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 2 

Abstract 22 

The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland 23 

nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the 24 

Arabian Peninsula. Red Sea populations have been found to receive migrants from 25 

desert ponds that are flushed out to sea during flash floods, requiring rapid acclimation 26 

to a greater than 40 ppt change in salinity. To investigate the molecular pathways of 27 

salinity acclimation during such colonization events, a Red Sea coastal lagoon and a 28 

desert pond population were sampled, with the latter exposed to a rapid increase in 29 

water salinity. Changes in branchial gene expression were investigated via genome-30 

wide transcriptome measurements over time from 6 hours to 21 days. The two natural 31 

populations displayed basal differences in genes related to ion transport, 32 

osmoregulation and immune system functions. These mechanisms were also 33 

differentially regulated in seawater transferred fish, revealing their crucial role in long-34 

term adaptation. Other processes were only transiently activated shortly after the 35 

salinity exposure, including cellular stress response mechanisms, such as molecular 36 

chaperone synthesis and apoptosis. Tissue remodeling processes were also identified as 37 

transient, but took place later in the timeline, suggesting their importance to long-term 38 

acclimation as they likely equip the fish with lasting adaptations to their new 39 

environment. The alterations in branchial functional pathways displayed by Arabian 40 

pupfish in response to salinity increases are diverse. These reveal a large toolkit of 41 

molecular processes important for adaptation to hyperosmolarity that allow for 42 

successful colonization to a wide variety of different habitats. 43 

  44 
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 3 

Introduction 45 

Salinity is one of the main abiotic factors shaping the distribution and habitat preference of fish 46 

and other aquatic taxa. Teleosts have evolved different strategies to maintain osmotic 47 

homeostasis depending on water ion concentrations. In seawater, fish drink copiously to 48 

combat water lost via osmosis, concurrently suffering passive intake of high quantities of salts. 49 

Specialized mitochondria-rich cells of the gill epithelium, called ionocytes, are then responsible 50 

for active excess ion secretion (Edwards & Marshall, 2012; D. H. Evans, Piermarini, & Choe, 51 

2005). In freshwater, fish face ion loss and passive osmotic water intake. To compensate for 52 

the consequent dilution of their body fluids, they actively uptake ions from the surrounding 53 

medium through specialized ionocytes (Edwards & Marshall, 2012; D. H. Evans et al., 2005). 54 

Given the profound differences in osmoregulatory mechanisms in fresh versus seawater, 55 

changes in salinity represent a significant challenge for fish, and the induced osmotic stress can 56 

lead to interferences with physiological homeostasis and impairment of biological processes 57 

(Kultz, 2015). As a consequence, most teleost fishes are restricted to limited habitat salinities 58 

(stenohaline fish). Other species, termed euryhaline fish, have evolved osmoregulatory 59 

plasticity in the organs involved in maintenance of osmotic balance (Schultz & McCormick, 60 

2012). In particular plastic modifications to the gill epithelium, the main tissue responsible for 61 

osmoregulation in fish (D. H. Evans et al., 2005), grant the ability to live in wider salinity 62 

ranges and exploit larger habitat diversity. 63 

Extensive work has been performed to understand the molecular underpinnings responsible for 64 

gill plasticity in euryhaline species. Early studies focused on salinity-driven expression changes 65 

of specific ion transporters and osmoregulatory genes (Deane & Woo, 2004; Scott, Claiborne, 66 

Edwards, Schulte, & Wood, 2005; Scott, Richards, Forbush, Isenring, & Schulte, 2004), 67 

expanding the existing knowledge regarding branchial ion secretion and absorption 68 

mechanisms. In particular, the role of Na+/K+-ATPase (NKA), Na+/K+/Clí transporter 69 
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(NKCC1), and cystic fibrosis transmembrane conductance regulator (CFTR) in marine-type 70 

ion-extruder ionocytes was extensively investigated, and found to be highly conserved in 71 

seawater adapted teleosts (Edwards & Marshall, 2012; D. H. Evans et al., 2005). In contrast, 72 

the mechanisms for ion absorption were found to be quite diverse across different species, and 73 

several ionocytes subtypes have been described in freshwater adapted fishes (Dymowska, 74 

Hwang, & Goss, 2012; Hiroi & McCormick, 2012; Hsu, Lin, Tseng, Horng, & Hwang, 2014; 75 

Hwang & Lin, 2013). Advancements in molecular and sequencing technologies have led to the 76 

discovery of additional essential pathways for osmoregulation in euryhaline fish. 77 

Transcriptomics has provided the means to identify genes and pathways involved in 78 

osmosensing and activation of signalling cascades that initiate the osmotic stress response and 79 

the acclimation processes (T. G. Evans & Somero, 2008; Fiol & Kultz, 2007; Komoroske et 80 

al., 2016; Kultz, 2012). Profound gill remodelling, observed by microscopy and 81 

immunocytochemistry studies as alterations in ionocyte morphology and abundance (Foskett, 82 

Logsdon, Turner, Machen, & Bern, 1981; Katoh & Kaneko, 2003; Uchida, Kaneko, Miyazaki, 83 

Hasegawa, & Hirano, 2000), was linked to salinity-specific ion transporter and protein de novo 84 

synthesis or relocation inside the cell, activation of apoptosis pathways, and modifications of 85 

the cytoskeleton, cell-cell junctions, and the extracellular matrix (Jeffries et al., 2019; Lam et 86 

al., 2014; Mundy, Jeffries, Fangue, & Connon, 2020; Whitehead, Roach, Zhang, & Galvez, 87 

2012). Euryhaline fish are therefore able to switch between hypo- and hyper-osmoregulation 88 

when confronted with changes in environmental salinity, although rapid increases in intra- and 89 

extra-cellular ion concentrations can negatively affect structural and functional properties of 90 

tissue macromolecules, such as proteins, lipids and DNA (Burg, Ferraris, & Dmitrieva, 2007; 91 

T. G. Evans & Kultz, 2020). Markers for an evolutionary conserved cellular stress response 92 

(CSR) triggered by macromolecular damages have been identified in gene expression and 93 

transcriptomic studies in fish exposed to changes in salinity (Brennan, Galvez, & Whitehead, 94 
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2015; Tine, Bonhomme, McKenzie, & Durand, 2010; Whitehead, Zhang, Roach, & Galvez, 95 

2013). The CSR is comprised of defence mechanisms to protect cellular components, including 96 

the expression of molecular chaperones, and to re-establish homeostasis, by accumulation of 97 

organic compatible osmolytes and osmoregulatory mechanism switch. Moreover, the 98 

replication of damaged DNA is prevented through transcription inhibition, apoptosis and cell 99 

cycle arrest (Burg et al., 2007; T. G. Evans & Kultz, 2020; Kultz, 2005). The processes of 100 

osmotic stress response, ion homeostasis restoration and tissue remodelling are energetically 101 

demanding for euryhaline fish (T. G. Evans & Kultz, 2020; Takei & Hwang, 2016; Tseng & 102 

Hwang, 2008), and differential regulation of metabolic and mitochondrial respiration pathways 103 

during salinity challenges have been reported in several studies (Brennan et al., 2015; Chen, 104 

Lui, Ip, & Lam, 2018; T. G. Evans & Somero, 2008; Nguyen, Jung, Nguyen, Hurwood, & 105 

