

1 **SOD2 in Skeletal Muscle: New Insights from an Inducible**
2 **Deletion Model.**

3

4 Aowen Zhuang^{1,2,3}, Christine Yang¹, Yingying Liu¹, Yanie Tan^{1,2} Simon T. Bond^{1,2,3},
5 Shannen Walker^{1,2}, Tim Sikora¹, Arpeeta Sharma¹, Judy B. de Haan^{1,2,3,4,5}, Peter J.
6 Meikle^{1,2,3}, Melinda T. Coughlan^{1,6}, Anna C. Calkin^{1,2,3} & Brian G. Drew^{1,2,3*}

7

8 1. Baker Heart & Diabetes Institute, Melbourne, Australia, 3004.
9 2. Central Clinical School, Monash University, Melbourne, Australia, 3004
10 3. Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne,
11 Australia,
12 4. Department of Physiology, Anatomy and Microbiology, La Trobe University,
13 Melbourne, Australia, 3083
14 5. Faculty of Science, Engineering and Technology, Swinburne University, Melbourne,
15 Australia, 3122
16 6. Department of Diabetes, Central Clinical School, Monash University, Melbourne,
17 Australia, 3004

18

19

20

21 * Author for correspondence: brian.drew@baker.edu.au

22

23 **Abstract**

24 Metabolic conditions such as obesity, insulin resistance and glucose intolerance are
25 frequently associated with impairments in skeletal muscle function and metabolism. This is
26 often linked to dysregulation of homeostatic pathways including an increase in reactive
27 oxygen species (ROS) and oxidative stress. One of the main sites of ROS production is the
28 mitochondria, where the flux of substrates through the electron transport chain (ETC) can
29 result in the generation of oxygen free radicals. Fortunately, several mechanisms exist to
30 buffer bursts of intracellular ROS and peroxide production, including the enzymes Catalase,
31 Glutathione Peroxidase and Superoxide Dismutase (SOD). Of the latter there are two
32 intracellular isoforms; SOD1 which is mostly cytoplasmic, and SOD2 which is found
33 exclusively in the mitochondria. Developmental and chronic loss of these enzymes has been
34 linked to disease in several studies, however the temporal effects of these disturbances remain
35 largely unexplored. Here, we induced a post-developmental (8-week old mice) deletion of
36 SOD2 in skeletal muscle (SOD2-iMKO) and demonstrate that 16 weeks of SOD2 deletion
37 leads to no major impairment in whole body metabolism, despite these mice displaying
38 alterations in aspects of mitochondrial abundance and voluntary ambulatory movement.
39 Furthermore, we demonstrated that SOD2 deletion impacts on specific aspects of muscle
40 lipid metabolism, including the abundance of phospholipids and phosphatidic acid (PA), the
41 latter being a key intermediate in several cellular signaling pathways. Thus, our findings
42 suggest that post-developmental deletion of SOD2 induces a more subtle phenotype than
43 previous embryonic models have shown, allowing us to highlight a previously unrecognized
44 link between SOD2, mitochondrial function and bioactive lipid species including PA.

45

46 **Introduction**

47 Insulin resistance, glucose intolerance and type 2 diabetes are strongly influenced by a
48 combination of genetics and lifestyle, which is further compounded by the process of ageing¹.
49 Many pathways have been identified as contributing determinants of these diseases, however
50 one of the most consistent, reproducible features amongst them all is mitochondrial
51 dysfunction². This suggests a direct association between mitochondrial function in peripheral
52 tissues and the progression of metabolic disease, however which of these conditions is the
53 primary driving factor remains to be determined. In an effort to tease out this relationship,
54 studies have suggested that early insults that directly impact on mitochondria, such as
55 mutations in key mitochondrial genes, promote mitochondrial dysfunction and induce type 2
56 diabetes³.

57

58 When mitochondria are dysfunctional they are often less efficient at generating ATP through
59 oxidative phosphorylation, and thus several toxic by-products are generated including
60 excessive amounts reactive oxygen species (ROS). Whilst ROS in normal concentrations are
61 important cellular signaling molecules, excessive and chronic production of ROS can lead to
62 deleterious effects including oxidation of proteins and metabolites, mutation of mitochondrial
63 DNA, inhibition of glycolysis and the promotion of advanced glycation end products⁴.
64 Fortunately, in a healthy cell several mechanisms exist to buffer these transient bursts of
65 ROS, including the activity of intracellular enzymes such as Catalase and Glutathione
66 Peroxidase (Gpx1), and two isoforms of Superoxide Dismutase (SOD); SOD1 and SOD2⁵.

67

68 The ROS buffering capacity of a cell can, however, be significantly reduced by several
69 mechanisms including mutations in genes important for ROS production or scavenging, or
70 perturbations to energy substrate metabolism. For example, when a cell is exposed to high

71 levels of glucose, this forces excess substrate through the electron transport chain (ETC),
72 placing a greater demand on resources⁴. Inevitably, the ETC becomes overloaded and unless
73 there is an outlet for the increased electrons produced along the pathway such as uncoupling
74 proteins, they are instead shunted onto molecular oxygen which chemically reduces it to
75 produce superoxides, or ROS. This increase in ROS further reduces mitochondrial capacity
76 and thus sets in place a vicious cycle whereby increasing glucose concentrations continues to
77 elevate levels of ROS, and vice versa⁵.

78

79 Depending on the tissue in which mitochondrial dysfunction and chronic ROS accumulation
80 occurs, it can manifest in different phenotypes. Chronic increases in ROS promotes
81 cardiomyopathy, chronic kidney disease and skeletal muscle atrophy and perturbed energy
82 metabolism⁶. All of these phenotypes are common in the setting of glucose intolerance and
83 diabetes, suggesting that prevention or treatment of pathways that lead to elevated ROS, is of
84 potential therapeutic interest.

85

86 Many groups have been interested in the notion that reducing excessive ROS is a means to
87 preventing disease. Indeed, several pharmaceutical companies have made significant
88 investments into developing modified antioxidant molecules such as MitoQ, MTP-131 and
89 SkQ1 that have demonstrated various levels of efficacy in human trials of sarcopenia, cardiac
90 disease and fatty liver disease⁷. Moreover, preclinical genetic models have elegantly
91 demonstrated that global overexpression of antioxidant enzymes such as catalase and SOD,
92 which aid in mopping up excess ROS, have efficacy in preventing endothelial dysfunction,
93 atherosclerosis, fatty liver, heart disease and glucose intolerance^{8,9}. On the contrary, global
94 genetic deletion of these enzymes induce pathological phenotypes. For example, homozygous
95 deletion of SOD2 (Mn-SOD), a variant of SOD found exclusively in the mitochondria, led to

96 neonatal lethality¹⁰. Furthermore, although viable, heterozygous SOD2 mutants present with
97 many pathologies consistent with mitochondrial dysfunction including poor tolerance to
98 exercise, cardiomyopathy, cardiovascular disease and glucose intolerance^{9,11-15}. Thus,
99 manipulating cellular ROS either through pharmacological or genetic means appears to
100 impact on disease outcomes. A potential downside with the majority of studies thus far, has
101 been the inability to tease out what the tissue specific effects of ROS damage are, which
102 might aid in improving antioxidant targeting for therapeutic benefit.

103

104 One enzyme studied for its tissue specific effects is SOD2, with liver¹⁶, brain¹⁷, adipose¹⁸,
105 heart¹⁹, smooth muscle²⁰ and skeletal muscle^{14,15} specific models all having been generated
106 and phenotyped. Interestingly, the skeletal muscle specific studies have demonstrated striking
107 defects in exercise capacity, muscle strength and mitochondrial activity, similar to what has
108 been observed in whole body models^{14,15}. An important point to note is that these prior
109 models deleted SOD2 during early development, raising questions as to whether the observed
110 phenotypes were due to increased mitochondrial ROS in fully matured muscle *per se*, or
111 whether in fact the loss of SOD2 and a subsequent increase in ROS in the developmental
112 stages, impacted skeletal muscle development directly. Thus, studies which aim to understand
113 the effect of SOD2 deletion in skeletal muscle post-development, stand to overcome this
114 limitation and shed new light on our understanding of this pathway.

115

116 In this study we investigated the molecular and metabolic effects of SOD2 deletion from the
117 musculature in post-developmental male mice from 8 weeks of age.

118 **Results**

119 **Generation and validation of post-developmental, skeletal muscle specific SOD2-knock**
120 **out mice**

121 To generate mice with deletion of SOD2 in skeletal muscle post-development, we crossed
122 SOD2 floxed (SOD2 fl/fl) mice with ACTA1-creERT2 (mCre) mice. The resulting SOD2
123 fl/fl and fl/fl-creERT2 (fl/fl-mCre) male mice were subsequently administered Tamoxifen
124 (TAM; 80mg/kg) in sunflower oil treated by gavage, or with sunflower oil alone for 3
125 consecutive days at approximately 8 weeks of age to activate cre-recombinase. Mice were
126 then fed a high fat diet for the subsequent 12 weeks to metabolically stress the animals. A
127 separate cohort of fl/fl and fl/fl-mCre mice were treated with tamoxifen, and fed a normal
128 chow diet for 12 weeks (no vehicle control mice for chow study). High fat diet (HFD) mice
129 underwent a comprehensive phenotyping regimen over the 12-week period before collecting
130 tissues at the end of the study following a 6 hour fast. Blood and tissues were also collected
131 from chow fed mice at study end.

132

133 Using qPCR analysis (see **Table 1** for qPCR primers sets) on muscle acquired from HFD fed
134 mice, we demonstrated that cre-recombinase expression was specific to skeletal muscle, with
135 no expression detected in liver or white adipose tissue (WAT) (**Figure 1A**). Moreover, SOD2
136 mRNA expression was almost completely ablated in skeletal muscle, whereas no change was
137 observed in liver or WAT (**Figure 1B**). To investigate the effect of cre-lox activity in
138 different muscle tissues, we investigated cre-recombinase and SOD2 mRNA expression in a
139 mixed fibre-type muscle (*Tibialis anterior* – TA), a red fibre-type muscle (*soleus*) and a
140 white fibre-type muscle (*Extensor digitorum longus* – EDL). These results demonstrate that
141 cre-expression appears to be lower in the *Soleus* red muscle fibre type compared to TA and
142 EDL (**Figure 1C**), however the deletion of SOD2 was equivalent between all three muscle

143 types (**Figure 1D**), validating SOD2-deletion in all muscle types. To confirm that ablation of
144 SOD2 mRNA resulted in deletion of the SOD2 protein, we performed western blots on TA
145 muscles from both chow and high-fat diet (HFD) fed mice. This demonstrated almost
146 complete ablation of SOD2 in fl/fl-mCre (KO) muscle compared to fl/fl mice (WT) (**Figure**
147 **1E**).

148

149 Upon demonstrating that SOD2 mRNA and protein was specifically deleted in the skeletal
150 muscles of fl/fl-mCre mice, we next sought to investigate the effect of SOD2 deletion on
151 readouts of redox regulation in skeletal muscle. This was performed on three different
152 muscles (TA, EDL and Soleus) from HFD fed animals, across all 4 groups of mice;
153 WT+OIL, mCre+OIL, WT+TAM and mCre+TAM. We initially performed gene expression
154 analysis using qPCR for known enzymes that are involved in redox regulation including *Nrf2*,
155 *p47Phox*, *p22Phox* and *Nox2* (**Figures 1F-H**). These genes were largely unaffected by the
156 deletion of SOD2 (dark blue bars), except for *Nox2* which was significantly increased in TA
157 of KO mice (**Figure 1H, dark blue bar**), whilst *Nrf2* and *p47phox* showed a trend to be
158 increased in the EDL of KO mice (**Figure 1G, dark blue bar**). No genes were altered by the
159 deletion of SOD2 in the soleus, although it did appear that Tamoxifen treatment alone
160 induced a general reduction in each of the genes assayed (**Figure 1H, blue bars**).

