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Sleep is generally considered to be a state of large-scale synchrony across thalamus and
neocortex; however, recent work has challenged this idea by reporting isolated sleep
rhythms such as slow-oscillations and spindles. What is the spatial scale of sleep
rhythms? To answer this question, we adapted deep learning algorithms initially
developed for detecting earthquakes and gravitational waves in high-noise settings for
analysis of neural recordings in sleep. We then studied sleep spindles in non-human
primate ECoG, human EEG, and clinical intracranial recordings (iEEG) in the human. We
find a widespread extent of spindles, which has direct implications for the spatiotemporal
dynamics we have previously studied in spindle oscillations (Muller et al., 2016) and the

distribution of memory engrams in the primate.

Consolidation of long-term memories requires precise coordination of pre- and post-synaptic
spikes across neocortex. New memories are transferred from hippocampus to neocortex for long-
term storage (McClelland et al., 1995; Rasch and Born, 2007), where interconnections within a
sparse, distributed neuron group are strengthened until their activity becomes hippocampus-
independent (Frankland and Bontempi, 2005). Computational studies have identified neural

oscillations as a potential mechanism to regulate synaptic plasticity (Masquelier et al., 2009; Song
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et al., 2000) and create precise spike timing (Cassenaer and Laurent, 2007; Muller et al., 2011).
Further, experiments have shown that the stage 2 sleep “spindle” oscillation influences spiking
activity (Contreras and Steriade, 1995; Kandel and Buzsaki, 1997; Peyrache et al., 2011) and
causally contributes to sleep-dependent consolidation of long-term memory (Mednick et al.,
2013). It remains unclear, however, precisely how this rhythm can coordinate activity across areas

in neocortex for synaptic plasticity and long-term storage to occur.

While early recordings in anesthetized animals (Andersen et al., 1967; Contreras et al., 1996) and
human EEG (Achermann and Borbély, 1998) indicated that sleep spindles generally occur across
a wide area in cortex, creating a state of large-scale synchrony (Sejnowski and Destexhe, 2000;
Steriade, 2003), recent work in intracranial recordings from human clinical patients has
challenged this idea by reporting isolated, “local”’ sleep spindles (Andrillon et al., 2011; Nir et al.,
2011; Piantoni et al., 2016; Sarasso et al., 2014, but see Frauscher et al., 2015). Because spindles
are intrinsically related to sleep-dependent consolidation of long-term memory (Clemens et al.,
2005; Gais et al., 2002; Mednick et al., 2013), this difference in reported spatial extent of the
spindle raises an important question for the organization of engrams established through sleep-
dependent memory consolidation. Recent evidence using cFos mapping in animal models
suggests these engrams are distributed widely across brain areas (Kitamura et al., 2017; Roy et
al., n.d.), which is consistent with previous imaging evidence in the human (Brodt and Gais, 2020;
Wheeler et al., 2000). Taking these points together, we reasoned that widespread, multi-area
spindles may occur more often than previously reported in primate and human cortex. If this were
the case, these widespread spindles could provide the mechanism needed to link populations

distributed widely across the cortex for sleep-dependent memory consolidation.

Plasticity of long-range excitatory connections linking distant neuron groups occurs through spike-
time dependent plasticity (STDP) (Bi and Poo, 1998; Markram et al., 1997), for which presynaptic
vesicle release and postsynaptic spiking must occur with a precision of a few milliseconds (Magee
and Johnston, 1997). Long-range synaptic connections in cortex result primarily from excitatory
pyramidal neurons (Schiiz and Braitenberg, 2002; Sholl, 1956), and these connections could
provide a link among local networks representing pieces of a memory in different brain regions.
The key missing piece is to understand how spindles can guide specific long-range excitatory
connections to strengthen during sleep-dependent memory consolidation. We thus hypothesized