Mather, 2016). Given the large percentages of their energy budget consumption in response to 106 

osmotic stress, compromises in the allocation of energetic resources have been hypothesized, 107 

and consequent impairments in physiological processes such as development, growth and 108 

immune response have been reported (B°uf & Payan, 2001; Komoroske et al., 2016; Makrinos 109 

& Bowden, 2016; Morgan & Iwama, 1991). While a variety of processes involved in osmotic 110 

stress and salinity acclimation in teleosts have been defined, their ecological adaptive potential 111 

in natural colonization events is still not clear, especially the exact timing of stress, acclimation 112 

and adaptation responses and mechanisms. A number of time series salinity acclimation studies 113 

have been performed (Brennan et al., 2015; T. G. Evans & Somero, 2008; Komoroske et al., 114 

2016; Kozak, Brennan, Berdan, Fuller, & Whitehead, 2014; Scott et al., 2004; Whitehead, 115 

Roach, Zhang, & Galvez, 2011), using designated single gene or microarray expression 116 

analyses. However, RNAseq whole-genome transcriptomics combined with an appropriate 117 

model species and collection time point selection would allow for the capture of a more 118 
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complete picture of both the temporal and the mechanistic aspects of the branchial salinity 119 

response in euryhaline fish during highly saline habitat colonization. 120 

The Arabian pupfish, Aphanius dispar (Rüppell, 1829), is a euryhaline species member of the 121 

Cyprinodontidae family with widespread habitat ranges (Hrbek & Meyer, 2003). Its 122 

distribution encompasses areas around the Red Sea, the Persian Gulf, the Arabian Sea, and part 123 

of the south-eastern Mediterranean basin, with populations living from inland freshwater 124 

reservoirs to coastal lagoons, and hot sulphuric springs. Along the western coast of Saudi 125 

Arabia, the Arabian pupfish is found in a large variety of environmental salinities, ranging from 126 

highly saline (41 ± 44 ppt) Red Sea coastal lagoons to nearly-freshwater desert oases (0.7 ± 1.5 127 

ppt) with no permanent connection to the sea. While salinity changes have been observed to 128 

influence Arabian pupfish osmotic pressure, body ion content, and gill permeability (Lotan, 129 

1969, 1971), no differences in performance indicators, such as resting metabolic rate, 130 

swimming speed and activity level, were caused by up to 70 ppt increases in water salinity 131 

(Plaut, 2000). In a recent genetic connectivity study supported by hydrological mapping of the 132 

region, the coastal Red Sea populations have been found to receive migrants from the inland 133 

ponds as a result of sporadic flash flood events that wash individuals out to the sea (Schunter 134 

et al., 2021). These colonization events require considerable acclimation capacities in order to 135 

survive such a rapid and drastic change in environment, especially while coping with the abrupt 136 

increase in salinity. For these reasons, the Arabian pupfish represents an excellent system to 137 

investigate the mechanisms underlying the plasticity of euryhaline fish gills during salt stress 138 

events, and the processes that allow them to acclimate long-term and colonize novel habitats. 139 

In this study, nearly-freshwater adapted Arabian pupfish from inland desert ponds were 140 

transferred to highly saline water to mimic a colonization event. The acclimation course was 141 

explored over time to disentangle the short-term processes responding to acute osmotic stress 142 
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from the strategies providing the fish with longer-term adjustments required for prolonged 143 

adaptation in seawater environments. 144 

 145 

Materials and methods 146 

Experimental design 147 

To evaluate the natural acclimation of Arabian pupfish from near-freshwater to a large increase 148 

in salinity over a short period of time, adult Aphanius dispar from the same genetic unit 149 

(Schunter et al., 2021) were collected using a seine net from two Saudi Arabian sites, including 150 

a near-freshwater (1.45 ppt) desert pond and a highly saline Red Sea coastal lagoon (43.49 151 

ppm; Suppl. Table 1) between November 2015 and January 2016 (Fig. 1).  152 

 153 

The fish were transported to the King Abdullah University of Science and Technology Coastal 154 

and Marine Resources Core Lab and maintained in closed-system tanks to habituate to holding 155 

conditions for at least eight months prior to experiments. The conditions in the aquaria 156 

resembled those of the collection sites with 26°C water temperature, 8.32 ± 0.03 pH, 10L:14D 157 

photoperiod, and salinity at 1.92 ppt ± 0.01 SE for the desert pond fish and 42.68 ppt ± 0.09 158 

SE for the coastal lagoon fish (Suppl. Table 2). Salinity was achieved using seawater, diluted 159 

for the desert pond fish with dechlorinated tap water. All fish were kept at maximum densities 160 

of seven individuals per tank, in six replicate tanks per treatment, and fed once a day ad libitum 161 

with commercial pelleted feed. In October 2016, the osmotic challenge experiment started: fish 162 

from the desert pond population were directly transferred to seawater, in order to mimic the 163 

change in salinity experienced during colonization of coastal lagoons of the Red Sea (Fig. 2). 164 

Temperature, photoperiod and pH were kept constant during the entire duration of the 165 

experiment in order to avoid any confounding effects. Fish were sampled pretransfer (0 h) from 166 
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 8 

both populations (1.9 ppt and 43 ppt), and at five post-transfer time points (43 ppt; 6 h, 24 h, 167 

72 h, 7 days, 21 days). At each sampling event, six individuals (one per different replicate tank) 168 

were rapidly euthanized using an overdose of tricaine methanesulphonate (MS-222, MP 169 

Biomedicals), sexed, and length was measured (Suppl. Table 3). For each individual, the right 170 

gill basket was excised and snap-frozen in liquid nitrogen and stored at -80°C for subsequent 171 

RNA extraction. 172 

 173 

RNA-sequencing and transcriptome assembly 174 

RNA was isolated from gill samples using a Qiagen AllPrep DNA/RNA mini kit, following 175 

homogenization in RLT Plus buffer with MP Biomedicals FastPrep-24 homogenizer, and 176 

DNase I treated (RNase-Free DNase Set, Qiagen). Sample quality was checked using a 177 

TapeStation RNA ScreenTape assay (Agilent). Samples that did not meet RNA 178 

quality/quantity standards were excluded from the analysis. Libraries for paired-end fragments 179 

were prepared from a total of 33 samples (3-6 sample/time point) using the Illumina TruSeq 180 

stranded mRNA Library Preparation Kit, according to the manufacturer¶s protocol, with each 181 

sample uniquely barcoded. Quality control check and quantification were performed with a 182 

Bioanalyzer High Sensitivity DNA assay (Agilent). Three library pools were run on an Illumina 183 

HiSeq 4000 by the King Abdullah University of Science and Technology Bioscience Core Lab.  184 

Raw reads were processed for quality trimming and adapter removal with Trimmomatic v0.36 185 

(Bolger, Lohse, & Usadel, 2014), using ILLUMINACLIP:2:30:10 HEADCROP:10 186 

SLIDINGWINDOW:4:20 MINLEN:70, and inspected with FastQC (Andrews, 2010) before 187 

and after quality filtering. Trimmed reads were later corrected from random sequencing errors 188 

using a k-mer based method, Rcorrector (Song & Florea, 2015). Unfixable reads were 189 

discarded. Trimmed and corrected reads from all samples were used to de novo assemble the 190 
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 9 

