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, 1 Abstract

1 The physical interaction between the T cell receptor (TCR) and its cognate antigen
u causes T cells to activate and participate in the immune response. Understanding this
12 physical interaction is important in predicting TCR binding to a target epitope, as well
13 as potential cross-reactivity. Here, we propose a way of collecting informative features
1 of the binding interface from homology models of T cell receptor-peptide-major histo-
15 compatibility complex (TCR-pMHC) complexes. The information collected from these
16 structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in
v multiple independent datasets. The classifier is limited by the number of crystal struc-
18 tures available for the homology modelling and by the size of the training set. However,
19 the classifier shows comparable performance to sequence-based classifiers requiring much

2 larger training sets.

2 2 Introduction

2 T cells are key players of adaptive immunity. They are activated by the recognition of
3 a cognate peptide, a short stretch of amino acids which is displayed on a major histo-
2« compatibility complex molecule (MHC, pMHC when bound to peptide). The recognition
s occurs via the T cell receptor (TCR), which is composed of two chains (normally an
» « and a f3), both of which are generated by a process of random recombination and
27 selection. The recombination gives rise to 3 hypervariable regions, the complementarity-
s determining regions - CDR1, CDR2 and CDR3. Among the three regions, CDR3 is the
20 most variable as it is found at the junction of V(D)J recombination, and it can therefore

s incorporate a number of non-template insertion and deletion events, whilst CDR1 and
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s CDR2 depend on the V gene selected in the recombination process and have therefore a
32 lower number of possible sequences.

33 A number of TCR-pMHC complexes have been crystallised and the structures solved
1 and they are collected in the Structural T-Cell Receptor Database (STCRDab, Leem et
55 al. 2018). They have given us deeper understanding of TCR-pMHC interactions and how
s these are impacted by mutations, but also how structure and function are related. Ex-
;7 amples include how cross-reactivity between bacterial and self antigens can drive disease
1 (Petersen et al. 2020), how binding mode can give different specificity profiles to TCRs
3 binding the same peptide (Coles et al. 2020), and how binding orientation is determined
w0 by how the peptide is presented by the MHC (Singh et al. 2020).

n The existing structures can also be mined for information on how the TCR interacts
2 with the pMHC complex. By looking at the TCR residues that fall within 5A of the
i peptide in a number of published TCR-pMHC structures, both Glanville et al. 2017 and
s Ostmeyer et al. 2019 showed that the CDR3 is the region that makes the most extensive
s contacts with the peptide. These regions of contact are normally short stretches of 3
s or 4 consecutive amino acids within the CDR3. Moreover, they noted that whilst the
« TCRp always made contacts, there are multiple instances were the TCR« is not within
s contact distance of the peptide. It has also been shown that TCRs which recognise the
» same peptide share motifs and sequence characteristics in the CDR3 (Thomas et al. 2014;
o Cinelli et al. 2017; Glanville et al. 2017; Dash et al. 2017).

51 The ensemble of TCRs that are present within an individual at any point in time is
s2 called the TCR repertoire. Different sequences are found at widely different frequencies,
53 ranging from a few hundred copies to 10° copies for the larger T cell clones, which make

s« up up to 1% of the total repertoire. Differences in clone size can arise both in the
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55 naive repertoire, by convergent recombination (whereby an amino acid sequence is likely
ss to be produced by the process of recombination - normally with short CDR3 and few
s» nucleotide insertions, Venturi et al. 2006; Britanova et al. 2014) or because of the power-
s law distribution of naive T cell clones produced by the thymus (Greef et al. 2020); or in
so the memory repertoire by convergent selection, whereby similar sequences are expanded
o0 because they are responding to the same antigen, Pogorelyy et al. 2018). Greef et al.
s 2020 estimates the maximum effect of generation probability to be around 107, which
&2 1S two order of magnitudes smaller than the largest observed clone sizes, suggesting a
s role for expansion during the immune response. By focusing solely on the CDR3, it can
s« be shown that during an immune response, expanded TCR clones are frequently part
es of clusters of sequences that are more similar to each other than might be expected by
s random sampling of the repertoire (Joshi et al. 2019; Pogorelyy et al. 2019; Marcou et al.
e 2018).

68 This observation of antigen-driven TCR sequence clustering has been used to build
oo algorithms such as GLIPH (Glanville et al. 2017) and TCRdist (Dash et al. 2017), which
70 can build sequence motifs starting from a cluster of TCRs known to recognise the same
n  peptide and which are then able to find other TCRs responding to the same peptide.
72 More recently, Tong et al. 2020 have shown that sequence information encoded in the
7z form of overlapping amino acid quadruplets can be used to create a multi-class prediction
7 algorithm able to correctly assign TCR-pMHC pairs.

75 In the same way that conserved sequence motifs characterise TCRs recognising the
76 same antigen, we hypothesise that there will be structural features of the TCR/antigen
77 interface which are conserved in the interactions. Such conserved structural features could

7 be leveraged to gain a better understanding of the TCR-pMHC interaction and to reca-
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7 pitulate and improve what has been learnt from looking purely at sequence information.
so  Our understanding of the physical interactions between TCRs and pMHC is, however,
a1 limited to the set of solved and published crystal structures. The STCRDab currently re-
&2 ports about 400 entries for af TCR-pMHC complexes, and 120 different peptides, which
3 is clearly a tiny subset of all the possible TCR-pMHC interactions that can exist. To
s solve this problem, a number of tools have been developed and subsequently optimised
& to predict the structure of a TCR-pMHC complex based on its sequence. One of these
s is TCRpMHCmodels (Jensen et al. 2019), which exists as a free online user interface.
sz TCRpMHCmodels leverages LYRA (Klausen et al. 2015) to model the TCR structure
ss and MODELLER (Fiser and Sali 2003) to predict the pMHC structure, to then combine
so them together by using a third set of templates for the TCR-pMHC complex overall.
o Tools like TCRpMHCmodels, although still limited by the amount of information that
o1 has been published, allow us to delve deeper into the structural relationships between the
2 TCR and the pMHC.

