

1
2
3
4 **Assessing the role of cold-shock protein**
5 **C: A novel regulator of *Acinetobacter***
6 ***baumannii* biofilm formation and virulence**
7
8 **Brooke R. Tomlinson, Grant A. Denham, Robert S.**
9 **Brzozowski, Jessie L. Allen, Prahathees J. Eswara,**
10 **& Lindsey N. Shaw***

11
12
13 Department of Cell Biology, Microbiology and Molecular Biology, University of South
14 Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA

15 ***Correspondence:** Lindsey N. Shaw (shaw@usf.edu)

16

17 **Abstract:** *Acinetobacter baumannii* is a formidable opportunistic pathogen that is
18 notoriously difficult to eradicate from hospital settings and can spread quickly via
19 healthcare personnel despite preventive measures. This resilience is often attributed to
20 a proclivity for biofilm formation, which grants *A. baumannii* a higher tolerance towards
21 external stress, desiccation, and antimicrobials. Despite this, little is known regarding
22 the mechanisms orchestrating *A. baumannii* biofilm formation. Herein, we performed
23 RNA-seq on biofilm and planktonic populations for the multidrug resistant isolate,
24 AB5075, and identified 438 genes with altered expression. To assess the potential role
25 of genes upregulated within biofilms, we tested the biofilm forming capacity of their
26 respective mutants from an *A. baumannii* transposon library. In so doing, we uncovered
27 24 genes whose disruption led to reduced biofilm formation. One such element, cold
28 shock protein C (*cspC*), produced a mucoidal, non-mucoviscous colony phenotype.
29 RNA-sequencing of this mutant revealed the down regulation of pili and fimbriae in the
30 *cspC* mutant, which would explain the decreased biofilm observed. Using MIC assays,
31 we note that the mutant displayed increased antibiotic tolerance that we hypothesize is
32 mediated by overexpression of multi-drug efflux pumps and altered mRNA stability of
33 their corresponding transcriptional repressor. Finally, we show that CspC is required for
34 survival during oxidative stress and challenge by the human immune system, and plays
35 a pivotal role during systemic infection. Collectively, our work identifies a cadre of new
36 biofilm associated genes within *A. baumannii* and provides insight into the global
37 regulatory network of this emerging human pathogen.

38

39

40

41

Introduction

42 *Acinetobacter baumannii* is formidable pathogen that causes over 8,000 cases of
43 multidrug resistant infections annually in the United States and is recognized globally as
44 an urgent health threat (1, 2). This bacterium gained a foothold in the US healthcare
45 system in 2003-2005 when injured service members returned home from the Iraq
46 conflicts harboring *A. baumannii* infections (3), earning it the nickname “Iraqibacter.”
47 Since then, a number of outbreaks have occurred in the US, several of which impacted
48 multiple hospitals (4-6). Fundamental to success of this pathogen is the ability to persist
49 on surfaces for prolonged periods (7-10), the rapid spread via healthcare personnel
50 despite conventional prevention measures (11-13), and its genomic plasticity, driving
51 rapid acquisition of antibiotic resistance (14). Thus, it has been suggested that *A.*
52 *baumannii* employs a ‘persist and resist’ strategy, as opposed to a particular set of
53 toxins or molecular determinants that may otherwise dictate an organism’s potential for
54 virulence (reviewed in (15)).

55

56 Like many bacteria, the resilience of *A. baumannii* is often attributed to a proclivity
57 towards biofilm formation and its ability to respond to external stress (16). Biofilms are
58 multicellular aggregates surrounded by exopolymeric substance (EPS), which consists
59 of extracellular DNA, proteins, and polysaccharides (17-19). Biofilms exhibit greater
60 resistance to antimicrobials due to reduced diffusion of antibiotics through the
61 multilayered matrix (20) and physiological heterogeneity of the bacterial community
62 (21), which ultimately promote infection chronicity. These factors also contribute to
63 tolerance of environmental stress, such as desiccation (16), which significantly

64 enhances *A. baumannii* persistence in hospital settings. Despite this, only a handful of
65 contributing factors and conditions for *A. baumannii* biofilm formation have been
66 identified (reviewed in (22) and (23)). In particular, pili production plays a pivotal role in
67 the first step of biofilm initiation: the irreversible attachment of bacteria to a surface. Two
68 highly conserved, essential *A. baumannii* attachment factors have been identified to
69 date, chaperone-usher pili (Csu) and outer membrane protein A (OmpA) (22, 24, 25).
70 With regards to the latter, OmpA has been shown to facilitate attachment to abiotic
71 surfaces as well as epithelial cells (25). Comparatively, the Cs_u assembly system
72 (Cs_uA/B, Cs_uA-E) seems to have a more critical role mediating attachment to abiotic
73 surfaces and purportedly does so by hydrophobic interaction with structurally variable
74 substrates, including plastic and glass (24, 26). Transcriptional regulation of the *csu*
75 operon is governed by the BfmRS two-component regulatory system (27), although
76 whether this is by direct or indirect means remains unresolved. During sub-MIC
77 antibiotic treatment, BfmRS also enhances the expression of the major capsular
78 biosynthesis gene cluster (K locus) to promote capsule production, another major
79 biofilm determinant (28). Previous work on *Acinetobacter baumannii* and its non-
80 pathogenic relative, *Acinetobacter baylyi*, has shown that capsule production augments
81 desiccation tolerance, which enhances biofilm survival on surfaces for prolonged
82 periods (16, 29, 30). Overall, capsule production is important for *Acinetobacter*
83 desiccation tolerance, biofilm integrity, and persistence, and the regulatory network for
84 capsule production is intertwined with that of pili production and biofilm formation.
85

86 To identify novel factors which drive *A. baumannii* biofilm formation, herein we
87 implemented a transcriptomic approach, comparing the global expression profiles of
88 biofilm to that of planktonically growing counterparts. We then identified genes for which
89 transcription was enriched within biofilm, obtained mutants harboring transposons
90 disrupting these genes, and screened for changes in biofilm integrity. In so doing, we
91 identified 24 genes whose disruption resulted in a notable decrease in biofilm mass
92 compared to wildtype. During this screen, we identified one such factor, cold-shock
93 protein C (CspC), disruption of which resulted in a mucoidal, but non-mucoviscous,
94 colony phenotype. Cold-shock proteins (Csps) have a demonstrated importance in cell
95 aggregation (31), extracellular polysaccharide production, and membrane fluidity in
96 other organisms (32). Furthermore, Csps are multifunctional proteins, which can have
97 pleiotropic functions as transcriptional regulators and RNA chaperones (33). Thus,
98 these proteins can have impacts at the transcriptional, post-transcriptional, and
99 translational levels (reviewed in (34, 35)). Although Csps often play important roles in
100 bacterial stress response, they have not been previously implicated in the regulation of
101 *A. baumannii* biofilm formation. In this work, we reveal that disruption of *cspC* leads to
102 enhanced tolerance to polysaccharide degradation, altered antibiotic resistance profiles,
103 and diminished abiotic surface adherence. The *cspC* mutant also exhibited diminished
104 survival in a murine model of infection. Collectively, these findings establish CspC as a
105 novel regulator of *A. baumannii* biofilm formation and disease causation.

106

Methods

107 **Bacterial strains and growth conditions:** Bacterial strains used for this study are
108 listed in Table 1. *A. baumannii* and *Escherichia coli* strains were routinely cultured in
109 lysogeny broth (LB) with shaking or on LB agar at 37°C. When appropriate, media was
110 supplemented with tetracycline and hygromycin at a final concentration of 5 µg/mL and
111 160 µg/mL respectively. *A. baumannii* biofilm formation was assessed as described
112 previously for microtiter plate biofilms (38) with slight modifications. Briefly, overnight
113 cultures were normalized to an OD₆₀₀ of 5.0 in phosphate-buffered saline (PBS), before
114 20 µL was added to 180 µL of fresh LB in 96-well microtiter plates for a final OD₆₀₀ of
115 0.5. For assays incorporating strains harboring pMQ557, LB was supplemented with
116 hygromycin.

117

118 **Mutant strain confirmation and complement strain construction:** Transposon
119 mutant strains were obtained from the *A. baumannii* AB5075 transposon mutant library
120 (37). Transposon insertion was confirmed for the *cspC* transposon mutant by PCR and
121 sequencing using primers OL5087 and OL5088 which flank *cspC* (all primers are listed
122 in Table S1). A *cspC*-complement PCR fragment was amplified using primers OL5088
123 and OL5214 and cloned into plasmid pMQ557. In addition to the full length of *cspC*, the
124 complement fragment includes 382 nucleotides immediately upstream and 97
125 nucleotides directly downstream of the *cspC* coding region to ensure the native
126 promoter and full-length mRNA (as revealed by RNA-seq) were incorporated.
127 Complementation plasmid pMQ557::*cspC* was transformed into chemically competent

128 *E. coli* (DH5 α) and confirmed using pMQ557 screening primers OL4163 and OL4164
129 followed by sequencing. Plasmid containing the correct sequence was transformed into
130 the *cspC* transposon mutant strain via electroporation (44) to generate the complement
131 strain, *cspC*⁺. Given that vector is present in *cspC*⁺, the empty pMQ557 vector was also
132 transformed into the wildtype parental strain and *cspC* transposon mutant strain (*cspC*⁻).
133 For all assays *cspC*⁺, wildtype and *cspC* mutant strains bearing pMQ557 were used for
134 comparison throughout.

135
136 **RNA sequencing:** *A. baumannii* biofilm formation was initiated in 96-well microtiter
137 plates as described above in biological triplicate for 24 h at 37°C in a static incubator.
138 To collect planktonic samples, 75 μ L of supernatant was removed from each well and
139 pooled. Planktonic cells were immediately combined with 5 mL of ice-cold PBS, and
140 pelleted by refrigerated centrifugation. For biofilm samples, the remaining supernatant
141 was removed and biofilm containing wells were washed three times with 200 μ L of ice-
142 cold PBS. Ice-cold PBS was added a final time and pipetted vigorously to disrupt biofilm
143 cells. Biofilm cells from different wells were pooled, immediately combined with an
144 additional 5 mL of ice-cold PBS, and pelleted by refrigerated centrifugation.

145
146 For collection of AB5075 wildtype and AB5075 *cspC::tn* mutant samples, strains were
147 grown in LB overnight with shaking at 37°C in biological triplicate. Overnight cultures
148 were diluted 1:100 into 5 mL of fresh LB, grown to exponential phase, and subsequently
149 used to seed new 100 mL cultures at OD₆₀₀ 0.05. Samples were harvested after 3 hours

150 of growth, added to an equal volume of ice-cold PBS, and pelleted by centrifugation at
151 4°C.

152
153 Total RNA was isolated from cell pellets as described previously (45) using an RNeasy
154 Kit (Qiagen) and DNA removal was performed using a TURBO DNA-free kit (Ambion).
155 DNA removal was confirmed by PCR using OL398 and OL399. Sample quality was
156 assessed using an Agilent 2100 Bioanalyzer system and corresponding RNA 6000
157 Nano kit (Agilent) to confirm RNA integrity. Samples with a RIN of ≥ 9.9 were used in this
158 study. Prior to mRNA enrichment, biological triplicates were pooled at equal RNA
159 concentrations. rRNA was then removed using a Ribo-Zero Kit for Gram Negative
160 Bacteria (Illumina) followed by a MICROBExpress Bacterial mRNA enrichment kit
161 (Agilent). Removal efficiency of rRNA was confirmed using an Agilent 2100 Bioanalyzer
162 system and RNA 6000 Nano kit (Agilent). Enriched mRNA samples were then used for
163 RNA sequencing using an Illumina NextSeq. Library preparation and RNA sequencing
164 was performed following Truseq Stranded mRNA Kit (Illumina) recommendations
165 omitting mRNA enrichment steps. Quality, concentration, and average fragment size of
166 each sample was assessed using an Agilent 2100 Bioanalyzer system and RNA 6000
167 Nano kit (Agilent) prior to sequencing. Library concentration for pooling of barcoded
168 samples was assessed by RT-qPCR with a KAPA Library Quantification kit (KAPA
169 Biosystems) as recommended for high sensitivity. Samples were run on an Illumina
170 NextSeq with a corresponding 150-cycle NextSeq Mid Output Kit v2.5. Experimental
171 data from this study were deposited in the NCBI Gene Expression Omnibus (GEO)
172 database (GEO accession numbers GSE164233 and GSE164290).

173

174 **RNAseq bioinformatics:** Data was exported from BaseSpace (Illumina) in fastq format
175 and analyzed using CLC Genomics Workbench 20 (Qiagen Bioinformatics). Reads
176 were imported and failed reads were removed using the Illumina Paired Importer tool,
177 with quality score parameter option set to Illumina Pipelines 1.8 and later. The total
178 number of reads generated for each sample was at least 15.49 million and up to 22.22
179 million, resulting in $\geq 545x$ read coverage for each sample. Reads corresponding to
180 rRNA were filtered, removed by aligning to known rRNA sequences, and discarded.
181 Samples contained between 0.27% and 0.71% rRNA. Remaining read sequences were
182 aligned using the RNA-seq Analysis tool (v0.1) with default parameters and defined
183 strand specificity to the *A. baumannii* AB5075 NCBI reference genome (CP008706.1).
184 Gene expression values were calculated using the Expression Browser tool (v1.1)
185 specifying transcripts per million (TPM) as the output. Differential expression values
186 between samples were generated using the Differential Expression in Two Groups tool
187 (v1.1) for whole transcriptome RNA-seq samples. Differential expression is reported as
188 fold-change of expression for biofilm relative to planktonic samples, and cspC mutant
189 relative to wildtype samples. Library size normalization is automatically performed using
190 the trimmed mean of M values (TMM) method by the Differential Expression in Two
191 Groups tool (46). Ontology classification of genes was assigned based on the Kyoto
192 Encyclopedia of Genes and Genome (KEGG) (47). Genomes and differential
193 expression visualizations (Fig. 1A and 5A) were generated using Circos (48).

194

195 **RT-qPCR transcriptional analysis:** To validate RNA-seq findings, a selection of genes
196 were assayed by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR).
197 Strains were grown and RNA harvested as described above for RNA-seq studies
198 performed on biofilm and planktonic samples in biological triplicate. Total RNA was
199 isolated from cell pellets and DNA removal was performed as described above. Sample
200 quality was assessed using an Agilent 2100 Bioanalyzer system and corresponding
201 RNA 6000 Nano kit (Agilent) to determine RNA concentration and to confirm RNA
202 integrity. Samples with a RIN of ≥ 9.9 were used. One microgram from each sample was
203 reverse transcribed using an iScript cDNA Synthesis Kit (BioRad). RT-qPCR was then
204 performed using gene-specific primers (Table S1) and TB Green Premix Ex Taq
205 (Takara). Levels of gene expression were normalized to that of 16S ribosomal RNA
206 gene (OL4498 and OL4449) and fold-change of expression was assessed for biofilm
207 relative to planktonic samples, and *cspC* mutant relative to wildtype samples, using the
208 $2^{-\Delta\Delta Ct}$ method (49).

209
210 Similarly, transcriptional analysis was used to assess changes in *cspC* transcript levels
211 under cold stress. *A. baumannii* wildtype cultures were grown overnight as described
212 above, in biological triplicate, and sub-cultured into 5 mL of fresh media. After 3 hours of
213 growth at 37°C, new 5 mL cultures were seeded and standardized to an OD₆₀₀ of 0.05.
214 Bacteria were transitioned to 15°C for 15 minutes to induce cold shock, and control
215 samples were left at 37°C. Following this, samples were combined with an equal
216 volume of ice-cold PBS and pelleted by centrifugation at 4°C. Total RNA isolation, DNA
217 removal, and reverse transcription were performed as described above. Quantitative,

218 real-time RT-PCR (qRT-PCR) was then performed using *cspC*-specific primers OL5216
219 and OL5217, and TB Green Premix Ex Taq (Takara). Levels of gene expression were
220 normalized to that of 16S ribosomal RNA gene (OL4498 and OL4449) and fold-change
221 of expression was assessed for cold shocked samples relative to non-cold shocked
222 samples using the $2^{-\Delta\Delta Ct}$ method (49).