A. dispar gill transcriptome using Trinity v2.4.0 (Grabherr et al., 2011) with default settings. 191 

The assembly was then decontaminated using a hierarchical clustering algorithm called Model-192 

based Categorical Sequence Clustering (MCSC; Lafond-Lapalme, Duceppe, Wang, Moffett, 193 

& Mimee, 2017). The MCSC pipeline was tested at five different clustering levels to determine 194 

the best one (level 3, based on the highest SS ratio), and the superclass Actinopterygii was 195 

chosen for the white list ratio calculation. Putative coding regions were predicted by 196 

TransDecoder v5.5.0 (Haas et al., 2013), and integrated with homology search against the Pfam 197 

protein domain database using HMMER v3.2.1 (Finn, Clements, & Eddy, 2011), and the 198 

UniRef90 protein database using blastp (BLAST+ v2.6.0; Camacho et al., 2009), evalue � 1e-199 

5. The decontaminated assembly was then filtered based on TransDecoder results, retaining 200 

only the single best open reading frame (ORF) per transcript. Sequence redundancy was 201 

reduced using cd-hit-est from the CD-HIT v4.8.1 package (Fu, Niu, Zhu, Wu, & Li, 2012) with 202 

95% identity as clustering threshold. At each filtering stage, the quality of the assembly was 203 

evaluated by checking the basic alignment summary metrics, as well as quantifying the read 204 

representation by mapping the cleaned reads back to the transcriptome with Bowtie2 v2.3.4.1 205 

(Langmead & Salzberg, 2012). Moreover, to evaluate the completeness of the assembly, and 206 

to control for potential loss of core genes during the filtering process, BUSCO v3.02 (Simao, 207 

Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) was run after every filtering step, using 208 

the provided Actinopterygii set of 4,584 Benchmarking Universal Single-Copy Orthologs. 209 

 210 

Annotation, differential gene expression and gene ontology analysis  211 

Transcriptome annotation was performed first by BLAST searches of the TransDecoder 212 

predicted ORFs and the untranslated transcripts, using blastp and blastx algorithms respectively 213 

(evalue � 1e-5), against the UniProtKb and the NCBI non-redundant (nr) databases. Where 214 

conflicts were found, the following order of priority was observed: UniProtKb/Swiss-Prot, 215 
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 10 

NCBI nr, and UniProtKb/TrEMBL. BLAST results were then loaded in OmicsBox v1.4.11 216 

(BioBam Bioinformatics, 2019), where Gene Ontology (GO), InterPro, and EggNOG (Huerta-217 

Cepas et al., 2019) annotations were additionally performed using Blast2GO (Gotz et al., 218 

2008).  219 

 220 

To test for gene differential expression between the two source populations, as well as along 221 

the salinity acclimation time series, reads from each sample were first quantified using Salmon 222 

v1.1.0 (Patro, Duggal, Love, Irizarry, & Kingsford, 2017) in mapping-based mode against the 223 

de novo assembled transcriptome. Transcript abundance estimates were then summarized at 224 

gene level and imported in DESeq2 v1.26.0 (Love, Huber, & Anders, 2014) using the package 225 

tximport v1.14.2 (Soneson, Love, & Robinson, 2015) in R v3.6.1. Principal component 226 

analyses were run to visually check for possible overall patterns, outliers and batch effects. 227 

Three samples (DP_Rep1, T2_Rep4, T5_Rep5) were labelled as outliers and excluded from 228 

the DE analysis. Differentially expressed genes (DEGs) were identified running pairwise 229 

comparisons of control populations and post-transfer time points using the contrast function of 230 

DESeq2 with shrunken log2 Fold Change (log2FC) estimates by apeglm (Zhu, Ibrahim, & 231 

Love, 2019). |Log2FC| � 0.3, False Discovery Rate (FDR) adjusted p-value (Benjamini & 232 

Hochberg, 1995) < 0.05 (Wald test), and a mean expression of > 10 reads (baseMean) were 233 

used as thresholds.  234 

 235 

To identify groups of genes showing comparable trends, such as rapid or longer-term responses 236 

to the salinity challenge, DEGs revealing similar expression patterns across time points were 237 

clustered. Additionally, ImpulseDE2 v1.10.0 (Fischer, Theis, & Yosef, 2018), a Bioconductor 238 

R package specifically designed for time series data, was employed in case-only mode to 239 
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discern steadily increasing or decreasing expression trajectories from transiently up- or down-240 

regulated genes. For all clustering purposes, Red Sea population samples were treated as if they 241 

belonged to an additional time-point, the last in the acclimation timeline (long-term acclimation 242 

beyond three weeks). 243 

 244 

Functional enrichment analyses were performed in OmicsBox v1.4.11 (BioBam 245 

Bioinformatics, 2019), with the Fisher¶s Exact Test (FDR < 0.05) after removing duplicated 246 

annotations from the differentially expressed genes (DEGs) and identified gene cluster sets to 247 

find over-represented GO terms between controls and post-transfer time points. 248 

 249 

Results 250 

Transcriptome assembly and annotation 251 

The first de novo transcriptome assembly for Aphanius dispar was created from a total of 1.38 252 

billion raw reads with an average of 24.5 million reads per sample after trimming and error 253 

correction steps (Suppl. Table 3). These high-quality reads were used to de novo assemble the 254 

Arabian pupfish gill transcriptome, which resulted in 650,824 contigs with a 97.2% overall 255 

mapping rate, an N50 of 1,275 bp, and 86.2% BUSCO completeness score using the 256 

Actinopterygii database (Suppl. Table 4). A total of 2.9% contigs were filtered out in the 257 

decontamination step, and among the remaining 631,806, 141,428 contigs were predicted to 258 

contain a coding region. The final redundancy reduced transcriptome resulted in 99,167 contigs 259 

of N50 2,302 bp, E90N50 2,519 bp, with an average of 75.0% mapping rate and 86.1% of 260 

complete BUSCO genes. Tximport geneဨlevel summarization of the final transcriptome 261 

yielded 55,451 genes. 36,863 of these genes (66.5%) were successfully annotated using 262 

SwissProt database, and another 11,078 genes had hits in the NCBI nr database. 446 more 263 
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genes had positive blast hits when searched against TrEMBL, for a combined total of 48,337 264 

annotated genes (87.2%).  265 

 266 

Gene expression differences in natural populations 267 

The two sampled populations, desert pond (DP) and the highly saline Red Sea (RS) coastal 268 

lagoon, exhibited a clear branchial gene expression separation (time 0; Fig. 3), which was partly 269 

conserved throughout the salinity challenge (Suppl. Fig. 1). The pairwise comparison of fish 270 

in their original salinities resulted in 552 differentially expressed genes (DEGs; Suppl. Table 271 

5) which is the second largest expression difference of the experiment (Fig. 4). Several 272 

functions were differentially regulated in the two populations, in particular ion transport and 273 

immune system. 274 

Ion transport related terms represented 70% of total enriched GO categories between the 275 

populations at time 0 (Suppl. Table 6). The RS individuals in particular upregulated specific 276 

seawater ion transporters, such as the Na+/K+/Cl- transporter (SLC12A2), the cystic fibrosis 277 

transmembrane conductance regulator (CFTR), and the transient receptor potential (TRP) 278 

cation channel subfamily V member 1 (TRPV1), together with genes involved in their 279 

regulation, such as serine/threonine kinase 39 (STK39) and the WNK lysine deficient protein 280 

kinase 2 (WNK2). Similarly upregulated in the RS population were other ion transporters and 281 

genes important in osmoregulation such as potassium channels and their modulators (KCNN3, 282 

