical Abstract Service (CAS), pesticide type, mode of 

action and common application crop. 

Substance CAS Type Mode of Action Approved use (crop) 

Azoxystrobi

n 

13186

0-33-

8 

Fungicide 

Systemic 

translaminar and 

protectant action 

having additional 

curative and 

eradicant 

properties. 

Respiration inhibitor 

Wheat; Fruit (grapes, 

citrus, strawberries, 

peaches); Sunflowers; 

Vegetables (onions, 

brassicas, curcubits); 

Potatoes; Cotton; pecans; 

Canola; Soybeans; 

Peanuts; Turf; 

Ornamentals 

Metribuzin 
 

21087

-64-9 
Herbicide 

Selective, systemic 

with contact and 

residual activity. 

Inhibits 

photosynthesis 

(photosystem II). 

Soybeans; Potatoes; 

Barley, Wheat; Asparagus; 

Sugarcane; Tomatoes; 

Peas; Lentils 

Imidacloprid 
 

13826

1-41-

3 

Insecticide, 

Veterinary 

substance 

Systemic with 

contact and 

stomach action. 

Acetylcholine 

receptor (nAChR) 

agonist. 

Lawns and turf; Domestic 

pets; Rice, Cereals; Maize; 

Potatoes; Sugar beet 

(PubChem (2021c); PubChem (2021b); PubChem (2021a); Lewis et al. (2016)) 

The data used in this study were obtained from the NIVA Risk Assessment database (NIVA 

RAdb, www.niva.no/radb), which hosts exposure and effect data from a wide variety of 

sources. Moreover, this database provides transparent and harmonized cumulative risk 

predictions according to international recommendations for harmonised approaches for 

human and ecological risk assessment  (Tollefsen, 2021). Exposure data for the period 

11.05.2011 to 06.12.2016 from the JOVA monitoring program were extracted from NIVA 

RAdb database.  

The total number of measured environmental concentrations was 55 for azoxystrobin, and 59 

for metribuzin and imidacloprid. There is large variation in the measured concentration levels 

during the season and years for each of the pesticides.  The percentage measurements 
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below the limit of quantification (LOQ) were 53%, 16, % and 11% for azoxystrobin, 

metribuzin and imidacloprid respectively. In general, sampling of pesticides varied greatly 

between the years and month with higher concentrations in summer and autumn and lower 

concentrations in spring and winter. 

For the selected pesticides, toxic effects data for several freshwater species representing 

various taxonomic groups were extracted from the NIVA RAdb. The data set consisted of 

NOECs (no observed effect concentration) for adverse effects such as growth, reproduction, 

and population. For each chemical, multiple NOEC values from the same species were used 

in our analysis (see Table 2). In traditional effect assessment, only the most sensitive value 

per species is often chosen to derive an SSD, although in some cases an average is also 

used.  

Table 2 Overview of collected effect/ toxicity data for the selected pesticides, also showing their adverse effect 
endpoint, n = number of means used to fit the distribution and species with multiple NOECs for the same 
substance 

Substance Endpoints n 

Metribuzin Growth 

Population 
11 

Azoxystrobin Growth 

Population 
13 

Imidacloprid Growth 

Population 

Reproduction 

11 

 

3.3 Data Processing 

Data preparation was carried out with R version 4.0.2 (Team, 2020) using packages 

including tidyverse (version 1.3.0) (Wickham et al., 2019), dplyr (version 1.0.2) (Wickham et 

al., 2020) and readxl (version 1.3.1) (Wickham & Bryan, 2019). To obtain probability 

distributions for the BN model from the exposure and effects data, log-normal distribution 

models were fitted to the data using the R package MASS (version 7.3-51.6) (Venables & 

Ripley, 2002).  

In the case of exposure data below Limit of Quantification (LOQ), new values in the range 

from 0 to LOQ were simulated using mean and standard deviation from the fitted log-normal 

distribution. To take into account the seasonal variation in pesticide exposure, a separate 
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probability distribution was estimated for each season, defined as follows: Winter = Dec-Feb; 

Spring = Mar-May; Summer = Jun- Aug; Autumn = Sep-Nov. 

