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Abstract  

The emergence of the genetic code was a major transition in the evolution from a prebiotic RNA 

world to the earliest modern cells1. A prominent feature of the standard genetic code is error 

minimization, or the tendency of mutations to be unusually conservative in preserving 

biophysical features of the amino acid2-6. While error minimization is often assumed to result 

from natural selection, it has also been speculated that error minimization may be a by-product 

of emergence of the genetic code3. During establishment of the genetic code in an RNA world, 

self-aminoacylating ribozymes would enforce the mapping of amino acids to anticodons. Here 

we show that expansion of the genetic code, through co-option of ribozymes for new substrates, 

could result in error minimization as an emergent property. Using self-aminoacylating ribozymes 

previously identified during an exhaustive search of sequence space7, we measured the activity 

of thousands of candidate ribozymes on alternative substrates (activated analogs for 

tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes 

exhibited preferences for biophysically similar substrates, indicating that co-option of existing 

ribozymes to adopt additional amino acids into the genetic code would itself lead to error 

minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating 

that selection for increased activity would also lead to increased specificity. These results 

demonstrate that by-products of the evolution and functional expansion of a ribozyme system 

could lead to adaptive properties of a genetic code. Such ‘spandrels’ could thus underlie 

significant prebiotic developments. 
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Introduction 

            The origin of life is believed to have progressed through an RNA World in which 

ribozymes catalyzed critical biochemical reactions8,9. In principle, ribozymes performing new 

functions could arise either by chance, or by adaptation of pre-existing ribozymes having 

promiscuous activities. Co-option of a pre-existing sequence (i.e., exaptation) is a well-

established mechanism for evolutionary innovation10-15. Gene duplication coupled with co-option 

could lead to a more complex system as the ribozymes adopt additional substrates16. However, 

the degree to which the evolution of complex systems in the RNA World would rely on chance 

vs. co-option is unclear17.  

         The genetic code of protein translation is one of the most complex products of the RNA 

World, and its emergence is considered a ‘major evolutionary transition’1. In modern biology, the 

mapping of specific codons to their cognate amino acids is assured through the aminoacylation 

of tRNAs by aminoacyl-tRNA synthetase (aaRS) proteins18-20. However, during the emergence 

of protein translation itself, these functions were presumably performed by ribozymes. Indeed, 

evolutionary analysis of the aaRS proteins indicates that these enzymes evolved after the 

establishment of a primitive genetic code21-25 and have heterogeneous genetic origins26. Several 

ribozymes catalyzing aminoacylation reactions have been discovered by in vitro selection, 

including self-aminoacylating RNAs7,27-31. Such ribozymes could serve as precursors to the 

aaRS/tRNA encoding system. 

         A well-documented feature of the standard genetic code is robustness to errors, i.e., that 

non-synonymous point mutations tend to result in amino acid substitutions that conserve 

biophysical properties2-6. This ‘error minimization’ confers a clear selective advantage as it 

reduces the deleterious impact of mutations on the resultant protein32,33. However, the standard 

genetic code does not appear to be particularly optimal with respect to error minimization34-37. 

This raises a fundamental open question about the origin of error minimization, namely, whether 
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error minimization of the standard genetic code is the product of natural selection, or a 

serendipitous by-product of the evolution of protein translation3. In other words, in contrast to 

direct natural selection for error minimization, it is possible that expansion of an early version of 

the code, initially comprising a small number of amino acids, to the full set of 20 amino acids, 

involved an evolutionary mechanism that happened to conserve the biophysical character of the 

amino acids38,39. 

         In this work, we evaluate the evolutionary potential of self-aminoacylating ribozymes to 

adopt new amino acid substrates. We previously used in vitro selection and high-throughput 

sequencing to exhaustively search RNA sequence space (21 nt) for self-aminoacylating 

ribozymes7. These ribozymes were originally selected to react with biotinyl-Tyr(Me)-oxazolone 

(BYO), a chemically activated amino acid. The 5(4H)-oxazolones and related N-

carboxyanhydrides can be made abiotically under prebiotically plausible conditions 40-48. Three 

distinct, evolutionarily unrelated catalytic motifs had been discovered from the exhaustive 

search. Here we determine the co-option potential of these ribozymes, by measuring the activity 

of all single- and double- mutants of five ribozymes, representing the three catalytic motifs, for 

six alternative substrates, using a massively parallel assay (k-Seq7,49). This assay and related 

techniques leverage high-throughput sequencing to measure the activity of thousands of 

candidate sequences in a mixed pool50-53. The six substrates (analogs of tryptophan, 

phenylalanine, leucine, isoleucine, valine, and methionine) represent a range of sizes and 

biophysical classes (aromatic, aliphatic, sulfur-containing), as well as supposed early (Leu, Ile, 

Val) and late (Trp, Phe, Met) incorporations into the genetic code54-58. Our findings indicate 

extensive opportunities for co-option to incorporate new substrates into the system. In addition, 

we describe two major by-products of evolution of these ribozymes. First, a positive correlation 

between activity and specificity was observed, indicating that greater specificity would be a by-

product of selection for greater activity. Second, related ribozymes react with biophysically 

similar amino acids, suggesting that expansion of the code by co-option would incorporate a 
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biophysically similar amino acid into the system, with error minimization arising as a by-product. 

