

Calcium dependence of neurotransmitter release at a high fidelity synapse

Abdelmoneim Eshra¹, Hartmut Schmidt¹, Jens Eilers¹, and Stefan Hallermann^{1, #}

¹ Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany

Correspondence: hallermann@medizin.uni-leipzig.de

1 **Abstract**

2 The Ca^{2+} -dependence of the recruitment, priming, and fusion of synaptic vesicles are
3 fundamental parameters controlling neurotransmitter release and synaptic plasticity.
4 Despite intense efforts, these important steps in the synaptic vesicles' cycle remain poorly
5 understood because disentangling recruitment, priming, and fusion of vesicles is
6 technically challenging. Here, we investigated the Ca^{2+} -sensitivity of these steps at
7 cerebellar mossy fiber synapses, which are characterized by fast vesicle recruitment
8 mediating high-frequency signaling. We found that the basal free Ca^{2+} concentration
9 ($<200 \text{ nM}$) critically controls action potential-evoked release, indicating a high-affinity Ca^{2+}
10 sensor for vesicle priming. Ca^{2+} uncaging experiments revealed a surprisingly shallow
11 and non-saturating relationship between release rate and intracellular Ca^{2+} concentration
12 up to $50 \mu\text{M}$. Sustained vesicle recruitment was Ca^{2+} -independent. Finally, quantitative
13 mechanistic release schemes with five Ca^{2+} binding steps incorporating rapid vesicle
14 recruitment via parallel or sequential vesicle pools could explain our data. We thus show
15 that co-existing high and low-affinity Ca^{2+} sensors mediate recruitment, priming, and
16 fusion of synaptic vesicles at a high-fidelity synapse.

17 **Introduction**

18 During chemical synaptic transmission Ca^{2+} ions diffuse through voltage-gated Ca^{2+}
19 channels, bind to Ca^{2+} sensors, and thereby trigger the fusion of neurotransmitter-filled
20 vesicles (Südhof, 2012). The Ca^{2+} -sensitivity of synaptic release is one of the most
21 fundamental parameters influencing our understanding of fast neurotransmission.
22 However, the Ca^{2+} -sensitivity of the recruitment, priming, and fusion of synaptic vesicles
23 is difficult to determine due to the large spatial gradients of the Ca^{2+} concentration, which
24 occurs during Ca^{2+} influx through the Ca^{2+} channels. While the basal free intracellular
25 Ca^{2+} concentration is $\sim 50 \text{ nM}$, Ca^{2+} microdomains around the Ca^{2+} channels reach
26 concentrations above $100 \text{ }\mu\text{M}$ (Llinás et al., 1992). The technical development of caged
27 Ca^{2+} compounds (Kaplan and Ellis-Davies, 1988) allows to experimentally elevate the
28 Ca^{2+} concentration homogenously by photolysis and thus the direct measurement of the
29 Ca^{2+} -sensitivity of vesicle fusion (reviewed by Neher, 1998; Kochubey et al., 2011). First
30 experiments with this technique at retinal bipolar cells of goldfish found a very low
31 sensitivity of the release sensors with a half saturation at $\sim 100 \text{ }\mu\text{M}$ Ca^{2+} concentration
32 and a fourth to fifth order relationship between Ca^{2+} concentration and neurotransmitter
33 release (Heidelberger et al., 1994), similar to previous estimates at the squid giant
34 synapse (Adler et al., 1991; Llinás et al., 1992). Subsequent work at other preparations
35 showed different dose-response curves. For example, analysis of a central excitatory
36 synapse, the calyx of Held (Forsythe, 1994) at a young pre-hearing age, found a much
37 higher affinity with significant release below $5 \text{ }\mu\text{M}$ intracellular Ca^{2+} concentration and
38 similar slope of the dose-response curve (Bollmann et al., 2000; Lou et al., 2005;
39 Schneggenburger and Neher, 2000; Sun et al., 2007). Further developmental analysis of
40 the calyx of Held comparing the Ca^{2+} -sensitivity of the release sensors at the age of P9
41 to P12-P15 (Kochubey et al., 2009) and P9 to P16-P19 (Wang et al., 2008) showed a
42 developmental decrease in the Ca^{2+} -sensitivity of vesicle fusion at the calyx of Held. A
43 recent study at another excitatory central synapse, the hippocampal mossy fiber bouton,
44 observed a high Ca^{2+} -sensitivity of vesicle fusion in rather mature rats (P18–30; Fukaya
45 et al., 2021), however the release rates in that study were not tested above $20 \text{ }\mu\text{M}$ Ca^{2+}
46 concentration. Analysis at an inhibitory central synapse revealed a high-affinity Ca^{2+}
47 sensor and in addition a profoundly Ca^{2+} -dependent priming step (Sakaba, 2008).

48 Moreover, analysis of the Ca^{2+} -dependence of neurotransmitter release revealed a more
49 shallow relationship between the rate of exocytosis and Ca^{2+} concentration at the sensory
50 neurons of the rod photoreceptors (Duncan et al., 2010; Thoreson et al., 2004), and an
51 absence of vesicle fusion below 7 μM Ca^{2+} concentration at the cochlear inner hair cells
52 (Beutner et al., 2001).

53 Measuring the Ca^{2+} -sensitivity of vesicle fusion is technically challenging and
54 methodological errors could contribute to the differing Ca^{2+} -sensitivity of various types of
55 synapses. However, synapses show type-specific functional and structural differences
56 (Atwood and Karunianithi, 2002; Nusser, 2018; Zhai and Bellen, 2004), which may lead to
57 distinct Ca^{2+} -sensitivities. Moreover, the rate at which new vesicles are recruited to empty
58 release sites seems to be particularly different between synapses. The cerebellar mossy
59 fiber bouton (cMFB) conveys high-frequency sensory information to the cerebellar cortex
60 relying on extremely fast vesicle recruitment (Miki et al., 2020; Ritzau-Jost et al., 2014;
61 Saviane and Silver, 2006). One aim of this study was therefore to determine the Ca^{2+} -
62 sensitivity of vesicle fusion at mature cMFBs synapses at physiological temperature, and
63 to test whether and how the prominent fast vesicle recruitment affects the Ca^{2+} -
64 dependence of exocytosis at this synapse.

65 Compared with the Ca^{2+} -sensitivity of vesicle fusion, the Ca^{2+} -sensitivity of the vesicle
66 recruitment and priming steps preceding fusion is even less well understood. While some
67 studies at cMFBs proposed Ca^{2+} -independent vesicle recruitment (Hallermann et al.,
68 2010; Saviane and Silver, 2006), evidence for Ca^{2+} -dependent steps preceding the fusion
69 have been observed at several types of synapses (Awatramani et al., 2005; Doussau et
70 al., 2017; Hosoi et al., 2007; Millar et al., 2005; Pan and Zucker, 2009; Sakaba, 2008).
71 However, the dissection of vesicle recruitment, priming, and fusion is in general
72 technically challenging. Therefore, we aimed to quantify the Ca^{2+} -dependence of vesicle
73 recruitment and priming at cMFBs by direct modification of the free intracellular Ca^{2+}
74 concentration.

75 Our data revealed a strong dependence of the number of release-ready vesicles on basal
76 Ca^{2+} concentrations between 30 and 180 nM, a significant release below 5 μM , and an
77 apparent shallow dose-response curve in the studied Ca^{2+} concentration range of
78 1-50 μM . Computational simulations incorporating mechanistic release schemes with five
79 Ca^{2+} binding steps and fast vesicle recruitment via sequential or parallel pools of vesicles
80 could explain our data. Our results show the co-existence of Ca^{2+} sensors with high- and
81 low-affinities that cover a large range of intracellular Ca^{2+} concentrations and mediate fast
82 signaling at this synapse.

83 **Materials and Methods**

84 **Preparation**

85 Animals were treated in accordance with the German Protection of Animals Act and with
86 the guidelines for the welfare of experimental animals issued by the European
87 Communities Council Directive. Acute cerebellar slices were prepared from mature P35–
88 P42 C57BL/6 mice of either sex as previously described (Hallermann et al., 2010).
89 Isoflurane was used to anesthetize the mice which were then sacrificed by decapitation.
90 The cerebellar vermis was quickly removed and mounted in a chamber filled with chilled
91 extracellular solution. 300- μm -thick parasagittal slices were cut using a Leica VT1200
92 microtome (Leica Microsystems), transferred to an incubation chamber at 35 °C for ~30
93 min, and then stored at room temperature until use. The extracellular solution for slice
94 cutting and storage contained (in mM) the following: NaCl 125, NaHCO_3 25, glucose 20,
95 KCl 2.5, 2, NaH_2PO_4 1.25, MgCl_2 1 (310 mOsm, pH 7.3 when bubbled with Carbogen [5%
96 (vol/vol) O_2 /95% (vol/vol) CO_2]). All recordings were restricted to lobules IV–V of the
97 cerebellar vermis to reduce potential functional heterogeneity among different lobules
98 (Straub et al., 2020).

99 **Presynaptic recordings and flash photolysis**

100 All recordings were performed at physiological temperature by setting the temperature in
101 the center of the recording chamber with immersed objective to 36°C using a TC-324B
102 perfusion heat controller (Warner Instruments, Hamden, CT, United States). Presynaptic
103 patch-pipettes were from pulled borosilicate glass (2.0/1.0 mm outer/inner diameter;

104 Science Products) to open-tip resistances of 3-5 M Ω (when filled with intracellular
105 solution) using a DMZ Puller (Zeitz-Instruments, Munich, Germany). Slices were
106 superfused with artificial cerebrospinal fluid (ACSF) containing (in mM): NaCl 105,
107 NaHCO₃ 25, glucose 25, TEA 20, 4-AP 5, KCl 2.5, CaCl₂ 2, NaH₂PO₄ 1.25, MgCl₂ 1, and
108 tetrodotoxin (TTX) 0.001, equilibrated with 95% O₂ and 5% CO₂. Cerebellar mossy fiber
109 boutons (cMFBs) were visualized with oblique illumination and infrared optics (Ritzau-
110 Jost et al., 2014). Whole-cell patch-clamp recordings of cMFBs were performed using a
111 HEKA EPC10/2 amplifier controlled by Patchmaster software (HEKA Elektronik,
112 Lambrecht, Germany). The intracellular solution contained (in mM): CsCl 130, MgCl₂ 0.5,
113 TEA-Cl 20, HEPES 20, Na₂ATP 5, NaGTP 0.3. For Ca²⁺ uncaging experiments, equal
114 concentrations of DM-nitrophen (DMn) and CaCl₂ were added depending on the aimed
115 post-flash Ca²⁺ concentration, such that either 0.5, 2, or 10 mM was used for low, middle,
116 or high target range of post-flash Ca²⁺ concentration, respectively (Supplementary Table
117 1). To quantify post-flash Ca²⁺ concentration with a previously established dual indicator
118 method (see below; Delvendahl et al., 2015; Sabatini et al., 2002), Atto594, OGB-5N, and
119 Fluo-5F were used at concentrations as shown in (Supplementary Table 1).

	weak Ca ²⁺ elevation	middle Ca ²⁺ elevation	strong Ca ²⁺ elevation
UV illumination			
Duration (ms)	0.1 or 1	0.1	0.1 or 0.2
Intensity (%)	10 - 100	20 - 100	100
Concentration in intracellular solution (mM)			
ATTO 594	0.010	0.020	0.020
Fluo 5F	0.050	0	0
OGB 5N	0	0.200	0.200
CaCl ₂	0.500	2.000	10.000
DM-N	0.500	2.000	10.000
Obtained peak post-flash Ca²⁺ (μM)			
Min	1.1	2.7	15.7

Max	7.1	36.0	62.6
Median	2.4	8.8	25.1
Simulated uncaging fraction of DMn			
α	0.08-0.5	0.15-0.55	0.14-0.25

120 **Supplementary Table 1 Parameters for weak, middle, and strong post-flash Ca^{2+} elevations**

121 A 50 mM solution stock of DMn was prepared by neutralizing 50 mM DMn in H_2O with
122 200 mM CsOH in H_2O . The purity of each DMn batch was determined in the intracellular
123 solution used for patching through titration with sequential addition of Ca^{2+} as previously
124 described (Schneggenburger, 2005) and by measuring the Ca^{2+} concentration using the
125 dual indicator method with 10 μM Atto594 and 50 μM OGB1 (Delvendahl et al., 2015).

126 After waiting for at least one minute in whole-cell mode to homogenously load the terminal
127 with intracellular solution, capacitance measurements were performed at a holding
128 potential of -100 mV with sine-wave stimulation (5 kHz or 10 kHz frequency and ± 50 mV
129 amplitude; Hallermann et al., 2003). During the ongoing sine-wave stimulation, a UV laser
130 source (375 nm, 200 mW, Rapp OptoElectronic) was used to illuminate the whole
131 presynaptic terminal. According to a critical illumination, the end of the light guide of the
132 UV laser was imaged into the focal plan resulting in a homogeneous illumination in a
133 circular area of ~ 30 μm diameter (Fig. 2 – figure supplement 1). The duration of the UV
134 illumination was 100 μs controlled with sub-microsecond precision by an external
135 triggering of the laser source. In capacitance measurements with 10 kHz sine wave
136 frequency, longer pulses of 200 μs were used to reach high Ca^{2+} levels. In a subset of
137 experiments, UV pulses of 1 ms were used to rule out fast undetectable Ca^{2+} overshoots
138 (Bollmann et al., 2000; Fig. 3 – figure supplement 3). The UV flash intensity was set to
139 100% and reduced in some experiments (10 – 100%) to obtain small elevations in Ca^{2+}
140 concentrations (Supplementary Table 1). All chemicals were from Sigma-Aldrich. Atto594
141 was purchased from Atto-Tec, Ca^{2+} -sensitive fluorophores from Life Technologies, and
142 DMn from Synaptic Systems.

143 **Paired Recordings between cMFBs and GCs**

144 For paired pre- and postsynaptic recordings, granule cells (GCs) were whole-cell voltage-
145 clamped with intracellular solution containing the following (in mM): K-gluconate 150,
146 NaCl 10, K-HEPES 10, MgATP 3 and Na-GTP 0.3 (300–305 mOsm, pH adjusted to 7.3
147 with KOH). 10 μ M Atto594 was included to visualize the dendrites of the GCs (Ritzau-
148 Jost et al., 2014). After waiting sufficient time to allow for the loading of the dye, the GC
149 dendritic claws were visualized through two-photon microscopy, and subsequently,
150 cMFBs near the dendrites were identified by infrared oblique illumination and were
151 patched and loaded with caged Ca^{2+} and fluorescent indicators as previously described.
152 The reliable induction of an EPSC in the GC was used to unequivocally confirm a cMFB-
153 GC synaptic connection. In a subset of the Ca^{2+} uncaging experiments, simultaneous
154 presynaptic capacitance and postsynaptic EPSC recordings were performed from GC
155 and cMFB, respectively.

156 **Clamping intracellular basal Ca^{2+} concentrations**

157 The intracellular solution for presynaptic recordings of the data shown in Fig. 1 contained
158 the following in mM: K-gluconate 150, NaCl 10, K-HEPES 10, MgATP 3, Na-GTP 0.3.
159 With a combination of EGTA and CaCl_2 (5 mM EGTA / 0.412 mM CaCl_2 or 6.24 mM EGTA
160 / 1.65 mM CaCl_2), we aimed to clamp the free Ca^{2+} concentration to low and high resting
161 Ca^{2+} concentrations of ~50 or ~200 nM, respectively, while maintaining a free EGTA
162 concentration constant at 4.47 mM. The underlying calculations were based on a Ca^{2+}
163 affinity of EGTA of 543 nM (Lin et al., 2017). The resulting free Ca^{2+} concentration was
164 quantified with the dual indicator method (see below) and was found to be to ~30 or ~180
165 nM, respectively (Fig. 1A).

166 **Quantitative two-photon Ca^{2+} imaging**

167 For the quantification of Ca^{2+} signals elicited through UV flash-induced uncaging, two-
168 photon Ca^{2+} imaging was performed as previously described (Delvendahl et al., 2015)
169 using a Femto2D laser-scanning microscope (Femtonics) equipped with a pulsed
170 Ti:Sapphire laser (MaiTai, SpectraPhysics) adjusted to 810 nm, a 60 \times /1.0 NA objective
171 (Olympus), and a 1.4 NA oil-immersion condenser (Olympus). Data were acquired by

172 doing line-scans through the cMFB. To correct for the flash-evoked luminescence from
173 the optics, the average of the fluorescence from the line-scan in an area outside of the
174 bouton was subtracted from the average of the fluorescence within the bouton (Fig. 2B).
175 Imaging data were acquired and processed using MES software (Femtonics). Upon
176 releasing Ca^{2+} from the cage, we measured the increase in the green fluorescence signal
177 of the Ca^{2+} sensitive indicator (OGB-5N or Fluo-5F) and divided it by the fluorescence of
178 the Ca^{2+} insensitive Atto594 (red signal). The ratio (R) of green-over-red fluorescence
179 was translated into a Ca^{2+} concentration through the following calculation (Yasuda et al.,
180 2004).

181

$$[\text{Ca}^{2+}] = K_D \frac{(R - R_{min})}{(R_{max} - R)}$$

182 To avoid pipetting irregularities, which might influence the quantification of the
183 fluorescence signals, pre-stocks of Ca^{2+} -sensitive and Ca^{2+} -insensitive indicators were
184 used. For each pre-stock and each intracellular solution, 10 mM EGTA or 10 mM CaCl_2
185 were added to measure minimum (R_{min}) and maximum (R_{max}) fluorescence ratios,
186 respectively. We performed these measurements in cMFBs and GCs as well as in
187 cuvettes. Consistent with a previous report (Delvendahl et al., 2015), both R_{min} and R_{max}
188 were higher when measured in cells than in cuvettes (by a factor of 1.73 ± 0.05 ; $n = 83$
189 and 63 measurements *in situ* and in cuvette; Fig. 3 – figure supplement 2A). The values
190 in cMFBs and GCs were similar (Fig. 3 – figure supplement 2B). OGB-5N is not sensitive
191 in detecting Ca^{2+} concentrations less than 1 μM . Therefore, we deliberately adjusted R_{min}
192 of OGB-5N in the recordings where the pre-flash Ca^{2+} had negative values, to a value
193 resulting in a pre-flash Ca^{2+} concentration of 60 nM, which corresponds to the average
194 resting Ca^{2+} concentration in these boutons (Delvendahl et al., 2015). This adjustment of
195 R_{min} resulted in a reduction of post-flash Ca^{2+} amplitudes of on average $7.5 \pm 0.4\%$ ($n = 37$).
196 Without this adjustment, the estimated K_D of the Ca^{2+} sensors for release would be
197 even slightly higher.

198 The fluorescence properties of DMn change after flash photolysis, and the Ca^{2+} sensitive
199 and insensitive dyes can differentially bleach during UV flash (Schneggenburger, 2005;

200 Zucker, 1992). We assumed no effect of the UV flash on the K_D of the Ca^{2+} sensitive dyes
201 (Escobar et al., 1997), and measured R_{\min} and R_{\max} before and after the flash for each
202 used UV flash intensity and duration in each of the three solutions (Supplementary
203 Table 1; Schneggenburger et al., 2000). The flash-induced change was strongest for R_{\max}
204 of solutions with OGB-5N, but reached only ~20% with the strongest flashes (Fig. 3 –
205 figure supplement 2C - 2F).

206 **Deconvolution**

207 Deconvolution of postsynaptic currents was performed essentially as described by
208 Ritzau-Jost et al. (2014), based on routines developed by Neher and Sakaba (2001b).
209 The principle of this method is that the EPSC comprises currents induced by synchronous
210 release and residual glutamate in the synaptic cleft due to delayed glutamate clearance
211 and glutamate spill-over from neighboring synapses. Kynurenic acid (2 mM) and
212 Cyclothiazide (100 μM) were added to the extracellular solution to reduce postsynaptic
213 receptor saturation and desensitization, respectively. The amplitude of the miniature
214 EPSC (mEPSC) was set to the mean value of 10.1 pA ($10.1 \pm 0.2 \text{ pA}$; $n = 8$) as measured
215 in 2 mM kynurenic acid and 100 μM cyclothiazide.

216 The deconvolution kernel had the following free parameters: the mEPSC early slope τ_0 ,
217 the fractional amplitude of the slow mEPSC decay phase α , the time constant of the slow
218 component of the decay τ_2 of the mEPSC, the residual current weighting factor β , and the
219 diffusional coefficient d . Applying the “fitting protocol” described by Neher and Sakaba
220 (2001b) before flash experiments might affect the number of vesicles released by
221 subsequent Ca^{2+} uncaging. On the other hand, applying the “fitting protocol” after Ca^{2+}
222 uncaging might overestimate the measured number of vesicles due to flash-induced
223 toxicity and synaptic fatigue especially when applying strong Ca^{2+} uncaging. Therefore,
224 we used the experiments with weak and strong flashes to extract the mini-parameters
225 and the parameters for the residual current, respectively, as described in the following in
226 more detail. To obtain the mini parameters (early slope, α , and τ_2) using weak flashes,
227 deconvolution was first performed with a set of trial parameters for each cell pair. The
228 mini-parameters of the deconvolution were optimized in each individual recording to yield

229 low (but non-negative) step-like elevations in the cumulative release corresponding to
230 small EPSCs measured from the postsynaptic terminal (the parameters for the residual
231 current had little impact on the early phase of the cumulative release rate within the first
232 5 ms, therefore, some reasonable default values for the parameters of the residual current
233 were used while iteratively adjusting the fast mini parameters for each individual
234 recording). Next, using the average of the mini-parameters obtained from weak flashes,
235 the deconvolution parameters for the residual current (β and d) were optimized in each
236 recording with strong flashes until no drops occurred in the cumulative release in the
237 range of 5 – 50 ms after the stimulus (while iteratively readjusting the mini parameters, if
238 needed, to avoid any drops in the cumulative release in the window of 5 - 10 ms that
239 might arise when adjusting the slow parameters based on the cumulative release in the
240 range of 5 – 50 ms). Finally, we averaged the values of each parameter and the
241 deconvolution analysis of all recordings was re-done using the average parameters
242 values. To test the validity of this approach, cumulative release from deconvolution of
243 EPSCs and presynaptic capacitance recordings were compared in a subset of paired
244 recordings (Ritzau-Jost et al., 2014). Exponential fits to the cumulative release and the
245 presynaptic capacitance traces provided average time constants of 2.43 ± 0.81 and 2.65 ± 0.88 ms,
246 respectively ($n = 9$ pairs). On a paired-wise comparison, the difference in the
247 time constant was always less than 40%. Therefore, both approaches yielded similar
248 results.

