

1 **OmpF Downregulation Mediated by Sigma E or OmpR Activation Confers**

2 **Cefalexin Resistance in *Escherichia coli* in the Absence of Acquired β -**

3 **Lactamases.**

4

5 **Maryam ALZAYN^{1,2}, Punyawee DULYAYANGKUL¹, Naphat SATAPOOMIN¹,**

6 **Kate J. HEESOM³, Matthew B. AVISON^{1*}**

7

8 **¹School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK**

9 **²Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman**
10 **University, Riyadh, Saudi Arabia**

11 **³University of Bristol Proteomics Facility, Bristol, UK**

12

13 *** Correspondence to: School of Cellular & Molecular Medicine, University of**
14 **Bristol, Bristol, United Kingdom. matthewb.avison@bris.ac.uk**

15

16

17 **Running Title: OmpR and Sigma E mediated Cefalexin Resistance in *E. coli***

18

19 **Abstract**

20 Cefalexin is a widely used 1st generation cephalosporin, and resistance in
21 *Escherichia coli* is caused by Extended-Spectrum (e.g. CTX-M) and AmpC β-
22 lactamase production and therefore frequently coincides with 3rd generation
23 cephalosporin resistance. However, we have recently identified large numbers of *E.*
24 *coli* isolates from human infections, and from cattle, where cefalexin resistance is not
25 β-lactamase mediated. Here we show, by studying laboratory selected mutants,
26 clinical isolates, and isolates from cattle, that OmpF porin disruption or
27 downregulation is a major cause of cefalexin resistance in *E. coli*. Importantly, we
28 identify multiple regulatory mutations that cause OmpF downregulation. In addition to
29 mutation of *ompR*, already known to downregulate OmpF and OmpC porin
30 production, we find that *rseA* mutation, which strongly activates the Sigma E regulon,
31 greatly increasing DegP production, which degrades OmpF, OmpC and OmpA
32 porins. Furthermore, we reveal that mutations affecting lipopolysaccharide structure,
33 exemplified by the loss of GmhB, essential for lipopolysaccharide heptosylation, also
34 modestly activate DegP production, resulting in OmpF degradation. Remarkably,
35 given the critical importance attached to such systems for normal *E. coli* physiology,
36 we find evidence for DegP-mediated OmpF downregulation, *gmhB* and *rseA* loss of
37 function mutation in *E. coli* isolates derived from human infections. Finally, we show
38 that these regulatory mutations enhance the ability of group 1 CTX-M β-lactamase to
39 confer reduced carbapenem susceptibility, particularly those mutations that cause
40 OmpC in addition to OmpF downregulation.

41 **Introduction**

42 Cefalexin is a 1st generation cephalosporin widely used in human, companion, and
43 farmed animal medicine. In 2016 in Bristol, United Kingdom, and surrounding
44 regions, (a population of 1.5 million people) 27.6 cefalexin courses were dispensed
45 per 1000 patient population (2.8% of all dispensed items). Whilst dispensing rates
46 had dropped by 19.5% since 2013, the proportion of *Escherichia coli* from
47 community-origin urine samples resistant to cefalexin in this region rose from 7.06%
48 to 8.82% (1).

49 Cefalexin resistance in *E. coli* is caused by hyper-production of the chromosomally-
50 encoded class 1 cephalosporinase gene *ampC*, or acquisition of plasmid AmpC
51 (pAmpC), or Extended Spectrum β -lactamases (ESBLs). These are also
52 mechanisms of 3rd generation cephalosporin resistance (3GC-R). We recently
53 reported that among community-origin urinary *E. coli* from Bristol and surrounding
54 regions collected in 2017/18, 69% of cefalexin resistant isolates were 3GC-R,
55 suggesting that cefalexin resistance in the absence of ESBL/AmpC production is
56 common (2). A similar observation was made when analysing faecal samples from
57 dairy cattle in the same region, where only 30% of samples containing cefalexin
58 resistant *E. coli* yielded 3GC-R isolates (3). Hyper-production of common acquired
59 penicillinases such as TEM-1 and OXA-1 does not confer cefalexin resistance in *E.*
60 *coli* (4). Furthermore, the involvement of efflux pump over-production, e.g. AcrAB-
61 TolC in *E. coli* has not been reported, but OmpF porin loss is known to reduce
62 cefalexin susceptibility (5). Indeed, early work showed cefalexin more efficiently uses
63 OmpF than OmpC porin to enter *E. coli* (6).

64 One aim of the work reported here was to characterise cefalexin resistance
65 mechanisms in *E. coli* lacking acquired β -lactamases by studying resistant mutants
66 selected *in vitro*. A second aim was to characterise mechanisms of cefalexin
67 resistance seen in 3GC-susceptible (3GC-S) human urinary and cattle isolates from
68 our earlier surveillance studies (2,3). A third aim was to determine if the cefalexin
69 resistance mechanisms identified here enhance CTX-M mediated β -lactam
70 resistance.