KCNJ1, KCNJ15, ABCC8), voltage-gated calcium channel subunits (CACNA1H, 283 

CACNA1S), ammonium transporters Rh (RHAG, RHCG), sodium/hydrogen exchangers and 284 

regulators (NHEB, SLC9A2, SLC9A3R2), as well as inositol monophosphatase 1 (IMPA1) 285 

and vasoactive intestinal peptide (VIPR1). Several Na+/K+-transporting ATPase subunits 286 

(ATP1A1, ATP1A3) were also differentially expressed between the two populations, and 287 
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elevated expression in the nearly-freshwater DP fish was found for a different set of ion 288 

channels, including members of the transient receptor potential (TRP) cation channel 289 

superfamily (TRPM2, TRPM5, TRPM7, TRPV4), chloride channels like the chloride channel 290 

protein 2 (CLCN2), the inward rectifier potassium channel 2 (KCNJ2), and the intracellular 291 

channel inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), together with its modulator, the 292 

calcium binding protein 1 (CABP1). Aquaporin 3 (AQP3) was also upregulated in DP samples. 293 

The two populations also showed differential regulation of the immune system. C-C motif 294 

chemokine ligands 3 and 25 (CCL3, CCL25) were upregulated in the RS population, while 295 

members of the C-X-C motif chemokine family (CXCL8, CXCL11.6, CXCL14) were 296 

upregulated in the DP fish, enriching the ³chemokine activity´ function. Moreover, C-C 297 

chemokine receptors (CCR4, CCR6) were upregulated in the gills of the DP population, while 298 

several genes coding for components of acquired immunity were upregulated in the seawater 299 

RS individuals, like immunoglobulins and major histocompatibility complex proteins (IGKC, 300 

IGHM, IGL1, IGKV4-1, MR1, H2-EA). 301 

A few other functions were divergent between the populations, such as polyamine metabolism, 302 

whose related genes (ODC1, ARG1, PAOX) were upregulated in DP. Two functions were 303 

exclusive to the RS population: O-linked glycosylation, represented by five upregulated genes 304 

(B3GNT7, ST3GAL1, STR3GAL2, ST6GALNAC2, ST8SIA6), and keratinization, with the 305 

upregulation of cornifelin (CNFN), envoplakin (EVPL), keratins (XK70A, K1C1), and 306 

transglutaminase 5 (TGM5). 307 

 308 

Time course of the molecular responses to the salinity challenge 309 

The selected experimental timeline and the clustering analyses of differentially expressed genes 310 

along the acclimation window (Fig. 4) allowed for the discovery of distinctively timed 311 
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processes in the Arabian pupfish branchial response to the abrupt increase in salinity. While 312 

some DEGs were only transiently differentially regulated along the acclimation timeline (Fig. 313 

5a), 231 and 269 genes steadily increased or decreased, respectively (Fig. 5b; Suppl. Table 7), 314 

and in particular the downregulated genes exhibited enrichment in cell cycle related terms 315 

(Suppl. Table 8). Through the investigation of each time point, mechanisms typical of a short-316 

term stress response were uncovered at 6 and 24 h post-transfer, while the 72 h and 7 day time 317 

points revealed cell cycle arrest and tissue remodelling events, and the last time point (21 day 318 

post-transfer) was characterized by longer-term acclimation processes, many resembling the 319 

Red Sea population transcriptional profile (Fig. 6). 320 

 321 

Just six hours after the start of the hyperosmotic challenge, 75 branchial genes showed a 322 

statistically significant change in expression compared to pre-transfer controls (Suppl. Table 323 

9). This immediate reaction was based on a wide array of different functions (Suppl. Table 10). 324 

The acute osmotic stress caused the onset of cell signalling cascades, with the differential 325 

expression of prolactin receptor (PRLR), the stress responsive hydroxysteroid 11-beta 326 

dehydrogenase 2 (HSD11B2), which modulates intracellular cortisol levels, and 327 

serum/glucocorticoid regulated kinase 1 (SGK1), important in the cellular stress and DNA 328 

damage responses. Furthermore, the osmotic stress response was found to entail ion 329 

homeostasis pathways, through the regulation of ion transport and ion channel activity (CFTR, 330 

KCNJ2, TCAF, WNK2), and organic osmolyte synthesis and transport (GLUL, IMPA1, 331 

ISYNA1-B, SLC6A20, SLC5A7, ABCG20). In particular, ISYNA1-B was transiently 332 

upregulated between 6 and 24 hours and, in the same interval, IMPA1 showed very high levels 333 

of expression, while being upregulated across the whole timeline (Suppl. Fig. 2a). Another 334 

important function found at 6 hours post-transfer was tissue modification, by means of cellular 335 

proliferation and differentiation (GPM6B, NR4A3, NHSL1), and keratinization (CNFN, 336 
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DSC1). Genes involved in the immune response were also differentially expressed at 6 hours, 337 

and class I histocompatibility antigen, F10 alpha chain (HA1F) was upregulated post-transfer. 338 

Upregulation of genes implicated in lipid (ALOXE3, ALOX15B, CPT1A) and glucose (GAD1, 339 

SLC2A8) metabolism and transport was also found. Although a few DEGs were found to be 340 

related to circadian rhythm processes (NFIL3, NR1D1, NR1D2, PER2), this result is most 341 

likely due to the sampling time occurring at a different moment of the day, rather than an effect 342 

of the salinity change. 343 

 344 

At 24 h post-transfer, there were 164 DEGs compared to time 0 (Suppl. Table 11). ³Gland 345 

development´ was among the enriched GO terms (Suppl. Table 12), and included genes related 346 

to secretion, such as sodium and chloride channels (CFTR, CLCN2, SLC12A2), cell 347 

proliferation (E2F7, FGF7, FOXM1), hormonal response to stress actors (CRHR1, PRLR), 348 

cytoskeleton and extra-cellular matrix organization genes (DIAPH3, SOX9). ³Lipid metabolic 349 

process´ was also enriched at 24 hours, with genes related to cell membrane glycosphingolipid 350 

and glycerophospholipid biosynthesis (B4GALNT1, PLAAT4) and genes involved in lipid 351 

transport, such as carnitine palmitoyltransferase 1A (CPT1A), known to be part of the 352 

mitochondrial fatty acid oxidation pathway, and already upregulated at 6 hours. The increased 353 

energetic demand was additionally manifested by the upregulation of NADH:ubiquinone 354 

oxidoreductase complex assembly factor 4 (NDUFAF4), and solute carrier family 24 member 355 

48 (SLC25A48), among others. Several ion transport actors and osmotic stress response 356 

regulators still played a role at 24 hours as did various transcription factors, repressors, and 357 

regulators (Suppl. Table 10). Some genes involved in DNA damage response pathway also still 358 

showed differential expression. Noteworthy, several genes involved in keratinization (CNFN, 359 