249 To measure the number of GCs connected by one cMFB, we compared the product of
250 the amplitude and the inverse of the time constant of the exponential fits of presynaptic
251 capacitance trace and the simultaneously measured cumulative release trace obtained
252 by deconvolution analysis of EPSC. Assuming a capacitance of 70 aF per vesicle
253 (Hallermann 2003), we obtained an average value of 90.1 GCs per MFB in close
254 agreement with previous estimates using a similar approach (Ritzau-Jost et al., 2014).
255 This connectivity ratio is larger than previous estimates (~10, Billings et al., 2014; ~50,
256 Jakab and Hamori, 1988) which could be due to a bias towards larger terminals, ectopic
257 vesicle release, postsynaptic rundown, or release onto Golgi cells.

258 **Measurement of Ca^{2+} concentration using a Ca^{2+} -sensitive electrode**

259 A precise estimation of the binding affinity of the Ca^{2+} sensitive dyes is critical in
260 translating the fluorescence signals into Ca^{2+} concentration. It has been reported that the
261 K_D of fluorescent indicators differs significantly depending on the solution in which it is
262 measured (Tran et al., 2018) due to potential differences in ionic strength, pH, and
263 concentration of other cations. Accordingly, different studies have reported different
264 estimates of the K_D of OGB-5N having an up to 8-fold variability (Delvendahl et al., 2015;
265 Digregorio and Vergara, 1997; Neef et al., 2018). In these studies, the estimation of the
266 K_D of the Ca^{2+} sensitive dyes depended on the estimated K_D of the used Ca^{2+} chelator,
267 which differs based on the ionic strength, pH, and temperature of the solution used for
268 calibration. So, we set out to measure the K_D of OGB-5N, in the exact solution and
269 temperature which we used during patching, through direct potentiometry using an ion-
270 selective electrode combined with two-photon Ca^{2+} imaging. An ion-selective electrode
271 for Ca^{2+} ions provides a direct readout of the free Ca^{2+} concentration independent of the
272 K_D of the used Ca^{2+} chelator. Using the same intracellular solution and temperature as
273 used during experiments, the potential difference between the Ca^{2+} -sensitive electrode
274 (ELIT 8041 PVC membrane, NICO 2000) and a single junction silver chloride reference
275 electrode (ELIT 001n, NICO 2000) was read out with a pH meter in mV mode. A series
276 of standard solutions, with defined Ca^{2+} concentration (Thermo Fisher) covering the
277 whole range of our samples, were used to plot a calibration curve of the potential (mV)
278 versus Ca^{2+} concentration (μM). Then, the potential of several sample solutions
279 containing the same intracellular solution used for patching, but with different Ca^{2+}
280 concentrations buffered with EGTA, was determined. This way, we got a direct measure
281 of the free Ca^{2+} concentration of several sample solutions, which were later used after
282 the addition of Ca^{2+} sensitive fluorometric indicators to plot the fluorescence signal of
283 each solution versus the corresponding free Ca^{2+} concentration verified by the Ca^{2+} -
284 sensitive electrode, and accordingly the K_D of the Ca^{2+} indicators were obtained from fits
285 with Hill equation. The estimated K_D was two-fold higher than the estimate obtained using
286 only the Ca^{2+} Calibration Buffer Kit (Thermofischer) without including intracellular
287 patching solution (Fig. 3 – figure supplement 1). Comparable results were obtained when
288 estimating the free Ca^{2+} concentration using Maxchelator software

289 (https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/). Therefore, we
290 used two independent approaches to confirm the K_D of OGB-5N. We found that TEA
291 increased the potential of the solutions measured through the Ca^{2+} -sensitive electrode,
292 which is consistent with a previous report showing a similar effect of quaternary
293 ammonium ions on potassium sensitive microelectrodes (Neher and Lux, 1973). We
294 compared the fluorescence signals of our samples with or without TEA, to check if this
295 effect of TEA is due to an interaction with the electrode or due to an effect on the free
296 Ca^{2+} concentration, and found no difference. Therefore, TEA had an effect on the
297 electrode read-out without affecting the free Ca^{2+} , and accordingly, TEA was removed
298 during the potentiometric measurements (Fig. 3 – figure supplement 1). This resulted in
299 a good agreement of the estimates of the free Ca^{2+} concentration measured using a
300 Ca^{2+} -sensitive electrode and those calculated via Maxchelator.

301 **Assessment of the UV energy profile**

302 The homogeneity of the UV laser beam at the specimen plane was assessed *in vitro* by
303 uncaging fluorescein (CMNB-caged fluorescein, Invitrogen). Caged fluorescein (2 mM)
304 was mixed with glycerol (5% caged fluorescein/ 95% glycerol) to limit the mobility of the
305 released dye (Bollmann et al., 2000). We did the measurements at the same plane as
306 we put the slice during an experiment. The fluorescence profile of the dye after being
307 released from the cage was measured at different z-positions over a range of 20 μm .
308 The intensity of fluorescein was homogenous over an area of 10 $\mu\text{m} \times 10 \mu\text{m}$ which
309 encompasses the cMFB.

310 **Data analysis**

311 The increase in membrane capacitance and in cumulative release based on
312 deconvolution analysis was fitted with the following single or bi-exponential functions
313 using Igor Pro (WaveMetrics) including a baseline and a variable onset.

315

$$314 f_{mono}(t) = \begin{cases} 0 & \text{if } t < d, \\ a \left(1 - \exp\left[-\frac{(t-d)}{\tau}\right]\right) & \text{if } t \geq d \end{cases} \quad (\text{eq. 1})$$

322
$$f_{bi}(t) = \begin{cases} 0 & \text{if } t < d, \\ a \left(1 - a_1 \exp \left[-\frac{(t-d)}{\tau_1} \right] - (1 - a_1) \exp \left[-\frac{(t-d)}{\tau_2} \right] \right) & \text{if } t \geq d \end{cases}$$

323

316 where d defines the delay, a the amplitude, τ the time constant of the mono-exponential
317 fit, τ_1 and τ_2 the time constant of the fast and slow component of the bi-exponential fit,
318 respectively, and a_1 the relative contribution of the fast component of the bi-exponential
319 fit. The fitting of the release traces was always done with a time window of 5 ms before
320 and 10 ms after flash onset. If the time constant of the mono-exponential fit exceeded 10
321 ms, a longer fitting duration of 60 ms after flash onset was used.

324 The acceptance of a bi-exponential fit was based on the fulfillment of the following three
325 criteria: (1) at least 4% decrease in the sum of squared differences between the
326 experimental trace and the fit compared with a mono-exponential fit ($\chi^2_{\text{mono}}/\chi^2_{\text{bi}} > 1.04$),
327 (2) the time constants of the fast and the slow components differed by a factor >3 , and
328 (3) the relative contribution of each component was $>10\%$ (i.e. $0.1 < a_1 < 0.9$). If any of
329 these criteria was not met, a mono-exponential function was used instead. In the case of
330 weak flashes, where we could observe single quantal events within the initial part of the
331 EPSC, mono-exponential fits were applied. In Fig. 1, bi-exponential functions were used
332 to fit the decay of the EPSC and the weighted time constants were used.

333 Hill equations were used to fit the release rate versus intracellular Ca^{2+} concentration on
334 a double logarithmic plot according to the following equation:

335
$$H(x) = \text{Log} \left[V_{\text{max}} \frac{1}{1 + \left(\frac{K_D}{10^x} \right)^n} \right] \quad (\text{eq. 2})$$

336 where Log is the decadic logarithm, V_{max} the maximal release rate, K_D the Ca^{2+}
337 concentration at the half-maximal release rate, and n the Hill coefficient. $H(x)$ was fit on
338 the decadic logarithm of the release rates and x was the decadic logarithm of the
339 intracellular Ca^{2+} concentration.

340 **Modeling of intra-bouton Ca^{2+} dynamics**

341 We simulated the intra-bouton Ca^{2+} dynamics using a single compartment model. The
342 kinetic reaction schemes for Ca^{2+} and Mg^{2+} uncaging and -binding (Fig. 6A) were
343 converted to a system of ordinary differential equations (ODEs) that was numerically
344 solved using the NDSolve function in Mathematica 12 (Wolfram) as described previously
345 (Bornstein et al., 2019). The initial conditions for the uncaging simulation were derived
346 by first solving the system of ODEs for the steady state using total concentrations of all
347 species and the experimentally determined $[\text{Ca}^{2+}]_{\text{rest}}$ as starting values. Subsequently,
348 the values obtained for all free and bound species were used as initial conditions for the
349 uncaging simulation. The kinetic properties of DMn were simulated according to Faas et
350 al. (2005, 2007). The total DMn concentration ($[\text{DMn}]_T$) includes the free form ($[\text{DMn}]_f$),
351 the Ca^{2+} bound form ($[\text{CaDMn}]_f$), and the Mg^{2+} bound form ($[\text{MgDMn}]_f$). Each of these
352 forms is subdivided into an uncaging fraction (α) and a non-uncaging fraction ($1-\alpha$). The
353 uncaging fraction were further subdivided into a fast (af) and a slow (1-af) uncaging
354 fraction:

355 $[\text{DMn}]_T = [\text{DMn}]_f + [\text{DMn}]_s + [\text{CaDMn}]_f + [\text{CaDMn}]_s + [\text{MgDMn}]_f + [\text{MgDMn}]_s$

356 $[\text{DMn}] = [\text{DMn}]_f + [\text{DMn}]_s$

357 $[\text{DMn}]_f = \alpha \text{ af} [\text{DMn}]$

358 $[\text{DMn}]_s = \alpha (1-\text{af}) [\text{DMn}]$

359 $[\text{CaDMn}] = [\text{CaDMn}]_f + [\text{CaDMn}]_s$

360 $[\text{CaDMn}]_f = \alpha \text{ af} [\text{CaDMn}]$

361 $[\text{CaDMn}]_s = \alpha (1-\text{af}) [\text{CaDMn}]$

362 $[\text{MgDMn}] = [\text{MgDMn}]_f + [\text{MgDMn}]_s$

363 $[\text{MgDMn}]_f = \alpha \text{ af} [\text{MgDMn}]$

364 $[\text{MgDMn}]_s = \alpha (1-\text{af}) [\text{MgDMn}]$

365 The suffixes “T”, “f”, and “s” indicate total, fast or slow, respectively. The transition of fast
366 and slow uncaging fractions into low-affinity photoproducts (PP) occurred with fast (τ_f) or

367 slow (τ_s) time constants, respectively. Free Ca^{2+} or Mg^{2+} -bound DMn decomposed into
368 two photoproducts (PP1, PP2) differing with respect to their binding kinetics. The binding
369 kinetics of all species were governed by the corresponding forward (k_{on}) and backward
370 (k_{off}) rate constants

371

$$372 \frac{d[\text{CaDMn}]}{dt}_x = k_{on}[\text{Ca}][\text{DMn}]_x - k_{off}[\text{CaDMn}]_x - \frac{[\text{CaDMn}]_x}{\tau_x} H(t - t_{\text{flash}}) \quad x = f, s$$

373

$$374 \frac{d[\text{MgDMn}]}{dt}_x = k_{on}[\text{Mg}][\text{DMn}]_x - k_{off}[\text{MgDMn}]_x - \frac{[\text{MgDMn}]_x}{\tau_x} H(t - t_{\text{flash}}) \quad x = f, s$$

375

$$376 \frac{d[\text{DMn}]}{dt}_x = -k_{on}[\text{Ca}][\text{DMn}]_x + k_{off}[\text{CaDMn}]_x - k_{on}[\text{Mg}][\text{DMn}]_x + k_{off}[\text{MgDMn}]_x \\ 377 - \frac{[\text{DMn}]_x}{\tau_x} H(t - t_{\text{flash}}) \quad x = f, s$$

378

$$379 \frac{d[\text{CaPP1}]}{dt} = k_{on}[\text{Ca}][\text{PP1}] - k_{off}[\text{CaPP1}] \\ 380 + \frac{[\text{CaDMn}]_f}{\tau_f} H(t - t_{\text{flash}}) + \frac{[\text{CaDMn}]_s}{\tau_s} H(t - t_{\text{flash}})$$

381

$$382 \frac{d[\text{MgPP1}]}{dt} = k_{on}[\text{Mg}][\text{PP1}] - k_{off}[\text{MgPP1}]$$

383

$$384 \frac{d[\text{PP1}]}{dt} = -k_{on}[\text{Ca}][\text{PP1}] + k_{off}[\text{CaPP1}] - k_{on}[\text{Mg}][\text{PP1}] + k_{off}[\text{MgPP1}] \\ 385 + \frac{[\text{CaDMn}]_f}{\tau_f} H(t - t_{\text{flash}}) + \frac{[\text{CaDMn}]_s}{\tau_s} H(t - t_{\text{flash}})$$

386

$$387 \frac{d[\text{CaPP2}]}{dt} = k_{on}[\text{Ca}][\text{PP2}] - k_{off}[\text{CaPP2}]$$

388

$$389 \frac{d[\text{MgPP2}]}{dt} = k_{on}[\text{Mg}][\text{PP2}] - k_{off}[\text{MgPP2}] \\ 390 + \frac{[\text{MgDMn}]_f}{\tau_f} H(t - t_{\text{flash}}) + \frac{[\text{MgDMn}]_s}{\tau_s} H(t - t_{\text{flash}})$$

391

$$392 \frac{d[\text{PP2}]}{dt} = -k_{on}[\text{Ca}][\text{PP2}] + k_{off}[\text{CaPP2}] - k_{on}[\text{Mg}][\text{PP2}] + k_{off}[\text{MgPP2}]$$

$$393 \quad +2 \frac{[DMn]_f}{\tau_f} H(t - t_{\text{flash}}) + \frac{[DMn]_s}{\tau_s} H(t - t_{\text{flash}})$$

$$394 \quad + \frac{[MgDMn]_f}{\tau_f} H(t - t_{\text{flash}}) + \frac{[MgDMn]_s}{\tau_s} H(t - t_{\text{flash}})$$

395 where H is the Heaviside step function and t_{flash} the time of the UV flash. Ca^{2+} and Mg^{2+}
 396 binding to the dye, ATP, and an endogenous buffer (EB) were simulated by second order
 397 kinetics:

398

$$399 \quad \frac{d[Ca]}{dt}_{\text{buffer}} = -k_{on,j}[Ca][B] + k_{off,j}[CaB] \quad j = \text{dye, ATP, EB}$$

$$400 \quad \frac{d[Mg]}{dt} = -k_{on,j}[Mg][B] + k_{off,j}[MgB] \quad j = \text{ATP}$$

$$401 \quad \frac{d[B]}{dt} = -\frac{d[CaB]}{dt} - \frac{d[MgB]}{dt} \quad B = \text{dye, ATP, EB}$$

402 The time course of the total change Ca^{2+} concentration or Mg^{2+} concentration is given by
 403 the sum of all the above equations involving changes in Ca^{2+} concentration or Mg^{2+}
 404 concentration, respectively. Ca^{2+} concentration as reported by the dye was calculated
 405 from the concentration of the Ca^{2+} -dye complex assuming equilibrium conditions
 406 (Markram et al., 1998). The clearing of Ca^{2+} from the cytosol was not implemented in
 407 these simulations. Instead, the Ca^{2+} concentration was simulated only for 10 ms after the
 408 flash. The experimentally observed subsequent decay of the Ca^{2+} concentration was
 409 implemented by an exponential decay to the resting Ca^{2+} concentration with a time
 410 constant of 400 ms. The parameters of the model are given in Supplementary Table 2.

Parameters		Values	References number / Notes
Resting Ca^{2+}	$[\text{Ca}^{2+}]_{\text{rest}}$	$227 * 10^{-9} \text{ M}$	Measured
Total magnesium	$[\text{Mg}^{2+}]_T$	$0.5 * 10^{-3} \text{ M}$	Pipette concentration
Fluo-5F	$[\text{Fluo}]$	0 or $50 * 10^{-6} \text{ M}$ (see Supplementary Table 1)	Pipette concentration
	K_D	$0.83 * 10^{-6} \text{ M}$	(Delvendahl et al., 2015)

	k_{off}	249 s ⁻¹	ibid
	k_{on}	$3*10^8$ M ⁻¹ s ⁻¹	(Yasuda et al., 2004)
OGB-5N	[OGB]	0 or $200*10^{-6}$ M (see Supplementary Table 1)	Pipette concentration
	K_D	$24*10^{-6}$ M	(Delvendahl et al., 2015)
	k_{off}	6000 s ⁻¹	ibid.
	k_{on}	$2.5*10^8$ M ⁻¹ s ⁻¹	(Digregorio and Vergara, 1997)
ATP	[ATP]	$5 *10^{-3}$ M	Pipette concentration
Ca ²⁺ binding	K_D	$2*10^{-4}$ M	(Meinrenken et al., 2002)
	k_{off}	100 000 s ⁻¹	ibid.
	k_{on}	$5*10^8$ M ⁻¹ s ⁻¹	ibid.
Mg ²⁺ binding	K_D	$100*10^{-6}$ M	(Bollmann et al., 2000); MaxC
	k_{off}	1000 s ⁻¹	ibid.
	k_{on}	$1*10^7$ M ⁻¹ s ⁻¹	ibid.
Endogenous buffer	[EB]	$480 *10^{-6}$ M	(Delvendahl et al., 2015)
	K_D	$32*10^{-6}$ M	ibid
	k_{off}	16 000 s ⁻¹	ibid.
	k_{on}	$5*10^8$ M ⁻¹ s ⁻¹	ibid.
Total DM nitrophen	[DMn] _T	$500*10^{-6} - 10*10^{-3}$ M (see Supplementary Table 1)	Pipette concentration
Ca ²⁺ binding	K_D	$6.5*10^{-9}$ M	(Faas et al., 2005)
	k_{off}	0.19 s ⁻¹	ibid.
	k_{on}	$2.9*10^7$ M ⁻¹ s ⁻¹	ibid.
Mg ²⁺ binding	K_D	$1.5*10^{-6}$ M	ibid.
	k_{off}	0.2 s ⁻¹	ibid.
Uncaging fraction	α	See Supplementary Table 1	
Fast uncaging fraction	af	0.67	(Faas et al., 2005)
Photoproduct 1	[PP1]		
Ca ²⁺ binding	K_D	$2.38*10^{-3}$ M	(Faas et al., 2005)
	k_{off}	69 000 s ⁻¹	ibid.
	k_{on}	$2.9*10^7$ M ⁻¹ s ⁻¹	ibid.
Mg ²⁺ binding	K_D	$1.5*10^{-6}$ M	ibid.
	k_{off}	300 s ⁻¹	ibid.
	k_{on}	$1.3*10^5$ M ⁻¹ s ⁻¹	ibid.
Photoproduct 2	[PP2]		

Ca ²⁺ binding	K_D	124.1*10 ⁻⁶ M	Ibid.
	k_{off}	3600 s ⁻¹	ibid.
	k_{on}	2.9*10 ⁷ M ⁻¹ s ⁻¹	ibid.
Mg ²⁺ binding	K_D	1.5*10 ⁻⁶ M	ibid.
	k_{off}	300 s ⁻¹	ibid.
	k_{on}	1.3*10 ⁵ M ⁻¹ s ⁻¹	ibid.

411 **Supplementary Table 2 Parameters for simulations of Ca²⁺ release from DMN cage**

412 These simulations were used to obtain Ca²⁺ transients with peak amplitudes covering the
 413 entire range of post-flash Ca²⁺ concentrations. To this end, the uncaging efficiency α was
 414 varied in each of the three experimentally used combinations of concentrations of DMN
 415 and Ca²⁺ indicators (see Supplementary Table 1 for details).

416 **Modeling of release schemes**

417 Model 1 with two Ca²⁺ binding steps mediating fusion and one Ca²⁺-dependent priming
 418 step was defined according to the following differential equation

$$419 \begin{pmatrix} dV_{0Ca}(t)/dt \\ dV_{1Ca}(t)/dt \\ dV_{2Ca}(t)/dt \\ dV_{fused}(t)/dt \end{pmatrix} = M \begin{pmatrix} V_{0Ca}(t) \\ V_{1Ca}(t) \\ V_{2Ca}(t) \\ V_{fused}(t) \end{pmatrix}$$

420 V_{0Ca} , V_{1Ca} , and V_{2Ca} denote the fraction of vesicles with a fusion sensor with 0 to 2 bound
 421 Ca²⁺ ions, respectively, and V_{fused} denotes the fused vesicles as illustrated in Fig. 6D.
 422 The reserve pool V_R is considered to be infinite. M denotes the following 4x4 matrix:

$-2k_{on} - k_{unprim} + k_{prim}/V_{0Ca}(t)$	k_{off}	0	0
$2k_{on}$	$-k_{off} - k_{on}$	$2k_{off}b$	0
0	k_{on}	$-\gamma - 2k_{off}b$	0
0	0	γ	0

423
 424 See Supplementary Table 3 for the values and Ca²⁺-dependence of the rate constants
 425 in the matrix.