that widespread, multi-area spindles might provide this mechanism.
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69 Reliably detecting individual spindles in noisy sleep recordings, however, is challenging. Spindle
70  oscillation amplitudes differ across regions in cortex (Frauscher et al., 2015). Furthermore,
71 oscillation amplitudes may differ significantly across recording sites simply due to variation in
72  electrode properties (Kappenman and Luck, 2010; Nelson and Pouget, 2010). For these reasons,
73  we reasoned that fixed amplitude thresholds, which are a technique common across methods for
74  spindle detection, may only detect the largest amplitude events, potentially leading to an
75  underestimation of spatial extent. To address this question, we adapted deep learning algorithms
76 initially developed for detecting earthquakes (Perol et al., 2018) and gravitational waves (George
77 and Huerta, 2018) in high-noise settings to analysis of neural recordings in sleep. We studied
78 sleep spindles in macaque non-human primate (NHP) electrocorticogram (ECoG), human
79  electroencephalogram (EEG), and, finally, clinical intracranial electroencephalogram (iEEG)
80 recordings, which provide a window into the circuits of the human brain at one of the highest
81  spatial resolutions possible (Lachaux et al., 2012; Mukamel and Fried, 2012). Our approach,
82  which detects a range of clearly formed large- and small-amplitude spindles during sleep, reveals
83 that the spatial extent of spindles, defined here in terms of co-occurrence across electrode sites,
84  is widely distributed over a broad range of cortex. In particular, multi-area spindles are much more
85 frequent than previously estimated by amplitude-thresholding approaches, which tend to select
86  only the highest-amplitude spindles and could miss events that transiently fall below threshold.
87 Importantly, these results were additionally verified using a signal-to-noise ratio (SNR) approach
88  (Muller et al., 2016), which is a conservative but approximately amplitude-invariant technique
89 closely related to the constant false alarm rate (CFAR) method used in radar (Richards, 2005).
90 Lastly, in human sleep EEG after low- and high-load visual working memory tasks, our method
91 detects an increase in regional and multi-area spindles uniquely following a high-load visual
92 memory task. Taken together, these results provide substantial evidence of a specific role for
93  spindles in linking neuron groups distributed widely across cortex during memory consolidation.
94
95  Sleep recordings from both human and NHP were obtained from electrodes ranging from the
96 traditional scalp EEG to invasive intracranial EEG electrodes (Figure 1a). To verify the quality of
97  spindles detected by our convolutional neural network (CNN) model (Figure 1c), we first compute
98 average power spectral densities (PSDs) over spindle and non-spindle windows. The average
99  PSD of detected spindle events shows an increase in the 11-15 Hz spindle frequency range (red
100 lines, Figure 1b), while non-spindle events do not show a corresponding increase (black lines,
101 Figure 1b). Spindles detected by the CNN are well-formed, consistent with standard morphology
102  (Loomis et al., 1935; Newton Harvey et al., 1937; Silber et al., 2007) (Figure 1d), and in


https://doi.org/10.1101/2021.05.14.444188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444188; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

103  agreement with previously observed durations (0.69 + 0.004 seconds, NHP ECoG; 0.87 + 0.006
104  seconds, EEG; 0.74 + 0.003 seconds, iEEG) (Fernandez and Luthi, 2020; Takeuchi et al., 2016;
105 Warby etal., 2014). To further validate spindles detected by the CNN, we designed a time-shifted
106  averaging approach for application to recordings with only a 1 Hz highpass filter applied (thus
107  excluding any potential effects from lowpass filtering). To do this, we collected signals from
108 detected spindles, filtered at a 1 Hz highpass, time-aligned the events to the largest positive
109  value within the detected window (corresponding to a positive oscillation peak), and then
110  computed the average across aligned events. With this approach, the average over detected
111 spindles exhibited clear 11-15 Hz oscillatory structure (black line, Supplementary Figure 1), while
112  no oscillatory structure is observed when averaging over time-matched randomly selected non-
113  spindle activity (dashed red line, Supplementary Figure 1). This result demonstrates that spindles
114  detected by the CNN exhibit the correct structure even in a mostly raw, unprocessed signal with
115  nolowpass filtering applied. Finally, we compared the amplitude distribution of spindles detected
116 by the CNN and amplitude-thresholding (AT) approach. In the intracranial recordings (ECoG and
117 iEEG), AT detects a subset of spindles that are significantly higher-amplitude than those
118  detected by the CNN (p < 0.02, NHP ECoG recordings; p < 1 x 10™"*; iEEG recordings, one-sided
119  Wilcoxon signed-rank test; n.s. in EEG), consistent with the expectation that AT will select the
120 largest amplitude events. The CNN, however, can find well-formed spindles that are both large
121 and small in amplitude (Supplementary Figure 2). This improved resolution allows us to study
122  the spatial extent of spindles in an approximately amplitude-invariant manner.