For the effect distribution, likewise, a log-normal distribution was fitted to the NOEC values 

available for each pesticide. In cases where multiple NOEC values of the same species were 

present, the mean NOEC was used.  The fitted distribution corresponds to a species 

sensitivity distribution (SDD), which is often fitted as a log-normal distribution (Belanger & 

Carr, 2020). However, while SSDs are traditionally used to derive a single PNEC value 

(Figure 1), we used the whole probability distribution of effects data in this study. For 

comparison with the traditional risk quotient calculation based on a PNEC, as described in 

introduction a HC5 was derived from a species sensitivity distribution using the package 

ssdtools (Thorley & Schwarz, 2018). 

3.4 Parameterization of the Bayesian networks 

The Bayesian networks were built in Netica (Norsys Software Corp., www.norsys.com). For 

each pesticide, a BN was built with identical structure except for the range the exposure and 

effect concentrations were discretized. The individual node description can be found in Table 

3; further detailed information can be found in the Supplementary material.  

Table 3 Node description for the example of Option d the fully probabilistic approaches (see Figure7d), also 
describing the discretization type, number of states, conditional probability table input and parent relation 

Node / Variable Type of discretisation States 

Exposure concentration distribution C 10 

Effect concentration 

distribution 
C 10 

Exposure - effect - ratio distribution C 8 

Uncertainty factor D 7 

Risk quotient distribution C 8 

* D: Discretized discrete  

** C: discretized continuous; continuous variables were binned into the states 

*** States: number of intervals of each node 

**** further details about the Node input and assumption see Supplement Information 

For both exposure and effects nodes, the range was defined by the observed values of the 

given pesticide, and the intervals were discretized into 12 equidistant bins in log10-scale. 

The fitted log-normal distributions were used to parameterize the parent nodes (for more 

information about input and equations used see Supplementary material). The probability 

distribution of the nodes "Exposure Concentration (µg/L)" and "Effects Concentration (µg/L)" 
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was calculated from their respective parent nodes by 10exp-transformation. The node 

"Exposure/Effect Ratio" was discretized in 8 equidistant bins and calculated by the equation 

[Exposure Concentration (µg/L)]/ [Effects Concentration (µg/L)]. Thereafter, the risk quotient 

distribution was derived by multiplying the "Exposure/ Effect Ratio" with an uncertainty factor. 

The uncertainty factor can be applied to account for uncertainties in the effect assessment, 

similar to the use of an assessment factor in traditional risk assessment (Figure 1).This factor 

can be transparent and standardized in a simple manner by considering the information used 

during the effect assessment e.g. number of data points (Figure 3). In our model (Figure 1), 

the node "Uncertainty factor" have alternative levels that can be selected by the risk 

assessor, depending on the sources of uncertainty to be accounted for in the risk 

assessment.  

 

Figure 3 Possible sources of uncertainty that can be incorporated in the uncertainty factor 

After the Bayesian network was constructed and parameterized a sensitivity analysis was 

carried out in Netica (Norsys Software Corp., www.norsys.com). One of the benefits of using 

this software is the simple execution of sensitivity analysis that can easily selected from the 

menu bar. The report displayed that the risk quotient distribution is dominated by the 

exposure side over the effect side, which is most likely due to the wider range of 

concentrations. 

This way, a Bayesian network model is intended as a tool for calculating the risk quotient as 

a probability distribution, to account for e.g. temporal variability in exposure, taxonomic 

variability in effects, and other types of uncertainty. 

4 Results and Discussion 

4.1 Input values, distributions and uncertainty factor used of the Bayesian network 

This section describes the parameterised version of the Bayesian network for each of the 

three pesticides, illustrated with azoxystrobin as an example. For comparison, the risk 

quotient was also calculated by the traditional single-values method (Figure 2a) as well as by 
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the two intermediate options (Figure 2b and c). For the single-value exposure versions 

(Options a and c), the minimum (0.01 ug/L), mean (0.063 ug/L) and maximum (0.660 ug/L) of 

the measured concentrations were selected as alternative PEC values. The highest 

exposure concentration is usually used as the more conservative or protective choice. For 

the single-value effect version (Options a and b), the PNEC values were derived from an 

HC5 of 3.87 µg/L divided by an assessment factor of 10, 5, 3 and 1 (Figure 4).  