Such effects could favor the emergence of a complex biochemical system. 

 

Results 

 

Aminoacylation substrates and design of the ribozyme pool 

 To investigate whether ribozymes previously selected for aminoacylation with BYO 

(tyrosine analog) would react with substrates having other aminoacyl side chains, six additional 

biotinyl-aminoacyl oxazolones were synthesized for analysis (Figure 1A): tryptophanyl (BWO), 

phenylalanyl (BFO), leucyl (BLO), isoleucyl (BIO), valyl (BVO), and methionyl (BMO). 

Compounds were synthesized using previously described methods7 and verified by NMR 

spectroscopy (see Methods). An initial test by a gel shift assay at high substrate concentration 

(500 μM) indicated that each oxazolone served as substrate for at least one ribozyme tested, 

although the two tested ribozymes (S-1A.1-a and S-2.1-a) differed in selectivity (Figure 1B). To 

study the cross-reactivity of these ribozymes and their mutants systematically, pools of 

sequence variants were designed to explore the sequence space around the major ribozyme 

families obtained from the selection on BYO (Table S1). The ribozyme families chosen for 

testing include all of the previously discovered motifs (Motifs 1, 2, and 3), specifically the two 

most abundant families containing Motif 1 (Family 1A.1 and 1B.1) and Motif 2 (Family 2.1 and 

2.2), as well as the only family identified from Motif 3 (Family 3.1). These ribozyme families had 

been discovered during an exhaustive search of sequence space varying a central 21-mer 

region, and sequences from these motifs had comprised ~80% of the selected pool7. 

Sequencing of the variant pool showed that it included 13.5% of the unique sequences from the 

originally selected pool (having abundance ³10-6). Thus, the variant pool, based on these five 
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ribozyme families, was designed to be representative of ribozymes having aminoacylation 

activity.  

Because the ribozymes had been identified through selection with substrate BYO, it was 

possible that entirely new ribozyme families might react with different BXO substrates. To 

assess this possibility, in vitro selections for self-aminoacylating ribozymes were performed for 

two of the new substrates (BFO and BLO), starting from libraries with completely random 21-

mer variable regions. These selections followed a process identical to the original selection with 

the exception of the substrate compound. All families found in the BFO and BLO selections had 

already been identified in the earlier BYO selection (Figure S1). Interestingly, selection with BLO 

resulted predominantly in sequences containing Motif 2, consistent with the low activity of a 

Family 1A.1 ribozyme on BLO observed in the gel shift assay (Figure 1B). These results 

indicate that the designed pool of variants would probe the major motifs of the active sequence 

space for these substrates. 
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Figure 1. Aminoacylation activity of two ribozymes with BXO substrates. A) Biotinyl 

aminoacyl oxazolones (BXO) used in this study: tryptophanyl (BWO), phenylalanyl (BFO), leucyl 

(BLO), isoleucyl (BIO), valyl (BVO), and methionyl (BMO). B) Aminoacylation activity of two 

ribozymes (S-1A.1-a, the center of Family 1A.1, and S-2.1-a, the center of Family 2.1) with BXO 

substrates analyzed by streptavidin gel shift (X = F, L, I, M, V, or W, as indicated). Reactions 

were conducted for 90 min at 500 µM BXO. The reacted RNA is detected by its slower migration 

through the gel due to complexation with streptavidin. Multiple bands may be caused by the 

presence of multiple conformers or streptavidin oligomers.   
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Cross-reaction of self-aminoacylating ribozymes with alternative side chains 

Sequences in the ribozyme variant pool were assayed for activity on each alternative 

substrate in a massively parallel format by kinetic sequencing (k-Seq)7,49,59. During k-Seq, a pool 

containing thousands of candidate ribozymes is reacted with a substrate at multiple 

concentrations. The reacted molecules, having been biotinylated through reaction, are isolated 

by streptavidin binding and then sequenced on the Illumina platform. Quantitation of the reacted 

fraction allows fitting to a kinetic model to determine ribozyme activity. Data obtained from this 

method correlate well with traditional biochemical assays, provided a sufficient number of 

sequencing counts, and confidence intervals of the measurements are obtained by experimental 

replicates and bootstrapping49. In each k-Seq experiment here, one of six BXO (X = W, F, L, I, 

V, or M) substrates was tested to measure reaction kinetics for sequences in the pool. Samples 

were exposed to substrate concentrations from 2 to 1250 μM in triplicate. Reaction data were fit 

to a pseudo-first-order kinetic model (𝐹!"#$ = 𝐴!(1 − 𝑒%&!["#$]a))), with maximum reaction 

amplitude As and rate constant ks for sequence s, where 𝐹!"#$is the fraction of RNA that is 

aminoacylated with substrate BXO, [BXO] is the initial substrate concentration, t is the reaction 

time (90 min), and α is the coefficient accounting for substrate hydrolysis during the reaction. 

