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Abstract

Understanding how gene flow influences adaptive divergence isimportant for predicting
adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of
adaptive genes in fewer genomic regions would protect adaptive alleles from among-population
recombination and thus be selected for, but few studies have tested this hypothesis with
empirical data. Here, we used RADseq to generate genomic data for six fish species with
contrasting life histories from six reaches of the Upper Mississippi River System, USA. We then
conducted genome scans for genomic islands of divergence to examine the distribution of
adaptive loci and investigated whether these loci were found in inversions. We found that gene
flow varied among species, and adaptive loci were clustered more tightly in species with higher
gene flow. For example, the two species with the highest overall Fsr (0.03 - 0.07) and therefore
lowest gene flow showed little evidence of clusters of adaptive loci, with adaptive loci spread
uniformly across the genome. In contrast, nearly all adaptive loci in the species with the lowest
Fsr (0.0004) were found in a single large putative inversion. Two other species with intermediate
gene flow (Fsr ~ 0.004) also showed clustered genomic architectures, with most islands of
divergence clustered on a few chromosomes. These results provide important empirical evidence
to support the hypothesis that increasingly clustered architectures of local adaptation are
associated with high gene flow. Our study utilized a unique system with species spanning alarge

gradient of life histories to highlight the importance of gene flow in shaping adaptive divergence.

Keywords: Freshwater fishes, local adaptation, gene flow, genomic islands of divergence,

chromosomal inversions, Mississippi River
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I ntroduction

Understanding the genomic basis of adaptation is a central goal of evolutionary biology.
Research on thistopic largely focuses on identifying genetic markers involved in adaptation and
assessing the distribution of these markers across the genome (Narum & Hess 2011; Y eaman
2013; Lotterhos & Whitlock 2014; Hoban et al. 2016; Forester et al. 2018). Substantial efforts
have focused on this area of research for decades (Smith & Haigh 1974; Rieseberg 2001; Noor et
al. 2001). However, results have been highly variable across taxa and systems, making it difficult
to gain a mechanistic understanding of the evolutionary processes that influence the genomic
landscape of adaptation. For example, many studies have found that alleles contributing to local
adaptation tend to be clustered together in genomic islands of differentiation, while other studies
have found little or no evidence of adaptive aleles clustering within genomic islands (Nosil et al.
2009; Strasburg et al. 2012; Roda et al. 2017; Johannesson et al. 2020; Thompson et al. 2020).
This mixed evidence raises an important evolutionary question: when are loci affecting adaptive

divergence expected to be tightly clustered?

Interpreting results from genome scans in the context of gene flow may aid in the understanding
of genomic landscapes of adaptation (Marques et al. 2016). Gene flow can be beneficial for
maintaining population connectivity and genetic diversity by introducing novel genetic variation
but it can also impede local adaptation by introducing maladaptive foreign allelesinto alocally
adapted populations (Bolnick & Nosil 2007). One potential evolutionary ‘solution’ that may
minimize maladaptive effects of gene flow isfor selection to favor clustered architectures of
adaptation, where adaptive alleles are tightly linked and locally favorable combinations of alleles

are protected from disruption via low recombination (Y eaman 2013; Roesti 2018).
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Several mechanisms have been proposed to explain the observations of clustered genomic
architectures of adaptive alleles when gene flow is high, including divergence hitchhiking and
the utilization of genomic rearrangements to protect adaptive loci from recombination.
Divergence hitchhiking occurs when gene exchange between diverging populationsis reduced
around a gene under strong divergent selection (Via2012). This process can produce islands of
differentiation spanning multiple megabases, as free recombination among populationsis
reduced due to assortative mating (Via 2012). Genomic rearrangements, such as chromosomal
inversions, can also facilitate adaptation in the face of high gene flow and lead to genomic
islands of differentiation (Hoffmann & Rieseberg 2008; Y eaman 2013; Tigano & Friesen 2016;
Roesti 2018; Wellenreuther & Bernatchez 2018; Aguirre Liguori et al. 2019; Huang et al. 2020;
Cayuela et al. 2020). Inversions are generally not deleterious and do not impact gene function
unless the inversion breakpoint occurs within a gene (Faria et al. 2019). However, recombination
between inverted and noninverted arrangementsis rare as recombinant gametes are generally
inviable (Huang & Rieseberg 2020). Therefore, if an inversion isolates multiple adaptive alleles,
this architecture will likely be favored, because co-adapted genotypes will be protected from
recombination and allowed to evolve independently even in high gene flow environments

(Rogers et al. 2013; Y eaman 2013).

Although the theories described above posit that the rate of evolution towards clustered
architectures of local adaptation should increase with gene flow, this hypothesis has largely been
tested with simulations rather than empirical data. For example, Y eaman & Whitlock (2011)
used simulations to demonstrate increasing migration rate, or m, leads to increasingly
concentrated genomic architectures of adaptation. However, when mistoo high, adaptive

divergenceis unlikely because frequent migration prevents even a perfectly adapted mutation
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from overcoming the homogenizing effects of gene flow. A subsequent simulation study
(Y eaman 2013) highlighted that genomic rearrangement may often be an important component
of local adaptation and when genomic rearrangements are present, tight clustering of adaptive

loci can readily evolve even with high m.