The probability distributions of exposure and/or effects data in Options b, c and d were based 

on the fitted log-normal distribution with mean and standard deviation. The exposure 

distribution had a mean of -4.148 ln (ug/L) with a standard deviation of 1.484 ln (ug/L). The 

effect distribution had a mean of 2.322 ln (ug/L) with a standard deviation of 0.56 ln (ug/L). 

The seasonal version of the Bayesian network was parameterized with exposure 

distributions based on seasonal mean values for the three pesticides. Winter season had too 

few measured environmental concentrations to derive a distribution for all three chemicals 

and was therefore excluded from further analysis. In general, mean concentration in summer 

were higher than in spring and intermediate in autumn (Table 4). Except from Imidacloprid 

which has higher concentrations in autumn. 

Table 4 Estimated mean and standard deviation of the exposure by season and effect distributions, which are 
used as input for the nodes in the Bayesian network. 

  Exposure Effect 

Compound  Spring 

ln (ug/L) 

Summer 

ln (ug/L) 

Autumn 

ln (ug/L) 

 

ln (ug/L) 

Azoxystrobin mean -5.029 -3.939 -4.018 2.322 

sd 0.712 1.529 1.541 0.568 

Metribuzin mean -4.357 -2.794 -3.292 4.946 

sd 0.966 1.416 1.363 2.432 

Imidacloprid mean -3.902 -3.404 -1.783 6.484 

sd 1.481 1.116 1.743 4.004 

Before the parameterised Bayesian network model can be used to calculate the risk quotient, 

an appropriate uncertainty factor should be set by the risk assessor. In our example, to follow 

a regulatory accepted method as closely as possible, we selected an uncertainty factor that 

would yield a similar risk quotient as the SSD-based approach (Fig. 2a). The derived risk 

quotient are displayed in Figure 4.  
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RQ_min RQ_avg RQ_max 

AF PNEC PEC_min PEC_avg PEC_max 

  
0.01 0.063 0.66 

10 0.387 0.0258 0.1627 1.7041 

5 0.775 0.0129 0.0813 0.8521 

3 1.291 0.0077 0.0488 0.5112 

1 3.873 0.0026 0.0163 0.1704 

Figure 4 Risk quotient derived for minimum, average and maximum PEC and a PNEC (for Assessment factor of 
1, 3, 5, and 10) 

The uncertainty factor was derived by diagnostic inference by instantiating the nodes for 

exposure, effect and risk quotient (Figure 5). For the exposure and effect concentrations, the 

intervals were set according to the mean of the observed values.  

 

Figure 5 Example of diagnostic inference for this case study for a mean exposure and effect interval. 

The appropriate uncertainty factors found corresponding to the assessment factors are 

displayed in the following Table 5. We chose uncertainty factors of 10, 30 and a 100 for the 

first example with Azoxystrobin and an uncertainty factor of 100 for all the seasonal versions 

of the Bayesian network. 
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Table 5 Uncertainty factors corresponding to assessment factors 

 

PEC_min PEC_avg PEC_max 

AF 0.01 0.063 0.66 

10 10 100 1000 

5 10 30 300 

3 3 30 300 

1 1 10 100 

 

4.2 Risk quotient distributions predicted by the Bayesian network  

The Bayesian networks for the different options for the risk quotient calculation were carried 

out for azoxystrobin and are displayed in Figure 6. For the Bayesian network approach, the 

risk quotient distribution node output was displayed for the different events and node 

settings. The colours range from green (no risk) to red (posing a risk) (Figure 7). The risk 

quotient distribution for the approaches ranged from 0 to 3000. Higher assessment factor 

and uncertainty factor can lead to the risk quotient > 1. The calculated risk quotients can be 

found in in Figure 4. An example using a BN approach for Option a, is displayed in Figure 6a. 