71

72 **Results and Discussion**

73 Cefalexin resistance in *E. coli* is associated with OmpF/OmpC porin downregulation
74 due to *ompR* mutation.

75 One spontaneous cefalexin resistant mutant was selected from each of three *E. coli*
76 parent strains: EC17, ATCC25922 and PSA. Cefalexin MICs against these isolates
77 and their mutant derivatives are reported in **table 1**. In each case, to identify the
78 possible cause of cefalexin resistance, LC-MS/MS whole-cell proteomics was
79 performed comparing each mutant with its parent. No mutant over-produced the
80 chromosomally-encoded AmpC β -lactamase (**Tables S1-S3**), and no
81 promoter/attenuator sequence mutations upstream of *ampC* were identified in any of
82 the mutants, based on WGS (**Figure S1**). The only significant ($p<0.05$; >2-fold)
83 protein abundance change common to all three wild-type/mutant pairs was
84 downregulation of OmpF porin production (**Table 2, Tables S1-S3**). There was no
85 evidence of AcrAB-TolC efflux pump over-production in the proteomics data for
86 mutant (**Tables S1-S3**). Despite OmpF porin downregulation, comparison of *ompF*-
87 containing WGS contigs from wild-type/mutant pairs revealed no mutations in *ompF*

88 or within 10 kb up- or downstream. We therefore concluded that there is a *trans*-
89 regulatory mutation affecting OmpF abundance in each mutant.

90 Since the two-component system OmpR/EnvZ is known to control porin gene
91 transcription in *E. coli* (7) we searched among WGS data for mutations in the genes
92 encoding this regulator, and a mutation was found in *ompR* in the cefalexin resistant
93 derivative of isolate PSA, predicted to cause a Gly63Ser change in OmpR. A
94 Gly63Val substitution in OmpR has previously been shown to cause OmpF and
95 OmpC porin downregulation in *E. coli* (8) and proteomics confirmed that OmpC was
96 also downregulated in the PSA-derived cefalexin resistant mutant relative to PSA,
97 but the third major porin OmpA was not (Table 2). Accordingly, we conclude that
98 OmpR mutation explains cefalexin resistance due to OmpF (and possibly OmpC)
99 downregulation in the mutant derivative of isolate PSA. However, *ompR* and *envZ*
100 were found to be wild-type in the other two cefalexin resistant mutants, suggesting
101 alternative regulatory mutations.

102

103 DegP over-production due to RseA anti-Sigma E mutation is associated with OmpF
104 porin downregulation and cefalexin resistance in *E. coli*.

105 Nine proteins, including OmpF, were significantly differentially regulated in the same
106 direction in the cefalexin resistant mutants derived from isolates EC17 and
107 ATCC25922, each relative to their parent strain. Three proteins (BamD, DegP and
108 YgiM) were upregulated and six (NmpC, DctA, ArcA, OmpF and YhiL) were
109 downregulated (Tables S1,S2). We were interested to note that one upregulated
110 protein in both mutants was DegP (Table 2), which is a protease known to degrade
111 porin proteins (9,10). Interestingly, in the PSA-derived *ompR* mutant with

112 downregulated OmpF and OmpC, described above, DegP production was 2-fold
113 lower than in the wild-type parent, suggesting a feedback response to porin
114 downregulation (**Table 2**). DegP production was increased 7-fold in the ATCC25922-
115 derived mutant and OmpF was downregulated 5.9-fold, as was OmpC (6.7-fold) and
116 OmpA (5.6-fold) (**Table 2**); which is a typical Sigma E response (11). In the EC17-
117 derived mutant, DegP was upregulated a more modest 4.4-fold, and here, OmpF
118 was downregulated 2.9-fold, but OmpC and OmpA were not significantly ($p < 0.05$)
119 downregulated, suggesting a weaker Sigma E response (**Table 2**). This led to the
120 suggestion that OmpC downregulation, seen in the PSA-derived and ATCC25922-
121 derived cefalexin resistant mutants alongside OmpF downregulation (**Table 2**) is not
122 necessary for cefalexin resistance. To confirm this, we disrupted *ompF* in
123 ATCC25922 and found this to be sufficient for cefalexin resistance (**Table 1**).
124 Additional downregulation of OmpC is not necessary.

125 Analysis of WGS data identified that the ATCC25922-derived mutant expressing a
126 phenotype typical of a strong Sigma E response had a mutation predicted to cause a
127 Trp33Arg mutation in RseA, which is a known Sigma E anti-sigma factor (12,13).
128 Loss of RseA is expected to release Sigma E so that it can bind, among others, to
129 the *degP* promoter, increasing transcription, leading to porin degradation and
130 cefalexin resistance (11). We disrupted *rseA* in ATCC25922 and confirmed that this
131 mutation does cause cefalexin resistance (**Table 1**).

132

133 Perturbation of Lipopolysaccharide heptosylation due to *gmhB* mutation causes
134 cefalexin resistance in *E. coli*.

135 The EC17-derived cefalexin resistant mutant which also appears to have a Sigma E
136 response, though weaker than the *rseA* mutant, was shown through WGS analysis
137 to have a deoxythymidine nucleotide insertion after nucleotide 348 of *gmhB*,
138 predicted to cause a frameshift affecting the encoded protein beyond amino acid
139 117. This gene encodes the enzyme D-alpha,beta-D-heptose-1,7-bisphosphate
140 phosphatase, which is part of a pathway responsible for producing heptose for
141 lipopolysaccharide biosynthesis (14). Loss of enzymes involved in this system are
142 associated with increased outer membrane permeability, but interestingly, deletion of
143 *gmhB* does not disrupt full length LPS production or damagingly compromise the
144 outer membrane permeability barrier (14,15). The obvious conclusion is that this
145 perturbation in envelope structure activates the Sigma E regulon, resulting in OmpF
146 degradation by DegP. We disrupted *gmhB* in ATCC25922 and found that this
147 mutation causes cefalexin resistance (**Table 1**). In the ATCC25922 background, the
148 *rseA* and *gmhB* mutants were similar, in MIC terms, to the *ompF* mutant (**Table 1**).
149 This further supports the conclusion that despite other porin production changes
150 caused by *rseA* mutation and *ompR* mutation, as identified above, it is OmpF
151 downregulation that is driving the cefalexin resistance phenotype observed in these
152 three in vitro selected mutants.