03 We show here that a combination of structural and sequence features can be in-
s corporated into a machine learning algorithm to discriminate binding and non-binding
s TCR-pMHC pairs. The classifier presented is limited by the performance of the homology
o modelling, but, unlike any of the previous work reviewed above, it does not rely on the
o7 identification of a set of TCRs binding to a specific peptide to be able to predict whether
¢ other TCRs will bind to that same peptide, but rather learns some general rules which

o can predict TCR interaction with completely novel peptides.
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o 3 Methods

o 3.1 Datasets

12 The available crystal structures for TCR-pMHC complexes were retrieved from STCRDab
103 (http://opig.stats.ox.ac.uk/webapps/stcrdab/, Leem et al. 2018). The dataset
e (referred to as STCRDab or PDB set) was refined to include only one complex per
s crystal, remove v6 TCRs and remove non-peptide antigens. The set was then checked
s for repeat sequences. For the classifier step, TCRs binding MHC class II complexes were
w7 removed as these cannot be modelled by TCRpMHCmodels. To create non-binding TCR-
ws pMHC pairs, random TCR-pMHC pairs were created from the available pool, under the
1o condition that the pMHC from the random pairing was not the same as the original one.
110 The 10XGenomics dataset was downloaded from the 10XGenomics website (CD8+ T
w1 cells of Healthy Donor 1, A New Way of FExploring Immunity - Linking Highly Multiplexed
w2 Antigen Recognition to Immune Repertoire and Phenotype.). For each TCR, binding (or
us  absence of binding) to an epitope was defined as in the Application Note provided by
us 10X Genomics. Briefly, a specific binding event was defined as having UMI count higher
us than 10 and greater than 5 times the highest negative control for that TCR clone. When
us a TCR clone was assigned multiple barcodes, the UMI counts for each tetramer were
u7 summed to determine overall binding. If these conditions were true for more than one
us peptide, the TCR was called a binder for each of the epitopes.

110 The Dash dataset (generated by Dash et al. 2017) was obtained from the VDJDb
120 dataset. Duplicate TCR-pMHC pairs were removed. Each unique TCR clone was paired
1 with each pMHC in the dataset, making 1 binding and 9 non-binding complexes per

122 TCR.
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123 The set of experimental constructs (expt) consists of a set of experimentally-validated
124 peptide-specific TCR constructs with cognate peptide, which have been characterised
s functionally: 2 CMV-reactive TCRs (NLVPMVATYV peptide), 3 influenza-reactive TCRs
s (2 HAl-reactive - peptide VLHDDLLEA - and 1 HA2-reactive - YIGEVLVSV peptide),
7 1 EBV-reactive TCR (peptide CLGGLLTMYV) from Thomas et al. 2019 and Chatterjee
s et al. 2019; A7 TCR and 3 affinity-matured TCRs from A7 which recognise pTax as
120 well as pHud peptides (LLFGYPVYV and LGYGFVNYI, respectively) (Thomas et al.
10 2011); two TCRs identified as neoantigen-reactive in Joshi et al. 2019 and two mutated
1 versions of these, which have been shown not to bind the neoantigen (unpublished data,
132 A. Woolston, personal communication, 2020). To create the non-binders, each TCRs was
133 matched with each pMHC in the pool, as well as with peptide WT235 (control peptide
13 in Thomas et al. 2019, CMTWNQMNL) and peptide WTlung (FAFQEDDSF, wild-type
135 peptide for the neo-antigen McGranahan et al. 2016).

136 A dataset of TCR-pMHC complexes with experimentally-determined affinity was re-
137 trieved from the ATLAS (http://atlas.wenglab.org/web/index.php, Borrman et al.
133 2017) to evaluate the impact of affinity on the classifier performance. Any TCR-pMHC
130 pair with undetectable binding (K, labelled as n.d.) was called a non-binder whilst all
1o other complexes were labelled binders regardless of the detected K.

141 Finally, a dataset of TCR-pMHC complexes with epitopes that are neither present
12 in our training set nor in the training set of the tools we benchmarked against was
s downloaded from the latest version of the VDJDb (Bagaev et al. 2020). As for the PDB

s set, negatives were created by shuffling of TCR-pMHC pairs in the set.
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ws 3.2 Homology modelling and feature extraction

s Fach structure (both binders and non-binders) in these datasets was homology-modelled
17 with TCRpMHCmodels (which was kindly provided in command-line form by the authors,
s Jensen et al. 2019) in its default settings and submitted to the feature-extraction pipeline.
149 To make the structures comparable, they were renumbered to the standardised IMGT
1o numbering (Lefranc 1997) using ANARCI (Dunbar and Deane 2016). Moreover, the
151 peptide residues were renumbered to 1-20, so that the central residues would be residues
152 10-11 in each complex.

153 For each TCR-pMHC, 5 sets of features were extracted, namely:

154 e minimum pairwise distances between each CDR residue and each peptide residue
155 were calculated using BioPDB (Hamelryck and Manderick 2003). These capture
156 the binding mode of the TCR-pMHC complex;

157 e energetic profile of pairwise CDR-peptide residues interactions was calculated us-
158 ing PyRosetta v2020.284+ (Chaudhury et al. 2010). The Rosetta energy function
150 for context-independent residue-residue interactions was used to extract the fol-
160 lowing terms (scorefunction: talaris2014) from a PDB file from which the MHC
161 complex was removed: attractive and repulsive van der Waals (atr, rep), electro-
162 static interactions (elec) and solvation energy (sol) (Alford et al. 2017). These are
163 a representation of binding energy of the complex.

164 e Atchley factors (Atchley et al. 2005) were used to encode the sequences of the

165 peptide and CDRs for each TCR-pMHC pair.

166 To evaluate the effect of homology modelling performance on the classifier presented,

17 the structures were categorised as having or not having good homology modelling tem-
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plates. This was defined based on the sequence homology to the most similar peptide
template (> 45% sequence similarity to the best pMHC model template) and complex
template (> 60% sequence similarity to the best complex template). These thresholds
were chosen based on the results presented by Jensen et al. 2019.

To be noted that not all structures could be successfully modelled by TCRpMHC-

models, and so we could not submit them to the feature extraction pipeline.

3.3 Multiple kernel learning

Each feature set was pre-processed separately. Missing values were imputed with the
median value of the feature across the train set. Each feature was then scaled to have a
value between 0 and 1 (sci-kit learn Minmax scaler, Pedregosa et al. 2011) and normalised.

To properly represent and integrate the different features extracted from the struc-
tures, kernels were created separately for each subset of features. Moreover, instead of
optimising a single kernel for each feature set, 7 Gaussian (rbf) kernels were created and
combined, letting the MKL algorithm decide the weights for each kernel, as in Lauriola
et al. 2017. The v parameters for the 7 Gaussian kernels for each feature set were found

as follows:

1. calculate the distance between all positive (binding, n) and negative (non-binding,

m) examples in the train set

n,m

d= Z (pos; — neg;)?

1,j=1

2. find o values corresponding to 15%, 274, 5th 50th 55th 98th and 99" percentile of

distances
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3. for each o, calculate the v as:

1
1T 9% o2
186 The kernels generated were combined by the EasyMKL algorithm as implemented in

1wz MKLPy to find an optimal combination (Aiolli and Donini 2015; Lauriola et al. 2017;
188 Lauriola and Aiolli 2020), setting sci-kit’s learn SVC algorithm as a learner (Pedregosa
180 et al. 2011). The A parameter for EasyMKL was fixed to 0 and the optimal C parameter
wo for SVC was searched in the range between 107° and 10? by 10-fold (internal) cross-
101 validation (CV) on the train set. This process was used both when a single feature set
102 was evaluated (by combining the 7 kernels for the set) and when combining multiple
103 feature sets (7 kernels for each set).