In this example the risk quotient was calculated using a mean PEC and a PNEC with an 

applied assessment factors of 5 and 10. The risk quotient distribution is estimated to be 

within the interval “0.03 to 0.1”.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444913
http://creativecommons.org/licenses/by-nc/4.0/


16 
 
 

 

Figure 6 Example of Bayesian network for both intermediate and the fully probabilistic approach for the fungicide 

azoxystrobin, b) risk quotient distribution is derived for the PNEC derived with an Assessment factor of 5, c) for a 

mean PEC and uncertainty factor of 100, and d) distributed exposure and effect concentration, and uncertainty 

factor of 100.  

When using an assessment factor of 1 and 10 the probability for the risk quotient to be in the 

interval of “0.01 to 0.03” and “0.1 o 0.3” is 100% (Figure 7a). Option b uses an exposure 

distribution and the same assessment factors as in Option a to derive the risk quotient, which 

is distributed over the intervals “0 to 0.0003” and “1 to 3”. For an assessment factor of 1 the 

probability for the risk quotient to be in an interval higher than 0.1 is about 3.2 % whereas for 

an assessment factor of 5 it is 26.4%. Option c in this example uses uncertainty factors 
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calculated in Table 5. For the events of a mean PEC with an uncertainty factor of 100 the 

interval of “0.03 to 1” has the highest probability. If a uncertainty factor of 30 is chosen the 

interval of “0.1 to 0.3” instead has the highest probability (Figure 7c). The probability for the 

risk quotient to be above 0.3 with an uncertainty factor of 10 is less than 1%, with one of 30 it 

is about 23% and with one of 100 it is about 83%. The fully probabilistic approach – Option d 

uses distributions for both exposure and effect, when using an uncertainty factor of 10, 30 

and 100. The probability for the risk quotient to be above 0.3 is about 4% with an uncertainty 

factor of 10, 12 % with one of 30 and about 40 with one of 100 (Figure 7d).  

 

Figure 7 Risk quotient derived from the traditional approach using single mean PEC and PNEC values (a), and 

risk quotient distribution output from the Bayesian network for intermediate approaches with exposure distribution 

and PNEC (b), and mean PEC and effect distribution, with uncertainty factor 10, 30 and 100 (c), and a fully 

probabilistic approach with exposure and effect distribution and uncertainty factors 10, 30 and 100 (d). 

4.3 Seasonal variation in risk quotients  

A more temporally refined version of the Bayesian network is displayed for the compound 

azoxystrobin (Figure 8), and used for calculating seasonal risk quotients for all three 

pesticides. The uncertainty factor was set to 100 as this was found to be most appropriate in 

comparison with the deterministic method Table 5. According to this model (Figure 8), the 

probability of the risk quotient for azoxystrobin exceeding 0.1 during summer is about 72%, 

while the probability of risk quotient exceeding 1 is about 15%.   
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Figure 8 Example of a seasonal version of the Bayesian network model parameterised for the fungicide 

azoxystrobin, with application of an uncertainty factors of 100 for summer season.  

In comparison with the two other pesticides, azoxystrobin clearly imposed a higher 

probability of exceeding the risk quotient levels of 0.1 to 0.3 , especially in summer and 

autumn (Figure 9). Metribuzin and imidacloprid have a wider distribution for the risk quotient, 

mainly ranging from 0.0001 to 0.001. Spring and autumn distribution of probability in the case 

of imidacloprid are more similar, unlike azoxystrobin and metribuzin where summer and 

autumn appear to be more similar. These two seasons have higher probabilities for the risk 

quotient to be between above 1 than the spring season.  

Exposure Concentration Log Effect Concentration Log

Season

Spring
Summer
Autumn

   0
 100

   0

Exposure Concentration (µg/L)

0.00247875 to 0.00444193
0.00444193 to 0.00795994
0.00795994 to 0.0142642
0.0142642 to 0.0255615
0.0255615 to 0.0458063
0.0458063 to 0.082085
0.082085 to 0.147096
0.147096 to 0.263597
0.263597 to 0.472367
0.472367 to 0.846482
0.846482 to 1.5169
1.5169 to 2.71828