153

154 Loss and downregulation of OmpF in cefalexin resistant *E. coli* from cattle and
155 humans and evidence for *rseA* and *gmhB* mutations in human clinical isolates.

156 We chose two cefalexin resistant but 3GC-S isolates at random from our previous
157 survey of dairy farms (3), and two from our previous survey of human urinary *E. coli*
158 (2). Cefalexin resistance was confirmed by MIC (**Table 1**). WGS revealed disruption

159 of *ompF* in both farm isolates: in Farm-1, a Tn5 insertion disrupted *ompF*, truncating
160 OmpF after amino acid 316. In Farm-2 a frameshift mutation disrupted OmpF after
161 amino acid 96.

162 The *ompF* gene was intact in both human urinary isolates, which were identified by
163 WGS as being ST131. Proteomics did, however, show significant ($p<0.05$)
164 downregulation of OmpF abundance relative to ribosomal proteins compared with
165 the control human isolate EC17 ($1.43 +/- 0.16$, Mean +/- SEM, $n=3$) and a very
166 closely phylogenetically related control ST131 urinary isolate, collected in parallel
167 (3), UTI-80710 ($1.15 +/- 0.09$, $n=3$), in both cefalexin resistant urinary isolates. In
168 UTI-1, OmpF downregulation was ~2-fold relative to both controls (OmpF
169 abundance: $0.70 +/- 0.12$, $n=3$), but in UTI-2, OmpF was ~10-fold downregulated
170 relative to both controls (OmpF abundance: $0.13 +/- 0.03$, $n=3$). Notably, UTI-1 also
171 had a nonsense mutation at codon 82 in *ompC*. As expected, therefore, OmpC was
172 undetectable by proteomics in UTI-1, but OmpC abundance relative to ribosomal
173 proteins in UTI-2 ($2.64 +/- 0.84$, $n=3$) was not significantly lower ($p>0.25$) than in
174 control isolates UTI-80710 ($3.14 +/- 0.31$, $n=3$) and EC17 ($2.55 +/- 0.61$, $n=3$). Most
175 interestingly, UTI-2 produced >2-fold elevated ($p<0.05$) levels of DegP (abundance
176 relative to ribosomal proteins: $0.42 +/- 0.04$, $n=3$) compared with control control
177 isolates EC17 ($0.20 +/- 0.04$, $n=3$) and UTI-80710 ($0.13 +/- 0.02$, $n=3$), suggestive of
178 a phenotype like that of the *gmhB* mutant, described above. UTI-1 did not produce
179 DegP at levels significantly different from control ($p>0.25$).

180 According to WGS, ST131 isolate UTI-2 did not have a mutation in *gmhB*, *rseA*,
181 *ompR*, or *ompF* relative to the ST131 control isolate UTI-80710. Therefore, the
182 regulatory mutation leading to elevated DegP levels, reduced OmpF levels, and
183 cefalexin resistance in UTI-2 has not been identified. However, given the complexity

184 of Sigma E activation signals and the impact that many different changes in
185 envelope structure can have on it (16), it is possible that clinical isolates do carry
186 mutations that activate this regulon. Indeed, searches of the NCBI database
187 identified carbapenem resistant human *E. coli* isolate E300, identified in Japan (17),
188 which has an 8 nt insertion, leading to a frameshift in *rseA* at nucleotide 34
189 (Accession Number AP022360). Furthermore, two human clinical isolates were
190 found to have a single nucleotide insertion leading to a frameshift in *gmhB* after
191 nucleotide 126; one from China (Accession Number CP008697) and one from the
192 USA (Accession Number CP072911); and three commensal *E. coli* from the USA
193 (18) were found to have frameshift mutations at various positions in *gmhB*
194 (Accession Numbers CP051692, CP054319, and CP054319). Accordingly, we
195 conclude that mutations likely to cause the same phenotypes found in our laboratory-
196 selected cefalexin-resistant mutants are also found in clinical and commensal *E. coli*
197 from across the world.

198

199 Influence of *ompF* porin loss and downregulation on late generation cephalosporin
200 and carbapenem susceptibility in the presence of various CTX-M β-lactamases.

201 Our final aim was to test the impact of *ompF* loss and downregulation, due to OmpR
202 mutation or activation of Sigma E, on late generation cephalosporin or carbapenem
203 MIC in *E. coli* producing CTX-M β-lactamases. To do this we introduced, using
204 conjugation, natural plasmids carrying various *bla*_{CTX-M} variants commonly identified
205 in human and cattle 3GC-R *E. coli* in South West England: encoding CTX-M-1, CTX-
206 M-14 and CTX-M-15 (2,19). We measured MICs of 3GCs and 4GCs used in humans
207 (ceftazidime, cefepime) or cattle (ceftiofur, cefquinome), and the carbapenem

208 ertapenem against CTX-M plasmid transconjugants of *E. coli* parent strains and their
209 *ompF*, *rseA* or *ompR*, mutant derivatives (**Table 3**).