426 The initial condition was defined as $V_{0Ca}(0) = k_{prim}/k_{unprim}$ and $V_{1Ca}(0)$, $V_{2Ca}(0)$, and
 427 $V_{fused}(0)$ was zero. k_{prim} was the sum of a Ca²⁺-dependent and Ca²⁺-independent rate

428 constants. The Ca^{2+} -dependence was implemented as a Michaelis-Menten kinetic with
429 a maximum rate constant of 30 s^{-1} (Ritzau-Jost et al., 2014) and a K_D of $2 \mu\text{M}$ (Miki et al.,
430 2018). The Ca^{2+} -independent rate constant was 0.6 s^{-1} , adjusted to reproduce the factor
431 of 3 upon elevating Ca^{2+} from 30 to 180 nM (cf. Fig. 1D and 7D). k_{unprim} was defined such
432 that the occupancy $V_{0Ca}(0) = 1$ for the default pre-flash resting Ca^{2+} concentration of 227
433 nM (Supplementary Tables 2 and 3).

434 The differential equations were solved with the NDSolve function of Mathematica. The
435 Ca^{2+} concentration, $\text{Ca}^{2+}(t)$, was obtained from the simulations as described in the
436 previous paragraph. $V_{fused}(t)$ represents the cumulative release normalized to the pool
437 of release-ready vesicles per cMFB to GC connection. To reproduce the absolute
438 sustained release rate (Figs. 5 and 6D), $V_{fused}(t)$ was multiplied by a pool of release-
439 ready vesicles per connection of 10 vesicles. The cumulative release, $V_{fused}(t)$, including
440 a pre-flash baseline was sampled with 5 or 10 kHz. Realistic noise for 5- or 10 kHz-
441 capacitance or deconvolution measurements was added and the data, in the 10 ms-
442 window after the flash, were fit with mono- and bi- exponential functions (eq. 1). The
443 selection of a bi- over a mono-exponential fit was based on identical criteria as in the
444 analysis of the experimental data including the prolongation of the fitting duration from
445 10 to 60 ms if the time constant of the mono-exponential fit was >10 ms (see section
446 Data analysis). For each peak post-flash Ca^{2+} concentration (i.e. simulated $\text{Ca}^{2+}(t)$
447 transient) the sampling, addition of noise, and exponential fitting were repeated 50 times.
448 The median of these values represents the prediction of the model for each peak post
449 flash Ca^{2+} concentration. The parameters of the models were manually adjusted to obtain
450 best-fit results.

451 Model 2 was a sequential two-pool model based on Miki et al. (2018) with five Ca^{2+}
452 binding steps mediating fusion and two Ca^{2+} -dependent priming steps defined according
453 to the following differential equations

454

$$\begin{pmatrix} dV_{2,0Ca}(t)/dt \\ dV_{2,1Ca}(t)/dt \\ dV_{2,2Ca}(t)/dt \\ dV_{2,3Ca}(t)/dt \\ dV_{2,4Ca}(t)/dt \\ dV_{2,5Ca}(t)/dt \\ dV_{2,fused}(t)/dt \end{pmatrix} = M \begin{pmatrix} V_{2,0Ca}(t) \\ V_{2,1Ca}(t) \\ V_{2,2Ca}(t) \\ V_{2,3Ca}(t) \\ V_{2,4Ca}(t) \\ V_{2,5Ca}(t) \\ V_{2,fused}(t) \end{pmatrix}$$

455

456 $V_{2,0Ca}$, $V_{2,1Ca}$, ..., and $V_{2,5Ca}$ denote the fraction of vesicles with a fusion sensor with 0 to
 457 5 bound Ca^{2+} ions, respectively, and $V_{2,fused}$ denotes fused vesicles as illustrated in Fig.
 458 6D. The fraction of vesicles in state V_1 is calculated according to the following differential
 459 equation

460

$$\frac{dV_1(t)}{dt} = k_{prim1} - k_{unprim1} V_1(t) - k_{prim2} V_1(t) + k_{unprim2} V_{2,0Ca}(t)$$

461 M denotes the following 7x7 matrix:

$-5k_{on} - k_{unprim2}$ $+k_{prim2}V_1(t)/V_{2,0Ca}(t)$	k_{off}	0	0	0	0	0
$5k_{on}$	$-k_{off} - 4k_{on}$	$2k_{off}b$	0	0	0	0
0	$4k_{on}$	$-2k_{off}b - 3k_{on}$	$3k_{off}b^2$	0	0	0
0	0	$3k_{on}$	$-3k_{off}b^2 - 2k_{on}$	$4k_{off}b^3$	0	0
0	0	0	$2k_{on}$	$-4k_{off}b^3 - k_{on}$	$5k_{off}b^4$	0
0	0	0	0	k_{on}	$-\gamma - 5k_{off}b^4$	0
0	0	0	0	0	γ	0

462

463 To implement the use-dependent slowing of the release rate constants of this model (Miki
 464 et al., 2018) in a deterministic way, a site-plugging state, $P(t)$, was defined according to

465
$$\frac{dP(t)}{dt} = (1 - P(t)) \frac{dV_{2,fused}}{dt}(t) - 40\text{ms} P(t) \quad (\text{eq.3})$$

466 $P(t)$ is approaching 1 during strong release and decays with a time constant of 40 ms
 467 back to zero. Similar to the implementation by Miki et al. (2018), the rate constants k_{on}
 468 and k_{off} were linearly interpolated between two values depending on $P(t)$ as

469
$$k_{on}(t) = k_{on,init} + (k_{on,plugged} - k_{on,init}) P(t) \quad (\text{eq. 4})$$

470 $k_{off}(t) = k_{off,init} + (k_{off,plugged} - k_{off,init}) P(t)$

471 The reserve pool V_R is considered to be infinite. See Supplementary Table 3 for the
472 values and Ca^{2+} -dependence of the rate constants in these differential equations.

473 The initial condition is defined as $V_1(0) = k_{prim1}/k_{unprim1}$ and $V_{2,0Ca}(0) =$
474 $(k_{prim1}/k_{unprim1}) * (k_{prim2}/k_{unprim2})$. The initial condition of the other state $V_{2,1Ca}(0)$ to $V_{5,0Ca}(0)$,
475 $V_{fused}(0)$, and $P(0)$ were zero. k_{prim1} and k_{prim2} were the sum of a Ca^{2+} -dependent and
476 Ca^{2+} -independent rate constant defined similarly as described in Miki et al. (2018) and
477 adjusted as described for model 1. $k_{unprim1}$ and $k_{unprim2}$ were defined such that the
478 occupancy $V_1(0) = 1$ and $V_{2,0Ca}(0) = 1$ for the default pre-flash resting Ca^{2+} concentration
479 of 227 nM (Supplementary Tables 2 and 3).

480 Model 3 was a parallel two-pool model similar as described by Voets (2000) and Walter
481 et al (2013) but with five Ca^{2+} binding steps mediating fusion of both types of vesicles
482 and a Ca^{2+} -independent priming step for V_1 vesicles and a Ca^{2+} -dependent transition
483 step from V_1 to V_2 vesicles defined according to the following differential equations

484
$$\begin{pmatrix} dV_{1,0Ca}(t)/dt \\ dV_{1,1Ca}(t)/dt \\ dV_{1,2Ca}(t)/dt \\ dV_{1,3Ca}(t)/dt \\ dV_{1,4Ca}(t)/dt \\ dV_{1,5Ca}(t)/dt \\ dV_{1,fused}(t)/dt \end{pmatrix} = M_1 \begin{pmatrix} V_{1,0Ca}(t) \\ V_{1,1Ca}(t) \\ V_{1,2Ca}(t) \\ V_{1,3Ca}(t) \\ V_{1,4Ca}(t) \\ V_{1,5Ca}(t) \\ V_{1,fused}(t) \end{pmatrix}$$

485
$$\begin{pmatrix} dV_{2,0Ca}(t)/dt \\ dV_{2,1Ca}(t)/dt \\ dV_{2,2Ca}(t)/dt \\ dV_{2,3Ca}(t)/dt \\ dV_{2,4Ca}(t)/dt \\ dV_{2,5Ca}(t)/dt \\ dV_{2,fused}(t)/dt \end{pmatrix} = M_2 \begin{pmatrix} V_{2,0Ca}(t) \\ V_{2,1Ca}(t) \\ V_{2,2Ca}(t) \\ V_{2,3Ca}(t) \\ V_{2,4Ca}(t) \\ V_{2,5Ca}(t) \\ V_{2,fused}(t) \end{pmatrix}$$

486 $V_{1,0Ca}$, $V_{1,1Ca}$, ..., and $V_{1,5Ca}$ denote the fraction of vesicles with a low-affinity fusion sensor
487 with 0 to 5 bound Ca^{2+} ions, respectively, and $V_{2,0Ca}$, $V_{2,1Ca}$, ..., and $V_{2,5Ca}$ denote the

488 fraction of vesicles with a high-affinity fusion sensor with 0 to 5 bound Ca^{2+} ions,
 489 respectively. $V_{1,fused}$ and $V_{2,fused}$ denote fused vesicles as illustrated in Fig. 6D.

490 M_1 denotes the following 7x7 matrix:

$-5k_{on1} - k_{unprim1} - k_{prim2}$ $+k_{prim1}/V_{1,0Ca}(t)$ $+k_{unprim2}V_{2,0Ca}(t)/$ $V_{1,0Ca}(t)$	k_{off1}	0	0	0	0	0
$5k_{on1}$	$-k_{off1} - 4k_{on1}$	$2k_{off1}b$	0	0	0	0
0	$4k_{on1}$	$-2k_{off1}b - 3k_{on1}$	$3k_{off1}b^2$	0	0	0
0	0	$3k_{on1}$	$-3k_{off1}b^2 - 2k_{on1}$	$4k_{off1}b^3$	0	0
0	0	0	$2k_{on1}$	$-4k_{off1}b^3 - k_{on1}$	$5k_{off1}b^4$	0
0	0	0	0	k_{on1}	$-\gamma - 5k_{off1}b^4$	0
0	0	0	0	0	γ	0

491 M_2 denotes the following 7x7 matrix:

$-5k_{on2} - k_{unprim2}$ $+k_{prim2}V_{1,0Ca}(t)/$ $V_{2,0Ca}(t)$	k_{off2}	0	0	0	0	0
$5k_{on2}$	$-k_{off2} - 4k_{on2}$	$2k_{off2}b$	0	0	0	0
0	$4k_{on2}$	$-2k_{off2}b - 3k_{on2}$	$3k_{off2}b^2$	0	0	0
0	0	$3k_{on2}$	$-3k_{off2}b^2 - 2k_{on2}$	$4k_{off2}b^3$	0	0
0	0	0	$2k_{on2}$	$-4k_{off2}b^3 - k_{on2}$	$5k_{off2}b^4$	0
0	0	0	0	k_{on2}	$-\gamma - 5k_{off2}b^4$	0
0	0	0	0	0	γ	0

492 The initial condition is defined as $V_{2,0Ca}(0) = k_{prim1}/k_{unprim1}$ and $V_{2,0Ca}(0) =$
 493 $(k_{prim1}/k_{unprim1}) * (k_{prim2}/k_{unprim2})$. The initial condition of the other state $V_{1,1Ca}(0)$ to $V_{1,0Ca}(0)$,
 494 $V_{1,fused}(0)$, and $V_{2,1Ca}(0)$ to $V_{2,0Ca}(0)$, $V_{2,fused}(0)$ were zero. k_{prim1} was a Ca^{2+} -independent
 495 rate constant and k_{prim2} was the sum of a Ca^{2+} -dependent and Ca^{2+} -independent rate
 496 constants defined similarly as described in Hallermann et al. (2010) and adjusted as
 497 described for model 1. $k_{unprim1}$ and $k_{unprim2}$ were defined such that the occupancy $V_{1,0Ca}(0)$

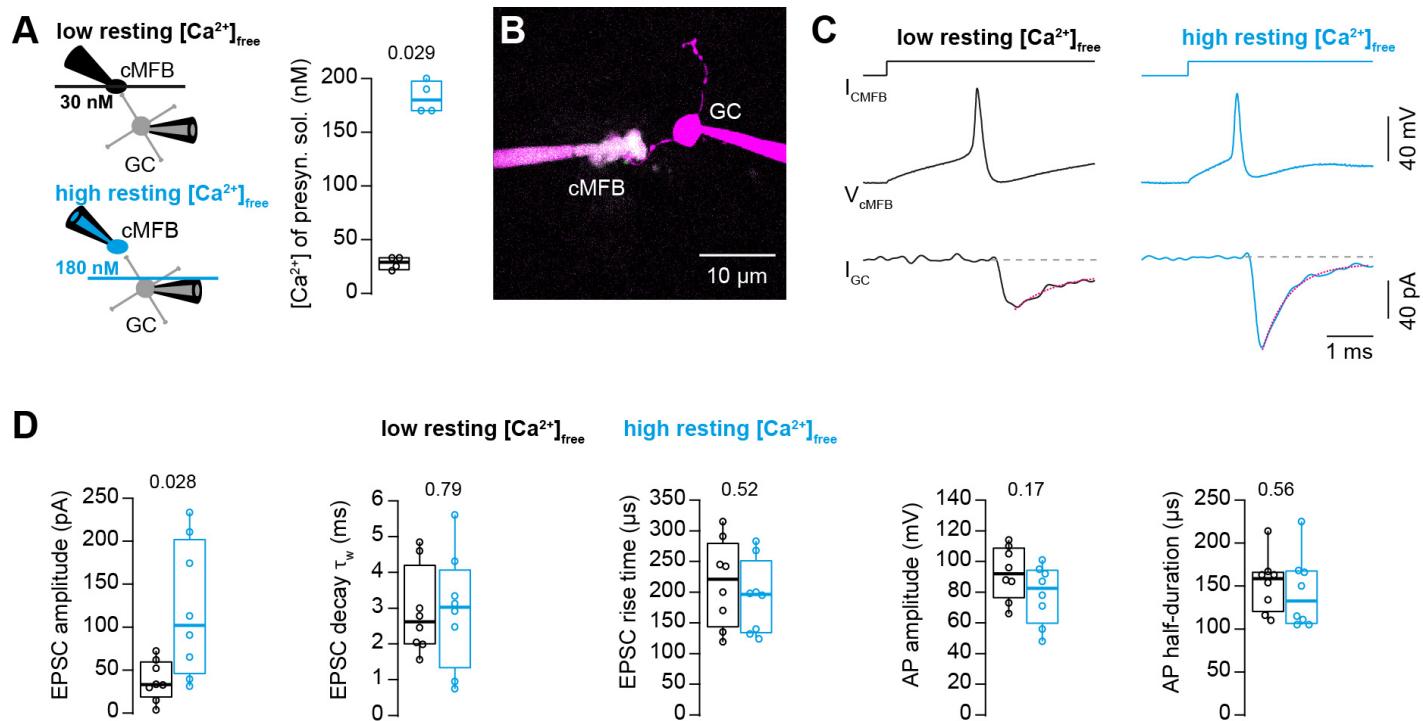
498 = 1 and $V_{2,0Ca}(0) = 1$ for the default pre-flash resting Ca^{2+} concentration of 227 nM
499 (Supplementary Tables 2 and 3).

500

Model1		Model2		Model3	
k_{on}	$2.95 \times 10^9 \text{ Ca}^{2+}(t) \text{ M}^{-1} \text{ s}^{-1}$	$k_{\text{on,init}}$	$5.10 \times 10^8 \text{ Ca}^{2+}(t) \text{ M}^{-1} \text{ s}^{-1}$	k_{on1}	$0.5 k_{\text{on2}}$
		$k_{\text{on,plug}}$	$0.1 k_{\text{on,init}}$	k_{on2}	$5.10 \times 10^8 \text{ Ca}^{2+}(t) \text{ M}^{-1} \text{ s}^{-1}$
k_{off}	$4.42 \times 10^5 \text{ s}^{-1}$	$k_{\text{off,init}}$	$2.55 \times 10^4 \text{ s}^{-1}$	k_{off1}	$10 k_{\text{off2}}$
		$k_{\text{off,plug}}$	$0.4 k_{\text{off,init}}$	k_{off2}	$2.55 \times 10^4 \text{ s}^{-1}$
b	0.25	b	0.25	b	0.25
γ	$1.77 \times 10^4 \text{ s}^{-1}$	γ	$1.77 \times 10^4 \text{ s}^{-1}$	γ	$1.77 \times 10^4 \text{ s}^{-1}$
k_{prim}	$0.6 + 30 * (\text{Ca}^{2+}(t) / (K_{d,\text{prim}} + \text{Ca}^{2+}(t))) \text{ s}^{-1}$	k_{prim1}	$2.5 + 60 * (\text{Ca}^{2+}(t) / (K_{d,\text{prim1}} + \text{Ca}^{2+}(t))) \text{ s}^{-1}$	k_{prim1}	30 s^{-1}
k_{unprim}	$0.6 + 30 * (\text{Ca}^{2+}_{\text{Rest}} / (K_{d,\text{prim}} + \text{Ca}^{2+}_{\text{Rest}})) \text{ s}^{-1}$	k_{unprim1}	$2.5 + 60 * (\text{Ca}^{2+}_{\text{Rest}} / (K_{d,\text{prim1}} + \text{Ca}^{2+}_{\text{Rest}})) \text{ s}^{-1}$	k_{unprim1}	30 s^{-1}
$K_{d,\text{prim}}$	2 μM	$K_{d,\text{prim1}}$	2 μM		
		k_{prim2}	$100 + 800 * (\text{Ca}^{2+}(t) / (K_{d,\text{prim2}} + \text{Ca}^{2+}(t))) \text{ s}^{-1}$	k_{prim2}	$0.5 + 30 * (\text{Ca}^{2+}(t) / (K_{d,\text{prim2}} + \text{Ca}^{2+}(t))) \text{ s}^{-1}$
		k_{unprim2}	$100 + 800 * (\text{Ca}^{2+}_{\text{Rest}} / (K_{d,\text{prim2}} + \text{Ca}^{2+}_{\text{Rest}})) \text{ s}^{-1}$	k_{unprim2}	$0.5 + 30 * (\text{Ca}^{2+}_{\text{Rest}} / (K_{d,\text{prim2}} + \text{Ca}^{2+}_{\text{Rest}})) \text{ s}^{-1}$
		$K_{d,\text{prim2}}$	2 μM	$K_{d,\text{prim2}}$	2 μM

501 **Supplementary Table 3 Parameters for release scheme models**

502 **Statistical analysis**


503 Boxplots show median and 1st/3rd quartiles with whiskers indicating the whole data
504 range (Figs. 1 and 7). For statistical comparison, Mann-Whitney U tests were used, and
505 the P-values are indicated above the boxplots.

506 **Results**

507 **Action potential-evoked synaptic release critically depends on basal intracellular**

508 **Ca²⁺ concentration**

509 To investigate the impact of the basal intracellular Ca²⁺ concentration on synaptic
510 release, we performed simultaneous patch-clamp recordings from presynaptic cerebellar
511 mossy fiber boutons (cMFB) and postsynaptic granule cells (GC) of 5- to 6-weeks old
512 mice at physiological temperatures (Fig. 1A and B). We aimed at clamping the free Ca²⁺
513 concentration in the presynaptic patch solution to either low or high basal Ca²⁺
514 concentrations by adding different concentrations of Ca²⁺ and the Ca²⁺ chelator EGTA
515 (see methods). Two-photon quantitative Ca²⁺ imaging with the dual-indicator method
516 using Fluo-5F as the Ca²⁺ indicator (Delvendahl et al., 2015; Sabatini et al., 2002)
517 revealed the free Ca²⁺ concentration of the presynaptic intracellular solution to be 28 ± 3
518 and 183 ± 8 nM, for the low and high basal Ca²⁺ conditions (n = 4 and 4), respectively
519 (Fig. 1A). In both solutions, the free EGTA concentration was 4.47 mM (see methods).
520 In response to triggering a single action potential in the presynaptic terminal, the
521 recorded excitatory postsynaptic current (EPSC) depended strongly on the presynaptic
522 resting Ca²⁺ concentration (Fig. 1C). We found an almost three-fold increase in the EPSC
523 amplitude when elevating the resting Ca²⁺ concentration in the presynaptic terminals
524 from 30 to 180 nM. On average, the EPSC amplitudes were 39 ± 8 and 117 ± 27 pA for
525 the low and high basal Ca²⁺ conditions, respectively (n = 8 and 8; P_{Mann-Whitney} = 0.028;
526 Fig. 1D). The EPSC rise and decay kinetics were not significantly different (Fig. 1D). No
527 significant differences were observed in the action potential waveform including
528 amplitude and half duration (Fig. 1D) indicating that the altered synaptic strength was not
529 caused by changes in the shape of the presynaptic action potential. These data indicate
530 that moderate changes in the presynaptic basal Ca²⁺ concentration can alter synaptic
531 strength up to three-fold.