161

162 Next we investigated the effect of SOD2 deletion on the abundance of reactive oxygen
163 species (ROS), and downstream products known to be altered by oxidative stress. **Figure 1I**
164 shows the abundance of 4-hydroxynonenal (4HNE) protein adducts as determined by
165 Western blot, which are often generated as a result of increased free radicals. Skeletal muscle
166 deletion of SOD2 resulted in a reduction of 4HNE staining in TA muscles from both chow
167 and HFD fed animals, which was significantly (p=0.004) different in the HFD fed animals

168 (Figure 1J), indicating a reduced protein peroxidation in the absence of SOD2. We also
169 performed a direct measure of peroxides (e.g. H₂O₂) in the TA muscles using an Amplex Red
170 Assay, which demonstrated an increase in the abundance of peroxides in the skeletal muscle
171 of HFD fed animals compared to chow fed animals. However, SOD2 KO did not have any
172 impact on peroxide abundance (Figure 1K), which is somewhat surprising given that the role
173 of SOD2 is to convert mitochondrial superoxides and thus one might have expected a
174 decrease in peroxide concentration in the absence of SOD2. Given there was no change in the
175 level of peroxide in SOD2 KO compared to WT HFD fed mice, this would suggest that the
176 majority of peroxide generated in this setting are not derived from the mitochondria, and is
177 likely impacted by alterations in other enzymes including SOD1. Finally, we measured the
178 amount of nitrotyrosine products generated in TA muscles of WT and SOD2-KO (mCre)
179 HFD fed mice. This demonstrated a ~2-fold increase in positive staining for nitrotyrosine in
180 muscle sections of SOD2 KO muscle (p<0.05; Figure 1L), suggestive of increased
181 superoxide levels in SOD2 KO that lead to increased protein nitration via peroxynitrite
182 intermediates. Together, these data confirm that post-developmental deletion of SOD2 leads
183 to alterations in redox readouts in skeletal muscle, with nitrotyrosine noticeably increased in
184 KO muscles.

185

186 **Inducible, muscle specific knock out of SOD2 has no effect on body mass or organ**
187 **weights**

188 Upon demonstrating successful generation of muscle specific SOD2 KO mice with mild
189 alterations to redox homeostasis, we sought to investigate if feeding these mice a HFD led to
190 genotype specific alterations in body mass and tissue weights. Weekly analysis of body
191 weight revealed that KO mice (mCre+TAM) had a similar weight gain over the 12 week
192 study compared to the three control models (WT+OIL, mCre+OIL, WT+TAM) (Figure 2A).

193 This was confirmed by EchoMRI that demonstrated no difference in lean mass (**Figure 2B**)
194 or fat mass (**Figure 2C**) between all groups at any of the timepoints measured; however, it
195 did demonstrate marked increase in fat mass in all models in response to HFD, as expected.
196 With regard to organ weights at study end, we demonstrated no difference in EDL (**Figure**
197 **2D**), TA (**Figure 2E**), liver (**Figure 2F**) or gonadal white adipose tissue (gWAT) (**Figure**
198 **2G**) weight across the four cohorts. Overall, these data demonstrated that inducible, muscle
199 specific SOD2 KO does not alter body mass or tissue weights in mice fed a HFD for 12
200 weeks.

201

202 **Inducible, muscle specific knock out of SOD2 alters ambulatory movement behaviour,**
203 **but does not affect glucose tolerance**

204 After demonstrating that inducible deletion of SOD2 in skeletal muscle had no effect on total
205 body mass or organ weights, we sought to determine if subclinical changes in metabolism
206 and movement behavior were apparent in these mice. To study these outputs, we placed the
207 WT+TAM and mCre+TAM cohorts in a Promethion High-Definition Multiplexed
208 Respirometry System both prior to commencement of diet (baseline) and after 10 weeks of
209 HFD feeding (End HFD). The Promethion system performs repeated measures of whole body
210 respiration, activity behavior and daily movement of individual mice across the entire 24-
211 hour analysis period. These studies demonstrated that the respiratory exchange ratio (RER)
212 between the two genotypes was not different at any particular period over the 24 hours
213 (**Figure 3A**). There was also no difference in RER between genotypes at baseline or after
214 HFD (**Figures 3B&3C**), or in energy expenditure (EE) (**Figures 3D&3E**). However, as
215 expected there was a drop in the RER observed between baseline and HFD, particularly
216 during the night period (~0.85 to 0.78 at light, ~0.93 to 0.6 at dark, for NC vs HFD
217 respectively), consistent with the animals using more fat for energy production. HFD feeding

218 also coincided with an increased EE after HFD feeding compared to baseline, which was
219 particularly noticeable during the light cycle, likely reflecting the high-energy content of the
220 diet they were consuming.

221

222 Further to respiration and energy expenditure measures, the Promethion system is able to
223 provide insights into animal behavior and ambulatory movement. We observed a noticeable
224 shift in the times and pattern of active movement in the KO mice compared to WT mice
225 (**Figure 3F**). In this panel, it was observed that KO animals tended to do more intense
226 movement early on in the night cycle, when they first wake, compared to WT mice.
227 Following this bout of movement, they tended not to move again substantially until the end of
228 the night cycle, which then continued well into the early part of the day cycle. These altered
229 behaviors encouraged us to investigate this finding further, and thus we studied their
230 locomotion and exercise behaviours. To do this we compared the distance and speed at which
231 they travelled on the running wheel at the start of the study (baseline), with that at the end of
232 the study (end of HFD). This was performed for both genotypes and separated into light and
233 dark activity cycles. Thus, if the distance and speed the mice covered was the same at the
234 beginning and the end of the study, the “delta” would be zero. We demonstrated that there
235 was no difference in the distance both genotypes ran at the start and the end of study during
236 the day time cycle (**Figure 3G**), nor was there a difference in WT mice in the night time
237 cycle. However, there was a strong trend for a reduced distance covered by KO mice in wheel
238 distance in the night time cycle, as indicated by the negative delta. With regards to wheel
239 speed, we demonstrated that both genotypes were unable to maintain the same speed at the
240 end of the study compared to their baseline speeds (perhaps due to the HFD), however there
241 was a noticeable and robust decline in wheel speed in the KO mice in the nighttime cycle

242 compared to WT mice (**Figure 3H**). These data collectively demonstrate that KO mice have a
243 decline in the capacity to travel the same distance, and at the same speed as WT mice.

244

245 Another measure we can obtain from Promethion is positional probability mapping, which
246 uses data collected over the entire analysis period to estimate cumulative animal movement
247 behaviours. This analysis demonstrated that KO mice spend more time “lounging” in specific
248 regions of the cage for long periods of time than WT mice (**Figure 3I and 3J**). This can be
249 observed both in the day time (**Figure 3I**), where less lounge spots for the KO mice indicate
250 longer time spent in the one spot, and at night time (**Figure 3J**) where the KO mice spend far
251 less time near the wheel and closer to lounge spots. In an attempt to quantify these
252 observations, we used behavioral transition analysis to infer the percent of time the different
253 genotypes spent doing each activity (**Figure 3K&3L**). The propensity for KO mice to take a
254 long lounge (llnge) appeared to be more apparent after they had either eaten food, drank
255 water or undertaken exercise (KO vs WT: 41% vs 26%, 36% vs 25%, 59% vs 24%
256 respectively), suggestive of fatigue (increased percentage shown in red). Indeed, WT mice
257 were more likely to take a short lounge (slnge) after eating or drinking, supporting the notion
258 that KO mice were more lethargic and less willing to stay active after these activities.

259

260 To determine whether these alterations in ambulatory movement and animal behavior
261 impacted on metabolism of energy substrates in these mice, we assessed their whole body
262 glucose regulation. At baseline there were no differences in either basal fasting glucose
263 (**Figure 3M**), or in their tolerance to a standardized bolus of glucose (**Figure 3N**). Indeed,
264 this remained similar throughout the HFD feeding regimen where, despite glucose tolerance
265 deteriorating as expected over the HFD feeding period, it remained similar between the KOs
266 and all three control models at both 4 weeks and 12 weeks post diet (**Figures 3O-3R**). Thus,

267 although the movement and behavior of the KO mice was altered, this did not appear to
268 impact on glucose tolerance in these animals, even following a 12-week HFD challenge.

269

270 **Inducible, muscle specific knock out of SOD2 induces changes in skeletal muscle**
271 **mitochondrial composition**

272 Given that SOD2 is localized to the mitochondria, and that we observed phenotypes in KO
273 mice that were reminiscent of lethargy that is often observed in models with mitochondrial
274 deficits, we performed experiments to test aspects of mitochondrial activity. We initially
275 performed analysis on the abundance of mtDNA in the TA muscle of all four cohorts from
276 the HFD study (**Figure 4A**). These data demonstrated that mtDNA abundance was not
277 different between KO mice and the various control cohorts. Next, we performed Western blot
278 analysis on the TA muscles from WT+TAM and mCre+TAM animals fed both chow and
279 HFD to investigate the abundance of representative proteins from each of the five complexes
280 of the electron transport chain (ETC) (**Figure 4B**). These data demonstrated that SOD2 KO
281 mice had a substantial reduction in the abundance of both Complex I and Complex II proteins
282 of the ETC (**Figure 4C**). Moreover, although not significant, there was a notable trend for a
283 reduction in all other complexes of the ETC. Given the robust reductions in ETC complex I
284 and II, we performed gene expression analysis on the three different muscle types (TA, EDL,
285 Soleus) from all four cohorts of mice that were fed a HFD, to determine if this phenotype
286 might be driven by transcriptional changes in mitochondrial genes (**Figures 4D-4F**). These
287 data demonstrated that although some genes were modestly changed in KO TA muscles (e.g.
288 *Ppargc1a* and *Ndufs1*), overall the expression of key mitochondrial genes was not altered by
289 deletion of SOD2. These findings indicated that key components of the mitochondrial ETC
290 were reduced in SOD2 KO skeletal muscles, but this was not due to changes in mtDNA

291 abundance or changes in gene transcription, suggesting a post-translational effect on ETC
292 complex abundance in this model potentially due to altered redox homeostasis.

293

294 **Inducible, muscle specific knock out of SOD2 alters pathways involved in energy
295 substrate utilisation.**

296 Given the subtle alterations in mitochondrial readouts, we speculated whether SOD2 KO
297 mice might also demonstrate changes in pathways that regulate skeletal muscle energy
298 metabolism. A well-described regulator of skeletal muscle energy metabolism is AMP
299 activated protein kinase (AMPK), which alters both glucose and lipid metabolism in the
300 setting of increased energy demand. We performed Western blots in the TA muscles from
301 both chow and HFD fed WT and KO mice, which demonstrated that SOD2 KO muscles had
302 an increased phosphorylation of the AMPKalpha subunit at the Thr172 activation site,
303 compared to WT mice (**Figure 5A&5B**). Basal phosphorylation of AMPK was blunted in
304 WT mice fed a HFD, however the increase in AMPK phosphorylation that was observed in
305 KO mice fed a chow diet was abolished in KO mice fed a HFD. This result suggested that
306 loss of SOD2 in a chow setting impacted on metabolic pathways that resulted in an increased
307 need for energy, perhaps due to loss of mitochondrial efficiency, however this effect was
308 confounded by the HFD milieu. In an attempt to further investigate the impact on muscle
309 function, we performed qPCR analysis in the TA, EDL and Soleus muscles. There were no
310 statistically significant differences in the abundance of any metabolism related genes in the
311 KO (mCre+TAM) group compared to the three control groups (**Figure 5B-5D**). Moreover,
312 given previous studies have indicated that developmental loss of SOD2 in skeletal muscle can
313 lead to alterations in muscle morphology and branching²¹, we subsequently analyzed the
314 abundance of genes that might suggest changes in these pathways. Our data demonstrated
315 that there was a change in the abundance of *Mef2c*, *Myog* and *Myod*, which are

316 transcriptional regulators of skeletal muscle myogenesis (**Figure 5B-5D**). Specifically, there
317 was a trend towards reduced *Mef2C* and *MyoD* in the TA muscle, and in *MyoD* in the EDL.
318 These findings are consistent with those previously described, and potentially indicate that
319 SOD2 null muscle has a mild impairment in muscle myogenesis.