223

224 **Crystal violet and real-time biofilm assays:** *A. baumannii* biofilm formation was
225 performed as described above in biological triplicate. After 24 hours of static growth,
226 biofilms were washed 3 times with PBS and fixed with 100 μ L of 100% ethanol. After
227 drying, 200 μ L of crystal violet was added, incubated at room temperature for 15
228 minutes, and biofilms washed 3 times with PBS. After a second drying step, 100 μ L of
229 100% ethanol was added to solubilize the crystal violet. Absorbance of solubilized
230 crystal violet was measured at OD₅₄₃ and reported as percent variance to that of the
231 wildtype strain.

232

233 A Real Time Cell Analyzer (RCTA) xCELLigence MP (ADCEA Bioscience) instrument
234 was used to monitor biofilm formation over time. The xCELLigence RTCA MP was
235 placed in a 37°C incubator for one hour prior to experimentation to allow the instrument
236 temperature to equilibrate. Next, 96-well E-plates were loaded with 180 μ L of LB,
237 positioned in the RTCA, and measured for background signal. Using the same plate, *A.*
238 *baumannii* biofilms were prepared as described above, and statically incubated in the
239 RTCA, with reads taken every 15 minutes for 25 h. The data generated herein is from
240 nine biological replicates per strain.

241

242 **Microscopy:** Cell morphology was assessed by fluorescence microscopy as previously
243 described (50) with minor modifications. Briefly, single 24h wildtype, *cspC::tn* mutant
244 and complemented strain colonies were resuspended in 100 μ L of 1x PBS. Cell
245 membranes and DNA was stained with FM4-64 and DAPI, respectively, at final
246 concentrations of 1 μ g/mL. Cell suspension (5 μ L) were spotted onto a glass coverslip
247 of glass bottom dishes (MatTek) and subsequently covered with a sterile pad of 1%
248 agarose in water. Imaging was completed at room temperature inside a DeltaVision
249 Elite deconvolution fluorescence microscope (GE Applied Precision) environmental
250 chamber. Photos were captured using a CoolSNAP HQ2 camera (Photometrics) and
251 images were acquired by taking 17 z-stacks at 200 nm intervals. All images were
252 deconvolved using the softWoRx (GE Applied Precision) imaging software.

253

254

255 **Extracellular DNA assays:** Extracellular DNA production of *A. baumannii* biofilms
256 was analyzed quantitatively as described previously (51). Briefly, *A. baumannii* biofilm
257 formation was initiated as described above in biological triplicate. After 24 hours of
258 growth, supernatant was removed, and biofilms were washed once with 200 μ L PBS.
259 eDNA in biofilms was quantified by Quant-iT PicoGreen dsDNA labelling (Thermo
260 Fisher) and fluorescence measured using a Synergy2 plate reader (BioTek).

261

262 **Biofilm inhibition by proteinase K and sodium meta-periodate:** Disruption of *A.*
263 *baumannii* biofilms by sodium *meta*-periodate and proteinase K was analyzed

264 quantitatively as described previously (52). Briefly, *A. baumannii* biofilm formation was
265 initiated as described above in biological triplicate. Biofilms were supplemented with a
266 final concentration of 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, or 0 mM of sodium *meta*-
267 periodate. Alternatively, biofilms were supplemented with a final concentration of 50
268 µg/mL of proteinase K. Biofilms were allowed to form for 24 h at 37°C and then
269 quantified by crystal violet assay as described above.

270

271 **Cold-shock recovery and survival:** *A. baumannii* cultures were grown overnight, in
272 biological triplicate, and sub-cultured into 5 mL of fresh media. After 3 hours of growth,
273 new cultures were seeded and standardized to an OD₆₀₀ of 0.05. For cold stress
274 recovery, after one hour of growth at 37°C bacteria were transitioned to 15°C for 1 hour.
275 Following this cold stress, bacteria were returned to 37°C with shaking. Bacteria were
276 plated on TSA every hour to determine CFU/mL as a measure of recovery rate.
277 Alternatively, for cold stress survival, bacteria were immediately placed at 15°C after
278 culture standardization and plated on TSA every hour to determine CFU/mL for
279 monitoring survival.

280

281 **Antibiotic susceptibility assays:** Antibiotic sensitivity was assessed by performing
282 minimum inhibitory concentration (MIC) assays as previously described (53). Briefly, *A.*
283 *baumannii* strains were grown in LB overnight, in biological triplicate, at 37°C with
284 shaking. Overnight cultures were diluted 1:1,000 with fresh LB and 195 µL was added to
285 96-well microtiter plates. Subsequently, antibiotics were serially diluted and 5 µL of each
286 concentration, or solvent (no-treatment control), was added. Antibiotic solvents were as

287 follows: ciprofloxacin, 0.1M NaOH; chloramphenicol, 70% EtOH; streptomycin, H₂O;
288 gentamicin, 100% EtOH; kanamycin, H₂O; neomycin, H₂O; Fosfomycin, H₂O; oxacillin,
289 H₂O. Cultures were grown overnight at 37°C with shaking. MIC is reported as the lowest
290 antibiotic concentration resulting in inhibition of growth compared to no-treatment
291 control.

292 **CspC protein architecture analysis:** Domain and motif scanning was performed using
293 ScanProsite (54) with the amino acid protein sequence of CspC (GenBank:
294 AKA31122.1) as the input. The alignment of 207 UniProtKB/Swiss-Prot sequences of
295 true positive hits for the detected cold shock domain profile (PS51857) were retrieved
296 and a sequence logo was generated from this alignment on Prosite. Three-dimensional
297 protein modeling via homology modelling was completed using Swiss-Model (55). The
298 Swiss-Model template library contained 244 templates matching the CspC amino acid
299 sequence, with the most closely related, and the sequence with the highest global
300 model quality estimate, being CspA of *Escherichia coli* (56).

301

302 **Transcriptional arrest and determination of mRNA half-life:** Determination of RNA
303 half-life was performed as described previously with minor modifications (57). Six
304 biological replicates of *A. baumannii* cultures were grown overnight and sub-cultured
305 into 5 mL of fresh media. After 3 hours of growth, new cultures were seeded and
306 standardized to an OD₆₀₀ of 0.05 in 100 mL of fresh LB. After 3 h of growth to reach
307 exponential phase, and prior to transcriptional arrest, 5 mL of each culture was
308 collected, immediately combined with 5 mL of ice-cold PBS, and pelleted by refrigerated
309 centrifugation (t=0). Rifampin at a final concentration of 250 µg/mL was then added to

310 bacterial cultures. At 5, 10, 15, 30, and 45 minutes post-treatment, 5 mL of each sample
311 was collected, immediately combined with 5 mL of ice-cold PBS, and pelleted by
312 refrigerated centrifugation. Immediately following each refrigerated centrifugation step,
313 supernatant was removed and cell pellets were stored at -80°C. Total RNA extraction,
314 confirmation of RNA quality, and RT-qPCR was performed as described above for each
315 sample (primers used are listed in Table S1). RNA abundance at each timepoint post-
316 treatment was calculated for each biological replicate and measured in technical
317 triplicate for each timepoint using $2^{-\Delta\Delta CT}$ relative to initial RNA abundance (t=0). These
318 values were plotted as a function of time and an exponential, one phase decay curve
319 was fitted using GraphPad Prism. The decay curve is represented as $R(t) = R_0 e^{-kt}$,
320 where R_0 and $R(t)$ are relative RNA abundance at initial and subsequent timepoints,
321 respectively (58). The decay rate constant, k , is equal to $\ln(2)/t_{1/2}$, where $t_{1/2}$ is mRNA
322 half-life. Accordingly, half-life was derived from this equation as $t_{1/2} = \ln(2)/k$.

323
324 **RNA secondary structure predictions:** RNA secondary structure predictions were
325 generated using RNAfold (ViennaRNA package v2.4.18) using default parameters (59).
326 Full length mRNA sequences, as revealed by RNA-seq read mapping, were used as
327 input. All structures predicted by RNAfold were inspected and compared. Consensus
328 structures with the lowest minimum free energy were downloaded in Vienna format and
329 used to draw RNA structure using the forna software (ViennaRNA package v2.4.18)
330 (60).

331

332 **Human blood survival assay:** Survival in whole human blood was performed as
333 previously described (61) with minor modifications. Briefly, *A. baumannii* cultures were
334 grown overnight, in biological triplicate, and sub-cultured into 5 mL of fresh LB. After 3
335 hours of growth, 10 mL of cells were centrifuged, washed with PBS, and diluted to an
336 OD₆₀₀ of 0.5. Cells were then added to 1 mL of deidentified whole human blood (BiolVT)
337 at a final OD₆₀₀ of 0.05. The initial inoculum of each strain was determined at this time
338 by serial dilution and plating on LB agar. Blood cultures were incubated at 37 °C with
339 agitation, and CFU/mL of each strain was determined, every hour for six hours, by serial
340 dilution and plating on LB agar.

341

342 **Oxidative stress assay:** Oxidative stress was assessed using hydrogen peroxide as
343 described previously (62) with minor modifications. Briefly, *A. baumannii* cultures were
344 grown overnight in biological triplicate and sub-cultured into 5 mL of fresh media. After 3
345 hours of growth, new cultures were seeded and standardized to and OD₆₀₀ of 0.05 in
346 fresh LB. Hydrogen peroxide was then added to the cell suspensions for a final
347 concentration of 2 mM and grown at 37°C with agitation. Cells were collected (500 µL)
348 at each indicated timepoint and supplemented with catalase (10 µg/mL) to neutralize the
349 effects of hydrogen peroxide. Cells were then serial diluted and plated on LB agar to
350 determine surviving CFU/mL.

351

352 **Mouse infection model:** The experiments were performed with the prior approval of
353 the University of South Florida Institutional Animal Care and Use Committee. A murine
354 model of dissemination was performed based on previous studies (63, 64). Briefly, 13-

355 week-old, female BL-6 mice were purchased from Charles River Laboratories and
356 allowed to acclimate for 2 weeks prior to the start of experimentation. AB5075 wild-type
357 and *csp::tn* strains were grown in LB as described above in biological triplicate.
358 Overnight cultures were then sub-cultured 1:100 in fresh LB and grown for an additional
359 3 hours. Cultures were then pelleted by centrifugation, washed twice in PBS, and
360 standardized to an OD₆₀₀ of 5.0. From this resuspension, the average number of
361 CFU/mL was calculated for each strain by plating on LB agar. This was repeated on
362 three separate days using two biological replicates per strain, and the average number
363 of CFU/mL across replicates was calculated for each strain. This average number of
364 CFU/mL was used to determine the volume of bacteria needed to obtain a 5-mL
365 inoculum of 2.5×10^8 ($[2.5 \times 10^8/\text{average CFU/mL}] \times 5 \text{ mL}$). On the day of infection,
366 appropriate aliquots from fresh overnight cultures were prepared in the same manner,
367 diluted to 2.5×10^8 CFU/mL, and 100 μL of suspension was administered to 10 mice per
368 strain via retroorbital injection, providing a final inoculum of 2.5×10^7 CFU/mL. Infections
369 were monitored and the mice were sacrificed 6 hours post infection. At this time, whole
370 liver, heart, kidneys, spleen, lungs, and brain were harvested and immediately stored at
371 -80°C . Organs were individually homogenized using a Bullet Blender (Next Advance) in
372 1.5 mL PBS and serially diluted onto LB agar to determine bacterial burden (CFU/mL). A
373 Mann-Whitney nonparametric test was performed to determine statistical significance of
374 bacterial burden for each organ between the mutant and wild-type strains.
375
376
377

378

Results

379

380 **Identification of *A. baumannii* biofilm-associated genes:** To inform on factors
381 potentially important to biofilm formation, global gene expression within AB5075 wild
382 type biofilm populations was compared to planktonic counterparts (Fig. 1A, Table S2).
383 Of the genes differentially expressed by a magnitude ≥ 2 -fold, 352 genes were
384 expressed higher in biofilm cell populations (Fig. 1B), whilst just 86 genes were
385 enriched ≥ 2 -fold within planktonic cells.

386

387 When sorted ontologically, most biofilm-associated transcripts were categorized within
388 the genetic regulation group; fulfilling roles pertaining to DNA replication, transcriptional
389 regulation, and translation (Fig. 1C). Of the 58 genes within this cluster, 27 are
390 annotated as transcription factors. Furthermore, an overwhelming 25 of these
391 transcription factors were enriched in the biofilm population. The *A. baumannii* strain
392 AB5075 genome encodes for 243 transcription factors (65); indicating 10% of known
393 transcription factors are activated in biofilms, with 1% deactivated, suggesting a distinct
394 global regulatory response within this population. Of the 25 biofilm-associated
395 transcription factors, the majority (n=23) are conserved among *A. baumannii* strains,
396 with one, ferric uptake regulator *fur*, having been previously deemed essential for
397 growth in rich medium (37, 66). Of the two less-conserved regulators, HTH_3 family
398 transcriptional regulator, *ABUW_RS16125*, was previously shown to be essential for
399 survival during *Galleria mellonella* infection (67). This may suggest a dual virulence and
400 biofilm enhancing role for *ABUW_RS16125* in *A. baumannii* strains encoding this gene.

401
402 The upregulation of a cadre of genes involved in metabolic pathways was also apparent
403 within biofilms. The most drastically enriched transcripts were those responsible for
404 energy metabolism, and specifically the sulfur metabolism pathway (68). This included
405 genes encoding for subunits of the taurine transporter permease (*tauA*, *tauB*, and *tauC*),
406 taurine dioxygenase (*tauD*), sulfate transporter permeases (*cysT*, *cysW*), and
407 thiosulfate-binding protein (*ABUW_RS05010*), each of which showed \geq 7.69-fold
408 enrichment. Several additional genes involved in the sulfur metabolism pathway were
409 also upregulated by \geq 2-fold in biofilms, including sulfate transporter permease
410 (*ABUW_RS04990*), thiosulfate-binding protein (*ABUW_RS01375*), and sulfate adenylyl
411 transferase subunits (*cysN* and *cysD*).
412
413 Six genes identified as contributors to antimicrobial drug resistance and disease were
414 also upregulated in biofilm. This group included *ABUW_RS09485* and
415 *ABUW_RS09480*, which encode a putative efflux pump and its accompanying
416 membrane fusion protein component, respectively, and are homologous to the *E. coli*
417 efflux pump, EmrAB. Other ontologies with altered expression in biofilms included
418 additional membrane transporters (e.g. – *ABUW_RS11790*, *ABUW_RS11795*,
419 *ABUW_RS18795*) and putative membrane proteins (e.g. – *ABUW_RS10540*,
420 *ABUW_RS17095*, *ABUW_RS18900*); carbohydrate metabolism (e.g. –
421 *ABUW_RS08155*, *leuA*, *ABUW_RS10665*); and amino acid metabolism (e.g. – *yncA*,
422 *ABUW_RS13045*, *mmsB*). Thus, it is clear that the biofilm has unique regulatory

423 networks activated compared to that of planktonic cells, which reflect distinct metabolic
424 needs and response to the environment.

425

426 To validate RNA-seq findings, a selection of genes were assayed by Real-Time
427 Quantitative Reverse Transcription PCR (RT-qPCR), with fold-change in expression
428 proving comparable to RNA-seq findings (Fig. S1).

429

430 **Physiological impact of biofilm-associated genes on biofilm integrity:** Preferential
431 expression within biofilm populations does not necessary indicate that a given gene
432 product has a role in biofilm formation. Thus, to explore genes with a tangible role in
433 biofilm formation, we first narrowed the list of 352 genes with biofilm-enriched
434 transcripts to those meeting the following criteria: confident read coverage (>85%
435 uniquely mapped reads), relatively strong expression (TPM ≥ 115 in biofilm), and
436 greatest fold-increase (>3-fold) (Table 2). Of the genes fitting this criteria, the most
437 highly expressed gene was *ssrS* (62175.62 TPM), which produces the well-conserved,
438 6S RNA (69); whilst the most upregulated gene within biofilms compared to planktonic
439 populations was *ABUW_RS05005* (+60.17-fold), which encodes an uncharacterized
440 alpha/beta hydrolase fold protein. We next assessed whether the 40 genes within these
441 parameters have an impact on biofilm formation by performing classic crystal violet
442 biofilm assays on transposon mutants for the genes of interest contained within the
443 University of Washington *A. baumannii* AB5075 transposon mutant library (37). In so
444 doing, we uncovered 24 genes whose disruption led to reduced biofilm formation (Fig.
445 2). Of these, 17 mutant strains showed >50% reduction in biofilm. The largest changes

446 were observed for *ABUW_RS09460* and *ABUW_RS05005*, with >72% reduction in
447 biofilm mass for their respective mutant strains. Although both *ABUW_RS09460* and
448 *ABUW_RS05005* mutants show comparable reduction in biofilm mass,
449 *ABUW_RS09460* was only modestly upregulated (3.07-fold), whereas *ABUW_RS05005*
450 was markedly upregulated (60.17-fold) in biofilm. Significant changes in biofilm
451 formation were also observed for *cspC*, and *hscB* mutants (>40% reduction), with *cspC*
452 being the highest expressed gene (1324.94 TPM), whilst *hscB* was one of the lowest
453 expressed genes (167.95 TPM) within biofilms investigated in these assays. Altogether,
454 neither fold-change in expression nor magnitude of expression exclusively correlate with
455 physiological impact on biofilm formation, but rather each feature must be considered
456 holistically.

