

1 **Microfluidic *Streptomyces* Cultivation for Whole Lifecycle Characterization and**

2 **Phenotypic Assays Enabled by Nanogap-stabilized Air-Water Interface**

3

4 Dongwei Chen^{a,d}, Mengyue Nie^a, Wei Tang^a, Yuwei Zhang^a, Yuxin Qiao^a, Juanli Yun^a,

5 Jian Wang^a, Ying Lan^a, Liang Ma^b#, Yihua Chen^a#, Wenbin Du^{a,c,d}#

6

7 ^a State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese

8 Academy of Sciences, Beijing 100101, China

9 ^b Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou

10 510320, China

11 ^c Savaid Medical School, University of the Chinese Academy of Sciences, Beijing

12 100049, China

13 ^d State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese

14 Academy of Sciences, Beijing 100101, China

15

16 **Running Head:** Microfluidic platform for *Streptomyces* lifecycle study

17

18 **#Address correspondence to**

19 Liang Ma, liangma.chem@gmail.com; Yihua Chen, chenyihua@im.ac.cn, or Wenbin Du,

20 wenbin@im.ac.cn.

21 **ABSTRACT** *Streptomyces* is a model filamentous prokaryote to study multicellular
22 differentiation and a rich reservoir for antibiotics discovery. In their natural conditions,
23 *Streptomyces* grows at the interface of porous soil, air, and water. The morphological
24 development of *Streptomyces* is traditionally performed on agar plates and mostly studied
25 at the population levels. However, the detailed lifecycle of *Streptomyces* has not been
26 well studied due to its complexity and lack of research tools which can mimic their
27 natural conditions in the soil. Here, we developed a simple assembled microfluidic device
28 for cultivation and the entire lifecycle observation of *Streptomyces* development from
29 single-cell level. The microfluidic device composed of a microchannel for loading
30 samples and supplying nutrients, microwell arrays for seeding and growth of single
31 spores, and air-filled chambers aside of the microwells that facilitate growth of aerial
32 hyphae and spores. A unique feature of this device is that each microwell is surrounded
33 by a 1.5 μm gap connected to an air-filled chamber which provide stabilized water-air
34 interface. We used this device to observe the development of single *Streptomyces* spores
35 and found that unlike those in bulk liquid culture, *Streptomyces* can differentiate at water-
36 air interfaces in microscale liquid culture. Finally, we demonstrated that phenotypic A-
37 Factor assay can be performed at defined time point of its lifecycle. This microfluidic
38 device could become a robust tool for studying *Streptomyces* multi-cellular
39 differentiation and interaction at single cell level.

40 **IMPORTANCE** We describe a microfluidic device that mimics the natural porous

41 environment for the growth and development of *Streptomyces*, the model system for
42 bacterial multicellularity. The microfluidic device is used for cultivation and the entire
43 lifecycle observation of *Streptomyces* development from single-cell level, including
44 growth of aerial filaments. The aerial hyphae development of *Streptomyces* at the water-
45 air interface was observed at real time in the microfluidic device. The early growth,
46 opportunistic transformation (in the gap), and merging of aerial hyphae of *Streptomyces*
47 in the microfluidic device were observed for the first time. It will play an important role
48 in finding single-cell heterogeneity to study secondary metabolites related to the complex
49 lifecycle of *Streptomyces*.

50

51 **KEYWORDS** bacterial multicellularity, *Streptomyces* differentiation, aerial filaments,
52 microfluidics, single cell analysis.

53

54 **INTRODUCTION**

55 Streptomycetes are gram-positive filamentous bacteria that play crucial roles in their
56 habitat because of their broad range of metabolic processes and biotransformation
57 including degradation of chitin and cellulose (1-3). They are the most important natural
58 source of bioactive compounds such as antibiotics and anti-tumor agents, producing two-
59 thirds of the antibiotics of medical and agricultural interest (4-6). In nature, *Streptomyces*
60 grows primarily in soil with porous structures that retain water in the micron-sized

61 cavities and channels. Nutrients, oxygen, water transport and other environmental factors
62 may have profound impact on the their physiology, morphological development and
63 outset of secondary metabolism (7). Although recent research with advanced genomic
64 tools has made great progress in uncovering their genetic potential, a lot of discovered
65 pathways are cryptic, which means they are either silent or poorly expressed for those
66 grown on agar plate or in liquid media in the standard laboratory conditions, presumably
67 due to the inability to recreate the microscale porous structure as well as nutritional and
68 environmental circumstances in their natural soil habitat. In addition, bulk cultivation
69 method only allows spatial control down to millimeter scale, and is often not convenient
70 for nutrient and chemical exchange.

71 Microfluidics has emerged as a new tool to study microbiology because it offers
72 many advantages including micrometer-scale spatial resolution and flexible temporal
73 control of nutrients exchange and chemical gradients (8). Microfluidic tools have been
74 used to study microbiology in many ways such as single-cell isolation and manipulation,
75 bacterial chemotaxis, quorum sensing, and population dynamics (9). Although high-
76 throughput enrichment and sorting of soil-derived *Actinobacteria* in microfluidic droplets
77 have been described (10), the development and differentiation of *Streptomyces* using
78 microfluidic chips are rarely reported until 2016 (11). The challenge in *Streptomyces*
79 cultivation is that their growth and differentiation rely on a stabilized water-air interface.
80 When cultivated on a solid agar, *Streptomyces* have a typical lifecycle including

81 germinate of vegetative hyphae in the solid substrate, forming of hydrophobic aerial
82 hyphae, and development of airborne spores which allow dispersion (12). However, in a
83 standard liquid medium, *Streptomyces* mainly exists as vegetative hyphae that tangle
84 together to form many small pellets and clumps with very few aerial hyphae (13).
85 Therefore, direct miniaturization of standard liquid culture in a microchamber without a
86 stabilized water-air interface is not a generalizable method for cultivation of
87 *Streptomyces*.

88 To overcome these challenges, we describe a microfluidic device integrating liquid
89 containing microwells and air-filled chambers to establish a stabilized water-air interface
90 for cultivation, the whole lifecycle observation of *Streptomyces* differentiation and
91 phenotypic assay. The device can achieve micron-scale spatial resolution, maintain
92 culture conditions over an extended period of time with optional nutrient and chemical
93 exchange, and enable single-cell cultivation and observation; thus, it is a useful tool for
94 exploring *Streptomyces*'s development and behavior under controlled circumstances. The
95 microfluidic platform was validated by culturing two representative *Streptomyces* strains,
96 and a phenotypic assay with A-Factor. A-Factor and analogues are autoregulatory factors
97 involved in secondary metabolism and/or morphological differentiation in Actinomycetes
98 (14). They are essential for the aerial hyphae formation in *Streptomyces* (Fig. S3A).
99 However, previous studies showed that the timing of A-Factor introduction is important
100 for morphogenesis and secondary metabolism (15). The nutrient exchange channel

101 incorporated in the microfluidic chip allows the A-Factor assay to be performed at
102 defined time points in the lifecycle with mutant organism that is deficient in A-Factor
103 synthesis.

104

105 RESULTS AND DISCUSSION

106 **Design of the microfluidic device.** We designed a microfluidic device with an array
107 of microwells for the entire lifecycle observation of *Streptomyces* including cultivation
108 and observation. This device incorporates two important design features: i) stable water-
109 air interface enabled by nanogaps; ii) well controlled nutrient and chemical exchange
110 through a microchannel. *Streptomyces* undergoes complex lifecycles involving vegetative
111 hyphae growth in substrates and aerial hyphae growth in the air. We mimicked the
112 natural microenvironment by assembling liquid-containing microwells and air-filled
113 chambers for vegetative growth and aerial growth, respectively. The gap between two
114 assembled glass plates is 1.5 μm , which is slightly larger than the diameter of the hyphae
115 (1 μm). This separation ensures that the aerial hyphae can readily pass through the gap
116 (Fig. 1A). The chamber is 15 μm in height so that the aerial hyphae have sufficient space
117 to keep a natural state. When the microwells are filled with liquid, water-air interfaces are
118 formed between the microwells and the air-filled chambers. The glass plates offer a
119 reliable barrier to minimize evaporation. The plates also exhibit hydrophobic surface after
120 treatment with fluorosilane, and thus the surface tension was relatively high (Fig. 2B).

121 The interface was stable for continuous growth and observation without deleterious drift

122 or shift.

123 We regard the liquid surface as a spherical surface so that the capillary pressure ΔP

124 can be derived from the following equations:

125
$$\Delta P = \frac{2\sigma\cos\theta}{r} \quad (1)$$

126 where, σ is the liquid surface tension (7.28×10^{-2} N/m); θ is the contact angle

127 between the liquid surface and the solid plate; maximum value is 105° ; the radius (r) of it

128 equals to half of the gap height (0.75 μm). Thus, the capillary pressure ΔP can be

129 calculated to be 5.03×10^4 Pa, which is large enough to form a stable gas-liquid interface

130 (Fig. 2D, E). *Streptomyces* spores were appropriately diluted and loaded into microwells

131 to achieve single spore isolation in microwells following the Poisson distribution. Spores

132 can germinate, branch to form vegetative hyphae in microwells, and later pass through

133 the gap and differentiate into aerial hyphae in air-filled chambers that eventually develops

134 into mature spores. The lifecycle of *Streptomyces* can last for several days, and thus we

135 infused culture media continuously from the channel to guarantee adequate nutrient

136 supply. The mycelia in the microwells would not be disturbed because of the narrow joint

137 between the channel and the microwells. The entire developmental process could be

138 monitored using an inverted microscope.

139 **Lifecycle observation of *Streptomyces coelicolor* on-chip culture in liquid**

140 **medium.** *S. coelicolor* is a model organism of *Streptomyces*, and the complete genome of

141 the type strain *S. coelicolor* M145 has been sequenced; it is used in many studies of
142 *Streptomyces* growth and development (2). We cultivated *S. coelicolor* in liquid minimal
143 medium on the microfluidic device, and observed its entire lifespan (Fig. S1, Movie S1).

144 After 9 h of dormancy, the spore emerged from one germ tube, which prolonged and
145 formed branches. Each branch showed apical growth, indicating that the group of cells
146 grew at an exponential phase in the microwell. The hyphae could spread randomly in
147 liquid medium because there was no solid substrate confinement. The hyphae gradually
148 approached the water-air interface, broke the surface tension, and grew into the air-filled
149 chamber at 28 h (growth almost perpendicular to the edge of the microwell). The aerial
150 hyphae progressively elongated and formed branches in all directions. There were curls
151 and spirals at the end of the hyphae. Meanwhile, the vegetative hyphae developed many
152 layers, and eventually almost filled the entire microwell. The vegetative hyphae and the
153 aerial hyphae stopped growing after 60 hours (Movie S1).

