

1 **The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism**
2 **through glucagon-like and insulin-like hormones in *Drosophila melanogaster***

3

4 Yuto Yoshinari^{1,2}, Hina Kosakamoto^{3,4}, Takumi Kamiyama², Ryo Hoshino², Rena Matsuoka²,
5 Shu Kondo⁵, Hiromu Tanimoto⁶, Akira Nakamura^{7,8}, Fumiaki Obata^{1,3,4,9} and Ryusuke
6 Niwa^{1,10,*}

7

8 ¹ Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA),
9 University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan

10 ² Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-
11 1, Tsukuba, Ibaraki 305-8572, Japan

12 ³ Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of
13 Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

14 ⁴ Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research,
15 Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo, Japan 650-0047

16 ⁵ Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540,
17 Japan.

18 ⁶ Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-
19 8577, Japan.

20 ⁷ Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe, Kumamoto,
21 962-0973 Japan

22 ⁸ Laboratory of Germline Development, Institute of Molecular Embryology and Genetics,
23 Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan.

24 ⁹ AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi,
25 Chiyoda-ku, Tokyo 100-0004, Japan

26 ¹⁰ AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi,

27 Chiyoda-ku, Tokyo 100-0004, Japan

28

29 * Correspondence: ryusuke-niwa@tara.tsukuba.ac.jp

30

31 **Abstract**

32 The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion
33 of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have
34 been found across animal phyla, incretin-like EEC-derived hormones have not yet been
35 characterised in invertebrates. Here, we show that the midgut-derived hormone, Neuropeptide
36 F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, *Drosophila*
37 *melanogaster*. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-
38 producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like
39 hormone production and the enhancement of the insulin-like peptide secretion, eventually
40 promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut
41 NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and
42 hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent
43 metabolism through glucagon-like and insulin-like hormones not only in mammals but also in
44 insects.

45

46 **Introduction**

47 All organisms must maintain energy homeostasis in response to nutrient availability. To
48 maintain balance of catabolism and anabolism, organisms coordinate systemic energy
49 homeostasis through humoral factors. Insulin and counter-regulatory hormones, such as
50 glucagon, have previously been shown to act as such humoral factors in response to nutritional
51 and environmental cues ¹⁻⁴. Insulin promotes circulating carbohydrate clearance, while
52 counter-regulatory hormones increase carbohydrate release into circulation. To date, much has
53 been learned about how impaired insulin and/or counter-regulatory hormone actions contribute
54 to carbohydrate metabolic dysregulation.

55 In addition to the glucagon- and insulin-secreting pancreatic cells, the intestine is

56 also a key to regulating systemic energy homeostasis. Especially, enteroendocrine cells (EECs)
57 secrete multiple hormones to orchestrate systemic metabolic adaptation across tissues ⁵⁻⁸.
58 Recent works have revealed that EECs sense multiple dietary nutrients and microbiota-derived
59 metabolites that influence the production and/or secretion of enteroendocrine hormones ⁷⁻¹². In
60 mammals, an enteroendocrine hormone that stimulates the secretion of glucagon and insulin,
61 particularly the latter, is referred to as “incretin”, such as glucose-dependent insulinotropic
62 polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) ⁵. The secretion of GIP and GLP-1 is
63 stimulated by dietary carbohydrates and lipids. Incretins stimulate pancreatic insulin secretion
64 and conversely suppress glucagon secretion in a glucose-dependent manner. The physiological
65 importance of incretins is epitomised by the fact that dysregulation of incretins often associates
66 with obesity and type 2 diabetes ^{6,13}.

67 To further dissect the molecular, cellular, and endocrinological mechanisms of
68 glucagon and insulin actions in animals, the fruit fly, *Drosophila melanogaster* has emerged as
69 a powerful genetic system in recent years. There are eight genes encoding *Drosophila* insulin-
70 like peptides (DILPs), designated DILP1 to DILP8. Among these DILPs, it is thought that
71 DILP2, DILP3, and DILP5 are particularly essential for the regulation of hemolymph glucose
72 levels and fat storage, controlling developmental timing, body size, and longevity ¹⁴⁻¹⁶. *D.*
73 *melanogaster* also possesses a hormone that is functionally equivalent to the mammalian
74 glucagon, called adipokinetic hormone (AKH). AKH is produced in and secreted from a
75 specialised endocrine organ, the corpora cardiaca (CC), and acts on the fat body, leading to
76 lipolysis-dependent energy metabolism. Furthermore, recent studies have identified two factors
77 secreted by EECs, Activin- β and Bursicon- α (Bursa), which play essential roles in modulating
78 AKH-dependent lipid metabolism in the fat body ^{9,11}. However, neither Activin β nor Bursa
79 directly acts on the CC or insulin-producing cells (IPCs). Indeed, no incretin-like
80 enteroendocrine hormones has been discovered in invertebrates.

81 Here, we report that the midgut-derived hormone neuropeptide F (NPF), a homolog
82 of the mammalian neuropeptide Y (NPY), acts as the sugar-responsive, incretin-like hormone
83 in *D. melanogaster*, while the primary structure of NPF is completely different from that of
84 GIP or GLP-1. NPF is produced in and secreted from midgut EECs in response to dietary
85 nutrients. NPF is bound by NPF receptor (NPFR) that is present in the CC and IPCs.
86 Impairment of NPF/NPFR signalling resulted in AKH- and insulin-dependent catabolic
87 phenotypes, accompanied by hypoglycaemia, lipodystrophy, and hyperphagia. Our work
88 demonstrates a key role of inter-organ communication between the midgut, the brain and
89 endocrine organs to regulate energy homeostasis.

90

91 **Results**

92 **Midgut NPF is required for lipid accumulation in the fat body and promotes starvation 93 resistance**

94 We have previously reported that midgut-derived NPF is essential for mating-induced germline
95 stem cell increase in female *D. melanogaster*¹⁷. This discovery prompted us to ask whether
96 midgut-derived NPF is also involved in other biological processes. In particular, since many
97 enteroendocrine hormones are known to regulate nutritional plasticity^{9–11,18}, we inquired
98 whether loss of midgut-derived NPF leads to any nutrient-related phenotypes. To knock down
99 *NPF* specifically in EECs, we utilised *TKg-GAL4*. This *GAL4* driver is active in most *NPF*⁺
100 EECs^{17,18} and small subsets of neurons but not in *NPF*⁺ neurons¹⁷. *NPF* knockdown with
101 *TKg-GAL4* (*TKg>NPF^{RNAi}*) successfully reduced the number of *NPF*⁺ EECs and *NPF* mRNA
102 expression in the midgut (Extended Data Fig. 1a,b), as previously reported¹⁷. We found that
103 the flies became significantly sensitive to nutrient deprivation. Adult flies were raised on
104 normal food for 6 days after eclosion, and then transferred to a 1% agar-only medium.
105 *TKg>NPF^{RNAi}* animals showed hypersensitivity to nutrient deprivation compared to control

106 animals ($TKg>LacZ^{RNAi}$) (Fig. 1a). The hypersensitivity was observed with two independent
107 $UAS-NPF^{RNAi}$ constructs (KK and TRiP; see Methods), each of which targeted a different
108 region of the *NPF* mRNA.

109 A recent study has reported that the loss-of-function of another midgut-derived
110 peptide hormone, Bursa also exhibited hypersensitivity to starvation¹¹. We examined whether
111 the *NPF* loss-of-function phenotype was due to the expression and/or secretion defect in Bursa
112 in the gut. However, *NPF* knockdown in the EECs did not affect *Bursa* mRNA expression in
113 the intestine or Bursa accumulation in the EECs of the posterior midgut (Extended Data Fig.
114 1b, c).

115 The survivability of flies on nutrient deprivation directly correlates with accessibility
116 to energy storage in their bodies, mainly stored as neutral lipids, including triacylglycerides
117 (TAG) in the fat body^{19,20}. Consistent with the starvation hypersensitivity in animals with loss
118 of *NPF* function, we detected a significant overall reduction of whole-body TAG levels in both
119 $TKg>NPF^{RNAi}$ -animals and *NPF* mutants (Fig. 1b, Extended Data Fig. 1e). Further, in the fat
120 body of both $TKg>NPF^{RNAi}$ animals and *NPF* mutants, the signal intensity of the lipophilic
121 fluorescent dye (LipidTOX) was significantly reduced, as compared with control animals (Fig.
122 1c; Extended Data Fig. 1f). Conversely, overexpression of *NPF* in the EECs resulted in a slight
123 increase in TAG abundance (Extended Data Fig. 1g).

124 In addition to the RNAi animals, we found that *NPF* genetic null mutants ($NPF^{sk1/Df}$)
125 also exhibited similar hypersensitivity phenotype on starvation (Extended Data Fig. 1d).
126 Importantly, transgenic *NPF* reintroduction into EECs ($TKg>NPF$; $NPF^{sk1/Df}$) was sufficient to
127 recover hypersensitivity to starvation and the TAG reduction observed in *NPF* mutant
128 background (Fig. 1d-f). These results suggest that NPF from midgut EECs is required to sustain
129 organismal survival during nutrient deprivation.

130 To rule out the possibility that loss of *NPF* during the larval and pupal stage impacts

131 adult metabolism, we conducted adult-specific knockdown of *NPF* with *tub-GAL80^{ts}*
132 (*TKg^{ts}*>*NPF^{RNAi}*). In *TKg^{ts}*>*NPF^{RNAi}* adults, a temperature-shift to restrictive temperatures
133 following eclosion significantly reduced *NPF* levels in EECs (Extended Data Fig. 2a).
134 Moreover, the adult-specific knockdown of *NPF* resulted in hypersensitivity upon starvation
135 and reduced TAG abundance (Fig. 1g-i), while no visible alterations were noted in size or
136 morphology of the fat body (Fig. 1i). We also observed a significant reduction in circulating
137 glucose and trehalose levels in *TKg^{ts}*>*NPF^{RNAi}* adults at restrictive temperature (Fig. 1j,
138 Extended Data Fig. 1h, 2b), suggesting that reduced lipid storage results in high utilisation of
139 circulating glucose.

140 Since energy storage well correlates with the amount of food consumption, the lean
141 phenotype described above may be simply due to less food intake. However, a CAFÉ assay²¹
142 revealed that both *TKg*>*NPF^{RNAi}* animals and *NPF* mutants increased food intake (Fig. 1k;
143 Extended Data Fig. 1i, 2c). Therefore, the hypersensitivity to starvation and the lean phenotype
144 of animals with loss of *NPF* function do not seem to be secondary to food intake defects, but a
145 more direct outcome of some metabolic defects.

146

147 **Brain NPF is not involved in lipid accumulation in the fat body or the promotion of 148 starvation resistance**

149 It is well known that *NPF* produced in the brain has orexigenic function^{22,23}. Therefore, high
150 food intake in *TKg*>*NPF^{RNAi}* suggests opposing functions between the brain-derived and
151 midgut-derived *NPF*. To examine whether brain *NPF* affects lipid metabolism, we employed
152 *fbp-GAL4*²⁴, which is active in the *NPF⁺* neurons in the brain, but not in gut EECs (Extended
153 Data Fig. 3a). Knockdown of *NPF* with *fbp-GAL4* (*fbp*>*NPF^{RNAi}*) abolished anti-*NPF* antibody
154 immunoreactivity in two sets of large neurons, termed L1-1 and P1²⁵, in the brain without
155 affecting *NPF* level in the gut (Extended Data Fig. 3b). In *fbp*>*NPF^{RNAi}* adults, a mild reduction

156 in food consumption was observed without impacting starvation resistance or TAG abundance
157 (Extended Data Fig. 3c-e). Moreover, reintroduction of *NPF* in the brain (*fbp>NPF*;
158 *NPF^{sk1}/Df*) did not recover the metabolic phenotypes of the *NPF* mutant (Extended Data Fig.
159 3f-g). These results contrast those obtained following the reintroduction of *NPF* in the midgut
160 (*TKg>NPF*; *NPF^{sk1}/Df*; Fig. 1d-e). Collectively, these results suggest that midgut NPF has a
161 prominent role in suppressing lipodystrophy, which is independent from the brain NPF.

162

163 **Midgut NPF is required for energy homeostasis**

164 To further explore the lean phenotype of *TKg>NPF^{RNAi}* animals at the molecular level, we
165 conducted an RNA-seq transcriptome analysis on the abdomens of adult females. Among the
166 105 curated carbohydrate metabolic genes, 17 were significantly upregulated in *TKg>NPF^{RNAi}*
167 animals ($p < 0.05$; Extended Data Fig. 4a, Extended Data Table 1). Many of these genes were
168 also upregulated in *TKg>NPF^{RNAi}* samples, however, these results were not statistically
169 significant because replicate No. 1 of *TKg>LacZ^{RNAi}* exhibited deviation in the expression
170 pattern (Extended Data Fig. 4a, Extended Data Table 1). Moreover, among the 174 curated
171 genes involved in mitochondrial activity and genes encoding electron respiratory chain
172 complexes, 53 were significantly upregulated ($p < 0.05$) in *TKg>NPF^{RNAi}* samples (Extended
173 Data Fig. 4b, Extended Data Table 2). Metabolomic analysis demonstrated a significant shift
174 in the whole-body metabolome of *TKg>NPF^{RNAi}* animals (Fig. 2a, Extended Data Fig. 5a,
175 Extended Data Table 3,4). We found that, while circulating glucose level in the hemolymph
176 was significantly decreased (Fig. 1g), *TKg>NPF^{RNAi}* resulted in increase of tricarboxylic acid
177 (TCA) cycle metabolites, such as citrate, isocitrate, fumarate, and malate, in whole-body
178 samples as well as hemolymph samples (Fig. 2b, c). These data strongly suggest that
179 *TKg>NPF^{RNAi}* animals utilise and direct more glucose into the TCA cycle.

180 Based on RNA-seq transcriptome analysis, we found that starvation-induced genes

181 (Grönke et al., 2005) were also upregulated in the abdomens of *TKg>NPF^{RNAi}* adults (Fig. 2d,
182 Extended Data Table 5). Subsequent quantitative PCR (qPCR) validated the upregulation of
183 the starvation-induced gluconeogenetic genes (*fructose-1,6-bisphosphatase* (*fbp*) and
184 *Phosphoenolpyruvate carboxykinase 1* (*pepck1*))²⁶ (Fig. 2e). In general, TAG is broken into
185 free fatty acids to generate acetyl-coenzyme A (CoA), which is metabolised in the mitochondria
186 through the TCA cycle and oxidative phosphorylation. We also confirmed the upregulation of
187 lipid metabolism gene (*Brummer* (*Bmm*)) in the fat body of *TKg>NPF^{RNAi}* animals (Fig. 2f).
188 Notably, upregulation of *Acetyl-CoA carboxylase* (*ACC*) was not reproduced with qPCR (Fig.
189 2f). These data suggest that *TKg>NPF^{RNAi}* animals are in the starved-like status despite taking
190 in more food, and that hemolymph glucose levels cannot be maintained even with the activation
191 of gluconeogenesis and lipolysis in *TKg>NPF^{RNAi}* animals. We hypothesise that, owing to the
192 starved-like status, the loss of midgut *NPF* function might lead to an abnormal consumption of
193 TAG, resulting in the lean phenotype.

194

195 **Midgut NPF responds to dietary sugar**

196 Since EECs can sense dietary nutrients, we surmised that dietary nutrients affect NPF
197 production and/or secretion in midgut EECs. We thus compared NPF protein and mRNA levels
198 in flies fed standard food or starved for 48 h with 1% agar. After 48 h of starvation, NPF protein
199 in midgut EECs was significantly increased (Fig. 3a, b), although its transcript in the intestine
200 was reduced (Fig. 3c). These data suggest that the increased accumulation of NPF protein in
201 EECs upon starvation is not due to upregulation of *NPF* mRNA expression level, but rather
202 due to post-transcriptional regulation. This situation was very similar to the case of mating-
203 dependent change of NPF protein level, and may reflect the secretion of NPF protein from
204 EECs¹⁷. Considering that the high accumulation of NPF protein without *NPF* mRNA increase
205 indicate a failure of NPF secretion, we hypothesised that starvation suppresses NPF secretion

206 from EECs.

207 To identify specific dietary nutrients that affect NPF levels in EECs, after starvation,
208 we fed flies a sucrose or Bacto peptone diet as exclusive sources of sugar and proteins,
209 respectively. Interestingly, by supplying sucrose, the levels of both of NPF protein and *NPF*
210 mRNA in the gut reverted to the levels similar to *ad libitum* feeding conditions (Fig. 3a, b). In
211 contrast, Bacto peptone administration did not reduce middle midgut NPF protein level, but
212 rather increased both NPF protein and *NPF* mRNA levels (Fig. 3c). These data imply that
213 midgut NPF is secreted primarily in response to dietary sugar, but not proteins. This sucrose-
214 dependent NPF secretion was observed in flies fed a sucrose medium for 6 h after starvation,
215 whereas a 1-h sucrose restoration had no effect on NPF accumulation (Extended Data Fig. 6a).

216

217 **Sugar-responsive midgut NPF production is regulated by the sugar transporter Sut1**

218 In mammals, the sugar-stimulated secretion of GLP-1 is partly regulated by glucose transporter
219 2, which belongs to the low-affinity glucose transporter solute carrier family 2 member 2
220 (SLC2)^{27,28}. In *D. melanogaster*, a SLC2 protein, Glucose transporter 1 (Glut1), in the *Bursa*⁺
221 EECs regulates sugar-responsive secretion and *Bursa* mRNA expression¹¹. However,
222 knockdown of *Glut1* did not affect *NPF* mRNA nor NPF protein abundance in EECs (Extended
223 Data Fig. 6b, c). Thus, we next examined which SLC2 protein, aside from Glut1, regulates
224 NPF levels in the gut. There are over 20 putative homologs of *SLC2* in the *D. melanogaster*
225 genome²⁹. Of these, we focused on *sugar transporter1* (*sut1*), because its expression has been
226 described in the intestinal EECs by FlyGut-seq project³⁰ and Flygut EEs single-cell RNA-seq
227 project³¹. To verify *sut1* expression, we generated a *sut1*^{Knock-in(KI)-T2A-GAL4} strain using
228 CRISPR/Cas9-mediated homologous recombination^{32,33}. Consistent with these transcriptomic
229 analyses, *sut1*^{KI-T2A-GAL4} expression was observed in the EECs, including NPF⁺ EECs (Fig.
230 3d). In addition, we found that overexpressed monomeric Venus (mVenus)-tagged Sut1 protein

231 (*TKg>sut1::mVenus*) was localised on the membrane of NPF⁺ EECs (Fig. 3e), supporting the
232 notion that Sut1 mediates the transport of extracellular sugar.

233 Next, to ascertain the glucose transporter capacity of Sut1, we expressed *FLII¹²Pglu-*
234 $700\mu\delta6$, a fluorescence resonance energy transfer (FRET)-based glucose sensor (referred to as
235 Glu⁷⁰⁰)^{34,35}, into *D. melanogaster* S2 cells, with or without *sut1* overexpression. In this
236 experiment, we equilibrated S2 cells in buffer lacking glucose³⁵, followed by application of
237 high-glucose (25 mM final concentration) solution. As compared with S2 cells without *sut1*
238 overexpression, the addition of high-glucose solution significantly elevated the Glu⁷⁰⁰ FRET
239 signal with *sut1* overexpression (Extended Data Fig. 7a). We also investigated whether *sut1*
240 regulates cellular glucose levels in EECs with a *UAS-Glu⁷⁰⁰* transgenic strain. Knockdown of
241 *sut1* in the EECs caused a slight, but significant, decrease in the Glu⁷⁰⁰ FRET signal (Extended
242 Data Fig. 7b), whereas 24 h of starvation caused a more significant reduction in FRET signal
243 intensity. Taken together, these data suggest that Sut1 regulates intracellular glucose levels and
244 may transport glucose into cells.