532 **Figure 1 Action potential-evoked synaptic release critically depends on basal intracellular Ca^{2+}
533 concentration**

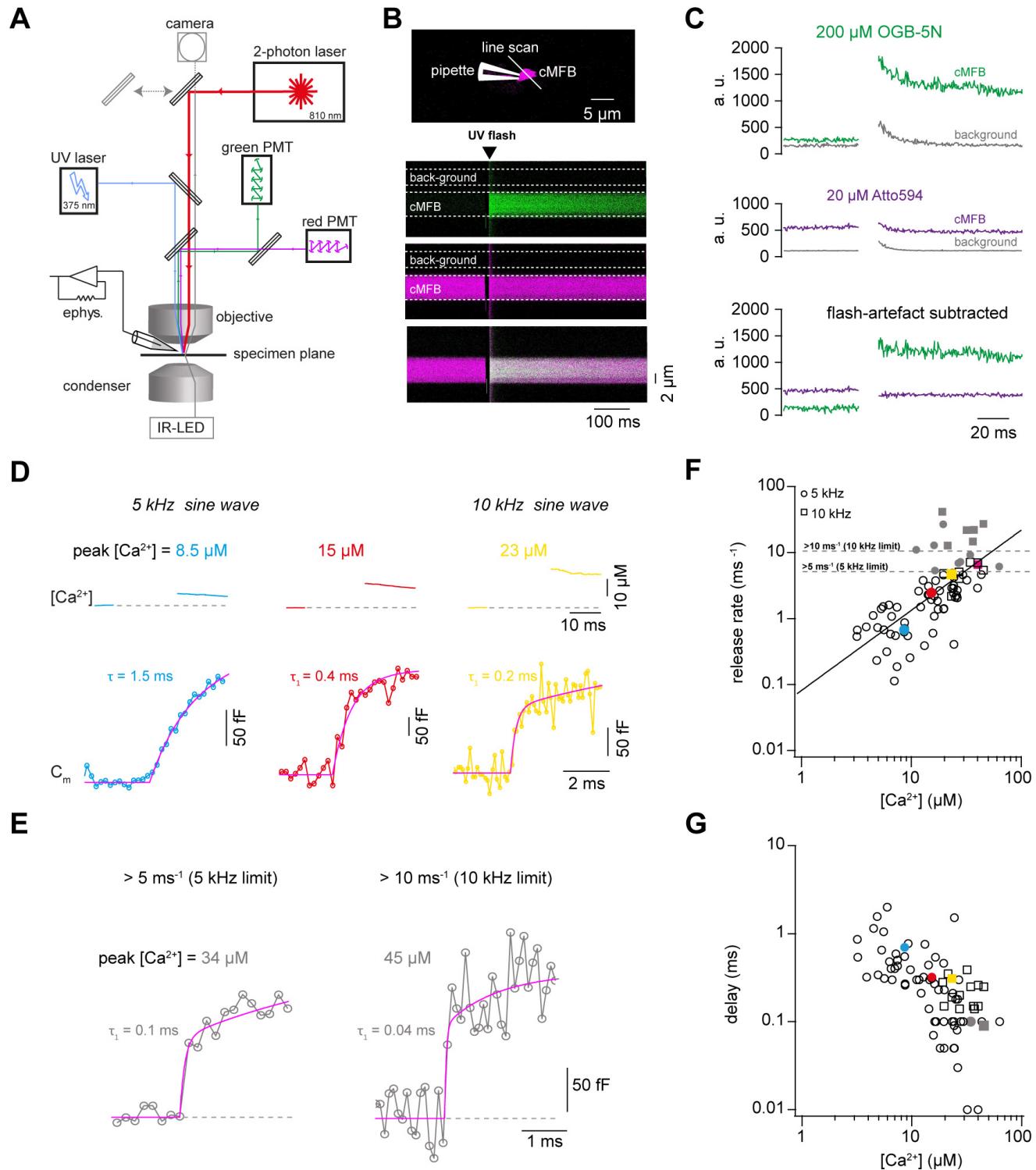
534 A. *Left:* Illustration of the cellular connectivity of the cMFB to GC synapse during simultaneous pre- and
535 postsynaptic patch-clamp recording. The presynaptic terminal was loaded with an intracellular solution
536 having either low or high free basal Ca^{2+} concentration (top and bottom, respectively). *Right:* Comparison
537 of the average free Ca^{2+} concentration in the presynaptic patch pipette (quantified by two-photon Ca^{2+}
538 imaging) for the intracellular solutions with low and high basal Ca^{2+} ($n = 4$ each).

539 B. Example two-photon microscopic image of a cMFB and a GC in the paired whole-cell configuration.

540 C. Example traces of a paired cMFB-GC recording with current injection (I_{cMFB}) (*top*) eliciting an action
541 potential in the cMFB (*middle*) and an EPSC in the postsynaptic GC (*bottom*). Black and blue color code
542 corresponds to low and high free basal Ca^{2+} concentration in the presynaptic solution, respectively. The
543 decay of the EPSC was fitted with a bi-exponential function (magenta line).

544 D. Comparison of the properties of presynaptic action potentials and EPSCs evoked after eliciting an
545 action potential in the presynaptic terminal using solutions having either low (black) or high (blue) free
546 Ca^{2+} concentration. From left to right: peak amplitude of the EPSC, weighted decay time constant of the
547 EPSC, 10-to-90% rise time of the EPSC, amplitude of the presynaptic action potential, and action
548 potential half-duration ($n = 8$ and 8 pairs for the conditions with low and high resting Ca^{2+} concentration,
549 respectively).

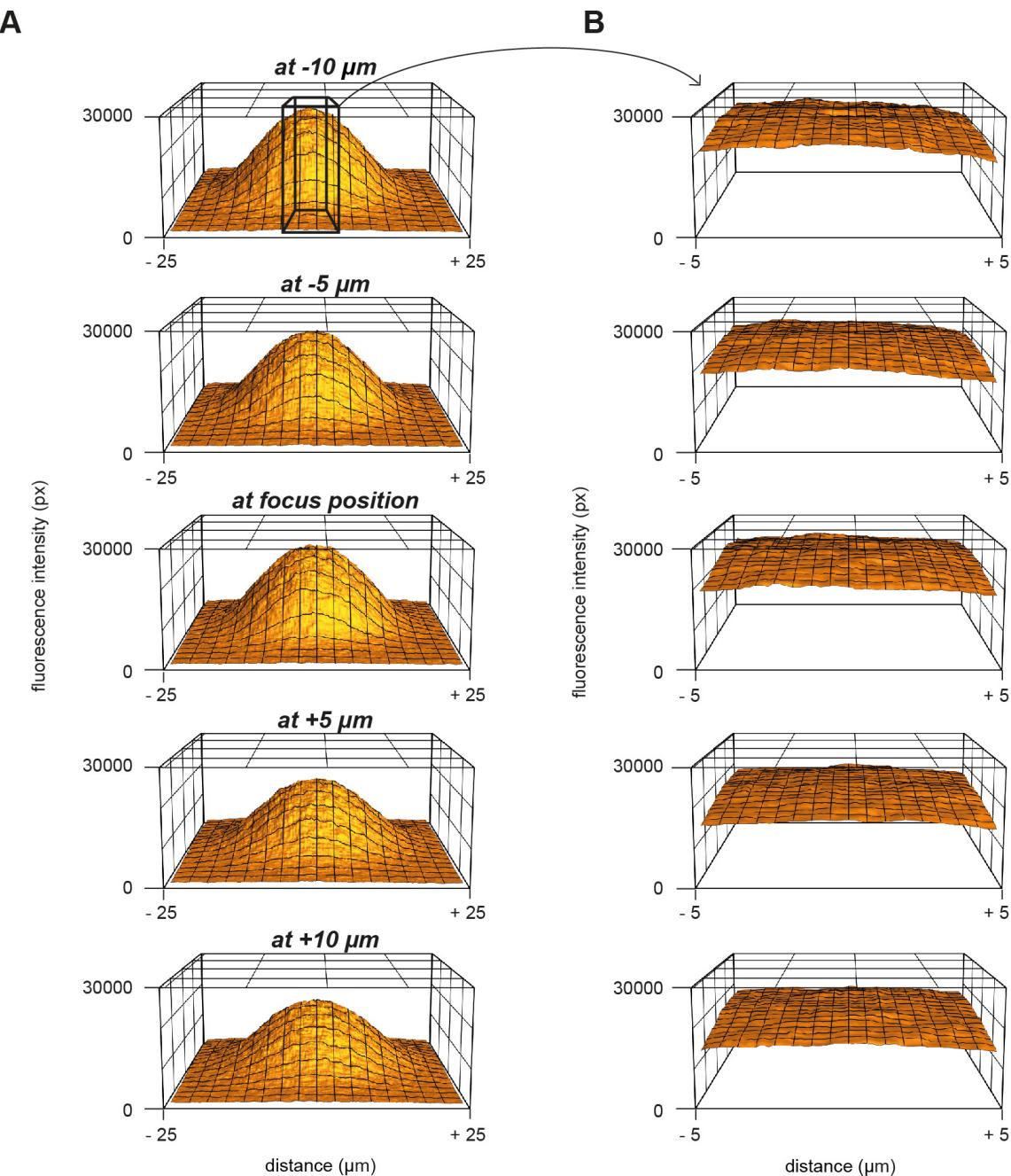
550 Boxplots show median and 1st/3rd quartiles with whiskers indicating the whole data range. Values of
551 individual experiments are superimposed as circles. The numbers above the boxplots represent P-values
552 of Mann-Whitney U tests.


553 **Ca²⁺ uncaging dose-response curve measured with presynaptic capacitance
554 measurements**

555 To gain a better understanding of the profound sensitivity of AP-evoked release on
556 presynaptic basal Ca²⁺ concentration, we established presynaptic Ca²⁺ uncaging and
557 measured the release kinetics upon step-wise elevation of Ca²⁺ concentration. We
558 combined wide-field illumination using a high-power UV laser with previously established
559 quantitative two-photon Ca²⁺ imaging (Delvendahl et al., 2015) to quantify the post-flash
560 Ca²⁺ concentration (Fig. 2A). This approach offers sub-millisecond control of the UV
561 flashes and a high signal to noise ratio of the two-photon Ca²⁺ imaging deep within the
562 brain slice. The flash-evoked artefacts in the two-photon signals, presumably due to
563 luminescence in the light path, could be reduced to a minimum with an optimal set of
564 spectral filters and gate-able photomultipliers (PMTs). Subtraction of the remaining
565 artefact in the background region of the two-photon line scan resulted in artefact-free
566 fluorescence signals (Fig. 2B and C).

567 To obtain a large range of post-flash Ca²⁺ concentrations within the bouton, we varied the
568 concentration of the Ca²⁺-cage DMn (1-10 mM) and the intensity (10 - 100%) and the
569 duration (100 or 200 μ s) of the UV laser pulse. The spatial homogeneity of the Ca²⁺
570 elevation was assessed by UV illumination of caged fluorescein mixed with glycerol (Fig.
571 2 – figure supplement 1; Schneggenburger et al., 2000; Bollmann et al., 2000). The
572 resulting post-flash Ca²⁺ concentration was quantified with either high- or low-affinity Ca²⁺
573 indicator (Fluo-5F or OGB-5N). To measure the kinetics of neurotransmitter release
574 independent of dendritic filtering or postsynaptic receptor saturation, vesicular fusion was
575 quantified by measuring the presynaptic capacitance with a 5 kHz-sinusoidal stimulation
576 (Hallermann et al., 2003). The first 10 ms of the flash-evoked capacitance increase was
577 fitted with functions containing a baseline and mono- or bi-exponential components
578 (magenta line in Fig. 2D and E; see eq. 1 in the methods section). With increasing post-
579 flash Ca²⁺ concentration the fast time constant decreased (τ in case of mono- and τ_1 in
580 case of bi-exponential fits; Fig. 2D). The inverse of the fast time constant represents a
581 direct readout of the fusion kinetics of the release-ready vesicles. The observed scatter
582 could be due to the invasiveness of presynaptic recordings and/or heterogeneity among

583 boutons (Chabrol et al., 2015; Fekete et al., 2019; Grande and Wang, 2011). When
584 plotting the inverse of the time constant as a function of post-flash Ca^{2+} concentration, we
585 obtained a shallow dose-response curve that showed a continuous increase in the
586 release rate with increasing post-flash Ca^{2+} concentration up to 50 μM (Fig. 2F). In some
587 experiments with high Ca^{2+} concentrations, the release was too fast to be resolved with 5
588 kHz capacitance sampling (i.e. time constants were smaller than 200 μs ; Fig. 2E). We
589 therefore increased the frequency of the sinusoidal stimulation in a subset of experiments
590 to 10 kHz (15 out of 80 experiments). Such high-frequency capacitance sampling is to
591 our knowledge unprecedented at central synapses and technically challenging because
592 exceptionally low access resistances are required ($\sim 15 \text{ M}\Omega$) to obtain an acceptable
593 signal-to-noise ratio (Gillis, 1995; Hallermann et al., 2003). Despite these efforts, the time
594 constants were sometimes faster than 100 μs , representing the resolution limit of 10 kHz
595 capacitance sampling (Fig. 2E). These results indicate that the entire pool of release-
596 ready vesicles can fuse within less than 100 μs . Fitting a Hill equation on both 5- and 10
597 kHz data resulted in a best-fit K_D of $> 50 \mu\text{M}$ with a best-fit Hill coefficient, n , of 1.2 (Fig.
598 2F).

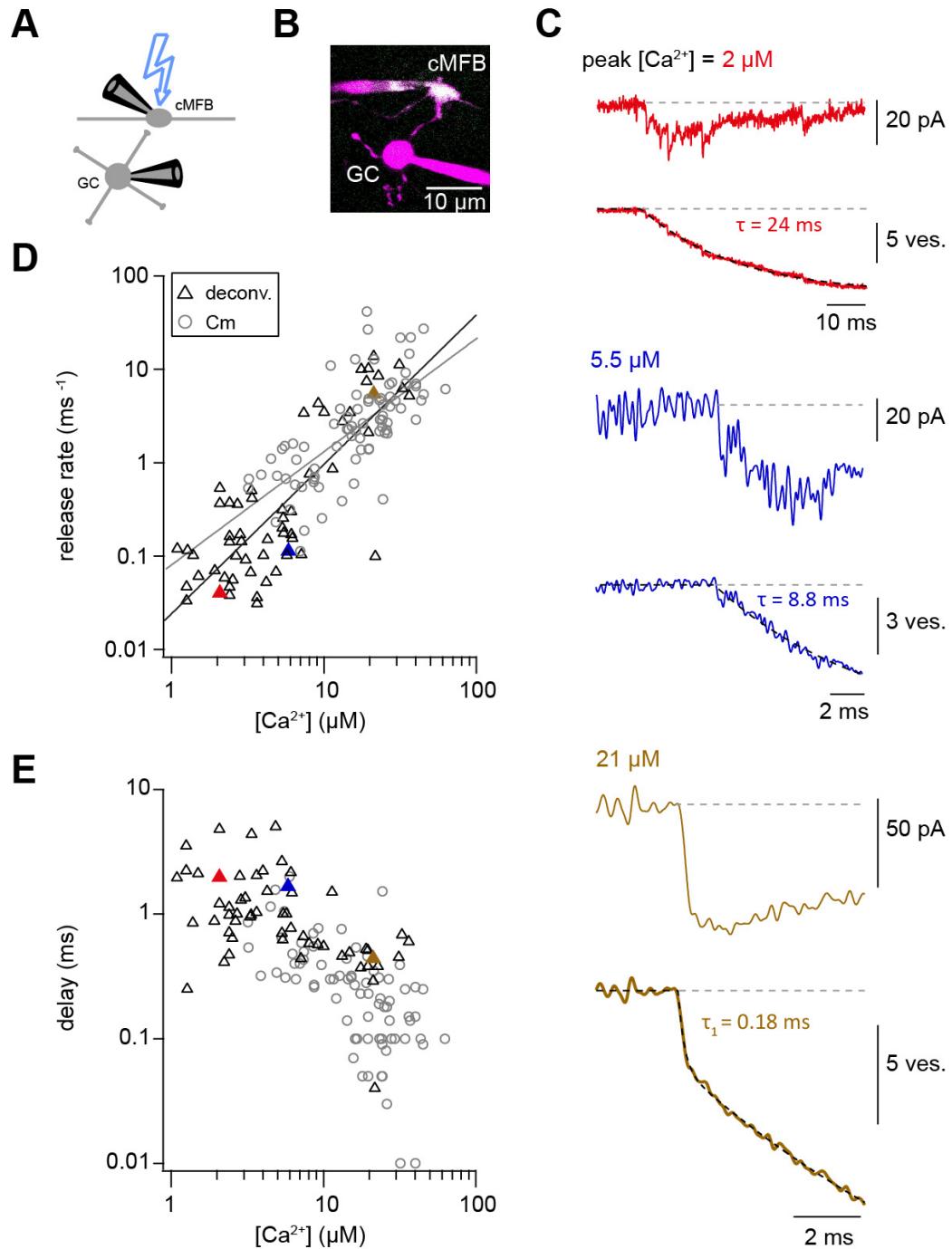

599 In addition to the speed of vesicle fusion, we analyzed the delay from the onset of the UV-
600 illumination to the onset of the rise of membrane capacitance, which was a free parameter
601 in our fitting functions (see eq. 1). The delay was strongly dependent on the post-flash
602 Ca^{2+} concentration and the dose-response curve showed no signs of saturation at high
603 Ca^{2+} concentrations (Fig. 2G), which is consistent with the non-saturating release rates.
604 These data reveal that the fusion kinetics of synaptic vesicles increased up to a Ca^{2+}
605 concentration of 50 μM without signs of saturation, suggesting a surprisingly low apparent
606 affinity of the fusion sensor at mature cMFBs under physiological temperature conditions
607 ($K_D > 50 \mu\text{M}$).

608 **Figure 2** Ca^{2+} uncaging dose-response curve measured with presynaptic capacitance
609 measurements

610 A. Illustration of the experimental setup showing the light path of the two-photon laser illumination (red
611 line), the UV laser illumination (blue line), the electrophysiology amplifier ('ephys.'), the red and green
612 gate-able photomultiplier tubes (PMTs), and infrared LED illumination with oblique illumination via the

613 condenser for visualization of the cells at the specimen plane by the camera (grey line) when the upper
614 mirror is moved out of the light path (grey arrow).
615 B. *Top*: Two-photon microscopic image of a cMFB in the whole-cell configuration loaded with OGB-5N,
616 Atto594, and DMn/ Ca²⁺. Positions of the patch pipette and line scan are indicated. *Bottom*: Two-photon
617 line scan showing the fluorescence signal as measured through the green PMT, red PMT, and an overlay
618 of the green and red channels. Arrow indicates the onset of the UV flash and dashed lines represent the
619 flash-induced luminescence artefact as detected outside the cMFB. The lookup tables for the green and
620 red channel were arbitrarily but linearly adjusted independent of the absolute values in C.
621 C. *Top*: change in fluorescence intensity within the cMFB for the green channel along with the
622 corresponding flash-induced green artefact measured in the background. *Middle*: change in fluorescence
623 intensity within the cMFB for the red channel along with the corresponding flash-induced red artefact.
624 *Bottom*: green and red fluorescence signal after subtracting the flash-induced artefacts.
625 D. *Top*: Ca²⁺ signals of different concentrations elicited through Ca²⁺ uncaging in three different cells, the
626 flash was blanked. *Bottom*: corresponding traces of capacitance recordings measured using a 5 kHz
627 sinusoidal stimulation (left and middle) or 10 kHz sinusoidal stimulation (right). τ represents the time
628 constant from a mono-exponential fit, τ_1 represents the time constant of the fast component of a bi-
629 exponential fit.
630 E. Traces of capacitance recordings showing the resolution limit in detecting fast release rates of $>5\text{ ms}^{-1}$
631 using 5 kHz sinusoidal stimulation or $>10\text{ ms}^{-1}$ using 10 kHz sinusoidal stimulation.
632 F. Plot of release rate versus post-flash Ca²⁺ concentration. The line represents a fit with a Hill equation
633 (eq. 2) with best-fit values $V_{max} = 1.7 \times 10^7\text{ ms}^{-1}$, $K_D = 7.2 \times 10^6\text{ }\mu\text{M}$, and $n = 1.2$. Color coded symbols
634 correspond to traces in D – E. Grey symbols represent values above the resolution limit.
635 G. Plot of synaptic delay versus post-flash Ca²⁺ concentration. Color coded symbols correspond to traces
636 in D – E.

