

1 **Anatomy promotes neutral coexistence of strains 2 in the human skin microbiome**

3
4 Arolyn Conwill^{1,2,3}, Anne C. Kuan^{3,4}, Ravalika Damerla^{1,2,3,4}, Alexandra J. Poret^{1,2,3,4}, Jacob S.
5 Baker^{1,2,3}, A. Delphine Tripp^{1,2,3,5}, Eric J. Alm^{3,4,6}, Tami D. Lieberman^{1,2,3,6}

6
7
8 What enables strains of the same species to coexist in a microbiome? Here, we investigate if host
9 anatomy can explain strain co-residence of *Cutibacterium acnes*, the most abundant species on
10 human skin. We reconstruct on-person evolution and migration using 947 *C. acnes* colony
11 genomes acquired from 16 subjects, including from individual skin pores, and find that pores
12 maintain diversity by limiting competition. Although strains with substantial fitness differences
13 coexist within centimeter-scale regions, each pore is dominated by a single strain. Moreover,
14 colonies from a pore typically have identical genomes. An absence of adaptive signatures
15 suggests a genotype-independent source of low within-pore diversity. We therefore propose that
16 pore anatomy imposes random single-cell bottlenecks during migration into pores and
17 subsequently blocks new migrants; the resulting population fragmentation reduces competition
18 and promotes coexistence. Our findings imply that therapeutic interventions involving pore-
19 dwelling species should focus on removing resident populations over optimizing probiotic
20 fitness.
21

22

23

24

25

26

27

28

29

30

- 31 1. Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
32 2. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
33 3. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge MA, USA
34 4. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
35 5. Department of Systems Biology, Harvard University, Cambridge, MA 02138
36 6. Broad Institute of MIT and Harvard, Cambridge MA, 02139
37
38

39 **INTRODUCTION:**

40
41 All host-associated microbiomes live in environments with spatially structured environmental
42 variation generated by host anatomy and physiology. Spatial structure can be considered at
43 multiple length scales—from location along the gastrointestinal tract down to the level of
44 individual crypts and from distant regions on the skin down to the level of individual pores.
45 Revealing the spatial structure of microbial communities is critical for interpreting the
46 coexistence of diverse microbes (Chung et al., 2017; Welch et al., 2016), modeling community
47 assembly and stability (Kerr et al., 2002; Ladau and Eloe-Fadrosh, 2019; Tropini et al., 2017),
48 and predicting the response of microbiomes to therapeutics (Ferreiro et al., 2018; Koskella et al.,
49 2017).

50
51 To date, microbiome biogeography studies have largely focused on taxonomic characterization
52 at the species level or higher (Flowers and Grice, 2020; Grice and Segre, 2011; Oh et al., 2016),
53 and intraspecies diversity has received little attention (Rossum et al., 2020; Zhou et al., 2020).
54 Intraspecies diversity can emerge from both the migration of multiple strains to a host and the
55 mutation of individual strains on the host. Sustained diversity arising from both processes has
56 been observed within human microbiomes (Poyet et al., 2019; Zhao et al., 2019; Zhou et al.,
57 2020).

58
59 Understanding the forces that generate and maintain intraspecies diversity at both of these
60 levels is critical for the design of precision microbial therapeutics. For example, if adaptive
61 forces like niche partitioning are critical to strain coexistence, then fine-scale manipulation of
62 microbiomes will require understanding the genetic basis of strain success; however, if neutral
63 forces (e.g. priority effects) determine strain composition (Koskella et al., 2017), then
64 therapeutic approaches might depend instead on removal of extant strains.

65
66 Evolutionary reconstruction at the whole-genome level, when combined with fine-scaled
67 sampling, provides an opportunity to reveal migration dynamics across a host and the forces
68 maintaining intraspecies diversity (Chung et al., 2017; Jorth et al., 2015; Lieberman et al., 2016).
69 While metagenomic sequencing provides a powerful approach for surveying microbiomes, it
70 does not provide the resolution required for such evolutionary inference. Metagenomic
71 approaches cannot distinguish whether a detected polymorphism reflects recent on-person
72 mutation or the presence of homologous regions among co-colonizing strains. Moreover,
73 metagenomics cannot determine whether a pair of *de novo* mutations occurred on the same or
74 different genetic backgrounds (e.g. 2 mutations each at 20% frequency in the population). While
75 single-cell sequencing can in theory provide information about genomic linkage, current
76 technologies cover only a fraction of the genome and have high error rates. In contrast, culture-
77 based approaches that profile bacterial colonies, each formed from a single cell in the original
78 sample, enable true single-genotype resolution. We therefore use culture-based sequences to
79 obtain the resolution needed for evolutionary reconstruction across an individual host.