320

321 **Inducible, muscle specific knock out of SOD2 alters specific lipid pathways in skeletal**
322 **muscle tissue.**

323 Finally, given that we have shown that inducible SOD2 deletion in skeletal muscle leads to
324 subtle changes in mitochondrial and metabolic pathways, we sought to investigate if these
325 changes affected lipid metabolism. Lipids are important signaling molecules, critical
326 substrates for energy metabolism, and potent regulators of mitochondrial function. Thus, we
327 performed ESI-MS/MS lipidomics analysis on muscle homogenates from all four cohorts of
328 mice fed a HFD, and compared their lipidomes. We first analysed the total abundance of each
329 of the 33 classes of lipids, which provided a global insight into the skeletal muscle lipidomes
330 across the cohorts (**Figure 6A**). It was observed that in general the tamoxifen treatment had a
331 noticeable impact on muscle lipid abundance, with an evident reduction in the abundance of
332 several classes in mice treated with tamoxifen. This was particularly apparent in the
333 triglyceride class (TG-SIM and TG-O), where these lipids appeared to be reduced by up to
334 50% as a response to Tamoxifen (WT+TAM and mCre-TAM cohorts; **Figure 6A**). Whilst
335 many of the lipid classes were unaffected by the tamoxifen and deletion of SOD2, there were
336 three particular lipid classes that were significantly reduced by SOD2 deletion, that were
337 independent of any effects of Tamoxifen itself. These were diacylglycerols (DG), free fatty
338 acids (FFA) and lysophospholipids (lysophosphatidylcholines - LPC,
339 lysophosphatidylethanolamines - LPE and lysophosphatidylinositols - LPI). Several

340 phosphate-containing lipid classes also exhibited a trend towards an increase in abundance in
341 the SOD2 KO muscle, including phosphatidic acids (PA), phosphatidylcholines (PCs) and
342 phosphatidylethanolamines (PEs). Given the significant differences observed in the DGs and
343 FFAs, we performed a more in depth analysis of these lipids to investigate the effect of SOD2
344 KO on the individual species within these classes. We observed that several individual
345 species of DG were significantly reduced by SOD2 KO, including many of the high
346 abundance DGs such as those containing 16: ω and 18: ω fatty acids (**Figure 6B**). This was
347 also reflected in the individual species of FFAs, where significant reductions were also
348 observed for 4 different species including the 16: ω and 18: ω fatty acids (**Figure 6C**). The
349 combined change in lysophospholipids demonstrated the global impact that SOD2 KO had on
350 these lipid classes (**Figure 6D**). Overall, these data demonstrated that SOD2 deletion in
351 skeletal muscle impacts on specific lipid pathways that are an important energy source for the
352 mitochondria (i.e. FFAs). Moreover, there appeared to be a global impact on the level of
353 phospholipids, with a potential activation of the pathways that clear the more toxic
354 lysophospholipids such as LPC, LPE and LPI, into their acylated stable forms including PC
355 and PE, a process catalyzed by lysophosphatidylcholine acyltransferase (LPCAT). In
356 addition, an intriguing observation from these datasets is that the pathway responsible for
357 conversion of phosphatidic acid (PA) into diacylglycerol (DG), appeared to be substantially
358 impacted. This was evidenced by an increase in PA (the precursor) abundance and a decrease
359 in DG (the downstream product) abundance, a reaction that is catalyzed by the enzyme
360 phosphatidic acid phosphatase (PAP)/Lipin1. In light of these findings, we were interested to
361 investigate whether we could detect differences in the amount Lipin1 in skeletal muscle of
362 these animals. Western blotting for Lipin1 in WT and SOD2 KO muscles demonstrated that
363 there were no alterations in the overall abundance of Lipin1 between WT and KO muscles, in
364 either chow or HFD fed mice (**Figure 6E**). Collectively, these findings suggest that SOD2

365 either directly or indirectly affects pathways that are involved in the metabolism of lipids,
366 particularly phosphatidylcholine, providing interesting insights into a previously unexplored
367 role of SOD2 in skeletal muscle.

368 **Discussion**

369 In the current study, we demonstrate that post-developmental, skeletal muscle specific
370 deletion of SOD2 imparts subtle effects on whole body physiology, which likely manifest as
371 escalating deficits in mitochondrial function and subsequently energy metabolism. We also
372 identify previously unrecognised alterations in specific lipid pathways in SOD2 KO muscles,
373 which potentially define a new area of interest in the SOD2 field.

374

375 Previous studies investigating SOD2 deletion in skeletal muscle have done so either in
376 heterozygous global null models¹², or in muscle specific KO models that delete SOD2 whilst
377 the muscles are still developing in utero^{14,15}. Our study is the first to our knowledge that
378 describes a deletion of SOD2 in skeletal muscle of mice that were already fully developed
379 (i.e. at 8 weeks of age). Subsequent deletion of SOD2 for approximately 14 weeks (almost
380 60% of their entire life), did not recapitulate much of the prior phenotypes related to SOD2
381 deficiency in skeletal muscle, identifying important caveats to previous literature. The failure
382 for our post-developmental model to recapitulate the robust muscle atrophy/weakness
383 phenotype and impairments in glucose metabolism described in previous studies, speaks to
384 the potential important roles of SOD2 in the developing muscle. Even when challenged with
385 a high fat-diet (HFD), which we demonstrated to drive increases in oxidative damage and
386 glucose intolerance, SOD2 KO mice did not demonstrate any additional deterioration.

387

388 Instead, the SOD2 KO mice demonstrated a more subtle phenotype, which, upon further
389 investigation revealed a hereto unrecognised link between SOD2 and lipid metabolism. This
390 included altered phospholipid (PL) abundance and the availability of important lipid
391 intermediates such as diacylglycerols (DG) and free fatty acids (FFA). It is plausible that these
392 pathways may have also been altered in previous models of SOD2 deletion, however it would

393 have been difficult to tease out these subtle effects from the well progressed and
394 overwhelming atrophy phenotype in those developmental models.

395

396 The alteration in these specific lipid species is intriguing, given that they all form part of a
397 larger signaling network that regulates metabolism and several other important systems in
398 skeletal muscle. Central to this network is the reciprocal regulation of phosphatidic acid (PA)
399 and DG abundance, which is facilitated by opposing actions of PAP/lipin1 (PA → DG) and
400 diacylglycerol kinase (DGK) (DG → PA)²². Several studies have investigated these specific
401 enzyme complexes in skeletal muscle, all of which have demonstrated consistent phenotypes
402 with that described in our and other muscle-specific SOD2 deletion studies. The data
403 presented in our current study, would suggest that loss of SOD2 in skeletal muscle leads to
404 either a reduction in PAP/Lipin1 activity, an increase in DGK activity, or a combination of
405 both. Indeed, Lipin1 deficiency in skeletal muscle, which increases PA abundance and
406 decreases DG abundance, leads to muscle atrophy, impaired autophagy and reductions in
407 mitochondrial function²³⁻²⁵. This is consistent with the lipid alterations and reductions in
408 mitochondrial protein abundance observed in SOD2 KO muscles. However, our data
409 demonstrate that Lipin1 levels were not altered by SOD2 KO, which may indicate a lack of
410 effect of this pathway. A caveat to these findings is that total abundance of Lipin1 is not a
411 robust readout of activity, and thus other measures of function such as phosphorylation would
412 strengthen these interpretations.

413

414 With regards to DGK, loss of different isoforms in skeletal muscle appears to impact on
415 insulin signaling and AMP kinase activity, but not on mitochondrial function. Specifically,
416 deletion of DGK δ increases DG levels, which in turn reduces AMPK phosphorylation and
417 impaired lipid oxidation²⁶. In SOD2 KO muscles, we observed decreased DG abundance and

418 increased AMPK phosphorylation (in chow fed mice), consistent with effects described for
419 DGK pathways. Unfortunately, we do not have data on DGK activity, so we cannot comment
420 as to whether these pathways are responsible. Nevertheless, we speculate that in developed
421 skeletal muscle, deletion of SOD2 initially impacts on this PA/DG lipid axis, which
422 subsequently leads to reductions in mitochondrial function and a worsening lethargy
423 phenotype, further perpetuating the effect of SOD2 deletion.

424

425 Further support for this PA/DG pathway being instrumental to the SOD2 phenotype, comes
426 from studies performed in drosophila and *C. elegans*. Lin et al. described alterations in the
427 DG/PA pathway that impacted on longevity via the ability of PA to activate the mTOR
428 pathway²⁷. These studies also demonstrated that modulation of these pathways resulted in
429 higher susceptibility to oxidative stress-induced alterations in lifespan. Thus, PA/DG and
430 oxidative stress may combine to form a critical axis that regulates skeletal muscle health and
431 lifespan.

432

433 Despite these several lines of evidence, it remains unknown how the loss of SOD2 impacts on
434 this axis, and perhaps disruption of redox signaling in skeletal muscle could influence PA
435 levels and enzymes important in these pathways. Recent studies from Neufer et al. (2020)
436 have demonstrated this to be a possibility, with studies from their lab linking beta-oxidation
437 and redox homeostasis with Lipin1 activity and insulin resistance^{28,29}. It is also possible that
438 these proteins somehow interact with each other or within similar complexes, which might
439 alter their activity or substrate availability. However, preliminary investigations from our
440 group using deposited open-access protein-protein interaction datasets do not support this
441 hypothesis (not shown), with no evidence for a direct or secondary interaction between these
442 proteins. Another possibility is that loss of SOD2 subtly alters respiratory kinetics locally at

443 the mitochondrial membrane, which secondarily impacts substrate and lipidome abundance
444 within the mitochondria, leading to noticeable effects on cellular function over time. A recent
445 study demonstrated that skeletal muscle specific loss of the enzyme Phosphatidylserine
446 Decarboxylase (PSD), which synthesizes mitochondrial phosphatidylethanolamines (PE),
447 leads to striking defects in mitochondrial and muscle function³⁰. This loss of PE resulted in
448 increased production of ROS from the mitochondria, implicating ROS as being important to
449 this phenotype. Although we do not observe alterations in PE levels in this model, these data
450 provide a direct role for mitochondrial lipids in regulating respiratory efficiency.

451

452 Overall, our data provide previously unrecognized effects of SOD2 deletion in skeletal
453 muscle. Whilst our whole body analyses demonstrate only moderate impacts of post-
454 developmental deletion of SOD2 on some aspects of metabolism and muscle function
455 compared to previous literature, our lipidomics analysis revealed intriguing alterations to the
456 PA/DG pathway - providing a new link between redox biology and mitochondrial function.
457 An obvious limitation to our current study is the short time frame over which we studied the
458 animals, and had we allowed the animals to age for a longer period, a more robust phenotype
459 may have developed. Moreover, we only challenged the animals with a HFD and no other
460 interventions such as intense exercise training or muscle strain. Indeed, the HFD may not
461 have been sufficient to precipitate the appropriate stress to accelerate disease. Conversely,
462 had we utilized a more accelerated disease model, we may not have observed some of the
463 subtle effects on lipid metabolism. Nevertheless, our current data provide unique insights into
464 the underlying mechanisms by which SOD2 functions in skeletal muscle, highlighting
465 previously unexplored interactions with specific lipid pathways important in development
466 and disease.

467 **Methods**

468 **Animals**

469 All animal experiments were approved by the Alfred Research Alliance (ARA) Animal
470 Ethics committee (E/1618/2016/B) and performed in accordance with the research guidelines
471 set out by the National Health and Medical Research Council of Australia. SOD2 deletion
472 was achieved using the Cre-Lox system. For inducible, skeletal muscle specific ablation,
473 SOD2 floxed mice (C57BL/6J, a kind gift from Prof Takahiko Shimizu, Chiba University,
474 Japan) were crossed with ACTA1-creERT2 mice (C57BL/6J background, Jackson
475 Laboratories) to generate male cohorts of SOD2^{f/f}-ACTA1-creERT2^{+/+} (SOD2 mCre) or
476 SOD2^{f/f}-ACTA1-creERT2^{-/-} (SOD2 WT). All mice were bred and sourced through the ARA
477 Precinct Animal Centre and randomly allocated to groups. Cohorts of SOD2 mCre and WT
478 mice were aged to 6-8 weeks of age before receiving oral gavage for 3 consecutive days of
479 either Tamoxifen (80mg/kg) in sunflower oil, or sunflower oil alone. Following gavage, mice
480 were left to recover for 2 weeks before being placed on high fat diet (43% energy from fat,
481 #SF04-001 Specialty Feeds) for 12 weeks, or remained on normal chow diet (normal rodent
482 chow, Specialty Feeds, Australia). Animals were housed at 22°C on a 12hr light/dark cycle
483 with access to food and water *ad libitum* with cages changed weekly. At the end of the study
484 mice were fasted for 4-6 hours and then anesthetized with a lethal dose of ketamine/xylazine
485 before blood and tissues were collected, weighed and frozen for subsequent analysis.