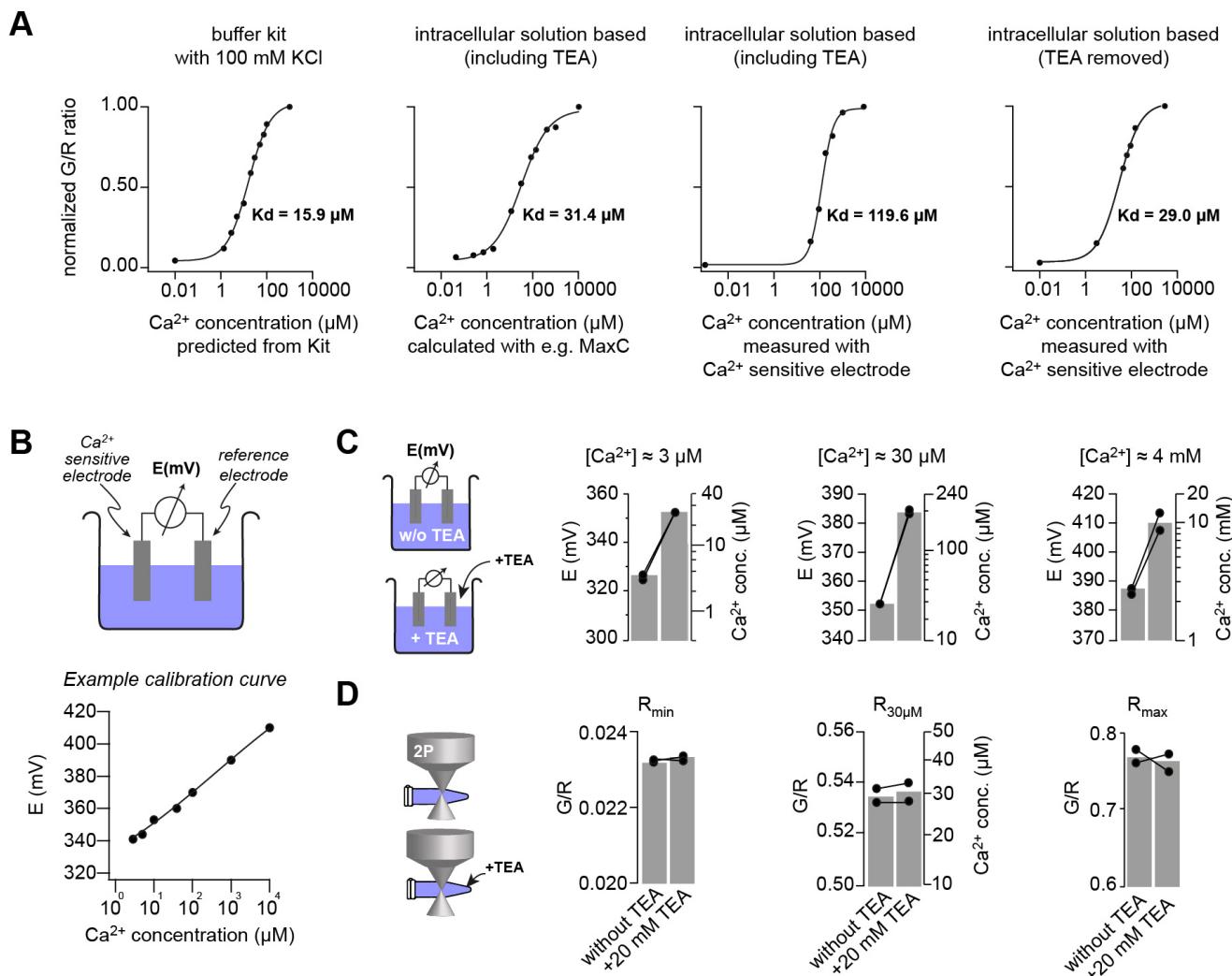
637 **Figure 2 – figure supplement 1 Measurement of the UV energy profile with caged fluorescein**
638 A. 3D plot of the fluorescence profile in response to UV uncaging of caged-fluorescein at different z-
639 positions.
640 B. Magnification of the middle part in panel (A) over a range of 10 μm .


641 **Ca²⁺ uncaging dose-response curve measured with deconvolution of EPSCs**

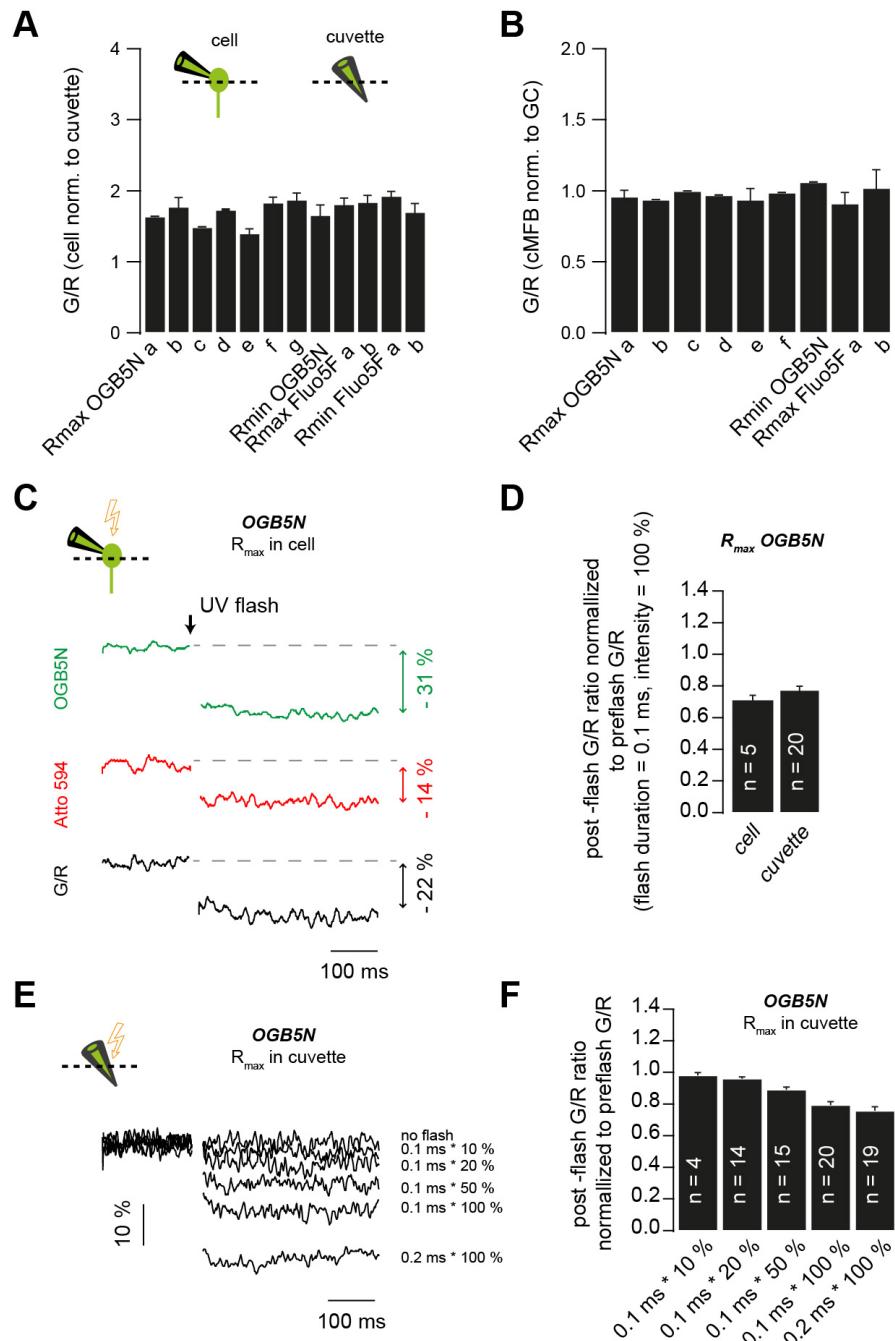
642 Capacitance recordings are not very sensitive in detecting low release rates. We therefore
643 performed simultaneous pre- and postsynaptic recordings and used established
644 deconvolution techniques to calculate the presynaptic release rate by analyzing the EPSC
645 as previously applied at this synapse (Fig. 3A, B; Ritzau-Jost et al., 2014). Kynurenic acid
646 (2 mM) and cyclothiazide (100 μ M) were added to the extracellular solution in order to
647 prevent the saturation and desensitization of postsynaptic AMPA receptors, respectively.
648 Ca²⁺ uncaging in the presynaptic terminal evoked EPSCs with kinetics which strongly
649 depended on the post-flash Ca²⁺ concentration. The cumulative release obtained from
650 deconvolution analysis of the recorded EPSCs was fitted as the capacitance traces (eq.
651 1). At low Ca²⁺ concentrations (<5 μ M), a significant amount of neurotransmitter release
652 could be measured, which is consistent with previous reports from central synapses
653 (Bollmann et al., 2000; Fukaya et al., 2021; Sakaba, 2008; Schneggenburger and Neher,
654 2000). The presynaptic release rates increased with increasing post-flash Ca²⁺
655 concentration and no saturation in the release rate occurred in the dose-response curve
656 (Fig. 3D). The dose-response curve for the delay from the onset of the UV illumination to
657 the onset of the rise of the cumulative release trace (eq. 1) did not show signs of saturation
658 of the release kinetics in the investigated range. Thus, consistent with capacitance
659 measurements, deconvolution analysis of postsynaptic currents revealed a shallow Ca²⁺-
660 dependence of neurotransmitter release kinetics (Fig. 3D and E). Fitting a Hill equation
661 to the deconvolution data resulted in a best-fit $K_D > 50$ μ M and a Hill coefficient of 1.6 (Fig.
662 3D). Therefore, two independent measures of synaptic release (presynaptic capacitance
663 measurements and postsynaptic deconvolution analysis) indicate a non-saturating
664 shallow dose-response curve up to ~50 μ M.

665 To rule out methodical errors that might influence the dose-response curve, we carefully
666 determined the K_D of the Ca²⁺ indicator OGB-5N using several independent approaches
667 including direct potentiometry (Fig. 3 – figure supplement 1), because this value
668 influences the estimate of the Ca²⁺ affinity of the fusion sensors linearly. We estimated a
669 K_D of OGB-5N of ~30 μ M being at the lower range of previous estimates ranging from 20
670 to 180 μ M (Delvendahl et al., 2015; Digregorio and Vergara, 1997; Neef et al., 2018),

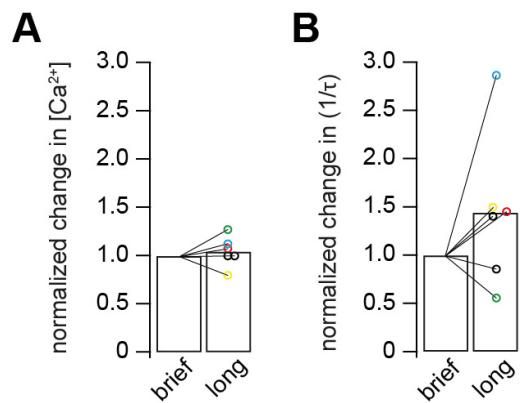
671 arguing against an erroneously high K_D of the Ca^{2+} indicator as a cause for the non-
672 saturation.


673 In addition, we used the two following independent approaches to rule out a previously
674 described Ca^{2+} overshoot immediately following the UV illumination. Such Ca^{2+} overshoot
675 would be too fast to be detected by the Ca^{2+} indicators (Bollmann et al., 2000) but could
676 trigger strong release with weak UV illumination which, would predict a shallow dose-
677 response curve. First, the time course of Ca^{2+} release from DMn was simulated (see
678 below; Fig. 6A) and no significant overshoots were observed (see below; Fig. 6A).
679 Secondly, we experimentally compared strong and short UV illumination (100% intensity;
680 0.1 ms) with weak and long UV illumination (10% intensity; 1 ms), because a Ca^{2+}
681 overshoot is expected to primarily occur with strong and short UV illumination.
682 Comparison of these two groups of UV illumination resulted in similar post-flash
683 concentrations but did not reveal a significant difference in the corresponding release rate
684 indicating that undetectable Ca^{2+} overshoots did not affect the measured release rate
685 (Fig. 3 – figure supplement 3). Therefore, both approaches argue against a Ca^{2+}
686 overshoot as an explanation for the shallow dose-response curve.

687 **Figure 3** Ca^{2+} uncaging dose-response curve measured with deconvolution of EPSCs


688 A. Illustration of the cellular connectivity in the cerebellar cortex showing the pre- and postsynaptic
 689 compartments during paired whole-cell patch-clamp recordings and Ca^{2+} uncaging with UV-illumination.
 690 B. Two-photon microscopic image of a cMFB and a GC in the paired whole-cell patch-clamp configuration
 691 C. Three different recordings showing UV-flash evoked EPSC (top trace) and cumulative release rate
 692 measured by deconvolution analysis of the EPSCs (bottom trace). The peak Ca^{2+} concentration,
 693 quantified with two-photon Ca^{2+} imaging, is indicated in each panel. τ represents the time constant from
 694 mono-exponential fit, τ_1 represents the time constant of the fast component of bi-exponential fit. Note the
 695 different lengths of the baselines in the three recordings.

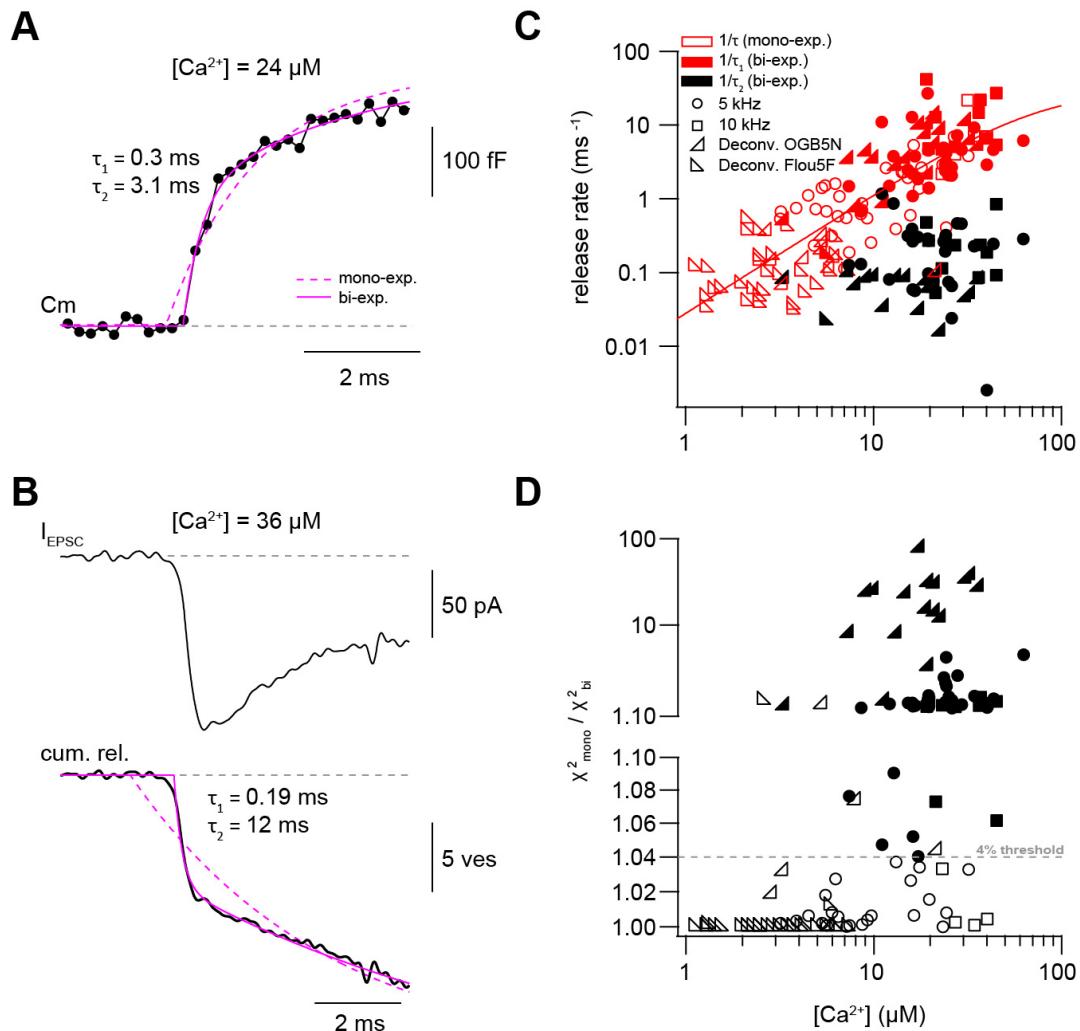
696 D. Plot of release rate versus post-flash Ca^{2+} concentration. Grey open circles represent data from
 697 capacitance measurements (cf. Fig. 2) and black triangles represent data from deconvolution analysis of
 698 EPSC. Grey and black lines represent fits with a Hill equation of the capacitance (as shown in Fig. 1F)
 699 and the deconvolution data, respectively. The best-fit parameters for the fit on the deconvolution data
 700 were $V_{max} = 6*10^7 \text{ ms}^{-1}$, $K_D = 7.6*10^5 \mu\text{M}$, and $n = 1.6$. Red, blue and brown symbols correspond to the
 701 traces in (C).
 702 E. Plot of synaptic delay versus post-flash Ca^{2+} concentration. Grey open circles represent data from
 703 capacitance measurements, and black triangles represent data from deconvolution analysis of EPSC.
 704 Red, blue and brown symbols correspond to the traces in (C).


705 **Figure 3 – figure supplement 1 Measuring the K_D of the Ca^{2+} sensitive dyes**
 706 A. Green (OGB-5N) over red (Atto594) fluorescence ratio for different Ca^{2+} concentrations, measured
 707 using either a Ca^{2+} calibration buffered kit or by clamping the free Ca^{2+} using EGTA in the intracellular
 708 patching solution. The free Ca^{2+} concentration was predicted from the kit, calculated with software like
 709 Maxchelator (MaxC) or measured by potentiometry using a Ca^{2+} -sensitive electrode. The indicated K_D
 710 values were obtained from superimposed fits with Hill equations.
 711 B. Top: illustration of the Ca^{2+} -sensitive electrode. Bottom: Example of a calibration curve of the Ca^{2+} -
 712 sensitive electrode fitted with a straight line.

713 C. Effect of Tetraethylammonium (TEA) on the Ca^{2+} sensitive electrode at different Ca^{2+} concentrations.
714 20 mM TEA induced ~10-fold increase in the potential (left axis) and thus the read-out Ca^{2+} concentration
715 (right axis) of intracellular solutions which had free Ca^{2+} concentrations clamped by EGTA to 3 μM , 30
716 μM , or 4 mM (pH was kept constant; bar graphs represent the mean; line-connected circles represent two
717 independent repetitions).
718 D. Effect of TEA on G/R fluorescence ratio. The ratio of the intracellular solution containing only 10 mM
719 EGTA (Rmin), free Ca^{2+} clamped with EGTA to 30 μM (R30 μM), or 10 mM Ca^{2+} (Rmax) did not change
720 upon adding 20 mM TEA indicating that TEA is not contaminated with Ca^{2+} but instead TEA specifically
721 interferes with the Ca^{2+} -sensitive electrode.

722 **Figure 3 – figure supplement 2 Correction for the post-flash changes in the fluorescent properties**
723 **of the intracellular solution**

724 A. Green over red fluorescence (G/R) ratios measured *in situ* normalized to G/R ratios measured in
725 cuvettes. Data represent the different solutions used throughout the study. (a-g) represent measurements
726 obtained from different solutions prepared using different pre-stocks of the fluorescent indicators or a
727 different DMn/Ca²⁺ concentration.
728 B. Green over red fluorescence (G/R) ratios measured in cMFBs normalized to G/R ratios measured in
729 GCs. Data represent different solutions used throughout the study. (a-f) represent measurements
730 obtained from different solutions prepared using different pre-stocks of the fluorescent indicators or a
731 different DMn/Ca²⁺ concentration.
732 C. Example traces of *in situ* post-flash alterations in the green fluorescence, in the red fluorescence, and
733 the overall drop in the G/R ratio (in black) in response to a UV flash of 0.1 ms duration and 100 %
734 intensity.
735 D. Comparison of the UV-flash-induced bleaching of fluorescent indicators measured in cells to the UV-
736 flash-induced bleaching of fluorescent indicators measured in cuvettes, in response to a UV flash of 0.1
737 ms duration and 100 % intensity.
738 E. Example traces of UV-flash-induced changes occurring in cuvettes in response to UV flashes of
739 different intensities or duration.
740 F. Average UV-flash-induced changes occurring in cuvettes in response to UV flashes of different
741 intensities or duration.



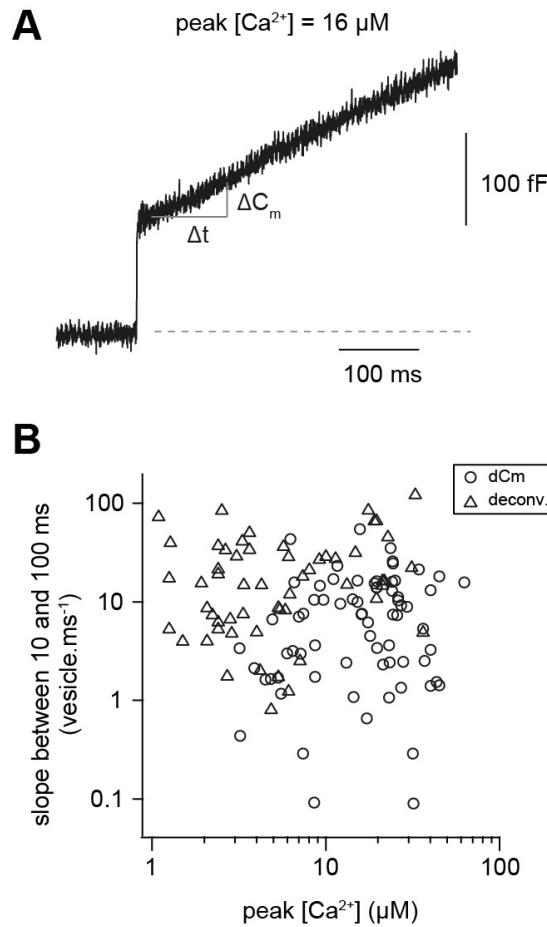
742 **Figure 3 – figure supplement 3 Comparison of brief versus long UV illumination to rule out fast**
743 **Ca²⁺ overshoots**

744 A. Post-flash Ca²⁺ concentration obtained from long flashes of 1 ms duration and 10% UV intensity,
745 normalized to post-flash Ca²⁺ concentration obtained from brief flashes of 0.1 ms duration and 100% UV
746 intensity.
747 B. Release rates obtained from long flashes of 1 ms duration and 10% UV intensity, normalized to
748 release rates obtained from brief flashes of 0.1 ms duration and 100% UV intensity. Color code matches
749 the data in A and B.