In this study, we investigate how gene flow influences the genomic architecture of adaptation
using genomic data from six riverine fish species that encompass a diverse suite of life histories
and dispersal potentials (Figure 1B). These fish were sampled from the same sites in the Upper
Mississippi River System (UMRS) in the midwestern United States. The UMRSisan
interconnected large river system that hosts adiversity of aquatic habitats in terms of temperature,
turbidity, productivity and flow (Figure 1A & C). Our study system provides a unique
opportunity to compare the genomic architecture of local adaptation in a natural environment for
species with contrasting life histories and assess the influence of gene flow on genomic
architecture. Specifically, we test the hypothesis that the genomic islands of differentiation are
less frequent but larger for species with relatively high gene flow, whereas genomic islands are
more numerous and dispersed throughout the genome for species with low degrees of gene flow.
Our multi-species approach investigating six species inhabiting the same environments is unique,
as most previous studies have focused on closely related species pairs or ecotypes (Nadeau et al.

2012; Renaut et al. 2012) rather than divergent species inhabiting the same environments.

M aterialsand Methods

Study Design and Genotyping
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We collected genetic samples from six fish species found in the UMRS which are native to and
commonly found in the region and have not been extensively stocked: Bullhead Minnow
(Pimephales vigilax), Bluegill (Lepomis macrochirus), Freshwater Drum (Aplodinotus
grunniens), Channel Catfish (Ictalurus punctatus), Gizzard Shad (Dorosoma cepedianum), and
Emerald Shiner (Notropis atherinoides). The UMRS is congressionally defined as the
commercially navigable portions of the Mississippi River main stem north of Cairo, Illinois’ and
commercially navigable tributaries, including the entire lllinois River (Water Resources
Development Act of 1986, 33 U.S.C. 88 652). Fin-clip samples were collected from adult fish in
summer 2018 and 2019 across six river reaches (Figure 1A); five of the study reaches are
navigation pools, named for their downstream lock and dam, and the other study reach (Open
River Reach) is an unobstructed, channelized reach. We targeted a sample size of at least 48
samples per species per reach. Samples were genotyped at thousands of SNPs using restriction
site-associated DNA (RAD) sequencing (see Supplementary Methods). Data on life history traits
for each species, including exploitation status, feeding guild, habitat guild, reproductive guild,
spawning migration, and total length were summarized in Table S1. We also obtained data for 20

environmental variables across the six river reaches (Table S2).

| dentification of GEA Outliers and Putatively Neutral SNPs

Recent studies have suggested that genotype-environment association (GEA) methods are more
robust for identifying adaptive loci than traditional differentiation-based methods (Rellstab et al.
2015; Forester et al. 2018). Differentiation-based outlier testsidentify loci with high Fsr values,
which are expected for loci involved in hard selective sweeps with large changesin allele

frequencies (Brauer et al. 2016; Forester et al. 2018). By comparison, GEA analyses identify
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134  genetic variants associated with particular environmental factors and can identify loci under

135  polygenic and “soft” selective sweeps with relatively small changesin allele frequencies,

136  providing amore complete view of the genomic landscape of adaptation (Eckert et al. 2010;

137  Brauer et al. 2016; Forester et al. 2018). For these reasons, we focused on identifying putatively
138  adaptiveloci (henceforth “adaptive loci”) using three GEA methods: redundancy analysis, latent
139  factor mixed models, and a Bayesian method (Bayenv2). Details of these methods can be found
140  inthe Supplementary Methods. Prior to all three GEA analyses, we conducted principal

141  component analysis (PCA) on 20 standardized environmental variables. Based on Kaiser-

142  Guttmann criterion and the broken stick model, we retained the first two significant PCs as

143  environmental composite variablesin order to remove collinearity among variables (Figure S1A).
144  Variablesrelated to temperature, turbidity, pH, and dissolved oxygen had high loadings on

145  environmental PC1 (Figure S1B), whereas productivity and flow-related variables contributed
146  significantly to environmental PC2 (Figure S1C). We defined putatively adaptive SNPs as the
147  GEA outliers (henceforth “GEA outliers’) identified by at least two GEA methods. To determine
148  which environmental PC that each GEA outlier was most strongly correlated with, we compared
149  correlation coefficients between each environmental PC and genotype for each outlier using R

150 function cor and assessed which environmental PC had the highest correlation coefficient.

151 Toidentify datasets of putatively neutral SNPs (henceforth “neutral SNPS”) for each species, we
152  combined results from GEA analyses with results from additional differentiation-based outlier
153  tests. While differentiation-based outlier tests may produce a large number of false positives,
154  they are still useful for conservatively identifying neutral SNPs (Holderegger et al. 2006).

155  Therefore, we ran Bayescan, Arlequin, OutFLANK and pcadapt on each species (see
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156  Supplementary Methods for details). We defined neutral SNPs as those that were not identified

157  asoutliers by any of the aforementioned seven methods.

158 Neutral Genetic Differentiation

159  We used three methods to estimate population structure for each species with their neutral

160 datasets. First, we calculated global Fstp (Fsr corrected for sampling bias) using the function

161 basc.statsin hierfstat v.0.04-22 (Goudet 2005). Next, we calculated Fsr between all pairs of

162  river reaches using genet.dist function (method="WC84”) in hierfstat. Significance was assessed
163 by calculating 95% confidence interval of pairwise Fsr values using boot.ppfst function

164  (nboot=1000) in hierfstat. A pairwise Fsr value was considered significant if its confidence

165 interval did not include zero. Lastly, we conducted PCA implemented in the R package adegenet

166  v2.1.2 (Jombart 2008) to investigate genetic differentiation among individuals.

167 Genome Scans for Genomic |dands of Differentiation

168 Wealigned SNPsto reference genomes and conducted genome scans to investigate the genomic
169 landscape of adaptive divergence. Channel Catfish isthe only species with a high-quality

170 reference genome available in our study. For the other five species, we used high-quality

171  reference genomes (chromosome-level assemblies) from closely related species (Table S3).