486

487 **Tissue Sections and Nitrotyrosine Immunohistochemistry**

488 TA muscles were carefully dissected and cut cross sectionally through the widest part of the
489 muscle tissue. One half of the TA was embedded cut side down in OCT before being frozen
490 in a bath of isopentane submerged in liquid nitrogen vapour. After freezing, blocks were
491 brought to -20°C and 5µm sections were cut using a Leica Cryostat and then subjected to

492 immunohistochemical staining for nitrotyrosine as described previously³¹. Briefly, mounted
493 sections of TA muscle were fixed with cold acetone, and endogenous peroxidases were
494 inactivated with 3% H₂O₂ in Tris-buffered saline. Sections were pre-blocked with a biotin-
495 avidin blocking kit (Vector Laboratories) and then incubated with the nitrotyrosine antibody
496 (Merck Milipore; 1:200) overnight at 4°C. Subsequent secondary antibody, biotinylated anti-
497 rabbit immunoglobulin 1:100 (Dako) was added for 30 min, followed by horseradish
498 peroxidase-conjugated streptavidin, diluted 1:500 (Dako), and incubated for 30 min in 3,3'-
499 diaminobenzidine tetrahydrochloride (DAB) (Sigma-Aldrich). Images were captured on an
500 Olympus Slide scanner VS120 (Olympus) and viewed in OlyVIA (Olympus, build 13771)
501 and quantitated using a singular threshold setting in Fiji across all samples³².

502

503 **Peroxide Abundance using Amplex Red Assay**

504 Muscle peroxide abundance was determined using the Amplex Red assay, as previously
505 described³³. Briefly, TA muscle tissue was homogenised using 20mM HEPES buffer
506 (containing 1mM EGTA, 210mM Mannitol and 70mM sucrose). After normalising protein
507 concentration using a BCA assay (Pierce BCA assay kit), the quantification of hydrogen
508 peroxide was determined using the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit
509 (Molecular Probes) as per the manufacturer's instructions.

510

511 **Glucose Tolerance Tests**

512 Oral glucose tolerance tests (oGTT) were performed at different time points (0, 4 and 12
513 weeks post-HFD) throughout the study period at a dose of 1.5g/kg lean mass as determined
514 by EchoMRI. All oGTTs were performed after a 5 hour fast as previously described³⁴.

515

516 **EchoMRI**

517 Body composition was analysed using the 4-in1 NMR Body Composition Analyzer for Live
518 Small Animals, according to the recommendations of the manufacturer (EchoMRI LLC,
519 Houston, TX, USA). This provides measurements of lean mass, fat mass and free water in
520 living animals as previously described³⁴.

521

522 **Whole Body Energetics**

523 Mice were placed in the Promethion High-Definition Behavioral Phenotyping System for
524 Mice (Sable Systems International, North Las Vegas, NV, USA) at 2 weeks post-tamoxifen
525 (baseline) and 13 weeks post-Tamoxifen (11 weeks post HFD) of age for 3 consecutive days.
526 Recordings for respirometry including energy expenditure (EE) and respiratory exchange
527 ratio (RER) were collected over the final 24-hour period.

528

529 **Movement and Probability Mapping using Promethion**

530 Behavioural phenotyping was conducted using assessments of activity monitoring (X, Y, Z
531 beam breaks and wheel revolutions), in combination with food and water intake. The
532 Promethion EthoScan utility created time and locomotion budgets with behavioural transition
533 matrices for advanced behaviour analysis. Markov chain behaviour transition probability
534 matrices were visualised utilising agl (Automatic Graph Layout, Microsoft Research;
535 <https://rise4fun.com/Agl/>). Positional probability maps were generated across as an average
536 of all positional locations during the 24-hour data collection period. Data was analysed and
537 visualised in R (v3.5.3) with custom R scripts using the open-source SableBase package
538 (Thomas Forester, 2016, Sable Systems International, Las Vegas, version 1.0).

539

540 **SDS-PAGE and Immunoblot**

541 Skeletal muscle was lysed in radio-immunoprecipitation assay (RIPA) buffer supplemented
542 with protease and phosphatase inhibitors. Matched protein quantities were separated by SDS-
543 PAGE and transferred to PVDF membranes. Membranes were blocked in 3% skim milk for 2
544 hours and then incubated with primary antibody overnight at 4°C for the following proteins:
545 4HNE (Abcam, ab46545), β-actin (Santa Cruz Biotech), Total OXPHOS Rodent WB
546 Antibody Cocktail (MitoSciences), pan 14-3-3 (Santa Cruz), phospho-T172 AMPKalpha
547 (Cell Signaling), Lipin-1 (Santa-Cruz Biotech) and total AMPKalpha (Cell Signaling). After
548 incubation with primary antibodies, membranes were washed and probed with their
549 respective HRP-conjugate secondary anti mouse or anti rabbit (Biorad) antibodies in 3% skim
550 milk for 2 hours at room temperature, then visualised with enhanced chemiluminescent
551 substrate (Pierce). Approximated molecular weights of proteins were determined from a co-
552 resolved molecular weight standard (BioRad, #1610374). Image Lab Software (Bio-Rad) was
553 used to perform densitometry analyses, and all quantification results were normalised to their
554 respective loading control or total protein.

555

556 **Quantitative PCR (qPCR)**

557 RNA was isolated from TA, EDL and Soleus muscles using RNAzol reagent and isopropanol
558 precipitation. cDNA was generated from RNA using MMLV reverse transcriptase
559 (Invitrogen) according to the manufacturer's instructions. qPCR was performed on 10ng of
560 cDNA using the SYBR-green method on a QuantStudio 7 Flex Real-Time PCR System,
561 using primer sets outlined in Table 1. Primers were designed to span exon-exon junctions
562 where possible, and were tested for specificity using BLAST (Basic Local Alignment Search
563 Tool; National Centre for Biotechnology Information). Amplification of a single amplicon
564 was estimated from melt curve analysis, ensuring only a single peak and an expected
565 temperature dissociation profile were observed. Quantification of a given gene was

566 determined by the relative mRNA level compared with control using the delta-CT method,
567 which was calculated after normalisation to the housekeeping gene *Ppia* or *Rplp0*.

568

569 **Mitochondrial (mt)DNA to nuclear (n)DNA ratio**

570 TA muscle tissue was homogenised in digestion buffer (100mM NaCl, 10mM Tris-HCl,
571 25mM EDTA, 0.5% SDS, pH 8.0) and then incubated in Proteinase K (250U/mL) for 1 hour
572 at 55°C. Following this, total DNA was isolated using the phenol-chloroform extraction
573 method. A qPCR reaction was then performed on 5ng of total DNA using a primer set that
574 amplifies the mitochondrial gene mtCO3, and the genomic gene SDHA (see table 1 for
575 primer sequences). Estimated abundance of each gene was used to generate a ratio of
576 mitochondrial to nuclear DNA (mtDNA/nDNA), and this ratio was compared between
577 genotypes.

578

579 **Lipidomics**

580 Lipidomics was performed on approximately 50µg of soluble protein (homogenised and
581 sonicated) from TA muscles taken from SOD2 WT+OIL, mCre+OIL, WT+TAM and
582 mCre+TAM using LC electrospray ionisation MS/MS (LC-ESI-MS/MS) on an Agilent 6490
583 triple quadrupole (QQQ) mass spectrometer coupled with an Agilent 1290 series HPLC
584 system and a ZORBAX eclipse plus C18 column as previously described³⁵.

585

586 **Statistical Analyses**

587 All data were expressed as mean ± standard error of the mean (SEM), except where otherwise
588 stated (i.e. Figure 6A). Statistical comparisons in animal studies were analyzed by repeated
589 measures 2-way ANOVA, two-way ANOVA with post-hoc testing, or one-way ANOVA
590 with po-hoc testing as indicated in figure legends. Lipidomics, tissue analysis and cell based

591 experiments were analyzed by either ANOVA with post-hoc testing (Fishers LSD) where
592 appropriate, or paired students' t-test unless otherwise stated. Analyses were performed using
593 PRISM8 software and a p-value of $p < 0.05$ was considered statistically significant.

594

595 **Data Inclusion and Exclusion Criteria**

596 For animal experiments, phenotyping data points were excluded using pre-determined criteria
597 if the animal was unwell at the time of analysis, there were technical issues identified (such
598 as failed data acquisition in Promethion), values were biological implausible (such as
599 $RER=2.0$) or data points that were identified as outliers using Tukey's Outlier Detection
600 Method (1.5IQR below Q1 or 1.5IQR above Q3). If repeated data points from the same
601 mouse failed QC based on pre-determined criteria, or several data points were outliers as per
602 Tukey's rule, the entire animal was excluded from that given analysis (i.e. during glucose
603 tolerance tests, indicating inaccurate dosing with gavage). For in vivo and in vitro tissue and
604 molecular analysis, data points were only excluded if there was a technical failure (i.e. poor
605 RNA quality, failed amplification in qPCR, failed injection in mass spectrometer), or the
606 value was biological improbable. This was performed in a blinded fashion (i.e. on grouped
607 datasets before genotypes were known).

608

609 **Tables**

Gene	Forward primer (5' – 3')	Reverse primer (5' – 3')
<i>Nrf2</i>	CATGATGGACTTGGAGTTGC	CCTCCAAAGGATGTCAATCAA
<i>Ncf1</i>	CCGGCTATTCATCCAT	TCGCTGGCCTGGTTAT
<i>Cyba</i>	AGATCGAGTGGGCCATG	CTTGGGTTAGGCTCAAT
<i>Nox2</i>	AGTCGTTGCTGACAAG	CCAAGCTACCATTTATGGAAAGTG
<i>Cre</i>	AGGCGCGAGTTGATAGCT	GAGCGATGGATTCCGTCTCT
<i>Sod2</i>	AGGCTCTGCCAAGGGAGAT	CACGCTTGATAGCCTCCAGCA
<i>Tfeb</i>	GGAGCCAGAGCTGTTGTTA	AACAAAGGCACCATCCTCAA
<i>Polg1</i>	TAGCTGGCTGGTCCAAGAGT	CGACGTGGAGGTCTGCTT
<i>Cytc</i>	CAGCTCCATTGCGGACAC	CGCTGACAGCATCACCTTTC
<i>Tfam</i>	AGCTTGTAAATGAGGCTTGG	AGATGTCTCCGGATCGTTTC
<i>Ndufs1</i>	CACTCGTCCACCTCAGCTA	GACGGCTCCTCTACTGCCT
<i>Ppargc1a</i>	TGAGGACCGCTAGCAAGTT	TGAAGTGGTGTAGCGACCAA
<i>Got2</i>	ATGGCTGCTGCCTTTCAC	GATCTGGAGGTCCCATTCA
<i>Hk2</i>	GGAACGCCCTAGAAATCTCC	GGAGCTCAACCAAAACCAAG
<i>Glut1</i>	GGTGTGCAGCAGCCTGTGT	CACAGTGAAGGCCGTGTTGA
<i>Cpt1a</i>	GAECTCGCTCGCTCATT	TCTGCCATCTGAGTGGTGA
<i>Cpt1b</i>	CATCCCAGGCAAAGAGACA	AAGCGACCTTGTGGTAGACAA
<i>Uvrug</i>	TTGCACACTGGCTCTATGA	TGAACACAAGGGTCATCCAA
<i>Fgf21</i>	AGATGGAGCTCTATGGATCG	GGGCTTCAGACTGGTACACAT
<i>Vegfa</i>	AATGCTTCTCCGCTCTGAA	CTCACCAAAGCCAGCACATA
<i>Mef2c</i>	GCCGGACAAACTCAGACATTG	GGGTTCCCAGTGTGCTGAC
<i>Myog</i>	CAACCAGGAGGAGCGCGATCTCCG	AGGCGCTGTGGAGTTGCATTCACT
<i>Myod</i>	AGGCCGTGGCAGCGA	GCTGTAATCCATCATGCCATCA
<i>Ppia</i>	AGCCAAATCCTTCTCTCCAG	CACCGTGTCTTCGACATCA
<i>Rplp0</i>	ACCCTGAAGTGCTCGACATC	ATTGATGATGGAGTGTGGCA
<i>Sdha*</i>	TGGACCCATCTCTATGC	TAATACAGCCCCAAGTCT
<i>mtCO3*</i>	GCAGGATTCTCTGAGCGTTCT	GTCAGCAGCCTCTAGATCATGT

610

611

612 **Table 1**

613 Forward and reverse primer sets for detection of the designated gene using qPCR. (m =
614 mouse). * indicates primer sets used on DNA, to determine the mtDNA/tDNA ratio.