457

458 To assess whether the observed changes in biofilm production may be due to a growth
459 defect in the mutant strains, we measured cell density over time in liquid culture
460 compared to wildtype (Fig. S2A). In so doing we noted that the vast majority of mutants
461 behaved just as the wildtype, with only a handful of strains exhibiting growth defects.
462 These included the transposon mutant for *csp1*, which grew in a similar manner to the
463 parent for the first 3h, but then essentially plateaued in growth, reaching a maximum cell
464 density (OD_{600}) of 0.883 ± 0.014 at 8.5 h (WT $OD_{600} = 1.133 \pm 0.006$ at 11.5 h). Another
465 strain with a notable growth defect was the *tauA* mutant, which exhibited a less
466 pronounced exponential growth phase, reaching a cell density of 0.602 ± 0.011 by 4 h
467 (WT $OD_{600} = 0.769 \pm 0.018$ by 4 h). The remaining mutant strains grew at rates
468 comparable to wildtype and reached similar, if not higher, maximum cell densities. This

469 indicates that the observed reduction in biofilm formation is unlikely to be an artifact of
470 poor growth, with the exception of the *csp1* and *tauA* mutant strains.

471

472 **Disruption of *cspC* leads to changes in colony morphology and biofilm EPS:**

473 During our screen, we noted that one particular mutant, *cspC::tn* (+3.2-fold transcription
474 in biofilm), produced a mucoidal, non-mucoviscous phenotype when grown on LB agar
475 (Fig. 3). The *cspC* gene was one of the highest expressed genes within the biofilm
476 (1324.94 TPM) and encodes a putative cold-shock protein, the role of which has not
477 been previously characterized in *A. baumannii*. Importantly, complementation of *cspC* in
478 *trans* restored colony morphology and biofilm production levels to those comparable to
479 wildtype (Fig. 3 and 4A), and no measurable differences in growth (Fig. S2B). When
480 observing *cspC* mutant cells by fluorescence microscopy, cell morphology was
481 unaltered with respect to shape, size, and chaining (Fig. S3), indicating that obvious
482 morphological differences are unlikely to contribute to the phenotype observed.

483

484 To gain insight as to how and when CspC impacts biofilm formation, we used an
485 xCELLigence RTCA to track biofilm formation in real time. The RTCA measures biofilm
486 progression based on impedance of electrical signals between electrodes lining each
487 well of a specialized 96-well plate, and expresses these measurements as a relative
488 unit cell index (CI). CI measurements are influenced by cell adherence, secretion of
489 extracellular polymeric substance (EPS), and cell spreading (70, 71). When CI values
490 reach their maximum and remain steady, this signifies that the biofilm has entered
491 maturation (70). In agreement with our crystal violet studies, the rate of increase and

492 overall maximum CI value reached was noticeably lessened for the *cspC* mutant strain
493 when compared to the parent and complement strains (Fig. 4B).

494

495 As cold-shock proteins have demonstrated importance in cell aggregation (31),
496 extracellular polysaccharide production, and membrane fluidity (32), we hypothesized
497 that the altered cellular morphology and decreased CI values of the *cspC* mutant may
498 be due to changes in EPS production. Indeed, upon testing, we noted that *cspC* mutant
499 biofilms showed increased tolerance to polysaccharide degradation by sodium *meta*-
500 periodate compared to the wild type and complement strains (Fig. 4C). Conversely, the
501 *cspC* mutant biofilm contained a comparable amount of eDNA to wildtype; and when we
502 performed biofilm profiling assays in the presence of proteinase K, no change in biofilm
503 integrity was observed (Fig. S4) suggesting that protein and eDNA components are not
504 contributing to the biofilm defect observed upon *cspC* disruption.

505

506 ***cspC* is induced under cold-shock conditions but does not impact cold shock**
507 **survival:** CspC bares the same domain architecture as classic cold-shock proteins,
508 which are defined as nucleic acid-binding proteins that are induced during temperature
509 downshifts (34). To explore whether this is true of *cspC*, its transcription was measured
510 during cold stress. Upon analysis we observed that *cspC* transcript levels were
511 moderately increased compared to expression at 37°C (Fig. S5A) by approximately 1.5-
512 fold. When the *cspC* mutant was challenged with cold stress for 1 hour, however, we did
513 not observe any impact on cell viability (Fig. S5B). Furthermore, the *cspC* mutant also
514 did not exhibit impaired survival during sustained cold stress (Fig. S5C). It is noteworthy

515 that the *cspC* transcript is relatively abundant at 37°C, in both biofilm (1324.94 TPM)
516 and planktonic conditions (408.71 TPM). Active transcription under varied conditions,
517 coupled with the apparent lack of impact during cold stress, suggests that the role of
518 CspC may extend beyond cold adaptation in *A. baumannii*.

519

520 **Transcriptional regulation by CspC:** Cspcs are multifunctional proteins that can wield
521 impacts at the level of transcription, post-transcription, and translation (reviewed in (34,
522 35)). How they exert their pleiotropic effects is either as a transcriptional regulator or
523 RNA chaperone (33). To inform on the mechanism(s) governing the observed
524 physiological changes upon *cspC* disruption in *A. baumannii*, we performed RNA-seq
525 with our mutant and wild-type strains (Fig. 5A, Table S3). In so doing, we observed 147
526 genes upregulated and 54 genes downregulated by ≥ 2 -fold upon *cspC* disruption (Fig.
527 5B). When sorted ontologically, it is apparent that a large portion of upregulated
528 transcripts pertained to phage-related genes within the same chromosomal locus (n =
529 49) (Fig. 5C). Of these, 31 fall within the region predicted to encode *Acinetobacter*
530 phage B ϕ -B1251, and the remaining 17 are within Ab105-1 ϕ . Recent work has identified
531 these regions as encoding active *Siphoviridae*- and *Myoviridae*- family phages,
532 respectively, and as the two most prevalent phages identified among *A. baumannii*
533 genomes (72).

534

535 A notable trend of opposing regulation of membrane transporter proteins compared to
536 non-transporter membrane proteins was also apparent in our dataset. All 8 differentially
537 expressed membrane protein genes, with no transport function, were downregulated,

538 including type 1 pili subunits *csuAB* (6.19-fold) and *csuC* (2.7-fold), and fimbrial subunit,
539 *fimA* (3.28-fold), each of which is important for attachment of *A. baumannii* to abiotic
540 surfaces (24, 26, 73). Of the differentially expressed membrane transporters, 8 of 10
541 showed increased transcription, including *adeFG* (\geq 4.78-fold), which encode
542 components of multi-drug efflux pumps. Also upregulated were the accompanying
543 component *adeH* (3.29-fold) and additional efflux pump genes, *adeIJK* (\geq 2.08-fold) and
544 *abeS* (*ABUW_RS06550*, 2.43-fold), which were categorized separately under
545 Antimicrobial Drug Resistance by KEGG ontology. The AdeFGH efflux pump has been
546 reported to confer resistance to DNA damaging agents and chloramphenicol, among
547 other antimicrobials (74), and its overexpression has been correlated to increased
548 biofilm formation of *A. baumannii* clinical isolates, by potentially serving a role in
549 quorum-sensing (75). Like *adeFGH*, *adeIJK* and *abeS* encode components of multi-
550 drug efflux pumps known to confer antimicrobial resistance in *A. baumannii* (74, 76, 77).
551 Overexpression of *adeFGH* and *adeIJK* has previously been shown to decrease
552 production of biofilm in *A. baumannii*, and for *adeIJK* overexpressing mutants, this has
553 been attributed to decreased *CsuAB*, *CsuC*, and *FimA* abundance (78).

554
555 Other ontologies with enhanced expression in the *cspC* mutant included amino acid
556 metabolism (e.g. – *pepD*, *glyA*); regulatory factors (e.g. – *rpoH*, *adeL*,
557 *ABUW_RS06565*); and carbohydrate metabolism (e.g. – *gapN*, *atoA*, *atoD*).
558 Collectively, it is clear that *cspC* has a global impact on the transcriptional homeostasis
559 of *A. baumannii* and acts to regulate factors with many and varied roles within the cell.

560

561 To validate RNA-seq findings, a selection of genes were assayed by Real-Time
562 Quantitative Reverse Transcription PCR (RT-qPCR). Trends in differential expression
563 within the *cspC* mutant relative to wildtype were comparable to that of RNA-seq findings
564 (Fig. S6).

565

566 **CspC influences the antimicrobial resistance profile of *A. baumannii*:** Previous
567 work employing a spontaneous mutation screen identified *cspC* as one of several
568 genes able to restore, at least in part, antibiotic resistance in an AB5075 *bfmRS*-null
569 strain (79). Considering this, and the upregulation of multi-drug efflux pump components
570 observed in our study, we hypothesized that the *cspC* mutant would display phenotypic
571 antibiotic tolerance. Indeed, previous work has shown that the *AdelJK* efflux system
572 (strongly upregulated in the *cspC* mutant) contributes to resistance towards a wide
573 range of substrates including β -lactams, chloramphenicol, ciprofloxacin, and, in part,
574 aminoglycosides (76, 80). Accordingly, we conducted an MIC screening panel for the
575 *cspC* mutant using a variety of antimicrobial agents. In so doing we noted that disruption
576 of *cspC* resulted in increased tolerance to ciprofloxacin, chloramphenicol, and
577 streptomycin, yet slightly increased sensitivity to gentamicin, kanamycin, neomycin and
578 fosfomycin (Table 3). Previous studies have demonstrated a strong correlation between
579 *adelJK* expression and ciprofloxacin resistance, with *adelJK* overexpression mutants
580 exhibiting enhanced resistance and *adelJK* null strains demonstrating sensitivity; a
581 phenomenon that is conserved across *A. baumannii* strains (74, 76, 78, 81, 82).
582 Similarly, for multiple strains, transcription levels of *adeFGH* and *adelJK* correlates with
583 chloramphenicol resistance, with *adeFGH* transcription having the greatest influence

584 (74, 76, 78). Thus, it seems possible that the upregulation of *adeIJK* in the *cspC* mutant
585 is contributing to the measurable increase in ciprofloxacin tolerance, and similarly, the
586 upregulation of both *adeIJK* and *adeFGH* may be contributing to enhanced
587 chloramphenicol resistance. The disruption of *cspC* also resulted in slightly higher
588 sensitivity to the majority of aminoglycosides tested (gentamicin, kanamycin, neomycin).
589 Deletion of *adeABC* and *adeIJK* has been shown to induce gentamicin sensitivity, with
590 *adeABC* deletion having significantly greater impact (78, 81, 82). In agreement with this,
591 previous work has demonstrated that overexpression of *adeABC*, but not *adeFGH* nor
592 *adeIJK*, enhances gentamicin, kanamycin, and neomycin resistance (78). Considering
593 this, and that the *cspC* mutant has elevated *adeFGH* and *adeIJK* expression, but
594 unchanged *adeABC* expression, the increased sensitivity to aminoglycosides is likely
595 not attributed to these efflux pumps.

596

597 **CspC regulates mRNA stability of transcriptional regulators *adeL* and**
598 ***ABUW_RS06565*:** When bacteria experience temperature downshifts, single-stranded
599 DNA and RNA secondary structures are consequently stabilized. This leads to inhibited
600 transcription and/or translation and RNA degradation, which adversely effects cellular
601 function. CspCs possess a conserved nucleic acid-binding domain that allows them to
602 bind single-stranded DNA and RNA, and rescue undesirable secondary structures.
603 Specifically, this nucleic acid-binding domain is typically comprised of a
604 ribonucleoprotein (RNP)-1 and RNP-2 motif, which facilitates interaction with nucleic
605 acids and has chaperone activity (34). When interrogating the amino acid sequence of
606 CspC, a conserved cold shock domain signature was apparent (Fig. S7). This domain

607 contains both a RNP-1 and RNP-2 motif (Fig. 6A). Structural prediction of CspC
608 revealed that these motifs are both within the β 2 and β 3 strands of the antiparallel β -
609 barrel structure (Fig. 6B). This arrangement makes the RNP motifs spatially available
610 for binding to ssDNA and RNA, as is the hallmark characteristic of CspCs (83, 84).

611

612 In order to determine if CspC may function as an RNA chaperone for the identified
613 differentially expressed targets, we assessed the impact of *cspC* mutation on the rate of
614 decay for putative target mRNAs. To do so, cells were grown to exponential phase and
615 treated with rifampin to inhibit transcription. RNA was then isolated from wildtype and
616 *cspC* mutant strains at consecutive time points post-transcriptional arrest. Using RT-
617 qPCR, we assessed RNA transcript levels at each timepoint and determined decay rate
618 by plotting the change in transcript abundance relative to transcript level immediately
619 prior to rifampin treatment. The close arrangement of efflux pump encoding genes
620 *adeFGH* indicates that these genes are likely within an operon, and similar conclusions
621 can be drawn for *adeIJK*. Further supporting this, RNA-seq read alignments (data not
622 shown) revealed transcript readthrough between the individual genes of each efflux
623 pump. Considering this, we selected *adeG* and *adeJ*, located in the middle of their
624 respective operons, for mRNA half-life studies. The half-life of *adeJ* mRNA was slightly
625 longer than that of *adeG* (Fig. S8, Table 4) in the wild-type strain, however half-lives for
626 both transcripts were comparable between the parents and *cspC* deficient strains. This
627 suggests that CspC has no impact on the stability of *adeJ* and *adeG* mRNA.
628 Importantly, the half-life of *recA* was also tested, and found to be 4.674 minutes in

629 wildtype, which is comparable to the previously determined half-life of 4.5 minutes (57),
630 indicating that the experimental approach used herein is reproducible.

631
632 Considering that the half-lives of the major efflux pump transcripts were unaffected, we
633 next considered whether CspC could be acting as an mRNA chaperone for
634 transcriptional regulators. Transcription of *adeFGH* is repressed by the LysR type
635 transcriptional regulator *adeL* (upregulated +2.8-fold in the *cspC* mutant, Table S3, Fig.
636 S6), located immediately upstream of the *adeFGH* operon (74). When assessed
637 experimentally, we found that the half-life of *adeL* was increased in our mutant from
638 1.28 minutes in the parent to 2.54 minutes in the *cspC* strain (Fig. 7A, Table 4). Further
639 to this, we also investigated the half-life of *ABUW_RS06565*, an uncharacterized GntR
640 family transcriptional regulator, which was upregulated 2.98-fold in the *cspC* mutant.
641 *ABUW_RS06565* was the only transcriptional regulator with altered transcription, aside
642 from *adeL*, that was not part of the collectively altered B ϕ -B1251 and Ab105-1 ϕ phage
643 loci genes. The half-life of *ABUW_RS06565* rose from 1.75 minutes in the wild-type
644 strain to 2.57 minutes in the mutant – a 1.5-fold increase in the *cspC* mutant compared
645 to the parent (Fig. 7B, Table 4). This indicates that the mRNAs of transcriptional
646 regulators *adeL* and *ABUW_RS06565* are in fact more stable as a result of *cspC*
647 disruption.