172 Sequences of filtered RAD loci were mapped to reference genomes with BWA-MEM v 0.7.17
173  using default settings (Li 2013). We retained sequences with mapping quality > 20 and removed
174  sequenceswith “SA:Z” (chimeric alignment) and “XA:Z” tags (alternative hits) using SAMtools

175 v1.10 (Li et al. 2009).
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To identify genomic islands of differentiation, we first calculated Fstp per locus using the
basic.stats function in hierfstat for all aligned SNPs across genomes. We then used a Hidden
Markov Mode (HMM) approach implemented in the R package HiddenMarkov v.1.8-11 (Hofer
et al. 2012) to assign each SNP to one of three underlying states, “genomic background”,
“regions of high differentiation” and “regions of low differentiation” based on their Fstp values,
following the methods detailed in Marques et al. (2016). Each of these identified regions can

consist of one or many consecutive SNPs depending on the landscape of differentiation.

The HMM approach identified alarge number of highly differentiated regions (i.e., genomic
islands of differentiation), but many did not show especially high levels of differentiation and
may be false positives. Therefore, we chose to retain only the genomic islands that contained at
least one differentiation outlier SNP identified by Bayescan, Arlequin or OutFLANK. We
excluded outliersidentified only by pcaadpt because we discovered this method identified a
much higher number of outliers compared to other methods, which could potentially increase
false positive rate for island detection. We removed genomic islands in situations where a
chromosome only had one island and thisisland had only one SNP. We also removed islands

located on unplaced scaffolds.

| dentification and Analysis of Putative | nversons

To identify putative inversions, we conducted a diding window analysis of population structure
across genomes using the R package lostruct (Li & Ralph 2019) following the methods described
in Huang et al. (2020). We replaced missing genotypes with the most frequent genotype and
divided each genome into nonoverlapping windows of either 20 or 50 SNPs depending on the

total number of aligned SNPs for each species. We then used a 40-dimension space

10
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multidimensional scaling (MDS) analysis to measure the differences in population structure
patterns among windows, and we defined outlier windows as those with absolute values of
loadings greater than 4 standard deviations above the mean averaged across al windows in the
genome (Huang et al. 2020). Outlier windows (single or consecutive) were candidate regions for
putative inversions. We also conducted three additional analyses on putative inversion regions to
provide additional evidence of inversions as suggested by Huang et al. (2020). First, because
inversions only suppress recombination in heterozygotes, three distinct genotypic clusters (0, 1, 2)
should be detected along PC1 using PCA, with the outside clusters (0 and 2) representing two
homozygous groups for alternative orientations and the middle cluster (1) representing the
heterozygous group between inversion haplotypes (McKinney et al. 2020). The discreteness of
the clustering was calculated as the proportion of the between-cluster sum of squares over the
total using the R function kmeansin adegenet. Second, we compared heterozygosity (the
proportion of heterozygotes) among three clusters identified by PCA using Wilcoxon tests (o =
0.05) to further confirm the middle group had significantly higher heterozygosity. Finally, we
calculated linkage disequilibrium, or LD (r%) using PLINK v1.9 (Purcell et al. 2007; Chang et al.
2015) for SNPswith MAF > 0.01 on chromosomes with outlier windows and compared r* with
all samplesto r? calculated only from samples that were homozygous for the most common
orientation. Since inversions are expected to only suppress recombination in heterokaryotypes,

recombination in homokaryotypes should be unaffected.

We considered aregion as a putative inversion only if all of the following criteriawere met: (1) a
distinct three-cluster PCA pattern with discreteness > 0.9; (2) significantly elevated
heterozygosity in the middle PCA cluster compared to the other two clusters; and (3) elevated

LD calculated with all samples, but not with homozygous samples. We assumed that the more

11
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derived inversion arrangement would have lower heterozygosity given itsrelatively recent origin
compared to the ancestral state (Laayouni 2003; Twyford & Friedman 2015; Knief et al. 2016).
Notably, when examining our data, we found five additional regions with discreteness very close
t0 0.9 (0.893 - 0.898) that displayed distinct three-cluster PCR patterns, and we included these

regions as candidates for putative inversions as well.

To investigate patterns of population structure at putative inversions, we calculated genotype
frequencies in each river reach for each putative inversion. Additionally, we conducted PCA
analyses using all SNPs that were successfully aligned to genomes, SNPs within the identified
inversions, and the remaining aligned SNPs after the SNPs in putative inversions were removed
to compare patterns of genetic structure inferred from datasets including and not including

putative inversions.

| dentification and Analyses of Large Clusters of Adaptive Loci

Adaptive loci can be found across many areas of the genome or can be concentrated (i.e.,
clustered) in only a few genomic regions. To determine whether the genomes of our species
contained clustered architectures of adaptative loci, we investigated the distribution of GEA
outliers and islands of differentiation identified by HMM across the genome. We defined
chromosomes exhibiting clustered architecture of adaptation as chromosomes containing at least
3 GEA outliers or 20% of the total HMM islands within a given species. We then calculated the
following genetic metrics to characterize the genomic properties of clustered architectures that
we observed: Fstp, heterozygosity (Ho), absolute differentiation (Dyy), and linkage

disequilibrium (LD).