104 To estimate performance by cross-validation, the train set was split 70-30. 70% was
105 used to optimise the model parameters by maximising the ROC AUC score and the
s remaining 30% was used for prediction. The procedure was repeated 10 times with
17 different subsets of samples.

198 Out-of-sample performance was evaluated in the datasets outlined in section 3.1, by

199 training the classifier on the whole of the training set.

w 3.4 Benchmarking against other classifiers

20 To evaluate the performance of the presented classifier compared to published classifiers
20 in the field, we compared performance with ERGO (Springer et al. 2020) and ImRex
203 (Moris et al. 2020) on the same validation sets. ERGO is available as a web tool (http:
20 //tcr.cs.biu.ac.il/), and the models trained on the VDJdb (Bagaev et al. 2020)

205 were used for the benchmarking. ImRex is available as a GitHub repository (https:

10
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//github.com/pmoris/ImRex), and the available model trained on the VDJdb was used

for the predictions.

3.5 Data availability

The complete set of sequences used, as well as prediction results are provided as supple-

mentary files.

4 Results

4.1 Extracting physical features from available TCR-pMHC com-
plex structures allows interrogation of binding mode

We first established a systematic pipeline to extract structural information about the
TCR-peptide interface from a dataset of solved structures downloaded from the Structural
T Cell Receptor Database (Leem et al. 2018). The minimum pairwise distances between
TCR and peptide residues, and their corresponding attractive and repulsive van der
Waals forces (atr, rep), electrostatic interactions (elec) and solvation energies (sol) were
estimated for each peptide-TCR complex as described in the methods.

Each feature extraction process yielded a matrix with information about pairwise
contacts between residues in the TCR and residues in the peptide (Figure 1a). The
distance fingerprints are easy to compare between different structures and can give insight
into the binding mode for the complex: for instance, complexes 1AO7 (Garboczi et al.
1996) and 1MI5 (Kjer-Nielsen et al. 2003) (both MHC Class I) bind closer to the N

terminus of the peptide, whilst 1DIK (Reinherz et al. 1999) has the TCR bound more

11


https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444843; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

26 centrally, and this is particularly evident in the a chain (Figure la and b).

207 We wondered whether any trends could be detected more generally and used the
»s minimum pairwise distances to identify the distribution of interactions between TCR
29 CDR residues and the peptide in class I and class II complexes (Figure 1c). While it
20 is clear that interactions between TCR chains and antigen peptide are not confined to
2 a single hotspot, some general patterns emerge. The TCRa chain, for example, tends
22 to bind the N-terminus of the peptide, whilst the # binds towards the C-terminus, as
213 has been reported previously (Garcia et al. 2009). Interestingly, while contacts were
2 dominated by the CDR3 region of the TCR, we also detected contacts between CDR1
235 and CDR2 and peptide residues in a significant proportion of complexes. Moreover, more
236 of the class I structures make contacts with the C-terminus of the peptide than class I1. A
2% similar pattern is also detected when looking at the energetic interactions (Supplementary
2 Figure S1).

230 In order to look in more detail for potential conserved patterns with which to char-
a0 acterise the TCR-peptide binding surface, we calculated a PCA for each of the feature
21 sets (distances and energy vectors) for all complexes (Figure 2a and Supplementary Fig-
22 ure S2a). The first dimension of the PCA of the minimum pairwise distances clearly
23 identified the few examples where the TCR is in an inverse orientation relative to the
24 peptide (stars, PDB: 4Y19 and 4Y1A Beringer et al. 2015, 5SWS and 5SWZ Gras et al.
25 2016). The second dimension of the distance PCA, on the other hand, seemed to par-
26 tially discriminate between class I and class II complexes. To gain some insight in to
27 which structural features were driving this separation, we looked at the distance vectors
2 that were used for each structure (Figure 2b, left). Both for the o« and the § chains,

a9 a shift towards the peptide C terminus was observed with decreasing PC2 values. Four

12


https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444843; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

vdW - atr vdW - rep
a PDB: 1A07 . —
distances i I. AR el X
: i i :
Sl (R N 3 ;
18 B i Suia 1 L i
a -l . ol : RN 1 O 1 ARRAN |
’ gt i | i O B S
8
: i
! ! B0 NEEE sol elec
2 i 1 1
2 mi i SHENAN 0N 2 E. O
B : il N | ] : M e : 0
HH L At : o :
RIH Wl il g "
s{ 1l iE I ENRY  DNEEE | T
9 i l—‘ | L _“ | i i I v
RRRRARAFARRRACRASEE B3B8 : FHEFHY b
CDR1 CDR2 CDR3 RS e e : il I
0 5 10 15 20 25 -1 0 1
A REU (Rosetta Energy Units)
b c
PDB: 1MI5 MHC class |
= F mEE | § | . .
5 L F [ a chain B chain

=0 L I

BEREB v owounswnEEREB oo wanswnr

PDB: 1D9 MHC class Il

a chain B chain

© @ bW

RRARAMNNIBRFRRGRAABTYBI!

CDR1 CDR2 CDR3

Figure 1: Caption next page

13


https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444843; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

250

251

252

253

254

256

257

258

259

260

261

262

264

made available under aCC-BY 4.0 International license.

Figure 1: (Previous page.) Feature extraction from PDB structures. a. Heatmaps
showing the physical features extracted for structure 1AO7. In each heatmap, the top half
refers to the a chain and the bottom half to the 8 chain. Each column is a CDR residue, each
row is a peptide antigen residue and the colour of each square represents the value extracted
for the CDR-peptide residue pair (i.e. top left-hand square of the distance panel is the distance
between residue 1 on the peptide and residue 27 of the TCRa chain). Similar plots are shown
for each energy term extracted - van der Waals attractive, van der Waals repulsive, solvent and
electrostatic. b. Two other examples of distance fingerprints, a class I and a class II complex
- 1MI5 (class I complex, EBV peptide) and 1D9K (class II complex, conalbumin peptide) - for
comparison with 1AO7. Same scale as in a. c¢. Histograms showing the number of structures
making a contact (less than GA) for each peptide residue-CDR residue pair, for alpha and beta
chains separately, showed for class I and class II complexes. Peptide residues renumbered 1-20

for consistency as described in methods

representative fingerprints from the edges of the PCA plot are also shown in which the
inverted orientation of 4Y19 and 5SWS as well as the shift towards the N terminus for
5TEZ (Yang et al. 2017) are apparent, compared to 3RGV (Yin et al. 2011). In agreement
with Figure lc, class II complexes tend to have higher PC2, which is associated with a
shift towards binding at the N terminus of the peptide. 3RGV, which segregates with
the class II complexes, is actually a class I complex. Interestingly, however, the YAe62
TCR in the 3RGV complex is reported by the authors to bind both class I and class 11
complexes with similar orientations, which might explain its positioning with other class
IT complexes. Strikingly, the other class I complex found with high PC2 is 4JRY, which
is also reported to bind with unusual position on top of the N-terminus of the peptide,
rather than centrally, where the peptide bulges out (Liu et al. 2013).