615

616 **Acknowledgements**

617 We acknowledge funding support from the Victorian State Government OIS program to
618 Baker Heart & Diabetes Institute. BGD and ACC received support from the National Heart
619 Foundation of Australia, Future Leader Fellowship scheme (101789 and 100067,
620 respectively). We thank Prof Takahiko Shimizu from Chiba University, Japan for providing
621 the floxed-mnSOD mice. We also thank all members of the MMA, LMCD and Metabolomics
622 laboratories at BHDI for their ongoing contributions.

623

624 **Author contributions**

625 BGD conceived and designed the study, and wrote the manuscript. BGD, AZ, CY, YL, YT,
626 STB, SW, TS performed all experiments. AS and JBdeH performed and analysed Amplex
627 Red and Nitrotyrosine assays. PJM provided expertise in lipidomics analysis. MTC provided
628 access to floxed mice and ongoing research support. ACC provided reagents, experimental
629 advice and access to resources. All authors read and approved the manuscript.

630

631 **Conflicts of interest**

632 The authors declare that they have no conflicts of interest.

633

634

635 **References**

636 1. Wanagat, J. & Hevener, A.L. Mitochondrial quality control in insulin resistance and
637 diabetes. *Curr Opin Genet Dev* **38**, 118-126 (2016).

638 2. Montgomery, M.K. & Turner, N. Mitochondrial dysfunction and insulin resistance: an
639 update. *Endocrine connections* **4**, R1-R15 (2015).

640 3. Trifunovic, A., *et al.* Premature ageing in mice expressing defective mitochondrial
641 DNA polymerase. *Nature* **429**, 417-423 (2004).

642 4. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. *Circ Res* **107**,
643 1058-1070 (2010).

644 5. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism.
645 *Diabetes* **54**, 1615-1625 (2005).

646 6. Kauppila, T.E.S., Kauppila, J.H.K. & Larsson, N.G. Mammalian Mitochondria and
647 Aging: An Update. *Cell metabolism* **25**, 57-71 (2017).

648 7. Andreux, P.A., Houtkooper, R.H. & Auwerx, J. Pharmacological approaches to
649 restore mitochondrial function. *Nature reviews. Drug discovery* **12**, 465-483 (2013).

650 8. Boden, M.J., *et al.* Overexpression of manganese superoxide dismutase ameliorates
651 high-fat diet-induced insulin resistance in rat skeletal muscle. *American journal of
652 physiology. Endocrinology and metabolism* **303**, E798-805 (2012).

653 9. Hoehn, K.L., *et al.* Insulin resistance is a cellular antioxidant defense mechanism.
654 *Proceedings of the National Academy of Sciences of the United States of America*
655 **106**, 17787-17792 (2009).

656 10. Li, Y., *et al.* Dilated cardiomyopathy and neonatal lethality in mutant mice lacking
657 manganese superoxide dismutase. *Nature genetics* **11**, 376-381 (1995).

658 11. Crane, J.D., *et al.* Elevated mitochondrial oxidative stress impairs metabolic
659 adaptations to exercise in skeletal muscle. *PloS one* **8**, e81879 (2013).

660 12. Kang, L., *et al.* Heterozygous SOD2 deletion impairs glucose-stimulated insulin
661 secretion, but not insulin action, in high-fat-fed mice. *Diabetes* **63**, 3699-3710 (2014).

662 13. Koyama, H., *et al.* Antioxidants improve the phenotypes of dilated cardiomyopathy
663 and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. *Molecules*
664 **18**, 1383-1393 (2013).

665 14. Kuwahara, H., *et al.* Oxidative stress in skeletal muscle causes severe disturbance of
666 exercise activity without muscle atrophy. *Free radical biology & medicine* **48**, 1252-
667 1262 (2010).

668 15. Lustgarten, M.S., *et al.* Conditional knockout of Mn-SOD targeted to type IIB skeletal
669 muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise
670 capacity. *American journal of physiology. Cell physiology* **297**, C1520-1532 (2009).

671 16. Ikegami, T., *et al.* Model mice for tissue-specific deletion of the manganese
672 superoxide dismutase (MnSOD) gene. *Biochemical and biophysical research
673 communications* **296**, 729-736 (2002).

674 17. Izuo, N., *et al.* Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal
675 Death with Spongiform Encephalopathy in Mice. *Oxidative medicine and cellular
676 longevity* **2015**, 238914 (2015).

677 18. Han, Y.H., *et al.* Adipocyte-Specific Deletion of Manganese Superoxide Dismutase
678 Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling
679 and Biogenesis. *Diabetes* **65**, 2639-2651 (2016).

680 19. Kawakami, S., *et al.* Antioxidant, EUK-8, prevents murine dilated cardiomyopathy.
681 *Circulation journal : official journal of the Japanese Circulation Society* **73**, 2125-
682 2134 (2009).

683 20. Liu, G., *et al.* Bladder function in mice with inducible smooth muscle-specific
684 deletion of the manganese superoxide dismutase gene. *American journal of*
685 *physiology. Cell physiology* **309**, C169-178 (2015).

686 21. Ahn, B., *et al.* Mitochondrial oxidative stress impairs contractile function but
687 paradoxically increases muscle mass via fibre branching. *Journal of cachexia,*
688 *sarcopenia and muscle* **10**, 411-428 (2019).

689 22. Brindley, D.N., Pilquil, C., Sariahmetoglu, M. & Reue, K. Phosphatidate degradation:
690 phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. *Biochimica et*
691 *biophysica acta* **1791**, 956-961 (2009).

692 23. Zhang, P., Verity, M.A. & Reue, K. Lipin-1 regulates autophagy clearance and
693 intersects with statin drug effects in skeletal muscle. *Cell metabolism* **20**, 267-279
694 (2014).

695 24. Schweitzer, G.G., *et al.* Loss of lipin 1-mediated phosphatidic acid phosphohydrolase
696 activity in muscle leads to skeletal myopathy in mice. *FASEB journal : official*
697 *publication of the Federation of American Societies for Experimental Biology* **33**,
698 652-667 (2019).

699 25. Rashid, T., *et al.* Lipin1 deficiency causes sarcoplasmic reticulum stress and
700 chaperone-responsive myopathy. *The EMBO journal* **38**(2019).

701 26. Jiang, L.Q., *et al.* Diacylglycerol kinase-delta regulates AMPK signaling, lipid
702 metabolism, and skeletal muscle energetics. *American journal of physiology.*
703 *Endocrinology and metabolism* **310**, E51-60 (2016).

704 27. Lin, Y.H., *et al.* Diacylglycerol lipase regulates lifespan and oxidative stress response
705 by inversely modulating TOR signaling in Drosophila and C. elegans. *Aging cell* **13**,
706 755-764 (2014).

707 28. Smith, C.D., Schmidt, C.A., Lin, C.T., Fisher-Wellman, K.H. & Neufer, P.D. Flux
708 through mitochondrial redox circuits linked to nicotinamide nucleotide
709 transhydrogenase generates counterbalance changes in energy expenditure. *The*
710 *Journal of biological chemistry* **295**, 16207-16216 (2020).

711 29. Smith, C.D., *et al.* Genetically increasing flux through beta-oxidation in skeletal
712 muscle increases mitochondrial reductive stress and glucose intolerance. *American*
713 *journal of physiology. Endocrinology and metabolism* (2021).

714 30. Heden, T.D., *et al.* Mitochondrial PE potentiates respiratory enzymes to amplify
715 skeletal muscle aerobic capacity. *Science advances* **5**, eaax8352 (2019).

716 31. Sharma, A., *et al.* Direct Endothelial Nitric Oxide Synthase Activation Provides
717 Atheroprotection in Diabetes-Accelerated Atherosclerosis. *Diabetes* **64**, 3937-3950
718 (2015).

719 32. Schindelin, J., *et al.* Fiji: an open-source platform for biological-image analysis. *Nat*
720 *Methods* **9**, 676-682 (2012).

721 33. Sharma, A., *et al.* The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator
722 dh404 protects against diabetes-induced endothelial dysfunction. *Cardiovasc Diabetol*
723 **16**, 33 (2017).

724 34. Bond, S.T., Kim, J., Calkin, A.C. & Drew, B.G. The Antioxidant Moiety of MitoQ
725 Imparts Minimal Metabolic Effects in Adipose Tissue of High Fat Fed Mice.
726 *Frontiers in physiology* **10**, 543 (2019).

727 35. Huynh, K., *et al.* High-Throughput Plasma Lipidomics: Detailed Mapping of the
728 Associations with Cardiometabolic Risk Factors. *Cell chemical biology* **26**, 71-84 e74
729 (2019).

730

731

732 **Figure Legends**

733

734 **Figure 1: Generation and characterisation of inducible, skeletal muscle specific SOD2**

735 **knock out mice.** mRNA expression of **(A)** cre recombinase and **(B)** SOD2 in liver, white
736 adipose tissue (WAT) and TA muscle of SOD2 WT and mCre mice (n=4/group); **(C)** Cre
737 recombinase and **(D)** SOD2 mRNA expression across three different muscle types (TA,
738 Soleus and EDL) of WT and mCre positive mice (n=6-11/group); **(E)** Western blots for
739 SOD2 and β -actin in TA muscle lysates from WT plus tamoxifen (WT) and mCre plus
740 tamoxifen (KO) mice fed either a chow or high fat diet (HFD; n=3-4/group). mRNA
741 expression of redox genes from **(F)** TA, **(G)** EDL and **(H)** soleus muscles from the four HFD
742 fed cohorts (n=4-11/group); **(I)** Western blot and **(J)** quantitation of 4-hydroxynonenal
743 (4HNE) conjugated proteins from TA of WT plus tamoxifen (WT) and mCre plus tamoxifen
744 (KO) mice fed either a chow or HFD (n=3-4/group); **(K)** Skeletal muscle peroxide abundance
745 as determined by Amplex Red assay in TA muscles from WT and KO chow fed mice and
746 WT+OIL, mCre+OIL, WT+TAM, mCre+TAM cohorts fed a chow or HFD (n=3-10/group);
747 **(L)** Quantification of Nitrotyrosine staining as determined by immunohistochemistry
748 performed on sections of TA muscles from WT+TAM and mCre+TAM fed a HFD (n=7-
749 10/group) All data are presented as mean \pm SEM. Data with >2 groups were compared by
750 ANOVA with Fishers LSD post-hoc testing, samples with 2 groups were analysed using a
751 Mann-Whitney non-parametric t-test where * denotes a p-value<0.05. WAT = white adipose
752 tissue, TA = *Tibialis anterior*, EDL = *Extensor digitorum longus*, 4HNE = 4-hydroxynonenal
753 , DAB = 3,3'-Diaminobenzidine; HFD = high fat diet.

754

755 **Figure 2: General features and tissue weights of inducible, skeletal muscle specific KO**
756 **mice. (A)** Weekly total body weight of the four cohorts fed a HFD for 12 weeks (n=4-

757 11/group); **(B)** Lean mass and **(C)** fat mass as determined by EchoMRI in the four HFD fed
758 cohorts at baseline, 4 weeks, 8 weeks and 12 weeks post-HFD (n=4-11/group); Tissue weight
759 for **(D)** EDL, **(E)** TA, **(F)** liver and **(G)** gonadal WAT (gWAT) normalized to body weight
760 (BW) at study end (n=4-11/group). Data are presented as mean \pm SEM. Data in (A-C) were
761 analysed using repeated measures two-way ANOVA. All other data were compared by
762 ANOVA with Fishers LSD post-hoc testing. g = grams, mg = milligrams, wks = weeks, HFD
763 = high fat diet, TA = *Tibialis anterior*, EDL = *Extensor digitorum longus*, gWAT = gonadal
764 white adipose tissue, BW = body weight.