154 When cultivated in the flask-scale liquid medium, aerial hyphae formation and
155 sporulation are blocked in most *Streptomyces* strains (16), but when cultured in
156 bioreactors, some strains may be able to sporulate due to stress conditions such as strong
157 agitation (17). It has been suggested that nutrient depletion and the reuse of materials led
158 to the hyphae differentiation in liquid medium (18), and programmed cell death also
159 trigger the differentiation process in liquid and solid media (13). Although the specific
160 signals are unclear, *N*-acetylglucosamine produced by the decomposition of

161 peptidoglycan may be one of the signals (19). However, small-scale single-cell
162 development has not been carefully illustrated, and differentiation might be limited. In
163 this study, we cultivated *S. coelicolor* in a microfluidic device and found that vegetative
164 hyphae did not lyse; rather, they continually grew even after the emergence of aerial
165 hyphae. The culture media were supplied continuously in the microfluidic device such
166 that the nutrition is not exhausted, indicating that the differentiation phenomenon may not
167 be necessarily correlated with nutrient depletion.

168 **Differentiation of *S. coelicolor* on-chip culture in liquid YEME medium.** *S.*
169 *coelicolor* can form aerial hyphae and spores in standing liquid cultures with minimal
170 media but not with complete media (20). Here, we inoculated single spores in microwells
171 with nutrient-rich YEME medium and cultivated the samples several days to test whether
172 they can differentiate (Fig. 3). The results showed that *S. coelicolor* still has a complete
173 lifecycle in liquid YEME medium including vegetative hyphae in microwells (Fig. 3A),
174 aerial hyphae outside the well (Fig. 3C), and mature spores (Fig. 3D). Scanning electron
175 microscopy analysis revealed that the hyphae in the microwells had a relatively smooth
176 surface (Fig. 3B). Hyphae in the chamber had a layer of well-organized hydrophobic
177 proteins (21) (Fig. 3C) with compartments between each spore (Fig. 3D). These results
178 are consistent with the development of *S. coelicolor* grown on solid plates and previous
179 reports on the microscopic feature of hydrophobic proteins (22).

180 Accordingly, *S. coelicolor* has entire lifecycles in the liquid environment regardless

181 of the nutrient status. An earlier study showed that the expression of most genes is
182 comparable between liquid and solid cultures, including genes involved in the
183 hydrophobic cover formation and even a few genes regulating the early stages of
184 sporulation (23). Genes involved in the final stages of hydrophobic cover/spore
185 maturation are up-regulated in solid cultures compared with liquid cultures. These
186 findings suggest that *S. coelicolor* can differentiate in both solid and liquid cultures.
187 Transcripts and proteins are ready before aerial hyphae formation. Once *S. coelicolor*
188 senses the existence of air, they begin to grow aerial hyphae and develop into mature
189 spores. In standing liquid cultures, there may be a physical constraint that hinders the
190 formation of aerial hyphae: The nutrient-rich media contains more complex ingredients,
191 which is likely to attach to the hyphae surface and reduce the hydrophobicity of the
192 hyphae, making it difficult for the aerial hyphae to erect.
193 Interestingly, we observed the merging of aerial hyphae when *S. coelicolor* was
194 cultivated in the microfluidic chip (Fig. 4, Movie S2). This universal phenomenon in
195 Streptomyces is called hyphal anastomosis (or hyphal fusion), which was firstly
196 confirmed in *S. scabies* (24), and is considered to be very important for intra-hyphal
197 communication, nutrients and water translocation, and general homeostasis within a
198 colony (25). There is hypha-to-hypha fusion, two hyphal tips grow towards each other
199 until contact and fuse (Fig. 4A), as well as hypha-to-peg or hypha-to-side fusion, a
200 hyphal tip approaches the side of another existing hypha and directly fuse with it (Fig.

201 4B, C) occurred in this study.

202 **Comparison of *S. griseus* wild type and mutant.** To evaluate whether the
203 differentiation in microfluidic liquid culture approach with *Streptomyces* can be
204 generalized, another model organism *S. griseus* was cultivated in the microfluidic chip to
205 observe its differentiation in liquid cultures. We cultured *S. griseus* in liquid MM
206 medium and YEME medium, respectively, and observed its three lifespan stages through
207 optical microscopy and electron microscopy (Fig. S2). The results confirmed that *S.*
208 *griseus* can pass through its whole lifecycle in both liquid cultures.

209 The differentiation mechanism of *S. griseus* on the solid plate has been well-studied.
210 The entire process begins with the expression of *afsA* that controls the synthesis of A-
211 Factor, a type of γ -butyrolactones known as microbial hormones. A-Factor is essential in
212 the regulatory pathways of sporulation (26), it can bind to A-Factor receptor protein
213 ArpA and relieves the suppression of ArpA to *adpA*. AdpA can then stimulate a series of
214 responses involving morphological development and secondary metabolism (Fig. S3A).
215 Genes involved in the formation of aerial hyphae and spore, including *ssgA* (27) , *adsA*
216 (26), *amfR* (28), as well as extracellular proteases (29, 30) and protease inhibitor
217 encoding genes (31) are regulated by AdpA. When *afsA* is knocked down, the mutant
218 cannot form aerial hyphae on solid YEME plate. We constructed a *S. griseus* $\Delta afsA$
219 mutant via genetical engineering to compare the mechanism of differentiation between
220 solid and liquid cultures (Fig. S3).

221 We inoculated the mutant on solid YEME medium and cultivated it for several days.

222 Compared with wild-type, the mutant strain can neither develop aerial hyphae nor

223 pigmented spores (Fig. 5B). When cultured on a microfluidic device, the hyphae were

224 mainly in microwells with very few hyphae outside microwells. These were very short

225 even after being cultivated for several days. They could not form spores (Fig. 5D).

226 Scanning electron microscopy showed that the hyphae surface of *S. griseus* $\Delta afsA$ mutant

227 was relatively smooth (Fig. 5D). Thus, we inferred that these short hyphae are still

228 vegetative hyphae. While they emerged out of the microwell, they could not develop

229 further. The phenotype of *S. griseus* $\Delta afsA$ mutant grown in liquid culture was similar to

230 that grown on the solid plate. These results demonstrate the consistency in observation of

231 differentiation behavior of *S. griseus* wild type and mutant strains between microfluidic

232 and bulk cultures.

233 **Feeding of A-Factor analogue and recovery of the mutant phenotype.** The A-

234 Factor analogue β -keto SCB2 was chemically synthesized as described above and added

235 to the culture medium to examine whether the mutant could recover a wild-type

236 phenotype. Previous studies showed that A-Factor is chemically unstable with a half-life

237 of several hours. The production of A-Factor is growth-dependent and accumulated with

238 the growth of hyphae (Fig. 5A). It reaches peak concentration of 25–30 ng/mL and

239 rapidly decreases thereafter.(15) According to the development of *S. griseus* and the

240 instability of A-Factor, we fed β -keto SCB2 to the $\Delta afsA$ mutant at several time points in

241 the lifecycle. When β -keto SCB2 was added at 20 h and 30 h after inoculation, the mutant
242 could form aerial hyphae and spores (Fig. 5E, F).

243 Scanning electron microscopy further confirmed that there were hydrophobic proteins
244 on the surfaces of hyphae and spores observed from *S. griseus* Δ *aafsA* mutant on device

245 with β -keto SCB2 supplied at 30 h after initial cultivation. (Fig. S4). When β -keto SCB2

246 was added at 40 h after inoculation, the mutant could no longer form aerial hyphae (Fig.

247 5G). These results are consistent with previous studies showing that timing is critical for

248 A-Factor's switching function (Fig. 5A) (15). There is a decision phase at the middle of

249 the exponential growth, which is an A-Factor-sensitive period. The exogenous addition of

250 A-Factor after this time can no longer influence morphological differentiation (15). We

251 conclude that the microfluidic chip is compatible with A-Factor assay by introducing the

252 test compound at defined time point, and demonstrated the timing-sensitive effect of A-

253 Factor on morphological differentiation of mutant deficient in A-Factor synthesis, which

254 is in good agreement with the classical literature reports.

255 **Mechanism of water-air interface differentiation and possible applications of the**

256 **microfluidic device.** To confirm whether the differentiation of *Streptomyces* is different

257 between that grown on solid plates and that grown in liquid media, we conducted an A-

258 Factor-regulated experiment in *S. griseus* using the microfluidic-based device. Timing

259 studies on the microfluidic device and scanning electron microscopy showed that the

260 differentiation mechanism of *S. griseus* in the liquid environment is the same as that on

261 solid plates. We also found that sporulation is not correlated with lysis of vegetative
262 hyphae suggesting that genes encoding extracellular proteases and protease inhibitors
263 may not be necessary for differentiation.

264 Differentiation mechanisms of *Streptomyces* are essential for the study of secondary
265 metabolism. Using this microfluidic device, we successfully restored the wild-type
266 phenotype of *S. griseus* Δ *afsA* mutant by addition of the A-Factor analogue β -keto SCB2.

267 Mechanisms by which other chemical molecules affect the morphological differentiation
268 and secondary metabolism of *Streptomyces* can also be studied through this device with
269 significantly reduced consumption of compound of interest by virtue of miniaturization.

270 Previous studies on the differentiation of *Streptomyces* in liquid media mainly focused on
271 the analysis of pellets and clumps formation (32). Some strains require the formation of

272 pellets to produce secondary metabolites, such as *S. coelicolor* (undecylprodigiosin and
273 actinorhodin) (13) and *S. olidensis* (retamycin) (33) while pellets and clumps formation

274 reduce the antibiotic productions in *S. noursei* (nystatin) (34) and *S. fradiae* (tylosin)
275 (35). The microfluidic device we developed will help to establish the developmental

276 model of different *Streptomyces* strains in liquid cultures, which will be beneficial to the
277 optimization of industrial fermentation.

278 In addition, a previous study found that *S. coelicolor* was able to produce several
279 secondary metabolites during its germination: albaflavenone (antibacterial activity
280 against *Bacillus subtilis*), the polyketide germicidin A, and chalcone (inhibits

281 germination) (36). As the whole lifecycle of *Streptomyces* can be observed by the
282 microfluidic device, functions of secondary metabolites produced by *Streptomyces* strains
283 in their early stages of growth can also be further studied.