Although data over a fixed concentration range are inadequate for separately estimating ks and 

As for low activity ribozymes, the product ksAs can be accurately estimated across a wide range 

of activities, due to the inverse correlation of ks and As during curve fitting7,49 (Figure S2). The 

product ksAs reflects ribozyme activity at non-saturating conditions and was used in the following 

analyses. The data yielded ksAs estimates for a total of 9,770 sequences, encompassing five 

family wild-type sequences and a complete set of both single and double mutants related to the 

five wild-type ribozymes (Figure S3).  

k-Seq measures the combination of catalyzed and non-catalyzed (background) 

reactions. To determine catalytic enhancement, i.e., the ratio of catalyzed to background 
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reaction rates, we measured the rate of the background reaction for BFO by gel shift assay with 

the randomized RNA library. The background rate was 0.55 ± 0.18 M-1min-1 (µ ± s), which is 

similar to that measured previously for BYO (0.65 ± 0.28 M-1min-1)7. Comparing to the frequency 

distribution of ksAs measured by k-Seq (Figure S4, Table S2), the measured background rate 

was found to correspond to the center of a low-activity peak, indicating that this peak 

represented a background of catalytically inactive, or nearly inactive, mutants. This is consistent 

with observations that individual Motif 1 ribozymes display little activity with some substrates at 

high concentration when analyzed by a gel-shift assay (Figure 1B). The low-activity peak was 

therefore used as an internal control in k-Seq, and the effective background reaction rate (k0A0) 

of each substrate was estimated as the center of this peak. ksAs values for sequences reacted 

with each substrate were normalized by the corresponding k0A0 to obtain the catalytic 

enhancement above background, or rs (defined as rs = ksAs/k0A0 for each sequence s).  

The rs values obtained from the k-Seq experiments revealed that all tested families 

contained sequences which displayed some activity on a new substrate or on multiple new 

substrates (Figure 2). Details of the frequency distribution of catalytic enhancement depended 

on both the aminoacyl side chain of the substrate as well as the ribozyme family. The 

distribution of sequences in Families 1A.1, 1B.1, and 3.1 could be characterized as containing a 

peak centered around background activity accompanied by a long, high-activity tail, particularly 

with BWO and BFO (Figure S5). In contrast, the distributions of Families 2.1 and 2.2 displayed 

distinct peaks at higher activity, with bimodality apparent in some cases (especially for Family 

2.1). This indicated a higher tolerance for mutations in Families 2.1 and 2.2 than in 1A.1, 1B.1, 

and 3.1, as mutant sequences were less likely to exhibit substantial detrimental effects.  
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Figure 2. Catalytic enhancement of ribozyme families for different substrates. Histograms 

of catalytic enhancement values (rs = ksAs/k0A0) with each BXO substrate, measured by k-Seq, 

for ribozymes in Family 1A.1, 1B.1, 2.1, 2.2, and 3.1. While many ribozyme mutants in Motif 2 

families have activity on each substrate tested, many ribozyme sequences containing Motif 1 or 

3 are inactive. 
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Ribozyme families distinguish different biophysical features of substrate side chains  

 To assess the activity and specificity of individual ribozymes for each substrate, catalytic 

enhancement values for different substrates were compared in a pairwise fashion (Figures 3 

and S6). All families displayed a high degree of correlation among activities for non-aromatic 

amino acid analogs (BLO (Leu), BIO (Ile), BVO (Val), and BMO (Met)) and also between 

activities for the two aromatic analogs (BWO (Trp) and BFO (Phe)) (Figure 4A). The high 

correlations indicated that few sequences exhibit large activity differences between amino acids 

within the same biophysical class. 

However, when comparing amino acids of different classes (i.e., aromatic vs. non-

aromatic), strong correlations were only observed for Families 2.1 and 2.2, indicating that the 

effects of mutations in Motif 2 ribozymes tend to be relatively independent of the side chain. In 

contrast, Families 1A.1, 1B.1, and 3.1 showed substantially lower activity with non-aromatic side 

chains (Figure 3), resulting in lower correlations between activity on aromatic and non-aromatic 

side chains (Figure 4A). These preferences were also captured by the slopes on the correlation 

plots (Figure 4B), which confirm that Motif 1 ribozymes strongly favor aromatic side chains, 

while Motif 2 ribozymes demonstrate less pronounced preferences, and Motif 3 ribozymes 

display an intermediate strength of preference. While less pronounced than for Motif 1, some 

preferences were still observed for Motif 2 ribozymes, in which BFO was most preferred, BMO, 

BWO and BLO were weakly preferred, and BVO and BIO were disfavored. Interestingly, BVO 

and BIO, in contrast to the other side chains, are both branched at the b carbon position. For 

Family 3.1, BFO was preferred over BWO, and all non-aromatic substrates were similarly 

disfavored. The differences observed between trends characterizing the separate ribozyme 

motifs suggest differences in the recognition mechanisms among Motifs 1, 2, and 3. 

Nevertheless, all ribozyme families display some preferences that correspond to biophysical 

features of the side chains. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.14.444235doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444235
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

Figure 3. Pairwise comparisons of ribozyme activity on different substrates. A) Pairwise 

comparisons of catalytic enhancement (rs) for individual ribozyme sequences with each BXO 

substrate. Dashed gray line indicates the identity line. Substrates are ordered by hydrophilicity60. 