245 We next examined the effect of knockdown of *sut1* in the EECs. The *sut1* knockdown
246 with a transgenic RNAi lines (*TKg>sut1^{RNAiKK}*) resulted in the decrease in *NPF* mRNA level
247 in the midgut, similar to what we observed in starvation conditions (Fig. 3f). On the other hand,
248 *sut1* knockdown resulted in the increase in *NPF* protein level in EECs in *ad libitum* feeding
249 condition, while there was no significant difference in *NPF* protein level in starvation condition,
250 compared with control (Extended Data Fig. 6d, e). Moreover, *sut1* knockdown disrupted the
251 reversion of *NPF* accumulation by sucrose restoration (Extended Data Fig. 6d, e). *NPF* mRNA
252 expression was also significantly reduced with an increase in *NPF* protein abundance, in
253 another transgenic RNAi animal model (*TKg>sut1^{RNAiTRiP}*), and *sut1* null mutant animals
254 generated by CRISPR/Cas9 system³⁶ (Fig. 3g, Extended Data Fig. 8a-f). Consistent with the
255 *NPF* accumulation phenotype, *sut1* knockdown (both *TKg>sut1^{RNAiKK}* and *TKg>sut1^{RNAiTRiP}*)

256 resulted in hypersensitivity to starvation and reduction in lipid amount (Fig. 3h-j, Extended
257 Data Fig. 8c, d). Importantly, brain-specific *sut1* knockdown using *Otd-FLP* did not cause NPF
258 accumulation in the midgut, while it did slightly reduce the abundance of TAG (Extended Data
259 Fig. 9a-c). Moreover, *sut1^{KI-T2A}-GAL4* was not expressed in NPF⁺ neurons in the brain
260 (Extended Data Fig. 9d), suggesting that brain *sut1* is not involved in the regulation of midgut
261 NPF production or secretion. Furthermore, *sut1* knockdown did not reduce *Bursa* mRNA
262 expression in the gut (Extended Data Fig. 9e). These data suggest that Sut1 in the EECs is
263 indispensable for midgut NPF production and whole animal lipid metabolism.

264

265 **NPFR in the corpora cardiaca regulates lipid metabolism**

266 We have previously reported that midgut EEC-derived NPF may be secreted into circulation
267 and activate NPFR in the ovarian somatic cells, leading to germline stem cell proliferation¹⁷.
268 We first investigated potential NPF-dependent lipid metabolism regulation by ovarian NPFR.
269 However, *NPFR* knockdown in the ovarian somatic cells with *Traffic jam(tj)-GAL4* did not
270 induce hypersensitivity to starvation or reduction of TAG contents (Extended Data Fig. 10a, b),
271 implying that *NPFR* expressed in tissues other than the ovary must be involved in regulating
272 sugar-dependent lipid metabolism.

273 To determine the tissues expressing *NPFR*, we utilised two independent *NPFR*
274 knock-in *T2A-GAL4* lines, *NPFR^{KI-T2A}-GAL4* (See Methods) and *NPFR^{KI-RA/C}-GAL4*³⁷, each
275 of which carry a transgene cassette that contained *T2A-GAL4*³⁸ immediately in front of the
276 stop codon of the endogenous *NPFR* gene. Crossing these lines with a *UAS-GFP* line revealed
277 *GFP* expression not only in the brain (Extended Data Fig. 11a), as previously reported³⁷, but
278 also in other tissues, including the CC (Fig. 4a, Extended Data Fig. 11b), short neuropeptide F
279 (sNPF)⁺ enteric neurons, Malpighian tubules, ovary, and gut (Extended Data Fig. 11c-f). The
280 expression in the CC was observed in two independent *KI-GAL4* lines, *NPFR^{KI-T2A}-GAL4* and

281 *NPFR*^{KI-RA/C}-*GAL4* (Fig. 4a, Extended Data Fig. 11b). Therefore, based on these results and
282 those of a previous RNA-seq analysis³⁹, we surmised that *NPFR* is expressed in the CC. Since
283 the CC produces the glucagon-like peptide, AKH, which regulates organismal carbohydrate
284 and triglyceride metabolism in insects^{2,20,40-42}, we were particularly interested in examining
285 whether NPFR in the CC is involved in metabolic regulation in adult *D. melanogaster*.

286 To this end, we further conducted starvation experiments. Similar to animals with
287 loss of *NPF* function, *NPFR* knockdown animals (*Akh*>*NPFR*^{RNAiKK} or *Akh*>*NPFR*^{RNAiTRiP}) and
288 *NPFR*-null mutants (*NPFR*^{sk8}/*Df*) were more sensitive to starvation, compared with control
289 (*Akh*>*LacZ*^{RNAi}, *NPFP*^{sk8}/+, or *Df*+/+) (Fig. 4b; Extended Data Fig. 10c). The *NPFR* knockdown
290 animals exhibited reduction of TAG amount and glycaemic levels, accompanied by increase of
291 food intake, similar to animals with disrupted *NPF* (Fig. 4c-f; Extended Data Fig. 10d).
292 Moreover, reintroduction of *NPFR* in the CC rescued the starvation sensitivity, the low TAG
293 levels, and the reduced signal intensity of the LipidTOX in the fat body of *NPFR* mutants (Fig.
294 4g-i), indicating that NPFR in the CC is essential for modulating lipid catabolism.

295 Consistent with a previous report³¹, *NPFR*^{KI-T2A}-*GAL4* was also expressed in the
296 visceral muscles (Extended Data Fig. 11f). We therefore knocked down *NPFR* in the visceral
297 muscle with *how-GAL4*, a genetic driver active in the visceral muscle. In the adult females of
298 this genotype, TAG amount was reduced, but hypersensitivity to starvation was not observed
299 (Extended Data Fig. 12a, b). Therefore, we conclude that NPFR in the CC has a pivotal role in
300 lipid metabolism coupled with its role in starvation resistance.

301

302 **NPF/NPFR signalling controls glucagon-like hormone production**

303 Consistent with the attenuation of lipid catabolism by NPF and NPFR, *Akh* mRNA level was
304 significantly upregulated in midgut EEC-specific *NPF* knockdown or CC-specific *NPFR*
305 knockdown (Fig. 5a). Furthermore, AKH protein levels in the CC were significantly reduced

306 in *NPF* and *NPFR* knockdown animals (Fig. 5b, c). Given that these phenotypes resembled the
307 excessive AKH secretion reported in a previous study⁴³, these results suggest that upregulation
308 of AKH production and secretion induces the metabolic phenotype of loss of *NPF* or *NPFR*
309 function animals. To test this hypothesis, we assessed a relationship between *NPF*-*NPFR*
310 signalling and AKH-AKH receptor (AKHR) signalling in lipid metabolism. The reduction of
311 TAG and starvation hypersensitivity of *NPFR* knockdown were rescued by a CC-specific co-
312 suppression of *Akh* (*Akh*>*NPFR*^{RNAi}+*Akh*^{RNAi}) (Fig. 5d-f). Further, the low TAG level and
313 starvation sensitivity of *NPF* knockdown was also rescued with *Akh*^{KO} mutants (Extended Data
314 Fig. 13a, b), suggesting that lipodystrophy of *NPF*/*NPFR*-deficient animals is mediated by
315 AKH. Notably, the knockdown of *Akh* alone (*Akh*>*Akh*^{RNAi}) resulted in high starvation
316 resistance and increased TAG abundance compared to *Akh*>*NPFR*^{RNAi}+*Akh*^{RNAi} (Fig. 5d, f),
317 implying that other factor(s) from the CC may contribute to the lipid storage reduction in *NPFR*
318 knockdown animals. Complementary to these results, the fat body-specific RNAi of *AkhR*
319 in *NPF* mutant background improved the sensitivity to starvation and reduction of TAG (Fig.
320 5i-k). Moreover, double mutant of *AkhR*^{KO} and *NPF* (*AkhR*^{KO}; *NPF*^{sk1/Df}) also improved the
321 reduced fat phenotype of *NPF* mutants (Fig. 5g). These data indicate that AKH-AKHR
322 signalling is responsible for the metabolic phenotype of animals with loss of *NPF* or *NPFR*
323 function.

324

325 **NPF/NPFR signalling regulates lipase gene expression in the fat body**

326 Upon AKH binding, AKHR evokes a rapid and sustained increase in intracellular cAMP and
327 Ca²⁺ accumulation, leading to the activation of multiple lipases that catalyse the hydrolysis of
328 both tri- and diacylglycerides upon starvation^{19,20,44}. In the fat body of *D. melanogaster*, two
329 major lipases, Bmm and *Drosophila* hormone sensitive lipase (dHSL), homologs of human
330 adipose triglyceride lipase (ATGL), are involved in regulating TAG amount^{19,44,45}. The

331 activities of both Bmm and dHSL are regulated by AKH-AKHR signalling, while their
332 regulatory mechanisms are substantially different^{19,20,45–47}. We observed an increase in *Bmm*
333 mRNA expression in loss of *NPF* function animals (Fig. 2f). Consistent with this, *NPFR*
334 knockdown in the CC also increased *Bmm* mRNA expression in the abdomen of females (Fig.
335 5h). Moreover, co-suppression of *Akh* with *NPF* null mutation reverted *Bmm* mRNA
336 expression to levels similar to that of the control (Fig. 5h). However, knockdown of *NPFR* in
337 the CC or co-suppression of *NPFR* and *Akh* had no significant effect on *dHSL* mRNA levels
338 (Fig. 5h). Cumulatively, these data suggest that *Bmm*, not *dHSL*, is transcriptionally influenced
339 by NPF/NPFR signalling via AKH.

340 To assess whether Bmm or dHSL is an effector of activated lipolysis in animals with
341 loss of *NPF* or *NPFR* function, we suppressed *Bmm* or *dHSL* mRNA expression in the fat body
342 cells of *NPF*-null-mutant background. These genetic manipulations were sufficient to rescue
343 the TAG levels of *NPF* mutant animals (Fig. 5i-k). In conjunction with the data showing the
344 NPF-dependent upregulation of *Bmm* mRNA levels, these results suggest that the activity of
345 Bmm is required for NPF/NPFR-regulated lipid mobilisation in the fat body, while dHSL also
346 participates in the regulation of lipid mobilisation, however, in a manner that is independent of
347 NPF/NPFR signalling, at least transcriptionally.

348 The expression of *Bmm* is reportedly activated by a transcription factor Forkhead
349 box sub-group O (FOXO); FOXO transcriptional activity is tightly associated by its nuclear
350 localisation⁴⁶. Thus, we examined FOXO localisation in fat body cells. Consistent with the
351 increase in *Bmm* mRNA expression, FOXO nuclear localisation was induced by *TKg>NPF^{RNAi}*
352 or *Akh>NPFR^{RNAi}* (Fig. 6a, b). In contrast, FOXO nuclear localisation in *Akh>NPFR^{RNAi}* was
353 restored with knockdown of *Akh* (Fig. 6b). Moreover, the mRNA level of a FOXO-target gene,
354 *4E-BP* was increased in the abdomen of females, while another FOXO-target gene *Insulin*
355 *receptor (InR)* was not affected (Fig. 6c). These results suggest that NPF-mediated *Bmm* mRNA

356 expression in the fat body may be FOXO-dependent.

357

358 **NPF/NPFR signalling control insulin secretion and production**

359 Since FOXO nuclear localisation is suppressed by insulin signalling pathway ⁴⁸, the results
360 described above led us to examine the involvement of NPF-NPFR signalling in insulin
361 production and/or secretion. The *D. melanogaster* genome encodes several insulin-like peptide
362 genes (*dilps*). In adulthood, DILP2, DILP3, and DILP5 are produced in and secreted from IPCs
363 in the brain ^{49,50}. We therefore tested whether NPF from midgut EECs affects DILPs production
364 and secretion. *Dilp3* and *Dilp5* mRNA levels were significantly reduced in *TKg>NPF^{RNAi}* while
365 the level of *Dilp2* mRNA remained constant (Fig. 6d). Since insulin activity is also regulated
366 at the level of DILP secretion ^{51,52}, we assessed accumulation of DILP2, DILP3, and DILP5 in
367 the IPCs with midgut *NPF* knockdown. *NPF* knockdown in the midgut EECs increased DILP2,
368 DILP3, and DILP5 protein levels in the IPCs (Fig. 6e), despite the reduced *Dilp3* and *Dilp5*
369 mRNA levels, indicating that DILPs accumulate in the IPCs. These results suggest that midgut
370 NPF controls *Dilp3* and *Dilp5* mRNA expression, as well as DILP secretion.

371 Next, we assessed *NPFR* expression in IPCs. As described above, *NPFR^{KI-T2A}-GAL4*
372 and *NPFR^{KI-RA/C}-GAL4* are active in many neurons in the brain ³⁷. We validated *NPFR*
373 expression in the brain in more details and found that both *NPFR^{KI-T2A}-GAL4*- and *NPFR^{KI-}*
374 *RA/C*-GAL4-driven *UAS-GFP* are also expressed in the IPCs (Fig. 7a; Extended Data Fig. 14a).
375 This is consistent with a recent RNA-seq analysis showing that *NPFR* is indeed expressed in
376 the IPCs ⁵³. We further investigated potential control *Dilps* mRNA expression by NPFR in the
377 IPCs. As expected, *NPFR* knockdown in the IPCs (*Dilp2>NPFR^{RNAi}*), slightly reduced *Dilp2*,
378 *Dilp3* and *Dilp5* mRNA levels, suggesting that midgut NPF controls *Dilps* mRNA expression
379 by directly stimulating the IPCs (Fig. 7b). Similar to *TKg>NPF^{RNAi}* animals, we also confirmed
380 that *NPFR* knockdown in the IPCs (*Dilp2>NPFR^{RNAi}*) induced an accumulation of DILP2 and

381 DILP3 peptide in the IPCs (Fig. 7c). To examine whether DILP2 hemolymph levels are
382 impacted in loss of *NPFR* function animals, we quantified the hemolymph level of circulating
383 endogenous DILP2 tagged with artificial epitopes (DILP2HF)^{52,54} in control and
384 *Dilp2>NPFR^{RNAi}* animals. We observed a significant decrease in circulating DILP2HF in
385 *Dilp2>NPFR^{RNAi}* animals (Fig. 7d). These results suggest that NPFR in the IPCs positively
386 regulates DILP secretion to the hemolymph.

387 Since DILP secretion depends on neuronal activities of IPCs⁵⁵, we next assessed IPC
388 activity using CaLexA, which allows cumulative tracing of neuronal activity⁵⁶, in *ad libitum*
389 fed or starved animals. 24 h starvation significantly attenuated the neuronal activity of IPCs in
390 both control (*Dilp2>CaLexA, LacZ^{RNAi}*) and *NPFR* knockdown (*Dilp2>CaLexA, NPFR^{RNAi}*)
391 animals (Fig. 7e). Meanwhile, following *ad libitum* feeding, control animals showed robust
392 IPC neuronal activity of, whereas knockdown of *NPFR* caused a slight, but significant,
393 reduction in neuronal activity (Fig. 7e). These results demonstrate that NPFR in the IPCs
394 positively regulates DILP secretion by regulating IPCs neuronal activity.

395 To assess the levels of insulin signalling within peripheral tissue, we used a
396 pleckstrin-homology domain fused to GFP (tGPH), which is recruited to the plasma membrane
397 when insulin signalling is activated⁵⁷. tGPH signal at the plasma membranes of the fat body
398 was significantly reduced in *Dilp2>NPFR^{RNAi}* animals (Fig. 7f), confirming that DILP secretion
399 is attenuated by *NPFR* knockdown in the IPCs. Consistent with reduced peripheral insulin
400 signalling, *NPFR* knockdown also reduced phospho-AKT levels (Fig. 7g). Together, these data
401 show that NPFR in the IPCs regulates DILP production and secretion, thereby positively
402 controlling the signalling activity of peripheral insulin.

403 An examination of the effect of *Dilp2>NPFR^{RNAi}* on metabolism revealed that *NPFR*
404 knockdown in the IPCs caused a mild but significant hypersensitivity to starvation (Fig. 8a).
405 Consistently, TAG level and LipidTOX signal intensity were also reduced in the fat body with

406 *Dilp2>NPFR^{RNAi}* (Fig. 8b, c). Moreover, *Dilp2>NPFR^{RNAi}* reduced hemolymph glycaemic
407 level, while feeding amount was significantly increased (Fig. 8d, e). Notably, these metabolic
408 phenotypes of *Dilp2>NPFR^{RNAi}* were similar to those of *TKg>NPFR^{RNAi}* and *Akh>NPFR^{RNAi}*.
409 We also confirmed the mRNA expression levels of *Bmm*, *4E-BP*, *InR*, and *pepck1* in the fat
410 body of *Dilp2>NPFR^{RNAi}* animals. Despite the reduction of TAG level, *Dilp2>NPFR^{RNAi}* failed
411 to increase *Bmm* mRNA expression (Fig. 8f), suggesting that the lean phenotype of
412 *Dilp2>NPFR^{RNAi}* animal is not due to an increase in *Bmm* mRNA expression. However,
413 expression of other FOXO-target genes, *4E-BP* and *pepck1* were upregulated with
414 *Dilp2>NPFR^{RNAi}* (Fig. 8f). Consistent with this, *Dilp2>NPFR^{RNAi}* induced FOXO nuclear
415 localisation (Fig. 8g). These data suggest that NPFR in the IPCs regulates DILPs expression
416 and secretion, followed by nuclear translocation of FOXO in the fat body to alter some FOXO-
417 target genes.

418 Since IPCs produce multiple neuropeptides, including DILPs and Drosulfakinin
419 (Dsk), we next sought to identify which neuropeptide in the IPCs is responsible for NPF/NPFR-
420 mediated regulation of lipid storage in the fat body. Results show that knockdown of *dilp3*
421 (*Dilp2>dilp3^{RNAi}*) resulted in significant reduction of TAG abundance, while the others had no
422 significant effect (Extended Data Fig. 14b). Our data is consistent with a previous study
423 demonstrating that *dilp3* mutant animals exhibit reduced TAG levels⁵⁸. Additionally, although
424 Dsk is known to regulate feeding behaviour in adults⁵⁹, *dsk* expression was not affected by
425 *NPFR* knockdown in IPCs (Extended Data Fig. 14c).

426 Our data indicates that *NPFR* knockdown in the CC resulted in a stronger
427 hypersensitive phenotype to starvation compared to that detected following *NPFR* knockdown
428 in the IPCs (Fig. 4b, 8a). To explain this discrepancy, we hypothesised that *NPFR* knockdown
429 in the CC might lead to a significant alteration in DILP production within IPCs. To test this
430 hypothesis, we quantified *dilps* mRNA levels in *Akh>NPFR^{RNAi}* and found that *NPFR*

431 knockdown in the CC decreased *dilp3* and *dilp5* mRNA levels (Extended Data Fig. 14d). In
432 contrast, *NPFR* knockdown in the IPCs (*Dilp2>NPFR^{RNAi}*) did not influence *Akh* mRNA
433 expression (Extended Data Fig. 14e). Together, these data suggest that *NPFR* knockdown in
434 the CC results in not only enhanced AKH production, but also suppression of DILP production.
435

436 **NPF neurons might not play a crucial role in AKH and DILPs production**

437 Although *NPF* knockdown in the brain did not exhibit significant effects in metabolism
438 (Extended Data Fig. 3), it remains possible that brain NPF participates in the regulation of AKH
439 and DILPs. However, three lines of evidence as follows are likely to negate this possibility.
440 First, we confirmed AKH and DILP mRNA and protein levels following brain-specific *NPF*
441 knockdown (*fbp>NPFR^{RNAi}*). Consistent with the metabolic phenotype, *NPF* knockdown in the
442 brain did not impact mRNA or protein levels of either AKH or DILPs (Extended Data Fig. 15a-
443 d). Second, postsynaptic trans-Tango signals driven by *NPF-GAL4* were not detected in CC
444 cells or neurons in the PI region (Extended Data Fig. 15e, f). Third, 24 h starvation did not
445 affect NPF protein levels in the brain (Extended Data Fig. 15g). Taken together, these data
446 suggest that brain NPF neurons do not affect AKH and DILPs levels.