284

285 CONCLUSION

286 We developed a microfluidic device for cultivation and the entire lifecycle
287 observation of *Streptomyces*, a dominant paradigm in bacterial multicellularity evolution.
288 Compared with traditional methods, this microfluidic device can achieve single-cell long-
289 term dynamic cultivation and observation enabled by nanogap-stabilized air-water
290 interfaces. Two model strains of *Streptomyces* (*S. coelicolor* and *S. griseus*) were
291 cultivated in the microfluidic device at single-cell/spore resolution. Cellular development
292 and differentiation of the entire *Streptomyces* lifecycle was monitored with microscopy
293 and further characterized with scanning electron microscopy on the microfluidic device
294 for the first time. We also studied *Streptomyces*' development under different nutrient
295 conditions or chemical stimuli, and we may also use it to investigate the cell-cell
296 interaction between *Streptomyces* and pathogenic bacteria.

297 We found that aerial mycelia may grow at a very early stage, and such formation may
298 not be necessarily correlated with nutrient depletion. Moreover, we constructed a *S.*
299 *griseus* Δ *aftsA* mutant (exogenously supplemented A-Factor analog to the mutant) and
300 compared the differentiation mechanism between solid and microscale liquid

301 environments. We inferred that *Streptomyces* still has the entire lifecycle in a microscale
302 liquid environment, and the differentiation mechanism is the same as that on solid plates.
303 These new observations shed light on the understanding of *Streptomyces*' multicellular
304 development and differentiation. Although the current biological data are findings and
305 conclusion derived from visual inspections of images, other scientific analysis and
306 representation also can be achieved by further image analysis, for example, growth of the
307 different morphological states (Fig. 3) could be characterized and compared by derived
308 growth rates from image data of filamenting organisms (11).

309 Overall, we anticipate that our new method provides a better platform for the study
310 of *Streptomyces*' development in the natural porous and moist soil environment. The
311 microwell arrays with stabilized air-water interfaces can mimic ecological niches and
312 help us identify single-cell heterogeneity. *Streptomyces*' complete lifecycle on the
313 microfluidic device may also awaken cryptic secondary metabolite gene clusters for the
314 secretion of secondary metabolites and lead to the discovery of novel antibiotics for
315 combating global crisis of antimicrobial resistance.

316

317 MATERIALS AND METHODS

318 **Bacterial strains and materials.** The microbial strains used in this work include
319 *Streptomyces coelicolor* M145, *Streptomyces griseus* IFO 13350, and *S. griseus* Δ afsA
320 mutant. These strains were cultured on the Mannitol-Soy agar plate at 28 °C for about a

321 week to allow spore germination. The spores were harvested by sterile cotton swabs and
322 suspended in the sterilized culture medium. The suspension was filtered through a filter
323 tube filled with cotton wool to remove aerial hyphae. The OD₆₀₀ of the spore suspension
324 was adjusted to 0.15 to ensure that most of the microwells had a single spore. Liquid
325 minimum (MM) medium and yeast extract-malt extract (YEME) medium were used for
326 on-chip cultivation.

327 **Fabrication of the device.** The microfluidic device was made of two glass plates and
328 fabricated by standard photolithography as well as wet chemical etching techniques (37).
329 The photomasks were designed using AutoCAD (San Rafael, CA) and ordered from
330 MicroCAD photomask Co. Ltd. (Shenzhen, China). The top plate has a 55- μ m-deep
331 channel, with 40 microwells symmetrically distributed along the channel with a volume
332 of 0.27 nL individually. The bottom plate consists of an array of nanogaps of 1.5 μ m high
333 (Fig. 1A and Fig. 2A). The top plate has two access holes drilled by a diamond drill bit
334 0.8 mm in diameter. The glass plates were cleaned with ethanol, oxidized in a plasma
335 cleaner, and silanized by 1H,1H,2H,2H-perfluorooctyl trichlorosilane.

336 **Device operation and cell cultivation.** The glass chip was thoroughly cleaned with
337 ethanol and tightly clamped by clips. The spore suspension was aspirated into a pipette
338 and loaded into the channel leading to the microwells (Fig. 1B). Then suspension in the
339 channel was aspirated from the outlet to remove excess spores to prevent channel block
340 caused by hyphae growth, but medium and spores in microwells could be retained (Fig.

341 1B). Two syringes were connected to the device by Teflon tubing to infuse culture
342 medium continuously for long-term cultivation (Fig. 1B). The device was placed under
343 an inverted microscope to capture pictures every hour. A CO₂ microscope cage incubator
344 was placed around the microscope to maintain the temperature at 28 °C for *Streptomyces*
345 cultivation.

346 **Scanning Electron Microscopy.** When cultivation terminated, the device was
347 transferred to a freezer at -20 °C for one minute to freeze the sample, so that the hyphae
348 could not move when we opened the device. The device was disassembled quickly, and
349 the top plate was cut into 0.5 × 0.7 cm pieces and fixed in 3% glutaraldehyde overnight at
350 4 °C to maintain the bacteria's physiological status. The sample was then washed with DI
351 water to remove glutaraldehyde, dehydrated in an ethanol series (50%, 70%, 85%, 95%,
352 and 100%), critical point dried, and sputter-coated with platinum under vacuum. The
353 sample was observed under a scanning electron microscope.

354 **Synthesis of A-Factor analogue β -keto SCB2.** *S. coelicolor* butanolides (SCBs) are
355 γ -butyrolactones from *S. coelicolor*, and β -keto-SCB2 is a stereoisomer of A-Factor (38,
356 39). The synthesis of β -keto-SCB2 was began with methyl 3-oxocyclobutane-1-
357 carboxylate to methyl 5-oxotetrahydrofuran-3-carboxylate by the Baeyer-Villiger
358 oxidation (40-43). Methyl 5-oxotetrahydrofuran-3-carboxylate was then reduced to 4-
359 (hydroxymethyl)-dihydrofuran-2(3H)-one by the addition of NaBH₄ followed by
360 protection of hydroxyl group with *tert*-butyldimethylsilyl (TBS) chloride. Octanoyl

361 chloride was slowly added to react with 4-(((*tert*-
362 butyldimethylsilyl)oxy)methyl)dihydrofuran-2(3*H*)-one to give 4-(((*tert*-
363 butyldimethylsilyl)oxy)methyl)-3-octanoyldihydrofuran-2-(3*H*)-one. The silyl protecting
364 group was then removed with tetrabutylammonium fluoride to afford β -keto-SCB2. Mass
365 spectrometric analysis characterized the synthetic products. See SI for detailed synthetic
366 steps.

367

368 **SUPPLEMENTAL MATERIAL**

369 Supplemental material contains:

370 Supplementary figures on lifecycle of *S. griseus* (FIG S1-S4), and the synthesis
371 process of A-Factor analogue β -keto SCB2, PDF file, 1.54 MB.

372 Movie S1 shows lifecycle of *S. coelicolor*, AVI file, 3.81 MB.

373 Movie S2 shows hyphal anastomosis of *S. coelicolor*, AVI file, 0.99 MB.

374

375 **ACKNOWLEDGMENTS**

376 This work was supported by the National Natural Science Foundation of China (Nos.
377 31970091, 21822408 and 91951103), the program of China Ocean Mineral Resources
378 R&D Association (No. DY135-B-02), the National High Technology Research and De-
379 velopment Program of China (No. 2018YFC0310703), and Senior User Project of RV

380 KEXUE from Center for Ocean Mega-Science, Chinese Academy of Sciences

381 (KEXUE2019GZ05).

382

383 **REFERENCES**

- 384 1. Chater K. 2016. Recent advances in understanding *Streptomyces*. F1000Research
385 5.
- 386 2. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James
387 KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G,
388 Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth
389 S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabinowitzsch E,
390 Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares
391 R, Squares S, Taylor K, Warren T, Wietzorek A, Woodward J, Barrell BG, Parkhill
392 J, Hopwood DA. 2002. Complete genome sequence of the model actinomycete
393 *Streptomyces coelicolor* A3(2). *Nature* 417:141-147.
- 394 3. Heueis N, Vockenhuber M-P, Suess B. 2014. Small non-coding RNAs in
395 streptomycetes. *RNA Biology* 11:464-469.
- 396 4. Baltz RH. 1998. Genetic manipulation of antibioticproducing *Streptomyces*. *Trends*
397 *Microbiol* 6:76-83.
- 398 5. Bérdy J. 2005. Bioactive Microbial Metabolites. *The Journal of Antibiotics* 58:1-
399 26.
- 400 6. Lucas X, Senger C, Erxleben A, Gruning BA, Doring K, Mosch J, Flemming S,
401 Gunther S. 2013. StreptomeDB: a resource for natural compounds isolated from
402 *Streptomyces* species. *Nucleic Acids Res* 41:D1130-D1136.
- 403 7. Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M. 2007. The global role of ppGpp
404 synthesis in morphological differentiation and antibiotic production in
405 *Streptomyces coelicolor* A3(2). *Genome Biology* 8:R161.
- 406 8. Whitesides GM. 2006. The origins and the future of microfluidics. *Nature* 442:368-
407 373.
- 408 9. van der Meer JR, Belkin S. 2010. Where microbiology meets microengineering:
409 design and applications of reporter bacteria. *Nat Rev Microbiol* 8:511-522.
- 410 10. Zang E, Brandes S, Tovar M, Martin K, Mech F, Horbert P, Henkel T, Figge MT,
411 Roth M. 2013. Real-time image processing for label-free enrichment of
412 *Actinobacteria* cultivated in picolitre droplets. *Lab on a Chip* 13:3707-3713.
- 413 11. Grünberger A, Schöler K, Probst C, Kornfeld G, Hardiman T, Wiechert W,
414 Kohlheyer D, Noack S. 2017. Real-time monitoring of fungal growth and

415 morphogenesis at single-cell resolution. *Engineering in Life Sciences* 17:86-92.

416 12. Flärdh K, Buttner MJ. 2009. *Streptomyces* morphogenetics: dissecting
417 differentiation in a filamentous bacterium. *Nat Rev Microbiol* 7:36-49.

418 13. Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J. 2008. Mycelium
419 Differentiation and Antibiotic Production in Submerged Cultures of *Streptomyces*
420 *coelicolor*. *Appl Environ Microbiol* 74:3877-3886.