A similar analysis was done on the solvent energy vectors (Figure 2). The PCA
suggested a segregation between class I and class II complexes along PC1, although
significant overlap was also observed. We therefore looked at what features could be

driving the separation along the PC1 (Supplementary Figure S2b). The only evident

14
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Figure 2: (Previous page.) Structural features identify different binding modes. a.
PCA performed on distances and on solvent energies can separate class I and class IT complexes
(green and red, respectively). The stars indicate the structures that have been reported to have
inversed polarity (i.e. the TCRs bind the pMHC complex at 180 degree angle). Annotated
on the distance plot, the structures at the extremes that we analyse in b. b. Left: linearised
vectors used for the distance PCA, ordered according to their PC2 score. On the x-axis, the
minimum distance between each CDR residue and each peptide residue (27-1, 28-1,...,116-1,
117-1, 27-2,...,117-20). Right: fingerprints for 4 representative structures labelled in panel a
(3RGV high PC2, 5TEZ low PC2, 5SWS and 4Y19 high PC1). c. Left: PCA of all feature sets
combined, which also shows separation along PC1. Right: loading coefficient of each feature on

PC1 and below a barcode to show which set the feature belongs to.

trend was that all the complexes with high PC1 show a strong unfavourable interaction
between the § chain and the peptide C terminus (blue in the heatmap). As solvent energy
is positive (i.e. unfavourable) when a residue is not solvent-exposed, this suggests that
the complexes with higher PC1 make an interaction between the beta chain and the C
terminus of the peptide.

Finally, all distance and energy feature sets were combined in a single PCA plotted in
Figure 2¢ (left). Here, the structures with inverted polarity have high PC1, followed by
MHC class II complexes and on the left-hand side of the plot are the class I complexes.
The loadings of each feature in the set were calculated and the features ranked by loading
value (Figure 2c, right). Most of the features which had absolute values greater than 0
(i.e. positive or negative), belong to the distance, the solvent energy or to the Atchley
factors datasets, suggesting that these have the strongest discriminatory power.

Overall, these results gave us confidence that meaningful information about the bind-

ing interface could be extracted with our pipeline.
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o 4.2  Structural information from homology modelled structures
20 cannot distinguish binding pairs in unsupervised settings

21 We next investigated whether given independently a TCR and a pMHC, we could deter-
22 mine whether we could discriminate between TCR-pMHC interactions in which the TCR
283 binds its cognate antigen and those which do not allow effective binding. The parameters
24 characterising non-binding interactions could obviously not be obtained directly from
s known structures, since by definition these TCRs would not form stable complexes with
26 the pMHC. We therefore predicted structures for TCR-pMHC combinations by homology
27 modeling using TCRpMHCmodels (Jensen et al. 2019). The pipeline takes a fasta file
s with a TCR, a peptide and a class I MHC, predicts its three dimensional structure and
20 extracts pairwise distances and binding energies for the interface. The actual sequences
200 are also captured in the form of vectors of Atchley factors as described in the methods.

201 Because we needed to rely on a structure prediction method, we first evaluated the
2o difference between the features extracted from the original crystallographic structures
203 and from their respective modelled structures (Figure 3 and Supplementary Figure S3a).
2 Taking complex 1AO7 as an example, the fingerprints obtained from the original PDB and
205 from the predicted structures were plotted (Figure 3a). The two complexes have RMSD
26 of about 2A and it can be seen that the contacts seem to be slightly shifted towards the
207 N terminus of the peptide in the predicted structure compared to the crystal. However,
28 the two fingerprints did not look drastically different.

299 When combining all feature sets and looking at all structures available by PCA, no
30 systematic difference was found between modelled and original structures (Figure 3b

;0 and ¢ and Supplementary Figure S3a). There was reasonably good matching between
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Figure 3: (Previous page.) Comparisons between crystal structures and homology
predicted structures. a. Comparison of fingerprint between the original 1AQO7 structure and
the one predicted by TCRpMHCmodels. On the right, figure showing how the two structures
superimpose in cartoon form (green = original, gold = predicted). MHC not shown for clarity.
b. Left: PCA on all feature sets showing the difference between crystal structures (green
circles) and predicted structures (blue triangles). Right: correlation for PC1 and PC2 values
between original and predicted structures. Each blue dot is a complex and has (x,y) coordinates
that depend on PC1 values for predicted and original structure. Similarly for PC2 (green
dots). PCA for other feature sets in Supplementary Figure S3a. c. Frequency distributions
of 4 characteristics of the TCR-pMHC complexes comparing the distribution between original
and predicted structures. Minimum distance: minimum distance between TCR and peptide;
Contacts: number of TCR-peptide residue pairs that are less than 5A apart; Favourable atr/elec

interactions: number of favourable (energy < 0) interactions between TCR and peptide.

the crystal strucutres and their homology models, although TCRpMHCmodels failed to
predict non-canonical binding models. We also compared the distributions of some of the
structural features (minimum distance between peptide and TCR, number of contacts
and number of favourable interactions), and in general found reasonably good agreement
between models and structures. As homology modelling gave us reliable predictions and
was necessary to create our negative examples, we decided to use modelled structures for
both binding and non-binding complexes, in order to avoid introducing systematic bias.

To create a set of non-binders, a set of shufled TCR-pMHC complexes from the
STCRDab was used (Figure 4a). We then asked whether the structures predicted for
non-binders could be discriminated from the binders.

Strikingly, there was no dsicernible separation of binders and non-binders on un-
supervised PCAs with any of the distance or energy sets of features (Figure 4b and
Supplementary Figure S3b). Basic metrics such as the minimum distance between TCR
and peptide and the number of contacts showed similar distributions for binders and

non-binders (Figure 4b).
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Figure 4: (Previous page.) Homology modelled binding and non-binding TCR-pMHC
complexes can not be discriminated by PCA. a. Summary of the number of STCRDab
derived binding and non-binding structures which were modelled. For each peptide in the
set, the barplot shows the number of models of binding and non-binding TCRs (blue and
magenta, respectively) . b. PCA of all sets combined showing no separation between binding
and non-binding TCR/pMHC homology models. The PCAs for each feature set separately are in
Supplementary Figure S3b. c. Frequency distributions of 4 characteristics of the TCR-pMHC
complexes comparing the distribution between binding and non-binding models. Minimum
distance: minimum distance between TCR and peptide; Contacts: number of TCR-peptide
residue pairs that are less than 5A apart; Favourable atr/elec interactions: number of favourable

(energy < 0) interactions between TCR and peptide.