123

124  What is the spatial extent of spindle oscillations across cortex? To answer this question, we
125  studied the distribution of simultaneously detected spindles across recording sites. We defined
126  three classes of spindles based on co-occurrence across recording sites: local (1-2 sites), regional
127  (3-10 sites), and multi-area (more than 10 sites). We noted our CNN approach detected many
128  spindles with electrode sites distributed widely across the cortex (Figure 2a). By taking the unique
129  cortical regions covered by the electrodes into account, we verified these were multi-area spindle
130 events (Figure 2b). We then compared spindles detected by the CNN and AT approaches. To do
131  this, we computed the ratio of spindles detected by the CNN and AT for all classes. This
132  comparison revealed multi-area spindles were systematically detected approximately 1.5 (ECoG)
133 to 10 (iEEG) times more often with the CNN than with the AT (Figure 2c and Supplementary
134  Figure 3). Across all recordings, the increase in the multi-area spindles detected by the CNN was
135  significantly greater than in the local spindles (p < 1 x 10, NHP ECoG recordings; p < 1 x 10,

136  EEG recordings; p < 0.02, iEEG recordings, one-sided Wilcoxon signed-rank test; similar results


https://doi.org/10.1101/2021.05.14.444188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444188; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

137  for the local-regional comparison, p < 0.01, EEG recordings; p < 0.02, iEEG recordings, one-sided
138  Wilcoxon signed-rank test, n.s. in NHP ECoG). Taken together, these results demonstrate that
139  spindles appear much more widespread across cortex when detected using our approximately
140  amplitude-invariant deep learning approach.

141

142  The organization of spindles across the cortex is thus neither fully local nor fully global: the co-
143  occurrence patterns of this sleep rhythm contain a mixture of local and widespread events. If this
144  is the case, what is the impact of the distribution on sleep-dependent memory consolidation? To
145  answer this question, we further studied the human EEG dataset, which had the unique feature
146  of testing sleep after tasks with varying memory loads. Briefly, before nap EEG recordings,
147  subjects completed a task in which five novel outdoor scenes (high visual working memory, H-
148  WM) or two novel outdoor scenes (low visual working memory, L-WM) were required to be held
149 in working memory for six seconds (Figure 3a). After the delay period, subjects were then
150 presented with a subsequent visual scene and asked whether it belonged to the previously
151  presented set. In each case (H-WM and L-WM), trials were balanced so that the same total
152  number of visual scenes was presented before sleep. An increase in spindle density after memory
153 tasks and its relationship with memory consolidation is well established (Clemens et al., 2005;
154 Dang-Vu et al., 2008; Gais et al., 2002; Schabus et al., 2007, 2004); however, the effect of
155  memory tasks on co-occurrence remains unknown. Considering the potential circuit mechanism
156  for spindles to link activity in neuron groups distributed across multiple areas in cortex through
157 long-range excitatory connections (Muller et al., 2016), we then hypothesized sleep following
158  high-load visual memory tasks would exhibit more multi-area spindles and a larger spatial extent.
159  Totest this hypothesis, we first confirmed that amplitudes of detected spindles did not differ across
160 L-WM and H-WM conditions (p > 0.77, Wilcoxon signed-rank test). We then computed the rate of
161  multi-area spindles after L-WM and H-WM tasks. Both regional and multi-area spindles appeared
162  more often after H-WM than L-WM (p < 0.032, regional spindles; p < 0.006, multi-area spindles;
163  one-sided paired-sample t-test) as detected by the CNN model, consistent with our hypothesis
164  (Figure 3b). Similarly, the largest increases following H-WM versus L-WM were observed in the
165  subset of regional and multi-area spindles detected by the more-conservative SNR approach
166  (Supplementary Figure 4a); however, no increase in multi-area spindles was observed with the
167 AT algorithm (Supplementary Figure 4b).

168

169 In this work, we have studied sleep spindles from human and NHP sleep recordings. To analyze

170 these recordings, we adapted newly developed deep learning approaches for detecting rhythmic
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171 events in high-noise data (George and Huerta, 2018; Perol et al., 2018). We validated this
172  approach through a series of control analyses and comparison to the subset of spindles detected
173 by a similarly amplitude-invariant but more-conservative SNR algorithm. We found that large,
174  multi-area spindles, where more than 10 electrode sites exhibit this rhythm simultaneously, are
175  much more prevalent than previously estimated by amplitude-thresholding approaches (Andrillon
176  etal.,, 2011; Nir et al., 2011; Piantoni et al., 2016; Sarasso et al., 2014), which tend to select only
177  the highest-amplitude events.