421 14. Horinouchi S, Beppu T. 1990. Autoregulatory Factors of Secondary Metabolism
422 and Morphogenesis in Actinomycetes. *Crit Rev Biotechnol* 10:191-204.

423 15. Horinouchi S. 2002. A microbial hormone, A-factor, as a master switch for
424 morphological differentiation and secondary metabolism in *Streptomyces griseus*.
425 *Frontiers in Bioscience* 7:2045-2057.

426 16. Manteca A, Jung HR, Schwammle V, Jensen ON, Sanchez J. 2010. Quantitative
427 Proteome Analysis of *Streptomyces coelicolor* Nonsporulating Liquid Cultures
428 Demonstrates a Complex Differentiation Process Comparable to That Occurring in
429 Sporulating Solid Cultures. *Journal of Proteome Research* 9:4801-4811.

430 17. Rioseras B, Lopez-Garcia MT, Yague P, Sanchez J, Manteca A. 2014. Mycelium
431 differentiation and development of *Streptomyces coelicolor* in lab-scale bioreactors:
432 Programmed cell death, differentiation, and lysis are closely linked to
433 undecylprodigiosin and actinorhodin production. *Bioresource Technol* 151:191-
434 198.

435 18. Wildermuth H. 1970. Development and Organization of the Aerial Mycelium in
436 *Streptomyces coelicolor*. *Microbiology* 60:43-50.

437 19. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van
438 Wezel GP. 2008. Feast or famine: the global regulator DasR links nutrient stress to
439 antibiotic production by *Streptomyces*. *Embo Rep* 9:670-675.

440 20. van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wosten HAB. 2003.
441 Differentiation and Anaerobiosis in Standing Liquid Cultures of *Streptomyces*
442 *coelicolor*. *J Bacteriol* 185:1455-1458.

443 21. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FGH,
444 Dijkhuizen L, Wosten HAB. 2003. A novel class of secreted hydrophobic proteins
445 is involved in aerial hyphae formation in *Streptomyces coelicolor* by forming
446 amyloid-like fibrils. *Gene Dev* 17:1714-1726.

447 22. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ.
448 2003. The chaperins: a family of hydrophobic cell-surface proteins involved in aerial
449 mycelium formation in *Streptomyces coelicolor*. *Gene Dev* 17:1727-1740.

450 23. Yagüe P, Rodríguez-García A, López-García MT, Rioseras B, Martín JF, Sánchez
451 J, Manteca A. 2014. Transcriptomic Analysis of Liquid Non-Sporulating
452 *Streptomyces coelicolor* Cultures Demonstrates the Existence of a Complex
453 Differentiation Comparable to That Occurring in Solid Sporulating Cultures. *PLOS*

454 ONE 9:e86296.

455 24. Gregory KF. 1956. Hyphal anastomosis and cytological aspects of *Streptomyces*
456 *scabies*. Can J Microbiol 2:649-655.

457 25. Glass NL, Rasmussen C, Roca MG, Read ND. 2004. Hyphal homing, fusion and
458 mycelial interconnectedness. Trends Microbiol 12:135-141.

459 26. Horinouchi S, Beppu T. 2007. Hormonal control by A-factor of morphological
460 development and secondary metabolism in *Streptomyces*. Proceedings of the Japanese
461 Academy, Series B 83:277-295.

462 27. Yamazaki H, Ohnishi Y, Horinouchi S. 2003. Transcriptional switch on of *ssgA* by
463 A-Factor, which is essential for spore septum formation in *Streptomyces griseus*. J
464 Bacteriol 185:1273-1283.

465 28. Ueda K, Hsueh C-W, Tosaki T, Shinkawa H, Beppu T, Horinouchi S. 1998.
466 Characterization of an A-Factor-Responsive Repressor for *amfR* Essential for
467 Onset of Aerial Mycelium Formation in *Streptomyces griseus*. J Bacteriol
468 180:5085-5093.

469 29. Kato J-y, Suzuki A, Yamazaki H, Ohnishi Y, Horinouchi S. 2002. Control by A-
470 Factor of a Metalloendopeptidase Gene Involved in Aerial Mycelium Formation in
471 *Streptomyces griseus*. J Bacteriol 184:6016-6025.

472 30. Tomono A, Tsai Y, Ohnishi Y, Horinouchi S. 2005. Three Chymotrypsin Genes
473 Are Members of the AdpA Regulon in the A-Factor Regulatory Cascade in
474 *Streptomyces griseus*. J Bacteriol 187:6341-6353.

475 31. Hirano S, Kato J-y, Ohnishi Y, Horinouchi S. 2006. Control of the *Streptomyces*
476 Subtilisin Inhibitor Gene by AdpA in the A-Factor Regulatory Cascade in
477 *Streptomyces griseus*. J Bacteriol 188:6207-6216.

478 32. van Dissel D, Claessen D, van Wezel GP. 2014. Morphogenesis of *Streptomyces* in
479 Submerged Cultures. Adv Appl Microbiol 89:1-45.

480 33. Giudici R, Pamboukian CRD, Facciotti MCR. 2004. Morphologically structured
481 model for, antitumoral retamycin production during batch and fed-batch
482 cultivations of *Streptomyces olindensis*. Biotechnol Bioeng 86:414-424.

483 34. Jonsbu E, McIntyre M, Nielsen J. 2002. The influence of carbon sources and
484 morphology on nystatin production by *Streptomyces noursei*. J Biotechnol 95:133-
485 144.

486 35. Stratigopoulos G, Gandecha AR, Cundliffe E. 2002. Regulation of tylosin
487 production and morphological differentiation in *Streptomyces fradiae* by TylP, a
488 deduced gamma-butyrolactone receptor. Mol Microbiol 45:735-744.

489 36. Cihak M, Kamenik Z, Smidova K, Bergman N, Benada O, Kofronova O,
490 Petrickova K, Bobek J. 2017. Secondary Metabolites Produced during the
491 Germination of *Streptomyces coelicolor*. Frontiers in Microbiology 8.

492 37. He O, Chen S, Su Y, Fang O, Chen H. 2008. Fabrication of 1D nanofluidic channels

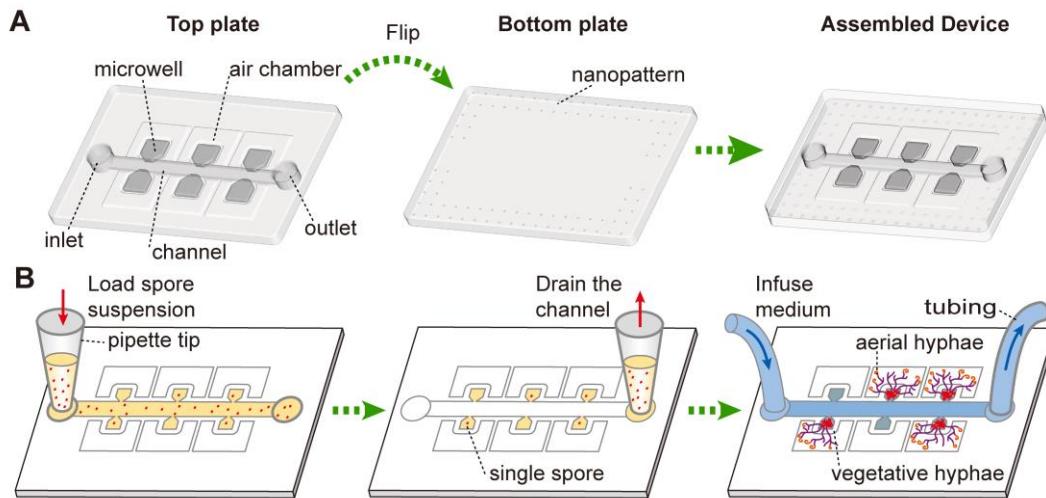
493 on glass substrate by wet etching and room-temperature bonding. *Anal Chim Acta*
494 628:1-8.

495 38. Hsiao N-H, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T,
496 Takano E. 2009. Analysis of Two Additional Signaling Molecules in *Streptomyces*
497 *coelicolor* and the Development of a Butyrolactone-Specific Reporter System.
498 *Chem Biol* 16:951-960.

499 39. Zhang Y, Wang M, Tian J, Liu J, Guo Z, Tang W, Chen Y. 2020. Activation of
500 paulomycin production by exogenous γ -butyrolactone signaling molecules in
501 *Streptomyces albidoflavus* J1074. *Appl Microbiol Biotechnol* 104:1695-1705.

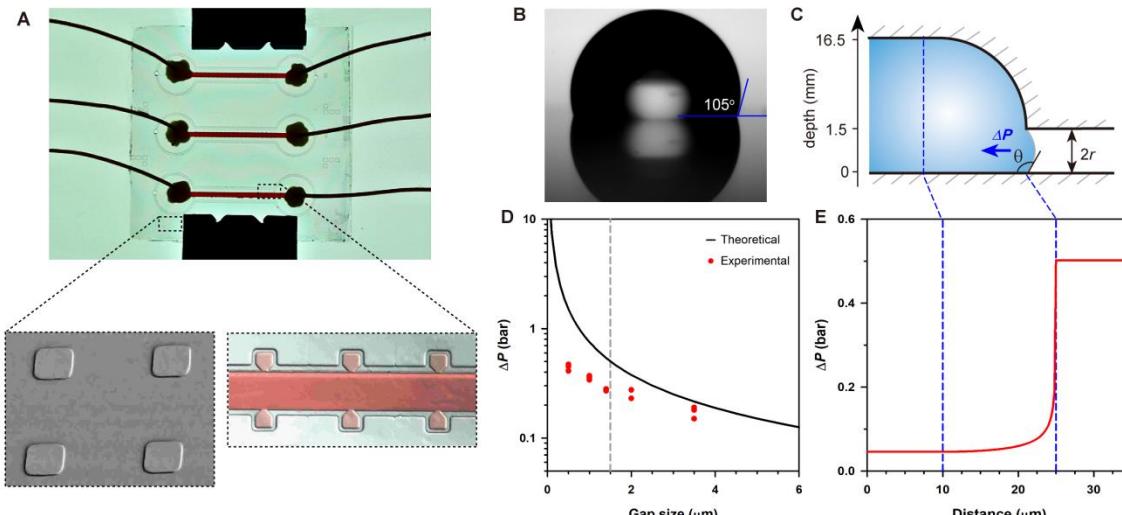
502 40. Mori K, Chiba N. 1990. Synthetic microbial chemistry, XXIII. Synthesis of
503 optically active virginiae butanolides A, B, C, and D and other autoregulators from
504 streptomycetes. *Liebigs Annalen der Chemie*
505 doi:<https://doi.org/10.1002/jlac.199019900105:31-37>.