750 **Presynaptic and postsynaptic measurements reveal two kinetic processes of**
751 **neurotransmitter release**

752 In some Ca^{2+} uncaging experiments, synaptic release appeared to have two components,
753 which could be due to heterogeneity amongst release-ready vesicles. We therefore
754 systematically compared mono- and bi-exponential fits to the capacitance and
755 deconvolution data (Fig. 4 A and B). Several criteria were used to justify a bi-exponential
756 fit (see methods). One criterion was at least a 4% increase in the quality of bi- compared
757 with mono-exponential fits as measured by the sum of squared differences between the
758 fit and the experimental data (χ^2 ; Fig. 4D). Consistent with a visual impression, this
759 standardized procedure resulted in the classification of ~40% of all recordings as bi-
760 exponential (38 out of 80 capacitance measurements and 17 out of 59 deconvolution
761 experiments; Fig. 4C and D). The release rate of the fast component ($1/\tau_1$) of the merged
762 capacitance and deconvolution data showed no signs of saturation consistent with our
763 previous analyses of each data set separately. Fitting a Hill equation to the merged data
764 indicated a $K_D > 50 \mu\text{M}$ and a Hill coefficient of 1.6 (Fig. 4C). The release rate of the slow
765 component ($1/\tau_2$; if existing) was on average more than 10 times smaller (black symbols,
766 Fig. 4C). These data indicate that there are at least two distinct kinetic steps contributing
767 to release within the first 10 ms.

768 **Figure 4 Presynaptic and postsynaptic measurements reveal two kinetic processes of**
769 **neurotransmitter release**


770 A. Example of a capacitance trace showing the two components of release observed within the first 10
771 ms in response to UV-flash-evoked increase in Ca^{2+} concentration to $24 \mu\text{M}$. The solid magenta line
772 represents the bi-exponential fit and the dashed magenta line represents mono-exponential fit (see eq. 1).
773 B. Top: example trace of an EPSC recording in response to UV-flash evoked increase in Ca^{2+}
774 concentration to $36 \mu\text{M}$. Bottom: the corresponding cumulative release trace obtained from deconvolution
775 analysis, showing the two components of release observed within the first 10 ms. The solid magenta line
776 represents the bi-exponential fit and the dashed magenta line represents mono-exponential fit (see eq. 1).
777 C. Top: plot of neurotransmitter release rates as a function of peak Ca^{2+} concentration. Data obtained
778 from capacitance measurements with sinusoidal frequency of 5 kHz are shown as circles, data from 10
779 kHz capacitance measurements are shown as squares, and cumulative release data (obtained from
780 deconvolution analysis) are shown as lower left- and lower right- triangles for recordings with OGB5N and
781 Fluo5F, respectively. Open symbols correspond to data from the mono-exponential fits and filled symbols
782 correspond to data from the bi-exponential fits. Red symbols represent merged data of the release rates
783 obtained from mono-exponential fit and the fast component of the bi-exponential fit, and black symbols

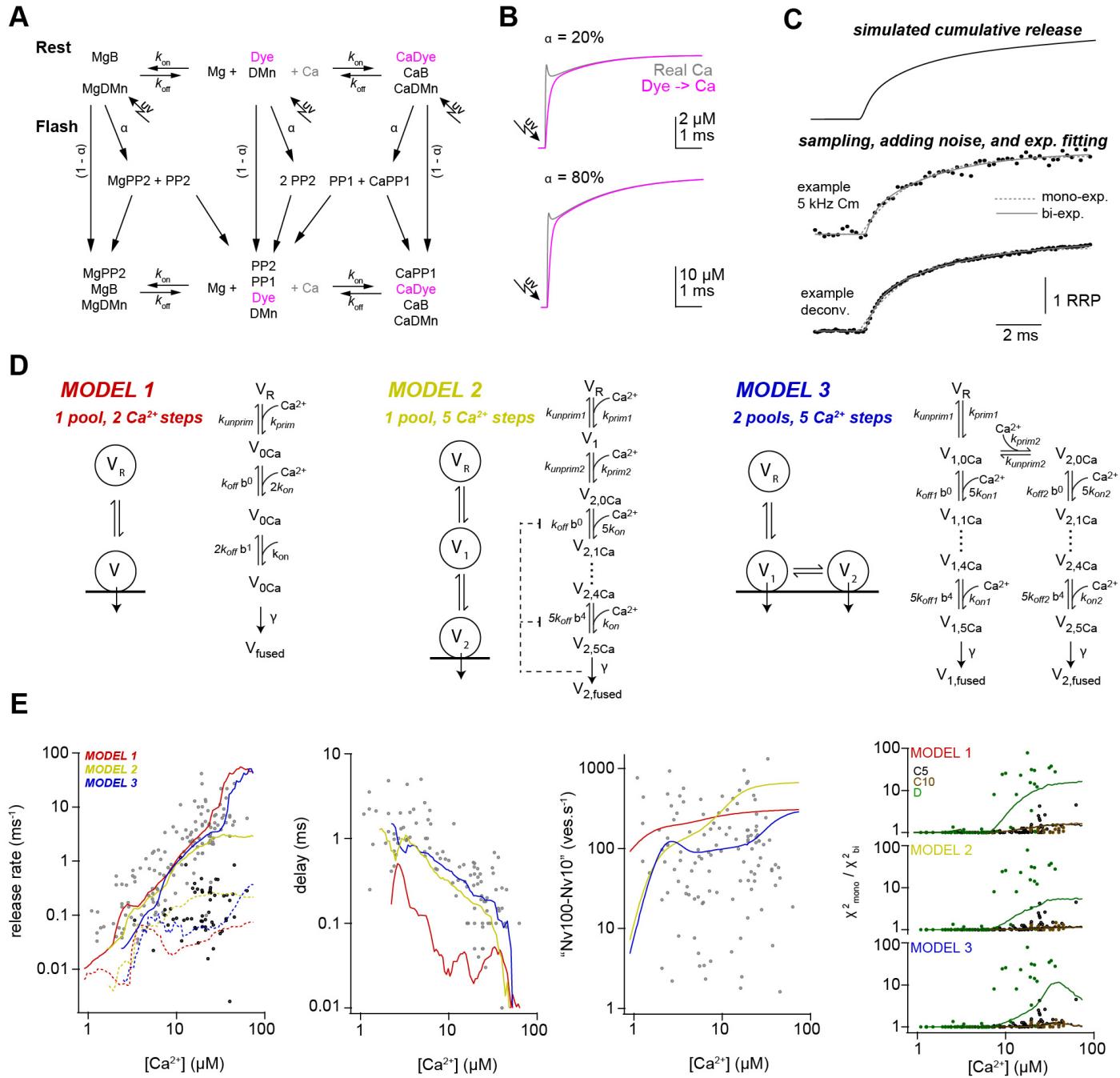
784 represent the second component of the bi-exponential fit. The line represents a fit with a Hill equation with
785 best-fit parameters $V_{max} = 29.9 \text{ ms}^{-1}$, $K_D = 75.5 \mu\text{M}$, and $n = 1.61$.

786 D. χ^2 ratio for the mono-exponential compared to the bi-exponential fits. Dashed line represents the
787 threshold of the χ^2 ratio used to judge the fit quality of double compared to mono-exponential fits (as one
788 criterion for selection). 5 kHz capacitance data are shown as circles, 10 kHz capacitance data are shown
789 as squares, and cumulative release data (obtained from deconvolution analysis) are shown as lower left-
790 and lower right- triangles for recordings with OGB5N and Fluo5F, respectively. Open symbols correspond
791 to data points judged as mono-exponential and filled symbols correspond to data points judged as bi-
792 exponential.

793 **Fast and Ca^{2+} -independent sustained release**

794 To gain more insights into the mechanisms of sustained vesicle release, we focused on
795 the synaptic release within the first 100 ms after Ca^{2+} uncaging. To investigate the Ca^{2+} -
796 dependence of sustained release, we estimated the number of vesicles (N_v) released
797 between 10 and 100 ms after flash onset, assuming a single vesicle capacitance of 70
798 aF and 90 granule cells-contacts per mossy fiber rosette (see methods; Ritzau-Jost et al.,
799 2014). There was considerable variability in the release rate between 10 and 100 ms,
800 which could be due to differences in bouton size and wash-out of proteins during whole-
801 cell recordings. However, the release rate showed no obvious dependence on the post-
802 flash Ca^{2+} concentration (Fig. 5B). These data indicate that the slope of the sustained
803 component of release is Ca^{2+} -independent in the investigated Ca^{2+} concentration range
804 of 1-50 μM , consistent with previously observed Ca^{2+} -independent vesicle recruitment as
805 assessed by depolarizing cMFBs to 0mV in the presence of EGTA (Ritzau-Jost et al.,
806 2014).

807 **Figure 5 Fast and Ca^{2+} -independent sustained release**


808 A. Examples of capacitance traces showing the sustained component of release.
809 B. Plot of the number of vesicles released between 10 and 100 ms divided by the time interval (90 ms)
810 versus the post-flash Ca^{2+} concentration. Open circles represent data from capacitance measurements
811 and triangles represent cumulative release data (obtained from deconvolution analysis).

812 **Release schemes with five Ca^{2+} steps and fast recruitment via parallel or sequential
813 models can explain Ca^{2+} -dependence of release**

814 To investigate mechanisms that could explain a non-saturating and shallow dose-
815 response curve and rapid sustained release, we performed modeling with various release
816 schemes. First, we simulated the exact time course of the concentration of free Ca^{2+} . The
817 Ca^{2+} release from DMn and subsequent binding to other buffers and the Ca^{2+} indicator
818 were simulated based on previously described binding and unbinding rates (Faas et al.,
819 2005; Faas et al., 2007; Fig. 6A; see methods). In contrast to previous results, which
820 predicted a significant overshoot of Ca^{2+} following UV illumination with short laser pulses
821 (Bollmann et al., 2000), our simulations predict little overshoot compared to the Ca^{2+}

822 concentration measured by the Ca^{2+} indicator (Fig. 6B). The discrepancy is readily
823 described by recent improvements in the quantification of Ca^{2+} binding and unbinding
824 kinetics (Faas et al., 2005; Faas et al., 2007). The calculations predict an almost step-like
825 increase in the free Ca^{2+} concentration with a 10-90% rise time below 50 μs . These
826 simulated UV illumination-induced transients of free Ca^{2+} concentrations were
827 subsequently used to drive the release schemes. Realistic noise was added to the
828 resulting simulated cumulative release rate and the analysis using exponential fits (eq. 1)
829 was performed as with the experimental data (Fig. 6C).

830 We compared three different release schemes in their ability to reproduce our
831 experimental data. In model 1, a single pool of vesicles with two Ca^{2+} binding steps was
832 used as previously established, e.g., for chromaffin cells and rod photoreceptors (Duncan
833 et al., 2010; Voets, 2000). Such an assumption would readily explain the shallow dose-
834 response curve (Bornschein and Schmidt, 2018). The two components of release could
835 be replicated by assuming rapid vesicle recruitment from a reserve pool (V_R ; Fig. 6D).
836 However, adjusting the free parameters did not allow reproducing the synaptic delay (Fig.
837 6E). We therefore tested two more sophisticated models in which vesicle fusion is
838 triggered via five Ca^{2+} binding steps (Schneggenburger and Neher, 2000). In model 2,
839 the first vesicle pool represents the docked vesicles and the second pool represents a
840 replacement pool, which can undergo rapid docking and fusion (Miki et al., 2016; Miki et
841 al., 2018), therefore representing two kinetic steps occurring in sequence. In model 3, two
842 pools of vesicles with different Ca^{2+} -sensitivity exist, where both types of vesicles can
843 fuse with different Ca^{2+} affinity (Voets, 2000; Walter et al., 2013; Wölfel et al., 2007),
844 therefore representing two kinetic steps occurring in parallel. Model 3 reproduced the data
845 as good as model 2, however the non-saturation up to 50 μM could be reproduced
846 somewhat better in model 3. Interestingly, models 2 and 3 both replicated the observed
847 shallow dose-response curve despite the presence of five Ca^{2+} binding steps. These
848 results indicate that established models with five Ca^{2+} -steps incorporating fast vesicle
849 recruitment via sequential or parallel vesicle pools can replicate our data fairly well.

850 **Figure 6 Release schemes with five Ca^{2+} steps and fast recruitment via parallel or sequential models**
851 **can explain Ca^{2+} -dependence of release**

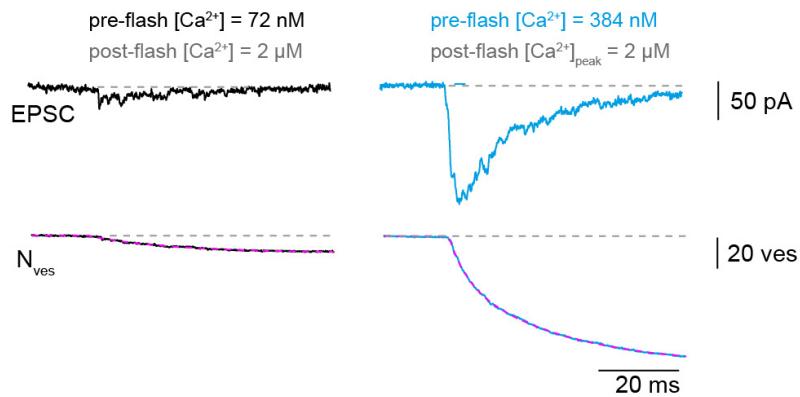
852 A. Scheme of the modeling of the intra-bouton Ca^{2+} dynamics showing the chemical reaction kinetics that
853 were implemented in the model. The model covered Ca^{2+} (Ca) and Mg^{2+} (Mg) binding to the indicator dye
854 (OGB-5N or Fluo-5F), to DM-nitrophen (DMn), and to buffers (ATP and/or an endogenous buffer). The
855 forward (k_{on}) and backward (k_{off}) rate constants differ between chemical species. Upon simulated UV flash
856 photolysis, a fraction α of metal bound and free DMn made a transition to different photoproducts (PP1
857 and PP2; cf. Faas et al., 2005). For model parameters see Supplementary Table 2.

858 B. The scheme in (A) was converted to a system of differential equations and the time courses of the
859 “real” free Ca^{2+} (magenta) and the free Ca^{2+} reported by OGB-5N (200 μM , green) were simulated for the

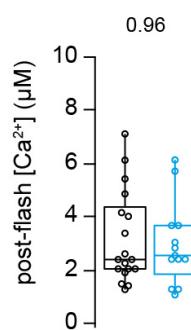
860 indicated uncaging fractions α . Note that already after less than 1 ms the dye reliably reflects the time
861 course of Ca^{2+} .

862 C. Traces showing the steps used in the simulation of the kinetic model of release.

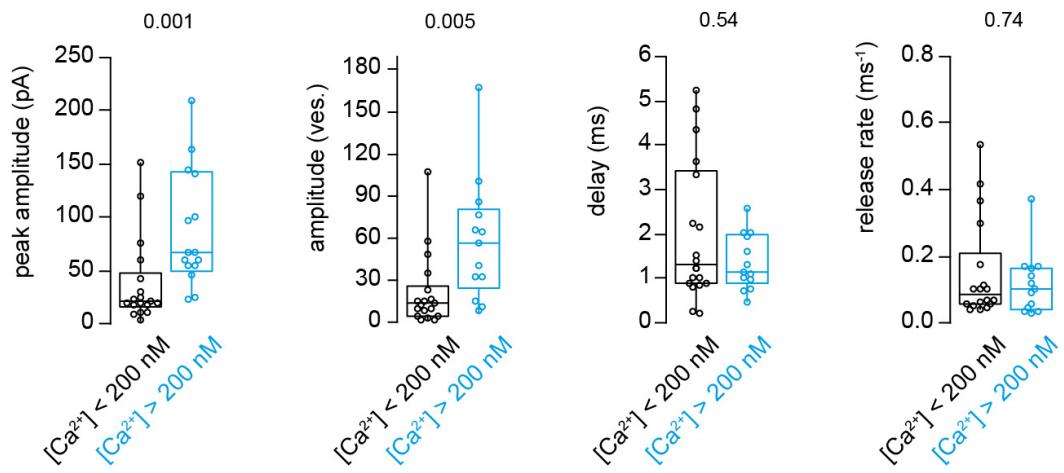
863 D. Graphical illustration of the three models used during the simulations. For model parameters see
864 Supplementary Table 3.

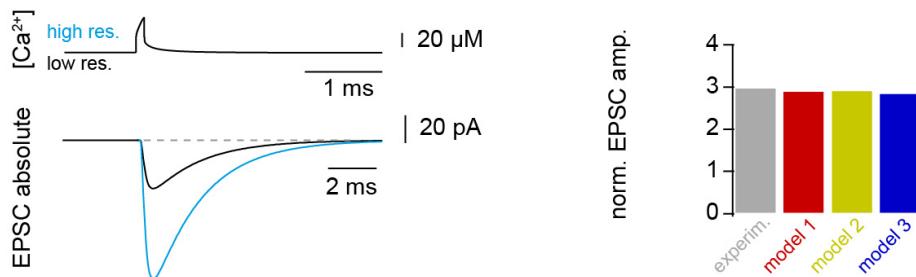

865 E. From left to right, predictions of each model and the experimental data for the inverse of τ_1 (grey
866 symbols, solid lines) and inverse of τ_2 (black symbols, dashed lines), delay, vesicle recruitment speed
867 between 10 and 100 ms, and the increase in the χ^2 ratio for the single- compared to the bi-exponential
868 fits. Red, yellow, and blue lines correspond to simulations of models 1, 2, and 3, respectively. For the χ^2
869 ratio (*right plot*), the experimental data and the simulations are shown separately for 5-kHz and 10-kHz
870 capacitance data (C5 and C10; black and brown, respectively) and the deconvolution data (D; green).

871 **Ca²⁺ uncaging with different pre-flash Ca²⁺ concentrations indicates Ca²⁺-
872 dependent vesicle priming**


873 Finally, we aimed to obtain a mechanistic understanding that could explain both the strong
874 dependence of action potential-evoked release on basal Ca^{2+} concentration (cf. Fig. 1)
875 and the Ca^{2+} -dependence of vesicle fusion (cf. Figs. 2-6). In principle, the action
876 potential-evoked data in Fig. 1 could be explained by an acceleration of vesicle fusion
877 kinetics or, alternatively, an increase in the number of release-ready vesicles upon
878 elevated basal Ca^{2+} . To differentiate between these two mechanistic possibilities, we
879 investigated the effect of basal Ca^{2+} concentration preceding the UV illumination (pre-
880 flash Ca^{2+}) on flash-evoked release. The pre-flash Ca^{2+} concentration can only be reliably
881 determined with the Ca^{2+} indicator Flou5F used in the experiments with weak flashes (see
882 Supplementary Table 1). We therefore grouped the deconvolution experiments with weak
883 flashes, which elevated the Ca^{2+} concentration to less than 5 μM , into two equally sized
884 groups of low and high pre-flash Ca^{2+} (below and above a value of 200 nM, respectively).
885 Due to the presence of the Ca^{2+} loaded DMn cage, the pre-flash Ca^{2+} concentrations
886 were on average higher than the resting Ca^{2+} concentration in physiological conditions of
887 around 50 nM (Delvendahl et al., 2015). In both groups, the post-flash Ca^{2+} concentration
888 was on average similar ($\sim 3 \mu\text{M}$; Fig. 7B). The peak EPSC amplitude of postsynaptic
889 current was significantly larger with high compared to low pre-flash Ca^{2+} concentration
890 (38 ± 10 and 91 ± 16 pA, $n = 18$ and 13, respectively, $P_{\text{Mann-Whitney}} = 0.001$; Fig. 7A and
891 C). Correspondingly, the amplitude of the fast component of release as measured from
892 deconvolution analysis was larger with high compared to low pre-flash Ca^{2+} (18 ± 5 and
893 49 ± 10 , $n = 18$ and 13, respectively, $P_{\text{Mann-Whitney}} = 0.005$; Fig. 7C). However, the kinetics

894 of vesicle fusion, measured as the inverse of the time constant of the fast component of
895 release, were not significantly different for both conditions (0.15 ± 0.04 and 0.12 ± 0.03
896 ms^{-1} for the low and high pre-flash Ca^{2+} conditions, $n = 18$ and 13 , respectively, $P_{\text{Mann-}}$
897 $\text{Whitney} = 0.74$; Fig. 7C). The delay was also not significantly different ($P_{\text{Mann-Whitney}} = 0.54$;
898 Fig. 7C). These data indicate that the number of release-ready vesicles were increased
899 upon elevated basal Ca^{2+} concentration but the fusion kinetics were unaltered. We
900 therefore added an additional Ca^{2+} -dependent maturation step to the initial vesicle
901 priming of the release schemes (see methods; note that this was already present in the
902 above-described simulations of Fig. 6 but it has little impact on these data). This allowed
903 replicating the threefold increase in the action potential-evoked release when driving the
904 release scheme with a previously estimated local Ca^{2+} concentration during an action
905 potential (Fig. 7D; Delvendahl et al., 2015). Thus, the release schemes can explain the
906 Ca^{2+} -dependence of the recruitment, priming, and fusion of vesicles at mature cMFBs at
907 physiological temperature.