12
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Fstp and Ho were calculated using the basic.stats function in hierfstat as described previously.
Pairwise per-site Dy, was calculated asp, (1 — p, ) + p, (1 — p,), where p, isthe frequency of a
given alelein the first population and p, isthe frequency of that allele in the second population
(Irwin et al. 2016). Allele frequency was estimated using makefreq function (missing = “mean”)
in adegenet. Overall D,y was calculated as the mean of all pairwise Dy, values. LD (r%) was
calculated using PLINK v1.9 for SNPswith MAF > 0.01. We included Dy, an absolute measure
of genetic differentiation, because defining adaptive genomic regions based solely on relative
measures of differentiation, such as Fstp, may identify regions resulting from processes other

than adaptation (Cruickshank & Hahn 2014).

For each chromosome, we used Wilcoxon tests (a = 0.05) to test for significant differencesin
genetic metrics between SNPs within the islands and SNPs outside the islands (chromosomal
background). We also visualized differences in these metrics with boxplots. To ensure the
differences we observed in four genetic metrics were not due to island size, we randomly
selected five windows outside of the islands as chromosomal background with window size
(number of SNPs) set asthe average size of all HMM islands found on the corresponding
chromosomes. When calculating the average size of the HMM islands, we removed the HMM
islands containing only one SNP to avoid downward biasing the window size of random
windows in the chromosomal background. We aso made sure the randomly selected windows
spanned similar distance (+ 10% bp) compared to the average of all HMM islands found on the

same chromosomes.

Lastly, we conducted Gene Ontology (GO) enrichment tests to test for functional enrichment of

genesin the HMM islands located within the six chromosomes displaying clustered architecture.

13
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We extracted genes within 10 Kb of a SNP for all SNPs located within the islands for all six
chromosomes, except for chromosome 9 in Emerald Shiner. Since all of the HMM islands on
chromosome 9 in Emerald Shiner were clustered inside of the identified inversion and there was
arelatively smaller number of aligned loci, we extracted genes within 20 Kb of a SNP for all
SNPs located within the identified inversion on the chromosome 9 in Emerald Shiner instead.

See Supplementary Materials for detailed methods about GO enrichment tests.

Results

Summary of Sequencing, GEA Outliers, and Neutral SNPs

We RAD sequenced atotal of 1,712 individuals, ranging from 275 - 288 individuals per species.
RAD sequencing yielded an average of 5,780,907 retained reads per individual (range = 16,799 -
47,250,859). After filtering, 1,417 individuals (179 - 256 individuals per species) were retained

and genotyped at 10,834 - 28,313 polymorphic SNPs depending on the species (Table S3). Out

of these polymorphic SNPs, 0.04 % to 0.3% were identified as GEA outliers, and 95.9 % - 99.4%
were identified as neutral SNPs in each species (Table $4). For most species, the mgjority of

GEA outliers were found to be strongly associated with environmental PC1 (temperature,

turbidity, pH, and dissolved oxygen related). In contrast, GEA outliers in Freshwater Drum were

strongly associated with environmental PC2 (productivity and flow related) (Table $4).

Neutral Genetic Differentiation

Patterns of population structure estimated from the neutral datasets spanned a large gradient of
genetic differentiation across species (Figure 2, Table S5). Bullhead Minnow had the highest

global Fstp value of 0.0720 with pairwise Fsr values ranging from 0.0041 to 0.1543, followed by
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Bluegill (global Fstp = 0.0302; pairwise Fst = 0.0014 - 0.0739), Freshwater Drum (global Fstp =
0.0050, pairwise Fsr =-0.0003 - 0.0169), Channd Catfish (global Fstp = 0.0025, pairwise Fsr=
0.0003 - 0.0048), and Gizzard Shad (global Fstp = 0.0024, pairwise Fsr=0.0003 - 0.0051).
Emerald Shiner had the lowest global Fstp value among all six species, 0.0004, with pairwise Fsr

values ranging from -0.0003 to 0.0016.

Results of the PCAs (Figure 3) corroborated the patterns described above. In Bullhead Minnow,
we detected five genetic clusters, with individuals from each river reach forming a single cluster
except for Pool 8 and Pool 13, which were grouped together. In Bluegill, individuals from the
three northern river reaches (Pool 4, Pool 8, and Pool 13) were genetically similar, Pool 26 and
La Grange formed a second cluster, while the most southerly reach, Open River, formed its own
cluster. In Freshwater Drum, individuals from La Grange grouped separately from other
populations along with some individuals from Pool 26 and Open River. In Channel Catfish,
individuals from the Open River were dightly separated from all the other reaches. Lastly,

Gizzard Shad and Emerald Shiner showed no apparent population structure.

Genome Scan for Genomic | dands of Differentiation

We aligned SNPs to reference genomes and conducted genome scans to investigate the genomic
landscape of adaptive divergence. A total of 3,348 - 16,620 loci were aligned to the
corresponding reference genomes with alignment rate varying from 26.4% to 97.5% depending
on genetic divergence from the reference species (Table S3). Correspondingly, atotal of 2 - 25
GEA outliers were aligned with alignment rate per species varying from 25.7% to 100% (Table