447 Taken together, our findings suggest that midgut-derived, but not neuronal NPF,
448 binds NPFR in the CC and IPCs, suppressing AKH production and enhancing DILP secretion,
449 respectively. As a result, midgut NPF employs downstream FOXO-target genes to regulate
450 carbohydrate and lipid metabolism through glucagon and insulin, respectively (Fig. 9).

451

452 **Discussion**

453 Here, we demonstrated that midgut-derived NPF acts as a sensor of dietary sugar and plays an
454 important role in the regulation of adult carbohydrate and lipid homeostasis in *D. melanogaster*.
455 Importantly, we showed that midgut NPF is received by the CC and IPCs, to coordinate their

456 expression of glucagon-like and insulin-like hormones, respectively. Previous studies reported
457 that midgut EEC-derived Activin- β and Burs α are important for carbohydrate and lipid
458 metabolism in *D. melanogaster*, although these enteroendocrine hormones have not been
459 shown to directly act on the CC or IPCs. Activin- β acts on the fat body to regulate *AkhR*
460 expression in the larval fat body⁹. Burs α is secreted in response to dietary sugars, but it is
461 received by un-characterised neurons that express its receptor, *Lgr2*, leading to suppression of
462 *Akh* expression¹¹. We therefore propose that NPF is the first incretin-like hormone in
463 invertebrates, and its production and secretion are stimulated by dietary nutrients similar to
464 incretins (Fig. 9).

465

466 Nutrient-dependent NPF regulation

467 Due to technical limitations, we were unable to quantify the hemolymph titre of NPF and,
468 therefore, did not examine whether midgut NPF contributes to the NPF hemolymph level.
469 Nevertheless, our data strongly suggests that dietary sugar controls not only midgut *NPF*
470 expression but also NPF secretion from the midgut. In this scenario, NPF secretion is attenuated
471 in starved conditions, while the attenuation is restored by sugar re-feeding.

472 We found that Sut1, a homolog of mammalian SLC2, is a regulator of sugar-
473 dependent NPF production in EECs. Considering that Sut1 is localised on plasma membranes
474 and contributes to the elevation of intracellular glucose levels, it is likely that Sut1 transports
475 glucose into the cell. Similar to Sut1, Glut1, another mammalian SLC2 homolog, acts as a
476 glucose transporter to elevate intracellular glucose levels in *D. melanogaster*³⁵. Additionally,
477 Glut1 has been shown to be essential for nutrient-dependent production and secretion of Burs α
478 from EECs¹¹. However, our data suggest that Glut1 does not affect NPF production (Extended
479 Data Fig. 6b, c). Importantly, NPF and Burs α are produced in different regions of the midgut,
480 namely in the anterior and posterior midgut, respectively^{11,60}. Therefore, different subtypes of

481 EECs appear to have different glucose sensing systems. Thus, characterising how the
482 differences in EEC sugar sensing systems affect the metabolic robustness of individuals may
483 clarify the significance of the more than 30 SLC2 genes in *D. melanogaster*⁶¹.

484 In mammalian EECs, especially GLP-1⁺ L cells, dietary glucose is transported by
485 glucose transporter, Glut2, and sodium coupled glucose transporter 1 (SGLT-1) to stimulate
486 GLP-1 secretion^{27,28,62,63}. In addition to sugars, fatty acids and amino acids also stimulate GLP-
487 1 secretion from mammalian EECs^{28,64,65}. Therefore, *D. melanogaster* EECs might also be
488 regulated by multiple regulatory systems in response to different nutrient types. However, these
489 systems remain largely undefined. For example, in this study, we were unable to determine the
490 underlying mechanism by which midgut NPF mRNA and protein levels are significantly
491 upregulated by peptone feeding (Fig. 3a–c). Future studies should offer a more comprehensive
492 investigation of nutrient-dependent enteroendocrine hormone regulation at the molecular level.

493

494 **Metabolic function of NPF/NPFR**

495 Our data demonstrated that midgut-derived NPF controlled organismal carbohydrate and lipid
496 metabolism through AKH and insulin signalling. Animals with loss of *NPF* function were in a
497 catabolic state, reminiscent of starved animals, as judged by the following observation from
498 our RNA-seq and metabolome analyses: (1) upregulation of glycolysis, TCA cycle,
499 mitochondrial respiratory chain complex genes, and starvation-induced genes, (2) increase of
500 several TCA cycle metabolites, (3) lipodystrophy and hypoglycaemia along with hyperphagia,
501 and (4) nuclear localisation of FOXO and the induction of starvation-induced FOXO-target
502 genes. These phenotypes are likely due to upregulation of AKH/AKHR signalling and
503 attenuation of insulin signalling in the peripheral tissues. Taken together, our results suggest
504 that NPFR in the CC and IPCs has pivotal role in the regulation of organismal TAG and
505 glycaemic levels.

506 In the adult fat body, TAG level is controlled by two lipases, dHSL and Bmm in a
507 redundant manner. Given that knockdown of either *Bmm* or *dHSL* in the fat body restored TAG
508 reduction in *NPF*-null-mutant animals to the control level, we hypothesise that both lipases
509 cooperatively control lipid breakdown in the NPF-NPFR axis. These data support our idea that
510 glucose and stored lipids are mobilised to the TCA cycle to generate energy in animals with
511 loss of *NPF* function.

512

513 **Cross talk with other signalling**

514 One of our striking findings is that NPF produced by midgut EECs directly stimulated the CC
515 and IPCs, indicating the presence of both a midgut-CC-fat body axis and a midgut-IPCs-fat
516 body axis in *D. melanogaster*. Although many studies have demonstrated that neuronal
517 signalling in the brain and humoral factors from peripheral tissues stimulate either CC or IPCs
518^{14,66}, factors that stimulate both the CC and IPCs are less defined. As the one and only example
519 of such factors, it was recently reported that sNPF from two pairs of neurons directly
520 innervating both the CC and IPCs controls glycaemic level in a sugar-responsive manner⁴³.
521 sNPF receptor (sNPFR) is expressed and coupled with a trimeric G protein signalling in the
522 CC and IPCs, leading to the suppression of AKH secretion and enhancement of DILP2
523 secretion. Although NPFR is coupled with G_{αq} and G_{αi} subunits in heterologous expression
524 systems^{67,68}, it remains unclear which trimeric G protein is coupled in the CC and IPCs to
525 transmit NPF signals. Further studies are needed to investigate the integration of neuron-
526 derived sNPF and midgut-derived NPF to adequately stimulate the CC and IPCs for the
527 regulation of AKH and DILP secretion, respectively.

528 Many studies have identified and characterised factors that regulate DILP production
529 and secretion. Dietary nutrients, neuropeptide signalling, and adipocyte-derived factors
530 regulate IPCs to coordinate systemic growth and energy-related events^{14,50,66,69}. In contrast,

531 much less is known about factors regulating AKH production and secretion. Beside the
532 neuropeptide signalling described above (NPF, sNPF, Bursa), other signalling components also
533 function in the CC, such as Allatostatin A-receptor 2, a water sensor encoded by *pickpocket28*,
534 and a H₂O₂- and ultraviolet light-sensitive isoform of *TrpA1*⁷⁰⁻⁷². Moreover, AKH secretion is
535 regulated by a neurotransmitter secreted from *Lgr2⁺* neurons, although the neurotransmitter
536 has not been characterised¹¹. Studies that detail the signalling cross talk between the factors
537 that control AKH actions are required, to further elucidate how CC cells sense multiple
538 nutritional and physiological cues to control carbohydrate and lipid metabolism. In fact, CC
539 reportedly produces another peptide, Limostatin (Lst), that stimulates IPCs to suppress
540 production of DILPs, including decretin⁷³. Therefore, Lst may participate in the
541 downregulation of *dilp3* and *dilp5* expression following *NPFR* knockdown in the CCs
542 (Extended Data Fig. 13b).

543

544 **Midgut NPF vs brain NPF**

545 Our previous study¹⁷, as well as the results of the current study, confirm the significant
546 biological function of midgut NPF in *D. melanogaster*. Meanwhile, many previous studies
547 have reported that brain NPF has versatile roles in the feeding and social behaviour of
548 insects^{23,74,75}. Therefore, the metabolic phenotypes of *NPF* genetic mutants may reflect the
549 diverse functions of brain NPF, although the data from the current study does not support this
550 postulate (Extended Data Fig. 3 and 15). In particular, brain-specific *NPF* knockdown does
551 not phenocopy *NPF* mutation or midgut-specific *NPF* knockdown. These data imply distinct
552 physiological functions between midgut and brain NPF.

553 Another key finding in this study is the anorexigenic function of midgut-derived
554 NPF, which is in contrast to the orexigenic function of brain NPF^{22,23}. Interestingly, agonists
555 of NPY-like receptor 7 disrupt host-seeking behaviour and biting in the yellow fever

556 mosquito *Aedes aegypti*⁷⁶. Moreover, disruption of NPF/NPFR signalling results in abnormal
557 feeding behaviour and reduced growth in several insects^{75,77,78}. Since other insects also
558 produce NPF from the brain and gut^{77,79}, it is important to validate the source of circulating
559 NPF and discriminate the function of brain NPF from that of gut-derived NPF.

560

561 **Commonality with mammalian system**

562 A growing number of evidences have demonstrated that, similar to mammals, the *D.*
563 *melanogaster* intestine plays versatile roles in systemic physiology⁸⁰. Although it is simpler
564 than the mammalian gastrointestinal tract, the *D. melanogaster* intestinal epithelium is
565 functionally regionalised and displays similarity both at the cellular and molecular levels^{30,31,81}.
566 In mammals, GIP from K-cells (largely in the upper small intestine) and GLP-1 from L cells
567 (predominantly in the distal small and large intestine) are considered incretins, which induce
568 insulin secretion by stimulating β cells in the pancreatic islets^{5,6,62}. Among incretins, GLP-1
569 suppresses glucose-dependent glucagon secretion via its receptor GLP-1R in α -cells of the
570 pancreas⁸². Although *D. melanogaster* endocrine system is different from that of mammals,
571 we propose that midgut-derived NPF have similar role in insulin/glucagon regulation as
572 mammalian GLP-1. Treatment with GLP-1 agonists reduces food intake and hunger, promoting
573 fullness and satiety with the ultimate result of weight loss in patients with obesity or type 2
574 diabetes^{13,83,84}. Similar to this, gut-derived NPF regulated satiety in *D. melanogaster* in our
575 study. However, GLP-1/GLP-1R signalling has a non-significant effect on weight and fat mass
576 in regular food-fed mice, whereas loss of NPF/NPFR resulted in lean phenotype in regular food.
577 Thus, although there are substantial similarities in the physiological function of mammalian
578 incretins and *D. melanogaster* NPF, their effects on metabolism are divergent in some aspects.
579 Considering that GLP-1 acts on many organs and tissues, including the nervous system, heart,
580 stomach, gut, and pancreas⁵, and that *NPFR* is expressed in the nervous system, visceral

581 muscles, and EECs of the gut ³¹, differences in the inter-organ communication systems of
582 mammals and *D. melanogaster* in the GLP-1 and NPF may produce differences in the
583 physiological effects of these enteroendocrine hormones. To further understand midgut-derived
584 NPF-dependent inter-organ communication system, it would be intriguing to investigate the
585 role of NPFR in potential target tissues, such as visceral muscles of the gut and *NPFR*⁺ neurons,
586 other than the IPCs. The ease of tissue-specific genetic manipulations, together with the
587 evolutionary conservation of central signalling pathways regulating metabolism and energy
588 homeostasis, makes *D. melanogaster* a powerful model system to unravel the role of incretin-
589 like enteroendocrine hormones in systemic organismal metabolism.

590

591 **Methods**

592 **Fly stock and husbandry**

593 Flies were raised on a fly food (5.5 g agar, 100 g glucose, 40 g dry yeast, 90 g cornflour, 3 mL
594 propionic acid, and 3.5 mL 10% butyl *p*-hydroxybenzoate (in 70% ethanol) per litre) in a
595 12/12 h light/dark condition at 25°C for 6 days before experiments. Virgin female flies were
596 used for all fly experiments.

597 The following transgenic and mutant stocks were used: *NPF*^{sk1} and *NPFR*^{sk8} ¹⁷),
598 *NPF*^{Df(3R)ED10642} (Kyoto stock center [DGRC] #150266), *NPFR*^{Df(3R)BSC464} (Bloomington stock
599 center [BDSC] #24968), *Akh*^{KO} (a gift from Yi Rao, Peking University School of Life Sciences,
600 China) ³⁷, *Akh*^A ⁸⁵, *AkhR*¹ (gifts from Ronald P. Kühnlein, Max-Planck-Institut für
601 Biophysikalische Chemie, Germany) ²⁰, *sut1*^{KO} (this study), *tub>FRT>GAL80>FRT* (BDSC#
602 38879), *Otd-FLP* (a gift from Daisuke Yamamoto, National Institute of Information and
603 Communications Technology, Japan) ⁸⁶, *Tk-gut-GAL4* ¹⁸, *UAS-LacZ*^{RNAi} ⁸⁷ (gifts from
604 Masayuki Miura, the University of Tokyo, Japan), *nSyb-GAL4* (BDSC#51941), *Akh-GAL4*
605 (BDSC#25683), *dilp2-GAL4* (BDSC#37516), *how-GAL4* (BDSC#1767), *tj-GAL4* (Kyoto

606 stock center #104055), *NPFR^{KI-T2A}-GAL4*³³, *NPFR^{KI-RA/RC}-GAL4*³⁷ (BDSC#84672), *fbp-GAL4*
607²⁴ (a gift from Chika Miyamoto and Hubert Amrein, Texas A&M University, USA), *sutl^{KI-T2A}-*
608 *GAL4* (this study), *UAS-NPF*, *UAS-NPFR* (a gift from Ping Shen, University of Georgia, USA),
609 *UAS-mCD8::GFP* (BDSC#32186), *UAS-FLII12Pglu-700μδ6* (a gift from Chika Miyamoto
610 and Hubert Amrein)³⁵, *UAS-trans-Tango* (BDSC#77480), *UAS-sutl::mVenus* (this study),
611 *CaLexA* (BDSC#66542), and *tGPH* (BDSC#8164). RNAi constructs targeting *UAS-NPF^{RNAiKK}*
612 (VDRC#108772), *UAS-NPF^{RNAiTRiP}* (BDSC#27237), *UAS-NPFR^{RNAiKK}* (VDRC#107663),
613 *UAS-NPFR^{RNAiTRiP}* (BDSC#25939), *UAS-sutl^{RNAi}* (VDRC#104983), *UAS-sutl^{RNAiTRiP}*
614 (BDSC#65964), *UAS-Glutl^{RNAi}* (VDRC#101365), *UAS-Akh^{RNAi}* (VDRC#105063), *UAS-*
615 *AkhR^{RNAi}* (VDRC#109300), *UAS-Bmm^{RNAi}* (VDRC#37877), *UAS-dHSL^{RNAi}* (VDRC#109336),
616 *UAS-dilp2^{RNAi}* (VDRC#102158), *UAS-dilp3^{RNAi}* (VDRC# 106512), *UAS-dilp5^{RNAi}* (VDRC#
617 105004), and *UAS-dsk^{RNAi}* (VDRC# 106592).

618 Except in Fig. 1a, *TKg-GAL4*; *UAS-NPF^{RNAi}* (VDRC#108772) is simply referred to
619 as “*TKg>NPF^{RNAi}*”. Except in Fig. 4b, *Akh-GAL4*; *UAS-NPFR^{RNAi}* (BDSC#25939) is simply
620 referred to as “*Akh>NPFR^{RNAi}*”.

621 For adult-specific knockdown of *NPF*, *TKg-GAL4*, *tub-GAL80ts* (*TKg^{ts}*)>*LacZ^{RNAi}*
622 and *TKg^{ts}*>*NPF^{RNAi}* flies were raised at 20°C during the larval, and pupal periods. After
623 eclosion, adult flies were housed at 29°C for 6 days before experimental analysis.

624

625 **Generation of *sutl^{KO}* mutant**

626 The mutant alleles *sutl^{KO}* (Fig. 3) was created in a *white* (*w*) background using CRISPR/Cas9
627 as previously described³⁶. The oligo DNA sequences are represented in Extended Data Table
628 1. The breakpoint detail of *sutl^{KO}* is described in Extended Data Fig. 8e.

629

630 **Generation of the *UAS-sutl::mVenus* strain and *UAS-sutl* plasmid**

631 To overexpress mVenus-tagged *sut1*, the *sut1* coding sequence region (CDS) was amplified by
632 PCR with adult *w¹¹¹⁸* whole-body cDNA using the primers sut1cDNA F and sut1cDNA R
633 (Extended Data Table 6), followed by digestion with *EcoRI* (TAKARA) and *XhoI* (TAKARA).
634 *mVenus* CDS was amplified by PCR with a plasmid containing *mVenus* CDS using the primers
635 *mVenus* cDNA F and *mVenus* cDNA R (Extended Data Table 6), followed by digestion with
636 *XhoI* (TAKARA) and *NheI* (TAKARA). The digested *sut1* and *mVenus* fragments were ligated
637 with *EcoRI-NheI*-digested pWALIUM10-moe vector ⁸⁸, leading to *sut1::mVenus*-
638 pWALIUM10-moe, which carries two amino acid insertions (leucine and glutamine) between
639 *Sut1* and *mVenus* protein. *sut1::mVenus*-pWALIUM10-moe was then injected into *y^l M^lvas-*
640 *int.Dm^lZH-2A w^l*; *P{y^l+t7.7}=CaryP^lattP2* embryos ⁸⁹.

641 For generation of the *UAS-sut1* plasmid, *sut1* CDS was amplified by PCR with adult
642 *w¹¹¹⁸* whole-body cDNA using the primers sut1cDNA F and sut1cDNA R2 (Extended Data
643 Table 6). The PCR products were digested with *EcoRI* and *NheI*, and subsequently cloned into
644 the *EcoRI-NheI*-digested pWALIUM10-moe vector.

645

646 **Generation of *sut1^{KI-T2A}-GAL4* strain**

647 We utilised a method previously described ³³ to generate a knock-in strain by inserting the *T2A-*
648 *GAL4* cassette into *sut1* locus. Approximately 500 bp sequences flanking the stop codon of
649 *sut1* were PCR amplified from the genomic DNA of the *w¹¹¹⁸* strain. These homology arms
650 were designed so that T2A-GAL4 was translated as an in-frame fusion with the target protein.
651 The reporter cassette excised from pPG^lRF3 ³³, as well as the left and right homology arms
652 were assembled and cloned into *SmaI*-digested pBluescriptII SK(-) in a single enzymatic
653 reaction using the In-Fusion Cloning Kit (TAKARA). gRNA vectors were constructed in
654 pDCC6 ⁹⁰. We selected a 20 bp gRNA target sequence (Extended Data Table 1) that
655 encompasses the stop codon of the target gene. In addition, silent mutations were introduced

656 into the homology arm of the donor vector to avoid repetitive cleavage after integration. To
657 integrate a reporter cassette into the desired location in the genome, a mixture of a donor vector
658 (150 ng/mL) and a gRNA (150 ng/mL) vector was injected into *yw¹¹¹⁸* fertilised eggs. After
659 crossing with a balancer strain, transformants in the F1 progeny were selected by eye-specific
660 RFP expression from the 3×P3-RFP marker gene in adults. The primers used in the generation
661 of *sut1^{KI-T2A}-GAL4* are represented in Extended Data Table 6.

662

663 **Antibody Preparation**

664 An antibody against NPF protein was raised in guinea pigs. A KLH-conjugated synthetic
665 peptide (NH₂-SNSRPPRKNDVNTMADAYKFLQQLDTYYGDRARVRF-CONH₂)
666 corresponding to the amidated mature NPF amino acid residues (GenBank accession number
667 NP_536741) were used for immunisation.