A


B

C

D

908 **Figure 7** Ca^{2+} uncaging with different pre-flash Ca^{2+} concentrations indicates Ca^{2+} -dependent
909 vesicle priming

910 A. Two consecutive recordings from the same cell pair, with the same post-flash Ca^{2+} concentration but
911 different pre-flash Ca^{2+} concentration in the presynaptic terminal. *Top*: postsynaptic current. *Bottom*:
912 cumulative release of synaptic vesicles measured by deconvolution analysis of EPSCs superposed with a
913 mono-exponential fit (magenta). Black and blue color represent low and high pre-flash Ca^{2+}
914 concentration, respectively. The pre- and post-flash Ca^{2+} concentrations are indicated in each panel.
915 B. Comparison of the average post-flash Ca^{2+} concentration between both groups of either low or high
916 pre-flash Ca^{2+} concentration (black and blue bars, respectively).

917 C. From left to right: comparisons of the peak amplitude, the number of released vesicles measured as
918 obtained from deconvolution analysis of EPSC, the delay of the release onset, and the release rate.
919 Boxplots show median and 1st/ 3rd quartiles with whiskers indicating the whole data range. The values
920 above the boxplots represent P-values of Mann-Whitney U test.
921 D. *Top left*: simulated local Ca^{2+} signal at 20 nm from the Ca^{2+} channel taken from Delvendahl et al.,
922 2015. Note the almost complete overlap of the two Ca^{2+} concentration traces with low and high basal pre-
923 flash Ca^{2+} concentration. *Bottom left*: prediction of the increase in the amplitude of action potential-evoked
924 EPSC, upon elevating the basal Ca^{2+} concentration in the presynaptic terminal. *Right*: comparison
925 between experimental data and the models' predictions of the effect of basal Ca^{2+} on the amplitude of the
926 action potential-evoked release.

927 **Discussion**

928 Here, we provided insights into the Ca^{2+} -dependence of vesicle recruitment, priming, and
929 fusion at cMFBs. The results obtained at this synapse show prominent Ca^{2+} -dependent
930 priming steps, a shallow non-saturating dose-response curve up to 50 μM , and Ca^{2+} -
931 independent sustained vesicle recruitment. Our computational analysis indicates that the
932 peculiar dose-response curve can be explained by well-established release schemes
933 having five Ca^{2+} steps and rapid vesicle recruitment via sequential or parallel vesicle
934 pools. Thus, we established quantitative scheme of synaptic release for a mature high-
935 fidelity synapse, exhibiting both high- and low-affinity Ca^{2+} sensors.

936 **Ca^{2+} affinity of the vesicle fusion sensor**

937 The Ca^{2+} -sensitivity of vesicle fusion seems to be synapse-specific. In contrast to the
938 estimated Ca^{2+} affinity for vesicle fusion of $\sim 100 \mu\text{M}$ at the bipolar cell of goldfish
939 (Heidelberger et al., 1994) and the squid giant synapse (Adler et al., 1991; Llinás et al.,
940 1992), recent studies showed that the affinity is much higher at three types of mammalian
941 central synapses: the calyx of Held (Bollmann et al., 2000; Lou et al., 2005;
942 Schneggenburger and Neher, 2000; Sun et al., 2007; Wang et al., 2008), the inhibitory
943 cerebellar basket cell to Purkinje cell synapse (Sakaba, 2008), and the hippocampal
944 mossy fiber boutons (Fukaya et al., 2021). Consistent with reports from mammalian
945 central synapses, our data revealed prominent vesicle fusion at concentrations below
946 5 μM arguing for a high-affinity fusion sensor (Figs. 2-4). However, the non-saturation of
947 the dose-response curve (Figs. 2-4) argues for the presence of a rather low-affinity fusion
948 sensor at cMFBs. In our simulations, both model 2 and 3 exhibit vesicles with a Ca^{2+} -
949 affinity similar to the calyx of Held. Nevertheless, with high intracellular Ca^{2+}

950 concentrations ($>20 \mu\text{M}$) these vesicles will fuse very rapidly and the further increase in
951 the release kinetics (causing the non-saturating dose-response curve) can be explained
952 by rapid vesicle recruitment from a sequential pool of vesicles exhibiting use-dependent
953 lowering of the Ca^{2+} -affinity (V_1 in model 2; Miki et al., 2018) or from a parallel pool of
954 vesicles with lower Ca^{2+} affinity (V_1 in model 3; Hallermann et al., 2010). Our data
955 therefore indicate that the shallow and non-saturating dose-response curve is the
956 consequence of rapid recruitment of vesicles that still exhibit a lower Ca^{2+} -affinity
957 compared to fully recovered vesicles. Consistent with this interpretation, a lowering in the
958 Ca^{2+} -affinity of the vesicle fusion sensor has been observed at the calyx of Held with Ca^{2+}
959 uncaging following vesicle depletion (Müller et al., 2010; Wadel et al., 2007). These newly
960 recruited vesicles might contribute particularly to the dose-response curve at the cMFB
961 because the cMFB has a much faster rate of vesicle recruitment compared with the calyx
962 of Held synapse (Miki et al., 2020) providing a possible explanation why the here-reported
963 dose-response curve differs from previous results at the calyx of Held. Furthermore,
964 cMFBs seem to have functional similarities with ribbon-type synapses because it has
965 recently been shown that the vesicle mobility in cMFBs is comparable to ribbon-type
966 synapses (Rothman et al., 2016). The hallmark of ribbon-type synapses is their rapid
967 vesicle recruitment (Lenzi and von Gersdorff, 2001; Matthews, 2000) and indeed more
968 shallow dose-response curves were obtained at the ribbon photoreceptors and inner hair
969 cell synapses (Duncan et al., 2010; Heil and Neubauer, 2010; Johnson et al., 2010;
970 Thoreson et al., 2004), but see (Beutner et al., 2001). Therefore, these results predict
971 similar shallow non-saturating dose-response at other central synapses with rapid vesicle
972 recruitment (Doussau et al., 2017; Miki et al., 2016; Pulido and Marty, 2017).

973 **Ca^{2+} -sensitivity of vesicle priming**

974 The steps preceding the fusion of synaptic vesicles are in general still poorly understood
975 (Südhof, 2013). There is evidence that some steps preceding the fusion are strongly Ca^{2+} -
976 dependent (Neher and Sakaba, 2008), as has been demonstrated at chromaffin cells
977 (Voets, 2000; Walter et al., 2013) and at several types of synapses such as the calyx of
978 Held (Awatramani et al., 2005; Hosoi et al., 2007), the crayfish neuromuscular junctions
979 (Pan and Zucker, 2009), parallel fiber to molecular layer interneuron synapses (Malagon

980 et al., 2020), and cultured hippocampal neurons (Chang et al., 2018; Stevens and
981 Wesseling, 1998). In previous reports, the Ca^{2+} -dependence of vesicle priming at cMFBs
982 was analyzed more indirectly with the Ca^{2+} chelator EGTA (Ritzau-Jost et al., 2014;
983 Ritzau-Jost et al., 2018) and the obtained results could be explained by Ca^{2+} -dependent
984 models but surprisingly also by Ca^{2+} -independent models (Hallermann et al., 2010;
985 Ritzau-Jost et al., 2018). Furthermore, the analysis of molecular pathways showed that
986 the recovery from depression is independent of the Ca^{2+} /calmodulin/Munc13 pathway at
987 cMFBs (Ritzau-Jost et al., 2018). Our paired recordings and uncaging experiments (Figs.
988 1 and 7) clearly demonstrate pronounced Ca^{2+} -dependence of vesicle priming at cMFBs.
989 Taken together, these data indicate that some priming steps are mediated by Ca^{2+} -
990 dependent mechanisms, which do not involve the Ca^{2+} /calmodulin/Munc13 pathway. A
991 potential candidate for such a Ca^{2+} -dependent mechanism are the interaction of
992 diacylglycerol/phospholipase C or Ca^{2+} /phospholipids with Munc13s (Lee et al., 2013;
993 Lou et al., 2008; Rhee et al., 2002; Shin et al., 2010).

994 Here, we used single action potentials (Fig. 1) and weak uncaging stimuli (post-flash Ca^{2+}
995 concentration of $\sim 3 \mu\text{M}$; Fig. 7) to investigate the impact of the basal Ca^{2+} concentration.
996 Synaptic vesicles that fuse upon single action potentials and weak uncaging stimuli are
997 particularly fusogenic and thus might represent the superprimed vesicles with a particular
998 high release probability (Hanse and Gustafsson, 2001; Ishiyama et al., 2014; Kusch et
999 al., 2018; Lee et al., 2013; Schlüter et al., 2006; Taschenberger et al., 2016) suggesting
1000 that the process of superpriming is Ca^{2+} -dependent. This interpretation would also
1001 provide an explanation why in a recent report, triggering an action potential in the range
1002 of 10–50 ms time before another action potential (which elevates basal Ca^{2+}
1003 concentrations) restored the synchronicity of synaptic vesicle fusion in mutant synapses
1004 which has a phenotype of synchronous-release-impairment (Chang et al., 2018). It would
1005 be furthermore consistent with a proposed rapid, dynamic, and Ca^{2+} -dependent
1006 equilibrium between primed and superprimed vesicles (Neher and Brose, 2018).
1007 However, further investigations are needed for the dissection between the Ca^{2+} -
1008 dependence of priming and superpriming. Yet, our data show that some priming steps

1009 are strongly Ca^{2+} -dependent with a high-affinity Ca^{2+} sensor that allow detecting changes
1010 between 30 and 180 nM at cMFBs.

1011 **Ca^{2+} -sensitivity of vesicle recruitment**

1012 The upstream steps of vesicle priming, referred to as recruitment, refilling, or reloading,
1013 remain controversial in particular with respect to their speed. The slow component of
1014 release (during prolonged depolarizations or Ca^{2+} elevations with uncaging) was initially
1015 interpreted as a sub-pool of release-ready vesicles that fuse with slower kinetics (see e.g.
1016 Sakaba and Neher, 2001). However, recent studies indicate very fast vesicle recruitment
1017 steps (Blanchard et al., 2020; Chang et al., 2018; Doussau et al., 2017; Hallermann et
1018 al., 2010; Lee et al., 2012; Malagon et al., 2020; Miki et al., 2016; Miki et al., 2018; Saviane
1019 and Silver, 2006; Valera et al., 2012). These findings further complicate the dissection
1020 between fusion, priming, and recruitment steps. Therefore, the differentiation between
1021 ‘parallel’ release schemes with fast and slowly fusing vesicles and ‘sequential’ release
1022 schemes with fast vesicle recruitment and subsequent fusion is technically challenging at
1023 central synapses. Our data could be described by both sequential and parallel release
1024 schemes (model 2 and 3; Fig. 6). The non-saturation of the release rate could be
1025 described somewhat better by the parallel model 3. However, further adjustment of the
1026 use-dependent slowing of the rates in model 2 (see $k_{\text{on,plug}}$, $k_{\text{off,plug}}$, and eq. 3 and 4; Miki
1027 et al., 2018) can result in a sequential model exhibiting both fast and slowly fusing vesicles
1028 with different Ca^{2+} -sensitivity (see Mahfooz et al., 2016, for an alternative description of
1029 use-dependence of vesicle fusion). Such use-dependent sequential models ultimately
1030 complicate the semantic definitions of ‘sequential’ and ‘parallel’, because the newly
1031 recruited vesicles will fuse in a molecularly different state, which could also be viewed as
1032 a parallel pathway to reach fusion. Independent of the difficulty to differentiate between
1033 sequential and parallel release schemes, the sustained component of release exhibited
1034 little calcium dependence in the here-tested range between 1 and 50 μM (Fig. 5). The
1035 Ca^{2+} -independence of vesicle recruitment in the investigated range is consistent with the
1036 previously observed EGTA-independent slope of the sustained release during prolonged
1037 depolarizations (Ritzau-Jost et al., 2014). Our data cannot differentiate if recruitment is
1038 mediated by a fully saturated Ca^{2+} sensor for priming (mode 2; assumed K_d of 2 μM ; Miki

1039 et al., 2018) or a parallel Ca^{2+} -independent step (mode 3). Thus, during sustained activity
1040 at cMFBs vesicle recruitment is either mediated by fully Ca^{2+} -independent processes or
1041 by an apparently Ca^{2+} -independent processes in the relevant Ca^{2+} concentration range
1042 because of a saturated high-affinity Ca^{2+} sensor.

1043 **Mechanistic and functional implications**

1044 The Ca^{2+} -sensitivity of vesicle fusion critically impacts the estimates of the coupling
1045 distance between Ca^{2+} channels and synaptic vesicles, mainly those obtained based on
1046 functional approaches (Neher, 1998; Eggermann et al., 2011; but not on structural
1047 approaches, see e.g. Éltes et al., 2017; Rebola et al., 2019). Our previous estimate of the
1048 coupling distance at the cMFB of 20 nm (Delvendahl et al., 2015) was based on the
1049 release scheme of Wang et al. (2008) obtained at the calyx of Held synapse at an age of
1050 (P16-P19) at room temperature and assuming a Q_{10} factor of 2.5. The now estimated k_{on}
1051 and k_{off} rates at mature cMFBs at physiological temperature were slightly larger and
1052 smaller than the temperature-corrected values from the calyx, respectively, resulting in a
1053 slightly higher affinity of the fast releasing vesicles (V_2 in model 2 and 3). Therefore, at
1054 the cMFB, the coupling distance of the vesicles released by a single action potential is if
1055 anything even smaller than the previous estimate of 20 nm.

1056 In addition, our data might provide a link between Ca^{2+} -dependent priming and facilitation.
1057 Synaptotagmin-7 is a high-affinity Ca^{2+} sensor (Sugita et al., 2002) that could mediate the
1058 here-reported three-fold increase in synaptic strength (Figs. 1 and 7). Synaptotagmin-7
1059 has been proposed to play a role in synaptic facilitation at different synapses supporting
1060 a molecularly distinct mechanism of facilitation (Jackman and Regehr, 2017). An increase
1061 in the size of the fusogenic sub-pool of release-ready vesicles mediated by basal Ca^{2+}
1062 might provide the underlying mechanism where Synaptotagmin-7 could be a sensor for
1063 the changes in basal Ca^{2+} levels and therefore affect synaptic strength (Liu et al., 2014).

1064 Finally, synaptic fidelity has been shown to increase with age at cMFBs (Cathala et al.,
1065 2003), neocortical synapses (Bornschein et al., 2019), and the calyx of Held (Fedchyshyn
1066 and Wang, 2005; Nakamura et al., 2015; Taschenberger and von Gersdorff, 2000).

1067 During high-frequency transmission, the residual Ca^{2+} concentration increases up to a
1068 few μM at cMFBs (Delvendahl et al., 2015) but mature cMFBs can still sustain
1069 synchronous release (Hallermann et al., 2010; Saviane and Silver, 2006). The
1070 developmental decrease in the affinity of the release sensors observed at the calyx of
1071 Held (Wang et al., 2008) and the here-reported shallow-dose-response curve at mature
1072 cMFBs could be an evolutionary adaption of synapses to prevent the depletion of the
1073 release-ready vesicles at medium Ca^{2+} concentrations and therefore allow maintaining
1074 sustained synchronous neurotransmission with high fidelity (Matthews, 2000).

1075 **Acknowledgement**

1076 We thank Erwin Neher for help with algorithms for calculating the Ca^{2+} concentration of
1077 the intracellular solutions (Fig. 1) and for helpful discussions. This work was supported
1078 by a European Research Council Consolidator Grant (ERC CoG 865634) to S.H and by
1079 the German Research Foundation (DFG; SCHM1838/2) to H.S.

1080 **References**

1081 Adler, E. M., Augustine, G. J., Duffy, S. N., & Charlton, M. P. (1991). Alien intracellular calcium chelators
1082 attenuate neurotransmitter release at the squid giant synapse. *J Neurosci*, 11(6), 1496-1507.

1083 Atwood, H. L., & Karunianithi, S. (2002). Diversification of synaptic strength: presynaptic elements.
1084 *Nature Reviews Neuroscience*, 3(7), 497-516. doi:10.1038/nrn876

1085 Awatramani, G. B., Price, G. D., & Trussell, L. O. (2005). Modulation of Transmitter Release by
1086 Presynaptic Resting Potential and Background Calcium Levels. *Neuron*, 48(1), 109-121.
1087 doi:10.1016/j.neuron.2005.08.038

1088 Beutner, D., Voets, T., Neher, E., & Moser, T. (2001). Calcium dependence of exocytosis and endocytosis
1089 at the cochlear inner hair cell afferent synapse. *Neuron*, 29(3), 681-690.

1090 Billings, G., Piasini, E., Lőrincz, A., Nusser, Z., & Silver, R. A. (2014). Network structure within the
1091 cerebellar input layer enables lossless sparse encoding. *Neuron*, 83, 960–974.
1092 doi:10.1016/j.neuron.2014.07.020

1093 Blanchard, K., Zorrilla de San Martín, J., Marty, A., Llano, I., & Trigo, F. F. (2020). Differentially poised
1094 vesicles underlie fast and slow components of release at single synapses. *Journal of General
1095 Physiology*, 152(5). doi:10.1085/jgp.201912523

1096 Bollmann, J. H., Sakmann, B., & Borst, J. G. (2000). Calcium sensitivity of glutamate release in a calyx-
1097 type terminal. *Science*, 289(5481), 953-957.

1098 Bornschein, G., Eilers, J., & Schmidt, H. (2019). Neocortical high probability release sites are formed by
1099 distinct Ca^{2+} channel-to-release sensor topographies during development. *Cell Reports*, 28(6),
1100 1410-1418.e1414. doi:10.1016/j.celrep.2019.07.008

1101 Bornschein, G., & Schmidt, H. (2018). Synaptotagmin Ca^{2+} sensors and their spatial coupling to
1102 presynaptic Ca_v channels in central cortical synapses. *Frontiers in Molecular Neuroscience*, 11,
1103 494. doi:10.3389/fnmol.2018.00494

1104 Cathala, L., Brickley, S., Cull-Candy, S., & Farrant, M. (2003). Maturation of EPSCs and intrinsic
1105 membrane properties enhances precision at a cerebellar synapse. *J Neurosci*, 23(14), 6074-6085.
1106 doi:23/14/6074 [pii]

1107 Chabrol, F. P., Arenz, A., Wiechert, M. T., Margrie, T. W., & DiGregorio, D. A. (2015). Synaptic diversity
1108 enables temporal coding of coincident multisensory inputs in single neurons. *Nature
1109 Neuroscience*, 18(5), 718-727. doi:10.1038/nn.3974

1110 Chang, S., Trimbuch, T., & Rosenmund, C. (2018). Synaptotagmin-1 drives synchronous Ca^{2+} -triggered
1111 fusion by C₂B-domain-mediated synaptic-vesicle-membrane attachment. *Nature Neuroscience*,
1112 21(1), 33-40. doi:10.1038/s41593-017-0037-5

1113 Delvendahl, I., Jablonski, L., Baade, C., Matveev, V., Neher, E., & Hallermann, S. (2015). Reduced
1114 endogenous Ca^{2+} buffering speeds active zone Ca^{2+} signaling. *Proc Natl Acad Sci U S A*, 112(23),
1115 E3075-3084. doi:10.1073/pnas.1508419112

1116 DiGregorio, D. A., & Vergara, J. L. (1997). Localized detection of action potential-induced presynaptic
1117 calcium transients at a Xenopus neuromuscular junction. 505(3), 585-592. doi:10.1111/j.1469-
1118 7793.1997.585ba.x

1119 Doussau, F., Schmidt, H., Dorgans, K., Valera, A. M., Poulain, B., & Isope, P. (2017). Frequency-dependent
1120 mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. *Elife*, 6.
1121 doi:10.7554/elife.28935

1122 Duncan, G., Rabl, K., Gemp, I., Heidelberger, R., & Thoreson, W. B. (2010). Quantitative Analysis of
1123 Synaptic Release at the Photoreceptor Synapse. *Biophysical Journal*, 98(10), 2102-2110.
1124 doi:10.1016/j.bpj.2010.02.003

1125 Eggermann, E., Bucurenciu, I., Goswami, S. P., & Jonas, P. (2011). Nanodomain coupling between Ca^{2+}
1126 channels and sensors of exocytosis at fast mammalian synapses. *Nature Reviews Neuroscience*,
1127 13(1), 7-21. doi:10.1038/nrn3125

1128 Éltes, T., Kirizs, T., Nusser, Z., & Holderith, N. (2017). Target cell type-dependent differences in Ca^{2+}
1129 channel function underlie distinct release probabilities at hippocampal glutamatergic terminals.
1130 *J Neurosci*, 37(7), 1910-1924. doi:10.1523/JNEUROSCI.2024-16.2017

1131 Escobar, A. L., Velez, P., Kim, A. M., Cifuentes, F., Fill, M., & Vergara, J. L. (1997). Kinetic properties of
1132 DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. *Pflugers Arch*,
1133 434(5), 615-631. doi:10.1007/s004240050444

1134 Faas, G. C., Karacs, K., Vergara, J. L., & Mody, I. (2005). Kinetic properties of DM-nitrophen binding to
1135 calcium and magnesium. *Biophysical Journal*, 88(6), 4421-4433.
1136 doi:10.1529/biophysj.104.057745

1137 Faas, G. C., Schwaller, B., Vergara, J. L., & Mody, I. (2007). Resolving the fast kinetics of cooperative
1138 binding: Ca^{2+} buffering by calretinin. *PLoS Biology*, 5(11), e311.
1139 doi:10.1371/journal.pbio.0050311

1140 Fedchyshyn, M. J., & Wang, L. Y. (2005). Developmental transformation of the release modality at the
1141 calyx of Held synapse. *J Neurosci*, 25(16), 4131-4140. doi:10.1523/JNEUROSCI.0350-05.2005

1142 Fekete, A., Nakamura, Y., Yang, Y. M., Herlitze, S., Mark, M. D., DiGregorio, D. A., & Wang, L. Y. (2019).
1143 Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct
1144 morphological modules. *Nat Commun*, 10(1), 826. doi:10.1038/s41467-019-08452-2

1145 Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating
1146 glutamatergic EPSCs in the rat CNS, *in vitro*. *Journal of Physiology*, 479(Pt 3), 381-387.