210 In wild-type ATCC25922, as expected, CTX-M-1 and CTX-M-15 conferred resistance
211 to all four cephalosporins tested, CTX-M-14 did not confer ceftazidime resistance,
212 and none of the enzymes conferred ertapenem resistance. Disruption of *ompF* or
213 *rseA* did not change the susceptibility profile but there were some MIC changes.
214 Disruption of *ompF* caused a two-doubling increase in ertapenem MIC against
215 transconjugants producing CTX-M-1 and CTX-M-15, but there was no change in MIC
216 against the CTX-M-14 transconjugant. Disruption of *rseA* caused a similar impact on
217 ertapenem MIC against CTX-M-1 or CTX-M-15 producers, but additionally caused a
218 two-doubling increase in MIC against the CTX-M-14 producer. It is likely that this
219 additional effect is due to the downregulation in OmpC additionally seen in the *rseA*
220 mutant (**Table 2**), OmpC being a key carbapenem porin (20).

221 Resistance profiles seen in wild-type *E. coli* isolate PSA CTX-M plasmid
222 transconjugants were almost identical to transconjugants of isolate ATCC25922
223 (**Table 3**). However, carriage of plasmids encoding CTX-M-1 or CTX-M-15 conferred
224 ertapenem non-susceptibility in the PSA *ompR* mutant, the ertapenem MIC being
225 one doubling higher than against CTX-M-1 or CTX-M-15 transconjugants of the
226 ATCC25922 *rseA* mutant derivative (**Table 3**). The greater impact of *ompR* mutation
227 than *rseA* mutation on reducing OmpC levels (**Table 2**) likely explains this
228 difference. Indeed, *ompR* mutation has previously been associated with ertapenem
229 non-susceptibility in ESBL producing *E. coli* (8,20).

230

231 Conclusions

232 Cefalexin is a widely used antibacterial in human and veterinary medicine, and so
233 cefalexin resistance is of considerable clinical importance. Despite this, mechanisms
234 of resistance have not been given very much attention, particularly in the post-
235 genomic age. We were surprised to find that, in our recent surveys of human and
236 cattle cefalexin resistant isolates, acquired cephalosporinase (pAmpC or ESBL) or
237 chromosomal AmpC hyper-production were not the cause of cephalexin resistance
238 in a large proportion of isolates (2,3). We show here strong evidence that OmpF loss
239 or downregulation is a key mechanism of cefalexin resistance in *E. coli* in the
240 absence of β -lactamase production. Whilst OmpF loss contributes to resistance to a
241 wide range of antibacterials (5), our findings show that cefalexin resistance is
242 unusual in being caused solely by OmpF loss. Furthermore, we show that OmpF
243 downregulation can also confer this phenotype. This may explain why *ompF* loss-of-
244 function mutations are found among *E. coli* from clinical samples, but our work
245 suggests there may also be numerous different regulatory mutations found among
246 clinical isolates, each downregulating OmpF.

247 Such is the wide range of regulatory systems controlling OmpF production, both at
248 transcriptional, translational, and post-translational levels (7, 16, 21), it is not
249 surprising that cefalexin resistance mutations arise in many different genes in the
250 laboratory, as seen here. Importantly, these mutations may contribute to resistance
251 to other antibacterials, when partnered with other mechanisms. Indeed, some of
252 these mutations also affect OmpC levels, and if this is a sufficiently large effect (e.g.
253 in the *ompR* mutant identified here) that can give rise to carbapenem non-
254 susceptibility if the mutant acquires a common ESBL such as CTX-M-15. Similar
255 *ompR* mutants have been seen in the clinic (8). The other regulatory mutations
256 affecting OmpF levels found in the laboratory-selected mutants reported here work

257 through Sigma E mediated DegP over-production. It is well known that DegP
258 degrades porins (10, 16), but it has not previously been reported that DegP-
259 mediated degradation of OmpF is sufficient to cause resistance to any antibacterial
260 drug.

261 Our findings are also potentially important because they suggest that OmpF is more
262 susceptible to DegP mediated proteolysis *in vivo* in *E. coli* than the other two main
263 porins, OmpC and OmpA. In the *rseA* mutant with “maximal” Sigma E activation and
264 DegP upregulation, OmpF, OmpC and OmpA levels all fell, but in the *gmhB* mutant
265 overproducing DegP to a lesser extent, only OmpF levels significantly fell (**Table 2**).
266 This was still sufficient to cause cefalexin resistance but had a smaller effect on
267 ertapenem MIC in the presence of CTX-M-15 production (**Table 3**), likely due to the
268 OmpF-specific effect on porin downregulation.