See Figure S6 for error bars and mutant order for each family. 
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Figure 4. Ribozyme substrate preferences and correlations of activity. A) Heat maps of 

coefficient of determination (R2) for pairwise comparisons in Figure 3. B) Heat maps for slopes 

of linear regression fits for pairwise comparisons in Figure 3. Slope > 1 indicates a preference 

for the substrate on the y-axis; slope < 1 indicates a preference for the substrate on the x-axis. 
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Substrate specificity is positively correlated with activity 

 To probe the relationship between catalytic activity and substrate specificity, we used 

two measures of specificity. First, as a general measure of substrate specificity for each 

sequence, we adapted the ‘promiscuity index’61. This metric (𝐼! = − *
+,-.

∑ /"
∑ /#$
#%&

.
123 𝑙𝑜𝑔 /"

∑ /#$
#%&

) is 

a normalized entropy which describes the evenness of rates across different substrates. The 

promiscuity index Is ranges from 0 to 1, such that sequences that are completely promiscuous 

have Is = 1 and sequences completely specific to one substrate have Is = 0. Promiscuity was 

observed to decrease as overall activity increased for all families (Figures 5 and S7). 

 Second, since ribozymes in some families displayed preferential activity with aromatic 

amino acids compared to non-aromatic amino acids, we calculated the relative preference for 

aromatic substrates as (𝑟!"4$ + 𝑟!"5$)/∑ 𝑟!"#$# . This ‘aromatic preference’ ratio reflects the 

proportion of ribozyme products that would have aromatic side chains in a reaction containing 

all six substrates at equal, sub-saturating concentration (Figure S8). Both the aromatic 

preference and the promiscuity index showed that the total activity of a ribozyme was positively 

correlated with specificity (positively correlated with aromatic preference and negatively 

correlated with promiscuity index; Table 1).  
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Figure 5. Relationship between activity and promiscuity. Promiscuity index values for each 

sequence as a function of total activity (sum of activities with all tested substrates). The general 

trend indicates that specificity increases (promiscuity decreases) as overall activity increases.  

 

 

 
Table 1. Correlations between overall catalytic activity and specificity for each ribozyme family 

(Pearson’s r and Spearman’s r; n = 1954, p-values < 10-95 in each case). 

 !"#$%&'(%)*+,-./0+ 1"#$2)%'+!"/3/"/-'/+

Family r 4 r 4 

1A.1 -0.696 -0.647 0.554 0.711 

1B.1 -0.839 -0.502 0.738 0.477 

2.1 -0.535 -0.888 0.452 0.911 

2.2 -0.538 -0.866 0.445 0.865 

3.1 -0.814 -0.462 0.749 0.513 
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Abundance of opportunities for co-option for alternative substrates 

To quantify the frequency of sequences with potential for co-option, we categorized 

sequences as active or inactive using a catalytic enhancement threshold rt. Sequences below 

this threshold are considered to be nearly inactive, being close to the background rate (see 

above). An activity threshold of rt = 5 was chosen for two reasons. First, this threshold is two-fold 

more than the estimated 95% range for background activity (Figure S4, Table S2), so values of 

rs > 5 are statistically significantly greater than the normalized background rate. Second, 

increasing the rate of reaction by a factor of 5 is potentially significant in a prebiotic context, as 

abundances are expected to depend exponentially on relative fitness. Using this threshold, 

ribozymes that were active on more than one substrate were considered capable of exaptation. 

 Consistent with the observation that sequences in Families 2.1 and 2.2 displayed a high 

level of correlation of activities among all tested substrates, these families also yielded abundant 

opportunities for co-option, with most sequences being active with at least two substrates (1029 

sequences in Family 2.1; 853 sequences in Family 2.2), and many active with all six tested 

substrates (Figure 6). In contrast, Families 1A.1, 1B.1, and 3.1, which contain more inactive 

sequences and generally preferred aromatic amino acids, yielded fewer exaptation 

opportunities, with most sequences accepting only one (or zero) substrates. Of sequences 

capable of exaptation in Families 1A.1, 1B.1, and 3.1, most were only active with two 

substrates. Nevertheless, even in these families, >2% of sequences accepted 2 or more 

substrates (254 sequences in Family 1A.1, 278 sequences in Family 1B.1, and 43 sequences in 

Family 3.1). 
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Figure 6. Ribozyme sequences with co-option potential. The frequency distribution of the 

fraction of unique sequences in each family (y-axis) that is active on a given number of 

substrates (x-axis). Activity on 2 or more substrates indicates potential for co-option. While Motif 

2 sequences (Families 2.1 and 2.2) show a higher abundance of sequences active on more 

substrates, all families possess some co-option potential. Inset shows an enlargement of the 

low y-value region of the plot. 
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Optimization of co-opted function on the fitness landscape 

The sequences identified as presenting opportunities for co-option are active on two (or 

more) substrates, but may not be optimally active on either. To determine how readily co-option 

might lead to an optimally active sequence on a given substrate through evolution over the 

fitness landscape, we investigated the connectivity of optimal sequences (i.e., fitness peaks) for 

each substrate within the fitness landscape defined by each substrate, for each ribozyme family. 

With the exception of Family 3.1, the substrate peaks (highest rs) for each family were 

accessible to one another by evolutionary pathways proceeding through single mutations, while 

maintaining some activity (i.e., maintaining ∑ 𝑟!"#$# > 30, in analogy to rt = 5 for 6 substrates) 

(Figure 7). Family 3.1 was unique among families, in that the few co-optable sequences active 

on non-aromatic substrates were isolated in sequence space from the larger number of 

aromatic-preferring ribozymes. 