4.3 Structural information can discriminate between binders
and non-binders using supervised learning

We turned to supervised machine learning methods to try and better discriminate be-
tween binding and non-binding pairs. We explored multiple kernel learning (MKL) to
combine information from the different feature sets extracted from the modelled interac-
tion surfaces using the pipeline explained above. To assess the potential of our method,
a model was trained and tested by cross-validation, using predicted structures derived
from the STCRDab, creating a dataset of positives and negatives as described in the
methods. Figure 5a and ¢ show the results of 10-fold cross-validation when each different
feature set is used separately. Whilst Atchley factors provide the single strongest predic-
tive power (average ROC AUC of 0.763), similar discrimination can be obtained by using
distances only (ROC AUC of 0.755), followed closely by attractive van der Waals forces
(atr, ROC AUC of 0.74) and solvent energies (ROC AUC of 0.701). The other energetic
terms generally showed poorer performance and were excluded from further analysis.
We next combined the feature sets to create a single classifier (Figure 5b and ¢). Using

Atchley factors, distances and attractive van der Waals forces together achieved a similar
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performance to using each set of features independently, whilst combination of Atchley
factors and distances only gave a slight increase in performance compared to each of the
two sets separately. Interestingly, although performance did not change much in this
more complex model, the weights assigned to the kernels constructed for each feature set
were similar, suggesting that no single feature set was more important than the others in
the overall model.

We then went on to validate the trained model on the other 5 datasets described in
the methods. Because we wanted to test how generalisable the rules that the classifier
had learnt were, we did not train the classifier again on the new sets, but used the model
trained on the STCRDab set to predict the new complexes. Results from validation
are presented in Figure 5d and Supplementary Figure S4 and summarised in Table 1.
Overall, the models with the highest ROC AUC consistently included sequence informa-
tion. Moreover, addition of structural features often did not improve predictive power.
However, structural features often allowed some level of discrimination, independently of
the sequence information, suggesting that the model might be learning something about
the binding modes of these complexes. Interestingly, the models which used structural
features had consistently higher recall.

The ATLAS proved to be a very hard set to predict overall. This might be due to
each complex being only a few mutations away from the crystal structure deposited in the
PDB, which might have on one hand made the modelling easier, but on the other hand
made it harder for the classifier to tell the difference between a binding and a non-binding
pair which differ at only one amino acid. Moreover, some of the included mutations occur
at the MHC, which is not considered when extracting features. Finally, the ATLAS set

does not have a strict definition of binding, as for the other sets which derive from
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Figure 5: (Previous page.) A discriminative classification model can be trained using
extracted structural features. a. ROC AUC curves of 10-fold CV on the STCRDab training
set with each feature set separately. The faint line are the results for each individual fold, whilst
the dark line represents the interpolated average results, with the shaded area as the standard
deviation. b. Interpolated ROC AUC curves for 10-fold CV obtained when combining different
feature sets for prediction. c. Tabular results for curves showed in a. and b.. d. Left: ROC
curves obtained when the model trained on the STCRDab set is used for prediction on the
10XGenomics validation set. Right: for the model trained on STCRDab using the distance
dataset only, the diagram shows which proportion of examples from each epitope are classified

correctly (true positives and true negatives) or incorrectly (false positives and false negatives).

7 tetramer-sorting experiments, but rather the complexes show a range of affinities, and it

18 1S hard to define a strict threshold to define binding.
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avg

set % pos combo roc precision accuracy precision recall
distances 0.574 0.289 0.739 0.315 0.198

dist-atr 0.562 0.260 0.726 0.294 0.210

B10x 21.17 atchley 0.668 0.441 0.805 0.751 0.117
atchley-dist 0.629 0.375 0.786 0.487 0.166

atchley-dist-atr 0.590 0.317 0.766 0.382 0.173

distances 0.591 0.114 0.757 0.116 0.350

dist-atr 0.645 0.123 0.802 0.139 0.326

Dash 7.34 atchley 0.700 0.188 0.905 0.209 0.107
atchley-dist 0.599 0.175 0.798 0.133 0.318

atchley-dist-atr 0.645 0.146 0.824 0.153 0.309

distances 0.727 0.326 0.714 0.262 0.688

dist-atr 0.709 0.423 0.667 0.205 0.563

expt 12.70 atchley 0.816 0.704 0.825 0.393 0.688
atchley-dist 0.823 0.659 0.754 0.297 0.688

atchley-dist-atr 0.770 0.515 0.698 0.238 0.625

distances 0.487 0.897 0.827 0.892 0.917

dist-atr 0.518 0.907 0.794 0.901 0.863

atlas 89.06 atchley 0.632 0.938 0.891 0.891 1.000
atchley-dist 0.551 0.918 0.891 0.891 1.000

atchley-dist-atr 0.547 0.916 0.865 0.896 0.960

distances 0.521 0.010 0.865 0.010 0.186

dist-atr 0.521 0.008 0.896 0.013 0.186

newVdj 0.72 atchley 0.570 0.010 0.987 0.000 0.000
atchley-dist 0.541 0.010 0.954 0.009 0.047

atchley-dist-atr 0.546 0.008 0.947 0.000 0.000

Table 1: Results of out-of-sample validation. Results of predicting the validation sets
with the model trained on the STCRDab set, using different subsets of features. In each section,

the best-performing model is highlighted in bold and underlined.
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s 4.4 Classifier performance varies between epitopes

w0 A known hard task for a classifier trained on a small subset of the epitopes that our
1 immune system is exposed to, is to generalise to epitopes not present in the training
32 set. It is apparent from the diagrams showing mis-classification in Figure 5d (right) and
13 Supplementary Figure S4b that some peptides were indeed easier to classify than others.
364 Figure 6a shows the classifier performance on 4 representative epitopes. For a perfect
s classifier, the decision score for positive and negative samples (equivalent to the distance of
36 a point from the decision hyperplane in the case of an SVM) should have non-overlapping
367 distributions. However, for peptide antigen AVEFDRKSDAK the distributions for binding
s and non-binding TCRs almost completely overlap, suggesting that the classifier has not
w0 learnt useful information from the data. For peptide LLFGYPVYYV, on the other hand,
s the separation between the two groups of TCRs is almost perfect. The classification of
sn TCRs specific for the ELAGIGILTV and ASNENMETM peptides showed an intermediate
sz pattern. Overall, the classification of TCRs for different epitopes show very significant
w3 differences in performance, (Figure 6b), as has been observed previously for other models
wa  (Moris et al. 2020). This also suggests that the overall performance as showed in Table

a5 1 is somewhat misleading, as it will be skewed by the more abundant epitopes.
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Figure 6: (Previous page.) The performance of the model is pMHC dependent. a.
Examples of 4 different epitopes. The frequency distributions of model decision function scores
(for an SVM, this correponds to the distance from the separating hyperplane, drawn as a dotted
line) for binding and non-binding TCRs recognising each epitope. The bar at the top shows
the order in which binding and non-binding examples appear when ranked by decision function.
For good classification, the bar should be mostly blue on the left and mostly red on the right.
b. The bar plot shows ROC AUC for all peptides which have at least 2 positive and 2 negative
examples. This data comes from concatenating the predictions for all the validation sets when

Atchley factors, distances and attractive van der Waals forces are used.