269 It is known that mutations affecting outer membrane and lipopolysaccharide structure
270 activate Sigma E, because they affect envelope integrity (16). It has not previously
271 been shown, however, that mutations disrupting *gmhB* can do this, and further, that
272 this can cause cefalexin resistance. We considered that despite such mutations
273 arising in the laboratory, this perhaps overstates their clinical relevance, because
274 disruption of the Gmh system causes significant attenuation and increased
275 susceptibility to envelope stresses, though significantly, loss of GmhB has the
276 mildest effect in this regard (15). Accordingly, we were very interested to find
277 cefalexin resistant human urinary ST131 isolates having OmpF downregulation, and
278 in one case, DegP upregulation, suggestive of a GmhB negative phenotype, though
279 *gmhB* was intact and the nature of the mutation responsible will be the focus of
280 future work. However, importantly, we did find clear evidence of *rseA* and *gmhB*
281 loss-of-function mutations among clinical and commensal *E. coli* from secondary

282 analysis of WGS data. Therefore, we provide here strong evidence that mutations
283 constitutively activating Sigma E, including those which do this by altering
284 lipopolysaccharide structure, can be tolerated by *E. coli* in a clinical setting. These
285 mutations, and possibly others yet to be identified, cause clinically-relevant cefalexin
286 resistance in the absence of β -lactamase production through DegP-mediated OmpF
287 proteolysis.

288

289 **Experimental**

290 **Bacterial isolates, selection of resistant mutants and susceptibility testing**

291 Three β -lactam susceptible *E. coli* isolates were used: the type-strain ATCC25922;
292 the human urinary isolate EC17, provided by Dr Mandy Wootton, Public Health
293 Wales; and a ciprofloxacin resistant isolate, PSA, from faecal samples collected on a
294 dairy farm (3). To select cefalexin-resistant derivatives of these isolates, 100 μ l of
295 overnight culture grown in Nutrient Broth were spread onto Mueller Hinton agar
296 containing 16 μ g.ml⁻¹ cefalexin and each plate incubated for 24 h. In addition, four
297 cefalexin resistant but 3GC-S isolates were used: one each from faecal samples
298 from two dairy farms (Farm-1, Farm-2) as collected previously (3); two human
299 urinary isolates (UTI-1, UTI-2) also as collected previously (2). The control isolate
300 UTI-80710 is 3GC-R due to CTX-M-15 production (2) and was selected based on its
301 production of wild-type OmpF porin levels (see text). Microtiter MIC assays were
302 performed and interpreted according to CLSI guidelines (22, 23).

303 **Proteomics**

304 One millilitre of an overnight Cation Adjusted Mueller Hinton Broth (CA-MHB) culture
305 was transferred to 50 ml CA-MHB and cells were grown at 37°C to 0.6-0.8 OD₆₀₀.

306 Cells were pelleted by centrifugation (10 min, 4,000xg, 4°C) and resuspended in 35
307 ml of 30 mM Tris-HCl, pH 8 and broken by sonication using a cycle of 1 s on, 0.5 s
308 off for 3 min at amplitude of 63% using a Sonics Vibracell VC-505TM (Sonics and
309 Materials Inc., Newton, Connecticut, USA). The sonicated samples were centrifuged
310 at 8,000xg for 15 min at 4°C to pellet intact cells and large cell debris. Protein
311 concentrations in all supernatants were quantified using the Biorad Protein Assay
312 Dye Reagent Concentrate according to the manufacturer's instructions. Proteins (1
313 µg/lane) were separated by SDS-PAGE using 11% acrylamide, 0.5% bis-acrylamide
314 (Biorad) gels and a Biorad Min-Protein Tetracell chamber model 3000X1. Gels were
315 resolved at 200 V until the dye front had moved approximately 1 cm into the
316 separating gel. Proteins in all gels were stained with Instant Blue (Expedeon) for 5
317 min and de-stained in water. LC-MS/MS data was collected as previously described
318 (24). The raw data files were processed and quantified using Proteome Discoverer
319 software v1.4 (Thermo Scientific) and searched against bacterial genome and
320 horizontally acquired resistance genes as described previously (25).

321 Whole genome sequencing and analyses

322 WGS was performed by MicrobesNG (<https://microbesng.uk/>) on a HiSeq 2500
323 instrument (Illumina, San Diego, CA, USA) using 2x250 bp paired end reads. Reads
324 were trimmed using Trimmomatic (26) and assembled into contigs using SPAdes
325 3.13.0 (27). Contigs were annotated using Prokka 1.2 (28). Resistance genes and
326 sequence types, according to the Achtman scheme (29) were assigned using the
327 ResFinder (30) and MLST 2.0 on the Center for Genomic Epidemiology
328 (<http://www.genomicepidemiology.org/>) platform. Pairwise contig alignments to
329 identify mutations versus parent isolate, which were sequenced in parallel, was with
330 EMBOSS Stretcher (https://www.ebi.ac.uk/Tools/psa/emboss_stretcher/)