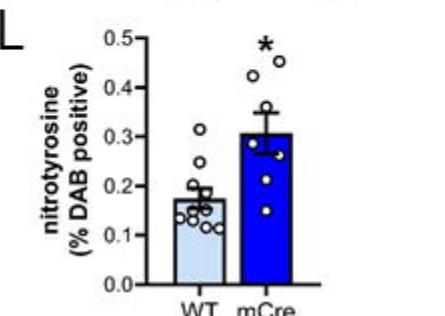
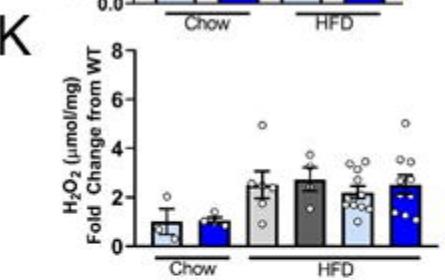
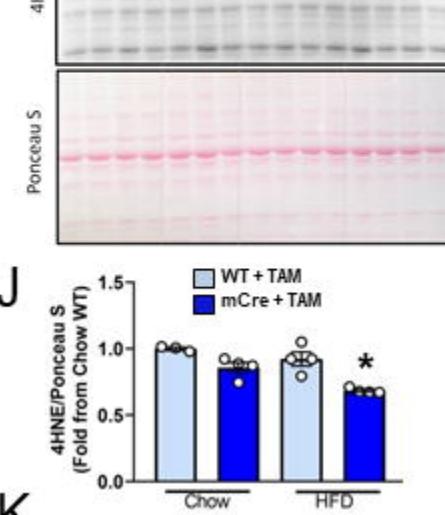
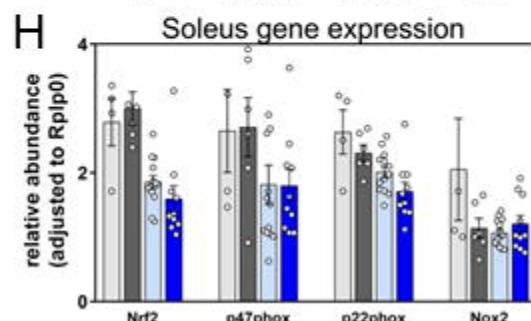
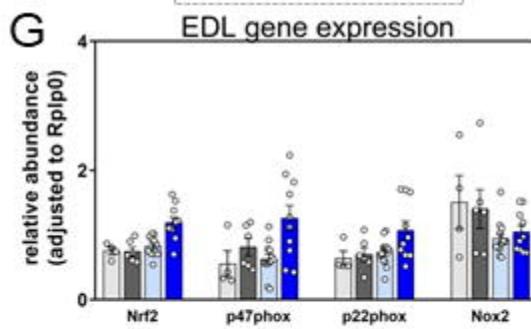
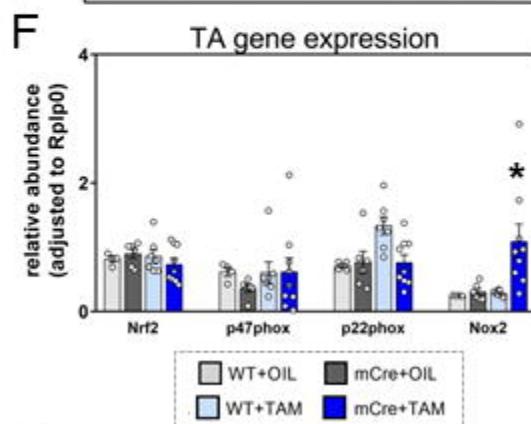
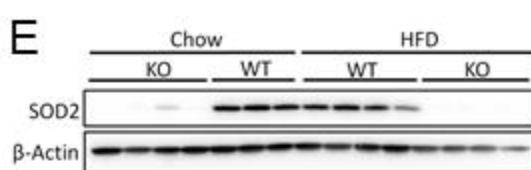
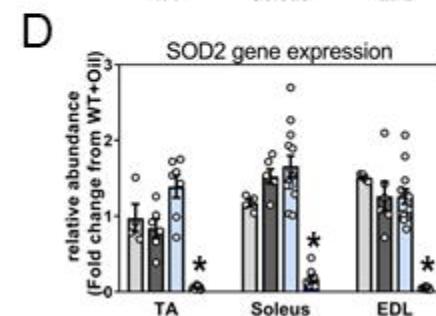
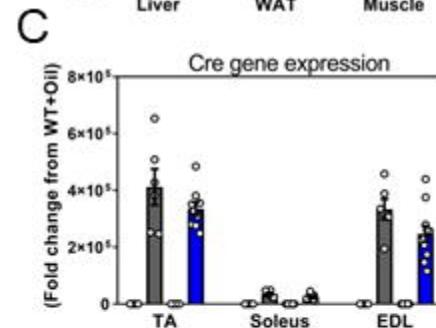
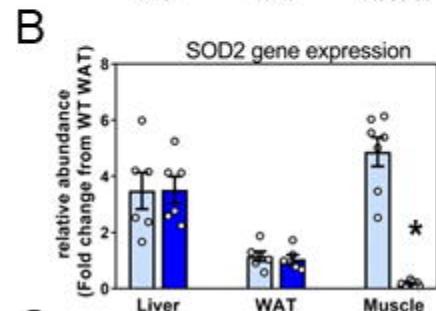
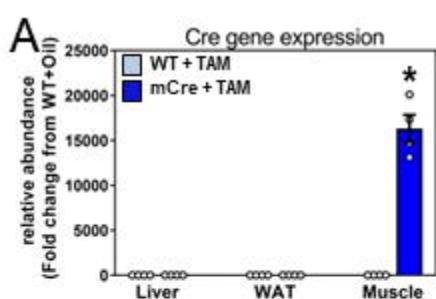
765

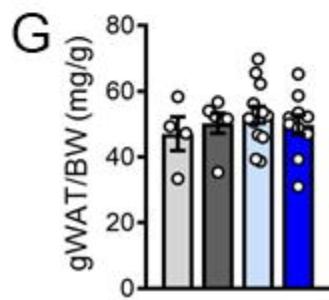
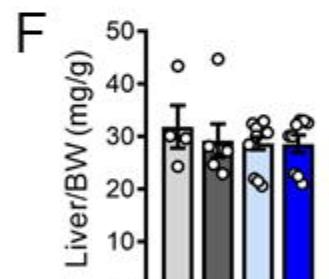
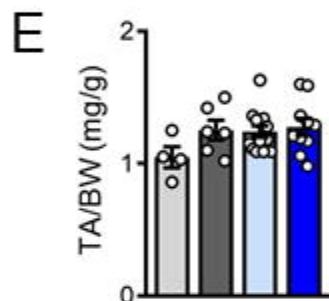
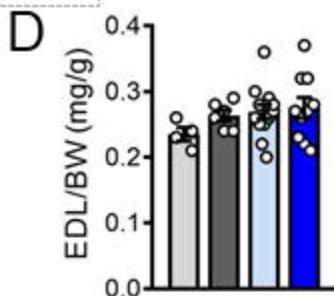
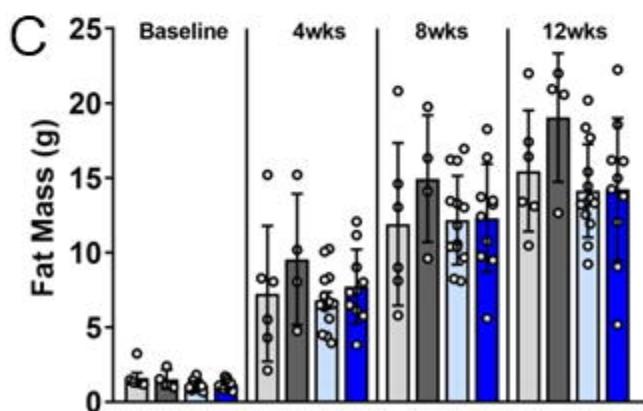
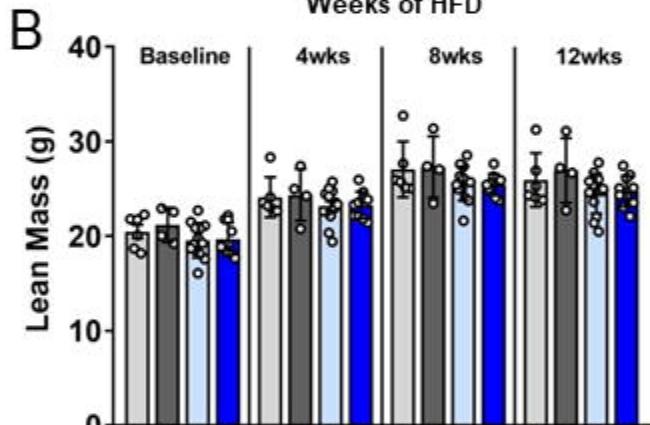
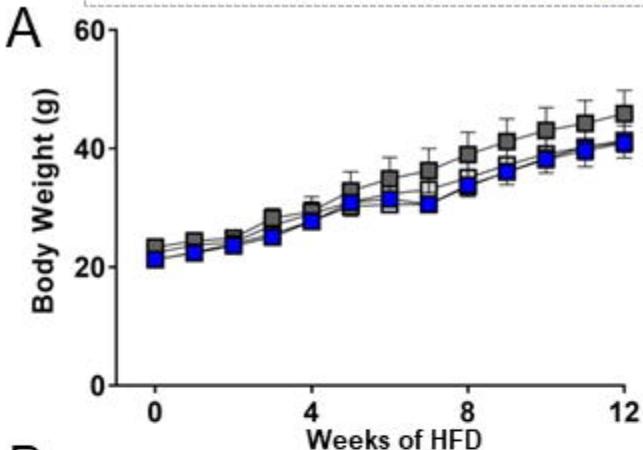
766 **Figure 3: Measurements of whole body metabolism and glucose tolerance in inducible,**
767 **muscle specific SOD2 KO mice. (A)** Respiratory exchange ratio (RER) trace from
768 Promethion analysis over the entire 24 hour assessment period, **(B)** average RER and **(C)**
769 average energy expenditure (EE) for WT+TAM (light blue) and mCRE+TAM (dark blue)
770 mice in the light and dark periods; **(D)** Average RER and **(E)** average energy expenditure
771 (EE) for both genotypes in the light and dark periods prior to study end; **(F)** Total locomoter
772 activity (pedal and wheel movement) over the 24 hour assessment period at the end of the
773 HFD feeding study; Change in **(G)** average wheel distance and **(H)** average wheel speed
774 from baseline to study end during the light and dark cycles; Locality mapping of mice based
775 on 24 hours of movement data during the **(I)** light cycle (day time) and **(J)** dark cycle (night
776 time). Map colours indicate increasing time spent in that given location (red being most,
777 yellow being least). Intense red areas indicate “lounge spots”, likely representing regions
778 where mice spent time resting for longer periods. Grey boxes designate each fixed cage
779 component (i.e. wheel, food hopper, water sipper and running wheel). Probability mapping
780 for **(K)** WT+TAM mice and **(L)** mCRE+TAM mice estimates predicted behavior
781 (percentage) following a certain activity. Red numbers indicate an increase, whilst blue