668

669 **Immunohistochemistry and fluorescence quantification**

670 Midguts and other fly tissues were dissected in 1× PBS and fixed in 4% paraformaldehyde in
671 PBS for 30 to 60 min at room temperature (RT). Fixed samples were washed three times in
672 PBS supplemented with 0.1% Triton X-100 (0.1% PBT). The samples were blocked in
673 blocking solution (PBS with 0.1% Triton X-100 and 0.2% bovine serum albumin [BSA]) for 1
674 h at RT and then incubated with a primary antibody in blocking solution at 4°C overnight.
675 Primary antibodies used in this study were chicken anti-GFP (1:2000, Abcam, #ab13970),
676 rabbit anti-RFP (1:2000, Medical and Biological Laboratories), mouse anti-Prospero (1:50;
677 Developmental Studies Hybridoma Bank [DSHB]), guinea pig anti-NPF (1:2000; this study),
678 rabbit anti-Tk (1:2000, a gift from Jan Veenstra)⁹¹, rabbit anti-Bursa (1:1000, a gift from
679 Benjamin H. White)⁹², rabbit anti-sNPF (1:1000, a gift from Kweon Yu)⁹³, rabbit anti-AKH
680 (1:600, a gift from Jae H. Park)⁹⁴, rabbit anti-FO XO (1:200, a gift from Marc Tatar)⁹⁵, guinea

681 pig anti-DILP2 (1:2000, a gift from Takashi Nishimura) ⁹⁶, rabbit anti-DILP3 (1:2000, a gift
682 from Jan Veenstra) ⁹¹, and rabbit anti-DILP5 (1:1000, a gift from Dick R. Nässel) ⁹⁷. After
683 washing, fluorophore (Alexa Fluor 488, 546, 555, or 633)-conjugated secondary antibodies
684 (Thermo Fisher Scientific) were used at a 1:200 dilution, and the samples were incubated for
685 2 h at RT in blocking solution. After another washing step, all samples were mounted in
686 FluorSave reagent (Merck Millipore).

687 Midguts samples were dehydrated in a series of ethanol washes ranging from 10%
688 to 90% on ice after fixation in 4% paraformaldehyde. Samples were kept in 90% ethanol
689 overnight at -20°C followed by serial re-hydration and subjected to the staining protocol
690 described above.

691 Fat bodies were stained with LipidTOX (Thermo Fisher Scientific; 1:1000 in 0.1%
692 PBT) for 2 h at RT after fixation in 4% paraformaldehyde.

693 Samples were visualised using a Zeiss LSM 700 confocal microscope or Zeiss
694 Axioplan 2. Images were processed using Fiji ⁹⁸. Fluorescence intensity in confocal sections
695 was measured via Fiji. We performed the sum-intensity 3D projections to measure total
696 fluorescent intensity across the object of interest (Gut or Brain). For NPF and Bursa
697 quantification, 5-8 cells were examined for each midgut.

698

699 **Imaging of glucose sensor**

700 *Ex vivo* glucose sensor experiments were performed on dissected midguts. Adult midguts
701 expressing *UAS-FLII12Pglu-700μδ6* were dissected in Schneider's *Drosophila* medium
702 (Thermo Fisher Scientific). The dissected guts were placed on coverslips with 50 μL of
703 Schneider's *Drosophila* medium. Fluorescent images were acquired using a 40× objective with
704 a Zeiss LSM 700 confocal microscope equipped with the following filter sets: excitation 405
705 nm, emission 470 nm (CFP channel); excitation 405 nm, emission 530 nm (FRET channel).

706 For calculation of FRET intensity, the FRET ratio (YFP/CFP) was computed with Fiji ⁹⁸.

707 To acquire live image data of *Drosophila* S2 cells, S2 cells were seeded in 4 mL of
708 Schneider's *Drosophila* Medium supplemented with 10% heat-inactivated foetal calf serum
709 and 1% penicillin–streptomycin solution (Wako) in a glass bottom dish (IWAKI) 1 day before
710 transfection. S2 cells were transfected using Effectene Transfection Reagent (QIAGEN), as
711 previously described ⁹⁹ with plasmids for *Actin5C-GAL4* (a gift from Yasushi Hiromi, National
712 Institute of Genetics, Japan) and *UAS-FLII12Pglu-700μδ6* ³⁵ (a gift of Chika Miyamoto and
713 Hubert Amrein), in the presence or absence of the *UAS-sut1* plasmid. Two days after
714 transfection, S2 cells were stored in 3 mL of basal buffer (70 mM NaCl, 5 mM KCl, 20 mM
715 MgCl₂, 10 mM NaHCO₃, 115 mM sucrose, 5 mM HEPES; pH 7.1) ³⁵ for 15 min before
716 experimentation. Next, 1 mL of test solution (basal buffer with 100 mM glucose) was
717 administered through a pipette, bringing the final glucose concentration of cultured medium to
718 25 mM. Fluorescent images were acquired at 40× objective using a Zeiss LSM 900 confocal
719 microscope equipped with the following filter sets: excitation 405 nm, emission 470 nm (CFP
720 channel); excitation 405 nm, emission 530 nm (FRET channel). A single fluorescence image
721 frame was acquired every 6 s, and each cell was continuously recorded for 15 min. During this
722 timeframe, the test solution was applied 1 min after recoding began. Images were also analysed
723 by Fiji. An average of ten frames were obtained before application of the test solution, to define
724 basal FRET levels.

725

726 **Quantitative reverse transcription PCR**

727 To quantify the changes in gene expression, the middle midguts from 8 to 10 adult female flies,
728 the fly abdomen carcass from ten adult female flies, and the heads from 20 adult female flies
729 were dissected for each sample. Total RNA was extracted using RNAiso Plus reagent (TaKaRa).
730 cDNA was prepared with ReverTra Ace qPCR RT Master Mix with gDNA Remover (ToYoBo).

731 Quantitative reverse transcription PCR (RT-qPCR) was performed using the Universal SYBR
732 Select Master Mix (Applied Biosystems) with a Thermal Cycler Dice TP800 system (TaKaRa).
733 Serial dilutions of a plasmid containing the open reading frame of each gene were used as
734 standard. The amount of target RNA was normalised to *ribosomal protein 49* (*rp49*) and then
735 relative fold changes were calculated. The primers used to measure transcript levels are
736 represented in Extended Data Table 6.

737

738 **Lipid measurement**

739 Ten flies from each group were homogenised using pellet pestle with 1,000 µL PBS containing
740 0.2% Triton X-100 and heated at 70°C for 10 min. The supernatant was collected after
741 centrifugation at 14,000 rpm for 15 min at 4°C. Ten microliter of supernatant was used for
742 protein quantification using Bradford Reagent (Nacalai tesque). To measure whole-body
743 triglycerides, we processed 10 µL of supernatant using a Serum Triglyceride Determination kit
744 (Sigma-Aldrich, TR0100). We subtracted the amount of free glycerol from the measurement
745 and then normalised the subtracted values to protein levels.

746

747 **CAFÉ assay**

748 Testing followed a previously published protocol ¹⁰⁰. Four adult virgin female flies were placed
749 in separate tubes (21 mL tube, Sarstedt, 58.489) and two calibrated glass micropipettes (5µL,
750 VWR) filled with liquid medium (5% sucrose + 5% autolysed yeast extract, Sigma-Aldrich)
751 by capillary action were inserted through the sponge cap. Loss of media due to evaporation
752 was controlled by subtracting readings from identical CAFÉ chambers lacking flies. Liquid
753 media displacement readings were performed manually and divided by four to attain µL/fly/h.

754

755 **Hemolymph correction and glucose measurement**

756 For hemolymph extractions, 30–40 female flies were perforated with a 27G needle and placed
757 in a 0.5 mL Eppendorf tube perforated with a 27G needle. The Eppendorf tubes were placed
758 inside 1.5 mL Eppendorf tubes and centrifuged for 5 min at 5,000 \times g at 4°C to collect
759 hemolymph. A 1- μ L aliquot of the collected hemolymph was diluted in 99 μ L of trehalase buffer
760 (5 mM Tris pH 6.6, 137 mM NaCl, 2.7 mM KCl), followed by heat treatment for 5 min at 70°C.
761 A 30- μ L portion of supernatant was used to measure circulating glucose levels with glucose
762 oxidase assay kit (Sigma-Aldrich, GAGO-20) according to the manufacturer's instructions, as
763 previously described ¹⁰¹. Trehalose measurement was performed by diluting 30 μ L of
764 supernatant with 30 μ L of trehalase buffer and 0.09 μ L of porcine trehalase (Sigma-Aldrich,
765 T8778-1UN). The solution was then incubated overnight in 37 °C. A 30 μ L aliquot of each
766 sample was used to measure circulating trehalose levels with the glucose oxidase assay kit.
767

768 **Measurement of circulating DILP2HF level**

769 The abundance of DILP2 tagged with artificial epitopes (DILP2HF) in hemolymph and whole
770 bodies was measured using a previously described method ^{52,54}. Briefly, 8-well strips (F8
771 MaxiSorp Nunc-Immuno modules, Thermo Fisher Scientific, 468667) were incubated at 4 °C
772 overnight with 5 μ g/mL anti-FLAG (Sigma-Aldrich, F1804) in 200 mM NaHCO₃ buffer. The
773 8-well strips were then washed with 0.1% PBT twice and blocked with 4% non-fat skim milk
774 in 0.1% PBT for 2 h at RT. The strips were washed again with 0.1% PBT three times, after
775 which 50 μ L of PBS with 0.2% Tween 20 (PBST), containing 25 ng/mL mouse anti-HA
776 antibody conjugated with peroxidase (Roche, 12013819001) and 4% non-fat skim milk, was
777 added to each well. In parallel, ten *ad libitum* fed 6-day-old flies' abdomens were dissected,
778 submerged in 50 μ L of PBST, and gently vortexed for 30 min at RT. After centrifugation of the
779 tubes at 3,000 \times g for 30 s, 50 μ L of supernatants were transferred in the prepared 8-well strips
780 (for detection of circulating DILP2HF in hemolymph). After adding 500 μ L of assay buffer

781 (PBS with 0.1% Triton X-100 and 4% BSA) to each tube, containing the remaining flies, the
782 flies were grinded using a pestle, and centrifuged at 17,500 \times g for 1 min at 4 °C. Next, 10 μ L
783 of the supernatants were prepared in 8-well strips (for detection of whole-body DILP2HF
784 content). To generate standards for the analysis of circulating DILP2HF levels, a series (0–166
785 pM) of the synthetic HA::spacer::FLAG peptide standard (NH₂-
786 DYKDDDDKGGGGSYPYDVPDY-CONH₂) was prepared, and 50 μ L of standards were
787 transferred into the prepared 8-well strips. Meanwhile, to generate standards for the analysis of
788 whole-body DILP2HF levels, a series (0–829 pM) of the synthetic HA::spacer::FLAG peptide
789 standard was prepared, from which 10 μ L of each standard were transferred into the prepared
790 8-well strips. All mixtures in the 8-well strips were incubated overnight at 4 °C and
791 subsequently washed with 0.1% PBT six times. Next, 100 μ L of One-step Ultra TMB ELISA
792 substrate (Thermo Fisher Scientific, 34028) was added to each well and incubated for 15 min
793 at RT; 100 μ L of 2 M sulphuric acid was then added to stop the reaction, and absorbance at
794 450 nm was detected using a plate reader Multikan GO (Thermo Fisher Scientific) . The
795 secreted DILP2HF levels were estimated by normalising hemolymph DILP2HF abundance to
796 the whole-body DILP2HF amount. The plates, peptide standard, *UAS-DILP2HF*, anti-FLAG,
797 anti-HA antibody, substrate, and detailed protocol were all generously provided by Seung Kim
798 (Stanford University, USA).

799

800 **Starvation analysis**

801 Adult flies of the desired genotype were collected and aged for 6 days at 25°C and transferred
802 into 1% agar (in dH₂O) contained in 12 mL vials (SARSTEDT, 58.487). Dead animals were
803 counted in 15, 24, 39, 48, 63, 72, 87, 96 h period. Log rank test or pair-wise log rank test was
804 used to assess statistical significance using R.

805

806 **Western blotting analysis**

807 To quantify the activity of the insulin signalling pathway, the level of AKT phosphorylation
808 (pAkt) was determined by western blotting. For each sample, five adults were homogenised in
809 150 μ L of RIPA buffer with cOmplete protease inhibitor cocktail (Roche) and phosphatase
810 inhibitors (Roche). After centrifugation at 14,000 \times g for 5 min, 75 μ L of each supernatant was
811 mixed with 75 μ L of 2 \times Laemmli's loading buffer, and subsequently boiled for 5 min. Next,
812 7.5 μ L of each sample was electrophoresed through a precast 10% polyacrylamide gel
813 (COSMO BIO). Proteins were transferred to a PVDF membrane (Merk Millipore), which was
814 blocked with 5% BSA in PBS containing 0.1% Tween-20 (0.1% PBST) and incubated with
815 rabbit anti-pAkt antibody (Cell Signaling Technology, 4060S, 1:1,000 dilution) or rabbit anti-
816 AKT antibody (Cell Signaling Technology 9272S, 1:1,000 dilution) in 5% BSA with 0.1%
817 PBST. Primary antibodies were detected with HRP-conjugated secondary antibodies (GE
818 Healthcare, NA934, NA931), diluted 1:10,000. Signals were then detected using a
819 chemiluminescence method with Lumigen ECL plus (Lumigen) and Ez capture MG (ATTO).
820 After stripping the antibodies by WB Stripping Solution (Nacalai tesque), the membrane was
821 blocked, incubated with mouse anti- β -actin antibody (Santa Cruz Biotechnology, 2008), and
822 then detected.

823

824 **RNA-seq**

825 The RNA-seq transcriptional data of adult female carcass obtained from each genotype used
826 for Fig. 2d, and Extended Data Fig. 4 is available from DNA Data Bank of Japan Sequence
827 Read Archive (Accession number DRA010538). For RNA-seq studies, we obtained on
828 average of 30 million reads per biological replicate. We used FASTQC to evaluate the quality
829 of raw single-end reads and trimmed 1 base pair from 3' end, adaptors and reads of less than
830 20q base pairs in length from the raw reads using Trim galore 0.6.4 (Babraham

831 Bioinformatics). Reads were aligned with HISAT2 2.1.0 ¹⁰² to the BDGP *D. melanogaster*
832 genome (dm6). Next, Samtools 1.9 ¹⁰³ and Stringtie 2.0.6 ¹⁰⁴ were used to sort, merge, and
833 count reads. The number of trimmed mean of M values (TMM)-normalised fragments per
834 kilobase of combined exon length per one million of total mapped reads (TMM-normalised
835 FPKM value) was calculated with R 3.6.1, Ballgown 2.18.0 ¹⁰⁴ and edgeR 3.28.0 ^{105,106}, and
836 used to estimate gene expression levels.

837

838 **Measurement of whole-body and hemolymph metabolites by LC-MS/MS**

839 Metabolites were measured by using ultra-performance liquid chromatography-tandem mass
840 spectrometry (LCMS-8060, Shimadzu) based on the Primary metabolites package ver.2
841 (Shimadzu). For whole flies, four samples of five females each were used for each genotype.
842 Whole fly samples were homogenised in 160 µL of 80 % methanol containing 10 µM of internal
843 standards (methionine sulfone and 2-morpholinoethanesulfonic acid) and were centrifuged
844 (20,000 × g, 5 min) at 4 °C. Supernatants were de-proteinised with 75 µL acetonitrile, and
845 filtered using 10 kDa Centrifugal Filtration Device (Pall Corporation, OD003C35), then the
846 solvent was completely evaporated. Hemolymph metabolites were collected from ten females
847 for each sample. Four samples of each genotype were selected and 115 µL of 100% methanol
848 containing 20 µM of internal standards was added to the hemolymph samples. The protein
849 fraction contained in the hemolymph samples was removed by mixing with chloroform and
850 centrifugation (2,300 g, 5 min) at 4 °C. The supernatant (200 µL) was collected, de-proteinised
851 by adding 100 µL of acetonitrile, and filtered using 10 kDa Centrifugal Filtration Device (Pall
852 Corporation, OD003C35). The solvent was completely evaporated for metabolite analysis. The
853 protein contained in the middle layer was purified by gently mixing with 1 mL of acetone and
854 centrifugation (20,000 × g, 5 min) at 4 °C. This process was repeated two times. After removing
855 acetone, the protein pellet was dried at RT and resolubilised in 50 µL of 0.1N NaOH by heating

856 for 5 min at 95 °C. The protein amount was quantified by BCA reagent mix (Thermo Fisher
857 Scientific, 23228 and 23224) for normalisation. The evaporated metabolite samples were
858 resolubilised in Ultrapure water (Invitrogen, 10977-023) and injected to LC-MS/MS with PFPP
859 column (Discovery HS F5 (2.1 mm × 150 mm, 3 µm); Sigma-Aldrich) in the column oven at
860 40 °C. Gradient from solvent A (0.1% formic acid, Water) to solvent B (0.1% formic acid,
861 acetonitrile) were performed during 20 minutes of analysis. MRM methods for metabolite
862 quantification were optimised using the software (Labsolutions, Shimadzu). The amount of
863 whole-body metabolites was normalised by 2-morpholinoethanesulfonic acid and the body
864 weight, while hemolymph metabolites were normalised by 2-morpholinoethanesulfonic acid
865 and the protein amount.

866

867 **Statistics**

868 All experiments were performed independently at least twice. The experiments were not
869 randomised, and the investigators were not blinded. All statistical analyses were carried out
870 using the “R” software environment. The P value is provided in comparison with the control
871 and indicated as * for $P \leq 0.05$, ** for $P \leq 0.01$, *** for $P \leq 0.001$, and “NS” for non-significant
872 ($P > 0.05$). Sample size was determined based on the significance obtained from previous
873 studies with similar experimental setups. Comparable sample sizes were used in each
874 experiment.

875

876 **Data availability**

877 Raw RNA-seq data have been deposited in DNA Data Bank of Japan Sequence Read Archive
878 (Accession number DRA010538). A part of the raw RNA-seq data is represented in Extend
879 Data Tables 1-3. Raw metabolomic data are represented in Extend Data Tables 4 and 5. Other
880 raw data are available from the corresponding author upon request.

881

882 **Acknowledgements**

883 We thank Hubert Amrein, Yasushi Hiromi, Seung Kim, Ronald P. Kühnlein, Masayuki Miura,
884 Chika Miyamoto, Dick R. Nässel, Takashi Nishimura, Jae H. Park, Norbert Perrimon, Yi Rao,
885 Ping Shen, Marc Tatar, Jan Veenstra, Benjamin H. White, Daisuke Yamamoto, Kweon Yu, the
886 Bloomington Stock Center, the Kyoto Stock Center (DGRC), the National Institute of Genetics,
887 the Vienna Drosophila Resource Center, and the Developmental Studies Hybridoma Bank for
888 providing stocks and reagents; and Takefumi Kondo, Yukari Sando, and Tadashi Uemura for
889 their technical support of the next-generation sequencing. Y.Y. and H.K. were a recipient of the
890 fellowship from the Japan Society for the Promotion of Science. F.O. was a TARA Project
891 Investigator of University of Tsukuba. This work was supported by grants from AMED-CREST,
892 AMED (21gm1110001h0005) to R.N., AMED-PRIME, AMED (21gm6310011h9902) to F.O.,
893 and KAKENHI (26250001 and 17H01378 to H.T., 18J20572 to Y.Y., and 19H03367 to F.O.).
894 This was also supported by the Joint Usage/Research Center for Developmental Medicine,
895 IMEG, Kumamoto University. We would like to thank Editage (www.editage.com) for English
896 language editing.

897

898 **Reference**

899 1. Unger, R. H. Glucagon and the insulin: glucagon ratio in diabetes and other catabolic
900 illnesses. *Diabetes* **20**, 834–838 (1971).

901 2. Haselton, A. T. & Fridell, Y.-W. C. Adult *Drosophila melanogaster* as a model for the
902 study of glucose homeostasis. *Aging* **2**, 523–526 (2010).