K1C1, KRT13, S100A11, TGM5) were upregulated compared to time 0, while there was a 360 

downregulation of genes involved in the extracellular matrix degradation (ADAMTS5, 361 
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COL23A1, EFEMP2, PLOD2, THSD4). Tissue remodelling processes happening in 362 

transferred fish were additionally reflected by the differential expression of genes involved in 363 

the regulation of apoptosis (Suppl. Table 10), such as cytochrome C (CYC), solute carrier 364 

family 25 member 6 (SLC25A6) and voltage-dependent anion channel 2 (VDAC2), all thought 365 

to be involved in the mitochondrial apoptotic pathway. 366 

 367 

Clustering revealed that most of the above-mentioned genes exhibited a transiently up- or 368 

down-regulated pattern in the first 24 hours, being differentially expressed compared to pre-369 

transfer fish only in these early time points (Fig. 5a; Suppl. Fig. 2; Suppl. Table 13). The main 370 

differences between the 6 and 24 h post-transfer time points (109 DEGs; Suppl. Table 14), as 371 

portrayed by the many related enriched GO terms (Suppl. Table 15), lay in cell cycle and 372 

mitosis associated processes, with downregulation of over 30 genes with these functions at 24 373 

hours. 374 

 375 

Individuals from the 72 hour time point compared with the 24 h post-transfer fish resulted in 376 

only 30 DEGs (Suppl. Table 16), including the downregulation of two heat shock protein 377 

coding genes (HSPE1, DNAJC15) involved in stress response. The comparison with fish pre-378 

transfer identified 197 DEGs (Suppl. Table 17), and the strongest signal of this contrast was 379 

the downregulation of more than 30 genes (Suppl. Table 10) involved in mitotic cell cycle and 380 

cell population proliferation (Suppl. Table 18), such for example genes fundamental for G1/S 381 

and G2/M phase transitions of the cell cycle. Concurrently, genes involved in DNA replication 382 

and repair showed downregulation compared to time 0 (Suppl. Table 10). Branchial tissue 383 

modifications were still happening at 72 hours with DEGs involved in extracellular matrix 384 

degradation including: Ca2+-activated cysteine protease calpains (CAPN2, CAPN5, CAPN8), 385 
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and matrix metallopeptidase 8 (MMP8), known to play a role in the breakdown of the 386 

extracellular matrix during tissue remodelling, as well as several glycoproteins with cell 387 

adhesion functions, such as CEA cell adhesion molecules (CEACAM5, CEACAM6). Genes 388 

belonging to the glycosaminoglycan - or mucopolysaccharides - biosynthesis pathway were 389 

upregulated at 72 hours compared to pre-transfer conditions (Suppl. Table 10). 390 

 391 

After 7 days from the start of the hyperosmotic challenge there were 423 DEGs compared to 392 

pre-transfer fish at time 0 (Fig. 4; Suppl. Table 19). This observed high number of differentially 393 

expressed genes could be an effect of the small sample size for this time-point (n = 3). 394 

Numerous GO terms were enriched (Suppl. Table 20), and over 80 genes, mostly 395 

downregulated compared to time 0,  pertained to mitotic cell cycle as well as cell proliferation 396 

and differentiation processes (Suppl. Table 10). Seven-day post-transfer fish gills were still 397 

showing significant changes in the expression of several ion channels, as well as genes 398 

implicated in energy production and tissue modifications, such as cell adhesion, cytoskeleton 399 

organization, mucopolysaccharide metabolism, and extracellular matrix degradation (Suppl. 400 

Table 10). 401 

 402 

The last time point at 21 days post transfer exhibited 139 DEGs (Suppl. Table 21) in 403 

comparison with pre-transfer fish. There was no functional enrichment for these genes, which 404 

were involved in a variety of processes (Suppl. Table 10). Osmoregulation was still under 405 

transition, with the upregulation of two typical seawater sodium-coupled transporters, the 406 

ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and the solute carrier family 12 407 

member 2 (SLC12A2). While cell cycle and energy production genes were not differentially 408 

expressed at 21 days, gene expression related genes and tissue organization were upregulated 409 
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compared to time 0 (Suppl. Table 10). Moreover, two genes involved in the biosynthesis of 410 

mucopolysaccharides (GALT-1, ST3GAL1) showed upregulation, joining B3GNT7, CHST3, 411 

ST3GAL2 that were already upregulated earlier in the acclimation. 412 

 413 

Expression signatures leading to adaptation 414 

Additional clustering analyses focused on the identification of genes putatively critical to long-415 

term acclimation to elevated salinity in the Arabian pupfish. Starting from a subset of genes 416 

differentially expressed between the two populations at time 0, the focus was placed on 69 417 

DEGs that along the experimental timeline progressively resembled the expression levels of 418 

the Red Sea population (Suppl. Table 22). Overall, some functions appeared earlier than others 419 

along the acclimation window (Fig. 6). For example, many genes implicated in osmotic stress 420 

response and osmoregulation (CA4, CFTR, CLCN2, IMPA1, KCNJ1, STK39, USP2, WNK2) 421 

were among the first to steadily change expression, between 6 and 24 hours from the start of 422 

the exposure. Cornifelin (CNFN), a component of the cornified cell envelope, and glycoprotein 423 

M6B (GPM6B), a key upstream regulator of genes involved in actin cytoskeleton organization, 424 

were upregulated at every time point post-transfer. Similarly, genes involved in the metabolism 425 

of polyamines (ODC1, PAOX), important in hyposaline acclimation in teleosts, were 426 

downregulated from the first 24 hours of exposure. As time progressed more genes changed 427 

their expression to match that of the seawater population. At 72 h post-transfer, the functions 428 

of these genes were related to changes in tissue organization and permeability, with the 429 

upregulation of calpain 2 (CAPN2) and microfibril associated protein 4 (MFAP4), both part of 430 

the extracellular matrix degradation pathway, and the downregulation of the water channel 431 

aquaporin 3 (AQP3). Moreover, some genes involved in mucopolysaccharide metabolism 432 

(B3GNT7, CHST3, GALT-1) started to be upregulated at 72 hours, while others (ST3GAL1, 433 

ST3GAL2) showed upregulation after 7 days. From 7 days of exposure to sea water, the 434 
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transferred fish started to change the expression of branchial genes involved in lipid 435 

metabolism, showing upregulation of neutral cholesterol ester hydrolase 1 (NCEH1) and 436 

downregulation of low-density lipoprotein receptor (LDLR), both involved in lipoprotein and 437 

cholesterol metabolism. The transient receptor potential cation channel subfamily V member 438 