4.5 Homology modelling performance impacts classifier perfor-
mance

We wondered whether the difference in performance could be due to the performance
of the homology modelling tool used. For each structure, we retrieved the information
about the sequence similarity between the structure of interest and the template used to
model it. We then plotted the classifier performance as a function of sequence similarity
(Figure 7a).

Overall, there was a trend for better templates (increased sequence similarity) to
correlate with better classifier performance (observed as an increase in performance to
the right of the individual panels). Interestingly, however, the same trends were observed
also when classification was based only on sequence information suggesting that this might
not be related only to the accuracy of the homology modelling. The templates for the
homology modelling and the training set for our classifier are overlapping sets (as both
are using the complexes for which a crystal structure is available) and our results might be
reflecting the increased density in the feature space of known complexes. To investigate
this, we also computed the BLOSUM scores from the train set for all the complexes

we predicted (Figure 7c). Indeed, a decrease in classifier performance is observed when
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Figure 7: Caption next page
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Figure 7: (Previous page.) Classifier performance is dependent on sequeunce homol-
ogy of the target TCR-pMHC. a. The performance from all validation sets were combined,
and stratified by the similarity between the sequence of the target complex to be classified and
the relevant homology modelling template (as outputted by TCRpMHCmodes and outlined in
Jensen et al. 2019). Mean performance (ROC AUC) in each range of homology is calculated and
plotted at the range midpoint. The grey bars show the number of structures that contribute to
the performance for each point. b. Performance of each of the validation set when the model
is trained on the entire STCRDab set (all train) or only the STCRDab structures with good
templates (as defined in methods - good train), and when predictions are made on all complexes
(all test) or only complexes with good templates (good test). c. Equivalent analysis to a. but
calculating the BLOSUM score between each example and the closest example in the train set,
for each chain separately. The higher the BLOSUM score, the more similar the sequence is to
one found in the training set. In each plot, the grey bars show the number of structures in each
bin.

the BLOSUM score decreases, i.e. when the TCR-pMHC pair that we are trying to
predict is less similar to the training set pairs. Interestingly, in all cases the performance
of the classifier is more dependent on TCR homology, than on peptide homology. It
is important to note that the observed relationship between classifier performance and
sequence homology allow us to predict a priori which TCR/peptide binding predictions
will carry greater confidence. In fact, by considering the epitope and complex homology
templates, we are able to select a priori a subset of structures on which our model will

perform better (Figure 7b).

4.6 Effect of affinity on the predictor

Because the classifier relies on structural information and it is trained on the set of TCR-
pMHC pairs that have a known crystal structure, we wondered whether the model could
predict binding affinity as well as a binary binding/non-binding classification or whether

higher decision function scores were assigned to higher-affinity complexes (i.e. whether
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complexes which bind with high affinity are called binders with higher confidence). To
address this, the TCR-pMHC pairs from the ATLAS (Borrman et al. 2017) were retrieved
and their score predicted. The score for each complex was then correlated (Spearman) to
their measured affinity, removing all complexes with undetectable binding and adjusting
the AG and Kp as in the original publication (Table 2). Unexpectedly, the only significant
correlation was between sequence features (Atchley factors) and k,¢¢. The model therefore
does not successfully capture the structural information which determines the affinity of

the complex and its performance is not biased towards detection of high-affinity pairs.
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Kp (kM)
Kon (Ms™)
kotr (s7)

AG (kcal/mol)

Table 2: Correlations of affinity metrics and decision function scores.

made available under aCC-BY 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444843; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

distances dist-atr atchley atchley-dist atchley-dist-atr
Spearman Spearman Spearman Spearman Spearman
p-value p-value p-value p-value p-value
R R R R R

-0.076 0.188 -0.057 0.322 -0.006 0.914 -0.048 0.402 0.154 0.099
0.126 0.177 0.153 0.101 0.084 0.371 0.173 0.063 0.050 0.592
0.056 0.551 -0.077 0.412 0.277 0.003 0.106 0.260 -0.070 0.221
-0.080 0.167 -0.065 0.258 -0.022 0.702 -0.060 0.338 -0.070 0.221

Spearman

correlation is calculated for each affinity metric for predictions made for each of the models

trained.
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a 4.7 Benchmarking against existing tools

a5 Finally, we compared the performance of our classifier against the recently published
a6 ERGO (Springer et al. 2020) and ImRex (Moris et al. 2020, Table S1). Both ERGO and
sr  ImRex were trained on the VDJdb set (Bagaev et al. 2020), as described in the original
sis publication, rather than the much smaller set of binder used by our algorithm. The
a9 trained models are available as an online tool for ERGO (http://tcr.cs.biu.ac.il/)
20 and on GitHub for ImRex (https://github.com/pmoris/ImRex).

a1 The classifiers were all tested on the same set of binder and non-binder TCR-pMHC
a2 sets. Figure 8 and Supplementary Table S1 show the results divided by peptide. The
w23 results are organised in 3 scenarios depending on whether the peptide is present in neither,
w22 either or both of the train sets.

425 When compared on epitopes that are not present in either train set (Case 1), all the
w6  models perform in a similar manner. Interestingly, none of the sequence-based classifiers
w27 outperforms the structure-based classifier. When the epitopes are present in the VDJDb
#28  but not in the STCRDab (PDB) set (Case 2), both ERGO models significantly outperform
a0 all other models in prediction, including ImRex. Finally, when peptides are present in
a0 both train sets (Case 3), ERGO outperforms all models except the ones which include
a1 Atchley factors information.

32 Taken together, these results suggest that the structure-based models developed in
.3 this study perform as well as the state-of-the-art sequence-based models in predicting

a2 binding to novel pMHC, despite learning from a much smaller training set.
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Figure 8: Caption next page
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Figure 8: (Previous page.) Comparison of performance with other published tools.
In each violin plot, a dot is an epitope for which performance is calculated. In Case 1, only
epitopes that are not present in the PDB or in the VDJDb train sets are included. In Case
2, only epitopes that are present in the VDJDb but not in the PDB are included. In Case 3,
only epitopes which are in both training sets are included. Significance values are shown by

asterisks.

5 Discussion

Previous study of the binding geometry of TCRs to the pMHC complex has been largely
focused on measuring the diagonal angle and the orientation of the TCR with respect to
the MHC. In the present study, a number of different features were extracted to try and
recapitulate both the conformation and the energetic profile of the binding interface. A
survey of the crystal structures available showed that, in agreement with Glanville et al.
2017; Ostmeyer et al. 2019, stretches of amino acids at the centre of the CDR3 in the
TCRa and S chains are within contact distance of the peptide. This information was
also recapitulated by the energy profiles, suggesting that not only can they interact, but
that they make favourable interactions. Although no conserved binding hotspots were
detected within the CDR, we were able to identify different binding modes simply from
the features extracted.