1147 Fukaya, R., Maglione, M., Sigrist, S. J., & Sakaba, T. (2021). Rapid Ca^{2+} channel accumulation contributes
1148 to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses. *Proceedings
1149 of the National Academy of Sciences*, 118(9), e2016754118. doi:10.1073/pnas.2016754118

1150 Gillis, K. D. (1995). Membrane Capacitance Measurement. In B. Sakmann & E. Neher (Eds.), *Single-
1151 Channel Recording* (2 ed., pp. 155-198). New York: Plenum Press.

1152 Grande, G., & Wang, L. Y. (2011). Morphological and functional continuum underlying heterogeneity in
1153 the spiking fidelity at the calyx of held synapse in vitro. *Journal of Neuroscience*, 31(38), 13386-
1154 13399. doi:10.1523/JNEUROSCI.0400-11.2011

1155 Hallermann, S., Fejtova, A., Schmidt, H., Weyhersmüller, A., Silver, R. A., Gundelfinger, E., & Eilers, J.
1156 (2010). Bassoon speeds vesicle reloading at a central excitatory synapse. *Neuron*, 18(4), 710-
1157 723. doi:10.1016/j.neuron.2010.10.026

1158 Hallermann, S., Pawlu, C., Jonas, P., & Heckmann, M. (2003). A large pool of releasable vesicles in a
1159 cortical glutamatergic synapse. *Proceedings of the National Academy of Sciences*, 100(15), 8975-
1160 8980. doi:10.1073/pnas.1432836100

1161 Hanse, E., & Gustafsson, B. (2001). Vesicle release probability and pre-primed pool at glutamatergic
1162 synapses in area CA1 of the rat neonatal hippocampus. *Journal of Physiology*, 531(Pt 2), 481-
1163 493. doi:PHY_1600 [pii]

1164 Heidelberger, R., Heinemann, C., Neher, E., & Matthews, G. (1994). Calcium dependence of the rate of
1165 exocytosis in a synaptic terminal. *Nature*, 371(6497), 513-515.

1166 Heil, P., & Neubauer, H. (2010). Summing across different active zones can explain the quasi-linear Ca-
1167 dependencies of exocytosis by receptor cells. *Frontiers in synaptic neuroscience*, 2, 148.
1168 doi:10.3389/fnsyn.2010.00148

1169 Hosoi, N., Sakaba, T., & Neher, E. (2007). Quantitative analysis of calcium-dependent vesicle recruitment
1170 and its functional role at the calyx of Held synapse. *Journal of Neuroscience*, 27(52), 14286-
1171 14298. doi:10.1523/jneurosci.4122-07.2007

1172 Ishiyama, S., Schmidt, H., Cooper, B. H., Brose, N., & Eilers, J. (2014). Munc13-3 Superprimes Synaptic
1173 Vesicles at Granule Cell-to-Basket Cell Synapses in the Mouse Cerebellum. *J Neurosci*, 34(44),
1174 14687-14696. doi:10.1523/JNEUROSCI.2060-14.2014

1175 Jackman, S. L., & Regehr, W. G. (2017). The Mechanisms and Functions of Synaptic Facilitation. *Neuron*,
1176 94(3), 447-464. doi:10.1016/j.neuron.2017.02.047

1177 Jakab, R. L., & Hámori, J. (1988). Quantitative morphology and synaptology of cerebellar glomeruli in the
1178 rat. *Anat Embryol*, 179, 81-88.

1179 Johnson, S. L., Franz, C., Kuhn, S., Furness, D. N., Ruttiger, L., Munkner, S., . . . Marcotti, W. (2010).
1180 Synaptotagmin IV determines the linear Ca^{2+} dependence of vesicle fusion at auditory ribbon
1181 synapses. *Nature Neuroscience*, 13(1), 45-52. doi:10.1038/nn.2456

1182 Kaplan, J. H., & Ellis-Davies, G. C. (1988). Photolabile chelators for the rapid photorelease of divalent
1183 cations. *Proceedings of the National Academy of Sciences of the United States of America*,
1184 85(17), 6571-6575.

1185 Kochubey, O., Han, Y., & Schneggenburger, R. (2009). Developmental regulation of the intracellular Ca^{2+}
1186 sensitivity of vesicle fusion and Ca^{2+} -secretion coupling at the rat calyx of Held. *The Journal of
1187 Physiology*, 587(12), 3009-3023. doi:10.1113/jphysiol.2009.172387

1188 Kochubey, O., Lou, X., & Schneggenburger, R. (2011). Regulation of transmitter release by Ca^{2+} and
1189 synaptotagmin: insights from a large CNS synapse. *Trends in Neurosciences*, 34(5), 237-246.
1190 doi:10.1016/j.tins.2011.02.006

1191 Kusch, V., Bornschein, G., Loreth, D., Bank, J., Jordan, J., Baur, D., . . . Schmidt, H. (2018). Munc13-3 is
1192 required for the developmental localization of Ca^{2+} channels to active zones and the
1193 nanopositioning of $Ca_{v}2.1$ near release sensors. *Cell Rep*, 22(8), 1965-1973.
1194 doi:10.1016/j.celrep.2018.02.010

1195 Lee, J. S., Ho, W. K., & Lee, S. H. (2012). Actin-dependent rapid recruitment of reluctant synaptic vesicles
1196 into a fast-releasing vesicle pool. *Proceedings of the National Academy of Sciences of the United
1197 States of America*, 109(13), E765-774. doi:10.1073/pnas.1114072109

1198 Lee, J. S., Ho, W. K., Neher, E., & Lee, S. H. (2013). Superpriming of synaptic vesicles after their
1199 recruitment to the readily releasable pool. *Proc Natl Acad Sci U S A*, 110(37), 15079-15084.
1200 doi:10.1073/pnas.1314427110

1201 Lenzi, D., & von Gersdorff, H. (2001). Structure suggests function: the case for synaptic ribbons as
1202 exocytotic nanomachines. *Bioessays*, 23(9), 831-840. doi:10.1002/bies.1118

1203 Lin, K. H., Taschenberger, H., & Neher, E. (2017). Dynamics of volume-averaged intracellular Ca^{2+} in a rat
1204 CNS nerve terminal during single and repetitive voltage-clamp depolarizations. *Journal of
1205 Physiology*, 595(10), 3219-3236. doi:10.1113/JP272773

1206 Liu, H., Bai, H., Hui, E., Yang, L., Evans, C. S., Wang, Z., . . . Chapman, E. R. (2014). Synaptotagmin 7
1207 functions as a Ca^{2+} -sensor for synaptic vesicle replenishment. *eLife*, 3, e01524.
1208 doi:10.7554/eLife.01524

1209 Llinás, R., Sugimori, M., & Silver, R. B. (1992). Microdomains of high calcium concentration in a
1210 presynaptic terminal. *Science*, 256, 677-679.

1211 Lou, X., Korogod, N., Brose, N., & Schneggenburger, R. (2008). Phorbol esters modulate spontaneous and
1212 Ca^{2+} -evoked transmitter release via acting on both Munc13 and protein kinase C. *Journal of
1213 Neuroscience*, 28(33), 8257-8267. doi:10.1523/jneurosci.0550-08.2008

1214 Lou, X., Scheuss, V., & Schneggenburger, R. (2005). Allosteric modulation of the presynaptic Ca^{2+} sensor
1215 for vesicle fusion. *Nature*, 435(7041), 497-501. doi:10.1038/nature03568

1216 Mahfooz, K., Singh, M., Renden, R., & Wesseling, J. F. (2016). A well-defined readily releasable pool with
1217 fixed capacity for storing vesicles at calyx of Held. *PLoS Computational Biology*, 12(4), e1004855.
1218 doi:10.1371/journal.pcbi.1004855

1219 Malagon, G., Miki, T., Tran, V., Gomez, L. C., & Marty, A. (2020). Incomplete vesicular docking limits
1220 synaptic strength under high release probability conditions. *eLife*, 9. doi:10.7554/eLife.52137

1221 Markram, H., Roth, A., & Helmchen, F. (1998). Competitive calcium binding: implications for dendritic
1222 calcium signaling. *Journal of Computational Neuroscience*, 5(3), 331-348.
1223 doi:10.1023/a:1008891229546

1224 Matthews, G. (2000). Vesicle fiesta at the synapse. *Nature*, 406(6798), 835-836. doi:10.1038/35022674

1225 Meinrenken, C. J., Borst, J. G., & Sakmann, B. (2002). Calcium secretion coupling at calyx of held
1226 governed by nonuniform channel-vesicle topography. *Journal of Neuroscience*, 22(5), 1648-
1227 1667. doi:22/5/1648 [pii]

1228 Miki, T., Malagon, G., Pulido, C., Llano, I., Neher, E., & Marty, A. (2016). Actin- and Myosin-Dependent
1229 Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis. *Neuron*, 91(4), 808-823.
1230 doi:10.1016/j.neuron.2016.07.033

1231 Miki, T., Midorikawa, M., & Sakaba, T. (2020). Direct imaging of rapid tethering of synaptic vesicles
1232 accompanying exocytosis at a fast central synapse. *Proc Natl Acad Sci U S A*, 117(25), 14493-
1233 14502. doi:10.1073/pnas.2000265117

1234 Miki, T., Nakamura, Y., Malagon, G., Neher, E., & Marty, A. (2018). Two-component latency distributions
1235 indicate two-step vesicular release at simple glutamatergic synapses. *Nat Commun*, 9(1), 3943.
1236 doi:10.1038/s41467-018-06336-5

1237 Millar, A. G., Zucker, R. S., Ellis-Davies, G. C., Charlton, M. P., & Atwood, H. L. (2005). Calcium sensitivity
1238 of neurotransmitter release differs at phasic and tonic synapses. *J Neurosci*, 25(12), 3113-3125.
1239 doi:10.1523/JNEUROSCI.4717-04.2005

1240 Müller, M., Goutman, J. D., Kochubey, O., & Schneggenburger, R. (2010). Interaction between facilitation
1241 and depression at a large CNS synapse reveals mechanisms of short-term plasticity. *Journal of
1242 Neuroscience*, 30(6), 2007-2016. doi:10.1523/JNEUROSCI.4378-09.2010

1243 Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J. S., Shigemoto, R., . . . Takahashi, T.
1244 (2015). Nanoscale distribution of presynaptic Ca^{2+} channels and its impact on vesicular release
1245 during development. *Neuron*, 85(1), 145-158. doi:10.1016/j.neuron.2014.11.019

1246 Neef, J., Urban, N. T., Ohn, T. L., Frank, T., Jean, P., Hell, S. W., . . . Moser, T. (2018). Quantitative optical
1247 nanophysiology of Ca^{2+} signaling at inner hair cell active zones. *Nat Commun*, 9(1), 290.
1248 doi:10.1038/s41467-017-02612-y

1249 Neher, E. (1998). Vesicle pools and Ca^{2+} microdomains: new tools for understanding their roles in
1250 neurotransmitter release. *Neuron*, 20(3), 389-399. doi:S0896-6273(00)80983-6 [pii]

1251 Neher, E., & Brose, N. (2018). Dynamically primed synaptic vesicle states: Key to understand synaptic
1252 short-term plasticity. *Neuron*, 100(6), 1283-1291. doi:10.1016/j.neuron.2018.11.024

1253 Neher, E., & Lux, H. D. (1973). Rapid changes of potassium concentration at the outer surface of exposed
1254 single neurons during membrane current flow. *Journal of General Physiology*, 61(3), 385-399.
1255 doi:10.1085/jgp.61.3.385

1256 Neher, E., & Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter
1257 release. *Neuron*, 59(6), 861-872. doi:10.1016/j.neuron.2008.08.019

1258 Nusser, Z. (2018). Creating diverse synapses from the same molecules. *Current Opinion in Neurobiology*,
1259 51, 8-15. doi:10.1016/j.conb.2018.01.001

1260 Pan, B., & Zucker, R. S. (2009). A general model of synaptic transmission and short-term plasticity.
1261 *Neuron*, 62(4), 539-554. doi:10.1016/j.neuron.2009.03.025

1262 Pulido, C., & Marty, A. (2017). Quantal Fluctuations in Central Mammalian Synapses: Functional Role of
1263 Vesicular Docking Sites. *Physiological Reviews*, 97(4), 1403-1430.
1264 doi:10.1152/physrev.00032.2016

1265 Rebola, N., Reva, M., Kirizs, T., Szoboszlay, M., Lörincz, A., Moneron, G., . . . DiGregorio, D. A. (2019).
1266 Distinct nanoscale calcium channel and synaptic vesicle topographies contribute to the diversity
1267 of synaptic function. *Neuron*, 104(4), 693-710. doi:10.1016/j.neuron.2019.08.014

1268 Rhee, J. S., Betz, A., Pyott, S., Reim, K., Varoqueaux, F., Augustin, I., . . . Brose, N. (2002). Beta phorbol
1269 ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s
1270 and not by PKCs. *Cell*, 108(1), 121-133. doi:S0092867401006353 [pii]

1271 Ritzau-Jost, A., Delvendahl, I., Rings, A., Byczkowicz, N., Harada, H., Shigemoto, R., . . . Hallermann, S.
1272 (2014). Ultrafast action potentials mediate kilohertz signaling at a central synapse. *Neuron*,
1273 84(1), 152-163. doi:10.1016/j.neuron.2014.08.036

1274 Ritzau-Jost, A., Jablonski, L., Viotti, J., Lipstein, N., Eilers, J., & Hallermann, S. (2018). Apparent calcium
1275 dependence of vesicle recruitment. *Journal of Physiology*. doi:10.1113/JP275911

1276 Rothman, J. S., Kocsis, L., Herzog, E., Nusser, Z., & Silver, R. A. (2016). Physical determinants of vesicle
1277 mobility and supply at a central synapse. *eLife*, 5. doi:10.7554/eLife.15133

1278 Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of $\text{Ca}(2+)$ ions in dendritic spines.
1279 *Neuron*, 33(3), 439-452.

1280 Sakaba, T. (2008). Two Ca^{2+} -dependent steps controlling synaptic vesicle fusion and replenishment at
1281 the cerebellar basket cell terminal. *Neuron*, 57, 406-419.

1282 Sakaba, T., & Neher, E. (2001a). Calmodulin mediates rapid recruitment of fast-releasing synaptic
1283 vesicles at a calyx-type synapse. *Neuron*, 32(6), 1119-1131.

1284 Sakaba, T., & Neher, E. (2001b). Quantitative relationship between transmitter release and calcium
1285 current at the calyx of Held synapse. *J Neurosci*, 21(2), 462-476.

1286 Saviane, C., & Silver, R. A. (2006). Fast vesicle reloading and a large pool sustain high bandwidth
1287 transmission at a central synapse. *Nature*, 439, 983-987.

1288 Schlüter, O. M., Basu, J., Südhof, T. C., & Rosenmund, C. (2006). Rab3 superprimes synaptic vesicles for
1289 release: implications for short-term synaptic plasticity. *J Neurosci*, 26(4), 1239-1246.
1290 doi:10.1523/JNEUROSCI.3553-05.2006

1291 Schneggenburger, R. (2005). Ca^{2+} uncaging in nerve terminals. In R. Yuste & A. Konnerth (Eds.), *Imaging*
1292 *in neuroscience and development: A laboratory manual* (pp. 415-419). Cold Spring Harbor, New
1293 York: Cold Spring Harbor Laboratory Press.

1294 Schneggenburger, R., & Neher, E. (2000). Intracellular calcium dependence of transmitter release rates
1295 at a fast central synapse. *Nature*, 406(6798), 889-893.

1296 Shin, O. H., Lu, J., Rhee, J. S., Tomchick, D. R., Pang, Z. P., Wojcik, S. M., . . . Sudhof, T. C. (2010). Munc13
1297 C₂B domain is an activity-dependent Ca²⁺ regulator of synaptic exocytosis. *Nature Structural and*
1298 *Molecular Biology*, 17(3), 280-288. doi:10.1038/nsmb.1758

1299 Stevens, C. F., & Wesseling, J. F. (1998). Activity-dependent modulation of the rate at which synaptic
1300 vesicles become available to undergo exocytosis. *Neuron*, 21(2), 415-424. doi:S0896-
1301 6273(00)80550-4 [pii]

1302 Straub, I., Witter, L., Eshra, A., Hoidis, M., Byczkowicz, N., Maas, S., . . . Hallermann, S. (2020). Gradients
1303 in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing
1304 capacity. *Elife*, 9. doi:10.7554/elife.51771

1305 Südhof, T. C. (2012). The presynaptic active zone. *Neuron*, 75(1), 11-25.
doi:10.1016/j.neuron.2012.06.012

1306 Südhof, T. C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.
1307 *Neuron*, 80(3), 675-690. doi:10.1016/j.neuron.2013.10.022

1308 Sugita, S., Shin, O. H., Han, W., Lao, Y., & Südhof, T. C. (2002). Synaptotagmins form a hierarchy of
1309 exocytic Ca²⁺ sensors with distinct Ca²⁺ affinities. *EMBO Journal*, 21(3), 270-280.
doi:10.1093/emboj/21.3.270

1310 Sun, J., Pang, Z. P., Qin, D., Fahim, A. T., Adachi, R., & Südhof, T. C. (2007). A dual-Ca²⁺-sensor model for
1311 neurotransmitter release in a central synapse. *Nature*, 450, 676-682.

1312 Taschenberger, H., & von Gersdorff, H. (2000). Fine-tuning an auditory synapse for speed and fidelity:
1313 developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. *Journal*
1314 *of Neuroscience*, 20, 9162-9173.

1315 Taschenberger, H., Woehler, A., & Neher, E. (2016). Superpriming of synaptic vesicles as a common basis
1316 for intersynapse variability and modulation of synaptic strength. *Proc Natl Acad Sci U S A*,
1317 113(31), E4548-4557. doi:10.1073/pnas.1606383113

1318 Thoreson, W. B., Rabl, K., Townes-Anderson, E., & Heidelberger, R. (2004). A highly Ca²⁺-sensitive pool of
1319 vesicles contributes to linearity at the rod photoreceptor ribbon synapse. *Neuron*, 42(4), 595-
1320 605.

1321 Tran, V., Park, M. C. H., & Stricker, C. (2018). An improved measurement of the Ca²⁺ -binding affinity of
1322 fluorescent Ca²⁺ indicators. *Cell Calcium*, 71, 86-94. doi:10.1016/j.ceca.2018.01.001

1323 Valera, A. M., Doussau, F., Poulaing, B., Barbour, B., & Isope, P. (2012). Adaptation of granule cell to
1324 purkinje cell synapses to high-frequency transmission. *The Journal of neuroscience : the official*
1325 *journal of the Society for Neuroscience*, 32(9), 3267-3280. doi:10.1523/JNEUROSCI.3175-11.2012

1326 Voets, T. (2000). Dissection of three Ca²⁺-dependent steps leading to secretion in chromaffin cells from
1327 mouse adrenal slices. *Neuron*, 28(2), 537-545. doi:10.1016/s0896-6273(00)00131-8

1328 Wadel, K., Neher, E., & Sakaba, T. (2007). The coupling between synaptic vesicles and Ca²⁺ channels
1329 determines fast neurotransmitter release. *Neuron*, 53(4), 563-575.
doi:10.1016/j.neuron.2007.01.021

1330 Walter, A. M., Pinheiro, P. S., Verhage, M., & Sørensen, J. B. (2013). A Sequential Vesicle Pool Model
1331 with a Single Release Sensor and a Ca²⁺-Dependent Priming Catalyst Effectively Explains Ca²⁺-
1332 Dependent Properties of Neurosecretion. *PLoS Computational Biology*, 9(12), e1003362.
doi:10.1371/journal.pcbi.1003362

1333 Wang, L. Y., Neher, E., & Taschenberger, H. (2008). Synaptic vesicles in mature calyx of Held synapses
1334 sense higher nanodomain calcium concentrations during action potential-evoked glutamate
1335 release. *J Neurosci*, 28(53), 14450-14458. doi:10.1523/JNEUROSCI.4245-08.2008

1340 Wölfel, M., Lou, X., & Schneggenburger, R. (2007). A mechanism intrinsic to the vesicle fusion machinery
1341 determines fast and slow transmitter release at a large CNS synapse. *Journal of Neuroscience*,
1342 27(12), 3198-3210. doi:10.1523/jneurosci.4471-06.2007

1343 Yasuda, R., Nimchinsky, E. A., Scheuss, V., Pologruto, T. A., Oertner, T. G., Sabatini, B. L., & Svoboda, K.
1344 (2004). Imaging calcium concentration dynamics in small neuronal compartments. *Science's*
1345 *STKE*, 2004(219), pl5. doi:10.1126/stke.2192004pl5

1346 Zhai, R. G., & Bellen, H. J. (2004). The architecture of the active zone in the presynaptic nerve terminal.
1347 *Physiology (Bethesda)*, 19(5), 262-270. doi:10.1152/physiol.00014.2004

1348 Zucker, R. S. (1992). Effects of photolabile calcium chelators on fluorescent calcium indicators. *Cell*
1349 *Calcium*, 13, 29-40.