506 41. Parsons PJ, Lacroute P, Buss AD. 1995. Synthesis of optically active A-factor.
507 *Journal of the Chemical Society, Chemical Communications*
508 doi:<http://dx.doi.org/10.1039/C39950000437:437-438>.

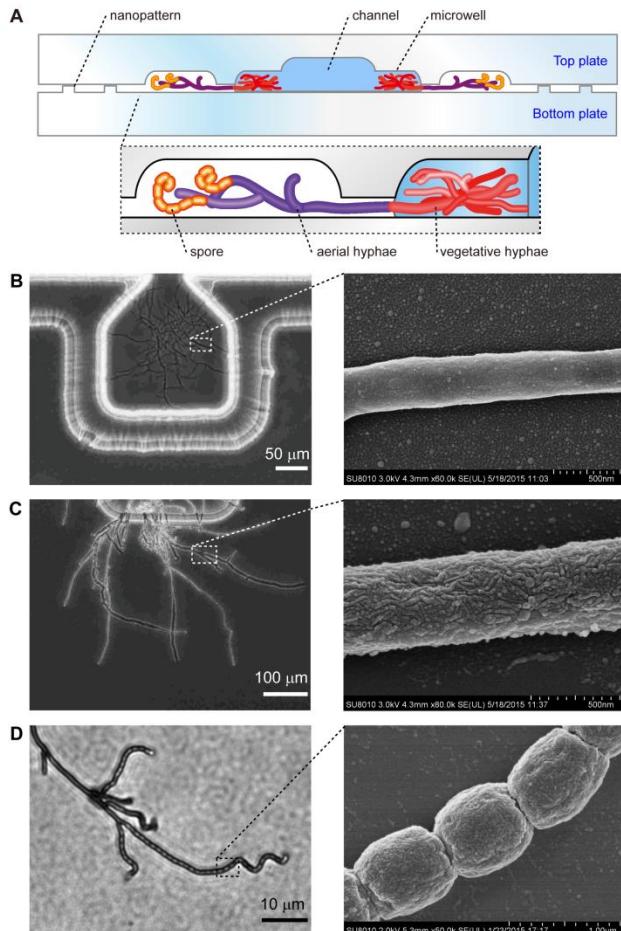

509 42. Chavan SP, Pasupathy K, Shivasankar K. 2004. Short and Efficient Synthesis of
510 (\pm) - A - Factor. *Synthetic Commun* 34:397-404.

511 43. Sarkale AM, Kumar A, Appayee C. 2018. Organocatalytic Approach for Short
512 Asymmetric Synthesis of (*R*)-Paraconyl Alcohol: Application to the Total
513 Syntheses of IM-2, SCB2, and A-Factor γ -Butyrolactone Autoregulators. *The Journal of Organic Chemistry* 83:4167-4172.

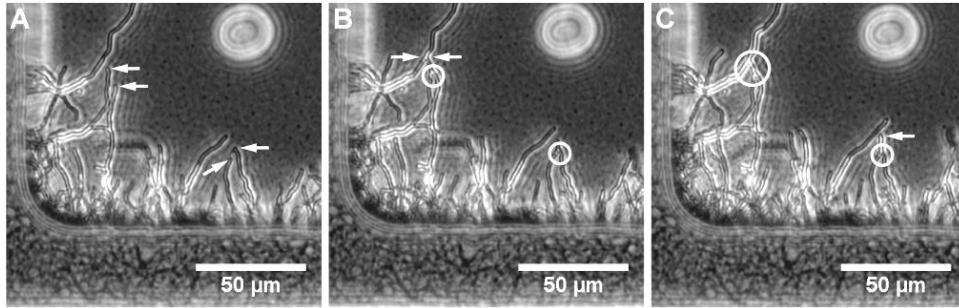
515


516 **FIGURE LEGENDS**

517


518

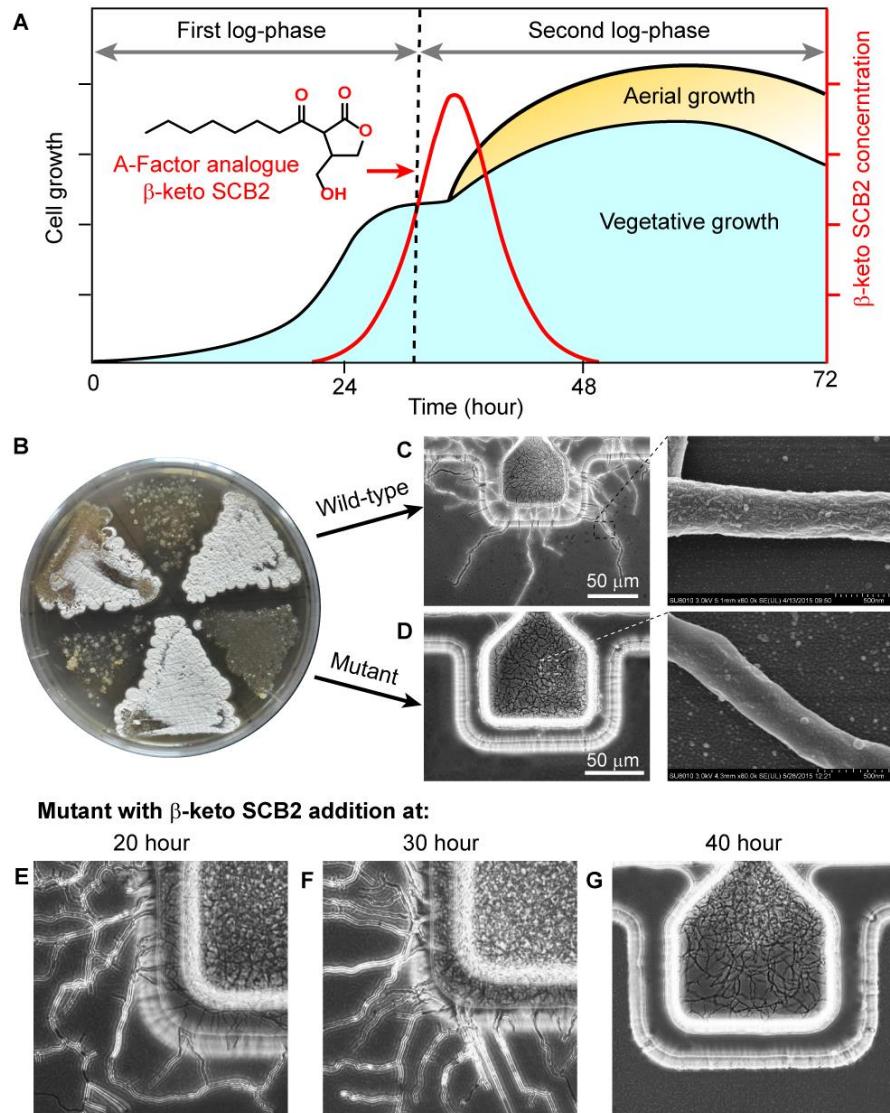
519 **FIG 1** Illustration of the microfluidic chip for lifespan observation of *Streptomyces*. (A) 520 Assembly and setup of the device. (B) Spore suspension is loaded into the microwells by 521 a pipette. Concentration of spores is controlled to allow single spore trapping in the 522 microwells based on a Poisson distribution. The channel was drained by pipette to 523 remove spores in the channel. Culture medium was continuously infused into the device. 524 The *Streptomyces* development process was observed by an inverted microscope.


525

526 **FIG 2** (A) A picture of the assembled device. 1.5- μm height nanogaps on the bottom
527 plate were observed via scanning electron microscopy. An assembled device filled with
528 red dye and zoom-in view of the channel with red dye. (B) The silanized glass plates of
529 the device have a contact angle of 105° with deionized water. (C) Side view of the water-
530 air interface between the microwell and the gas-filled chamber showing the direction of
531 surface tension of solution at the edge of the microwells. (D) Relationship between
532 surface tension and gap size at the water-air interface, and (E) the surface tension
533 distribution along the microwell.

534

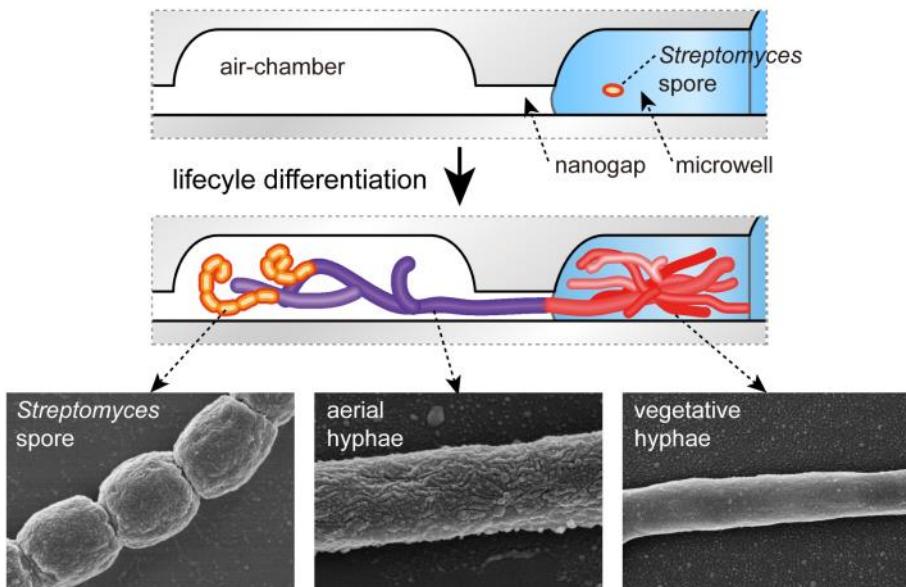
535 **FIG 3** Development of *S. coelicolor* cultivated in a microfluidic device. (A) Schematic of
536 sectional view of the device with *Streptomyces* development. (B-D) The vegetative
537 hyphae (B), aerial hyphae (C), and spores (D) of *S. coelicolor* were observed by optical
538 microscopy (left panel) and electron scanning microscopy (right panel), respectively.