178

179  While it has become increasingly clear that sleep spindles play an active and causal role in sleep-
180 dependent memory consolidation (Aton et al., 2014; Clemens et al., 2005; Eschenko et al., 2006;
181 Gais et al., 2002; Mednick et al., 2013; Rasch and Born, 2013), it remains unclear how these
182  oscillations coordinate activity across areas to drive formation of strong neocortical assemblies
183  distributed over long distances (Klinzing et al., 2019). Episodic memories often contain a detailed
184  multisensory scene (Horner and Burgess, 2013; Tulving, 1983), and the activity patterns
185  associated with these memories recruit distributed representations from association to primary
186  sensory areas (Horner et al., 2015; Wheeler et al., 2000). In recent work, we found that sleep
187  spindles can be organized into large-scale waves rotating across neocortex (Muller et al., 2016),
188 and we hypothesized that these waves could provide a mechanism by which long-range excitatory
189  connections between distant populations in cortex could be strengthened during memory
190 consolidation in sleep. This potential mechanism for memory consolidation is interesting in light
191  of recent research showing wide distribution of memory engrams (Kitamura et al., 2017; Roy et
192  al, n.d.) and experience-dependent myelination formation in memory consolidation (Pan et al.,
193  2020; Wang et al., 2020), both of which are consistent with the development of distributed
194  assemblies across neocortex by these waves. In this work, by adapting deep learning algorithms
195  for waveform detection in high-noise recordings (George and Huerta, 2018; Perol et al., 2018),
196 we have found that large-scale, multi-area spindles occur much more often than previously
197  reported. Following these observations, we then hypothesized that large, multi-area spindles
198  exhibit an increase following high-load memory tasks. Consistent with this hypothesis, both the
199 CNN and SNR methods detect an increase in multi-area spindles uniquely following high-load
200 memory tasks. These results thus provide a specific neural mechanism by which memories can

201  be stored in distributed neocortical networks during sleep.
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203  Figure 1. (a) Electrode placement of multichannel ECoG recordings of two macaques (top), high-
204  density scalp EEG used for recordings after high and low visual memory tasks (middle), and
205 example iEEG contacts in a human clinical patient (bottom). (b) Average power spectral density
206  estimate for spindle windows detected by the CNN model (red) and matched non-spindle windows
207  (black), illustrating the nearly 10 dB increase within the 11-15 Hz spindle band in NHP ECoG
208  recordings (top), human EEG recordings (middle), and human iEEG recordings (bottom). Power
209 at line noise frequency omitted for clarity. (¢) The architecture of the CNN model developed for
210 spindle detection. (d) Examples of detected spindles by the CNN model (red) in NHP ECoG
211 recordings (top), human EEG recordings (middle), and human iEEG recordings (bottom).

212
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213
214  Figure 2. Distribution of the extent of spindles detected by CNN and AT approaches. (a) An

215  example of a widespread, multi-area spindle with electrode sites distributed widely across the
216  cortex. Filled gray circles indicate electrode contacts in gray matter. (b) Plotted is the percentage
217  of unique recorded cortical regions with spindles detected by the CNN in the local versus multi-
218 area case across all subjects in the iEEG recordings (average + SEM). (c¢) Plotted are the ratios
219  of spindles detected by the CNN and AT in NHP ECoG recordings (left), human EEG recordings
220 (middle), and iEEG recordings (right) in local (1-2 sites), regional (3-10 sites) and multi-area
221  (more than 10 sites) spindle classes (average + SEM in all cases). Across recordings, the increase
222  in regional and multi-area spindles detected by the CNN is significantly larger than for the local

223  spindles (except local vs. regional in the NHP ECoG).
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Figure 3. Impact of visual memory load on sleep spindle occurrence. (a) Schematic
representation of low and high visual working memory tasks. (b) Average number of spindles
detected per minute in high versus low visual working memory condition. Spindles are grouped
into local (left), regional (middle) and multi-area (right) classes detected by the CNN model. A
significant increase in the number of spindles among subjects can be observed in multi-area and
regional spindles as opposed to local spindles (p > 0.34, local spindles; p < 0.032, regional

spindles; p < 0.006, multi-area spindles; one-sided Wilcoxon signed-rank test).
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236 Methods

237

238 Recordings. We study performance of the CNN model across three sleep datasets obtained from
239 electrodes ranging from traditional scalp EEG to invasive intracranial depth electrodes. These
240 datasets represent recordings from very different electrode types, which vary widely in resolution
241  and signal-to-noise ratio. Training the CNN model in the same way over these very different
242  recordings demonstrates the generality of the framework developed here; further, these results
243  also represent a cross-species comparison of sleep-rhythm dynamics in NHP and human
244  neocortex.