648
649 The average mRNA half-life varies depending on bacterial species and growth
650 condition, however, the average RNA half-life hovers between 2-5 minutes (85-88).
651 Considering this scale, the extended half-lives of *adeL* and *ABUW_RS06565* RNA in

652 the *cspC* mutant are likely substantial. It is important to note that increased half-life of
653 *adeL* does not necessarily indicate enhanced AdeL repression of *adeFGH*. CspS have
654 the ability to destabilize RNA secondary structures in order to liberate the RBS and
655 permit translation (reviewed in (35)), therefore, the absence of CspC could cause
656 enhanced *adeL* stability resulting in increased transcription, but abrogated translation. In
657 support of this notion, RNA secondary structure prediction revealed a stable hairpin
658 formed in the 5'UTR of *adeL*, immediately upstream of a putative AGGAG ribosomal
659 binding site (RBS) (Fig. 8). This is of particular interest as previous studies measuring
660 mRNA half-lives in *E. coli* determined that an AGGAG motif in 5'UTRs, specifically
661 within 2 to 8 nucleotides of translational start codons, is frequently found in transcripts
662 with enhanced stability compared to the global mRNA population (89). The
663 *ABUW_RS06565* transcript presents a curiosity as an obvious RBS is not apparent,
664 however a similar, stable 5'UTR structure is also evident. Additionally, the
665 *ABUW_RS06565* transcript contains an unusual, A/T-rich region beginning at the 5th
666 codon. A/T-rich sequences within RNA, particularly from the 5th to 8th codon of a protein
667 coding region, have been shown to significantly enhance translation initiation in *E. coli*.
668 This suggests that the inaccessibility of this motif due to enhanced RNA stability may
669 also impede translation initiation of this transcription factor upon *cspC* deletion (90).

670

671 **CspC is required for survival during oxidative stress and challenge by**
672 **components of the human immune system:** Biofilm production contributes to
673 bacterial survival against host immune responses (91), and previous studies have found
674 that a majority of *A. baumannii* bloodstream isolates are capable of producing robust

675 biofilms (92). Furthermore, altering the balance of attachment, growth, and dispersal of
676 a biofilm results in negative impacts on the capacity to cause bloodstream infections
677 (93). Given that the *cspC* mutant has decreased propensity for biofilm formation, we
678 speculated that the loss of CspC would impact *A. baumannii* survival in human blood.
679 Thus, we grew the wild-type, mutant and complement strains in whole human blood for
680 6 h. Upon analysis we noted that AB5075 cell viability declined 67.6% from 0-1h,
681 followed by an increase in viability as time progresses (Fig. 9A). In contrast, the *cspC*
682 mutant strain fared markedly worse, demonstrating a far more severe decline in cell
683 viability from 0-1h (86.6%), with cell viability counts remaining relatively stagnant as
684 infections progressed. As expected, the *cspC* complement strain had a similar survival
685 capacity as the wild type, indicating a clear requirement for CspC for survival during *A.*
686 *baumannii* engagement with human blood.

687
688 Bacterial clearance in human blood is mediated by a number of factors, including cell
689 mediated immunity. A primary killing mechanism of leukocytes during engagement with
690 bacterial pathogens is wielded through reactive oxygen species (ROS). It has been
691 previously demonstrated that clearance of *A. baumannii* is dependent on host reduction
692 of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and subsequent
693 accumulation of ROS (94, 95). Considering this, we hypothesized that the *cspC* mutant
694 would likely have a survival defect upon exposure to oxidative stress, and thus
695 performed a hydrogen peroxide killing assay (Fig. 9B). Upon analysis, we noted that the
696 viability of all strains declined after 10 minutes of exposure to 2 mM hydrogen peroxide,
697 which is a clear indication that the cells are experiencing oxidative stress. At conclusion

698 of these studies (25 minutes) we observed a comparable number of viable cells were
699 recoverable for the wildtype and complement strains. Conversely, the *cspC* mutant
700 showed no cell recovery beyond 10 minutes of exposure, which indicates that CspC has
701 a major role in bacterial survival for *A. baumannii* in the presence of ROS.

702

703 **CspC plays a pivotal role during *A. baumannii* systemic infections:** Given our
704 findings regarding the ability of the *cspC* mutant to survive challenge by components of
705 the human immune system and reactive oxygen species, we next considered whether
706 it's survival during *in vivo* infection would be impaired. Accordingly, using a murine
707 model of infection, we compared the pathogenic potential of the *cspC* mutant to wild-
708 type AB5075. When assessing mortality, we observed no apparent differences between
709 the strains (data not shown), however, when comparing dissemination of infection,
710 bacterial load was substantially reduced for the *cspC* mutant strain in all organs
711 evaluated (Fig. 10). The most significant reduction observed was for that of the liver,
712 which showed a 43-fold reduction in bacterial load compared to wild type. Although not
713 quite as striking, reduced dissemination of the *cspC* mutant to the other organs was
714 equally remarkable (spleen: 12.16-fold; brain: 6.58-fold; lungs: 5.62-fold; kidneys: 4.32-
715 fold, heart: 3.14-fold). These findings support CspC as a novel regulator of virulence,
716 proving critical for *A. baumannii* survival when challenged by the host innate immune
717 response.

718

Discussion

719

720 In this study we investigated the global transcriptional regulation occurring within
721 biofilms formed by *A. baumannii* AB5075. RNA-sequencing revealed a distinct
722 regulatory response within the biofilm, including the upregulation of 10% of all
723 transcription factors identified to date, and the activation of sulfur metabolism pathway
724 gene transcription. The most upregulated gene within biofilms compared to planktonic
725 populations was *ABUW_RS05005* (+60.17-fold), which encodes an uncharacterized
726 alpha/beta hydrolase fold protein co-expressed with the *cys* sulfate transporters (*cysP*,
727 *cysT*, *cysW*, *cysA*). Flanking genes *cysP* and *cysT* were also significantly upregulated
728 within the biofilm (+51.8-fold and +30.66-fold respectively). Microbosis (0.1-0.3% O₂)
729 has been shown to induce sulfur metabolism gene transcription (96), and with anaerobic
730 regions known to occur within biofilms (97, 98), conditions may be prompting a
731 metabolic shift towards sulfur metabolism in our studies. *SsrS* was the most highly
732 expressed gene within biofilms (62175.62 TPM), which produces the well-conserved,
733 6S RNA (69). Studies in *E. coli* have demonstrated that 6S RNA accumulates during
734 stationary phase and represses transcription, in turn, enabling cell survival amid
735 nutrient-limiting conditions (99, 100). It is quite possible that nutrient scarcity within the
736 biofilm's dense bacterial community may induce 6S RNA transcription to reorder gene
737 expression circuits to circumvent nutrient limitation.

738

739 Among the enriched transcripts within the biofilm, we identified 24 which had significant
740 physiological impact on biofilm integrity. Mutation of the most highly expressed of these

741 (cspC) resulted in pleiotropic impacts on the cell. CspC is one of four known cold shock
742 protein genes in AB5075, none of which have been thoroughly interrogated for
743 physiological function. Interestingly, cspC was one of two Csps upregulated during
744 biofilm growth – the other being csp1 (+15.48-fold). The function of some Csps have
745 been well studied under cold-shock conditions in a variety of organisms (101-103),
746 however, Csps have diverse physiological impacts and Csp-mediated regulatory
747 mechanisms, especially for those induced by non-cold shock conditions, remain poorly
748 understood (reviewed in (33)). CspC transcription was induced under both cold stress
749 and biofilm conditions; however, it did not have an appreciable role during cold shock. In
750 biofilm, CspC seems to regulate extracellular polysaccharide production, as
751 demonstrated by enhanced tolerance of the cspC mutant biofilm towards sodium *meta*-
752 periodate. Extracellular protein and eDNA matrix components were unaffected by CspC,
753 which is perhaps unsurprising as *A. baumannii* clinical isolate biofilms are primarily
754 composed of polysaccharides (104). Increased tolerance to polysaccharide degradation
755 may indicate overproduction and/or structural variation of this matrix component. If the
756 former were true, we would anticipate enhanced biofilm production, but this was not the
757 case. We suggest that structural variation, which would render polysaccharides
758 resistant to sodium *meta*-periodate, may be impairing biofilm integrity in the cspC
759 mutant. Such a scenario is supported by the observations of others, where altered
760 colony morphology and abrogated biofilm formation as a consequence of
761 polysaccharide modification has been well described for a variety of bacteria (reviewed
762 in (19)).

763

764 In previous work, spontaneous mutation of *cspC* bypassed antibiotic hypersensitivity
765 and cell morphology defects in a *bfmRS* mutant strain, which was attributed to reduced
766 transcription of the well-known capsule factor - the K locus (79). No transcriptional
767 change for *cspC* was evident in the *bfmS*, *bfmR*, or *bfmRS* mutant strains (79), and in
768 our work, *bfmRS* transcription was unaffected by *cspC* disruption. Given that mutation
769 of *cspC* is able to bypass sensitivity phenotypes in previous work, and that the *cspC*
770 mutant has enhanced tolerance to polysaccharide degradation, we anticipated
771 upregulation of the K-locus, a major determinant of capsular polysaccharide production
772 in *A. baumannii*. Surprisingly, no measurable changes for any genes within the K locus
773 were observed, indicating CspC may act independently from the capsule biosynthesis
774 factors within the K locus. Instead, our findings suggest that CspC may mediate biofilm
775 formation through regulation of the *csu* pili assembly system and *fimA* fimbrial subunit
776 transcription, both of which have demonstrated roles in the attachment of *A. baumannii*
777 to abiotic surfaces and were downregulated in the *cspC* mutant strain (24, 26, 73). In
778 particular, Cs_u pili are adhesive organelles that belong to the archaic chaperone-usher
779 pili class, which facilitate strong adherence to hydrophobic plastics, including
780 polypropylene and polyethylene, which are widely used in medical equipment (26) and
781 are indistinguishable from the materials used in this study. The *cspC* mutant also
782 exhibited elevated multi-drug efflux pump component (*adeFGH*, *adeIJK*) transcription.
783 Overexpression of *adeIJK* has previously been shown to decrease production of
784 Cs_uAB, Cs_uC, and FimA, in turn, altering membrane composition and decreasing
785 biofilm formation in *A. baumannii* (78). In addition to biofilm abrogation, we suspect the
786 cooperative activation of *adeFGH* and *adeIJK* may be contributing to enhanced

787 chloramphenicol resistance as their contribution to resisting the effects of this drug has
788 been well documented (74, 76, 78). Similarly, heightened *adeIJK* expression in the
789 *cspC* mutant may be responsible for the marked increased in ciprofloxacin resistance,
790 as studies have demonstrated a strong correlation between *adeIJK* expression and
791 resistance to this particular fluoroquinolone (74, 76, 78, 81, 82). The consequential
792 upregulation of efflux pumps upon *cspC* deletion may explain why antibiotic resistance
793 was restored for the antibiotic-sensitive *bfmRS* mutant strain once *cspC* mutation was
794 introduced in previous work (79).

795
796 Interestingly, transcription of *adeFGH* repressor, *adeL* (74), was also upregulated in the
797 *cspC* mutant. CspCs can have impacts at the transcriptional, post-transcriptional, and
798 translational levels (reviewed in (34, 35)) and we suspect CspC is facilitating *adeL*
799 translation and degradation. In support of this model, the putative *adeL* RBS is in close
800 proximity to a stable secondary structure that likely occludes translation initiation; and
801 *adeL* decay was slowed in the *cspC* mutant. CspC may thus bind the *adeL* mRNA,
802 consequently destabilizing its secondary structure, liberating the RBS, and permitting
803 RNA turnover. Under this model, CspC disruption would lead to increased *adeL* mRNA,
804 but reduced AdeL abundance. Such a regulatory mechanism may not be limited to
805 *adeL*, as the uncharacterized transcriptional regulator, *ABUW_RS06565*, also showed
806 increased transcript abundance and a reduced rate of mRNA decay in the *cspC* mutant.
807 *ABUW_RS06565* does not have an obvious RBS, however, its 5'UTR contains a similar
808 stable secondary structure encompassing an A/T rich, translation-enhancing motif (90).

809 It is quite possible that CspC serves a similar role in destabilizing *ABUW_RS06565* to
810 facilitate translation.

811

812 Structural investigation revealed that CspC contains a conserved RNP-1 and RNP-2
813 nucleic acid binding motif, a hallmark characteristic of CspCs. Interestingly, the RNP-2
814 motif contains an arginine residue at position 34, where most bacteria contain a serine
815 residue. Furthermore, the RNP-1 and RNP-2 motifs are bridged by six amino acids, as
816 opposed to the usual seven. The shortened motif separation, but not arginine residue
817 substitution, is a common occurrence for all four *A. baumannii* cold shock proteins
818 (CspC, ABUW_RS12225, Csp1, ABUW_RS15360), with ABUW_RS15360 having the
819 shortest bridge of 4 amino acids. The combination of both abridged RNP motifs and
820 residue substitution in RNP-2, may alter the affinity of CspC to nucleic acid ligands.

821

822 Importantly, biofilm production contributes to bacterial survival against host immune
823 responses and previous studies have found that a majority of *A. baumannii* bloodstream
824 isolates produce strong biofilms (91, 92). Furthermore, altering the balance between
825 attachment, growth, and dispersal of a biofilm reduces the ability to cause bloodstream
826 infections (93). Disruption of *cspC* resulted in impaired survival in human blood likely
827 due to its limited biofilm forming capacity, and inability to endure in the presence of
828 ROS, the manifestation of which is one of the earliest *in vivo* defense mechanisms
829 against *A. baumannii* (67, 68). Likewise, attenuated dissemination of infection was
830 evident for the *cspC* mutant in a murine model, which establishes CspC as a critical *A.*
831 *baumannii* virulence factor.

832

833 In summary, this study identifies CspC as having a critical role for biofilm formation,
834 antibiotic resistance, and virulence via regulation of adhesins and multidrug efflux
835 pumps. Additional studies are needed in order to determine if CspC acts as an RNA
836 chaperone, as we have proposed, to modulate translation. Furthermore, this study identified
837 23 additional genes with substantial influence over *A. baumannii* biofilm, many of which
838 remain uncharacterized and have not been previously implicated with biofilm formation.
839 Future work will seek to understand how these genes contribute to the complex regulatory
840 network governing *A. baumannii* biofilm formation and to assess their potential as
841 therapeutic targets.

842

843 **Ethics statement:** All animal work was performed under the approval of the University
844 of South Florida's Institutional Animal Care and Use Committee (IACUC).

845

846 **Acknowledgements:** This study was supported by grants AI124458 and AI157506
847 (LNS) from the National Institute of Allergy and Infectious Diseases and GM133617
848 (PJE) from the National Institute of General Medical Sciences. The funders had no role
849 in study design, data collection and interpretation, or the decision to submit the work for
850 publication. We extend our thanks to the USF Genomics Program Genomics Equipment
851 Core for the use of their facilities for RNA sequencing.

852

853 **Author contributions:** Conceptualization: B.R.T., L.N.S.; investigation: B.R.T., G.D.,
854 R.S.B., P.J.E.; methodology: B.R.T, J.L.A; formal analysis: B.R.T.; writing – original
855 draft preparation: B.R.T.; writing – review and editing: B.R.T., L.N.S.; Funding: L.N.S.

856

857 **Conflicts of interest:** The authors declare that there are no conflicts of interest.

858

859

860 References

861

862 1. CDC. 2019. Antibiotic Resistance Threats in the United States, 2019. U.S. Department of
863 Health and Human Services C, Antibiotic Resistance Coordination and Strategy Unit,
864 Atlanta, GA.

865 2. Tacconelli EM, N. 2017. Global Priority List Of Antibiotic-Resistant Bacteria To Guide
866 Research, Discovery, And Development Of New Antibiotics World Health Organization:7.

867 3. Turton JF, Kaufmann ME, Gill MJ, Pike R, Scott PT, Fishbain J, Craft D, Deye G, Riddell S,
868 Lindler LE, Pitt TL. 2006. Comparison of *Acinetobacter baumannii* isolates from the
869 United Kingdom and the United States that were associated with repatriated casualties
870 of the Iraq conflict. *J Clin Microbiol* 44:2630-4.

871 4. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. 2006. Multicity outbreak of carbapenem-
872 resistant *Acinetobacter baumannii* isolates producing the carbapenemase OXA-40.
873 *Antimicrob Agents Chemother* 50:2941-5.

874 5. Manikal VM, Landman D, Saurina G, Oydna E, Lal H, Quale J. 2000. Endemic
875 carbapenem-resistant *Acinetobacter* species in Brooklyn, New York: citywide
876 prevalence, interinstitutional spread, and relation to antibiotic usage. *Clin Infect Dis*
877 31:101-6.

878 6. Maragakis LL, Cosgrove SE, Song X, Kim D, Rosenbaum P, Ciesla N, Srinivasan A, Ross T,
879 Carroll K, Perl TM. 2004. An outbreak of multidrug-resistant *Acinetobacter baumannii*
880 associated with pulsatile lavage wound treatment. *JAMA* 292:3006-11.