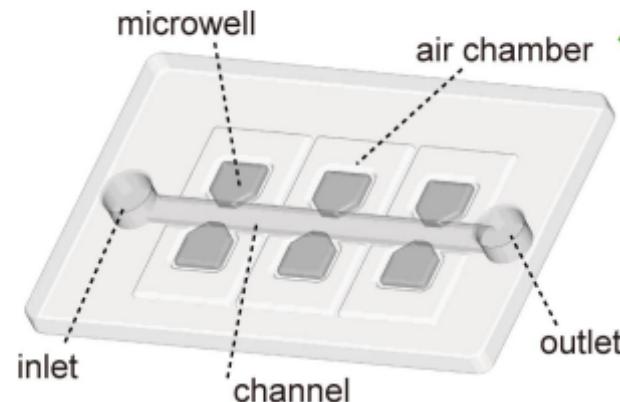


539

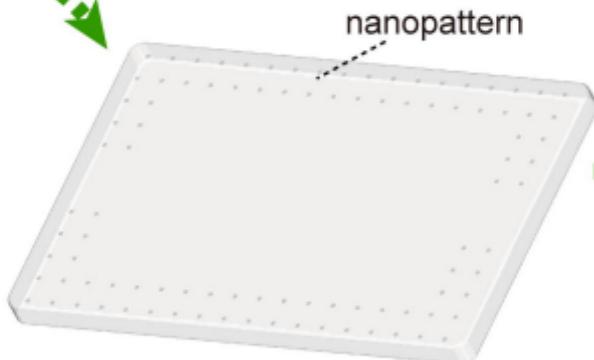
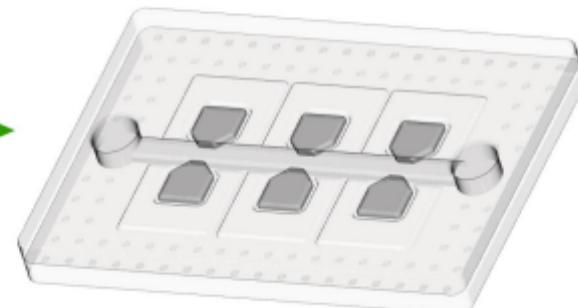
540 **FIG 4** Hyphal anastomosis (fusion) in *S. coelicolor*. Some hyphal tips (arrowed)

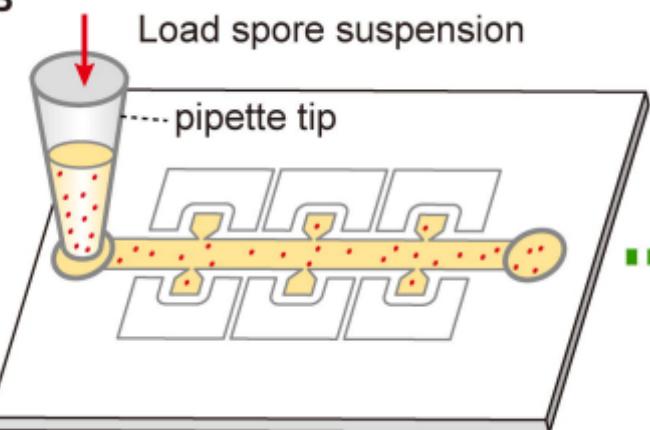
541 approaching for fusion (A). (B) shows fused hyphal branches (circled). A fused hyphal


542 tip is growing towards a hyphal peg for subsequently fusion (C).

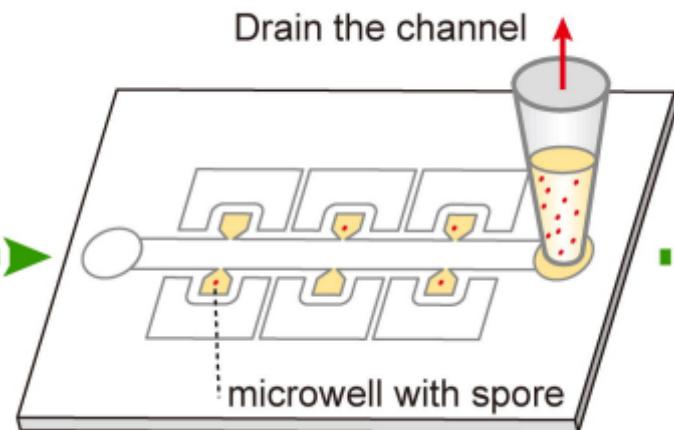

544 **FIG 5** Biosynthesis of A-Factor in a growth-dependent manner (A) and its role in the
545 development of *S. griseus* (B–E). Phenotypes of *S. griseus* wild-type and Δ *afsA* mutant
546 on solid plate (B). Aerial hyphae of *S. griseus* wild-type (C) and Δ *afsA* mutant (D)
547 cultivated in a microfluidic device were studied via optical microscopy and electron
548 scanning microscopy. Feeding of A-Factor analogue and recovery of Δ *afsA* mutant
549 phenotype at 20 h (E), 30 h (F), and 40 h (G) after cultivation.

550

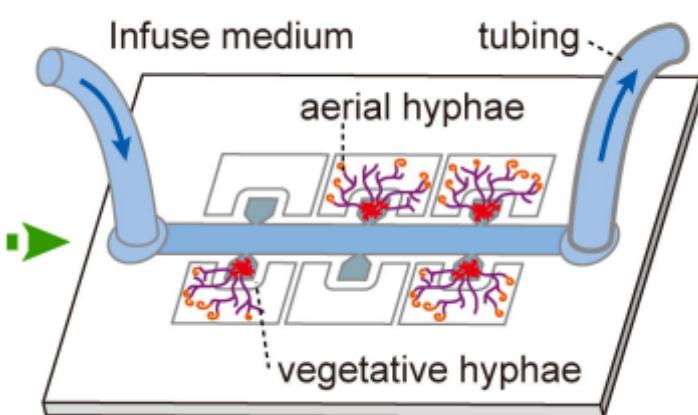


551 Table of Content Graphic

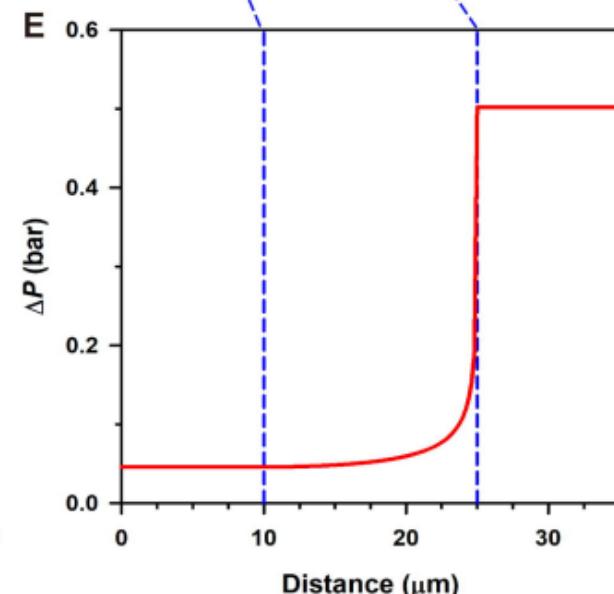
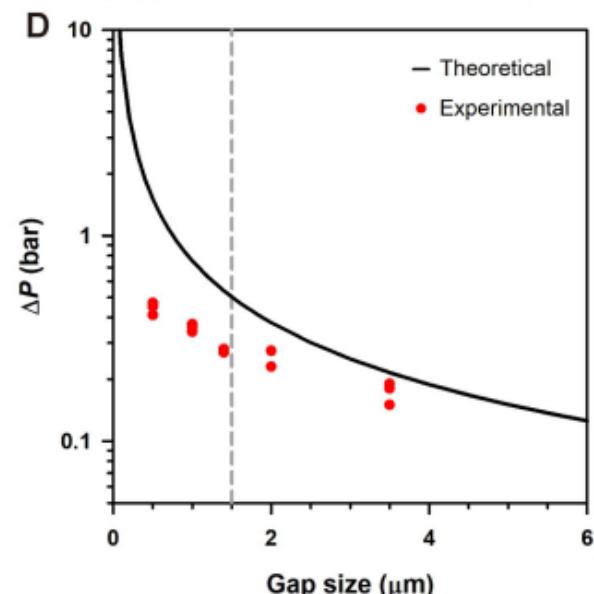

552

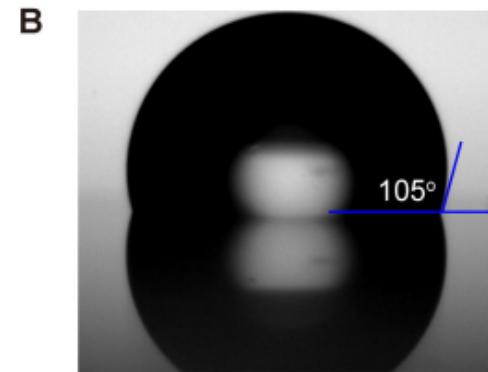
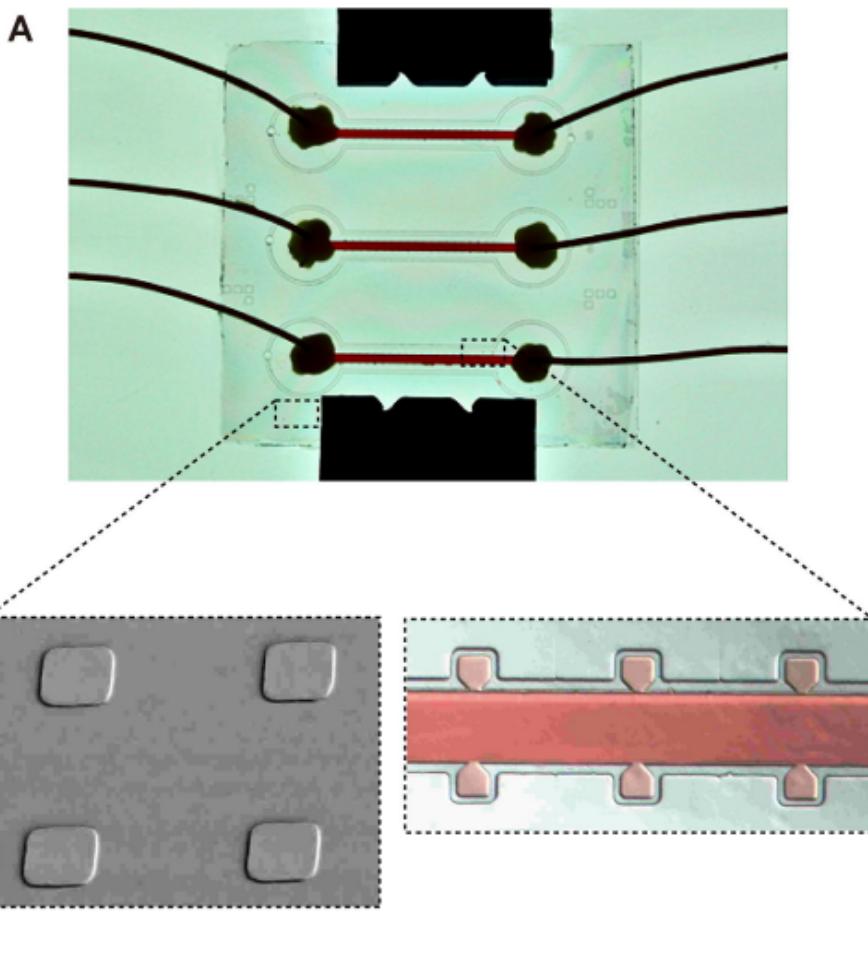
A**Top plate**