 

 

Figure 7. Evolutionary pathways for optimization from potential co-option points on the 
fitness landscape. Each circular ‘pie’ represents a single sequence, whose catalytic 

enhancement for each substrate is shown by sector shading according to the heat map legend. 

For each family, the wild-type and the ribozymes having the six highest catalytic enhancements 

for each substrate are included. The wild-type sequence in each family is highlighted by a blue 

circle; the most active sequence for each substrate is indicated by a green sector outline for the 

substrate. Among the set of high-activity sequences, every pair of sequences for which 

Hamming distance d = 2 was examined to identify intervening sequences (d = 1 to both 

sequences of the pair) having substantial overall activity (∑ 𝒓𝒔𝑩𝑿𝑶𝑿 > 𝟑𝟎). The intervening 

sequences are also shown in the plot. Lines connect sequences where d = 1. Sequences and 

catalytic enhancement values are given in Table S3. 
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Figure 7. 
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Discussion 

 The genetic code is an ideal platform for studying co-option in ribozyme evolution, as 

aminoacylations by the 20 biogenic amino acids represent naturally distinct functions. The 

genetic code itself is thought to have been established during the RNA World, in which 

ribozymes catalyzed aminoacylation21-24. Here we determined the activities of self-

aminoacylating ribozyme families with several activated amino acid substrates. These 

ribozymes were originally discovered by exhaustive in vitro selection over sequence space (21 

nt random region flanked by constant regions)7, and thus their properties are expected to be a 

reasonable model for self-aminoacylating ribozymes. Each tested family contained dozens or 

hundreds of ribozyme sequences that could utilize multiple substrates, often with high 

correlations in activity between substrates. In addition, the optimally active sequences with each 

substrate were closely connected in sequence space in four of the five families, demonstrating 

high evolvability and optimization potential between functions. This highlights the potential for 

ribozymes with activity for a selected substrate to adopt other amino acid substrates. In an RNA 

World scenario, this process could be beneficial for expanding metabolic chemical space and 

incorporating new compounds into increasingly complex systems. 

While all families displayed substantial potential for adopting new substrates through co-

option, ribozyme families differed in substrate preference and overall activity. Namely, Families 

1A.1, 1B.1, and 3.1 contained relatively few active ribozymes, and these tended to display 

strong preference for aromatic amino acid side chains, although some sequences in these 

families were more promiscuous. The families in Motif 1 followed the general preference order 

of F,W > M,L,I,V, and the Motif 3 family followed the general preference order of F > W > 

M,L,I,V. Thus, these ribozymes appear to distinguish aromatic and non-aromatic side chains. 

On the other hand, Families 2.1 and 2.2 contained many sequences with high activity on all 

tested substrates, and also tended to prefer BFO. The families in Motif 2 followed the general 
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preference order of F > M,W,L > I,V. This preference order suggests that Motif 2 ribozymes 

prefer the aromatic side chains, and are also subject to steric constraints, as they prefer F over 

W and also prefer L (non-branched b-carbon) over I and V (branched b-carbon). Given that 

these ribozymes were not selected for specificity (i.e., no counter-selections or negative 

selections), these preferences reflect inherent biophysical and structural features of the RNA 

interactions with different side chains. 

The evolution of error minimization in the standard genetic code has been a subject of 

extensive theoretical and analytical study stemming from the realization that the code is 

unusually conservative in light of mutations. Since error minimization has adaptive value, a 

prevalent and intuitive view is that this property arose through natural selection5,6,62. However, 

an alternative view is that this trait emerged as a by-product during the initial expansion of the 

genetic code36,37,39. For example, it has been suggested that duplication of aminoacyl-tRNA 

synthetases would lead to emergence of a conservative pairing, as the tRNA and amino acid 

would be similar to the ancestral versions63. Since the catalytic elements of the earliest protein 

translation machinery were presumably composed of RNA, and indeed, phylogenetic evidence 

suggests that the genetic code predates aminoacyl-tRNA synthetases, a similar logic suggests 

that code expansion in the RNA World would have a tendency to conserve biophysical features 

of the substrate38,39. Using our experimental system of self-aminoacylating RNAs, we found that 

all ribozymes showed preferences for certain biophysical features, being particularly sensitive to 

aromaticity and branching in the side chain. Thus, co-option of these ribozymes would produce 

an association between these biophysical features and the RNA sequence, possibly including 

the primitive anticodon region. While the self-aminoacylating ribozymes studied here are a 

model system and not expected to recapitulate the evolution of the existing standard genetic 

code, these results illustrate the feasibility of the general principle that ribozyme co-option to 

incorporate new amino acid substrates would lead to error minimization as a by-product of 

expansion of the genetic code. 
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Substrate preferences were amplified with increasing activity, resulting in a positive 

correlation between activity and substrate specificity. Previous research on the relationship 

between activity and specificity has noted intuitively appealing trade-offs between these two 

properties in some systems64-70, as may be caused by ground-state discrimination in enzymes. 