881 7. Weber DJ, Anderson D, Rutala WA. 2013. The role of the surface environment in
882 healthcare-associated infections. *Curr Opin Infect Dis* 26:338-44.

883 8. Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M,
884 Hassanzadeh A. 2017. Detection of antibiotic resistant *Acinetobacter baumannii* in
885 various hospital environments: potential sources for transmission of *Acinetobacter*
886 infections. *Environ Health Prev Med* 22:44.

887 9. Catalano M, Quelle LS, Jeric PE, Di Martino A, Maimone SM. 1999. Survival of
888 *Acinetobacter baumannii* on bed rails during an outbreak and during sporadic cases. *J*
889 *Hosp Infect* 42:27-35.

890 10. Thom KA, Johnson JK, Lee MS, Harris AD. 2011. Environmental contamination because
891 of multidrug-resistant *Acinetobacter baumannii* surrounding colonized or infected
892 patients. *Am J Infect Control* 39:711-5.

893 11. Bayuga S, Zeana C, Sahni J, Della-Latta P, el-Sadr W, Larson E. 2002. Prevalence and
894 antimicrobial patterns of *Acinetobacter baumannii* on hands and nares of hospital
895 personnel and patients: the iceberg phenomenon again. *Heart Lung* 31:382-90.

896 12. Huang YC, Su LH, Wu TL, Leu HS, Hsieh WS, Chang TM, Lin TY. 2002. Outbreak of
897 *Acinetobacter baumannii* bacteremia in a neonatal intensive care unit: clinical
898 implications and genotyping analysis. *Pediatr Infect Dis J* 21:1105-9.

899 13. Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, Thom KA, Snyder GM,
900 Day HR, Perencevich EN. 2010. Frequent multidrug-resistant *Acinetobacter baumannii*
901 contamination of gloves, gowns, and hands of healthcare workers. *Infect Control Hosp*
902 *Epidemiol* 31:716-21.

903 14. Palmer LD, Minor KE, Mettlach JA, Rivera ES, Boyd KL, Caprioli RM, Spraggins JM,
904 Dalebroux ZD, Skaar EP. 2020. Modulating Isoprenoid Biosynthesis Increases
905 Lipooligosaccharides and Restores *Acinetobacter baumannii* Resistance to Host and
906 Antibiotic Stress. *Cell Rep* 32:108129.

907 15. Harding CM, Hennon SW, Feldman MF. 2018. Uncovering the mechanisms of
908 *Acinetobacter baumannii* virulence. *Nat Rev Microbiol* 16:91-102.

909 16. Espinal P, Marti S, Vila J. 2012. Effect of biofilm formation on the survival of
910 *Acinetobacter baumannii* on dry surfaces. *J Hosp Infect* 80:56-60.

911 17. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR. 2011.
912 Extracellular DNA in biofilms. *Int J Artif Organs* 34:824-31.

913 18. Fong JNC, Yildiz FH. 2015. Biofilm Matrix Proteins. *Microbiol Spectr* 3.

914 19. Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial Extracellular Polysaccharides in Biofilm
915 Formation and Function. *Microbiol Spectr* 3.

916 20. Hall CW, Mah TF. 2017. Molecular mechanisms of biofilm-based antibiotic resistance
917 and tolerance in pathogenic bacteria. *FEMS Microbiol Rev* 41:276-301.

918 21. Stewart PS. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. *Int J Med
919 Microbiol* 292:107-13.

920 22. Colquhoun JM, Rather PN. 2020. Insights Into Mechanisms of Biofilm Formation in
921 *Acinetobacter baumannii* and Implications for Uropathogenesis. *Front Cell Infect
922 Microbiol* 10:253.

923 23. Eze EC, Chenia HY, El Zowalaty ME. 2018. *Acinetobacter baumannii* biofilms: effects of
924 physicochemical factors, virulence, antibiotic resistance determinants, gene regulation,
925 and future antimicrobial treatments. *Infect Drug Resist* 11:2277-2299.

926 24. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. 2003. Attachment to and biofilm
927 formation on abiotic surfaces by *Acinetobacter baumannii*: involvement of a novel
928 chaperone-usher pili assembly system. *Microbiology (Reading)* 149:3473-3484.

929 25. Gaddy JA, Tomaras AP, Actis LA. 2009. The *Acinetobacter baumannii* 19606 OmpA
930 protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this
931 pathogen with eukaryotic cells. *Infect Immun* 77:3150-60.

932 26. Pakharukova N, Tuittila M, Paavilainen S, Malmi H, Parilova O, Teneberg S, Knight SD,
933 Zavialov AV. 2018. Structural basis for *Acinetobacter baumannii* biofilm formation. *Proc
934 Natl Acad Sci U S A* 115:5558-5563.

935 27. Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA. 2008. Characterization of a two-
936 component regulatory system from *Acinetobacter baumannii* that controls biofilm
937 formation and cellular morphology. *Microbiology (Reading)* 154:3398-3409.

938 28. Geisinger E, Isberg RR. 2015. Antibiotic modulation of capsular exopolysaccharide and
939 virulence in *Acinetobacter baumannii*. *PLoS Pathog* 11:e1004691.

940 29. Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta S, Saba J, Foster LJ, Feldman MF.
941 2014. Diversity within the O-linked protein glycosylation systems of acinetobacter
942 species. *Mol Cell Proteomics* 13:2354-70.

943 30. Ophir T, Gutnick DL. 1994. A role for exopolysaccharides in the protection of
944 microorganisms from desiccation. *Appl Environ Microbiol* 60:740-5.

945 31. Eshwar AK, Guldmann C, Oevermann A, Tasara T. 2017. Cold-Shock Domain Family
946 Proteins (CspS) Are Involved in Regulation of Virulence, Cellular Aggregation, and
947 Flagella-Based Motility in *Listeria monocytogenes*. *Front Cell Infect Microbiol* 7:453.

948 32. White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S. 2008. Low
949 temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-
950 dependent genes in *Escherichia coli* K-12. *Microbiology* 154:148-66.

951 33. Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindstrom M, Korkeala H. 2016. Cold
952 Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic
953 *Yersinia*. *Front Microbiol* 7:1151.

954 34. Horn G, Hofweber R, Kremer W, Kalbitzer HR. 2007. Structure and function of bacterial
955 cold shock proteins. *Cell Mol Life Sci* 64:1457-70.

956 35. Phadtare S, Severinov K. 2010. RNA remodeling and gene regulation by cold shock
957 proteins. *RNA Biol* 7:788-95.

958 36. Salisbury V, Hedges RW, Datta N. 1972. Two modes of "curing" transmissible bacterial
959 plasmids. *J Gen Microbiol* 70:443-52.

960 37. Gallagher LA, Ramage E, Weiss EJ, Radey M, Hayden HS, Held KG, Huse HK, Zurawski DV,
961 Brittnacher MJ, Manoil C. 2015. Resources for Genetic and Genomic Analysis of
962 Emerging Pathogen *Acinetobacter baumannii*. *J Bacteriol* 197:2027-35.

963 38. Cassat JE, Lee CY, Smeltzer MS. 2007. Investigation of biofilm formation in clinical
964 isolates of *Staphylococcus aureus*. *Methods Mol Biol* 391:127-44.

965 39. Nadkarni MA, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load
966 by real-time PCR using a broad-range (universal) probe and primers set. *Microbiology*
967 148:257-266.

968 40. Fiester SE, Arivett BA, Schmidt RE, Beckett AC, Ticak T, Carrier MV, Ghosh R, Ohneck EJ,
969 Metz ML, Sellin Jeffries MK, Actis LA. 2016. Iron-Regulated Phospholipase C Activity
970 Contributes to the Cytolytic Activity and Virulence of *Acinetobacter baumannii*. *PLoS*
971 One 11:e0167068.

972 41. Abdi SN, Ghotaslou R, Asgharzadeh M, Mehramouz B, Hasani A, Baghi HB, Tanomand A,
973 Narenji H, Yousefi B, Gholizadeh P, Yousefi M, Bastami M, Ganbarov K, Samadi Kafil H.
974 2020. AdeB efflux pump gene knockdown by mRNA mediated peptide nucleic acid in
975 multidrug resistance *Acinetobacter baumannii*. *Microb Pathog* 139:103825.

976 42. Moon KH, Weber BS, Feldman MF. 2017. Subinhibitory Concentrations of Trimethoprim
977 and Sulfamethoxazole Prevent Biofilm Formation by *Acinetobacter baumannii* through
978 Inhibition of Csu Pilus Expression. *Antimicrob Agents Chemother* 61.

979 43. Amin IM, Richmond GE, Sen P, Koh TH, Piddock LJ, Chua KL. 2013. A method for
980 generating marker-less gene deletions in multidrug-resistant *Acinetobacter baumannii*.
981 *BMC Microbiol* 13:158.

982 44. Jacobs AC, Thompson MG, Gebhardt M, Corey BW, Yildirim S, Shuman HA, Zurawski DV.
983 2014. Genetic Manipulation of *Acinetobacter baumannii*. *Curr Protoc Microbiol* 35:6G 2
984 1-11.

985 45. Carroll RK, Weiss A, Shaw LN. 2016. RNA-Sequencing of *Staphylococcus aureus*
986 Messenger RNA. *Methods Mol Biol* 1373:131-41.

987 46. Robinson MD, Oshlack A. 2010. A scaling normalization method for differential
988 expression analysis of RNA-seq data. *Genome Biol* 11:R25.

989 47. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference
990 resource for gene and protein annotation. *Nucleic Acids Res* 44:D457-62.

991 48. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA.
992 2009. Circos: an information aesthetic for comparative genomics. *Genome Res* 19:1639-
993 45.

994 49. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T)
995 method. *Nat Protoc* 3:1101-8.

996 50. Brzozowski RS, Tomlinson BR, Sacco MD, Chen JJ, Ali AN, Chen Y, Shaw LN, Eswara PJ.
997 2020. Interdependent YpsA- and YfhS-Mediated Cell Division and Cell Size Phenotypes in
998 *Bacillus subtilis*. *mSphere* 5.

999 51. Tang L, Schramm A, Neu TR, Revsbech NP, Meyer RL. 2013. Extracellular DNA in
1000 adhesion and biofilm formation of four environmental isolates: a quantitative study.
1001 *FEMS Microbiol Ecol* 86:394-403.

1002 52. Sager M, Benten WP, Engelhardt E, Gouglou C, Benga L. 2015. Characterization of
1003 Biofilm Formation in [*Pasteurella*] *pneumotropica* and [*Actinobacillus*] *muris* Isolates of
1004 Mouse Origin. *PLoS One* 10:e0138778.

1005 53. Fleeman R, LaVoi TM, Santos RG, Morales A, Nefzi A, Welmaker GS, Medina-Franco JL,
1006 Julianotti MA, Houghten RA, Shaw LN. 2015. Combinatorial Libraries As a Tool for the
1007 Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE
1008 Pathogens. *J Med Chem* 58:3340-55.

1009 54. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E,
1010 Bairoch A, Hulo N. 2006. ScanProsite: detection of PROSITE signature matches and
1011 ProRule-associated functional and structural residues in proteins. *Nucleic Acids Res*
1012 34:W362-5.

1013 55. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de
1014 Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology
1015 modelling of protein structures and complexes. *Nucleic Acids Res* 46:W296-W303.

1016 56. Schindelin H, Jiang W, Inouye M, Heinemann U. 1994. Crystal structure of CspA, the
1017 major cold shock protein of *Escherichia coli*. *Proc Natl Acad Sci U S A* 91:5119-23.

1018 57. Ching C, Gozzi K, Heinemann B, Chai Y, Godoy VG. 2017. RNA-Mediated cis Regulation in
1019 *Acinetobacter baumannii* Modulates Stress-Induced Phenotypic Variation. *J Bacteriol*
1020 199.

1021 58. Wada T, Becskei A. 2017. Impact of Methods on the Measurement of mRNA Turnover.
1022 *Int J Mol Sci* 18.

1023 59. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker
1024 IL. 2011. ViennaRNA Package 2.0. *Algorithms Mol Biol* 6:26.

1025 60. Kerpeljiev P, Hammer S, Hofacker IL. 2015. Forna (force-directed RNA): Simple and
1026 effective online RNA secondary structure diagrams. *Bioinformatics* 31:3377-9.

1027 61. Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT,
1028 Potempa J, Barber DS, Koziel J, Elasri MO, Shaw LN. 2011. NsaRS is a cell-envelope-
1029 stress-sensing two-component system of *Staphylococcus aureus*. *Microbiology*
1030 (Reading) 157:2206-2219.

1031 62. Sun D, Crowell SA, Harding CM, De Silva PM, Harrison A, Fernando DM, Mason KM,
1032 Santana E, Loewen PC, Kumar A, Liu Y. 2016. KatG and KatE confer *Acinetobacter*

1033 resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic
1034 respiratory burst. *Life Sci* 148:31-40.

1035 63. Palmer LD, Green ER, Sheldon JR, Skaar EP. 2019. Assessing *Acinetobacter baumannii*
1036 Virulence and Persistence in a Murine Model of Lung Infection. *Methods Mol Biol*
1037 1946:289-305.

1038 64. Choby JE, Monteith AJ, Himmel LE, Margaritis P, Shirey-Rice JK, Pruijssers A, Jerome RN,
1039 Pulley J, Skaar EP. 2019. A Phenome-Wide Association Study Uncovers a Pathological
1040 Role of Coagulation Factor X during *Acinetobacter baumannii* Infection. *Infect Immun*
1041 87.

1042 65. Casella LG, Weiss A, Perez-Rueda E, Antonio Ibarra J, Shaw LN. 2017. Towards the
1043 complete proteinaceous regulome of *Acinetobacter baumannii*. *Microb Genom*
1044 3:mgen000107.

1045 66. Wang N, Ozer EA, Mandel MJ, Hauser AR. 2014. Genome-wide identification of
1046 *Acinetobacter baumannii* genes necessary for persistence in the lung. *mBio* 5:e01163-
1047 14.

1048 67. Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski DV,
1049 Shuman HA. 2015. Joint Transcriptional Control of Virulence and Resistance to Antibiotic
1050 and Environmental Stress in *Acinetobacter baumannii*. *mBio* 6:e01660-15.

1051 68. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
1052 Acids Res* 28:27-30.

1053 69. Kroger C, MacKenzie KD, Alshabib EY, Kirzinger MWB, Suchan DM, Chao TC, Akulova V,
1054 Miranda-CasoLuengo AA, Monzon VA, Conway T, Sivasankaran SK, Hinton JCD, Hokamp
1055 K, Cameron ADS. 2018. The primary transcriptome, small RNAs and regulation of
1056 antimicrobial resistance in *Acinetobacter baumannii* ATCC 17978. *Nucleic Acids Res*
1057 46:9684-9698.

1058 70. Gutierrez D, Hidalgo-Cantabrana C, Rodriguez A, Garcia P, Ruas-Madiedo P. 2016.
1059 Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related
1060 Pathogens Using an Impedance-Based Technology. *PLoS One* 11:e0163966.

1061 71. Biosciences A. 2013. Dynamic Monitoring of Cell Adhesion and Spreading. ACEA
1062 Biosciences, Inc.

1063 72. Loh B, Chen J, Manohar P, Yu Y, Hua X, Leptihn S. 2020. A Biological Inventory of
1064 Prophages in *A. baumannii* Genomes Reveal Distinct Distributions in Classes, Length,
1065 and Genomic Positions. *Front Microbiol* 11:579802.

1066 73. Rumbo-Feal S, Gomez MJ, Gayoso C, Alvarez-Fraga L, Cabral MP, Aransay AM,
1067 Rodriguez-Ezpeleta N, Fullaondo A, Valle J, Tomas M, Bou G, Poza M. 2013. Whole
1068 transcriptome analysis of *Acinetobacter baumannii* assessed by RNA-sequencing reveals
1069 different mRNA expression profiles in biofilm compared to planktonic cells. *PLoS One*
1070 8:e72968.

1071 74. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. 2010. Overexpression of
1072 resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in
1073 *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 54:4389-93.

1074 75. He X, Lu F, Yuan F, Jiang D, Zhao P, Zhu J, Cheng H, Cao J, Lu G. 2015. Biofilm Formation
1075 Caused by Clinical *Acinetobacter baumannii* Isolates Is Associated with Overexpression
1076 of the AdeFGH Efflux Pump. *Antimicrob Agents Chemother* 59:4817-25.