4 (TRPV4), a non-selective cation channel involved in osmotic pressure regulation, was also 439 

downregulated from 7 day post-transfer. Finally, at the end of the experimental acclimation 440 

period, 21 days post-transfer, there was a downregulation of glycine decarboxylase (GLDC), 441 

involved in osmotic regulation, and arginase 1 (ARG1), another component of the polyamine 442 

metabolism pathway. 443 

 444 

Discussion 445 

Arabian pupfish from nearly-freshwater ponds (1.5 ppt) are sporadically being flushed out to 446 

highly saline environments of the Red Sea (43 ppt) through dry riverbeds (called ³wadies´) by 447 

flash floods (Schunter et al., 2021), where they are able to rapidly acclimate to the new 448 

environment and establish viable populations. Comparing the gill gene expression profiles of 449 

the native populations, as well as the changes across a salinity challenge from hours to weeks 450 

post-transfer, enabled the separation between short- and longer-term osmotic stress responses, 451 

and the investigation of the processes that allow pupfish to adapt to the high salinity typical of 452 

the Red Sea environment. The native nearly-freshwater pupfish were able to acclimate to the 453 

abrupt increase in water salinity by means of expression changes in a large number of branchial 454 

genes. A subset of genes whose expression changed with the salinity exposure to resemble 455 

those of native seawater individuals revealed the importance of related functions in long-term 456 

acclimation. 457 

 458 
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Osmoregulation was the primary function at play during pupfish acclimation to high salinity, 459 

as well as the main source of expression divergence between the two native populations. When 460 

in seawater, teleosts need to extrude passively accumulated salts through a variety of branchial 461 

ion transporters (D. H. Evans et al., 2005). Accordingly, the Arabian pupfish Red Sea 462 

population upregulated ion transporters and osmoregulation related genes typically found in 463 

marine teleosts (Hiroi & McCormick, 2012; Hwang, Lee, & Lin, 2011). The expression of 464 

many of these genes was quickly upregulated following high salinity exposure in desert pond 465 

fish and maintained along the entire acclimation timeline. For instance, genes involved in 466 

chloride ion secretion in marine-type ionocytes, such as cystic fibrosis transmembrane 467 

conductance regulator (CFTR) and Na+/K+/Clí transporter (NKCC1 or SLC12A2; Hiroi & 468 

McCormick, 2012; Marshall, 2011), were upregulated in transferred pupfish already from 6 469 

and 24 hours, respectively. Accordingly, in another pupfish species, Cyprinodon nevadensis 470 

amargosae, CFTR and NKCC1 gill mRNA levels increased within a similar time frame post-471 

transfer into seawater and remained elevated throughout the two week experiment (Lema, 472 

Carvalho, Egelston, Kelly, & McCormick, 2018), and upregulation of these two genes was also 473 

found in the gills of mummichog (Fundulus heteroclitus) within 24 h post-transfer from 474 

brackish to seawater (Scott et al., 2004). Involved in the activation of NKCC1 are two other 475 

genes, WNK lysine deficient protein kinase 2 (WNK2) and serine/threonine kinase 39 (STK39) 476 

(Delpire & Gagnon, 2008; Flemmer et al., 2010; Marshall, 2011), also differentially expressed 477 

across the timeline in Arabian pupfish. WNK2 has indeed been found to regulate NKCC1 478 

activation in Xenopus oocytes (Rinehart et al., 2011), and its upregulation at every time point 479 

post-transfer to hyperosmotic water was also reported in the gills of the butterfish Pampus 480 

argenteus (Li et al., 2020). Likewise, Flemmer et al. (2010) reported the upregulation of STK39 481 

in seawater-acclimated mummichog gills, and additionally linked it to the increased expression 482 

of NKCC1 in the same samples. The prompt upregulation of marine-type ion transporters and 483 
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osmoregulatory genes in desert pond pupfish exposed to seawater to quickly resemble the Red 484 

Sea population levels confirms the importance of these genes in osmoregulation to highly saline 485 

conditions and reveals the high degree of conservation in osmoregulatory mechanisms among 486 

different fish species, Arabian pupfish included. 487 

 488 

Another fundamental component of teleost osmoregulation in salt water is the myo-inositol 489 

biosynthesis (MIB) pathway, through which the compatible organic osmolyte myo-inositol is 490 

synthetized and accumulated inside cells during osmotic stress for protection from salinity-491 

induced damages (Yancey, Clark, Hand, Bowlus, & Somero, 1982). The two enzymes 492 

constituting the MIB pathway, inositol monophosphatase 1 (IMPA1) and myo-inositol 493 

phosphate synthase (MIPS or ISYNA1), were both differentially expressed in high-salinity 494 

exposed pupfish. Accordingly, both genes were also upregulated following seawater transfer 495 

in other euryhaline fishes, such as eels (Anguilla anguilla; Kalujnaia, McVee, Kasciukovic, 496 

Stewart, & Cramb, 2010) and turbots (Scophthalmus maximus; Cui et al., 2020), where the 497 

MIB pathway knockdown was directly implicated in causing weakened gill osmoregulation 498 

and reduced survival (Ma et al., 2020). The MIB pathway is therefore an important 499 

osmoregulation mechanism in seawater across several different species. However, the transient 500 

upregulation of MIPS in the first 24 hours only highlights the importance of this pathway in 501 

the short-term osmotic stress response of the Arabian Pupfish. 502 

 503 

In hyposaline waters fish are susceptible to passive ion loss and need to compensate by active 504 

uptake of osmolytes from the surrounding water (Edwards & Marshall, 2012). In Arabian 505 

pupfish, chloride uptake is likely accomplished by chloride ion channel protein 2 (CLCN2), 506 

typically found in freshwater ionocytes (Leguen, Le Cam, Montfort, Peron, & Fautrel, 2015; 507 

Wang, Yan, Tseng, Chen, & Hwang, 2015), which was highly expressed in desert pond 508 
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individuals pre-transfer, and decreased from 24 hours of high salinity exposure onward. 509 

Rainbow trout (Oncorhynchus mykiss) ionocytes (Leguen et al., 2015) and a Sacramento 510 

splittail population exposed to seawater (Pogonichthys macrolepidotus; Mundy et al., 2020) 511 

also show this pattern, indicating the importance of this chloride channel in a variety of fish 512 

species inhabiting freshwater environments, where chloride uptake from the surrounding water 513 

is a key aspect of osmoregulation. Conversely, desert pond Arabian pupfish lack most of the 514 

previously described mechanisms for the uptake of sodium (Dymowska et al., 2012; Hsu et al., 515 

2014), and might possibly exclusively rely on specialized isoforms of Na+/K+-ATPase (NKA) 516 

subunits for its import. Although the NKA gene is usually identified in marine acclimated 517 

teleosts, where it is part of the ion secretion machinery, in Arabian pupfish different transcripts 518 

annotated to the Į-1 subunit gene were upregulated in desert pond individuals, and only one 519 

transcript was upregulated in Red Sea pupfish. While this could be an indication of population-520 

specific NKA subunit Į-1 isoforms (Mundy et al., 2020), it is likely that salinity-dependent 521 

isoforms with opposite functions of ion uptake in hyposaline water and salt secretion in 522 

seawater exist in this species, as previously described for several euryhaline teleosts 523 

(Bystriansky, Richards, Schulte, & Ballantyne, 2006; McCormick, Regish, & Christensen, 524 

2009; Richards, Semple, Bystriansky, & Schulte, 2003; Tipsmark et al., 2011; Urbina, Schulte, 525 

Bystriansky, & Glover, 2013; Velotta et al., 2017). In the climbing perch (Anabas testudines) 526 

and in salmonids, NKA Į-1 isoform a expression levels are highest in freshwater and decreases 527 

post-transfer to seawater, while other isoform mRNA expressions increase following exposure 528 