331 Insertional inactivation of genes and conjugation of CTX-M-encoding plasmids.

332 Insertional inactivation of *ompF*, *rseA*, or *gmhB* was performed using the pKNOCK
333 suicide plasmid (31). DNA fragments were amplified with Phusion High-Fidelity DNA
334 Polymerase (NEB, UK) from *E. coli* ATCC25922 genomic DNA by using primers
335 *ompF*-KO-FW (5'-CAAGGATCCTGATGGCCTGAACCTTC-3') with a BamHI
336 restriction site, underlined, and *ompF*-KO-RV (5'-
337 CAAGTCGACTTCAGACCAGTAGCC-3') with a Sall site; *rseA*-KO-FW (5'-
338 CGCGGATCTCAGAAAACCAGGGAAAGC-3') with a BamHI site and *rseA*-KO-
339 RV (5'-TGCACTGCAGCCATTGGGTAAGCTGTGCC-3') with a PstI site; *gmhB*-KO-
340 FW (5'-TATACTAGTCACGGCTATGTCCATGAGA-3') with a Spel site, and *gmhB*-
341 KO-RV (5'-TATGTCGACTCGGTCAGCGTTCAAAC-3') with a Sall site. Each PCR
342 products were ligated into pKNOCK-GM (31) at the BamHI and Sall (for *ompF*),
343 BamHI and Psal (for *rseA*), or Spel and Sall (for *gmhB*) sites. Each recombinant
344 plasmid was then transferred by conjugation into *E. coli* ATCC25922 previously
345 transformed to kanamycin resistance by introducing pK18 (32) by electroporation.
346 Mutants were selected for gentamicin non-susceptibility (10 µg.ml⁻¹), with kanamycin
347 (30 µg.ml⁻¹) being used to counter-select against the donor. Mutations were
348 confirmed by PCR using primers *ompF*-F (5'-ATGATGAAGCGCAATAAT-3') and
349 BT543 (5'-TGACCGCGTCCTCGGTAC-3'); *rseA*-F (5'-AGCCGCTATCATGGATTGTC-
350 3') and BT87 (5'-TGACCGCGTCCTCGGTAC-3'); *gmhB*-F (5'-
351 TAAATCAATCAGGTTATGC-3') and BT543.

352 Conjugation of natural CTX-M-encoding plasmids from cattle *E. coli* isolates (19)
353 YYZ70-1 (CTX-M-15), YYZ16-1 (CTX-M-1) and PSA37-1 (CTX-M-14) into *E. coli*
354 derivatives was performed by mixing on agar. Donor and recipient strains were
355 grown overnight on LB agar plates with selection. A loopful of colonies for each was

356 resuspended separately into 1 ml of PBS and centrifuged at 12,000xg for 1 min. The
357 pellet was then resuspended in 1 ml 100 mM CaCl₂ and incubated on ice for 30 min.
358 A 3:1 v/v ratio of recipient to donor cell suspension was made and 4 µl of the mixture
359 were spotted onto non-selective LB agar, which was incubated for 4-5 h at 37°C.
360 Spots of mixed growth were scraped into a micro centrifuge tube containing 500 µl
361 PBS and 30 µl of this mixture were spread onto a selective plate and incubated
362 overnight at 37°C. The donor *E. coli* used were isolates PSA or ATCC25922, and
363 their derivatives. PSA is resistant to ciprofloxacin, so 4 µg.ml⁻¹ ciprofloxacin was
364 used as counter-selection against the donor. For ATCC25922 and derivatives, pK18
365 (32) was introduced by electroporation prior to conjugation to allow counter selection
366 using kanamycin (50 µg.ml⁻¹). Selection for the transconjugant was with 10 µg.ml⁻¹
367 cefotaxime.

368

369 **Acknowledgements**

370 Genome sequencing was provided by MicrobesNG (<http://www.microbesng.uk>).

371

372 **Funding**

373 This work was funded by grants NE/N01961X/1 and MR/S004769/1 to M.B.A. from
374 the Antimicrobial Resistance Cross Council Initiative supported by the seven United
375 Kingdom research councils and the National Institute for Health Research. M.A. was
376 in receipt of a postgraduate scholarship from the Saudi Cultural Bureau. N.S.
377 received a postgraduate scholarship from the University of Bristol.

378

379 **Transparency declaration**

380 The authors declare no conflict of interests.

381

382 **References**

- 383 1. Hammond A, Stuijffzand B, Avison MB, Hay AD. 2020. Antimicrobial resistance
384 associations with national primary care antibiotic stewardship policy: Primary
385 care-based, multilevel analytic study. *PLoS One*. 15:e0232903.
- 386 2. Findlay J, Gould VC, North P, Bowker KE, Williams OM, MacGowan AP, Avison
387 MB. 2020. Characterization of cefotaxime-resistant urinary *Escherichia coli* from
388 primary care in South-West England 2017-18. *J Antimicrob Chemother*. 75:65-71.
- 389 3. Schubert H, Morley K, Puddy EF, Arbon R, Findlay J, Mounsey O, Gould VC,
390 Vass L, Evans M, Rees GM, Barrett DC, Turner KM, Cogan TA, Avison MB,
391 Reyher KK. 2021. Reduced Antibacterial Drug Resistance and *bla*_{CTX-M} β-
392 Lactamase Gene Carriage in Cattle-Associated *Escherichia coli* at Low
393 Temperatures, at Sites Dominated by Older Animals, and on Pastureland:
394 Implications for Surveillance. *Appl Environ Microbiol*. 87:e01468-20.
- 395 4. Wu PJ, Shannon K, Phillips I. 1994. Effect of hyperproduction of TEM-1 beta-
396 lactamase on in vitro susceptibility of *Escherichia coli* to beta-lactam antibiotics.
397 *Antimicrob Agents Chemother*. 38:494-498.
- 398 5. Phan K, Ferenci T. 2017. The fitness costs and trade-off shapes associated with
399 the exclusion of nine antibiotics by OmpF porin channels. *ISME J*. 11:1472-1482.

400 6. Kobayashi Y, Takahashi I, Nakae T. 1982. Diffusion of beta-lactam antibiotics
401 through liposome membranes containing purified porins. *Antimicrob Agents
402 Chemother.* 22:775-780.