In contrast, the results seen here indicate a positive correlation between catalytic activity and 

substrate specificity, instead reminiscent of enzymes that employ transition-state 

discrimination69,71. The evolutionary consequence of the positive activity-specificity correlation is 

that natural selection for greater activity would also lead to greater substrate specificity, as a by-

product. At the same time, given the prevalence of promiscuous sequences and the short 

evolutionary pathways among optimal sequences for different substrates, new substrate 

specificities would still be accessible even from highly active, specialized sequences. Such 

properties of overlapping fitness landscapes could facilitate the expansion from a weakly active, 

promiscuous ribozyme to an elaborated system of ribozyme-substrate pairs. 

While the order in which amino acids were incorporated into the genetic code is a 

subject of debate, the amino acid substrates tested here include those that are generally 

believed to be early (L, I, V) and late (W, F, M) additions to the code54-58. Interestingly, the 

aromatic residues were generally preferred by all ribozyme families. While the original selection 

employed a tyrosine analog, an analogous selection using the leucine analog did not yield new 

ribozymes, indicating that this preference may be intrinsic. Such a preference is not surprising 

based on considerations for intermolecular interactions (e.g., p-p stacking) and is supported by 

an analysis of amino acid preferences among RNA aptamers evolved in vitro72. Thus, in a 

plausible scenario, self-aminoacylating RNAs that react with ‘early’ amino acid substrates would 

have promiscuous activity on ‘late’ substrates, allowing co-option of these ribozymes to 

incorporate new substrates once they become available. During code expansion, any natural 

selection for increased activity would also lead to increased substrate specificity, and error 

minimization would emerge due to the biophysical and structural preferences of the ribozymes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.14.444235doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444235
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

These evolutionary by-products, in turn, would further improve the ability of a primitive genetic 

code to faithfully convert genetic information into peptide sequences with defined biophysical 

properties. Such emergent phenomena have been argued to be critical complements to natural 

selection during the origin of translation73,74. Like the spandrels of St. Mark’s Cathedral, 

architectural by-products that acquired important aesthetic value 75, error minimization and 

specificity may have originated as mechanistic by-products of how the genetic code emerged, to 

later become invaluable features of the modern genetic code.  

 

Methods 

General synthesis methods 

Reagents and solvents were obtained from Sigma-Aldrich or Fisher Scientific and were 

used without purification, unless otherwise noted. All 1H NMR spectra were recorded using a 

Varian Unity Inova AS600 (600 MHz) with samples dissolved in DMSO-d6; chemical shifts δH 

are reported in ppm with reference to residual internal DMSO (δH = 2.50 ppm). Spectra were 

analyzed using MNova software. 

Preparation of biotinyl-amino acids 

 Biotinylation reactions were performed in 10 mL anhydrous pyridine under nitrogen. 

Typical reactions contained L-amino acid methyl ester hydrochloride (1 mmol), biotin (1 mmol), 

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, 2 mmol), and 4-

(dimethylamino)pyridine (0.1 mmol). The mixture was allowed to react at room temperature with 

stirring overnight, after which the solvent was evaporated under reduced pressure. The residue 

was then dissolved in dichloromethane (DCM) and washed with equal volumes of distilled 

water, saturated sodium bisulfate solution (twice), and saturated sodium bicarbonate solution 
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(twice). The solution was dried with sodium sulfate, filtered, and the solvent was evaporated 

with reduced pressure to yield a clear, yellow solid (1H NMR chemical shifts reported in Table 

S4). 

 The recovered compound was dissolved by sonication in iPrOH:H2O (2:1 v/v) (15 mL), to 

which 1 mL of 3 M NaOH was added. This solution was stirred overnight at room temperature, 

after which the isopropyl alcohol was evaporated under reduced pressure and the product was 

precipitated from the remaining solution by the addition of 1 M HCl to produce a white solid. This 

compound was recovered by filtration, washed with water, and dried in vacuo (Table S4). 

Preparation of biotinyl-aminoacyl oxazolones 

Oxazolone formation was performed by reacting biotinyl-amino acids (0.1 mmol) with 

EDC (0.12 mmol) in anhydrous DCM and stirred at 4 ℃ overnight. The organic phase was then 

washed with distilled water (twice), saturated sodium bicarbonate solution, and saturated 

sodium chloride solution and dried with sodium sulfate. The solution was then filtered and the 

solvent was evaporated under reduced pressure to yield a solid product, which was stored at -

20 ℃ (Table S4 and Figure S9). NMR characterization was performed as described above. 

 Substrate solutions were prepared by weighing biotinyl-aminoacyl-oxazolone (BXO, 

where X = W (Trp), F (Phe), L (Leu), I (Ile), V (Val), or M (Met)) and dissolving in acetonitrile 

with sonication to a final concentration of 25 mM. Fresh solutions were prepared daily for each 

set of experiments. As a secondary means of verifying BXO concentrations in prepared 

solutions, a HABA biotin quantification kit (AnaSpec) was used to measure the biotin 

concentrations of each solution. Average measured biotin concentration and standard deviation 

of triplicates are shown in Table S5 (expected BXO concentration for all samples is 25 mM). 

While biotin quantitation measurements indicate systematically lower BXO concentrations than 

by weight by a factor of ~2, BXO concentrations were similar across different compounds. The 
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low-activity background peaks also provide internal normalization to account for differences 

between compounds (see Results).   

Kinetic sequencing (k-Seq) 

 DNA libraries for kinetic sequencing experiments were designed as described49. 