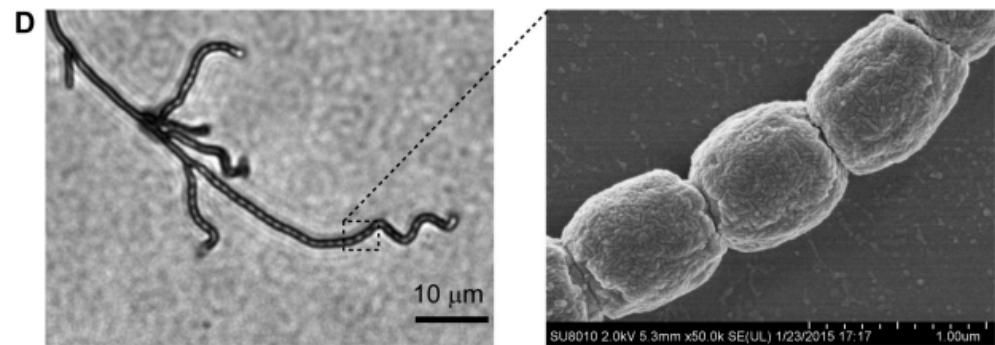
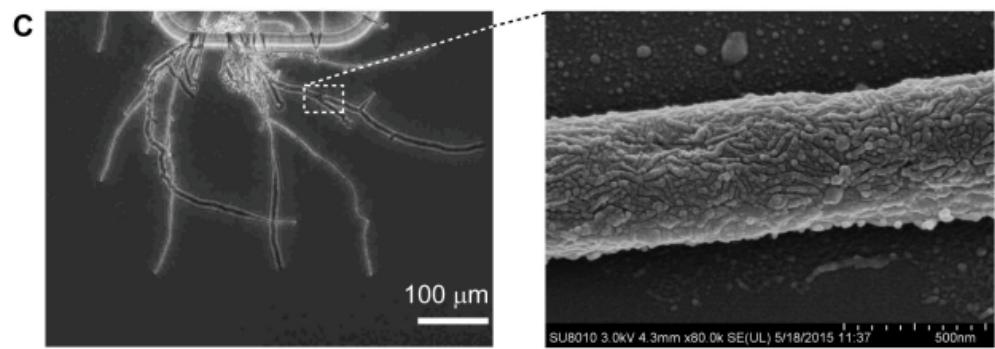
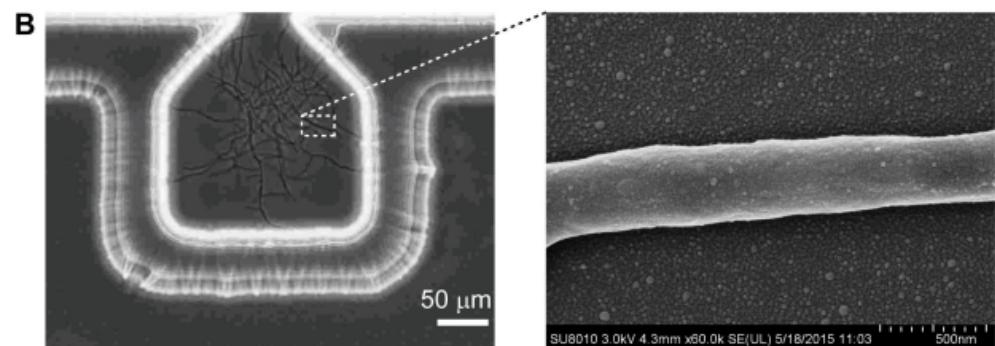
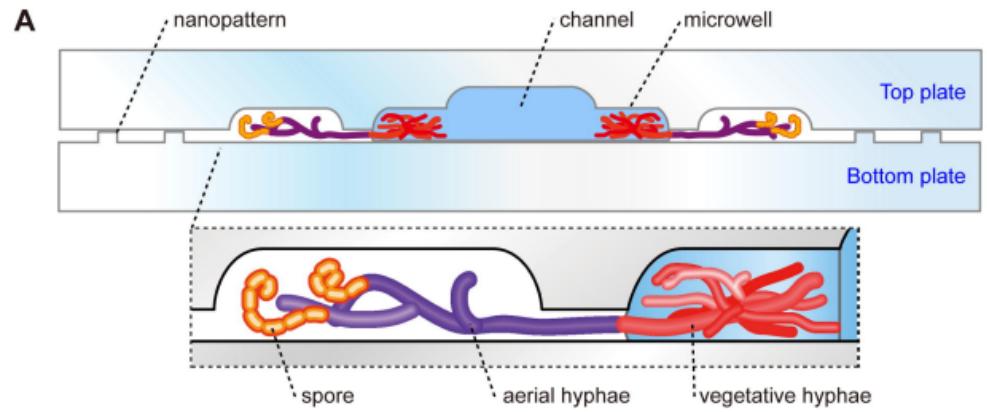