403 7. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. 1996. From acids to *osmZ*: multiple
404 factors influence synthesis of the OmpF and OmpC porins in *Escherichia coli*.
405 *Mol Microbiol.* 20:911-7.

406 8. Dupont H, Choinier P, Roche D, Adiba S, Sookde M, Branger C, Denamur E,
407 Mammeri H. 2017. Structural Alteration of OmpR as a Source of Ertapenem
408 Resistance in a CTX-M-15-Producing *Escherichia coli* O25b:H4 Sequence Type
409 131 Clinical Isolate. *Antimicrob Agents Chemother.* 61:e00014-17.

410 9. Spiess C, Beil A, Ehrmann M. 1999. A temperature-dependent switch from
411 chaperone to protease in a widely conserved heat shock protein. *Cell.* 97:339-47.

412 10. Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic
413 chaperones SurA, Skp, and DegP in *Escherichia coli*. *Genes Dev.* 21:2473-84.

414 11. Ades SE. 2008. Regulation by destruction: design of the sigmaE envelope stress
415 response. *Curr Opin Microbiol.* 11:535-40.

416 12. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. 1997. Modulation
417 of the *Escherichia coli* sigmaE (RpoE) heat-shock transcription-factor activity by
418 the RseA, RseB and RseC proteins. *Mol Microbiol.* 24:355-71.

419 13. De Las Peñas A, Connolly L, Gross CA. 1997. The sigmaE-mediated response to
420 extracytoplasmic stress in *Escherichia coli* is transduced by RseA and RseB, two
421 negative regulators of sigmaE. *Mol Microbiol.* 24:373-85.

422 14. Taylor PL, Sugiman-Marangos S, Zhang K, Valvano MA, Wright GD, Junop MS.
423 2010. Structural and kinetic characterization of the LPS biosynthetic enzyme D-
424 alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) from *Escherichia*
425 *coli*. *Biochemistry*. 49:1033-1041.

426 15. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P,
427 Valvano MA, Messner P. 2002. Biosynthesis pathway of ADP-L-glycero-beta-D-
428 manno-heptose in *Escherichia coli*. *J Bacteriol*. 2002 184:363-9.

429 16. Klein G, Raina S. 2019. Regulated Assembly of LPS, Its Structural Alterations
430 and Cellular Response to LPS Defects. *Int J Mol Sci*. 20:356.

431 17. Abe R, Akeda Y, Sugawara Y, Takeuchi D, Matsumoto Y, Motooka D, Yamamoto
432 N, Kawahara R, Tomono K, Fujino Y, Hamada S. 2020. Characterization of the
433 Plasmidome Encoding Carbapenemase and Mechanisms for Dissemination of
434 Carbapenem-Resistant Enterobacteriaceae. 5:e00759-20.

435 18. Stephens C, Arismendi T, Wright M, Hartman A, Gonzalez A, Gill M, Pandori M,
436 Hess D. 2020. F Plasmids Are the Major Carriers of Antibiotic Resistance Genes
437 in Human-Associated Commensal *Escherichia coli*. *mSphere*. 5:e00709-20.

438 19. Findlay J, Mounsey O, Lee WWY, Newbold N, Morley K, Schubert H, Gould VC,
439 Cogan TA, Reyher KK, Avison MB. 2020. Molecular Epidemiology of *Escherichia*
440 *coli* Producing CTX-M and pAmpC β -Lactamases from Dairy Farms Identifies a
441 Dominant Plasmid Encoding CTX-M-32 but No Evidence for Transmission to
442 Humans in the Same Geographical Region. *Appl Environ Microbiol*. 87:e01842-
443 20.

444 20. Tängdén T, Adler M, Cars O, Sandegren L, Löwdin E. 2013. Frequent
445 emergence of porin-deficient subpopulations with reduced carbapenem

446 susceptibility in ESBL-producing *Escherichia coli* during exposure to ertapenem
447 in an in vitro pharmacokinetic model. *J Antimicrob Chemother.* 68:1319-26.

448 21. Delihas N, Forst S. 2001. *MicF*: an antisense RNA gene involved in response of
449 *Escherichia coli* to global stress factors. *J Mol Biol.* 313:1-12.

450 22. Clinical and Laboratory Standards Institute. 2015. M07-A10. Methods for dilution
451 antimicrobial susceptibility tests for bacteria that grow aerobically; approved
452 standard, 10th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

453 23. Clinical and Laboratory Standards Institute. 2020. M100-S30. Performance
454 standards for antimicrobial susceptibility testing; thirtieth informational
455 supplement. An informational supplement for global application developed
456 through the Clinical and Laboratory Standards Institute consensus process.
457 Clinical and Laboratory Standards Institute, Wayne, PA.

458 24. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J,
459 Schneiders T, Heesom KJ, Avison MB. 2018. Envelope proteome changes driven
460 by RamA overproduction in *Klebsiella pneumoniae* that enhance acquired β -
461 lactam resistance. *J Antimicrob Chemother* 73:88-94.

462 25. Takebayashi Y, Wan Nur Ismah WAK, Findlay J, Heesom KJ, Zhang J, Williams
463 OM, MacGowan AP, Avison MB. 2017. Prediction of cephalosporin and
464 carbapenem susceptibility in multi-drug resistant Gram-negative bacteria using
465 liquid chromatography-tandem mass spectrometry. *BioRxiv*
466 <https://doi.org/10.1101/138594>.