(Bystriansky et al., 2006; Ip et al., 2012). Accordingly, some of the NKA Į-1 subunit coding 529 

transcripts showed a steady decreasing pattern along the exposure timeline in transferred 530 

pupfish, with one transcript resulting in a 4.5-fold downregulation at the end of the 531 

experimental timeline, which could be an indication of acclimation to the seawater habitat, 532 

where sodium uptake is not needed anymore. Revealed Arabian pupfish hyperosmoregulatory 533 
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mechanisms could represent a new model for fish branchial ion absorption at low salinities and 534 

confirm the wide diversity of evolutionary distinct branchial adaptations to hyposaline 535 

environments in teleosts. Overall, the main mechanisms differentiating Arabian pupfish natural 536 

populations pertain to osmoregulation, and rapid acclimation from near-freshwater to highly 537 

saline waters involves adjusting the gill gene expression to resemble the osmoregulatory 538 

processes typical to the long-term adapted seawater population. 539 

 540 

The second major difference between the two Arabian pupfish populations concerned the 541 

immune system, with several genes involved in the inflammatory and immune responses also 542 

differentially regulated post-transfer. In teleosts, salinity has been known to have intricate 543 

impacts on the immune system. While osmotic stress has been found to increase the nonspecific 544 

immune response, a depression of the acquired immune response has also been reported owing 545 

to trade-offs in resource allocation (Makrinos & Bowden, 2016). Red Sea population and 546 

translocated desert pond fish showed however overexpression of acquired immune response 547 

components, such as immunoglobulins (Ig) and major histocompatibility complex class I-548 

related (MR1). The immune response capacities are therefore likely not impacted during 549 

acclimation to seawater in Arabian pupfish. Other fishes have been shown to not suffer from 550 

immune depression in seawater, such as Nile tilapia (Oreochromis niloticus; Dominguez, 551 

Takemura, Tsuchiya, & Nakamura, 2004), as well as Acanthopagrus latus and Lates calcarifer, 552 

where plasma Ig levels increase with water salinity (Mozanzadeh et al., 2021). Likewise, 553 

hyperosmotic immersion of Paralichthys olivaceus boosts branchial major histocompatibility 554 

complex expression and the overall mucosal immune response 24 to 48 h post-exposure (Gao, 555 

Tang, Sheng, Xing, & Zhan, 2016). Indeed, a crucial role in immunity and defence in teleosts 556 

is exerted by mucosal surfaces (Salinas, 2015). Fish gills, skin and gut are coated with a thin 557 

mucus layer which acts as a barrier from the surrounding environment and is characterized by 558 
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physical and antimicrobial defensive functions (Koppang, Kvellestad, & Fischer, 2015; 559 

Reverter, Tapissier-Bontemps, Lecchini, Banaigs, & Sasal, 2018), but a role in osmoregulation 560 

has also been suggested (Shephard, 1994; Wong et al., 2017). Two mucin-like transcripts were 561 

upregulated in Red Sea Arabian pupfish, as well as at 24 h and 7 days post-transfer in desert 562 

pond fish. Moreover, several genes related to O-linked glycosylation of mucins, 563 

glycosaminoglycan metabolism and mucus production (Malachowicz, Wenne, & Burzynski, 564 

2017) were upregulated both in Red Sea individuals and in seawater-exposed desert pond fish. 565 

Accordingly, in Anguilla japonica mucosal tissues, seawater elicits an increase in mucus cell 566 

numbers and secretion, possibly to trap sodium ions (Wong et al., 2017). Similar findings were 567 

reported for Salmo salar, in addition to salinity-driven modifications of mucin biochemistry 568 

(Roberts & Powell, 2003), that were also later described in other euryhaline fishes (Mylonas et 569 

al., 2009; Roberts & Powell, 2005). As the molecular results suggest, increased gill mucus 570 

production might be at play in seawater in Arabian pupfish and could be another aspect of their 571 

acclimation strategy to hyperosmotic environments. 572 

 573 

While osmoregulation and immune response were revealed to be important in long-term 574 

adaptation to seawater, a series of short-term and transient response mechanisms were also 575 

elicited during the acclimation timeline. Abrupt increases in ion concentration can lead to 576 

macromolecular damages in exposed fish epithelia. An increase in sodium, for example, has 577 

been linked to cell membrane damages (T. G. Evans & Kultz, 2020) through lipid peroxidation, 578 

catalysed by lipoxygenases in response to stress (Kultz, 2005). Two lipoxygenases (ALOXE3, 579 

ALOXE15B) were indeed upregulated in Arabian pupfish gills 6 h post-transfer, and were also 580 

identified in similar seawater transfer experiments on eels (Kalujnaia et al., 2007). Such 581 

membrane disruption can lead to the activation of the so-called cellular stress response (CSR), 582 

which encompasses defence mechanisms to protect and repair damaged cellular components 583 
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and restore homeostasis (T. G. Evans & Kultz, 2020; Kultz, 2005). The CSR machinery 584 

responds to sodium-destabilized proteins by overexpressing molecular chaperones, such as 585 

heat shock proteins (T. G. Evans & Kultz, 2020), two of which were temporarily upregulated 586 

in Arabian pupfish at 24 hours, as well as in a hyperosmotic challenged Sacramento splittail 587 

population (Mundy et al., 2020). Rising intracellular sodium levels can also cause nucleic acid 588 

structural disruptions (T. G. Evans & Kultz, 2020), and consequently, increased expressions of 589 

DNA damage related genes are often reported as part of the CSR following hyperosmotic stress 590 

in teleosts (Brennan et al., 2015; Su, Ma, Zhu, Liu, & Gao, 2020; Whitehead et al., 2013). In 591 

Arabian pupfish several DNA damage related genes were transiently upregulated especially in 592 

the first 24 hours of exposure, like serum/glucocorticoid regulated kinase 1 (SGK1), and 593 

similarly increased in other fish following acute seawater challenges (T. G. Evans & Somero, 594 

2008; Shaw et al., 2008). Another aspect of hyperosmotic-induced CSR, at least in cultured 595 

human cells, is the inhibition of transcriptional and translational activities (Burg et al., 2007). 596 

Equivalent to other species, such as the climbing perch (Chen et al., 2018), Arabian pupfish 597 

exhibited a downregulation of transcription related genes following seawater exposure, which 598 

might be a mechanism to prevent the replication of high salinity-damaged DNA. An inhibition 599 

in transcription and translation might also explain the onset of cell cycle arrest that was 600 

identified in both Arabian pupfish and climbing perch (Chen et al., 2018) via a downregulation 601 

of large sets of cell cycle and mitosis involved genes during the acclimation to seawater. In 602 

support of these findings, an immunocytochemistry study in tilapia (Oreochromis 603 

mossambicus) observed a G2 phase arrest in the mitotic cycle of gill cells over a period of 16±604 

72ௗh postဨseawater exposure (Kammerer, Sardella, & Kultz, 2009). Hence, in the first hours of 605 

high salinity challenge, gill acclimation in Arabian pupfish is dominated by the onset of 606 

macromolecular damages followed by the cellular stress response machinery initiating the 607 

repair of the compromised processes to restore homeostasis. Days to weeks after the start of 608 
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the hyperosmotic challenge, an inhibition of transcriptional activity and simultaneous cell cycle 609 

arrest might represent a strategy for the fish to prevent the replication of damaged DNA, 610 

preserve energy and buy time to respond to macromolecular damages caused by the increase 611 

in ion concentration. 612 

 613 

For longer-term acclimation to seawater, euryhaline fish gills must undergo profound 614 

remodelling events in order to switch from an ion absorbing epithelium to an ion secreting one. 615 