245

246  The first dataset contains electrocorticographic (ECoG) recording from most of the lateral cortex
247  in two macaques during natural sleeping conditions (Yanagawa et al., 2013). Recordings were
248  obtained from 128 electrodes in both monkeys and sampled at 1 kHz by a Cerebus data
249  acquisition system (Blackrock Microsystems, Salt Lake City, UT, USA). The quality of sleep was
250 studied by the degree of spatial synchronization in slow wave oscillations and significant increase
251 in delta power was reported in sleep condition versus waking activity. This dataset was recorded
252  anddistributed by Laboratory for Adaptive Intelligence, BSI, RIKEN and was made freely available
253  at http://neurotycho.org/sleep-task.

254

255 The second dataset contains high-density scalp electroencephalography (EEG) recording from

256 20 healthy participants (Mei et al., 2018). Each participant participated in two separate sessions
257  and completed a high- and low-load visual working memory task. The recordings were obtained
258  during naps following the working memory tasks from a 64-electrode EEG skull cap and sampled
259 at 1 kHz. The recordings were reviewed and stage 2 sleep was manually annotated by an expert
260 to verify quality of sleep recordings. Ultimately, sleep recordings that did not reach stage 2 sleep
261  orwere too noisy were excluded from the study. Under these criteria, four subjects were excluded
262  (subject 12, 20, 26 and 27). In addition, the recordings were common average referenced (CAR)
263 to remove large artifacts with potentially non-neural origin. These recordings were made freely
264  available at the Open Science Framework through the link https://osf.io/chav?.

265

266  The last dataset contains intracranial electroencephalography (iEEG) recordings from 5 epileptic
267 patients in the Epilepsy Monitoring Unit (EMU) at London Health Sciences Centre (LHSC).

268 Patients were implanted using depth electrodes for the sole purpose of surgical evaluation.

269 Informed consent was collected from the patients in accordance with local Research Ethics Board
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270 (REB) guidelines. Each patient was implanted with 9 to 14 iIEEG electrodes located across the
271  cortex with up to 10 contacts in gray or white matter (Supplementary Table 1). The iEEG signals
272  were recorded continuously for a duration of 7 to 14 days for the purpose of seizure localization.
273  We use clinically annotated sleep onsets and study half an hour recording starting from the
274  beginning of the sleep/nap cycles in electrode contacts located within gray matter.

275

276  Signal-to-noise ratio (SNR) measure for sleep spindle detection. To specify a subset of
277  spindles required to train our convolutional neural network (CNN) model, we implemented a
278  modified version of signal-to-noise ratio (SNR) algorithm (Muller et al., 2016). This algorithm,
279  which is inspired by the adaptive, constant-false-alarm-rate (CFAR) technique in radar, was used
280 to detect narrow-band rhythmic activities. We measure the ratio of power within the frequency
281  band of interest (here, 9-18 Hz) to power in the rest of the spectrum (1-100 Hz bandpass, with
282  band-stop at 9-18 Hz) at each electrode. The SNR measure is computed over a sliding window
283  of time (500 ms) and produces an estimate of how power in the frequency band of interest
284  compares to total power in the recording, taking into account the noise on individual electrodes.
285  We then used the SNR algorithm to produce high-quality training samples for the CNN model. To
286  do this, we reduced the probability of false positives by setting the threshold to the 99™ percentile
287  of the SNR distribution, thus detecting only the activity patterns that have the highest unique
288  power concentration in the spindle frequency range. We additionally required the SNR algorithm
289  toonly include activities with a duration between 0.5 to 3 seconds, consistent with the duration of
290 sleep spindles. The detected windows are then used for training the CNN model.

291

292  To additionally verify performance of the SNR algorithm, we implement this approach over one
293  second recordings of a 90 by 90 array of LFPs generated by a spiking network model of cortical
294  activity in the awake state, which does not contain the thalamic reticular loops and thalamocortical
295  projections needed to generate sleep spindles. SNR values calculated from these data were
296  uniformly below 0 dB, confirming the robustness of our approach in uniquely detecting spindle-
297  frequency activity through a known ground truth dataset.