1077 76. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. 2008. AdelJK, a
1078 resistance-nodulation-cell division pump effluxing multiple antibiotics in *Acinetobacter*
1079 *baumannii*. *Antimicrob Agents Chemother* 52:557-62.

1080 77. Srinivasan VB, Rajamohan G, Gebreyes WA. 2009. Role of AbeS, a novel efflux pump of
1081 the SMR family of transporters, in resistance to antimicrobial agents in *Acinetobacter*
1082 *baumannii*. *Antimicrob Agents Chemother* 53:5312-6.

1083 78. Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, De E, Grillot-Courvalin C. 2015.
1084 Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance
1085 and biofilm formation in *Acinetobacter baumannii*. *mBio* 6.

1086 79. Geisinger E, Mortman NJ, Vargas-Cuevas G, Tai AK, Isberg RR. 2018. A global regulatory
1087 system links virulence and antibiotic resistance to envelope homeostasis in
1088 *Acinetobacter baumannii*. *PLoS Pathog* 14:e1007030.

1089 80. Leus IV, Adamiak J, Trinh AN, Smith RD, Smith L, Richardson S, Ernst RK, Zgurskaya HI.
1090 2020. Inactivation of AdeABC and AdelJK efflux pumps elicits specific nonoverlapping
1091 transcriptional and phenotypic responses in *Acinetobacter baumannii*. *Mol Microbiol*
1092 doi:10.1111/mmi.14594.

1093 81. Magnet S, Courvalin P, Lambert T. 2001. Resistance-nodulation-cell division-type efflux
1094 pump involved in aminoglycoside resistance in *Acinetobacter baumannii* strain BM4454.
1095 *Antimicrob Agents Chemother* 45:3375-80.

1096 82. Leus IV, Adamiak J, Trinh AN, Smith RD, Smith L, Richardson S, Ernst RK, Zgurskaya HI.
1097 2020. Inactivation of AdeABC and AdelJK efflux pumps elicits specific nonoverlapping
1098 transcriptional and phenotypic responses in *Acinetobacter baumannii*. *Mol Microbiol*
1099 114:1049-1065.

1100 83. Murzin AG. 1993. OB(oligonucleotide/oligosaccharide binding)-fold: common structural
1101 and functional solution for non-homologous sequences. *EMBO J* 12:861-7.

1102 84. Theobald DL, Mitton-Fry RM, Wuttke DS. 2003. Nucleic acid recognition by OB-fold
1103 proteins. *Annu Rev Biophys Biomol Struct* 32:115-33.

1104 85. Bernstein JA, Lin PH, Cohen SN, Lin-Chao S. 2004. Global analysis of *Escherichia coli* RNA
1105 degradosome function using DNA microarrays. *Proc Natl Acad Sci U S A* 101:2758-63.

1106 86. Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C. 2003. Global RNA half-life
1107 analysis in *Escherichia coli* reveals positional patterns of transcript degradation. *Genome*
1108 Res 13:216-23.

1109 87. Roberts C, Anderson KL, Murphy E, Projan SJ, Mounts W, Hurlburt B, Smeltzer M,
1110 Overbeek R, Disz T, Dunman PM. 2006. Characterizing the effect of the *Staphylococcus*
1111 *aureus* virulence factor regulator, SarA, on log-phase mRNA half-lives. *J Bacteriol*
1112 188:2593-603.

1113 88. Hambraeus G, von Wachenfeldt C, Hederstedt L. 2003. Genome-wide survey of mRNA
1114 half-lives in *Bacillus subtilis* identifies extremely stable mRNAs. *Mol Genet Genomics*
1115 269:706-14.

1116 89. Esquerre T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal
1117 L. 2015. Genome-wide investigation of mRNA lifetime determinants in *Escherichia coli*
1118 cells cultured at different growth rates. *BMC Genomics* 16:275.

1119 90. Qing G, Xia B, Inouye M. 2003. Enhancement of translation initiation by A/T-rich
1120 sequences downstream of the initiation codon in *Escherichia coli*. *J Mol Microbiol*
1121 *Biotechnol* 6:133-44.

1122 91. Monem S, Furmanek-Blaszk B, Lupkowska A, Kuczynska-Wisnik D, Stojowska-
1123 Swedrzynska K, Laskowska E. 2020. Mechanisms Protecting *Acinetobacter baumannii*
1124 against Multiple Stresses Triggered by the Host Immune Response, Antibiotics and
1125 Outside-Host Environment. *Int J Mol Sci* 21.

1126 92. Ozkul C, Hazirolan G. 2020. Oxacillinase Gene Distribution, Antibiotic Resistance, and
1127 Their Correlation with Biofilm Formation in *Acinetobacter baumannii* Bloodstream
1128 Isolates. *Microb Drug Resist* doi:10.1089/mdr.2020.0130.

1129 93. Marks LR, Davidson BA, Knight PR, Hakansson AP. 2013. Interkingdom signaling induces
1130 *Streptococcus pneumoniae* biofilm dispersion and transition from asymptomatic
1131 colonization to disease. *mBio* 4.

1132 94. Qiu H, Kuolee R, Harris G, Chen W. 2009. Role of NADPH phagocyte oxidase in host
1133 defense against acute respiratory *Acinetobacter baumannii* infection in mice. *Infect*
1134 *Immun* 77:1015-21.

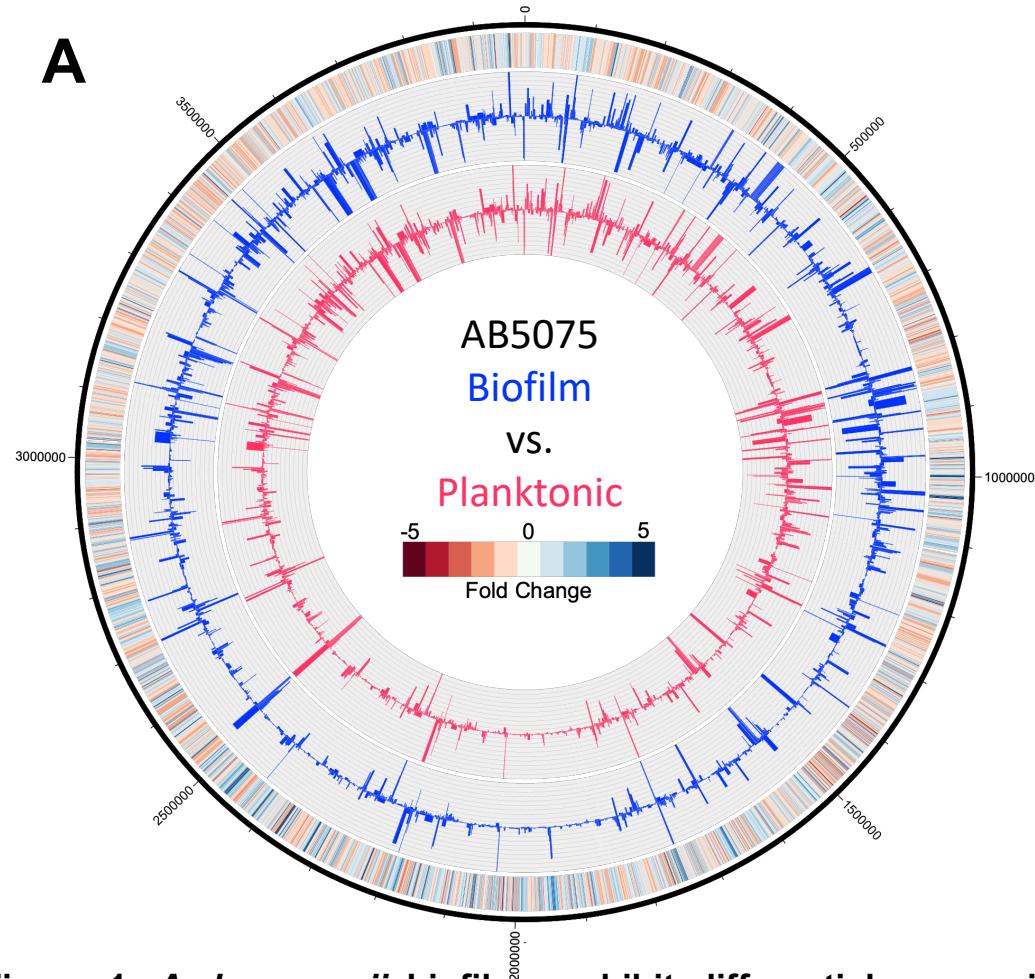
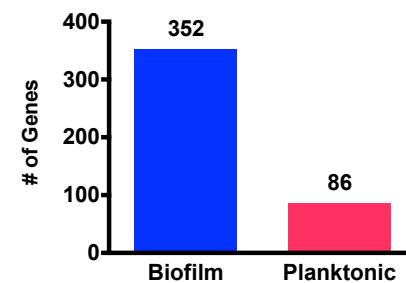
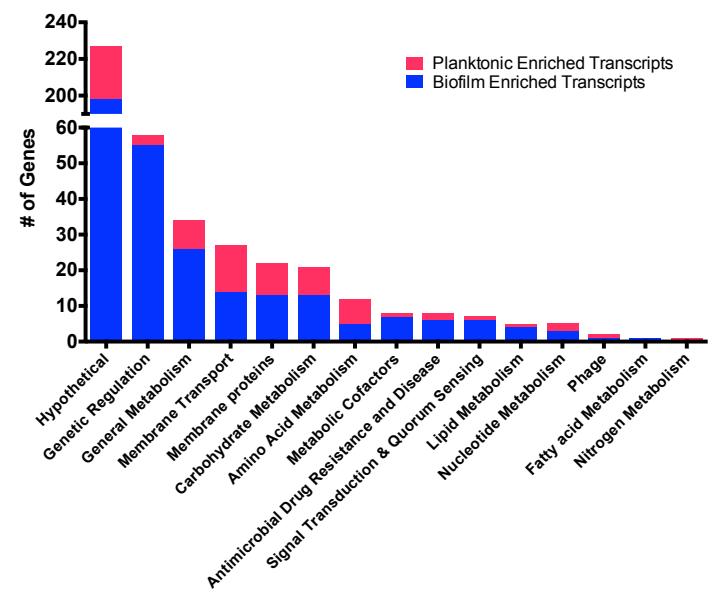
1135 95. Juttukonda LJ, Green ER, Lonergan ZR, Heffern MC, Chang CJ, Skaar EP. 2019.
1136 *Acinetobacter baumannii* OxyR Regulates the Transcriptional Response to Hydrogen
1137 Peroxide. *Infect Immun* 87.

1138 96. Marqués MaLG. 2018. Hypoxia effect on genetic regulation and virulence in
1139 *Acinetobacter baumannii* and *Pseudomonas aeruginosa*, in vitro and in vivo, and on
1140 innate immune response in infections caused by both pathogens. Doctoral. Universidad
1141 de Sevilla, Seville.

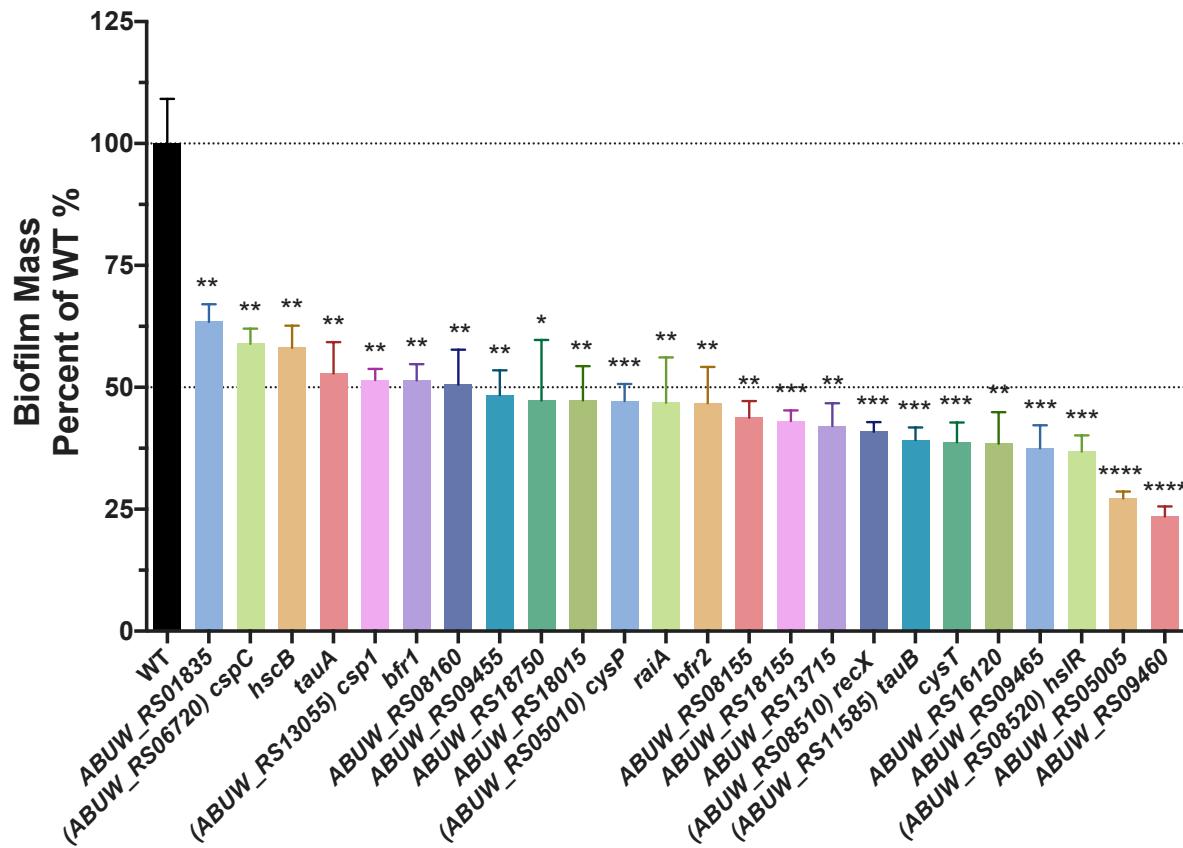
1142 97. Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. 2019. Optimal environmental and
1143 culture conditions allow the in vitro coexistence of *Pseudomonas aeruginosa* and
1144 *Staphylococcus aureus* in stable biofilms. *Sci Rep* 9:16284.

1145 98. Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-
1146 Meyer K, Stewart PS. 2007. Spatial patterns of DNA replication, protein synthesis, and
1147 oxygen concentration within bacterial biofilms reveal diverse physiological states. *J*
1148 *Bacteriol* 189:4223-33.

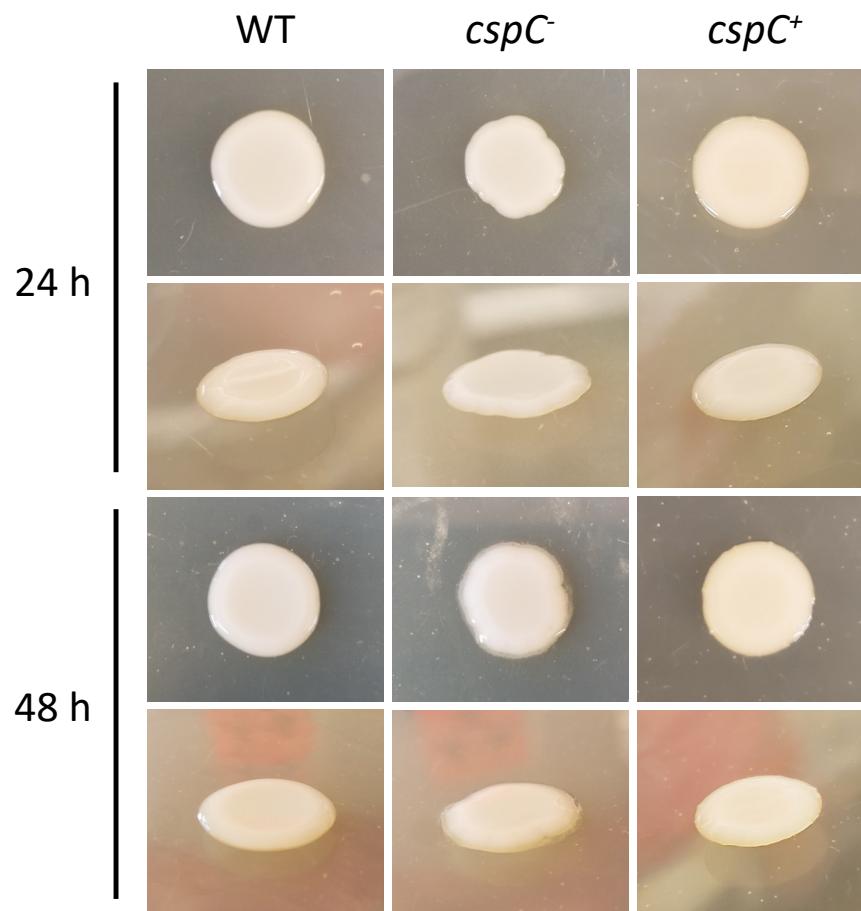
1149 99. Wassarman KM, Storz G. 2000. 6S RNA regulates *E. coli* RNA polymerase activity. *Cell*
1150 101:613-23.