7.51
11.4
15.7
17.8
16.6
14.1
8.47
4.25
2.73
0.87
0.32
0.25

0.0644 ± 0.15

Exposure/ Effect Ratio

0 to 3e-4
3e-4 to 0.001
0.001 to 0.003
0.003 to 0.01
0.01 to 0.03
0.03 to 0.1
0.1 to 1
1 to 3

3.93
23.7
31.9
25.5
9.26
5.09
0.70
 0 +

0.0115 ± 0.053

Risk Quotient

0 to 0.003
0.003 to 0.01
0.01 to 0.03
0.03 to 0.1
0.1 to 0.3
0.3 to 1
1 to 3
3 to 3000

   0
   0

3.93
23.7
31.9
25.5
9.26
5.79

87.3 ± 410

Uncertainty Factor

1
3
10
30
100
300
1000

   0
   0
   0
   0

 100
   0
   0

100

Effect Concentration (µg/L)

1 to 1.37254
1.37254 to 1.88387
1.88387 to 2.58569
2.58569 to 3.54897
3.54897 to 4.87111
4.87111 to 6.68581
6.68581 to 9.17655
9.17655 to 12.5952
12.5952 to 17.2874
17.2874 to 23.7277
23.7277 to 32.5673
32.5673 to 44.7

.019
0.13
0.64
2.38
6.54
13.3
19.9
22.0
18.0
10.8
4.83
1.59

12 ± 7.1

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444913
http://creativecommons.org/licenses/by-nc/4.0/


19 
 
 

 

Figure 9 Calculated probability distribution of risk quotient, for spring, summer, autumn and uncertainty factors 10 

for a) azoxystrobin, b) metribuzin and c) imidacloprid. 

4.4 Evaluation of the Bayesian networks approach for risk characterisation  

This study has demonstrated that Bayesian networks can account for quantified uncertainties 

and variabilities in a more coherent and transparent way than traditional risk characterisation. 

When developing this Bayesian network approach, we aimed at following important 

recommendations for probabilistic risk estimation described by EUFRAM (2006). We tried to 
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accomplish these by accompanying the new methods with the conventional “deterministic” 

assessment, to enable that end-user (e.g. regulators) can become acquainted with the new 

methodology. Furthermore, the developed models follow well-known concepts described in 

the Technical Guidance Document (TGD) for whenever it was possible and logical. The TGD 

for example describes what an appropriate assessment factor is depending on the available 

data and mentions requirements for the used data for minimum amount of taxonomic and 

species used for SSD modelling (Committee et al., 2019). In addition, we tried to display the 

results in bar plots instead of cumulative probability. This was also pointed out by EUFRAM 

(2006) which mentioned stakeholders being more likely to take up results if they and the 

concepts used are as simple a possible and aligned with existing frameworks (EUFRAM, 

2006).  

Bayesian networks are increasingly used in environmental risk assessment (S. J. Moe et al., 

2021). They can offer a transparent way of evaluating the required characterization of 

uncertainty for pesticide risk assessment as well as for ecological risk assessment in general 

(Carriger & Newman, 2012). Moreover, their application is not only carried out for risk 

estimation (e.g. risk quotient) it is also used to predict ecological effect more directly (e.g. 

decline in species abundance (Mitchell et al., 2021). Dreier et al. (2020) pointed out that the 

use of effect and exposure distribution allow for a competent risk assessment and 

communication approach. In their “ecotoxicity risk calculator”, they used joint probability 

curves/ risk curve based approach that is able to show the connection between cumulative 

probability and magnitude of effect (Dreier et al., 2020). Although this might be an advantage 

of using joint probability curves, probabilistic risk quotients can give a better sense of the risk 

estimates and are useful for ranking of different scenarios as well as prioritizing among 

alternative risk scenarios (Campbell et al., 2000).  

Especially in ecological systems, limited data and knowledge can hinder modelling efforts, as 

they constrain it to simpler model structures that involve more assumptions, in these cases 

the Bayesian network approach can still be applied (Hamilton & Pollino, 2012). Also, 

Bayesian networks can be developed as casual models, which can be used to assist risk 

prioritization to help understand pathways of hazard and vulnerability relations better 

(Sperotto et al., 2017).  