903 3. Ojha, A., Ojha, U., Mohammed, R., Chandrashekhar, A. & Ojha, H. Current perspective
904 on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes
905 mellitus. *Clin. Pharmacol. Adv. Appl.* **11**, 57–65 (2019).

906 4. Bansal, P. & Wang, Q. Insulin as a physiological modulator of glucagon secretion. *Am.*
907 *J. Physiol. Metab.* **295**, E751–E761 (2008).

908 5. Baggio, L. L. & Drucker, D. J. Biology of Incretins: GLP-1 and GIP.
909 *Gastroenterology* **132**, 2131–2157 (2007).

910 6. Kim, W. & Egan, J. M. The role of incretins in glucose homeostasis and diabetes
911 treatment. *Pharmacol. Rev.* **60**, 470–512 (2008).

912 7. Worthington, J. J. The intestinal immunoendocrine axis: novel cross-talk between
913 enteroendocrine cells and the immune system during infection and inflammatory
914 disease: Figure 1. *Biochem. Soc. Trans.* **43**, 727–733 (2015).

915 8. Gribble, F. M. & Reimann, F. Enteroendocrine Cells: Chemosensors in the Intestinal
916 Epithelium. *Annu. Rev. Physiol.* **78**, 277–299 (2016).

917 9. Song, W. *et al.* Midgut-Derived Activin Regulates Glucagon-like Action in the Fat
918 Body and Glycemic Control. *Cell Metab.* **25**, 386–399 (2017).

919 10. Kamareddine, L., Robins, W. P., Berkey, C. D., Mekalanos, J. J. & Watnick, P. I. The
920 *Drosophila* Immune Deficiency Pathway Modulates Enteroendocrine Function and
921 Host Metabolism. *Cell Metab.* **28**, 449–462 (2018).

922 11. Scopelliti, A. *et al.* A Neuronal Relay Mediates a Nutrient Responsive Gut/Fat Body
923 Axis Regulating Energy Homeostasis in Adult *Drosophila*. *Cell Metab.* **29**, 269–284
924 (2019).

925 12. Miyamoto, J. *et al.* Nutritional Signaling via Free Fatty Acid Receptors. *Int. J. Mol.*
926 *Sci.* **17**, 450 (2016).

927 13. Chia, C. W. & Egan, J. M. Incretins in obesity and diabetes. *Ann. N. Y. Acad. Sci.*
928 **1461**, 104–126 (2020).

929 14. Nässel, D. R., Kubrak, O. I., Liu, Y., Luo, J. & Lushchak, O. V. Factors that regulate
930 insulin producing cells and their output in *Drosophila*. *Front. Physiol.* **4**, 252 (2013).

931 15. Brogiolo, W. *et al.* An evolutionarily conserved function of the *Drosophila* insulin
932 receptor and insulin-like peptides in growth control. *Curr. Biol.* **11**, 213–221 (2001).

933 16. Grönke, S., Clarke, D.-F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular
934 Evolution and Functional Characterization of *Drosophila* Insulin-Like Peptides. *PLOS*
935 *Genet.* **6**, e1000857 (2010).

936 17. Ameku, T. *et al.* Midgut-derived neuropeptide F controls germline stem cell
937 proliferation in a mating-dependent manner. *PLOS Biol.* **16**, e2005004 (2018).

938 18. Song, W., Veenstra, J. A. & Perrimon, N. Control of lipid metabolism by tachykinin in
939 *Drosophila*. *Cell Rep.* **9**, 40–47 (2014).

940 19. Grönke, S. *et al.* Brummer lipase is an evolutionary conserved fat storage regulator in
941 *Drosophila*. *Cell Metab.* **1**, 323–330 (2005).

942 20. Grönke, S. *et al.* Dual lipolytic control of body fat storage and mobilization in
943 *Drosophila*. *PLOS Biol.* **5**, e137 (2007).

944 21. Deshpande, S. A. *et al.* Quantifying *Drosophila* food intake: comparative analysis of
945 current methodology. *Nat. Methods* **11**, 535–540 (2014).

946 22. Beshel, J., Dubnau, J. & Zhong, Y. A Leptin Analog Locally Produced in the Brain
947 Acts via a Conserved Neural Circuit to Modulate Obesity-Linked Behaviors in
948 *Drosophila*. *Cell Metab.* **25**, 208–217 (2017).

949 23. Wu, Q. *et al.* Developmental control of foraging and social behavior by the *Drosophila*
950 neuropeptide Y-like system. *Neuron* **39**, 147–161 (2003).

951 24. Miyamoto, T. & Amrein, H. Neuronal Gluconeogenesis Regulates Systemic Glucose
952 Homeostasis in *Drosophila melanogaster*. *Curr. Biol.* **29**, 1263-1272.e5 (2019).

953 25. Lee, G., Bahn, J. H. & Park, J. H. Sex- and clock-controlled expression of the
954 neuropeptide F gene in *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 12580–12585
955 (2006).

956 26. Bartok, O. *et al.* The transcription factor Cabut coordinates energy metabolism and the
957 circadian clock in response to sugar sensing. *EMBO J.* **34**, 1538–1553 (2015).

958 27. Cani, P. D. *et al.* GLUT2 and the incretin receptors are involved in glucose-induced
959 incretin secretion. *Mol. Cell. Endocrinol.* **276**, 18–23 (2007).

960 28. Pais, R., Gribble, F. M. & Reimann, F. Stimulation of incretin secreting cells. *Ther.*
961 *Adv. Endocrinol. Metab.* **7**, 24–42 (2016).

962 29. Limmer, S., Weiler, A., Volkenhoff, A., Babatz, F. & Klämbt, C. The *Drosophila*
963 blood-brain barrier: Development and function of a glial endothelium. *Front.*
964 *Neurosci.* **8**, 365 (2014).

965 30. Buchon, N. *et al.* Morphological and Molecular Characterization of Adult Midgut
966 Compartmentalization in *Drosophila*. *Cell Rep.* **3**, 1725–1738 (2013).

967 31. Guo, X. *et al.* The Cellular Diversity and Transcription Factor Code of *Drosophila*
968 Enteroendocrine Cells. *Cell Rep.* **29**, 4172-4185.e5 (2019).

969 32. Kina, H., Yoshitani, T., Hanyu - Nakamura, K. & Nakamura, A. R Rapid and efficient
970 generation of GFP-knocked-in *Drosophila* by the CRISPR-Cas9-mediated genome
971 editing. *Dev. Growth Differ.* **61**, 265–275 (2019).

972 33. Kondo, S. *et al.* Neurochemical Organization of the *Drosophila* Brain Visualized by
973 Endogenously Tagged Neurotransmitter Receptors. *Cell Rep.* **30**, 284-297.e5 (2020).

974 34. Takanaga, H., Chaudhuri, B. & Frommer, W. B. GLUT1 and GLUT9 as major
975 contributors to glucose influx in HepG2 cells identified by a high sensitivity
976 intramolecular FRET glucose sensor. *Biochim. Biophys. Acta - Biomembr.* **1778**,
977 1091–1099 (2008).

978 35. Volkenhoff, A., Hirrlinger, J., Kappel, J. M., Klämbt, C. & Schirmeier, S. Live
979 imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the
980 *Drosophila* brain. *J. Insect Physiol.* **106**, 55–64 (2018).

981 36. Kondo, S. & Ueda, R. Highly Improved gene targeting by germline-specific Cas9
982 expression in *Drosophila*. *Genetics* **195**, 715–721 (2013).

983 37. Deng, B. *et al.* Chemoconnectomics: Mapping Chemical Transmission in *Drosophila*.
984 *Neuron* **101**, 876-893.e4 (2019).

985 38. Diao, F. & White, B. H. A novel approach for directing transgene expression in
986 *Drosophila*: T2A-Gal4 in-frame fusion. *Genetics* **190**, 1139–1144 (2012).

987 39. Braco, J. T., Saunders, C. J., Nelson, J. M. & Johnson, E. C. Modulation of metabolic
988 hormone signaling via a circadian hormone and a biogenic amine in *Drosophila*
989 *melanogaster*. *bioRxiv* 2020.09.25.312967 (2020). doi:10.1101/2020.09.25.312967

990 40. Kim, J. & Neufeld, T. P. Dietary sugar promotes systemic TOR activation in
991 *Drosophila* through AKH-dependent selective secretion of Dilp3. *Nat. Commun.* **6**,
992 6846 (2015).

993 41. Patel, R. T., Soulages, J. L., Hariharasundaram, B. & Arrese, E. L. Activation of the
994 lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. *J. Biol.*
995 *Chem.* **280**, 22624–22631 (2005).

996 42. Patel, R. T., Soulages, J. L. & Arrese, E. L. Adipokinetic hormone-induced
997 mobilization of fat body triglyceride stores in *Manduca sexta*: Role of TG-lipase and
998 lipid droplets. *Arch. Insect Biochem. Physiol.* **63**, 73–81 (2006).

999 43. Oh, Y. *et al.* A glucose-sensing neuron pair regulates insulin and glucagon in
1000 *Drosophila*. *Nature* **574**, 559–564 (2019).

1001 44. Sztalryd, C. *et al.* Perilipin A is essential for the translocation of hormone-sensitive
1002 lipase during lipolytic activation. *J. Cell Biol.* **161**, 1093–1103 (2003).

1003 45. Choi, S., Lim, D.-S. & Chung, J. Feeding and Fasting Signals Converge on the LKB1-
1004 SIK3 Pathway to Regulate Lipid Metabolism in *Drosophila*. *PLOS Genet.* **11**,
1005 e1005263 (2015).

1006 46. Wang, B. *et al.* A hormone-dependent module regulating energy balance. *Cell* **145**,
1007 596–606 (2011).

1008 47. Heier, C. *et al.* Hormone-sensitive lipase couples intergenerational sterol metabolism
1009 to reproductive success. *Elife* **10**, 1–32 (2021).

1010 48. Barthel, A., Schmoll, D. & Unterman, T. G. FoxO proteins in insulin action and
1011 metabolism. *Trends Endocrinol. Metab.* **16**, 183–189 (2005).

1012 49. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies:
1013 Growth and diabetic phenotypes. *Science (80-.).* **296**, 1118–1120 (2002).

1014 50. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression
1015 of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth
1016 regulation in *Drosophila*. *Curr. Biol.* **12**, 1293–1300 (2002).

1017 51. Géminard, C., Rulifson, E. J. & Léopold, P. Remote Control of Insulin Secretion by
1018 Fat Cells in *Drosophila*. *Cell Metab.* **10**, 199–207 (2009).

1019 52. Park, S. *et al.* A Genetic Strategy to Measure Circulating *Drosophila* Insulin Reveals
1020 Genes Regulating Insulin Production and Secretion. *PLOS Genet.* **10**, e1004555
1021 (2014).

1022 53. Ryvkin, J. *et al.* Transcriptome Analysis of NPFR Neurons Reveals a Connection
1023 Between Proteome Diversity and Social Behavior. *Front. Behav. Neurosci.* **15**, 35
1024 (2021).

1025 54. Peiris, H. *et al.* Discovering human diabetes-risk gene function with genetics and
1026 physiological assays. *Nat. Commun.* **9**, 3855 (2018).

1027 55. Meschi, E., Léopold, P. & Delanoue, R. An EGF-Responsive Neural Circuit Couples
1028 Insulin Secretion with Nutrition in *Drosophila*. *Dev. Cell* **48**, 76–86.e5 (2019).

1029 56. Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with
1030 activity-dependent nuclear import of a transcription factor. *J. Neurogenet.* **26**, 89–102

1031 (2012).

1032 57. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. *Drosophila*'s
1033 insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional
1034 conditions. *Dev. Cell* **2**, 239–249 (2002).

1035 58. Semaniuk, U. V. *et al.* Insulin-like peptides regulate feeding preference and
1036 metabolism in *Drosophila*. *Front. Physiol.* **9**, 1083 (2018).

1037 59. Söderberg, J. A. E., Carlsson, M. A. & Nässel, D. R. Insulin-producing cells in the
1038 *Drosophila* brain also express satiety-inducing cholecystokinin-like peptide,
1039 drosulfakinin. *Front. Endocrinol.* **3**, 109 (2012).

1040 60. Marianes, A. & Spradling, A. C. Physiological and stem cell compartmentalization
1041 within the *Drosophila* midgut. *Elife* **2**, e00886 (2013).

1042 61. Limmer, S., Weiler, A., Volkenhoff, A., Babatz, F. & Klämbt, C. The *Drosophila*
1043 blood-brain barrier: Development and function of a glial endothelium. *Front.*
1044 *Neurosci.* **8**, 365 (2014).

1045 62. Schirra, J. *et al.* Gastric emptying and release of incretin hormones after glucose
1046 ingestion in humans. *J. Clin. Invest.* **97**, 92–103 (1996).

1047 63. Moriya, R., Shirakura, T., Ito, J., Mashiko, S. & Seo, T. Activation of sodium-glucose
1048 cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice.
1049 *Am. J. Physiol. - Endocrinol. Metab.* **297**, (2009).

1050 64. Tolhurst, G. *et al.* Short-chain fatty acids stimulate glucagon-like peptide-1 secretion
1051 via the G-protein-coupled receptor FFAR2. *Diabetes* **61**, 364–371 (2012).

1052 65. Martin, A. M., Sun, E. W. & Keating, D. J. Mechanisms controlling hormone secretion
1053 in human gut and its relevance to metabolism. *Journal of Endocrinology* **244**, R1–R15
1054 (2020).

1055 66. Ahmad, M., He, L. & Perrimon, N. Regulation of insulin and adipokinetic

1056 hormone/glucagon production in flies. *WIREs Dev. Biol.* **9**, e360 (2020).

1057 67. Feng, G. *et al.* Functional characterization of a neuropeptide F-like receptor from

1058 *Drosophila melanogaster*. *Eur. J. Neurosci.* **18**, 227–238 (2003).

1059 68. Garczynski, S. F., Brown, M. R., Shen, P., Murray, T. F. & Crim, J. W.

1060 Characterization of a functional neuropeptide F receptor from *Drosophila*

1061 *melanogaster*. *Peptides* **23**, 773–780 (2002).

1062 69. Koyama, T., Texada, M. J., Halberg, K. A. & Rewitz, K. Metabolism and growth

1063 adaptation to environmental conditions in *Drosophila*. *Cell. Mol. Life Sci.* 1–29

1064 (2020). doi:10.1007/s00018-020-03547-2

1065 70. Waterson, M. J. *et al.* Water sensor ppk28 modulates *Drosophila* lifespan and

1066 physiology through AKH signaling. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 8137–8142

1067 (2014).

1068 71. Guntur, A. R. *et al.* *Drosophila* TRPA1 isoforms detect UV light via photochemical

1069 production of H₂O₂. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E5753–E5761 (2015).

1070 72. Hentze, J. L., Carlsson, M. A., Kondo, S., Nässel, D. R. & Rewitz, K. F. The

1071 Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in

1072 *Drosophila*. *Sci. Rep.* **5**, 11680 (2015).

1073 73. Alfa, R. W. *et al.* Suppression of Insulin Production and Secretion by a Decretin

1074 Hormone. *Cell Metab.* **21**, 323–334 (2015).

1075 74. Fadda, M. *et al.* Regulation of feeding and metabolism by neuropeptide F and short

1076 neuropeptide F in invertebrates. *Front. Endocrinol.* **10**, 64 (2019).

1077 75. Deng, X. *et al.* Activation of *Bombyx* neuropeptide G protein-coupled receptor A4 via

1078 a Gai-dependent signaling pathway by direct interaction with neuropeptide F from

1079 silkworm, *Bombyx mori*. *Insect Biochem. Mol. Biol.* **45**, 77–88 (2014).

1080 76. Duvall, L. B., Ramos-Espiritu, L., Barsoum, K. E., Glickman, J. F. & Vosshall, L. B.

1081 Small-Molecule Agonists of *Ae. aegypti* Neuropeptide Y Receptor Block Mosquito
1082 Biting. *Cell* **176**, 687-701.e5 (2019).

1083 77. Stanek, D. M., Pohl, J., Crim, J. W. & Brown, M. R. Neuropeptide F and its expression
1084 in the yellow fever mosquito, *Aedes aegypti*. *Peptides* **23**, 1367–1378 (2002).

1085 78. Van Wielendaele, P., Dillen, S., Zels, S., Badisco, L. & Vanden Broeck, J. Regulation
1086 of feeding by Neuropeptide F in the desert locust, *Schistocerca gregaria*. *Insect
1087 Biochem. Mol. Biol.* **43**, 102–114 (2013).

1088 79. Nuss, A. B., Forschler, B. T., Crim, J. W. & Brown, M. R. Distribution of
1089 neuropeptide F-like immunoreactivity in the eastern subterranean termite,
1090 *Reticulitermes flavipes*. *J. Insect Sci.* **8**, 1–18 (2008).

1091 80. Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive
1092 tract of *Drosophila melanogaster*. *Genetics* **210**, 357–396 (2018).

1093 81. Hung, R. J. *et al.* A cell atlas of the adult *Drosophila* midgut. *Proc. Natl. Acad. Sci. U.
1094 S. A.* **117**, 1514–1523 (2020).

1095 82. Zhang, Y. *et al.* GLP-1 receptor in pancreatic A-cells regulates glucagon secretion in a
1096 glucose-dependent bidirectional manner. *Diabetes* **68**, 34–44 (2019).

1097 83. Zoicas, F., Droste, M., Mayr, B., Buchfelder, M. & Schöfl, C. GLP-1 analogues as a
1098 new treatment option for hypothalamic obesity in adults: Report of nine cases. *Eur. J.
1099 Endocrinol.* **168**, 699–706 (2013).

1100 84. Kelly, A. S. *et al.* The effect of Glucagon-like peptide-1 receptor agonist therapy on
1101 body mass index in adolescents with severe obesity. *JAMA Pediatr.* **167**, 355–360
1102 (2013).

1103 85. Gáliková, M. *et al.* Energy homeostasis control in *Drosophila* adipokinetic hormone
1104 mutants. *Genetics* **201**, 665–683 (2015).

1105 86. Asahina, K. *et al.* Tachykinin-expressing neurons control male-specific aggressive

1106 arousal in *Drosophila*. *Cell* **156**, 221–235 (2014).

1107 87. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in *Drosophila* using
1108 double-stranded RNA. *Nat. Biotechnol.* **18**, 896–898 (2000).

1109 88. Perkins, L. A. *et al.* The transgenic RNAi project at Harvard medical school:
1110 Resources and validation. *Genetics* **201**, 843–852 (2015).

1111 89. Ni, J. Q. *et al.* Vector and parameters for targeted transgenic RNA interference in
1112 *Drosophila melanogaster*. *Nat. Methods* **5**, 49–51 (2008).

1113 90. Gokcezade, J., Sienski, G. & Duchek, P. Efficient CRISPR/Cas9 plasmids for rapid
1114 and versatile genome editing in *Drosophila*. *G3 Genes, Genomes, Genet.* **4**, 2279–
1115 2282 (2014).

1116 91. Veenstra, J. A., Agricola, H. J. & Sellami, A. Regulatory peptides in fruit fly midgut.
1117 *Cell Tissue Res.* **334**, 499–516 (2008).

1118 92. Peabody, N. C. *et al.* Bursicon Functions within the *Drosophila* CNS to Modulate
1119 Wing Expansion Behavior, Hormone Secretion, and Cell Death. *J. Neurosci.* **28**,
1120 14379–14391 (2008).

1121 93. Lee, K. S., You, K. H., Choo, J. K., Han, Y. M. & Yu, K. *Drosophila* short
1122 neuropeptide F regulates food intake and body size. *J. Biol. Chem.* **279**, 50781–50789
1123 (2004).

1124 94. Lee, G. & Park, J. H. Hemolymph sugar homeostasis and starvation-induced
1125 hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding
1126 gene in *Drosophila melanogaster*. *Genetics* **167**, 311–323 (2004).

1127 95. Bai, H., Kang, P., Hernandez, A. M. & Tatar, M. Activin Signaling Targeted by
1128 Insulin/dFOXO Regulates Aging and Muscle Proteostasis in *Drosophila*. *PLOS Genet.*
1129 **9**, (2013).