298

299 Convolutional neural network (CNN) for sleep spindle detection. We developed a
300 convolutional neural network (CNN) to detect spindles activities during sleep. The model is
301 motivated by the successful implementation of deep learning for detecting earthquakes and
302 gravitational waves in high-noise settings (George and Huerta, 2018; Perol et al., 2018). If trained

303  properly, it has the ability to detect hidden spindles that are being unnoticed and provides a great
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304  opportunity to study the spatial and temporal analysis of spindle activities across the cortex. We
305 first tested CNN models with different architectures and selected one of the best architectures
306  across the sleep recording datasets (Figure 1c). Our CNN model is a one dimensional model with
307 5 convolutional layers (with 32, 64, 128, 192 and 256 filters) and 4 fully connected layers (with
308 sizes 128, 64, 32 and 2). Each convolutional layer is followed by a maxpool and rectified linear
309 unit layers and the output of the fifth convolutional layer is gradually flattened into 2D vectors
310 using the fully connected layers followed by rectified linear unit layers. Our classifier has an
311  additional softmax layer at the end which returns the probability of spindle in addition to the
312  predicted label. The CNN model takes a window of sleep recording (500 ms which is bandpass
313 filtered at 1-100 Hz after removal of line noise and harmonics) as an input and predicts its label
314  (spindle or non-spindle). The hyperparameters of the CNN model are optimized to minimize the
315  difference in the predicted and actual labels determined by the SNR algorithm.

316

317  Power-spectral density estimate. To verify performance of the CNN, SNR and AT approaches,
318 we compared power spectral density (PSD) estimates of spindle and non-spindle activities
319  (Welch’s method; Figure 1b and Supplementary Figure 5). In both cases, we first remove line
320 noise artifacts. We then compute PSD over windows of 0.5 s with no overlap and average spectra
321  over detected events. Matched non-spindle PSDs were estimated over a large number of
322  randomly selected non-spindle windows. The increase in the power during the natural frequency
323  range of sleep (~9-18 Hz) in spindle vs non-spindles activities demonstrates the ability of both the
324  CNN model and SNR algorithm to correctly identify spindle activities.

325

326 Time-shifted averaging control. As an additional control analysis, we computed average signals
327  over detected spindles, with activity shifted to align the largest oscillation peak in the detected
328 time window. To compute this average, we first needed to correct for the time offset between
329  different spindles. To do this, we shifted detected spindles to the largest positive value within the
330 detected window, corresponding to the positive potential of an individual spindle oscillation cycle,
331  and then took the average over all time-shifted windows. The average of time-shifted signals is
332 computed over spindle windows detected by the CNN approach, as well as matched randomly
333  selected non-spindle windows. Importantly, while the time-shifted average clearly exhibits 11-15
334  Hz oscillatory structure when computed over spindle events detected by the CNN, this need not
335 bethe case, as demonstrated by application of the same approach to matched non-spindle events
336  (Supplementary Figure 1).

337
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338 We also systematically studied the sensitivity of the CNN model as a function of the SNR threshold
339  used for building the training set. To do this, we computed the time-shifted average over spindle
340 events detected by the CNN model at different levels of the SNR threshold (Supplementary Figure
341  6). Clear, well-formed 11-15 Hz oscillatory structure is observed in the time-shifted averages
342 above 0 dB threshold, verifying the quality of detected spindles by the corresponding CNN
343 models. However, the 11-15 Hz oscillatory structure starts to disappear below 0 dB because an
344  SNR threshold below 0 dB introduces errors into the training sets by mislabeling noise signals as
345 spindles. On the other hand, similar oscillatory shapes of time-shifted average above 0 dB
346  confirms the ability of the CNN model to perform robustly while trained over different sets of
347  clearly-formed spindles.