4).
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Genome scan results revealed highly variable genomic landscapes of population differentiation
among the six species (Figure 2). In general, GEA outliers and HMM islands in species with
lower neutral differentiation were more tightly clustered and found on fewer chromosomes,
whereas those in species with higher neutral differentiation were spread out across the genome.
Bullhead Minnow (highest neutral population structure) displayed a high level of baseline
differentiation without obvious peaks of highly differentiated loci. We only detected 2 islands on
2 chromosomes and there were no GEA outliers located within theislands. In Bluegill, the
species with the second highest neutral population structure, we identified 83 islands that were
dispersed across nearly all chromosomes (22/24) with no chromosomes containing more than 8%
of islands. Additionally, 15 out of 21 aligned GEA outliers (71%) were located in 12 islands
across 9 chromosomes with only 3 islands having more than one GEA outliers (up to 2).
Freshwater Drum had an intermediate level of population differentiation and displayed a more
clustered architecture of genomicsislands of differentiation compared to Bullhead Minnow and
Bluegill. In total, 14 islands were detected across 6 chromosomes and no GEA outliers were
found within islands. Of these islands, 3 islands (21%) were clustered on chromosome 7 and 7
islands (50%) were clustered on chromosome 17. Channd Catfish had arelatively low level of
differentiation and displayed highly clustered architectures of adaptation. We identified 15
islands across 10 chromosomes with 3 islands (20%) clustered on chromosome 13. Out of 25
aligned GEA outliers, 6 (24%) were located on an island on chromosome 20 and 4 (16%) were
located on an island on chromosome 28. Gizzard Shad had asimilar level of neutral global Fstp
as Channel Catfish, but we did not detect any islands of high differentiation, possibly dueto its
relatively low genome alignment rate (26.4%). Lastly, Emerald Shiner, the species with lowest

overall neutral population differentiation, displayed the strongest signal of clustered architecture
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of local adaptation. In Emerald Shiner, 15 islands were detected across 4 chromosomes, of which,
11 (73%) were clustered on chromosome 9. A total of 11 out of 13 aligned GEA outliers (85%)

were found on chromosome 9.

| dentification and Analyses of Putative I nversions

Using local PCA inlostruct, we identified 21 candidate regions for putative inversions where
individuals clustered into three distinct groups on PC1 and with the middle PCA cluster
displaying significantly higher heterozygosity than the other two clusters (Table S6). Of all
candidate regions, only the ones on chromosome 14 in Channe Catfish and chromosome 6, 9,
and 19 in Emerald Shiner were characterized by elevated LD blocks extending over several Mb,
while LD decayed very quickly on other chromosomes (Figure S2). However, we detected
recombination suppression in both heterozygous and homozygous groups in the outlier region on
chromosome 14 in Channel Catfish (Figure S3). This pattern isinconsistent with the theory that
inversions should only suppress recombination in heterokaryotypes, so this region was excluded.
Only the candidate regions on chromosome 6 (Figure $4), 9 (Figure 4), and 19 (Figure S5) in
Emerald Shiner passed our stringent criteria and were considered as putative inversions. These
three putative inversions spanned large genomic regions, 18.0, 42.7, and 25.6 Mbp, respectively
(Table S6). The two homokaryotypes presented significant differences in heterozygosity for all
three putative inversions (Figure 4B, S5B and S6B) and we assumed that the arrangement with
lower heterozygosity was the derived inverted type. The putative inversion on chromosome 9
(cluster 0) was only detected in the three southern river reaches (Figure 4C), whereas the other
two inversions occurred at smilar frequency across all six river reaches, ranging in frequencies

from 0.15 to 0.39 for theinversion on chromosome 6 (cluster 2; Figure SAC), and from 0.19 to
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351  0.28for theinversion on chromosome 19 (cluster O; Figure S5C). Moreover, GEA outliers and
352 HMM idlands were consistently associated with the putative inversion on chromosome 9 in
353  Emerad Shiner (Figure 2). However, no GEA outliers or HMM islands were found within the

354 inversions on the chromosome 6 and 19.

355  Analyzing datasets with and without putative inversionsin Emerald Shiner produced

356 substantially different patterns of genetic structure (Figure 5). Both PCA analyses based on all
357 aigned SNPsand SNPs within the three identified inversions showed a similar genetic structure
358  pattern, with six well-separated clusters. Thisillustrates that the clustering inferred from the full
359 dataset isdriven by these three inversions. After the SNPsin these inversions were removed, the

360 remaining aligned loci demonstrated alack of clustering, with panmictic population structure.

361  Genomic Properties of Large Clusters of Adaptive Loci

362  Thefollowing chromosomes exhibited highly clustered architecture with at least 3 GEA outliers
363  or 20% HMM islands within a given species: (1) chromosome 7 and 17 in Freshwater Drum; (2)
364 chromosome 13, 20, and 28 in Channel Catfish; and (3) chromosome 9 in Emerald Shiner

365 (Figure2). The HMM islands on most of these chromosomes were characterized by high

366  population differentiation and co-located with several GEA oultliers strongly associated with

367 environmental variables except for Freshwater Drum, where no GEA outliers were found within
368 clustersof HMM idands. In all six chromosomes with clustered architectures we found, as

369  expected, significantly higher Fstp values within the HMM islands (Figure 6). Comparisons of
370  Ho and Dyy between HMM islands and chromosomal background showed three different patterns
371  among six chromosomes: (1) islands on chromosome 7 and 17 in Freshwater Drum and

372 chromosome 9 in Emerald Shiner had similar Ho and Dyy; (2) islands on chromosome 13 in
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Channel Catfish had significantly higher values of Ho and Dyy; (3) islands on chromosome 20
and 28 in Channel Catfish had significantly lower values of Ho and Dy (Figure 6). We also
found significantly elevated LD within theislandsin al chromosomes except for chromosome
13 in Channdl Catfish (Figure 6). Taken together, these results indicate that the HMM islands on
the six chromosomes with clustered architectures have higher relative divergence than their
chromosomal backgrounds; the islands on chromosome 13 in Channel Catfish aso demonstrated

higher absolute divergence, though without elevated LD.

A total of 9, 12, and 2 GO terms were significantly enriched (p < 0.05) in the HMM islands on
chromosome 17 in Freshwater Drum, the island on chromosome 28 in Channel Catfish, and the
inversion on chromosome 9 in Emerald Shiner, respectively (Table S7). Enriched GO terms
included regulation of cellular component size, cell communication, and regulation of ion
transmembrane transport. There were no annotated genes found within the HMM island(s) on

chromosome 7 in Freshwater Drum, chromosome 13 and 20 in Channel Catfish.