1151 100. Trottochaud AE, Wassarman KM. 2004. 6S RNA function enhances long-term cell survival.
1152 *J Bacteriol* 186:4978-85.

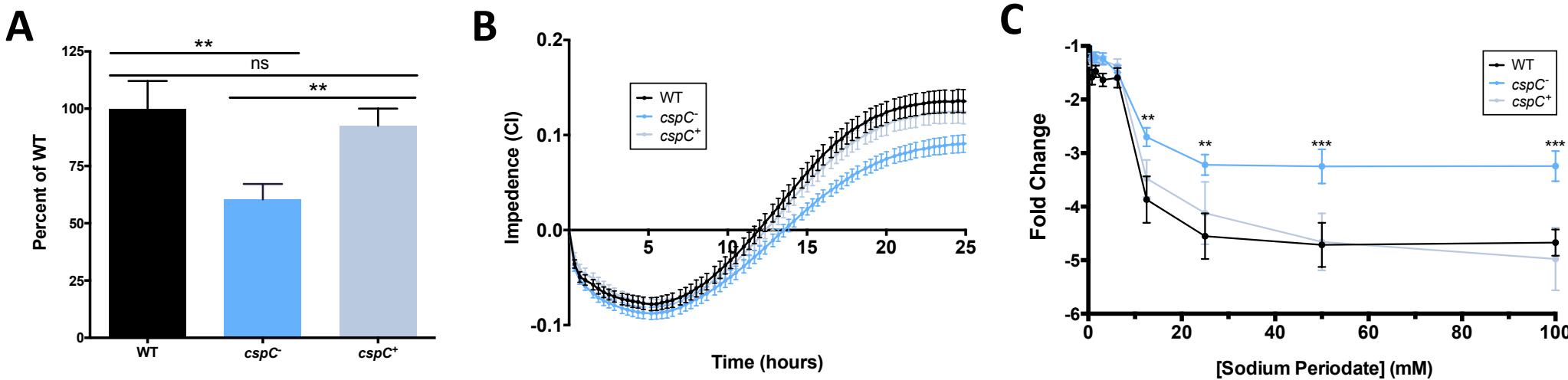
1153 101. Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T. 2009. Role of cold
1154 shock proteins in growth of *Listeria monocytogenes* under cold and osmotic stress
1155 conditions. *Appl Environ Microbiol* 75:1621-7.

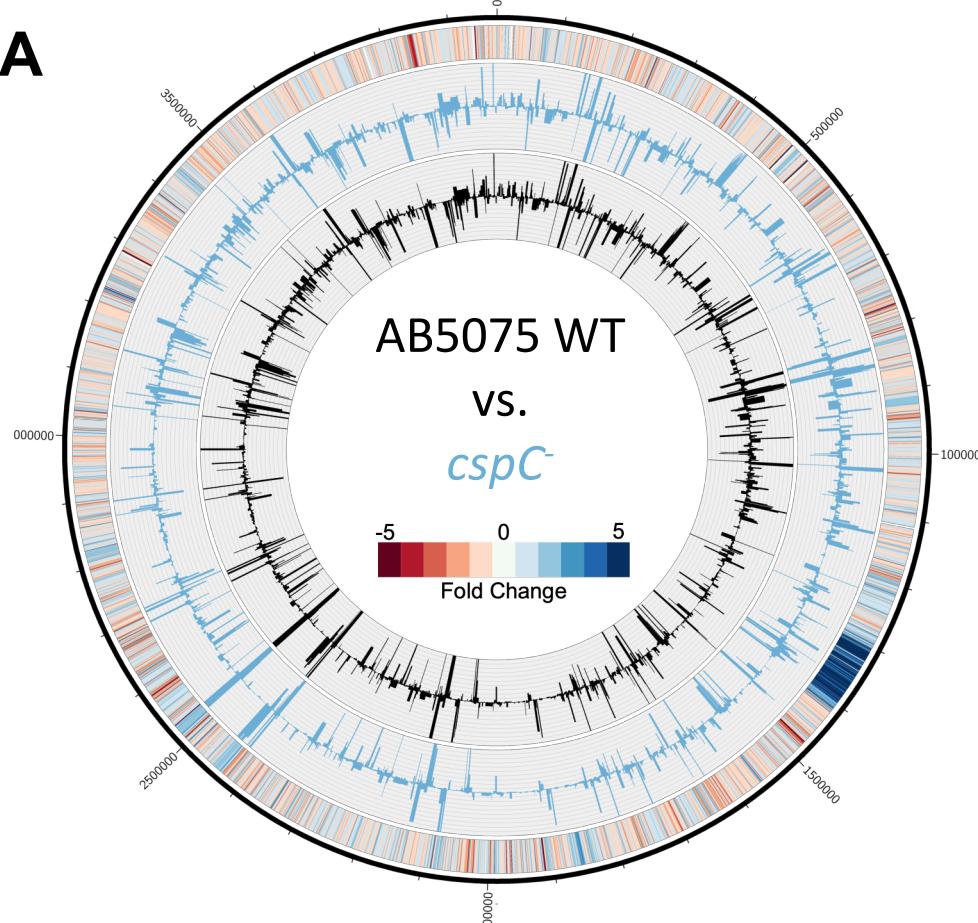
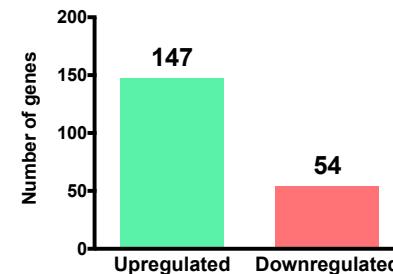
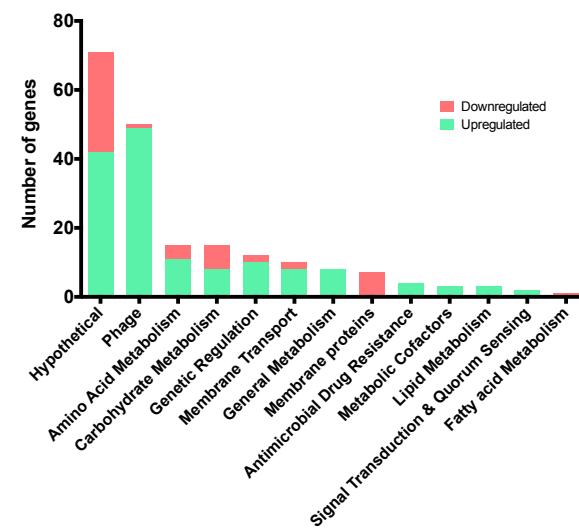

1156 102. Derman Y, Soderholm H, Lindstrom M, Korkeala H. 2015. Role of csp genes in NaCl, pH,
1157 and ethanol stress response and motility in *Clostridium botulinum* ATCC 3502. *Food*
1158 *Microbiol* 46:463-470.

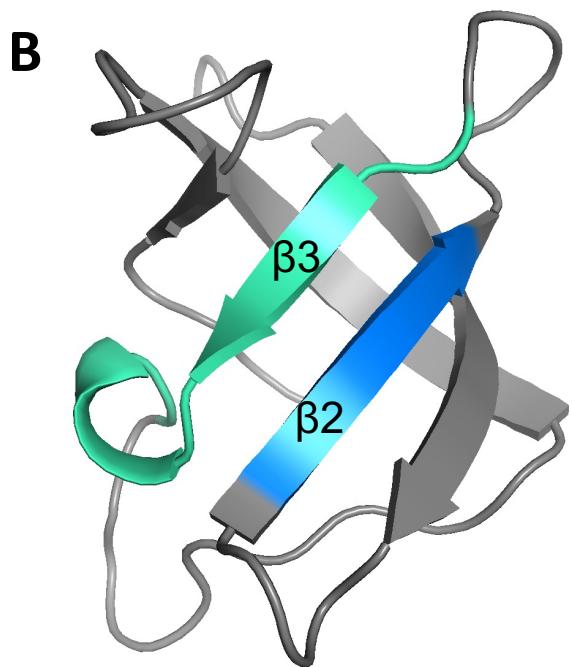
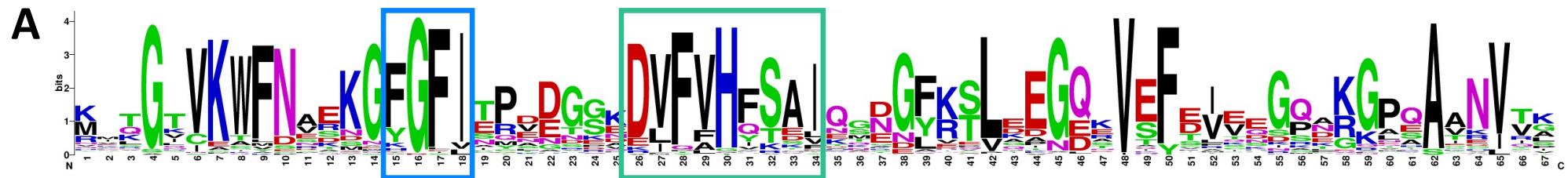
1159 103. Duval BD, Mathew A, Satola SW, Shafer WM. 2010. Altered growth, pigmentation, and
1160 antimicrobial susceptibility properties of *Staphylococcus aureus* due to loss of the major
1161 cold shock gene cspB. *Antimicrob Agents Chemother* 54:2283-90.

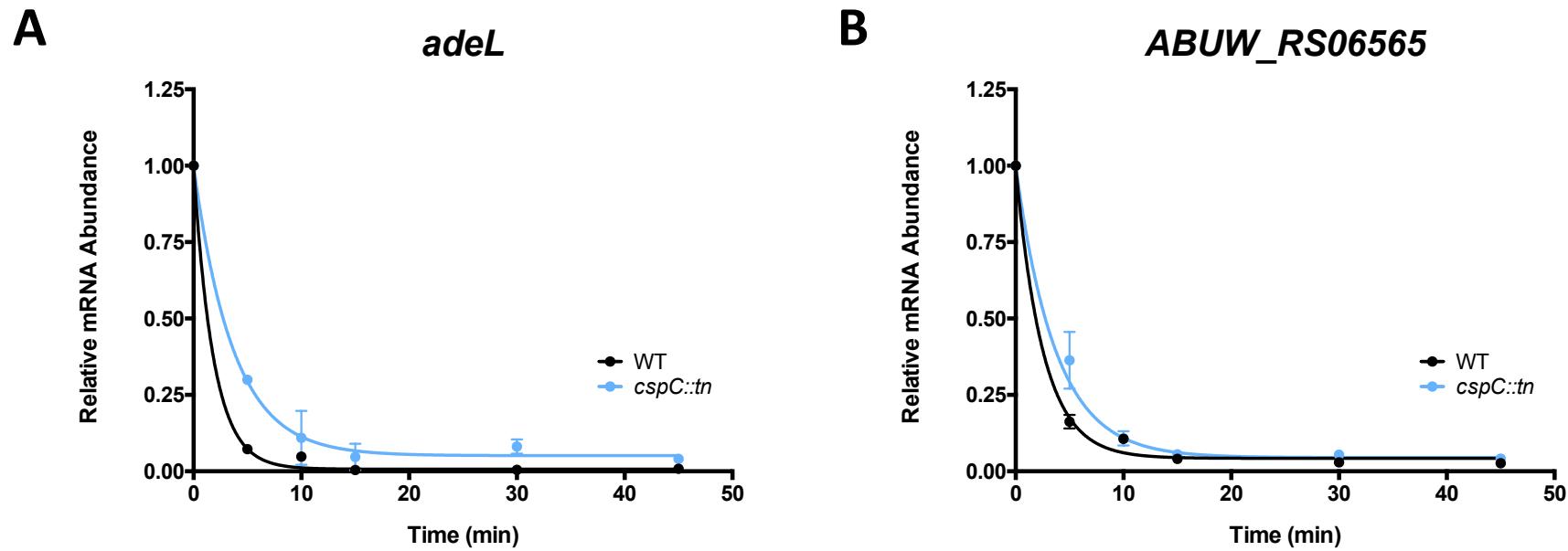

1162 104. Amin M, Navidifar T, Shooshtari FS, Rashno M, Savari M, Jahangirmehr F, Arshadi M.
1163 2019. Association Between Biofilm Formation, Structure, and the Expression Levels of
1164 Genes Related to biofilm formation and Biofilm-Specific Resistance of *Acinetobacter*
1165 *baumannii* Strains Isolated from Burn Infection in Ahvaz, Iran. *Infect Drug Resist*
1166 12:3867-3881.
1167
1168

A**B****C**

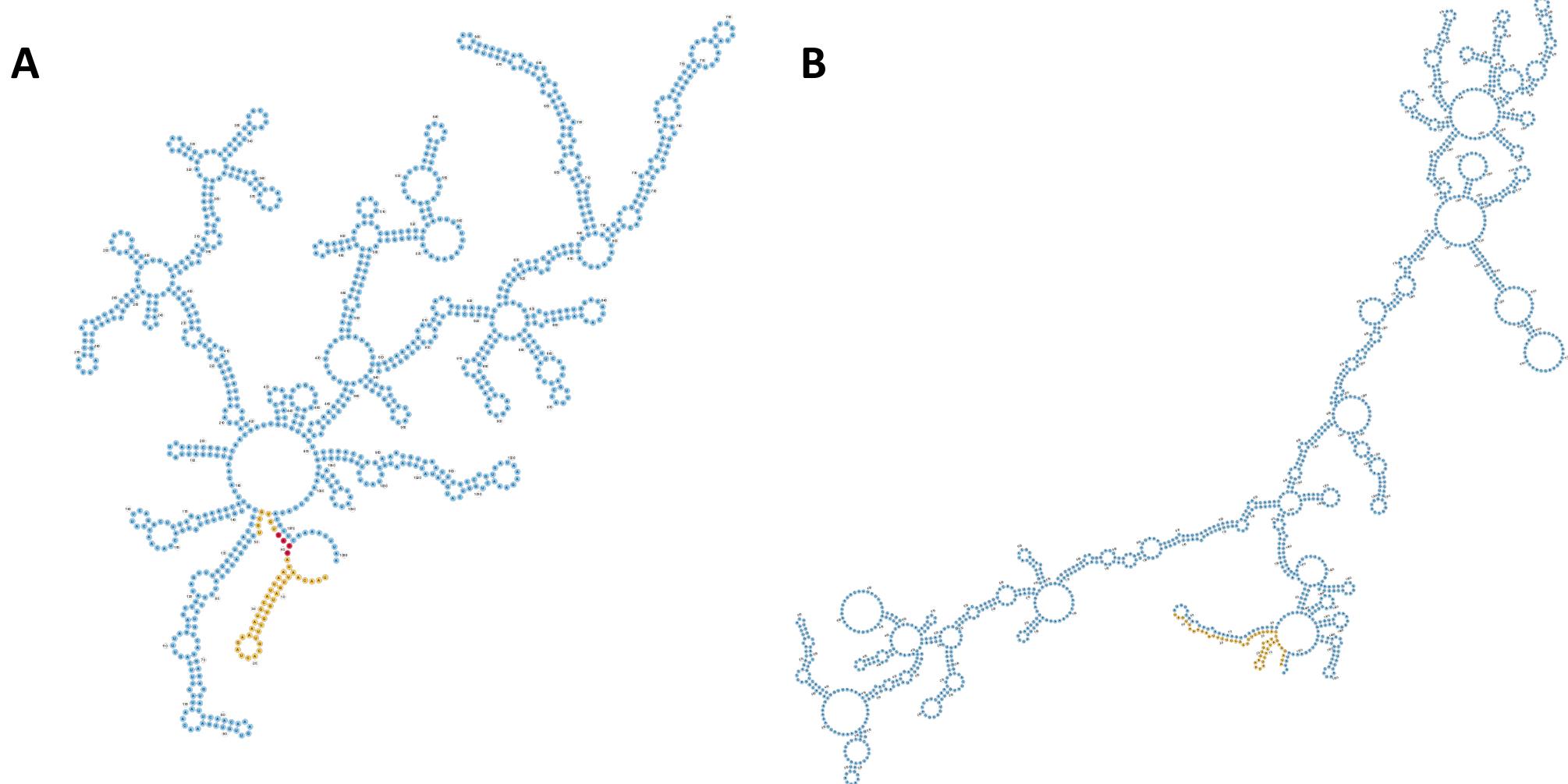

Figure 1. *A. baumannii* biofilms exhibit differential expression patterns compared to planktonic cell populations. The genomic map (A) depicts changes in planktonic (inner circle, pink) and biofilm (outer circle, blue) transcriptomes, reported as TPM expression values. The outermost circle is a heat map demonstrating fold change in expression, where red or blue indicates higher expression in the biofilm or planktonic cells, respectively. The number of genes that were preferentially expressed ≥ 2 -fold in biofilm (blue) or planktonic (pink) cell populations are tallied (B) and further sorted by function based on KEGG ontology (C).