348

349  Comparison with amplitude-threshold approach. The amplitude threshold (AT) approach has
350 been used extensively in the literature to automatically detect spindles during sleep(Gais et al.,
351  2002; Niretal., 2011). In this approach, a spindle is detected when the amplitude of the bandpass
352  signal stays above a threshold for a limited period of time (e.g. at least 500 ms; cf. Supplementary
353  Figure 5in Nir et al., 2011). To implement this approach, we first bandpass filter the signal at the
354  frequency of 11-15 Hz and then compute the root mean square (RMS) of its amplitude over a
355  sliding window of 0.5 seconds. A spindle is detected whenever the RMS amplitude stays above
356 the predetermined threshold for 0.5 to 3 s. To determine the most appropriate threshold for
357 comparison to the CNN and SNR approaches, we first computed the distribution of electrode-
358 level RMS amplitude that results in approximately 2 spindles per minute and then set the overall
359 threshold to its average across all electrodes. The quality and extent of detected spindles by the
360 AT approach was then compared with the CNN and SNR (Figure 2c, Supplementary Figure 2, 3,
361 4, 5and 7). The CNN model has a relatively amplitude-invariant nature in comparison with the
362  amplitude-thresholding (AT) approach, which is highly sensitive to a predefined cutoff amplitude
363 threshold. The AT approaches may only select spindles with the largest-amplitude events, or
364  could miss ones that temporarily dip below the threshold while our approach has the ability to find
365  well-formed spindles that are both large- and small-amplitude (Supplementary Figure 2).

366

367 Electrode Localization. For the purpose of electrode localization in the iEEG recordings, we
368 developed an image processing pipeline which involves electrode contact localization, brain
369 tissue segmentation and atlas fitting. Semi-automatic contact localization was performed in
370 3D Slicer using the SEEG Assistant module (Narizzano et al., 2017). The entry and target

371 points of each electrode were manually defined on the post-operative CT image. The
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372  entry/target labels were provided to the SEEGA algorithm, which automatically segmented
373 the electrode contacts. To obtain brain location information for each contact, brain tissue
374  segmentation and atlas fitting was carried out. To enable the use of anatomical priors during
375  tissue segmentation, the pre-operative T1w MRI was non-linearly registered to the MNI152
376  2009c Nonlinear Symmetric template
377  (https://www.bic.mni.mcqill.ca/ServicesAtlases/ICBM152NLin2009) using NiftyReg (Modat et

378 al., 2010). An anatomical mask was generated by applying the inverse transform to the T1w

379 image using the antsApplyTransforms algorithm from Advanced Normalization Tools 2.2.0

380 (ANTS; http://stnava.qgithub.io/ANTs). Segmentation of gray matter, white matter, and

381  cerebrospinal fluid was performed using the Atropos algorithm from ANTS(Avants et al.,
382  2011b), which implements k-means classification (k=3). The resulting posteriors were merged
383 into a 4D volume using the fsimerge algorithm from FMRIB Software Library v6.0 (FSL;
384  htips://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The CerebrA atlas (Manera et al., 2020) was used to
385 obtain anatomical labels for each electrode contact. Normalization to template space
386  (MNI152NLin2009cAsym) was performed using the non-linear SyN (Avants et al., 2011a)

387  symmetric diffeomorphic image registration algorithm from ANTS, using both the brain masks

388  of the pre-operative T1w and template space. Using the inverse of the non-linear transform,
389 the CerebraA atlas labels were warped to the pre-operative T1w MRI space. The atlas labels
390 were then dilated using the fsimaths algorithm from FSL. The final T1w brain tissue/atlas
391 segmentation was mapped to the contacts to provide location information for each contact
392  (tissue probability and brain anatomical region). This custom processing pipeline has been
393 made available on GitHub (https://github.com/akhanf/clinical-atlasreq).

394

395 Code availability. Our custom MATLAB (MathWorks) implementations of all computational

396 analyses, along with the analysis scripts used for this study will be made available as an open-

397  access release on GitHub (http://mullerlab.github.io).
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Supplementary Figure 1. Average time-shifted spindles detected by the CNN model.
Examples of average signals computed over spindle windows detected by the CNN models (solid
black lines) vs a subset of randomly matched non-spindle windows (dashed red lines) in NHP
ECoG recordings (left), human EEG recordings (middle), and iEEG recordings (right). The
average over detected spindle windows exhibits clear 11-15 Hz oscillatory structure, while no
oscillatory structure is present in the average over matched non-spindle windows. The heatmaps
in the background are the individual time-shifted spindle events, which demonstrate the presence

of this structure in individual instances.
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411
412  Supplementary Figure 2. Performance of CNN model versus AT Algorithm. (a) An example

413  of co-occurring spindles detected by the CNN model in 11 sites. The red line is the root mean
414  square amplitude of the signal, the green line is the amplitude threshold, and the blue line
415  represents windows of time in which spindles were detected by the CNN model. The AT algorithm,
416  which only detects spindle activities with amplitude above a predefined amplitude threshold for at
417  least a duration of 0.5 sec (Nir et al., 2011) (yellow line), was not successful in detecting the
418  majority of spindles in this example. Specifically, the AT algorithm fails to detect well-shaped
419  spindles (detected by the CNN model) whose amplitudes temporarily drop below threshold (b) or
420 have low amplitude (c).