Discussion

Neutral Population Structure Reflects Differencesin Life History Strategies Among Species

We found highly variable neutral population structure among our six riverine fish species that
generdly reflected differencesin life history strategies. For example, both Bullhead Minnow and
Bluegill, which had the highest levels of genetic differentiation, are nest spawners whose eggs
and larvae are not trangported by currents, limiting gene flow. In contrast, Gizzard Shad and
Emerald Shiner, which had the lowest levels of structure in our study, are both broadcast

spawners, allowing their eggs to be carried freely by the currents, facilitating gene flow. Genetic

19


https://doi.org/10.1101/2021.05.18.444736
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444736; this version posted May 20, 2021. The copyright holder for this preprint (which

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

studies on similar fish species have generally corroborated the patterns we observed, with nest
spawning species such as smallmouth bass (Micropterus dolomieu) exhibiting high levels of
genetic structure in open systems compared to broadcast spawning species such as walleye

(Sander vitreus) (Ruzich et al. 2019; Euclide et al. 2020; 2021)

An exception to the pattern described above was Channel Catfish, as they are nest spawners but
displayed relatively low levels of differentiation. It is possible that the highly migratory nature of
this species mixed with potentially low spawning fidelity (Pellett et al. 1998) could explain the
low to intermediate levels of population differentiation we observed. Freshwater Drum also
deviated from the expected patterns of population structure based on life history, as they are
migratory broadcast spawners but displayed an intermediate level of population structure, with
individuals from La Grange along with some individuals from southern populations in Pool 26
and Open River forming a distinct group. One possible explanation for this patternis limited
movement of Freshwater Drum between the lllinois River, where La Grange is located, and the
mainstem Mississippi River. Unfortunately, movement data for this species are generally lacking,

making it difficult to corroborate this hypothesis without additional research.

GEA Ouitliers Reflect Adaptive Divergence in Response to Habitat Heterogeneity

Most of the GEA outliers that we found were associated with environmental PC1, which had the
highest loadings for temperature and turbidity. It islikely that these GEA outliers reflect adaptive
divergence driven by the large latitudinal gradient that we sampled. Our study system spans two
major Kdppen climate zones, with pools 4, 8, and 13 in a humid continental climate
characterized by warm summers and very cold winters (below 0 °C) , and Pool 26, Open River,

and La Grange in ahumid subtropical climate characterized by very warm and humid summers
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and mild winters (above 0 °C). Although we could not disentangle the effects of temperature and
turbidity because they co-varied, we suspect that temperature is likely a major selective force
shaping adaptive divergence in our study system given its pervasive effects across all levels of
biological processes, from the biochemistry of metabolism (Deutsch et al. 2015) to reproduction
(Pankhurst & Munday 2011) and the fact that most fish are ectotherms. Multiple studies have
illustrated strong signals of adaptive divergence across temperature gradients in continuously
distributed marine species, even when differentiation at neutral markersis low (Limborg et al.
2012; Stanley et al. 2018; Wilder et al. 2020). However, few studies have investigated
temperature-mediated adaptive divergence in continuously distributed freshwater fish. Our study
suggests riverine fish display patterns of strong adaptive divergence driven by temperature that
are similar to those found in marine systems, highlighting the fact that populations of
continuously distributed riverine species may display the potential for local adaptation across

their range.

While GEA outliers for most speciesin our study were generally associated with environmental
PC1, outliersin Freshwater Drum were associated with environmental PC2, which displayed
high loadings for measures of productivity including chlorophyll and nitrogen, and to a lesser
extent, flow. This result suggests that the environmental variables influencing adaptive
divergence in Freshwater Drum may differ from our other study species. Specifically, itis
possible that Freshwater Drum is more affected by eutrophication caused by agricultural runoff
compared to our other study species. Numerous studies have demonstrated that fish species
respond differently to eutrophication depending on their life histories (Tammi et al. 1999;
Hondorp et al. 2010; Jacobson et al. 2017). Alternatively, Freshwater Drum might have evolved

in response to an underlying geomorphological condition correlated with agricultural inputs or to
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variation along alotic-lentic gradient, to which Freshwater Drum are known to respond (Rypel et

al. 2006; Jacquemin et al. 2015).

Gene Flow I nfluences the Genomic Architecture of Local Adaptation

Theoretical studies and genetic Smulations predict that increased gene flow will lead to
increasingly concentrated genomic architecture of adaptation (Y eaman & Whitlock 2011; Via
2012; Y eaman 2013). However, few empirical studies have tested this hypothesisin natural
populations, and the results of these empirical studies have not necessarily supported theoretical
work (Burri et al. 2015; Renaut et al. 2019). Our study included six fish species spanning awide
gradient of genetic differentiation (overall Fst from 0.0004 — 0.07), indicating highly variable
levels of gene flow. Gene flow appeared to be correlated with the landscape of adaptive
divergence, as species with high gene flow (Emerald Shiner, Channel Catfish and Freshwater
Drum) displayed more clustered architecture of adaptation than low gene flow species (Bullhead
Minnow and Bluegill). Our results are somewhat similar to a recent study which examined
adaptive divergence of four flatfish species across a strong salinity gradient in the Baltic Sea (Le
Moan et al. 2019). Specifically, Le Moan et al. (2019) found more evidence of clustered
architectures of adaption in species displaying low genetic differentiation compared to those
displaying higher differentiation. However, Le Moan et al. (2019) sampled a much smaller
gradient of genetic differentiation (overall Fsr from 0.005 — 0.02) than our study and examining
the effects of gene flow on landscapes of adaptive differentiation was not a central goal of their

study.