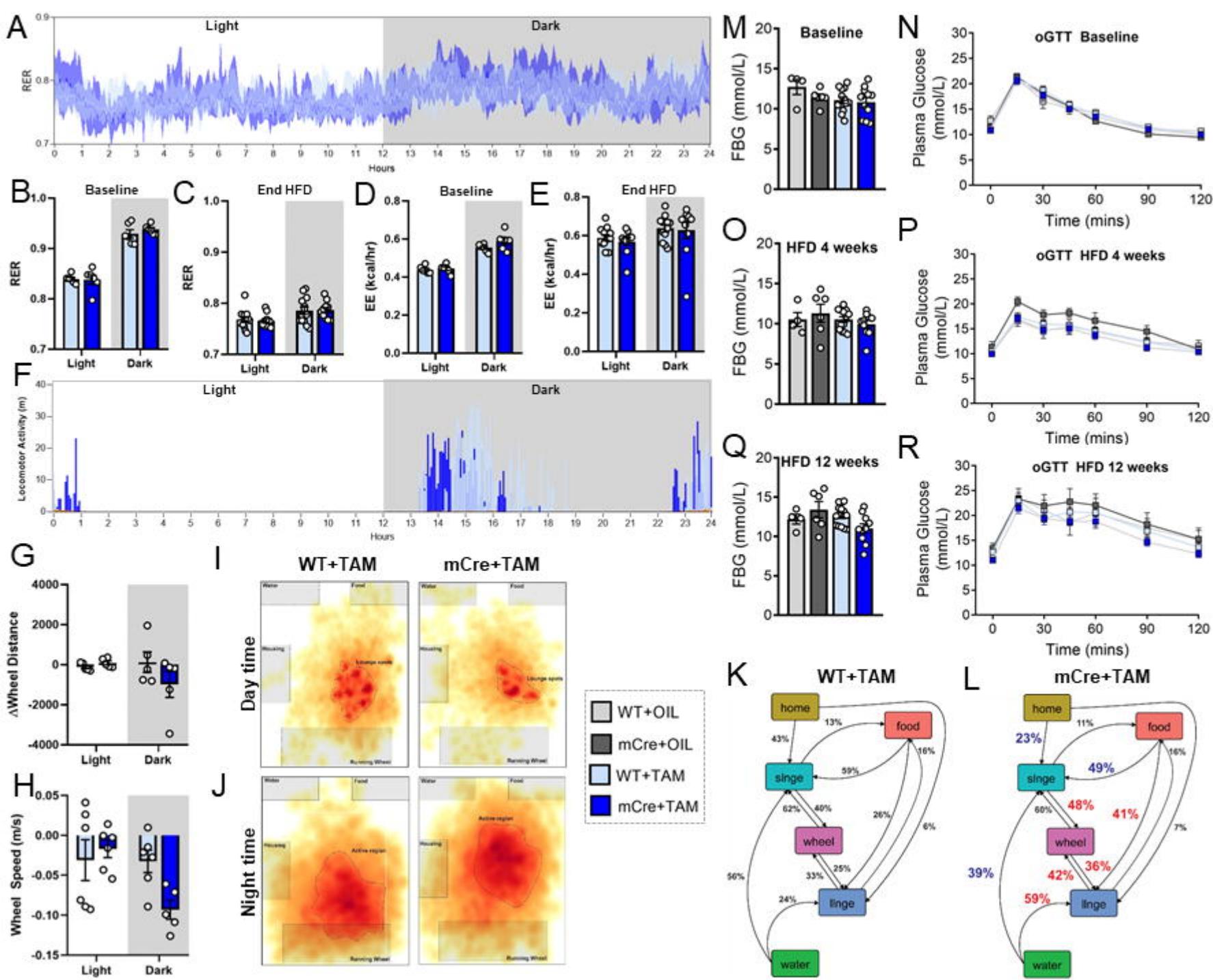
782 numbers indicate a decrease in that behavior in KO mice relative to WT mice, *slnge* = short
783 lounge, *llnge* = long lounge. Fasting blood glucose (FBG) measurement and oral glucose
784 tolerance tests (oGTT) in mice at (**M**, **N**) baseline, (**O**, **P**) 4 weeks post-HFD and (**Q**, **R**) 12
785 weeks post-HFD respectively. Data are presented as mean \pm SEM (B-E, G, H, M-R). Data in
786 (N, P and R) were compared using repeated measures ANOVA. All other data were
787 compared by ANOVA with Fishers LSD post-hoc testing where * indicates a p-value<0.05.
788 RER = respiratory exchange ratio, EE = energy expenditure, HFD = high fat diet.

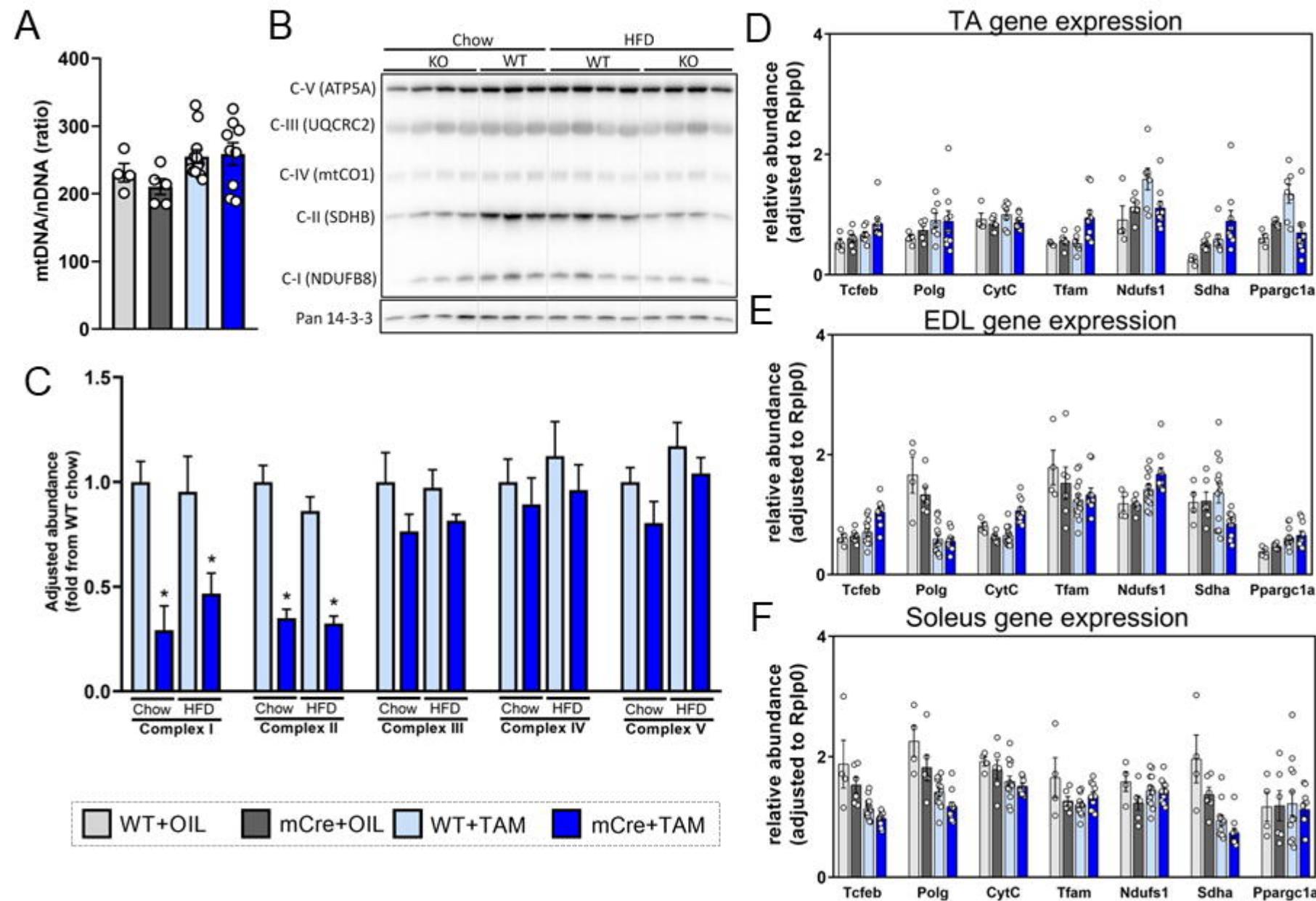
789

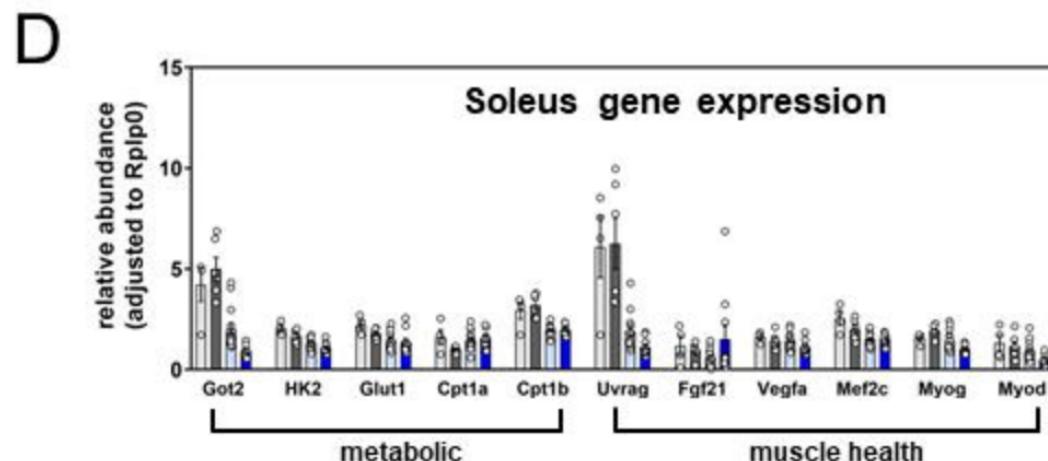
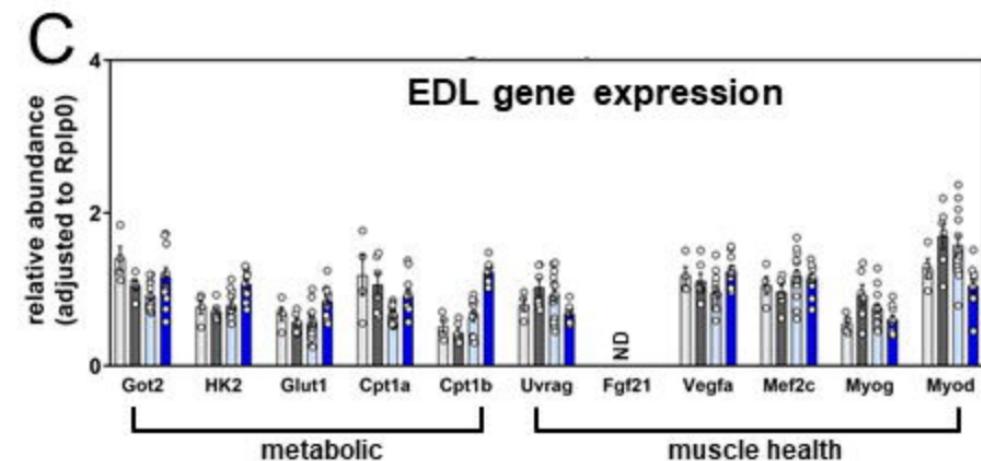
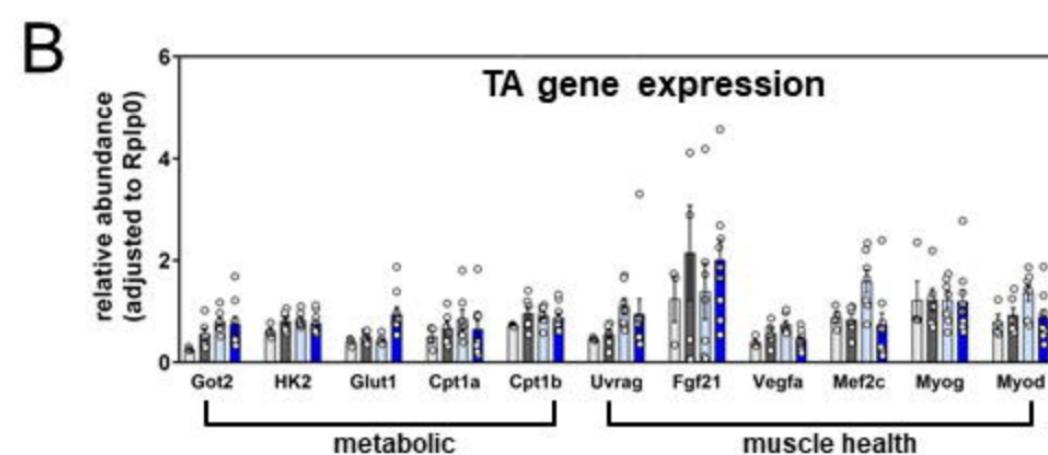
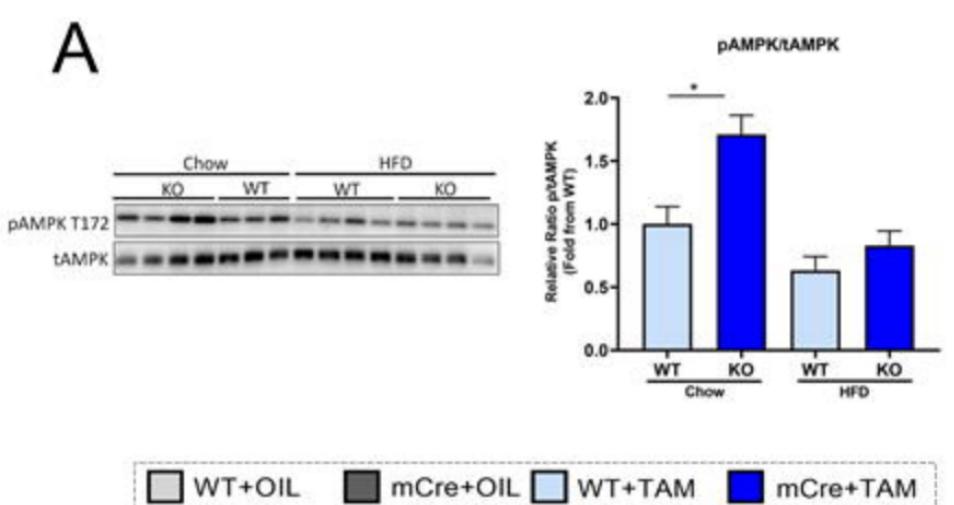
790 **Figure 4: Analysis of mitochondrial abundance and gene expression in muscles from**
791 **inducible, skeletal muscle specific SOD2 KO mice. (A)** Mitochondrial DNA (mtDNA) to
792 nuclear DNA (nDNA) ratio in TA muscles of the four HFD fed cohorts; **(B)** Western blot on
793 protein from TA muscles isolated from WT+TAM (WT) and mCre+TAM (KO) mice fed a
794 chow diet or high fat diet (HFD) for proteins from the 5 complexes (CI-CV) of the
795 mitochondrial electron transport chain (ETC) and of pan 14-3-3 (loading control). **(C)**
796 Quantification of five proteins from complexes of the ETC from panel B, normalized to the
797 the loading control (14-3-3); qPCR analysis for genes involved in skeletal muscle
798 mitochondrial function from **(D)** TA **(E)** EDL and **(F)** Soleus muscles from all four cohorts
799 of HFD fed mice. All data are presented as mean \pm SEM. All data were compared by
800 ANOVA with Fishers LSD post-hoc testing where * indicates a p-value<0.05. TA = *Tibialis*
801 *anterior*, EDL = *Extensor digitorum longus*.