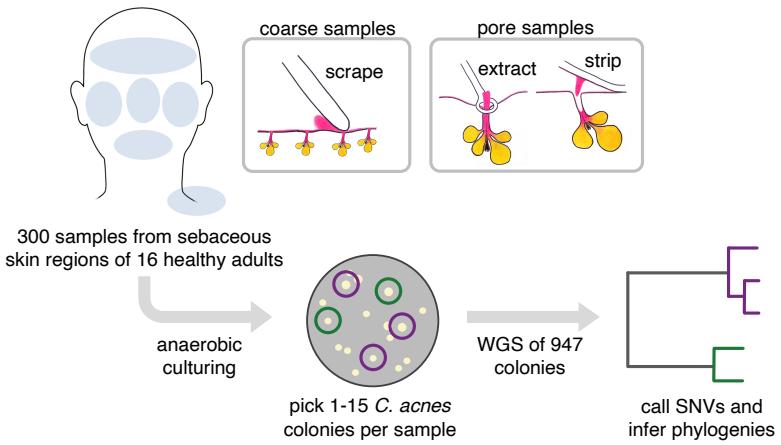
80
81 The skin microbiome provides an excellent opportunity for studying how spatial structure
82 shapes on-person diversity of commensal microbes (Byrd et al., 2018; Flowers and Grice, 2020)
83 due to the ease of acquiring samples across body sites and its tractability at multiple spatial
84 scales. Here, we focus on *Cutibacterium acnes*, the dominant commensal of sebaceous skin (oily
85 skin of the face and back), because: (1) it is prevalent and abundant across all healthy people; (2)
86 multiple strains of this species stably coexist on each person (Oh et al., 2016); and (3) it can be
87 sampled at multiple spatial scales. *C. acnes* is present on all healthy adults, comprising on
88 average 92% of the bacterial community on sebaceous skin (computed from (Oh et al., 2014)).

89 Despite its name, the role of *C. acnes* in acne vulgaris remains unclear (Dréno et al., 2018;
90 Lomholt et al., 2017; McLaughlin et al., 2019; O'Neill and Gallo, 2018).
91
92 Each adult has a unique mix of *C. acnes* strains (Oh et al., 2014). *C. acnes* cells grow faster in
93 anaerobic conditions (Cove et al., 1983) and are thought to consume sebum (the oily substance
94 produced by sebaceous glands at the bottoms of pores) (Brüggemann et al., 2004; Miskin et al.,
95 1997), making the follicles of pilosebaceous units (skin pores) their ideal environment (Fitz-
96 Gibbon et al., 2013; Hall et al., 2018; Leeming et al., 1984). *C. acnes*' residence in anatomical
97 locations that differ greatly in oxygen concentration, nutrient availability, and exposure to the
98 environment raises the possibility that strains display niche specificity. However, it is not yet
99 clear if niche specialization contributes to strain coexistence or why these person-specific
100 populations are resilient to invasion, particularly given the skin's exposure to the environment.
101
102 Here, we report that the anatomy and physiology of human skin promotes substantial
103 intraspecies diversity by segregating the *C. acnes* population across disconnected pores.
104 Strikingly, we find that each skin pore is dominated by a single *C. acnes* strain, despite
105 coexistence of multiple strains within the immediate vicinity. Reduced diversity persists down to
106 the single-nucleotide variant (SNV) level, and phylogenetic reconstruction suggests the presence
107 of single-cell bottlenecks within pores. These bottlenecks cannot be explained by adaptive
108 sweeps, as neutral evolution dominates signatures of on-person evolution. We therefore propose
109 a model in which pore anatomy and physiology gives rise to severe and genotype-agnostic
110 population bottlenecks in skin pores, thereby reducing interstrain competition and promoting
111 the maintenance of intraspecies diversity via non-selective means. More broadly, these findings
112 present a framework for using SNV-level spatial biogeography to uncover migration dynamics at
113 the subspecies level and highlight the capacity of anatomy to shape the ecology and evolution of
114 commensal microbes.

115
116
117

118 **RESULTS:**

119
120


121 ***C. acnes* biogeography at unprecedented spatial and genetic resolution**

122
123
124
125
126
127
128
129
130
131

In order to capture the biogeography of *C. acnes* on sebaceous skin of healthy people, we collected samples across multiple length scales (Figure 1). At the finest scale, we collected material from inside single sebaceous follicles—where most *C. acnes* growth is thought to take place—using comedone extractors and pore strips (pore samples; Methods). We incidentally collected samples that included material from multiple adjacent follicles (multipore samples; Methods). In addition, we collected samples on a coarser spatial scale (forehead, nose, left/right cheek, chin, shoulder, back quadrants) by scraping a long toothpick back and forth over a large sebaceous skin region (scrape samples). In total, we collected 300 samples from 16 healthy adults, including 145 pore samples from 5 of these subjects (Tables S1-S2).