Though our finding that clustered genomic architectures of adaptation (i.e., genomic islands of

divergence) increase with gene flow isin line with theoretical expectations and the results from
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LeMoan et al. (2019), thisfinding isinconsistent with other studies positing that islands of
divergence are the result of variation in intrinsic recombination rate rather than the combination
of gene flow and selection (Roesti et al. 2012; Renaut et al. 2019). In fact, there is considerable
debate over the mechanisms that lead to islands of divergence, with past research suggesting that
these islands can be caused by variation in recombination rates (Roesti et al. 2012; Renaut et al.
2019), linked selection (Cruickshank & Hahn 2014; Burri et al. 2015), divergence hitchhiking
(Via2012), genomic rearrangements including chromosomal inversions (Rogers et al. 2013;

Y eaman 2013), and elevated linkage preserving locally adapted alleles (Y eaman & Whitlock
2011). While the cluster of islands on chromosome 9 in Emerald Shiner appears to be caused by

an inversion (see following section), the mechanisms that created the other islands are less clear.

To investigate the genomic mechanisms that created the islands on the remaining five
chromosomes exhibiting clustered architecture, we calculated the following four metrics: LD,
Fsr, Ho, and Dy, and compared these metrics between islands and chromosomal background.
Whileislands on al five chromosomes displayed elevated Fsr as expected, we did observe
differences in the remaining three metrics among the chromosomes. Islands on all but one
chromosome displayed elevated LD; Ho was elevated or similar to neighboring neutral regionsin
islands on three out of five chromosomes, and Dy, was elevated or similar to neutral regionsin
islands on the same three chromosomes. While LD can be a useful metric for understanding
genomic processes, we found that it did not help us differentiate the mechanisms responsible for
creating islands in the current study and instead focused on Ho and Dyy. Estimates of Ho and D,y
suggest that the islands on the two chromosomes with reduced diversity (islands on Channel
Catfish chromosomes 20 and 28) may have been created by linked selection (Cruickshank &

Hahn 2014, Burri et al. 2015), while the islands on Channel Catfish chromosome 13 and
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Freshwater Drum chromosomes 7 and 17 may have arisen through divergent selection (Kulmuni

& Westram 2017).

Islands created by divergent selection are hypothesized to have amajor role in facilitating
adaptive divergence with gene flow, whereas islands created by linked selection are likely a
result of the underlying genomic landscape and do not necessarily reflect recent adaptive
divergence (Cruickshank & Hahn 2014; Burri et al. 2015). Thus, it is extremely important to
differentiate these two types of islands when investigating adaptive divergence. The most
effective way distinguish between these island types is to compare measures of absolute diversity,
asislands created by linked selection should show reduced absolute diversity while islands
created by divergent selection should not (Cruickshank & Hahn 2014; Irwin et al. 2016).
Applying this method to our data provided evidence that islands on three of the chromosomesin
our study were created by divergent selection and are likely involved in adaptive divergence with
gene flow whereas the islands on the other two chromosomes were likely a result of ancient
linked selection that acted to reduce diversity in particular genomic regions but is not influencing

contemporary adaptive divergence.

Interestingly, we observed variation in the mechanisms putatively responsible for creating
islands both within and among species, as islands on one of the three chromosomes in Channel
Catfish were likely created by divergent selection while islands on the other two chromosomes
were likely the result of linked selection. This result indicates that, while many studies have tried
to generalize the proposed mechanisms responsible for creating islands of divergence, these
mechanisms vary across and even within species (Ottenburghs et al. 2020; Liu et al. 2020;

Wilder et al. 2020). Thus, it is vital to examine both absolute and relative measures of
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differentiation as well as diversity in newly discovered islands of divergence to help clarify the

mechanisms responsible for creating these islands.

A Chromosomal Inversion Facilitates Local Adaptation with High Gene Flow in Emerald

Shiner

Our results and those of previous empirical and theoretical studies suggest that divergent
selection can result in clusters of adaptive loci through mechanisms such as divergence
hitchhiking when gene flow is relatively high (Y eaman & Whitlock 2011; Via 2012). However,
when gene flow is extremely high, it islikely that additional genomic mechanisms, such as
structural polymorphisms, may be required to protect clusters of adaptive loci from among-
population recombination caused by gene flow (Y eaman & Whitlock 2011; Rogers et al. 2013;

Y eaman 2013; Tigano & Friesen 2016). The gradient of gene flow sampled in our study presents
an excellent opportunity to test this hypothesis. In our study, clustered architectures of adaptation
were common in species with relatively high gene flow, such as Channel Catfish and Freshwater
Drum (average overall Fsr = 0.004), but these clustered architectures did not appear to be
associated with structural polymorphisms. In contrast, in Emerald Shiner, the species with
highest gene flow (overall Fsr = 0.0004), nearly all of the adaptive loci identified were found in
a single genomic region that displayed strong evidence of achromosomal inversion. Taken
together, our results provide novel empirical evidence to support the theory that chromosomal
inversions are important for facilitating adaptive divergence in systems with extremely high gene

flow.