Arabian pupfish started displaying processes involved in tissue remodelling from the first hours 616 

of salinity exposure. Likely to allow a rapid reorganization of the gill epithelium to reverse the 617 

ion transport direction, a transient increase in cell proliferation and differentiation related genes 618 

was uncovered, as seen in the gills of euryhaline tilapia in the first eight hours of seawater 619 

exposure (Kammerer et al., 2009). At the same time, genes involved in keratinization, a process 620 

by which keratin accumulate inside epithelial tissue cells to provide barrier-like functions, 621 

started to be upregulated. Keratinization gene expression has been found to be salinity 622 

dependent in tilapia (Ronkin, Seroussi, Nitzan, Doron-Faigenboim, & Cnaani, 2015) and to be 623 

upregulated following air exposure in the amphibious mangrove rivulus skin (Kryptolebias 624 

marmoratus; Dong et al., 2021). Keratinization may represent a strategy to reduce the amount 625 

of water loss during dehydration, possibly also following increased environmental salinity, as 626 

seen in Arabian pupfish. Programmed cell death, or apoptosis, of high salinity-damaged cells 627 

and freshwater-type ionocytes represents another of the first steps in gill epithelium 628 

remodelling, essential for full acclimation to seawater (T. G. Evans & Kultz, 2020). A transient 629 

upregulation of cytochrome c (CYC) and other genes involved in the mitochondrial apoptotic 630 

pathway was seen in Arabian pupfish at 24 hours. This has been previously recorded in 631 

mummichog in response to osmotic stresses (Whitehead et al., 2012), and is supported by a 632 

microscopy study in Mozambique tilapia revealing increased branchial apoptotic freshwater 633 
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ionocytes one day after transfer to seawater (Inokuchi & Kaneko, 2012). At 24 h post-transfer, 634 

genes related to cell adhesion began to be upregulated, and cytoskeleton and extracellular 635 

matrix organization functions showed increased expression from 72 hours of exposure. Cell 636 

adhesion and extracellular matrix pathway upregulation was similarly reported in Sacramento 637 

splittails between one and seven days into the acclimation to elevated salinity (Jeffries et al., 638 

2019; Mundy et al., 2020), and branchial cell cytoskeleton reorganization is largely recognized 639 

as a fundamental aspect of salinity acclimation in teleosts (T. G. Evans & Somero, 2008; Fiol 640 

& Kultz, 2007; Nguyen et al., 2016). As a consequence of tissue remodelling events, an 641 

upregulation of mitochondrial respiratory chain and metabolism related genes is also expected 642 

to support the increased energy demand, as previously found in similar experiments of 643 

euryhaline fish translocation (Chen et al., 2018; Lam et al., 2014; Whitehead et al., 2012). 644 

Analogously, in Arabian pupfish there was an overall upregulation of metabolism related genes 645 

up to 7 days post-transfer, while genes involved in mitochondrial respiration were 646 

overexpressed especially between days one and seven, which is consistent with the time frame 647 

for major gill remodelling processes in other species (Foskett et al., 1981; Katoh & Kaneko, 648 

2003; Mundy et al., 2020). In a similar fashion to other euryhaline teleosts, seawater exposed 649 

pupfish are therefore affected by transient and longer-lasting gill tissue modifications occurring 650 

from the first hours to several days after the beginning of the exposure, and potentially resulting 651 

in perdurable modifications which allow longer-term acclimation to the highly saline 652 

environment. 653 

 654 

Arabian pupfish inhabit profoundly divergent environments of the Arabian Peninsula, ranging 655 

from nearly-freshwater ponds found in desert areas to highly saline Red Sea coastal lagoons. 656 

The plasticity of these fish under steep increases in water salinity plays a major role in the 657 

colonization potential of this species. Remarkably, Arabian pupfish are able to survive flash 658 
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flood events which likely displace them from desert oases and wash them to the sea, where 659 

they eventually establish viable populations (Schunter et al., 2021). By simulating and 660 

analysing the exposure to high salinity from near-freshwater over time, not only key processes 661 

for a successful acclimation were identified, but also the importance of their timing was 662 

uncovered. Arabian pupfish branchial salinity-elicited pathways revealed osmoregulation, 663 

immune system and mucus production to be rapid but also long-term acclimation mechanisms 664 

to the new environment. In the short-term, cellular stress response processes were triggered, 665 

which prevented the fish from suffering permanent damages following acute hyperosmotic 666 

exposure. Later in the acclimation, pathways involved in gill epithelium modification and 667 

remodelling equipped the organism with lasting adaptations to the increased salinity. While 668 

some of the processes occurring during the acclimation timeline resembled mechanisms of 669 

seawater exposure previously reported in other euryhaline fish species, others, such as 670 

increased mucus production and keratinization, represent less common strategies for high 671 

salinity acclimation in teleosts. Overall, the branchial processes revealed in this nearly-672 

freshwater Arabian pupfish population during high salinity acclimation sheds light into this 673 

non-model euryhaline species colonization potential of seawater habitats. A large set of 674 

differentially timed molecular mechanisms plays a role in the plastic reorganization of the gills 675 

in hyperosmotic environments that allows for the expansion of euryhaline teleosts into a wide 676 

variety of different habitats. 677 

 678 
  679 
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Figure legends 1039 

 1040 

Figure 1. Sampling locations and target organism. (a) Map of the region with inset (b) showing 1041 

the specific sampling locations in the central western region of Saudi Arabia. (c) Photos of the 1042 

sampling sites. (d) Pictures of collected male (top) and female (bottom) Arabian pupfish. 1043 

 1044 

Figure 2. Experimental design. a) Fish from desert pond (DP) kept in native water salinity (1.9 1045 

ppt) were sampled at time 0 b) Fish from Red Sea lagoon (RS) kept in native water salinity (43 1046 

ppt) were sampled at time 0 c) Fish from desert pond transferred to seawater (43 ppt) were 1047 

sampled at 5 different time points. A total of 33 samples were analyzed.  1048 

 1049 

Figure 3. Principal component analysis (PCA) of variance stabilized expression values for the 1050 

gills of desert pond (n=4) and Red Sea coastal lagoon (n=6) Aphanius dispar individuals at 1051 

time 0. 44% of the total variation is explained by the first two components. 1052 

 1053 

Figure 4. Numbers of differentially expressed genes in pairwise comparisons of desert pond 1054 

fish controls (0 h) versus seawater exposed fish at different time points (6 h, 24 h, 72 h, 7 d, 21 1055 

d) and Red Sea (RS) population, and consecutive post-transfer time points. 1056 

 1057 

Figure 5. Heatmap of transiently (A) or monotonously (B) up-(Ĺ) and down- (Ļ) regulated 1058 

differentially expressed genes over the experimental timeline, as identified by ImpulseDE2 1059 

analysis. DP and RS stand for desert pond and Red Sea samples, respectively. 1060 

 1061 
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Figure 6. Changes in ratio and expression direction of differentially expressed genes grouped 1062 

by functions along the acclimation timeline. The circle sizes are proportional to the gene 1063 

number ratio for a specific function at a certain time point; the circle colours correspond to the 1064 

ratio of the upregulated (red) vs downregulated (blue) genes for the function at that time point. 1065 
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