1130 96. Okamoto, N. & Nishimura, T. Signaling from Glia and Cholinergic Neurons Controls

1131 Nutrient-Dependent Production of an Insulin-like Peptide for *Drosophila* Body
1132 Growth. *Dev. Cell* **35**, 295–310 (2015).

1133 97. Söderberg, J. A. E., Birse, R. T. & Nässel, D. R. Insulin production and signaling in
1134 renal tubules of *Drosophila* is under control of tachykinin-related peptide and regulates
1135 stress resistance. *PLOS One* **6**, (2011).

1136 98. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*
1137 *Methods* **9**, 676–682 (2012).

1138 99. Niwa, R. *et al.* CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid
1139 biosynthesis in the prothoracic glands of *Bombyx* and *Drosophila*. *J. Biol. Chem.* **279**,
1140 35942–35949 (2004).

1141 100. Ja, W. W. *et al.* Prandiology of *Drosophila* and the CAFE assay. *Proc. Natl. Acad. Sci.*
1142 *U. S. A.* **104**, 8253–8256 (2007).

1143 101. Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying
1144 metabolism in *Drosophila*. *Methods* **68**, 105–115 (2014).

1145 102. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
1146 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**,
1147 907–915 (2019).

1148 103. Li, H. *et al.* Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
1149 2078–2079 (2009).

1150 104. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level
1151 expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.
1152 *Nat. Protoc.* **11**, 1650–1667 (2016).

1153 105. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
1154 differential expression analysis of digital gene expression data. *Bioinformatics* **26**,
1155 139–140 (2010).

1156 106. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of
1157 multifactor RNA-Seq experiments with respect to biological variation. *Nucleic Acids*
1158 *Res.* **40**, (2012).
1159
1160

1161 **Figure legends**

1162

1163 **Figure 1. NPF from midgut EECs maintains metabolic homeostasis.**

1164 **a-i**, Phenotypes of the midgut EEC-specific *NPF* knockdown animals (*TKg>NPF^{RNAi}*) (a-c),
1165 *NPF* genetic mutant animals with or without midgut-specific *NPF* expression (*TKg>NPF*;
1166 *NPF^{skl}/Df* (d-f), and adult EEC-specific *NPF* knockdown animals (*TKg^{ts}>NPF^{RNAi}*) (g-i). (a, d,
1167 g) Survival during starvation. (b, e, h) Relative TAG amount. (c, f, i) LipidTOX (red) and DAPI
1168 (blue) staining of dissected fat body tissue. Scale bar, 50 μ m in c and f, 200 μ m (100 \times) and 50
1169 μ m (400 \times) in i. **j**, Relative circulating glucose levels. **k**, Feeding quantity measurement with
1170 CAFÉ assay. For RNAi experiments, *LacZ* knockdown (*TKg>LacZ^{RNAi}*) was used as the
1171 negative control. For all bar graphs, the number of samples assessed (n) is indicated in each
1172 graph. Mean \pm SEM with all data points is shown. Statistics: Log rank test with Holm's
1173 correction (a, d, and g), two-tailed Student's *t* test (b, h, j, and k), one-way ANOVA followed
1174 by Tukey's multiple comparisons test (e). **p* < 0.05, ***p* < 0.01; NS, non-significant (*p* > 0.05).
1175

1176 **Figure 2. Midgut-derived NPF regulates systemic carbohydrate/lipid metabolism**

1177 **a**, Principal component analysis plot of metabolome data as in **Extended Data Fig. 5**. Note
1178 that *NPF* knockdown animals indicate dispersed cluster with control animals. **b**, Heat maps of
1179 selected metabolites in whole-body samples. Red and blue indicate increased and decreased
1180 metabolites relative to median metabolite levels, respectively. **c**, LC-MS/MS measurement of
1181 whole-body or hemolymph metabolites in control and *TKg>NPF^{RNAi}*. ND; no data. The number
1182 of samples assessed (n) is indicated in each graph. **d**, Expression heatmap of a curated set of
1183 starvation-induced genes. Gene expression levels are represented by TMM-normalised FPKM.
1184 **e** and **f**, Relative fold change for starvation-induced genes (**e**: *fbp* and *pepck*, **f**: *ACC* and *Bmm*)
1185 in dissected abdomens of female adult control and *TKg>NPF^{RNAi}* animals, as determined by

1186 qPCR. Samples are normalised to *rp49*. The number of samples assessed (n) is indicated in
1187 each graph. For RNAi experiments, *LacZ* knockdown (*TKg>LacZ^{RNAi}*) was used as the
1188 negative control. For all bar graphs, mean \pm SEM with all data points is shown. Statistics: two-
1189 tailed Student's *t* test (c, e, and f). *p < 0.05, **p < 0.01; NS, non-significant (p > 0.05).

1190

1191 **Figure 3. NPF in midgut EECs is regulated by dietary nutrients**

1192 **a**, Immunostaining for NPF (green/white) and DAPI (blue) in the adult middle midguts
1193 collected from 6-day-old control (*w¹¹¹⁸*) animals fully fed, 48 h starved animals, and animals
1194 re-fed with sucrose or Bacto peptone following 24 h starvation (sucrose-refed/peptone-refed).
1195 Scale bar, 50 μ m. **b**, Quantifications of NPF fluorescent intensity under the conditions
1196 described for (a). The number of EECs analysed in each genotype was greater than 40. Each
1197 point represents NPF fluorescent intensity in a single EEC. For each genotype, more than eight
1198 guts were used. **c**, RT-qPCR analysis of *NPF* mRNA level under the conditions described for
1199 (a). **d**, Immunofluorescence of *sut1^{KI-T2A}-GAL4*-driven *UAS-GFP* (*sut1^{KI-T2A}>GFP*) in the
1200 midgut. The sample was co-stained with anti-NPF antibody and DAPI. The GFP signal was
1201 detected in NPF⁺ EECs (arrows). Of note, *sut1^{KI-T2A}-GAL4* driven GFP signal were visible in
1202 approximately 40% of NPF⁺ EECs. Scale bar, 50 μ m. **e**, Immunofluorescence of *TKg-GAL4*-
1203 driven *UAS-sut1::mVenus* (*TKg>sut1::mVenus*) in the midgut. The sample was co-stained with
1204 anti-NPF antibody, anti-Prospero antibody, and DAPI. Sut1::mVenus is localised on the cell
1205 membrane of EECs. Scale bar, (left) 50 μ m, (right) 10 μ m. **f**, **g**, RT-qPCR analysis of *NPF*
1206 mRNA level in EEC-specific *sut1* knockdown (*TKg>sut1^{RNAi}*) (**f**) and *sut1* genetic mutant (**g**)
1207 animals. **h**, Survival during starvation of EEC-specific *sut1* knockdown animals. **i**, Relative
1208 whole-body TAG levels of EEC-specific *sut1* knockdown animals. **j**, LipidTOX (red) and
1209 DAPI (blue) staining of dissected fat body tissue from EEC-specific *sut1* knockdown animals.
1210 Scale bar, 50 μ m. For RNAi experiments, *LacZ* knockdown (*TKg>LacZ^{RNAi}*) was used as the

1211 negative control. For all bar graphs, mean \pm SEM with all data points is shown. Statistics:
1212 Wilcoxon rank sum test with Holm's correction (b), one-way ANOVA followed by Tukey's
1213 multiple comparisons test (c), two-tailed Student's *t* test (f, g, and i), Log rank test (h) *p <
1214 0.05, **p < 0.01, ***p < 0.001; NS, non-significant (p > 0.05).

1215

1216 **Figure 4. NPFR in the CC is responsible for lipid metabolism**

1217 **a**, Immunofluorescence of corpora cardiaca (CC) in adult flies expressing *UAS-GFP* (green)
1218 reporter under *NPFR^{KI-T2A}-GAL4*. Cell bodies of CC are stained by anti-AKH (magenta). Scale
1219 bar, 10 μ m. Note, AKH-negative GFP+ cells are the enteric neurons producing sNFP. See
1220 Extended Data Fig. 11c. **b**, Survival during starvation in flies of control (*Akh>LacZ^{RNAi}*) and
1221 *Akh>NPFR^{RNAi}*. The number of animals assessed (n) is indicated in the graphs. **c**, LipidTOX
1222 (red) and DAPI (blue) staining of dissected fat body tissue from indicated genotypes. Scale bar,
1223 50 μ m. **d**, Relative whole-body TAG levels. The number of samples assessed (n) is indicated
1224 in the graphs. **e**, Feeding amount measurement with CAFÉ assay. The number of samples
1225 assessed (n) is indicated in the graphs. Each sample contained four adult female flies. **f**,
1226 Relative glycaemic levels in control and *Akh>NPFR^{RNAi}*. The number of samples assessed (n)
1227 is indicated in the graphs. **g**, Survival during starvation in flies of the indicated genotypes. The
1228 number of animals assessed (n) is indicated in the graphs. **h**, Relative whole-body TAG levels
1229 of indicated genotypes. The number of samples assessed (n) is indicated in the graphs. **i**,
1230 LipidTOX (red) and DAPI (blue) staining of dissected fat body tissue from indicated genotypes.
1231 Scale bar, 50 μ m. For RNAi experiments, *LacZ* knockdown (*Akh>LacZ^{RNAi}*) was used as
1232 negative control. For all bar graphs, mean and SEM with all data points are shown. Statistics:
1233 Log rank test with Holm's correction (b and g), two-tailed Student's *t* test (d-f), one-way
1234 ANOVA followed by Tukey's multiple comparisons test (h). *p < 0.05, **p < 0.01; NS, non-
1235 significant (p > 0.05).

1236

1237 **Figure 5. NPF/NPFR signalling regulates metabolic homeostasis through Akh/AkhR**
1238 **signalling**

1239 **a**, RT-qPCR analysis of *Akh* mRNA expression following *TKg-GAL4* mediated knockdown of
1240 *NPF* or *Akh-GAL4* mediated knockdown of *NPFR*. The number of samples assessed (n) is
1241 indicated in the graphs. **b, c**, Immunostaining and quantification of AKH protein level (white)
1242 in adult CC of *TKg-GAL4* mediated knockdown of *NPF* (*TKg>NPF^{RNAi}*) (b) or *Akh-GAL4*
1243 mediated knockdown of *NPFR* (*Akh>NPFR^{RNAi}*) (c). Scale bar, 20 μ m. **d, i**, Survival during
1244 starvation in flies of each genotype. The number of animals assessed (n) is indicated in the
1245 graphs. **e, j**, LipidTOX (red) and DAPI (blue) staining of dissected fat body tissue from
1246 indicated genotypes. Scale bar, 50 μ m in c, 20 μ m in j. **d, f, g, k**, Relative whole-body TAG
1247 levels of each genotype. The number of animals assessed (n) is indicated in the graphs. **h**, RT-
1248 qPCR analysis of *Bmm* (left) and *dHSL* (right) mRNA levels in the abdomens dissected from
1249 each genotype. The number of samples assessed (n) is indicated in the graphs. For RNAi
1250 experiments, *LacZ* knockdown (*TKg>LacZ^{RNAi}* and *Akh>LacZ^{RNAi}*) was used as negative
1251 control. For all bar graphs, mean and SEM with all data points are shown. Statistics: two-tailed
1252 Student's t test (a-c), Log rank test with Holm's correction (d, and i), one-way ANOVA
1253 followed by Tukey's multiple comparisons test (f, g, h, and k). *p < 0.05, **p < 0.01, ***p <
1254 0.001; NS, non-significant (p > 0.05).

1255

1256 **Figure 6. Midgut-derived NPF controls DILPs level**

1257 **a, b**, FOXO (white) immunostaining of the fat body in adult flies of each genotype. Scale bar,
1258 20 μ m. Note that FOXO nuclear localisation was induced in *TKg>NPF^{RNAi}* and *Akh>NPFR^{RNAi}*.
1259 **c**, RT-qPCR analysis of FOXO-target gene mRNA levels in the abdomens dissected from each
1260 genotype. The number of samples assessed (n) is indicated in the graphs. **d**, RT-qPCR analysis

1261 of *Dilps* mRNA level following *TKg-GAL4* mediated knockdown of *NPF*. The number of
1262 samples assessed (n) is indicated in the graphs. **e**, DILP2, 3, and 5 (white) immunostaining and
1263 quantification in the brain of adult flies of *TKg-GAL4* mediated *NPF* RNAi animals. Scale bar,
1264 20 μ m. n values > 20. For RNAi experiments, *LacZ* knockdown (*TKg>LacZ^{RNAi}* and
1265 *Akh>LacZ^{RNAi}*) was used as negative control. For all bar graphs, mean and SEM with all data
1266 points are shown. Statistics: two-tailed Student's t test (c, d, and e), Wilcoxon rank sum test (f).
1267 *p < 0.05, **p < 0.01, ***p < 0.001; NS, non-significant (p > 0.05).

1268

1269 **Figure 7. NPFR in the insulin-producing cells regulates DILPs level**

1270 **a**, Immunofluorescence of the IPCs in adult flies expressing *UAS-GFP* (green) reporter under
1271 *NPFR^{KI-T2A}-GAL4*. Cell bodies of IPCs are stained by anti-DILP2 (magenta). Scale bar, 20 μ m.
1272 **b**, RT-qPCR analysis of *Dilps* mRNA level following *Dilp2-GAL4* mediated knockdown of
1273 *NPFR*. The number of samples assessed (n) is indicated in the graphs. **c**, DILP2, 3, and 5
1274 (white) immunostaining in the brain of adult flies of *Dilp2-GAL4* mediated *NPFR* RNAi
1275 animals. Scale bar, 20 μ m. n > 20. **d**, Measurements of circulating DILP2HF abundance. The
1276 number of samples assessed (n) is indicated in each graph. **e**, (left) Immunofluorescent staining
1277 of IPCs following *Dilp2-GAL4*-mediated *NPFR* knockdown, including overexpression of the
1278 Ca^{2+} sensor CaLexA. IPCs were visualised by immunostaining with anti-DILP2 antibody. IPCs
1279 are marked by white dashed line. Scale bar, 20 μ m. (right) Quantification of the CaLexA signal
1280 intensity normalised by *ad libitum* feeding controls. n > 15. **f**, (left) Immunofluorescence
1281 staining in the fat bodies of adults expressing the insulin signalling sensor tGPH (green)
1282 following *Dilp2-GAL4*-mediated *NPFR* knockdown. Scale bar, 50 μ m. (right) Quantification
1283 of tGPH levels. The relative tGPH level is defined as membrane tGPH intensity divided by
1284 cellular tGPH intensity. Each point represents signal intensity of a single fat cell. **g**, Western
1285 blotting analysis of phospho-AKT, pan-AKT, and Actin. The expected protein size of non-

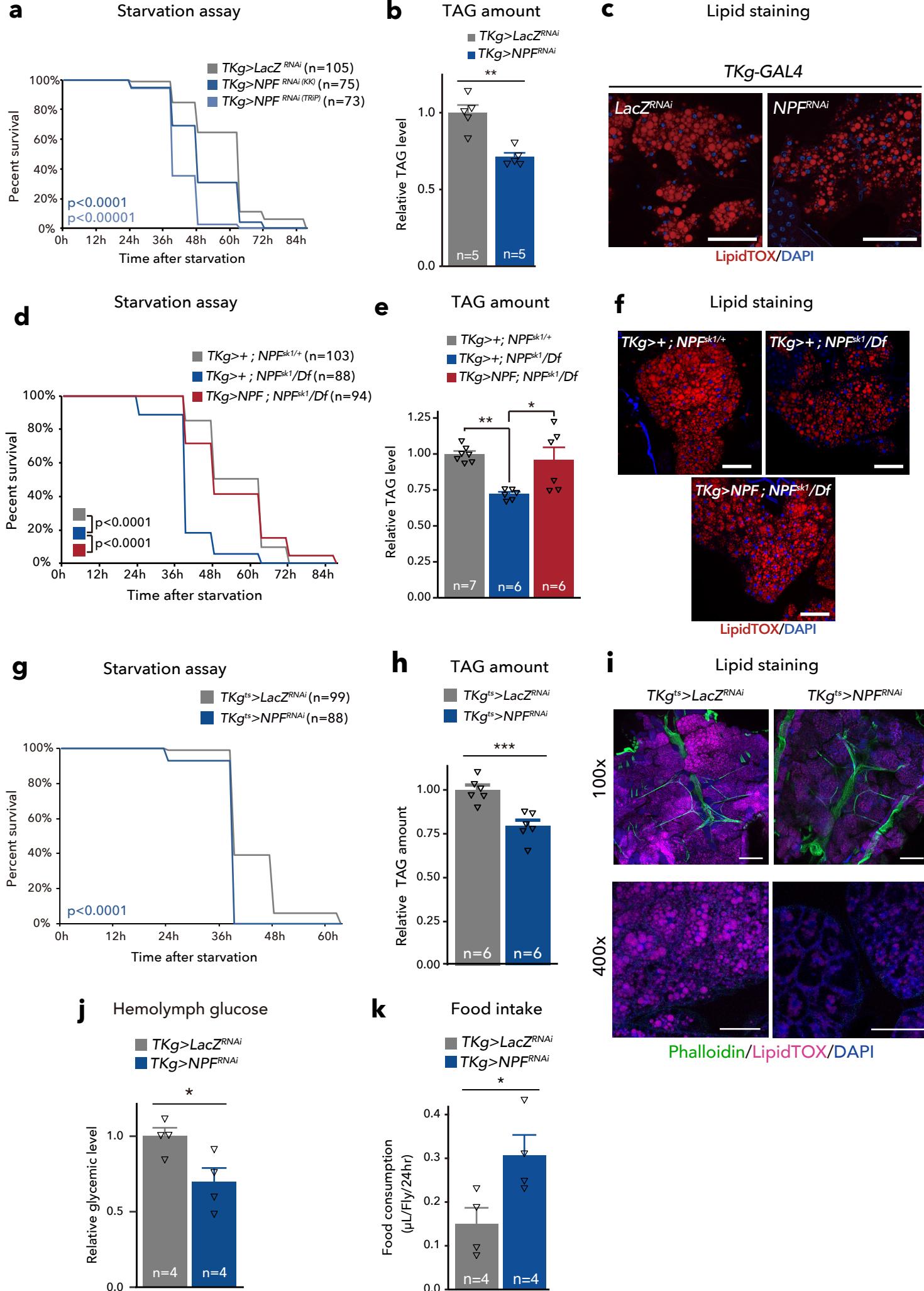
1286 phosphorylated AKT is 59.92 kDa. For RNAi experiments, *LacZ* knockdown
1287 (*Dilp2>LacZ^{RNAi}*) was used as negative control. For all bar graphs, mean and SEM with all data
1288 points are shown. Statistics: two-tailed Student's t test (b, d, and g), Wilcoxon rank sum test
1289 with Holm's correction (c, e, and f). *p < 0.05, **p < 0.01, ***p < 0.001; NS, non-significant
1290 (p > 0.05).