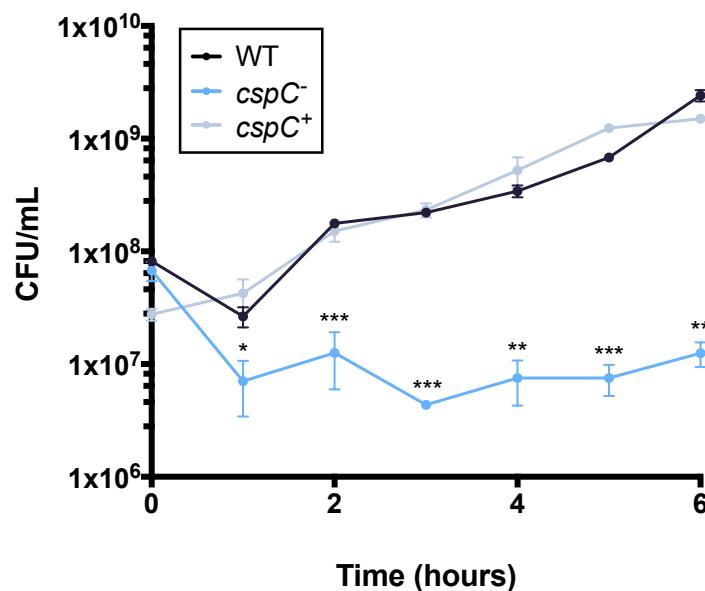
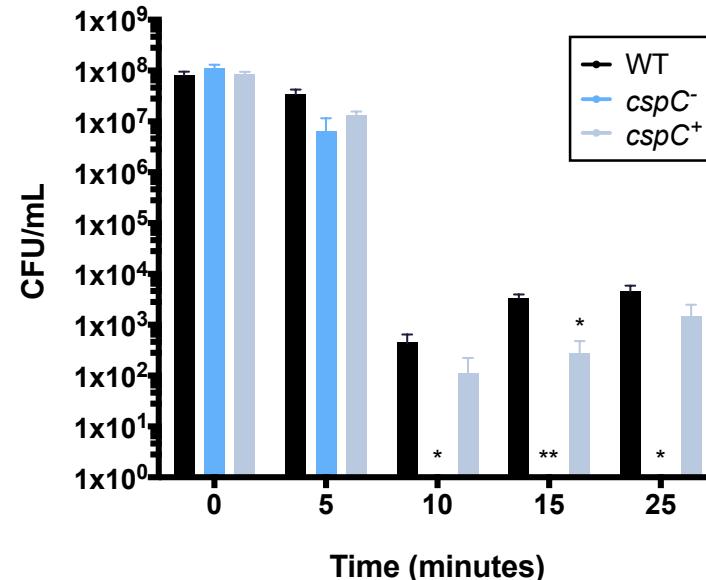



Figure 2. Physiological impact of gene disruption for those preferentially expressed in biofilms. Crystal violet biofilm assays were performed with transposon mutants of select genes preferentially expressed within biofilms. Alterations in biofilm mass are reported as a percentage of wildtype. Assays were performed in biological triplicate with 3 technical replicates each. Error bars represent \pm SEM, Student's *t* test was used to determine statistical significance. *, $P \leq 0.05$; **, $P \leq 0.01$; ***, $P \leq 0.001$; ****, $P \leq 0.0001$.



Figure 3. *cspC* mutants display an altered colony morphology. Wildtype (WT), *cspC*⁻, and *cspC*⁺ strains were grown on LB agar supplemented with hygromycin at 37°C for 24 h (top) and subsequently left to grow for an additional 24h at room temperature (bottom). Images are representative of 3 experimental repeats.


Figure 4. Disruption of *cspC* results in impaired biofilm formation and enhanced resistance to sodium periodate disruption. Comparison of biofilm formation using crystal violet staining following 24 hours growth (A), and continuously using an RTCA-xCELLigence (B) over a 25 h period. Assays were performed in biological triplicate with 3 technical replicates each. Error bars represent \pm SEM; Student's *t*-test was used to determine statistical significance compared to wildtype. **, $P \leq 0.01$, ns = not significant. For biofilm inhibition assay (C), biofilms were seeded with increasing concentrations of sodium periodate and incubated for 24h, with the resulting biofilms measured using a crystal violet assay. Data points are from 10 biological replicates and 3 technical replicates. Fold change is reported relative to no treatment controls for each strain. Error bars represent \pm SEM. A two-way ANOVA was used to determine statistical significance from the wild type. **, $P \leq 0.01$; ***, $P \leq 0.001$.

A**B****C**


Figure 5. *A. baumannii* *cspC* disruption leads to global transcriptional changes. The genomic map (A) depicts transcription profiles of the wildtype and *cspC* mutant reported as TPM expression values. Inner histograms display RNA-seq expression values of the wildtype (black) and *cspC* mutant (blue) reported as TPM. The outermost circle is a heat map illustrating fold change in expression upon *cspC* disruption relative to wildtype, where blue or red indicates the fold-increase or -decrease of expression, respectively. The number of genes upregulated ≥ 2 -fold (green) or downregulated (red) are tallied (B), and parsed by function based on KEGG ontology (C).



Figure 6: CspC contains conserved RNP-1 and RNP-2 motifs. A sequence logo (B) generated using the UniprotKB/Swiss-Prot sequences for the cold shock domain profile of AB5075 CspC detected by ScanPosite. Putative RNP-1 (blue) and RNP-2 (green) motifs are boxed. A 3-D representation of the *A. baumannii* CspC protein structure (B) is shown. Key residues within the β 2 and β 3 sheets are colored, corresponding with the RNP motif residues indicated in (A).

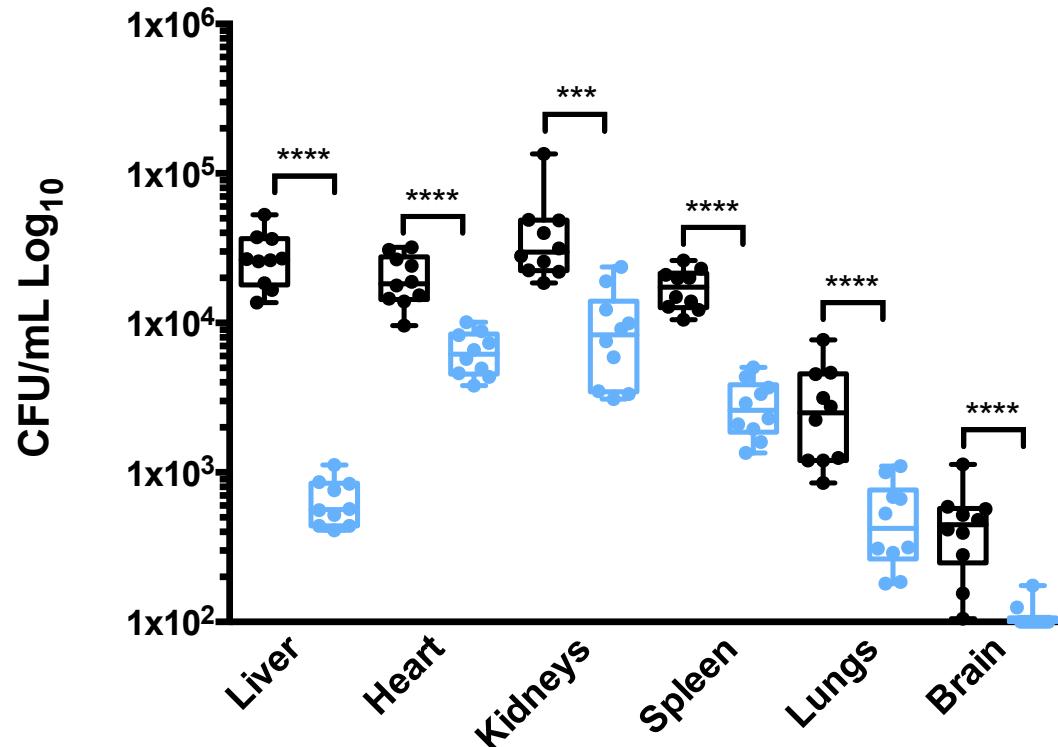

Figure 7. CspC mutation results in extended mRNA half life for transcriptional regulators, *adeL* and *ABUW_RS06565*. Exponentially growing *A. baumannii* wildtype and *cspC* mutant strains were treated with 250 μ g/mL rifampin to arrest transcription and changes in transcript abundance was measured by RT-qPCR for *adeL* (A) and *ABUW_RS06565* (B). Values represent mean fold change in transcript abundance relative to transcript abundance immediately prior to rifampin treatment ($t=0$) \pm standard deviation. Lines represent the exponential, one phase decay curve, represented as $R(t) = R_0 e^{-kt}$, which were used to calculate mRNA half lives.

Figure 8. 5'UTR of *adeL* mRNA contains a stable structure in close proximity to the putative ribosomal binding site. The secondary structure for *adeL* (A) and *ABUW_RS06565* (B) mRNA predicted using RNAfold is shown. Nucleotide colors correspond to the 5'UTR (yellow), putative ribosomal binding site (red), and protein coding sequence (blue). For *ABUW_RS06565*, a ribosomal binding site was not apparent.

A**B**

Figure 9. The *cspC* mutant has abrogated survival in human blood and during oxidative stress. Cell viability of the *cspC* mutant was assessed in whole human blood (A) and in the presence of 2mM hydrogen peroxide (B). Assays were performed in biological triplicate. Data is presented as the mean and error bars represent \pm SEM. Student's *t* test was used to determine statistical difference to wildtype at each timepoint. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure 10. The *cspC* mutant is attenuated virulence for virulence in a murine model of sepsis. Cohorts of BL/6 mice ($n = 10$) were inoculated by retro orbital injection with 2.5×10^7 CFU of wildtype (black) and *cspC::tn* mutant strains (blue). At 6 h post infection, mice were euthanized, and organs were collected to determine bacterial load. The bounds of each box represents 25th-75th percentiles, whiskers represent 5th-95th percentiles, center line denotes the median, and individual data points are plotted as circles. Statistical significance was determined using a Mann-Whitney nonparametric test. ***, $P < 0.001$; ****, $P < 0.0001$.

Table 1. Bacterial strains and plasmids used in this study.

Strains	Description	Source
<i>E. coli</i>		
DH5 α	Cloning strain	(36)
<i>A. baumannii</i>		
AB5075	Parent strain	(37)
<i>cspC::tn</i>	AB5075 with transposon insertion in ABUW_1377 (<i>cspC</i>)	(37)
WT	AB5075 containing pMQ557	This study
<i>cspC</i> $^-$	<i>cspC::tn</i> containing pMQ557	This study
<i>cspC</i> $^+$	<i>cspC::tn</i> containing pMQ557:: <i>cspC</i>	This study
Plasmids		
pMQ557	Cloning vector for complementation	Gift, Dr. R. Shanks, University of Pittsburgh
pLSBT1	pMQ557:: <i>cspC</i>	This study

Table 2. Prioritized genes exhibiting preferential expression within biofilms.

Gene	Expression (TPM) [†]	Fold Change [‡]
<i>ssrS</i>	62175.62	3.15
<i>ffs</i>	4153.04	3.38
<i>leuA</i>	1513.08	3.55
<i>cspC (ABUW_RS06720)</i>	1324.94	3.16
<i>hsr (ABUW_RS08520)</i>	1059.73	3.24
<i>ABUW_RS08155</i>	1037.86	3.58
<i>ABUW_RS02640</i>	737.36	3.18
<i>ABUW_RS09455</i>	717.76	3.53
<i>cysD</i>	565.84	3.95
<i>ABUW_RS01835</i>	554.93	3.92
<i>bfr_2</i>	532.31	3.36
<i>ABUW_RS08160</i>	511.43	4.02
<i>cysP (ABUW_RS05010)</i>	440.27	51.8
<i>iscA</i>	370.19	3.93
<i>ABUW_RS20285</i>	330.21	3.71
<i>csp1 (ABUW_RS13055)</i>	325.75	15.48
<i>ABUW_RS09460</i>	322.14	3.07
<i>raiA</i>	318.52	3.65
<i>ABUW_RS05005</i>	293.8	60.17
<i>tauA</i>	242.59	16
<i>ABUW_RS18750</i>	211.35	3.98
<i>tauB (ABUW_RS11585)</i>	207.38	15.64
<i>ABUW_RS09465</i>	184.01	3.96
<i>ABUW_RS04445</i>	175.35	7.93
<i>hscB</i>	167.95	3.53
<i>ABUW_RS16120</i>	165.53	3.66
<i>ABUW_RS17360</i>	163.51	3.24
<i>ABUW_RS20445</i>	160.93	17.11
<i>ABUW_RS10540</i>	153.08	12.13
<i>ABUW_RS01965</i>	152.46	3.17
<i>recX (ABUW_RS08510)</i>	145.88	4.62
<i>tauC</i>	138.39	11.13
<i>ABUW_RS18155</i>	136.84	5.31
<i>ABUW_RS07450</i>	133.65	9.93
<i>ABUW_RS09695</i>	131.04	3.56
<i>ABUW_RS13715</i>	128.98	3.94
<i>ABUW_RS18015</i>	122.17	4.61
<i>cysT</i>	121.76	30.66
<i>tauD</i>	118.66	7.69
<i>bfr_1</i>	115.41	3.43

[†]Expression is reported as TPM of biofilm sample measured by RNA-seq

[‡]Fold change is reported as expression of biofilm relative to planktonic sample

Table 3. Antibiotic susceptibility of AB5075 wildtype and *cspC* mutant strain (μg/mL).

Strain	CIP	CM	STR	GM	KAN	NEO	FOS	OX
AB5075 wildtype	45	84.38	1070	2000	2250	253.13	562.5	1130
AB5075 <i>cspC::tn</i>	80	150	3380	1500	1690	189.84	316.41	1130

Abbreviations: CIP, ciprofloxacin; CM, chloramphenicol; STR, streptomycin; GM, gentamicin; KAN, kanamycin; NEO, neomycin; FOS, fosfomycin; OX, oxacillin.

Table 4. Mean mRNA half-lives of CspC-regulated transcripts as determined by RNA decay assays.

Gene	Wildtype			<i>cspC::tn</i>		
	Half-life (min)*	Decay constant (k) [†]	R ²	Half-life (min)*	Decay constant (k)	R ²
<i>adeJ</i>	5.326	0.1301±0.015	0.954	5.206	0.1331±0.020	0.928
<i>adeG</i>	4.773	0.1452±0.016	0.926	4.236	0.1636±0.024	0.884
<i>adeL</i>	1.280	0.5417±0.020	0.999	2.540	0.2728±0.022	0.969
<i>ABUW_RS06565</i>	1.753	0.396±0.025	0.990	2.565	0.270±0.016	0.993
<i>recA</i>	4.674	0.1483±0.002	0.999	4.890	0.1418±0.031	0.880

*The decay constant (k) mean was used to calculate half-life using $t_{1/2} = \ln(2)/k$, where $t_{1/2}$ represents mRNA half-life.

[†]Decay constant is reported as mean ± standard error.