Libraries were obtained from Integrated DNA Technologies (IDT) or Keck Biotechnology 

Laboratory with the sequence 5′-

GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-[central variable region, 

length 21]-TTCACTGCAGACTTGACGAAGCTG-3′ (nucleotides upstream of the transcription 

start site are underlined). The variable region was designed to contain one of the five wild-type 

sequences of interest (Table S1) with variability at each position corresponding to 91% wild-type 

base and 3% each substitution. RNA was transcribed using HiScribe T7 RNA polymerase (New 

England Biolabs) and purified by denaturing polyacrylamide gel electrophoresis (PAGE). 

Reaction pools were prepared as an equimolar mixture of each purified RNA pool and quantified 

by Qubit 3 Fluorometer (Invitrogen). 

 Kinetic sequencing experiments were performed as previously described7,49. Reactions 

were performed in 50 μL aqueous solutions containing selection buffer (100 mM HEPES, 100 

mM NaCl, 100 mM KCl, 5 mM MgCl2, 5 mM CaCl2) and 5% acetonitrile at a pH between 6.9 and 

7.0. Reactions contained 0.43 μM RNA and BXO at 1250, 250, 50, 10, or 2 μM. Reactions were 

incubated at room temperature with rotation for 90 minutes and stopped by desalting using 

Micro Bio-Spin Columns with Bio-Gel P-30 (Bio-Rad Laboratories). Reacted sequences were 

isolated with 100 μL Streptavidin MagneSphere paramagnetic beads (Promega) per sample. 

Beads were washed three times with PBS + 0.01% Triton X-100 and sequences were eluted 

into 50 μL water by heating to 70 ℃ for 1 minute. Samples were reverse transcribed using 

SuperScript III Reverse Transcriptase (Thermo Fisher Scientific). Following reverse transcription 

of k-Seq samples, qPCR reactions were performed in triplicate for each sample, including input 
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RNA, using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories) with 2 μL of 

cDNA following the manufacturer’s protocol and containing 500 nM forward and reverse primers 

5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGA-3’ and 5’-

CAGCTTCGTCAAGTCTGCAGTGAA-3’. Serial dilutions of random library ssDNA were 

prepared in triplicate from 5x10-5 to 5x102 pg/µL alongside each experiment for generating 

standard curves (Figure S10)59. Samples were analyzed using Bio-Rad CFX96 Touch system. 

The remaining cDNA was amplified by PCR with Phusion DNA Polymerase (Thermo Fisher 

Scientific) using the same forward and reverse primers as used for qPCR above. Samples were 

adapted for sequencing using the Nextera XT DNA Library Preparation Kit (Illumina), pooled, 

and sequenced by Illumina NovaSeqS4 PE150 (Novogene). 

 

Aminoacylation ribozyme selections 

Selections for self-aminoacylating ribozymes with BFO and BLO were conducted as 

previously described for BYO aminoacylation7. Libraries were obtained from IDT with the 

sequence 5′-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-N21-

TTCACTGCAGACTTGACGAAGCTG-3′ (T7 promoter sequence underlined), where N is an 

equimolar mixture of A, G, C, and T. For the first round of selection, 145 pmol of library DNA 

was transcribed using HiScribe T7 polymerase (New England Biolabs) and RNA was purified by 

gel electrophoresis. For the first round of selection, reactions contained 3.2 μM RNA and 50 μM 

BFO or BLO in 1 mL of selection buffer with 0.2% acetonitrile. Reactions were incubated at 

room temperature with rotation for 90 minutes and stopped by desalting using Micro Bio-Spin 

Columns with Bio-Gel P-30 (Bio-Rad Laboratories). Reacted sequences were isolated by 

addition of one sample volume of Streptavidin MagneSphere paramagnetic beads (Promega) 

per sample. Beads were washed bead buffer (PBS + 0.01% Triton X-100), 20 mM NaOH, and 

once more with bead buffer, then eluted by heating to 65 ℃ for 10 minutes in 95% formamide 
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with 10 mM EDTA. Samples were reverse transcribed using SuperScript III Reverse 

Transcriptase (Thermo Fisher Scientific) and amplified with Phusion DNA Polymerase (Thermo 

Fisher Scientific). For subsequent rounds of selection, 7.2 pmol (round 2) or 3.6 pmol (rounds 3-

5) of recovered DNA was transcribed and RNA was used at 2.2 μM in 200 μL reactions. 

Selections were performed for five rounds in duplicate. Samples were prepared for sequencing 

using the Nextera XT DNA Library Preparation Kit (Illumina), pooled, and sequenced by Illumina 

NextSeq 500 (Biological Nanostructures Laboratory, California NanoSystems Institute at 

UCSB). 

 

Electrophoretic mobility shift assay and determination of BFO uncatalyzed reaction rate 

Gel shift assays were performed as previously described7. For determining the 

uncatalyzed reaction rate with BFO, aminoacylation reactions were performed in 50 μL selection 

buffer with 5% acetonitrile and contained 0.43 μM random library RNA and BFO at 1250, 250, 

50, 10, or 2 μM. Reactions were incubated at room temperature for 90 minutes with rotation and 

stopped by desalting using Micro Bio-Spin Columns with Bio-Gel P-30 (Bio-Rad Laboratories). 