Our study also addsto the growing body of evidence that chromosomal inversions are important

for facilitating adaptive divergence in continuously distributed fish species. Inversions putatively
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involved in adaptive divergence have been documented in many fishes including Atlantic cod
(Gadus morhua) (Kirubakaran et al. 2016), lingcod (Ophiodon elongatus) (Longo et al. 2020),
rainbow trout (Oncorhynchus mykiss) (Arostegui et al. 2019; Pearse et al. 2019), Pacific herring
(Clupea pallasii) (Petrou et al. 2021), Atlantic silverside (Menidia menidia) (Wilder et al. 2020),
and European plaice (Pleuronectes platessa) (Le Moan et al. 2019). However, all of these studies
were conducted on marine fish or salmonids, making our study the first to provide evidence of a
putative adaptive inversion in a non-salmon freshwater fish. It islikely that the lack of previous
evidence for adaptive inversions in freshwater fish is due to the generally higher genetic structure
observed in these species, making inversions less necessary for adaptation. However, our study
illustrates that inversions are likely a larger component of adaptive divergence in freshwater fish
than previously assumed, highlighting the importance of future studies aimed at characterizing

them in additional species.

Although inferring the functional significance of the putatively adaptive inversion that we
detected is difficult, it is possible to speculate on its role in facilitating adaptive divergence. The
putatively derived variant of thisinversion was only detected in the three southern river reaches
in our study, which are substantially warmer and more turbid than northern reaches. This
suggests that the derived inversion variant may have evolved and increased in frequency as
Emerald Shiner adapted to warmer and/or more turbid environments in more southern regions.
Inversions putatively linked to adaptive divergence across environmental and latitudinal
gradients have also been identified in marine species such as lingcod (Longo et al. 2020) and
Atlantic silverside (Wilder et al. 2020), but these studies faced similar difficulties when
attempting to describe the functional significance of the adaptive inversions they identified.

Future research combining whole genome resequencing with physiological challenge studies
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would be useful for assessing the functional role of these inversions in the process of adaptive

divergence.

Conclusions

Our data from six riverine fish speciesin UMRS displaying alarge gradient of life history
strategies suggest that higher gene flow leads to increasingly concentrated genomic architectures
of adaptation. Additionally, our results provide evidence that the mechanisms that create islands
of divergence can be highly variable across and within species, with both ancient linked selection
and more contemporary divergent selection playing important roles in creating genomic islands
of differentiation. Additionally, our study provides further evidence that chromosomal inversions
are important for facilitating adaptive divergence in continuously distributed species with
extremely high gene flow and also sheds light on the documented importance of inversionsin
freshwater fish. Taken together, our findings represent a significant contribution towards
understanding the evolutionary processes that influence the genomic landscape of adaptation in
non-model organisms. However, our study used RADseq, which does not assess the full suite of
adaptive divergence across the genome. Future studies should focus on whole genome
resequencing to better understand variation within genomic islands of divergence and to assess

the functional role of these islands in promoting adaptive divergence.
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Figure 1. (A) Map of the six study reaches along the Upper Mississippi River System, (B) key
reproduction-related life history traits of the six study species, and (C) positions of the six study
reaches in the environmental space of 20 variables using PCA biplot. See Table S1 for details of
life history traits and Table S2 for details of environmental data. Use of fish imagesis permitted
by Uland Thomas.

Figure 2. Manhattan plots depicting the genomic landscape of differentiation (Fstp, corrected
Fsr) across the genomes for the six study species. Species are ordered based on neutral
population differentiation, with neutral global Fstp values labeled next to the species name. At
the top of each plot, genomic islands of differentiation identified using HMM after filtering are
in blue, and islands located within the chromosomes showing clustered architecture are in purple.
GEA outliers found within islands are in red, whereas those found outside of islands of genomic
divergence arein orange. Reference genomes and alignment summary can be found in Table S3.

Figure 3. Principal component analyses using neutral SNPs only for the six study species. The
percentage of variance explained by each principal component (PC) islabeled on the x- and y-
axes.

Figure 4. Characterization of putative inversion on chromosome 9 in Emerald Shiner. (A) PCA
based on SNPs within the putative inversion region. Three clusters identified using k-means
clustering correspond to two homozygote groups (blue and red) and a heterozygote group
(purple). The discreteness of the clustering was calculated by the proportion of the between-
cluster sum of squares over the total using the R function kmeans in adegenet. (B) Observed
individual heterozygosity in each PCA cluster. Significance was assessed using Wilcoxon tests
with alphalevel of 0.05. Note: *** = 0.001. (C) Genotype frequency distribution for putative
inversion across six study reaches. Bars represent the proportion of individuals belonging to a
PCA cluster. (D) and (E) are LD heatmaps for chromosome 9 using all individuals (D) and only
individuals homozygous for the more common orientation (E).

Figure5. Principal component analyses for Emerald Shiner using different sets of loci: (A) All
aligned SNPs (3,348 SNPs); (B) Putative inversions on chromosome 6, 9 and 19 (228 SNPs); (C)
After the removal of three putative inversions (3,120 SNPs). The percentage of variance
explained by each principal component (PC) islabeled on the x- and y- axes.

Figure 6. Comparisons of corrected Fsr (Fstp), heterozygosity (Ho), absolute divergence (Dyy),
and LD (r%) between SNPs within the HMM islands (Island, red) and five combined random
windows (Background, gray) on the corresponding chromosomes for chromosomes with
clustered architecture, including on chromosome 7 and 17 in Freshwater Drum, chromosome 20
and 28 in Channel Catfish, and chromosome 9 in Emerald Shiner. The average distance between
pairs of SNPswithin islands and random windows were labelled below the bloxplots of LD
values (column 4). Significance was assessed between islands and random windows using
Wilcoxon tests with alphalevel of 0.05. Note: *** = 0.001, ** = 0.01, * = 0.05, NS = not
significant. Only HMM islands with more than one SNP were included.
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