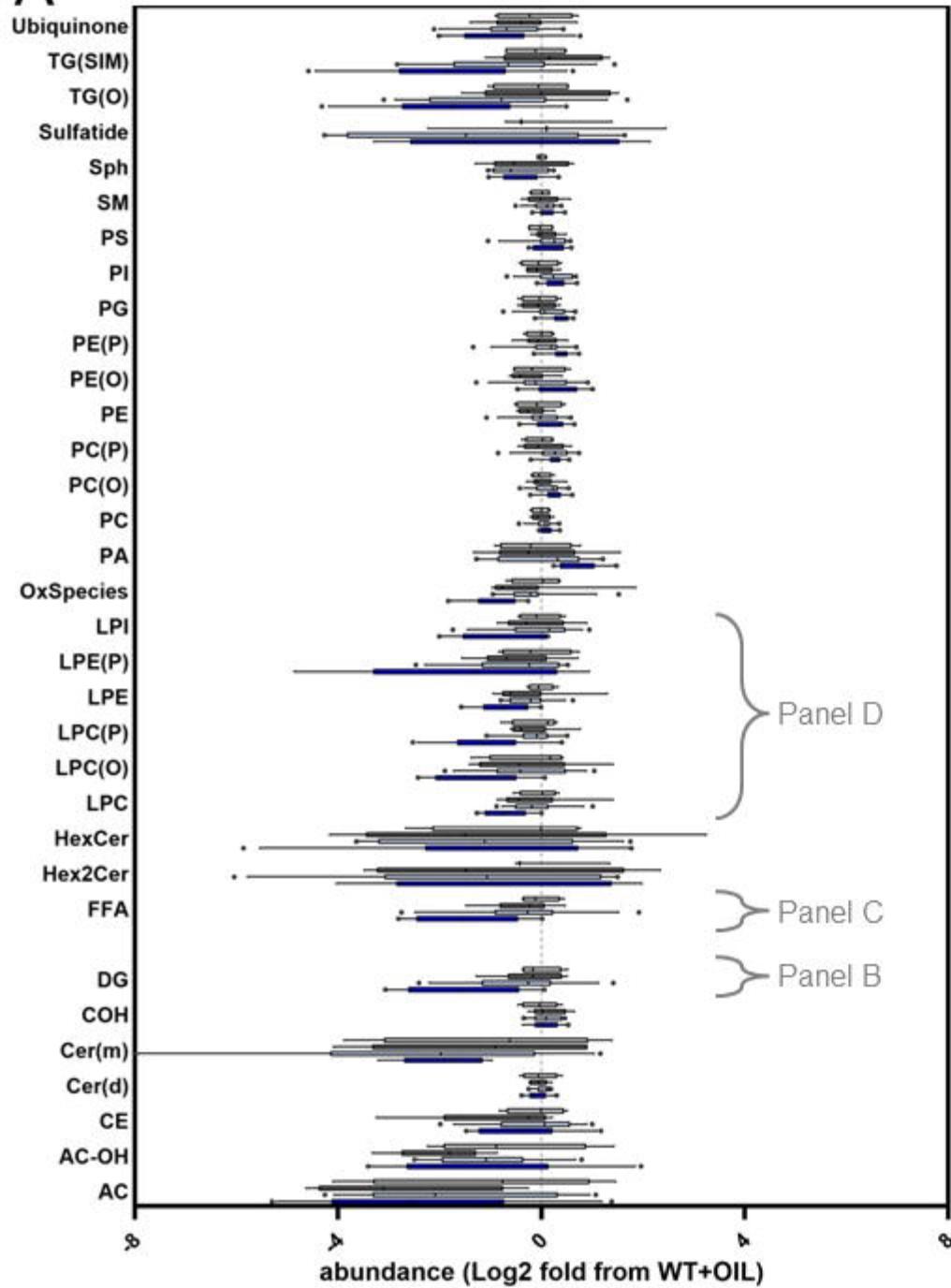
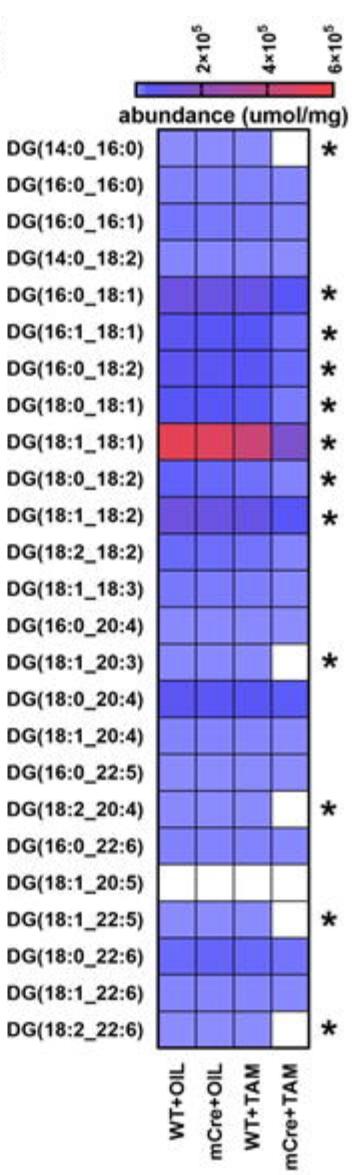
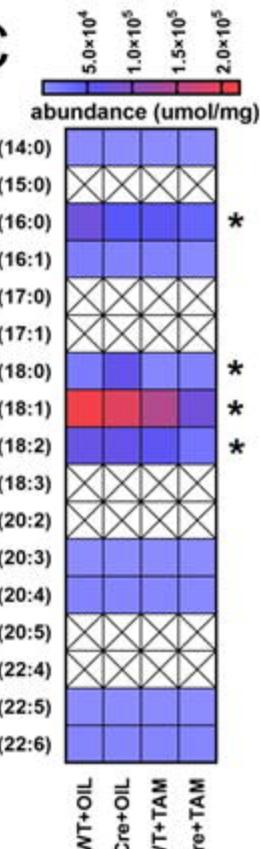
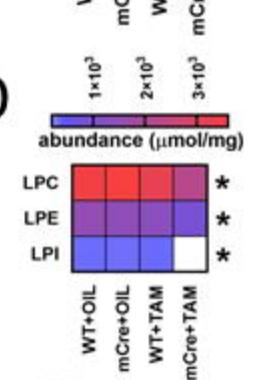
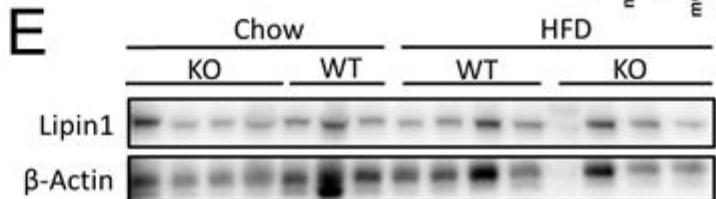











802








803 **Figure 5: Analysis of AMP kinase activation and skeletal muscle gene expression in**
804 **muscles from inducible, skeletal muscle specific SOD2 KO mice. (A)** Western blot on
805 protein from TA muscles isolated from WT+TAM (WT) and mCre+TAM (KO) mice fed a
806 chow diet or HFD for phosphorylated AMP kinase (pAMPK T172), and total AMP kinase


807 (tAMPK, loading control), and; (B) quantification of pAMPK/tAMPK abundance. qPCR
808 analysis for genes involved in skeletal muscle metabolism and function from (C) TA (D)
809 EDL and (E) soleus muscles from all four cohorts of HFD fed mice. Data presented as mean
810 \pm SEM. All data were compared by ANOVA with Fishers LSD post-hoc testing where *
811 indicates a p-value<0.05. HFD = high fat diet, TA = *Tibialis anterior*, EDL = *Extensor*
812 *digitorum longus*.


813





814 **Figure 6: Analysis of lipid abundance in muscles from inducible, skeletal muscle specific**
815 **SOD2 KO mice.** Lipidomic assessment of lipid abundance in TA muscles from all four
816 cohorts of HFD fed mice. (A) Total abundance of the 33 classes of lipid quantified in TA
817 muscles across the four genotypes. Data are presented as \log_2 fold change from WT+TAM
818 samples using box and whisker plots with black line representing the median, boxes
819 representing the 25th and 75th percentile, whiskers represent 10-90th percentile whilst
820 individual dots represent values outside the 10th and 90th percentile. Heatmaps depicting
821 abundance ($\mu\text{mol}/\text{mg}$) of individual species of (B) diacylglycerol (DG), (C) fatty acids (FA)
822 and (D) total abundance of lysophosphatidylcholine (LPC), lysophosphatidylethanolamine
823 (LPE) and lysophosphatidylinositol (LPI) lipids in TA muscle. Crossed boxes indicate
824 species that were below the limit of detection. White boxes indicate species that fall below
825 the lowest unit in the scale. Scale represents red as the highest abundance and light blue as
826 the lowest abundance within a given range (shown on individual scale bars). (E) Western blot
827 on protein from TA muscles isolated from WT+TAM (WT) and mCre+TAM (KO) mice fed
828 a chow or high fat diet for Lipin1 and β -actin. Data in A-D were analysed by ANOVA with
829 Benjamini-Hochberg correction (applied per sub-analysis) where * indicates a p-value<0.05.

A**B****C****D****E**