95 nmol of streptavidin (New England Biolabs) was added to each sample, which were then 

incubated for 15 minutes with rotation at room temperature and run on an 8% polyacrylamide 

gel. Gel shift assays for observation of reactivity were performed with 500 μM BXO per sample 

unless otherwise noted. 

 

Computational analyses of k-Seq data 

 Sequencing reads were processed using trimmomatic SE CROP:90 to facilitate joining76, 

and then paired-end reads were joined and unique sequences were enumerated using 

EasyDIVER77. Joining was performed using the following PANDAseq78 flags: -a -l 1 -A pear -C 
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completely_miss_the_point:0. These flags strip primers after assembly rather than before (-a), 

require sequences to have a minimum length of 1 after removing primers (-l 1), set the 

assembly algorithm to PEAR79 (-A pear), and exclude sequences with mismatches in 

overlapping paired-end regions (completely_miss_the_point:0). Primer sequences were 

extracted using CTACGAATTC as the forward primer and CTGCAGTGAA as the reverse 

primer. 

k-Seq analyses were performed using the ‘k-seq’ package49. Briefly, the absolute 

quantity (ng) of a sequence in a sample was calculated as the fraction of the sequence’s read 

count over the total number of reads in the sample, multiplied by the mean total RNA (ng) from 

triplicated qPCR measurements. The input amount (ng) for a sequence was determined by the 

median sequence amount across 6 replicates for the unreacted pool. The fraction reacted (𝐹!) 

was calculated as the reacted amount in the sample divided by the input amount. Sequences 

that contain ambiguous nucleotides ('N’), that were not 21 nucleotides long, or that were more 

than two substitutions from a center sequence were excluded in downstream fitting. For each 

sequence, the fractions reacted in samples were fit to the pseudo-first order kinetic model 

𝐹!BXO = 𝐴!(1 − 𝑒%&!ɑ[BXO])), where 𝐹!BXO is the fraction reacted for sequence s with substrate 

BXO, As is the maximum reaction amplitude, ks is the rate constant, and [BXO] is the initial 

concentration of BXO. α is the coefficient accounting for the hydrolysis of substrate BXO during 

the reaction time (t = 90 min), and a fixed value (0.479, measured for BYO7) was used for all 

substrates. Note that the effect of α on estimated ks cancels out when calculating the catalytic 

enhancement ratio rs. To quantify the estimation uncertainty of kinetic model parameters (ks, As) 

for each sequence, samples (fractions reacted) were bootstrapped (resampling with 

replacement to the original size) for 1000 times and each bootstrapped sample set was fit into 

the model for 𝑘! and 𝐴!. Statistics (e.g., median, standard deviation, 2.5-percentile, 97.5 

percentile) were calculated from bootstrapped results. The median of product ksAs was used to 

represent the activity of each sequence. 
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Background reaction rate estimation 

Histograms (100 bins) of log10-transformed kA values for sequences from all families 

were fit to a bimodal Gaussian distribution (Figure S4 and Table S2). The mean of the low-

activity peak (μ1) was used as the estimated uncatalyzed rate (k0A0) and the standard deviation 

of the fit (σ1) was used to inform the choice of catalytic enhancement threshold. Additionally, the 

uncatalyzed reaction rate was calculated for BFO by gel shift assay as described previously for 

BYO7 (see above). 

Clustering analysis of sequences from selections 

Sequences were clustered into families based on sequence similarity, using a custom 

Python script (see Data Availability). The script ClusterBOSS.py uses the enumerated read 

output files generated from the EasyDIVER package77. In general, first, all sequences were 

sorted according to their read count values. Then, the most abundant sequence was chosen as 

a candidate ‘center’ sequence to start a family, as long as its read count value was at least 10 

(cmin = 10). The Levenshtein edit distance (number of substitutions, insertions, or deletions) from 

this candidate sequence to every other sequence in the distribution was computed (no 

restriction on minimum number of counts; amin = 1). If the distance was less than a cutoff (dcutoff = 

3 mutations from the center sequence), the sequence was considered to be part of the same 

family as the initially chosen center sequence. No restriction was applied to the number of 

sequences required to define a family (nmin = 1), which includes the center sequence and any 

sequences found to cluster with it. Once assigned to a family, sequences were not allowed to be 

clustered into another family. To find the rest of the family clusters, we followed the same 

procedure until all sequences had been explored. 
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Promiscuity indices 

Promiscuity indices were calculated using the calculator available at 

http://hetaira.herokuapp.com/. Due to the single-turnover nature of the aminoacylation 

ribozymes studied here, promiscuity indices are calculated using catalytic enhancement values 

instead of the catalytic efficiency as originally described by Nath and Atkins61. 

Data availability 

Data from high-throughput sequencing and k-Seq analysis (Figures 2-7) will be available 

at the Dryad Digital Repository (https://doi.org/10.25349/D92C9C).  

Private link for peer review: 

https://datadryad.org/stash/share/OSZh1pcJLVz_cJabbozcA8x68wDJET-f485TeN_54_s. 

 

Code availability 

Scripts not reported elsewhere are available at https://github.com/ichen-lab-

ucsb/ClusterBOSS (ClusterBOSS: Cluster Based On Sequence Similarity) and 

https://github.com/ichen-lab-ucsb/WFLIVM_k-Seq (scripts used to generate figures in this 

manuscript).  
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