1291

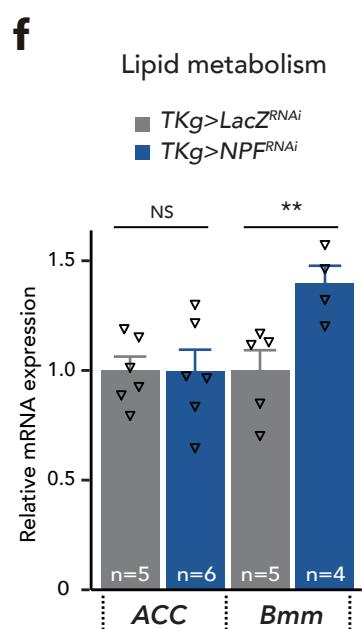
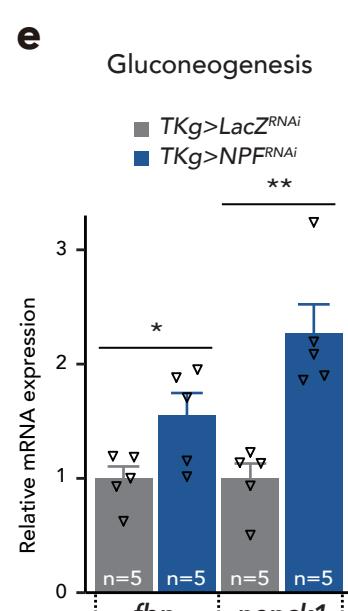
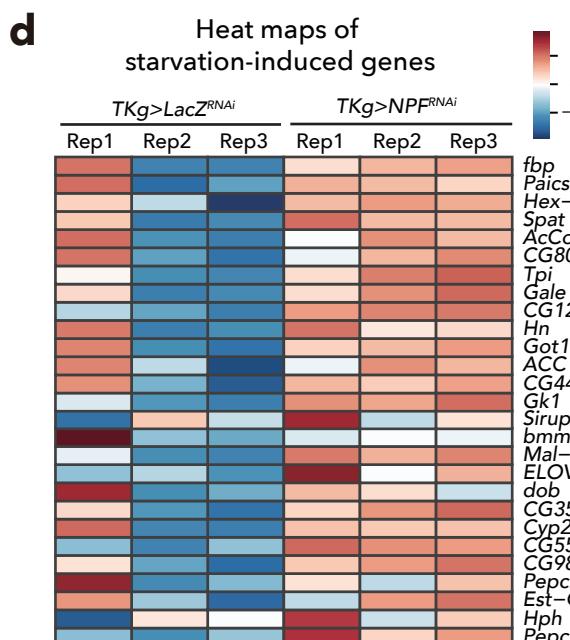
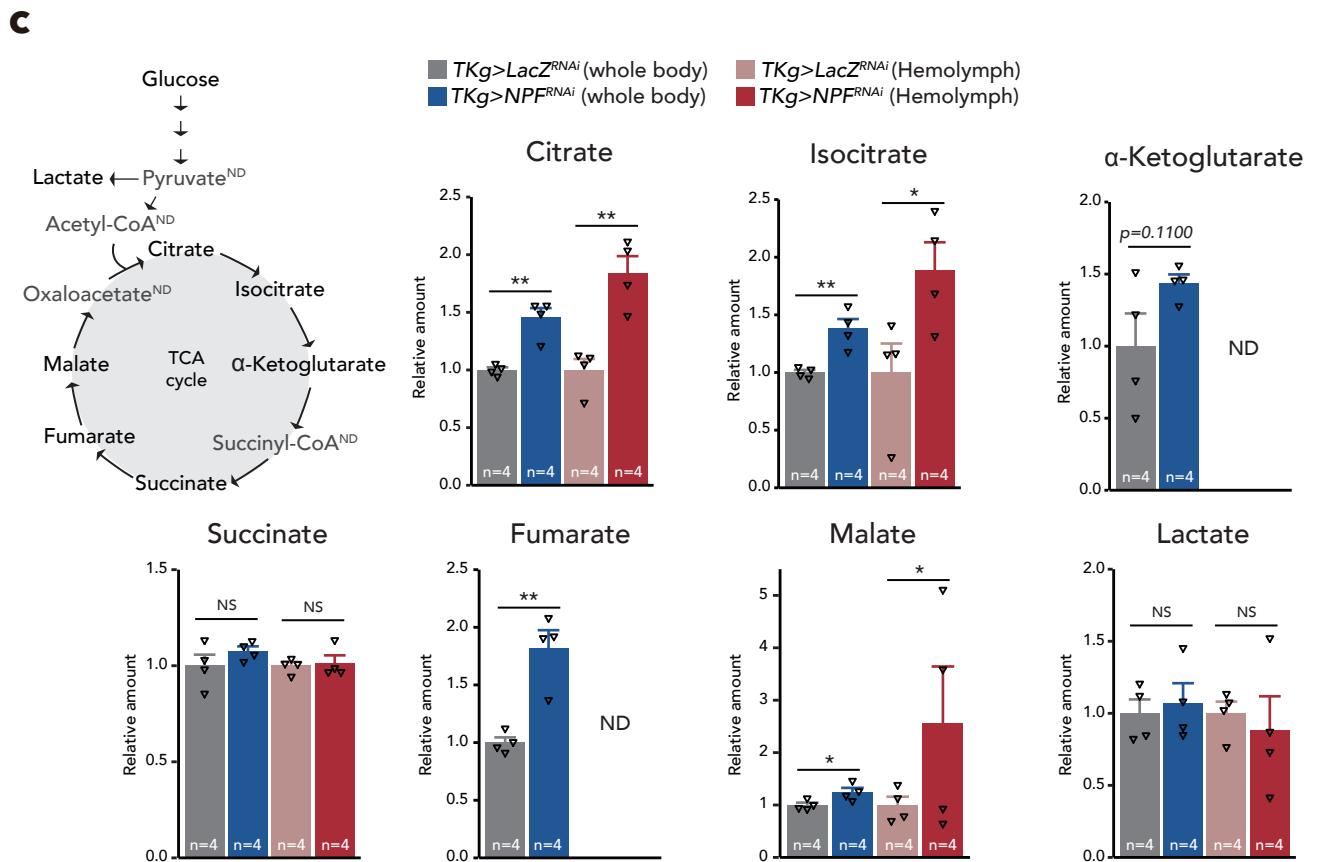
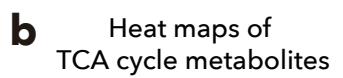
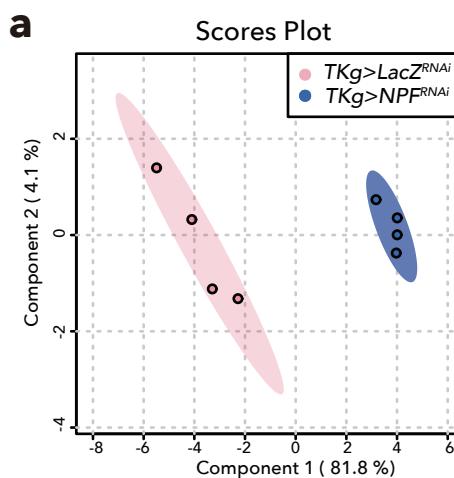
1292 **Figure 8. NPFR in the insulin-producing cells regulates carbohydrate/lipid metabolism**

1293 **a**, Survival during starvation in flies of each genotype. The number of animals assessed (n) is
1294 indicated in the graphs. **b**, Relative whole-body TAG levels of each genotype. The number of
1295 animals assessed (n) is indicated in the graphs. **c**, LipidTOX (red) and DAPI (blue) staining of
1296 dissected fat body tissue from indicated genotypes. Scale bar, 20 μ m. **d**, Relative glycaemic
1297 levels in control and *Dilp2>NPFR^{RNAi}*. The number of samples assessed (n) is indicated in the
1298 graphs. **e**, Feeding amount measurement of each genotype with CAFÉ assay. n = 4 samples,
1299 each point contained four adult female flies. **f**, RT-qPCR analysis of FOXO-target gene mRNA
1300 levels in the fat body dissected from each genotype. The number of samples assessed (n) is
1301 indicated in the graphs. **g**, FOXO (white) immunostaining of the fat body in adult flies of each
1302 genotype. Scale bar, 50 μ m. For RNAi experiments, *LacZ* knockdown (*Dilp2>LacZ^{RNAi}*) was
1303 used as negative control. For all bar graphs, mean and SEM with all data points are shown.
1304 Statistics: Log rank test (a), two-tailed Student's t test (b, d, e, f). *p < 0.05, **p < 0.01, ***p
1305 < 0.001; NS, non-significant (p > 0.05).

1306


1307 **Figure 9. Midgut-derived NPF regulates AKH and DILPs level in response to dietary**
1308 **sugar**

1309 **a**, A working model illustrating dual pathway coordination of FOXO and FOXO-target genes.
1310 (i) The loss of NPF/NPFR signalling in the CC—enhanced AKH/AKHR signalling induces







1311 FOXO nuclear localisation and carbohydrate/lipid metabolism—and (ii) the loss of NPF/NPFR
1312 signalling in the IPCs—attenuation of insulin signalling induces FOXO nuclear localisation
1313 and enhances carbohydrate/lipid metabolism. The balance of AKH/AKHR and insulin
1314 signalling is coordinated by gut-derived NPF that responds dietary sugars. **b**, (left) In *D.*
1315 *melanogaster*, enteroendocrine cells respond to the dietary sugars by secreting a neuropeptide,
1316 NPF, which signals via its neuronal receptor NPFR. NPF/NPFR signalling regulates energy
1317 consumption through dual neuronal relay which are restriction of glucagon-like, AKH
1318 production, and enhancement of insulin-like peptides (DILPs). Subsequent modulation of
1319 AKHR and insulin signalling within the fat body/adipose tissue maintains lipid/carbohydrate
1320 catabolism; thus, impaired NPF/NPFR signalling leads to depletion of energy stores. (right)
1321 The EEC-IPC and the EEC-CC axes in *D. melanogaster* are similar to the gut EECs-pancreas
1322 axis in mammals. Mammalian enteroendocrine hormone, GLP-1 also controls insulin and
1323 glucagon levels in response to dietary nutrients.

1324

Figure 1

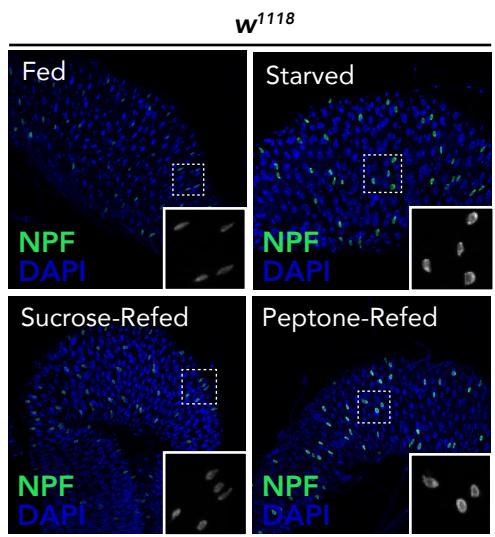
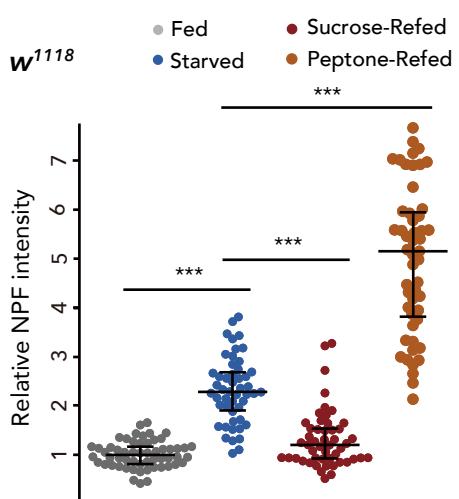
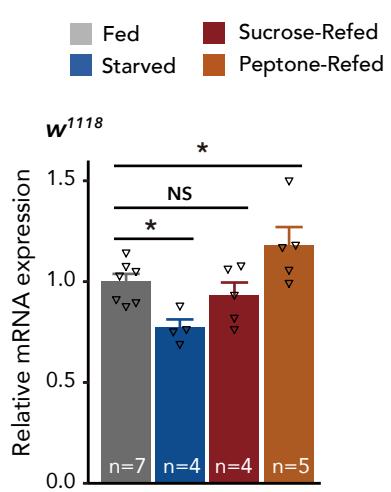

Figure 2

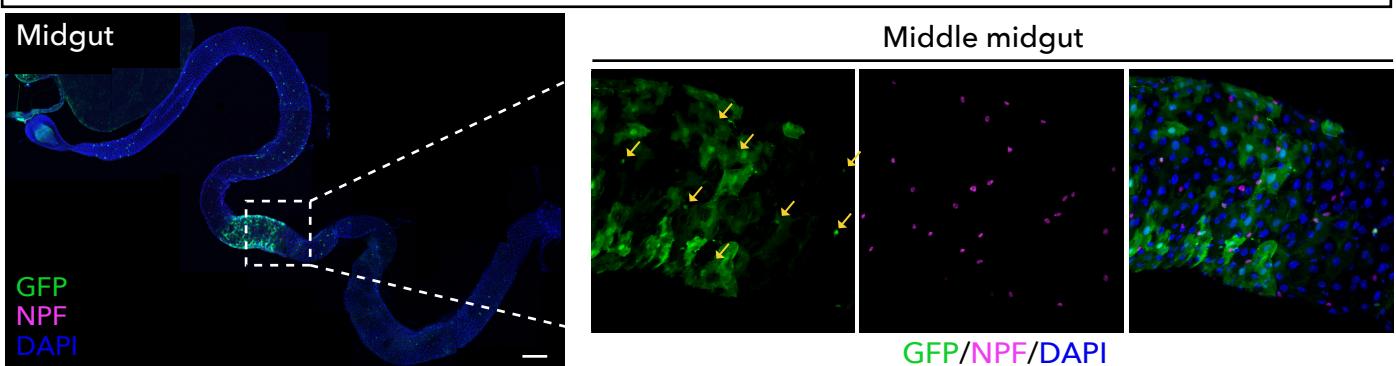
Figure 3


a

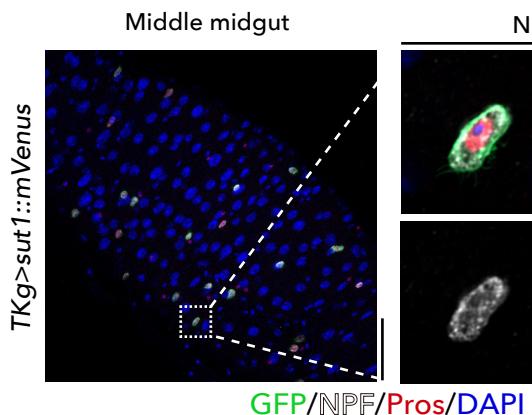
NPF immunostaining


b

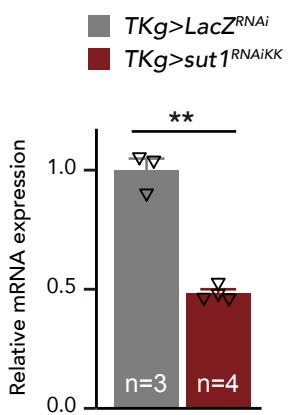
NPF protein level


c

NPF mRNA level


d

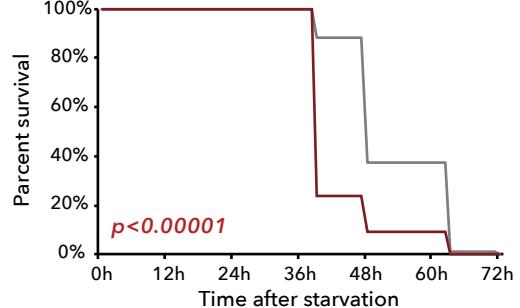
sut1 expression pattern (*sut1*^{KL-T2A}>GFP)


e

Sut1::mVenus localisation

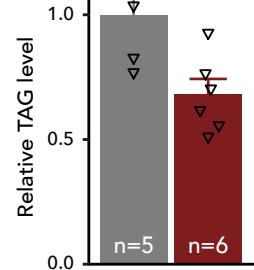
f

NPF mRNA level


NPF mRNA level

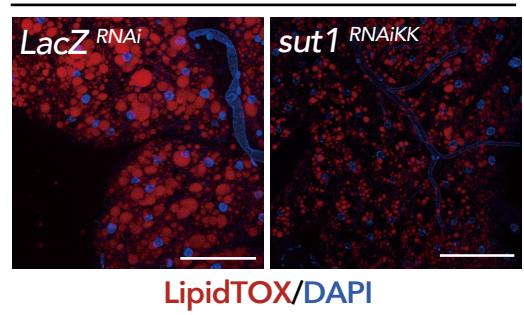
h

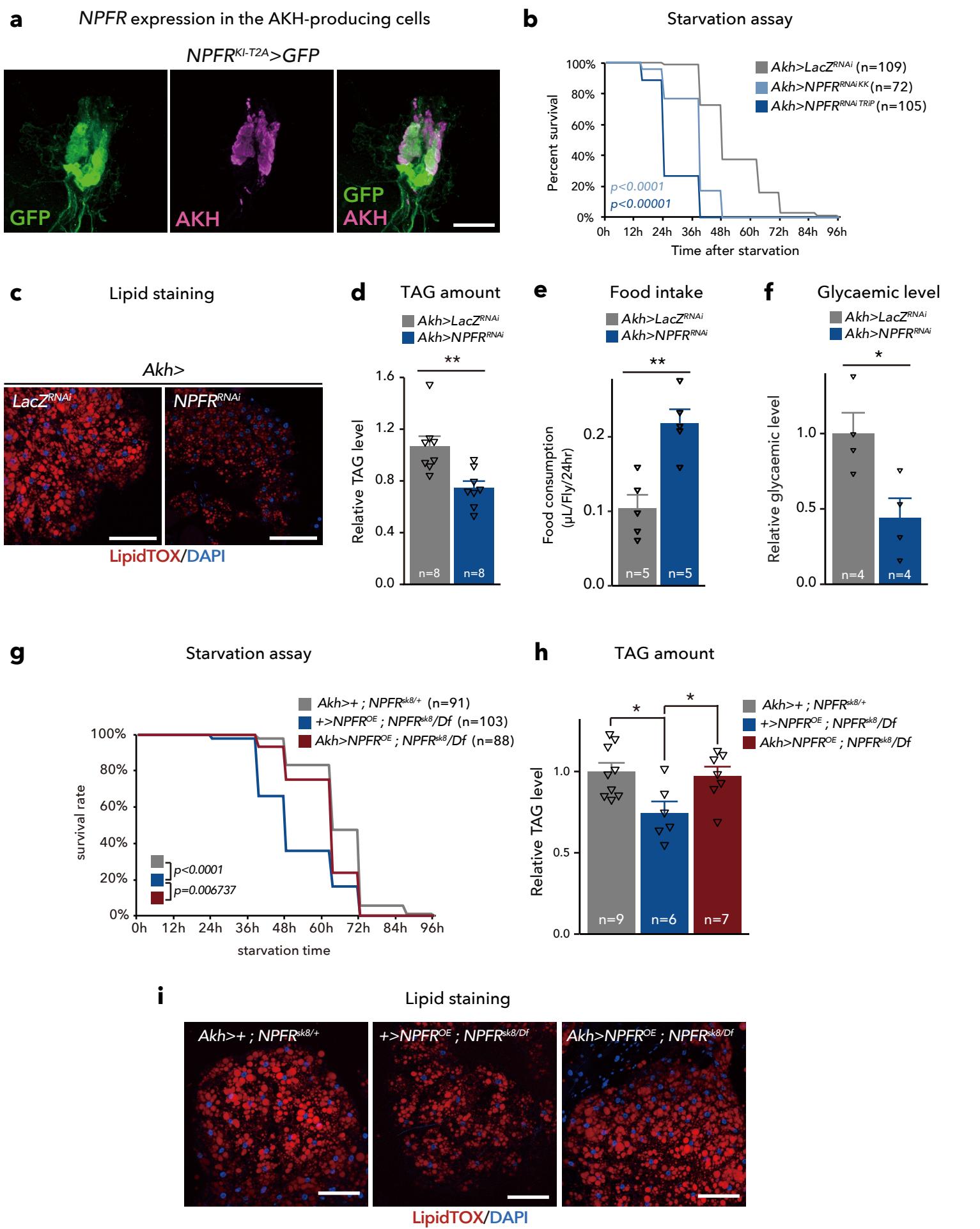
Starvation resistance


TKg>LacZ^{RNAi} (n=94)
TKg>sut1^{RNAiKK} (n=88)