Flip

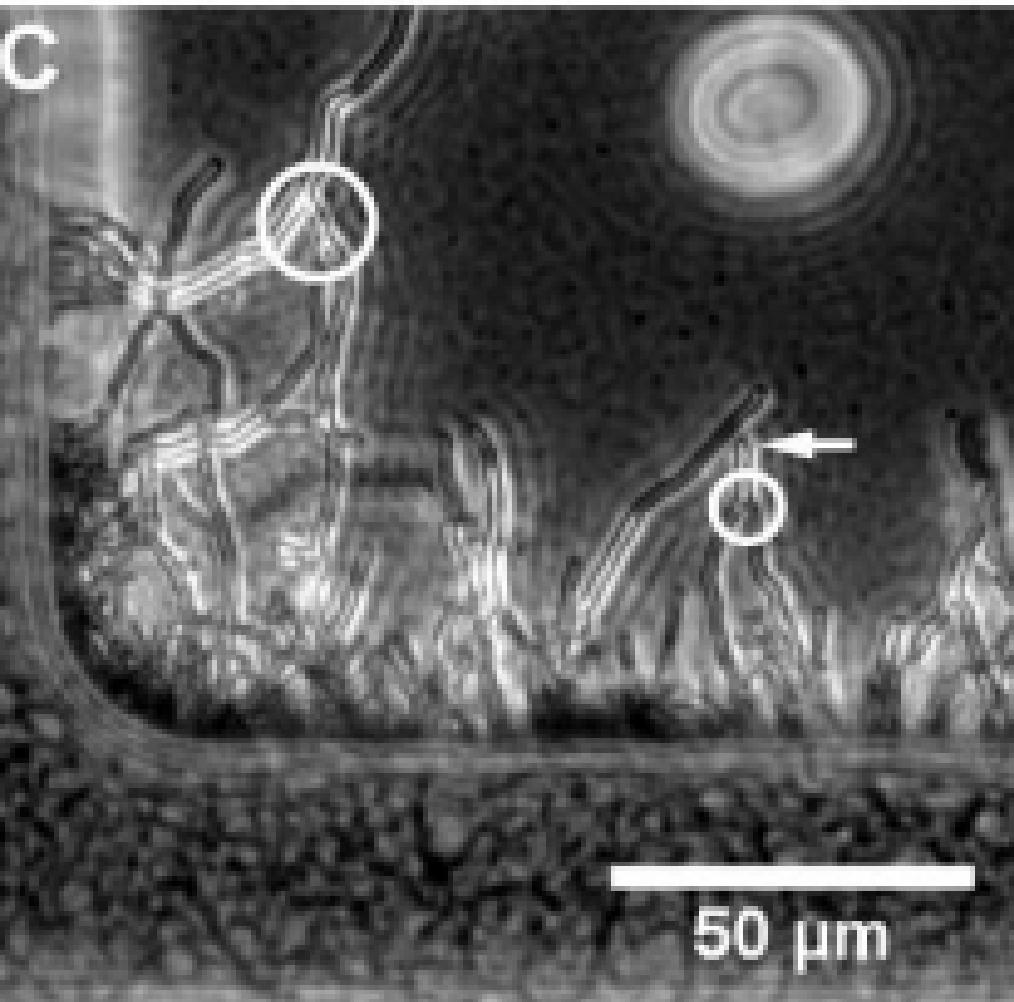
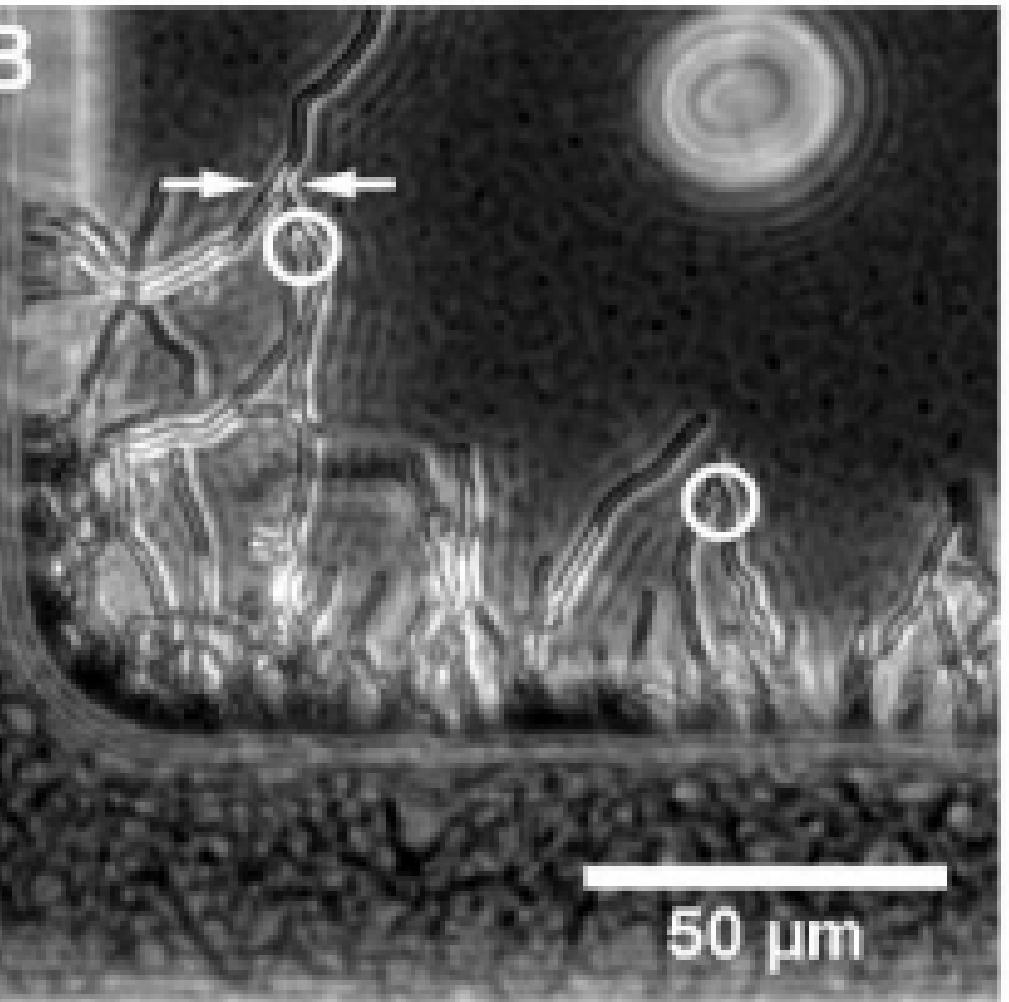
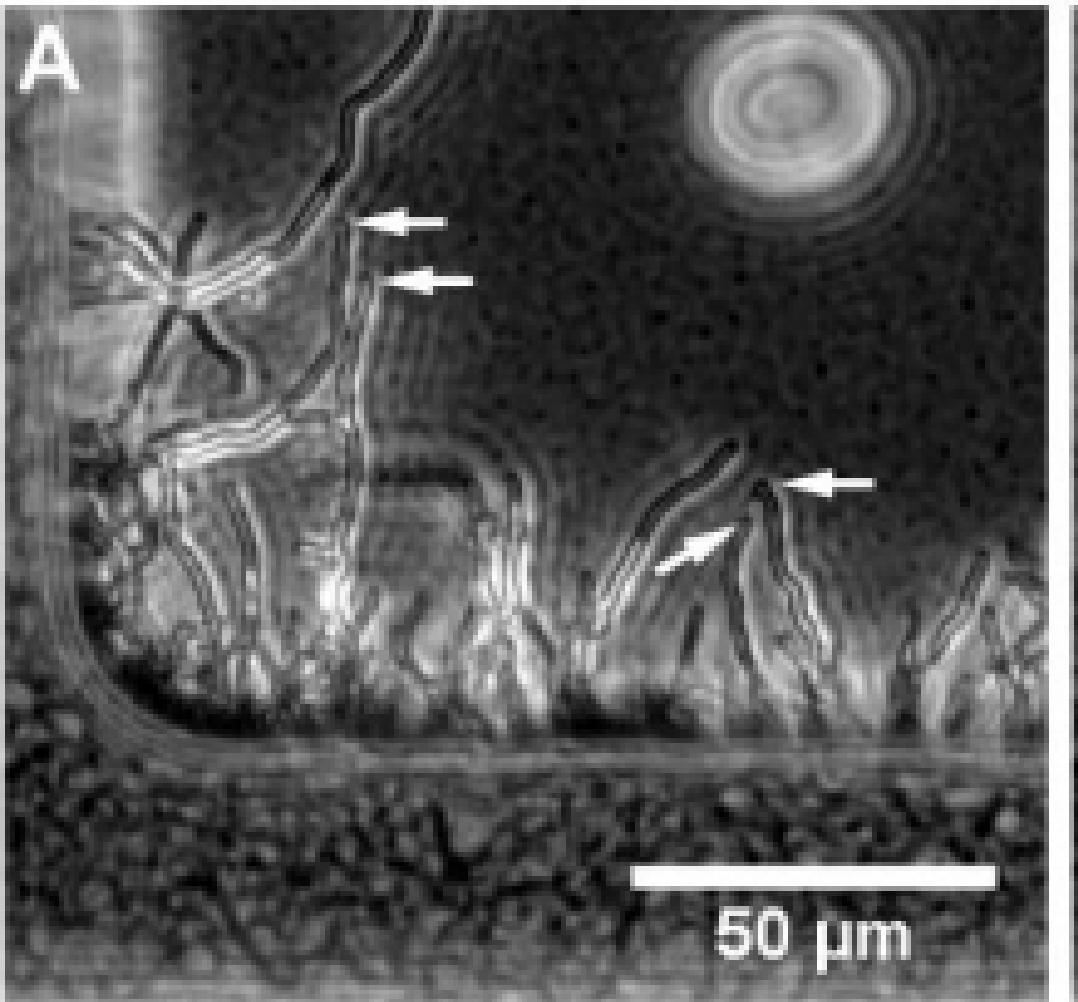
Bottom plate**Assembled Device****B**

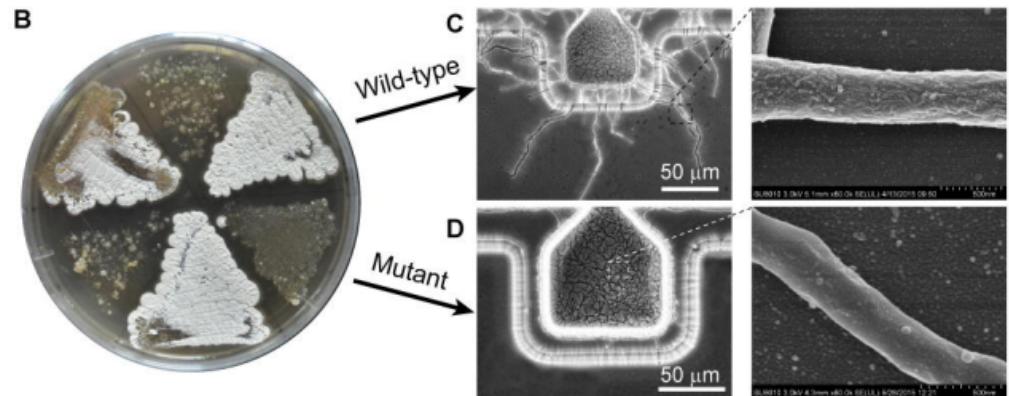
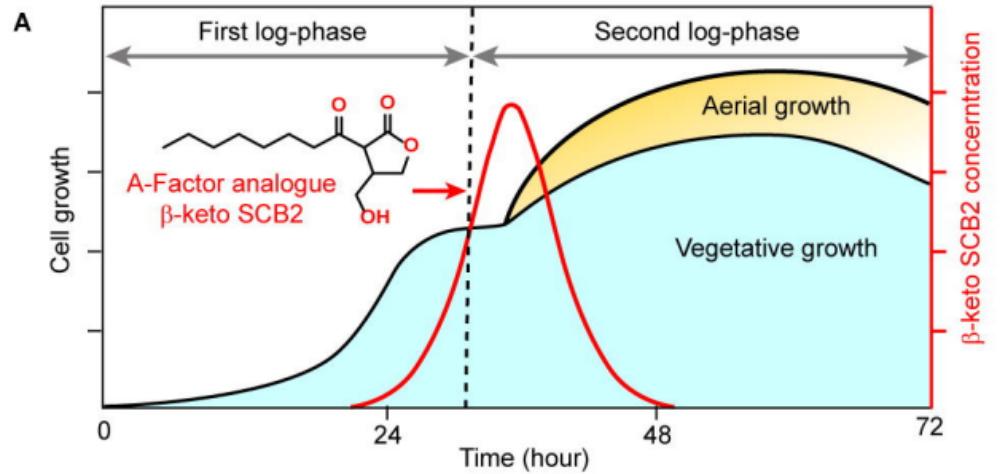

Load spore suspension

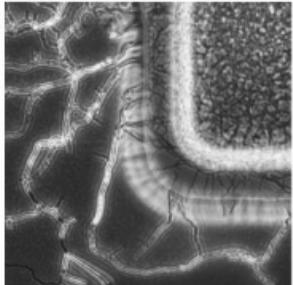



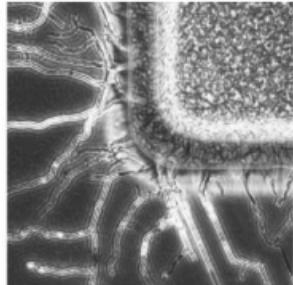







Drain the channel

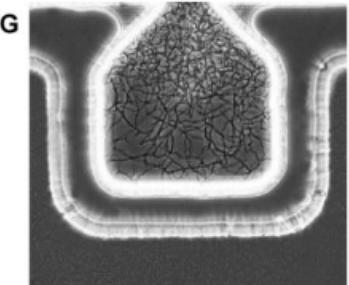






Infuse medium

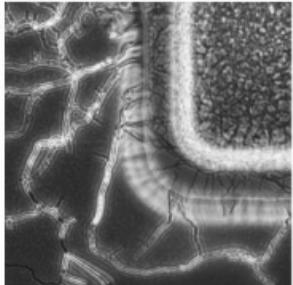




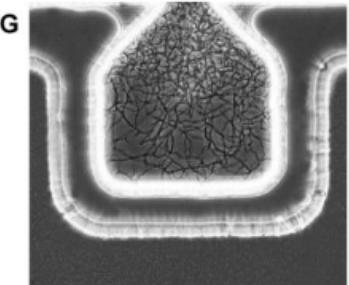
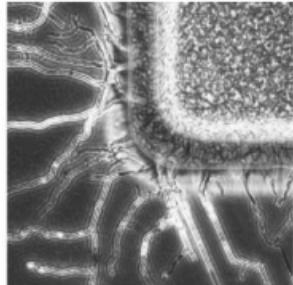
Wild-type


20 hour

30 hour



40 hour

Mutant with β-keto SCB2 addition at:

20 hour

30 hour