467 26. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
468 Illumina sequence data. *Bioinformatics* 30:2114–20.

469 27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
470 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler
471 G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and
472 its applications to single-cell sequencing. *J Comput Biol.* 2012;19:455-77.

473 28. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics.*
474 2014;30:2068-9.

475 29. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR,
476 Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in *Escherichia coli*:
477 an evolutionary perspective. *Mol Microbiol.* 60:1136-1151.

478 30. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O,
479 Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance
480 genes. *J Antimicrob Chemother.* 2012;67:2640-4.

481 31. Alexeyev MF. 1999. The pKNOCK series of broad-host-range mobilizable suicide
482 vectors for gene knockout and targeted DNA insertion into the chromosome of
483 Gram-negative bacteria. *BioTechniques* 26:824-828.

484 32. Pridmore RD. 1987. New and versatile cloning vectors with kanamycin-resistance
485 marker. *Gene.* 56:309-12.

Table 1. MIC ($\mu\text{g.ml}^{-1}$) of cefalexin against *E. coli* isolates and mutant derivatives.

PSA	PSA (M)	ATCC25922	ATCC25922 (M)	EC17	EC17 (M)	ATCC25922 <i>ompF</i>	ATCC25922 <i>rseA</i>	ATCC25922 <i>gmhB</i>	Farm-1	Farm-2	UTI-1	UTI-2
16	32	16	32	8	32	32	64	64	64	64	32	32

“M” designates mutants selected for growth on cefalexin.

Shaded values represent resistant based on CLSI breakpoints (23), otherwise susceptible.

Table 2. LC-MS/MS proteomic comparisons of porin proteins and DegP abundance in *E. coli* isolates versus cefalexin resistant mutant derivatives.

	OmpF			OmpC			OmpA			DegP		
	Mean	SEM	P (WT/M)									
PSA	0.23	0.05		5.93	1.00		3.24	0.32		0.06	0.01	
PSA (M)	0.00	0.00	0.005	0.17	0.04	0.002	3.69	0.74	>0.25	0.03	0.01	0.03
ATCC25922	1.69	0.10		1.66	0.26		5.55	0.41		0.08	0.01	
ATCC25922 (M)	0.29	0.14	0.0006	0.24	0.05	0.003	1.00	0.17	0.0003	0.54	0.10	0.005
EC17	1.15	0.15		2.49	0.50		3.79	0.29		0.17	0.03	
EC17 (M)	0.39	0.16	0.01	2.25	0.66	>0.25	4.47	0.78	>0.25	0.74	0.10	0.003

Abundance relative to total ribosomal proteins is presented for each protein, n=3 biological replicates for each isolate/mutant. Raw data are presented in **tables S1-S3**.

Table 3. Influence of *ompF*, *rseA* and *ompR* mutations on late generation cephalosporin and carbapenem MICs against *E. coli* producing CTX-M variants.

Strain Name	MIC $\mu\text{g.ml}^{-1}$				
	Cefepime	Cefquinome	Ceftazidime	Ceftiofur	Ertapenem
ATCC25922(pK18)	0.25	0.125	0.25	0.25	0.016
ATCC25922(pK18) CTX-M-1	>128	>128	16	>128	0.0625
ATCC25922(pK18) CTX-M-15	>128	>128	32	>128	0.125
ATCC25922(pK18) CTX-M-14	64	>128	2	>128	0.0313
ATCC25922(pK18) <i>ompF</i>	0.25	0.125	0.5	0.5	0.016
ATCC25922(pK18) <i>ompF</i> CTX-M-1	>128	>128	32	>128	0.25
ATCC25922(pK18) <i>ompF</i> CTX-M-15	>128	>128	64	>128	0.5
ATCC25922(pK18) <i>ompF</i> CTX-M-14	>128	>128	4	>128	0.0313
ATCC25922(pK18) <i>rseA</i>	0.25	0.25	0.5	0.5	0.0313
ATCC25922(pK18) <i>rseA</i> CTX-M-1	>128	>128	16	>128	0.5
ATCC25922(pK18) <i>rseA</i> CTX-M-15	>128	>128	32	>128	0.5
ATCC25922(pK18) <i>rseA</i> CTX-M-14	>128	>128	4	>128	0.125
PSA	0.125	0.125	0.5	0.25	0.016
PSA CTX-M-1	>128	>128	32	>128	0.125
PSA CTX-M-15	>128	>128	32	>128	0.25
PSA CTX-M-14	128	>128	8	>128	0.0313
PSA (M) (<i>ompR</i>)	0.125	0.25	0.5	0.5	0.0625
PSA (M) (<i>ompR</i>) CTX-M-1	>128	>128	16	>128	1
PSA (M) (<i>ompR</i>) CTX-M-15	>128	>128	16	>128	1
PSA (M) (<i>ompR</i>) CTX-M-14	>128	>128	4	>128	0.5

CTX-M variants were delivered on natural plasmids by conjugation. Plasmid pK18 (32) was added to provide a marker (kanamycin resistance) to allow selection for recipients in conjugation. Isolate PSA is fluoroquinolone resistant, so this was not necessary. Shading is “non-susceptible” (resistant or intermediate) according to CLSI breakpoints (23).