A recent paper by Carriger & Barron (2020) showed how Bayesian network estimated the 

risk quotient by calculating the probability of an exposure distribution exceeding an effect 

distribution. Their Bayesian network estimated the risk by expanding the standard risk 

equation to include more uncertainties and variables that influence the risk (Carriger & 

Barron, 2020). The networks we have created used similar risk quotient calculations though 

instead on focusing on one terrestrial species, we have included multiple species (e.g. SSD) 
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and tried to carry out a risk characterization for the aquatic environment.  

Carriger & Barron (2020) also stated that “the capabilities for performing diagnostic, mixed, 

and predictive inference make Bayesian networks especially useful for examining the causal 

factor that could lead to higher or lower risk outcomes”. The networks we developed use 

discretisation of continuous variables and with that lose some of the initial precision and 

information. Nevertheless, another benefit of using Bayesian networks over other 

probabilistic methods mentioned is the possibility to use dynamic discretization to enable 

higher resolution and fewer uncertainties associated with the estimations (Carriger & Barron, 

2020). 

Furthermore, Verdonck et al. (2005) pointed out that there are some unquantifiable 

uncertainties such as the choice of distribution, model and extrapolation uncertainties that 

remain difficult to quantify some of which may be overcome by using different distribution 

models than the ones used in this study. An alternative to the exposure modelling we have 

carried out in this study was presented by Wolf and Tollefsen (2021) showing how Bayesian 

distributional regression models could be used to better include spatiotemporal conditional 

variances in exposure assessment and still allow for a distributed PEC (Wolf & Tollefsen, 

2021). Therefore, there is possibility and need for further development, e.g. to better account 

for spatial and temporal variation in exposure and inter- vs. intra-species variation in 

sensitivity in effect assessment. Anyhow, Bayesian networks ability to perform predictive and 

diagnostic inference (Carriger & Barron, 2020) still enable a good understanding of the 

network and transparency. Thus, they  can offer a transparent way of evaluating the required 

characterization of uncertainty for pesticide risk assessment as well as for ecological risk 

assessment in general (Carriger & Newman, 2012).  

5 Conclusion 

This study demonstrates that Bayesian network modelling is a promising tool for probabilistic 

calculation of a risk quotient, which is commonly used in environmental risk assessment of 

pesticides and other chemicals. A probabilistic risk quotient is a more informative alternative 

to the traditional single-value risk quotient, which is often interpreted as a binary outcome. 

The Bayesian network approach provides more opportunities for interpretation, such as the 

probability of the risk quotient that exceeds not only 1 but also other specified threshold 

values. The Bayesian network model presented here can easily be mapped to the main 

steps of traditional risk characterisation frameworks. The Bayesian network approach can 

still apply an uncertainty factor to account for additional uncertainties that are not captured by 

the exposure and effects distributions, corresponding to the assessment factor used in 

traditional risk assessment. Thus, Bayesian networks can offer a transparent way of 
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evaluating the characterization of uncertainty required for pesticide risk assessment as well 

as for ecological risk assessment in general (Carriger & Barron, 2020). 

Our planned further development of this Bayesian network includes extending the model for 

cumulative risk assessment of pesticide mixtures in the aquatic ecosystem. Furthermore, we 

will incorporate climate and agricultural scenarios to predict environmental risk of pesticides 

under future conditions.  
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Appendix A 

Table A. 1 Overview of several probabilistic assessment methods 

Reference Method title Risk 

uncertainty 

Ecosystem Stressor Effect, Used 

endpoint 

Exposure 

distribution 

type 

Effect distribution 

type 

Exposure, Non-

detects 

Solomon et al. (1996) Quantitative 

Overlap 

No aquatic 

ecosystems 

Triazine herbicide 

atrazin 

EC50, LC50, 

some NOEC 

log-normal log-normal assigning a zero 

or threshold 

value to the 

results 

Manz et al. (1999) Quantitative 

Overlap 

No soil Heavy metal NOEC logarithmic 

curve, bell-

shaped 

cumulative NOEC 

distributions, log-

logistic distribution 

functions 

NA 

Cardwell et al. (1999) Some type of 

Joint 

probability 

curve 

Qualitative surface water Tributyltin (TBT) 