Conserved binding geometry has been reported in TCRs that bind the same MHC
complex (Blevins et al. 2016) and recently Singh et al. 2020 showed that a difference
can be detected between pMHC class I and class II binding. Such a difference is also
reported in this analysis, and detected both at the conformational level (in terms of
pairwise distances) and at the energetic level. As reported by Singh et al. 2020, our
analysis also showed that TCRs binding MHC class I tend to be closer to the C-terminus

of the peptide, whilst TCRs binding class II complexes sit more centrally or towards the

35


https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444843; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

454

456

457

458

459

460

461

462

464

465

466

467

468

469

470

471

472

473

474

475

476

477

made available under aCC-BY 4.0 International license.

N-terminus. Moreover, the energetic features suggest that a difference between class I and
class IT complexes can also be found in the energetic profiles that drive these interactions.
As well as the difference between class I and class II, the spatial features extracted from
the structures were readily able to distinguish TCRs which bind with reversed polarity
to the pMHC complex, as described by Gras et al. 2016 and Beringer et al. 2015, and
identify class I complexes with different non-canonical binding modes to the peptide (Yin
et al. 2011; Liu et al. 2013). This suggests that the features extracted are informative of
the biology of this system.

The information collected from these structures was also sufficient to build a clas-
sifier able to discriminate between TCR-pMHC binding from non-binding pairs. The
generalisability of the classifier was tested on multiple independent datasets, collected
and analysed independently. Physical interaction features on their own proved sufficient
to distinguish binding and non-binding complexes to a similar degree to published tools
which are based on sequence information alone (Figure 8). Interestingly, merging of
sequence and physical features in the same model did not improve the performance in
terms of ROC AUC, although often improved the recall of the sequence-based model.
This is an important characteristic, as in real-life applications a classifier like the one
presented could be used to screen candidate TCRs against an epitope of interest, for
example with the aim of identifying tumour-infiltrating lymphocytes that can recognise
tumour neoantigens. In this context, in-silico screening would be followed by experimen-
tal validation. Because the events of interest are a very small number compared to the
total number of events (i.e. binders << non-binders), it would be more important to
correctly classify more of the binders than of the non-binders, i.e. a higher number of

false positives, which can be screened out during experimental validation, would be less
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problematic than a higher number of false negative, which would not be experimentally
validated.

Compared to other published classifiers (Glanville et al. 2017; Dash et al. 2017; Tong
et al. 2020), the classifier presented here is different in that it does not need to be trained
on a known subset of TCRs recognising a specific peptide to be able to predict more
binders, but rather it can learn from any set of TCR-pMHC pairs already available
and generalise what it has learnt to the problem at hand. This suggests that there
are conserved features to the TCR-pMHC interface which can be learnt and used for
prediction. ERGO and ImRex (Springer et al. 2020; Moris et al. 2020) have pioneered
this approach, although they only focussed on information that can be extracted from
the sequence. ImRex is a bit more similar to the classifier presented, as it encodes the
binding interface using amino acid characteristics rather than pure sequence encoding.
Of note, all of the results that we have presented here use the model originally trained
on the STCRDab set, which was never re-trained on the new sets of structures. This is
not the case for other published tools, which achieve better discrimination but only after
training on a section of the validation set.

We extended the approach adopted by ImRex and decided to rely on the structure
of teh whole TCR-pMHC complex. Modelling of mutations within the existing crystal
structures has recently proved a successful approach to ranking candidate peptide epitopes
from a phage screen against target TCRs (Borrman et al. 2020). Here, we see from
the weights assigned to each combined kernel that the physical interactions encoded
by the distances and the attractive van der Waals forces were equally as important as
the sequence information, suggesting that physical interactions can be used to predict

binding. Moreover, the classifier here presented is trained on about 400 binding and
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non-binding pairs, which recognise 93 different epitopes. This is a much smaller set
than the VDJdb used by ERGO and ImRex (40,000 TCRs and 200 peptides in ERGO
and 14,000 CDR3/5 and 118 peptides in ImRex), but achieves similar performances. This
might indicate that the information learnt from the structural information is more readily
generalised to an unseen case.

As more structures for more diverse epitopes become available, the performance of
the classifier may well improve. However, the complex biology of the system will always
be a factor limiting performance. For example, if a small proportion of TCRs bound
to the pMHC complex with conformations that are significantly different from canonical
binding, we might never be able to predict their binding with a tool that has learnt on a
subset of canonical TCRs. This may well be the case with other structures with reversed
polarity or complexes with unusual binding highlighted in Figure 2a.

Most of the results presented has been based on a binary classification of TCR-pMHC
complexes as binding or non-binding. In reality, the interaction between TCR and pMHC
is characterised by a graded affinity scale. This is of interest as there are multiple metrics
that contribute to overall affinity and are important for T cell activation dynamics - Kp,
kon, koss, half-life - (Galvez et al. 2019; Lever et al. 2017; Stone et al. 2009) and it is
not yet clear what features in the structure can drive them. No correlation between the
classifier score and affinity or kinetic parameters was detected for the ATLAS structures
(Borrman et al. 2017). However, the original ATLAS publication showed a correlation
between the attractive van der Waal force as calculated by Rosetta (here atr) and the
experimentally-measured affinity, similar to the one reported by Erijman et al. 2014 on
an unrelated system. Because the affinity is driven by structure, we believe the PDB

classifier could also be optimised for rough affinity prediction, although better methods
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of modelling the mutations into the structures might have to be explored.

Finally, the major difference between this classifier and most of the work published so
far is that it relies on an available TCRa/ pairs and cannot be used on unpaired chains.
This is a limitation to the direct application of the classifier as alpha/beta pairing is
typically not available from bulk TCRseq data. However, unpaired o and  chains only
contain a portion of the binding site information, and the assumption that binding of the
£ chain only is sufficient is clearly not true in every case. Carter et al. 2019 show that
the information encoded in the af pair is synergistic, i.e. that the pairing carries more
than the sum of the individual chain information. Moreover, their survey of the VDJdb
shows instances where the same « chain paired with different £ chains recognise different
epitopes, or where CDR3a and 8 annotated to bind epitopes from different species come
together to bind yet another peptide. Overall, we believe this to be strong motivation to
work on af pairs. Future work will focus on understanding whether candidate a3 pairs
that bind a specific antigen can be inferred from TCR clones that are expanded during

an immune response.
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= 7 Supplementary Material

0 The following are supplied as supplementary materials:

741 1. Sequences for all the datasets used, specifically:

742 e sequences from STCRDab PDB files - these are the sequences from the
743 PDB files used for the initial feature extraction

744 e STCRDab set metadata - metadata associated with the sequences from the
745 STCRDab

746 e 10X Genomics set sequences - sequences for the structures included in the
747 10X set

748 e experimental constructs sequences - sequences for the structures included
749 in the expt set

750 e Dash set - sequences for the structures included in the Dash set

751 e ATLAS sequences - sequences for the structures included in the TCR AT-
752 LAS set, including the affinity information from the ATLAS

753 e VDJDD validation sequences - sequences for the structures included in the
754 new VDJDD set

755 2. All result files with decision function scores for each TCR-peptide pair. A README

756 file is included with filename explanations.
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Figure S1: (Previous page.) Energy interactions for class I and class II complexes
Analogous to Figure 1lc, but for all energy feature sets. The histograms show the number
of structures that make a favourable contact (energy < 0). Repulsive vdW excluded as this

component is always > 0.
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Figure S2: (Previous page.) PCA on all extracted features. a. PCA for feature sets not
included in Figure 2a. Class I and class II complexes are shown in green and red, respectively.
The stars indicate the structures that have been reported to have inversed polarity (i.e. the
TCRs bind the pMHC complex at 180 degree angle). b. Linearised vectors used for the solvent
energy PCA, ordered according to their PC1 score. On the x-axis, the calculated solvent energy
between each CDR residue and each peptide residue (27-1, 28-1,...,116-1, 117-1, 27-2,...,117-20).
Analogous to Figure 2b.
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Figure S3: (Previous page.) PCA of original vs predicted and of binding vs non-
binding. a. PCA for each set showing overlay between original and predicted structures.
Asterisks (*) in the distance plot indicates the inversed polarity structures. b. PCA for each
set showing overlay of binding and non-binding complexes (predicted structures, blue triangles

and magenta circles, respectively).
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Figure S4: (Previous page.) Results of all validation sets used. a. ROC curves obtained
when the model trained on the STCRDab set are used for prediction on each of the valida-
tion sets. b. For the model trained on STCRDab using distances only, the diagram shows
which proportion of examples from each epitope are classified correctly (true positives and true

negatives) or incorrectly (false positives and false negatives) for each of the validation sets used.
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N pos N neg in_pdb in_vdjdb |distances dist-atr  atchley atzlil:y- a;;:‘:z; ImRex f:‘?l\(; EI;(;O
VVMSWAPPV 7 120 no no 0.361 0.526 I 0.605 I 0.370 0.557 0.482 0.461 0.433
ALYGFVPVL 5 122 no no 0.620 I 0.603 0.508 0.556 0.597 0.474 0.290 0.657
HMTEVVRHC 4 123 no no 0.390 0.551 0.654 | 0.549 0.573 0.679 0.551 0.498
APARLERRHSA 3 124 no no 0.559 | 0.570 0.449 0.538 0.495 0.901 0.591 0.562
RLARLALVL 5 122 no no 0.218 0.285 0.443 0.215 0.259 0.433 0.575 0.582
NLNCCSVPV 4 123 no no 0.715 0.638 0.447 0.720 I 0.667 0.547 0.677 0.567
RLRAEAQVK 57 336 no yes 0.465 0.416 I 0.525 0.461 0.429 0.538 0.753 0.727
SSPPMFRV 20 1795 no yes 0.393 0.412 0.396 0.373 I 0.424 0.665 0.891 0.814
MLDLQPETT 6 6 no yes 0.750 | 0.333 0.306 0.417 0.250 0.778 0.694 0.583
FLASKIGRLV 3 24 no yes 0.500 0.639 0.389 0.375 I 0.653 0.542 1.000 0.597
TVYGFCLL 46 1839 no yes 0.407 | 0.419 | 0.323 0.288 0.386 0.453 0.915 0.757
KTWGQywaQv 3 10 no yes 0.800 0.633 0.700 0.867 | 0.633 0.433 1.000 0.933
KLGGALQAK 324 2161 no yes 0.493 0.479 | 0.527 0.498 0.493 0.511 0.739 0.630
AYAQKIFKI 4 62 no yes 0.750 0.379 0.464 0.685 0.339 0.266 0.690 0.867
LLDFVRFMGV 10 18 no yes 0.794 0.639 0.328 0.633 0.494 0.294 0.767 0.800
HGIRNASFI 140 1674 no yes 0.498 0.652 0.500 0.482 0.608 0.610 0.926 0.918
LSLRNPILV 64 1796 no yes 0.437 0.443 0.644 0.456 0.465 0.520 0.902 0.745
IVTDFSVIK 207 421 no yes 0.540 0.613 0.662 0.632 0.649 0.668 0.821 0.795
RMFPNAPYL 4 12 no yes 0.542 0.542 0.604 0.625 I 0.667 0.542 0.958 0.750
SSYRRPVGI 455 1389 no yes 0.432 0.471 0.561 0.499 0.466 0.282 0.938 0.927
AVFDRKSDAK 175 869 no yes 0.465 0.441 0.494 0.460 0.432 0.534 0.716 0.669
SLFNTVATLY 5 34 no yes 0.241 0.435 0.300 0.353 0.506 0.435 0.771 0.712
RAKFKQLL 77 169 no yes 0.635 0.511 0.594 I 0.637 0.511 0.554 0.725 0.726
FLYALALLL 7 9 no yes 0.508 I 0.635 0.190 0.444 0.349 0.349 1.000 0.968
LGYGFVNYI 4 10 yes yes 0.925 0.850 1.000 1.000 I 0.950 0.925 1.000 0.925
GLCTLVAML 98 1848 yes yes 0.722 0.717 0.747 0.740 0.737 0.756 0.991 0.980
LLFGYPVYV 91 36 yes yes 0.865 0.867 0.888 0.888 I 0.876 0.908 0.935 0.922
SLLMWITQC 33 11 yes yes 0.355 0.088 0.598 0.438 0.176 0.665 0.638 0.806
SSLENFRAYV 147 1614 yes yes 0.542 I 0.586 0.563 0.523 0.543 0.630 0.836 0.730
GILGFVFTL 534 2028 yes yes 0.722 0.741 0.841 0.779 0.785 0.822 0.982 0.969
ELAGIGILTV 178 348 yes yes 0.736 0.726 0.825 0.778 0.747 0.574 0.862 0.754
ASNENMETM 161 1717 yes yes 0.518 0.609 0.468 0.461 0.608 0.486 0.948 0.900
NLVPMVATV 63 1876 yes yes 0.623 0.648 0.558 0.628 0.626 0.495 0.987 0.956

Table S1: Caption next page
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Table S1: (Previous page.) Results of benchmarking on single epitopes. For each
epitope, the performance of each tool is calculated (ROC AUC). In each row, the best-performing
tool is highlighted in bold and the best-performing model of the ones presented in this paper is
boxed.
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