421

422
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423
424  Supplementary Figure 3. Distribution of the extent of spindles detected by CNN and AT

425 approaches. Plotted is the scatter diagram of the ratio of average number of detected spindles
426 by the CNN and AT in NHP ECoG recordings (left), human EEG recordings (middle), and iEEG
427  recordings (right) grouped into local (1-2 sites), regional (3-10 sites), and multi-area (more than
428 10 sites) spindle classes. Each blue dot represents the ratio of the number of spindles per minute

429 in one sleep recording.
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430
431  Supplementary Figure 4. Low and high visual memory task and its impact on sleep spindle
432 occurrence - SNR and AT. (a) Average number of spindles detected per minute in high vs low
433  visual working memory condition by the SNR. The SNR algorithm detected a significant increase
434  in the number of spindles across subjects (p < 0.04, local spindles; p < 0.02, regional spindles; p
435 < 0.007, multi-area spindles; one-sided paired-sample t-test), with the largest increases for
436 regional and multi-area spindles. (b) Average number of spindles detected per minute in high vs
437  low visual working memory condition by the AT. In contrast to the CNN, AT was not able to detect
438 any significant increase in the number of distributed spindles among subjects across all spindles
439 classes (p > 0.56, local spindles; p > 0.34, regional spindles; p > 0.30, multi-area spindles; one-
440  sided paired-sample t-test).
441
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Supplementary Figure 5. Power spectral density (PSD) comparison. Examples of average

power spectral density estimate over spindle windows detected by the CNN model (blue), the

SNR approach (red), the AT algorithm (yellow) and matched non-spindle windows (purple) in
iIEEG recordings. The CNN and SNR PSDs exhibit a nearly 10 dB increase within the 11-15 Hz

spindle band compared to matched non-spindle windows, while the AT PSD exhibits higher power

outside of the frequency of interest in addition to spindle band. Power at line noise frequency

omitted for clarity.
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453  Supplementary Figure 6. Impact of SNR threshold on the CNN model. Plotted is the change
454  in the average time-shifted spindle detected by CNN models trained over a wide range of SNR
455  thresholds (5 to -10 dB, dark to light gray) in the NHP ECoG recordings. Clearly detected spindle
456  activity decreases with the SNR threshold, demonstrating that the CNN result breaks down when
457  the model is trained on lower quality examples. The red line represents the average computed at
458 0 dB threshold (which represents parity between power in the spindle passband and the rest of
459 the signal spectrum), below which the average detected spindle activities starts to drift away from

460 the expected 11-15 Hz oscillatory structure.
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Supplementary Figure 7. Non-spindle activities detected by the AT algorithm. Sleep
recordings are subjected to artifacts, such as line noise, electrical noise, and movement artifacts
that introduce signal distortion. These artifacts can result in false spindle activity detection in the
AT approach. For example, the sharp artifact when filtered at 11-15 Hz in the AT approach
appears as an oscillation which does not exist in the original recording (top row), or the AT
approach might detect non-spindle activities resulting from broken channels (bottom left) or not

clearly formed spindles (bottom right).
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476  Supplementary Table 1: Distribution of gray matter contacts in the cortical regions of all

477  subjects in the iEEG recordings.

478

Brain Region Subject A | Subject B | Subject C | Subject D | Subject E

Amygdala 0 5 4 4 0
Caudal Middle Frontal 0 0 0 0 3
Entorhinal 0 1 0 0 0
Fusiform 0 1 0 3 0
Hippocampus 8 12 8 6 0
Inferior Lateral Ventricle 0 0 2 0 0
Insula 1 27 17 1 9
Lateral Orbitofrontal 0 3 2 0 6
Lateral Ventricle 1 1 0 0 0
Medial Orbitofrontal 1 1 1 0 2
Middle Temporal 3 4 8 9 0
Pars Opercularis 0 0 1 0 0
Pars Orbitalis 0 1 0 0 0
Pars Triangularis 1 1 2 0 4
Rostral Anterior Cingulate 1 2 1 0 4
Rostral Middle Frontal 7 2 6 0 9
Superior Frontal 1 0 4 0 17
Superior Temporal 4 0 0 2 0
Transverse Temporal 0 0 0 1 0

479

480
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