expected 

NOEC, 

LOEC 

probability 

density 

function, 

logistic 

regression 

model 

probability density 

function, logistic 

regression model 

associated with 

zero risk 

Moore et al. (1999) Risk function Qualitative piscivorous 

species: mink 

and belted 

kingfisher 

Methylmercury and 

PCBs 

LOAELs, 

NOAELs 

log-normal & 

point 

estimate 

NA NA 

Giddings et al. (2000) Joint 

probability 

curve 

Qualitative arthropods Diazinon (general-

purpose gardening 

use and indoor pest 

control) 

NOEC, LC50 log-normal 

regression 

line 

log-normal 

regression lines 

assigned the 

dummy value of 

zero 
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Campbell et al. (2000) Probabilistic 

risk quotient 

No aquatic 

environment 

Diquat dibromide 

(contact herbicide) 

LC50/ EC50 cumulative 

probability 

distributions, 

custom 

distribution 

cumulative 

probability 

distributions, 

lognormal 

distribution 

NA 

Solomon et al. (2000) Quantitative 

Overlap 

No NA NA LOAEL or 

extrapolated 

EC0 

(cumulative) 

log-normal 

distribution 

(cumulative) log-

normal distribution 

NA 

Quantitative 

Overlap 

No aquatic species Chlorpyrifos 

(insecticide) 

LOAEL or 

extrapolated 

EC0 

linearized 

probability 

linearized 

probability 

assigned a 

dummy value of 

zero 

Duvall and Barron 

(2000) 

Probabilistic 

risk quotient 

semi-

quantitative 

aquatic food 

web 

Mercury NOEC, 

LOEC 

triangular 

and uniform 

distribution, 

probability 

distribution 

function 

triangular 

distribution 

(probability 

distribution 

function) 

NA 

Maund et al. (2001) PRQ based on 

SSD and an 

ECD point 

estimate 

No aquatic 

ecosystems, 

toxicity to fish 

and aquatic 

invertebrates 

synthetic pyrethroid 

insecticides 

EC50, LC50 "custom 

distribution" 

"custom 

distribution" 

NA 

Aldenberg et al., 2002 

(Posthuma et al. 

(2001)) 

Mathematical 

Risk 

framework 

Qualitative NA Cadmium NOEC ECs as log-

normal 

distributions 

normal (Gaussian) 

PDF, normally 

distributed SSDs 

NA 

Poletika et al. (2002) Quantitative 

Overlap 

No aquatic 

organisms 

residing in a 

organophosphorous 

(OP) insecticide 

chlorpyrifos 

EC50/LC50 cumulative 

distributions 

linear regression 

from a probability-

NA 
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river basin (fish 

and benthic 

invertebrates) 

log concentration 

plot 

Schwacke et al. 

(2002) 

Risk function Yes marine 

mammals 

PCB NA log-normal log-normal 
 

Hall et al. 2000 Quantitative 

Overlap 

NA saltwater 

community, 

long–term 

viability of 

aquatic 

communities in 

the case area 

Tributyltin (e.g. used 

for antifouling for 

boats) 

acute and 

chronic data, 

NOEL 

probability 

distribution, 

log-normal 

distributions 

probability 

distribution, log-

normal distributions 

assumed to be 

distributed along 

a lower 

extension of the 

distribution. 

Verdonck (2003) Joint 

probability 

curve/ Risk 

quotient 

distribution 

NA NA NA chronic effect 

on 

reproduction 

cumulative 

distribution 

functions, 

log-normal 

distributions 

cumulative 

distribution 

functions, log-

normal distributions 

NA 

Probabilistic 

risk quotient 

NA NA Atrazine (herbicide) NOEC log-normal 

distribution 

cumulative 

probability 

distribution 

random number 

between zero 

and the 

detection limit 

Dreier et al. (2020) Joint 

probability 

curve 

NA aquatic 

ecosystem 

Thiamethoxam, 

Chlorothalonil, 

Atrazine 

EC50, LC50 "custom 

distribution" 

cumulative 

probability 

distribution 
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