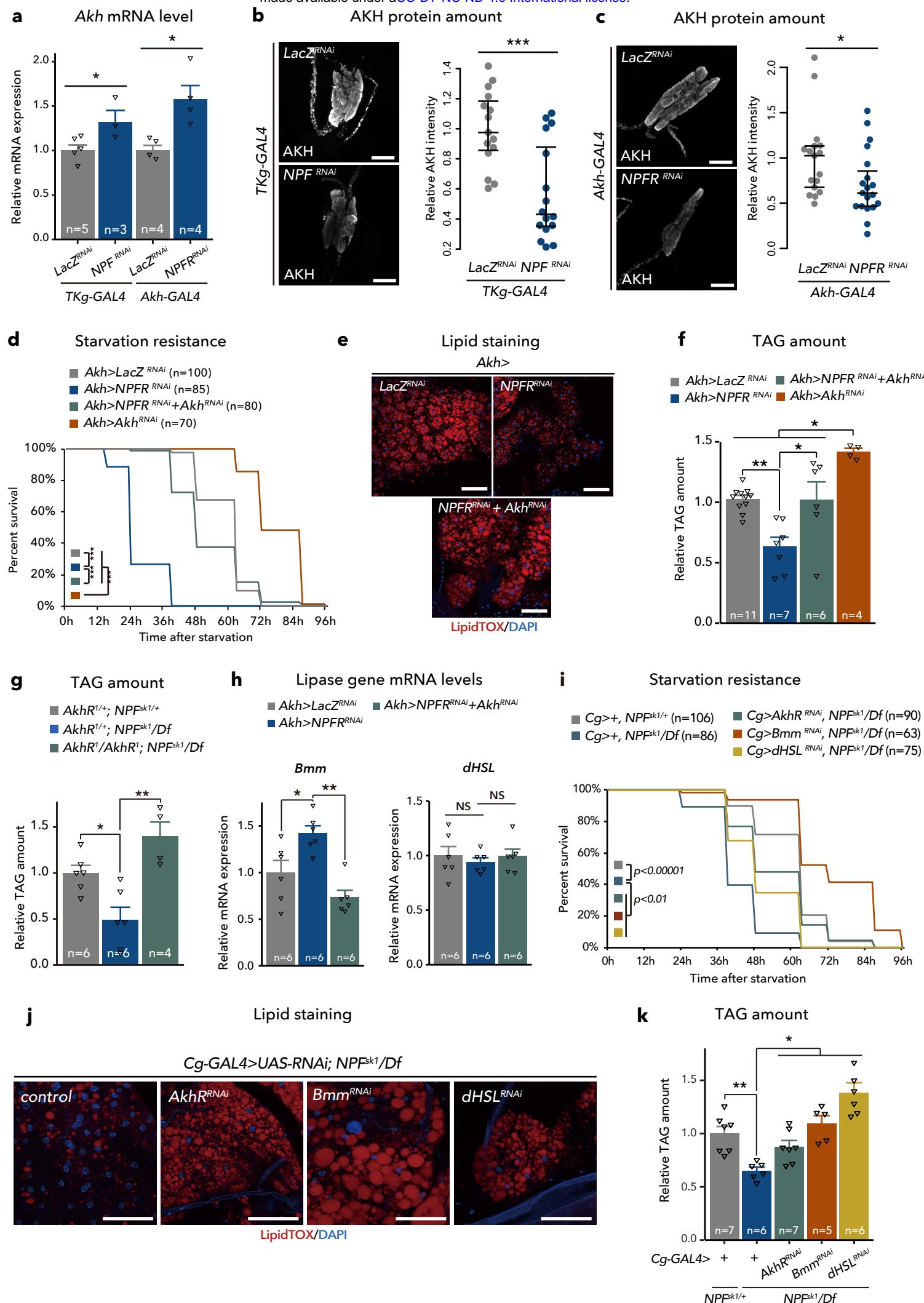
i

TAG amount


TKg>LacZ^{RNAi}
TKg>sut1^{RNAiKK}



j


Lipid staining

TKg-GAL4

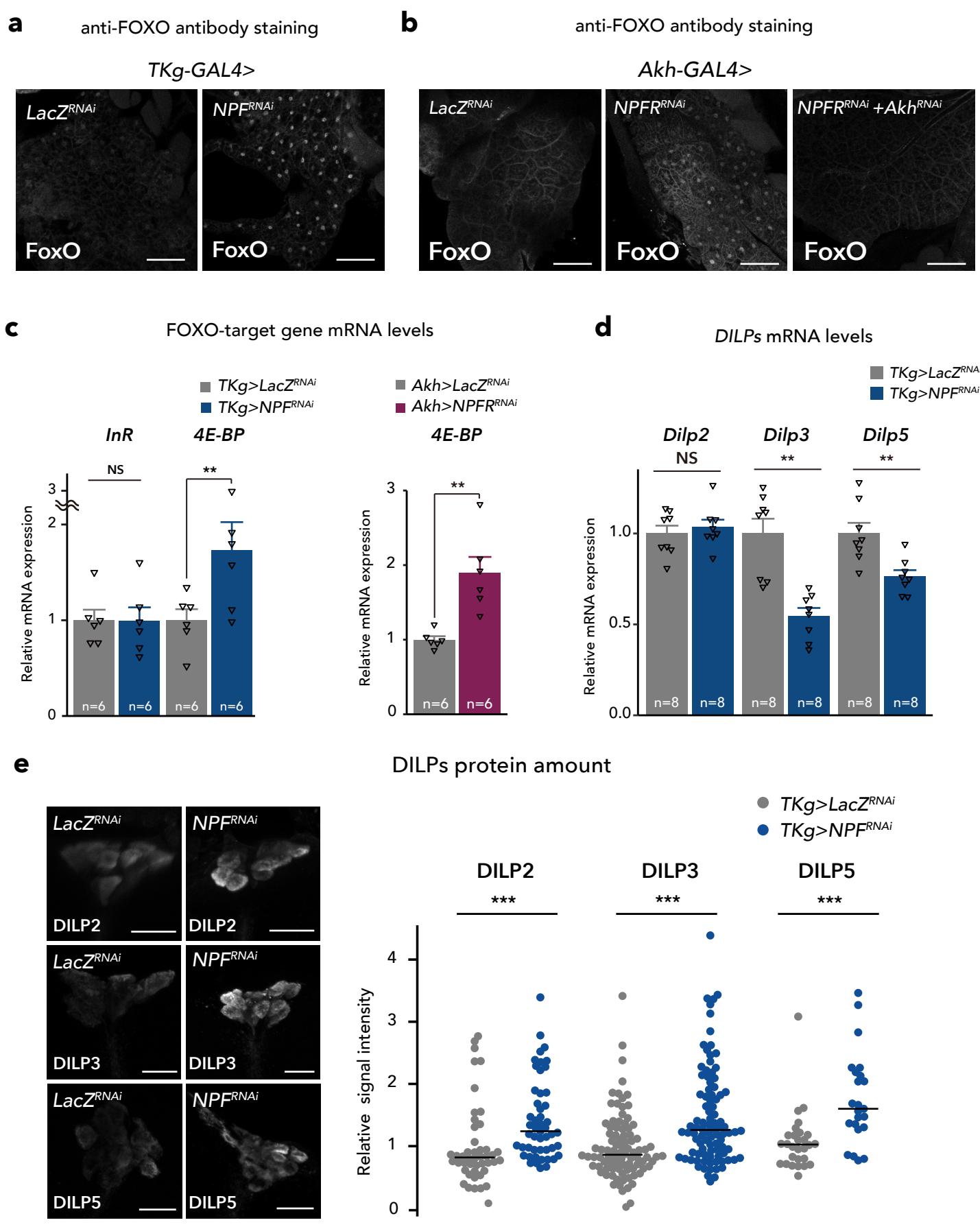
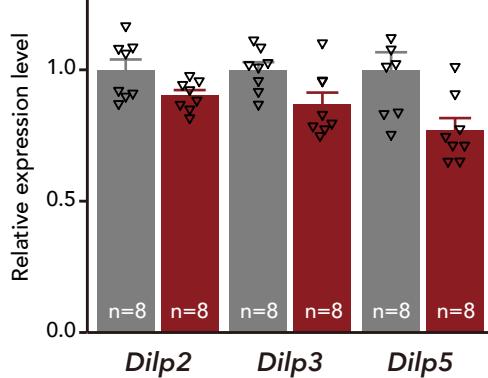


Figure 5

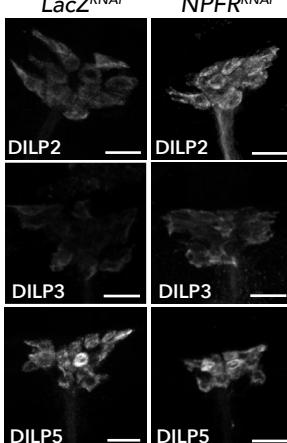
Figures

Figure 7


a NPFR expression in the insulin producing cells

b

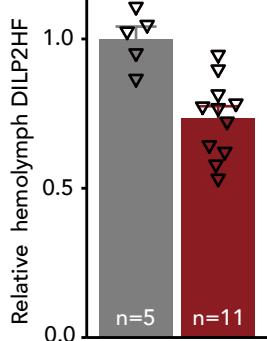
DILPs mRNA levels


■ *Dilp2>LacZ^{RNAi}*
■ *Dilp2>NPFR^{RNAi}*

c

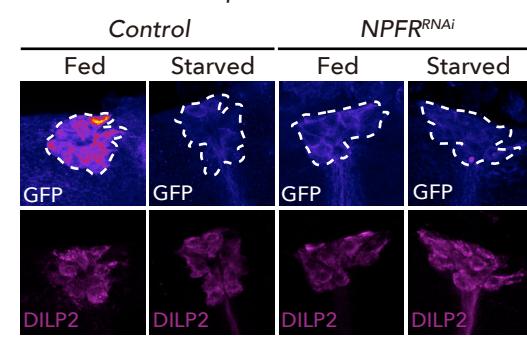
DILPs protein amount

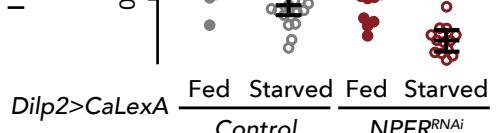
Dilp2-GAL4>


Relative signal intensity

d

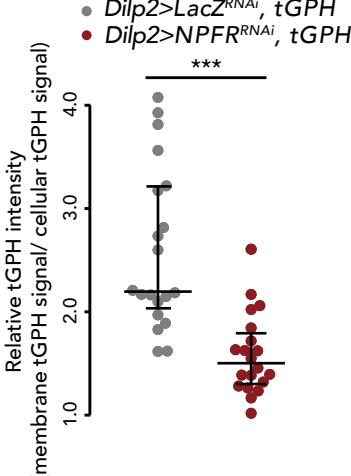
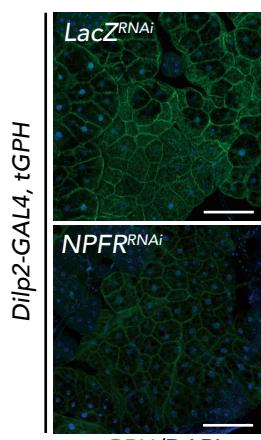
Hemolymph DILP2 level


■ *Dilp2>LacZ^{RNAi}*
■ *Dilp2>NPFR^{RNAi}*

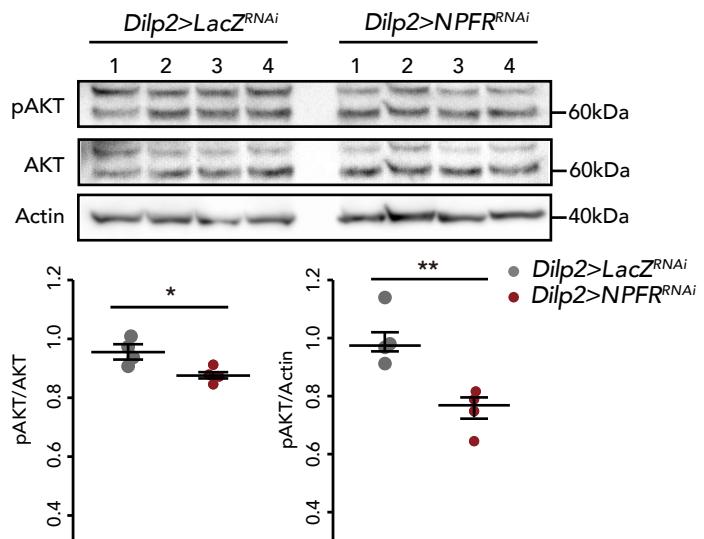

e

IPCs neuronal activity

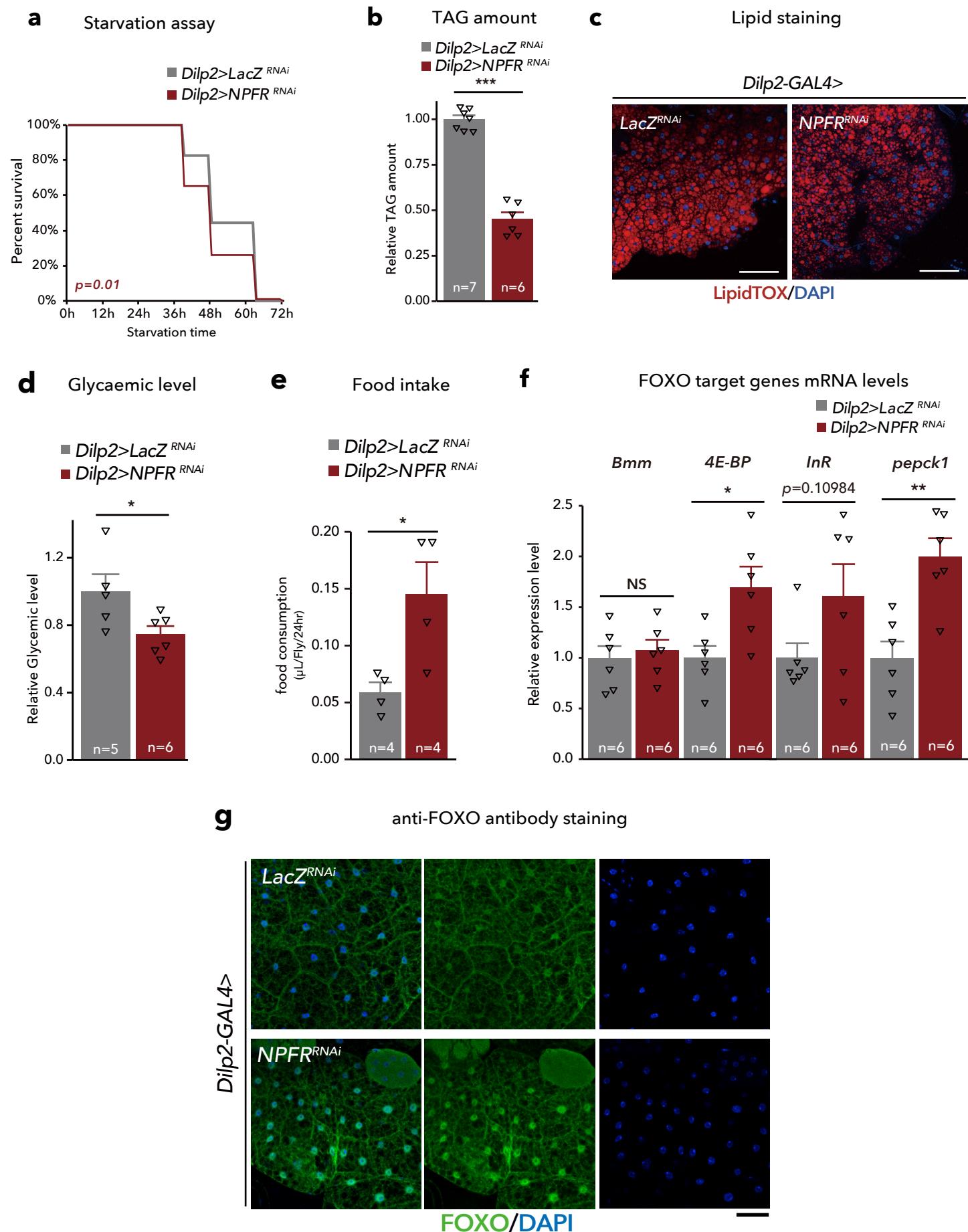
Dilp2>CaLexA

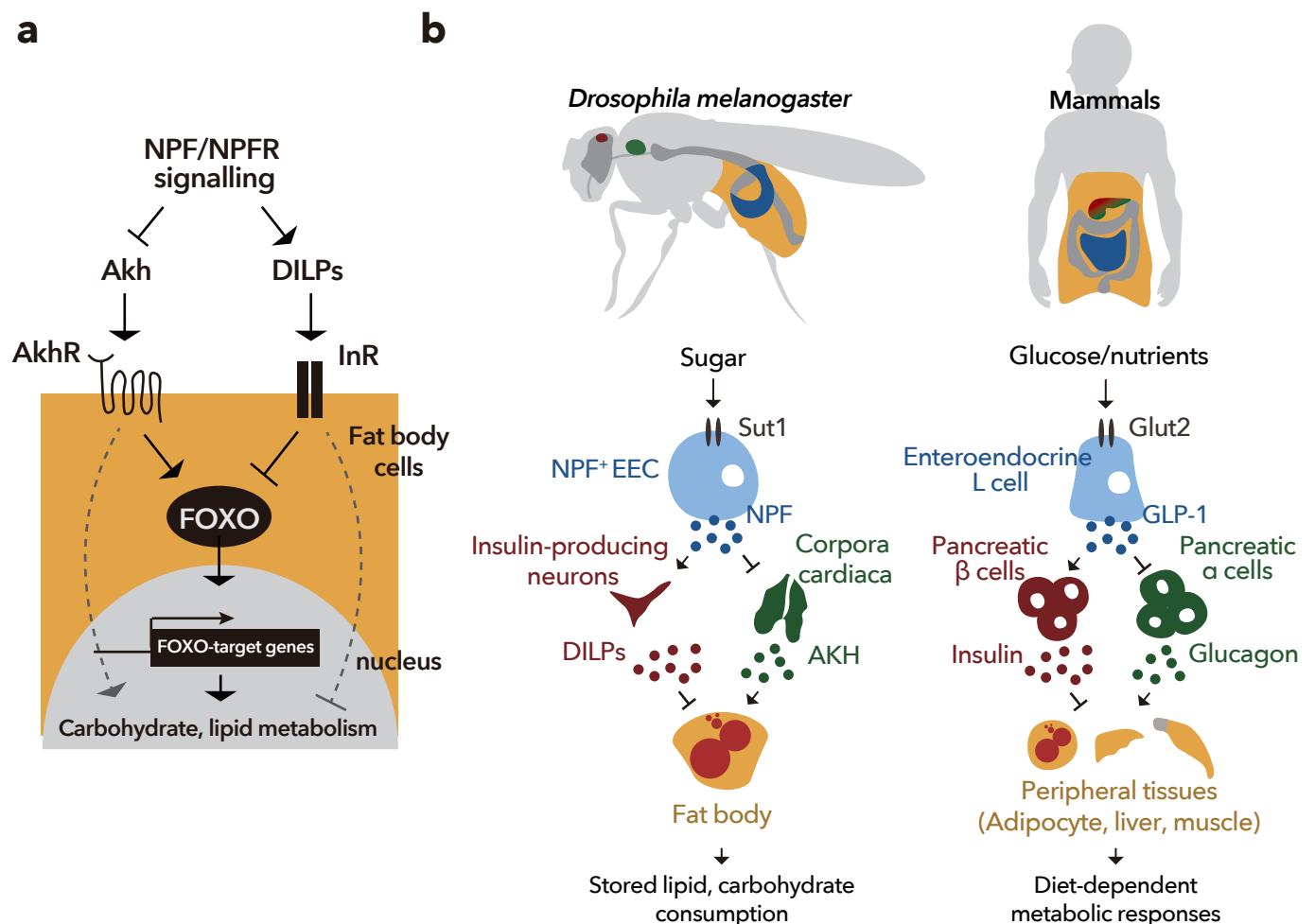
Relative signal intensity


f

Peripheral insulin signaling activity



g


Western blotting for pAKT

Figures

Figure 9