132
133
134
135
136
137
138

Immediately after sampling, we streaked the collected material onto solid media and incubated in an anaerobic environment that favors *C. acnes* growth (Methods). We randomly selected 1-15 colonies per sample with colony morphology consistent with *C. acnes* for whole genome sequencing (Figure 1). All together, we obtained 947 high-quality genomes that passed purity and coverage filters (Methods).

FIGURE 1: *Cutibacterium acnes* biogeography at high spatial resolution and high genetic resolution. We collected *C. acnes* colonies from sebaceous skin regions (forehead, nose, right cheek, left cheek, chin, shoulder, back) from 16 healthy adult subjects. Samples were acquired at coarse spatial resolution with a toothpick (scrapes; N=155) and fine spatial resolution (pore extracts and pore strips; N=145). This approach enabled us to examine *C. acnes* biogeography with spatial resolution down to a single pore (sebaceous follicle). To understand how these samples were related to each other, we performed whole genome sequencing on 947 colonies (1-15 per sample), each of which represents the genetic content of a single cell that originated on the skin of one of our subjects. This approach enabled us to examine *C. acnes* biogeography with genetic resolution down to a single nucleotide variant (SNV).

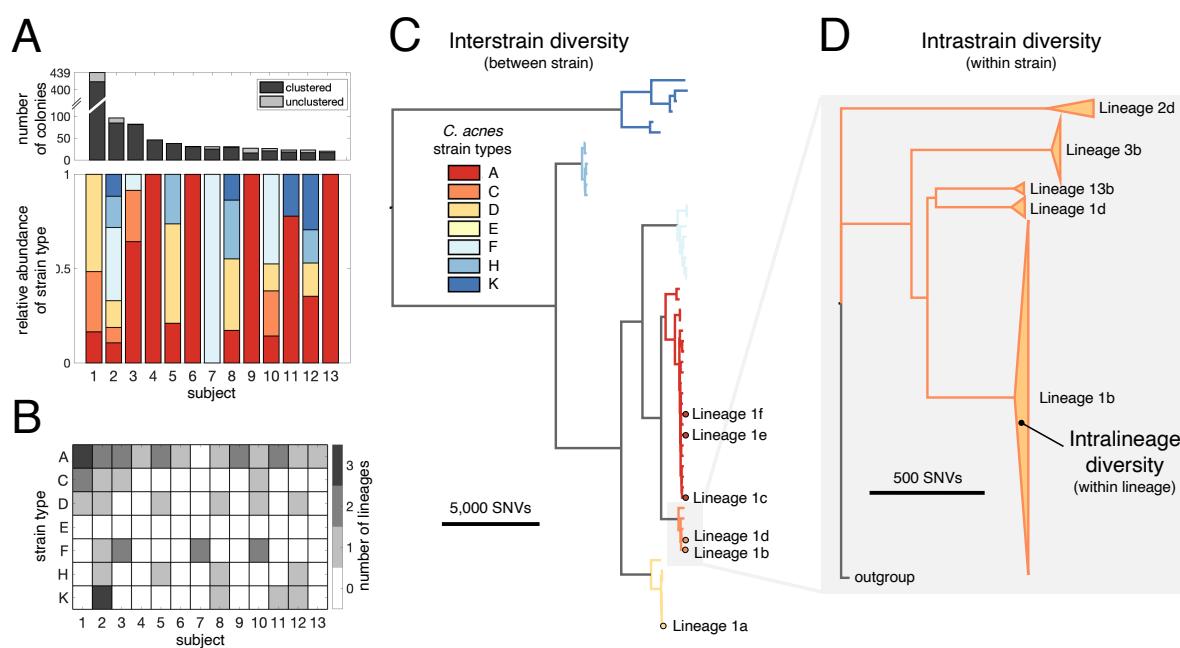
139

140 ***C. acnes* communities on individuals arise from multiple colonization events**

141

142 We first classified our colonies using an established typing scheme (Scholz et al., 2014)
143 (Methods); the 7 strain types represented in our dataset cover the majority of known *C. acnes*
144 diversity. Consistent with previous work (Lomholt et al., 2017; Oh et al., 2014), we find that
145 multiple *C. acnes* strain types typically reside on an individual person. However, the
146 phylogenetic distribution of strain types present varies considerably from person to person
147 (Figure 2A).

148


149 To assess whether colonies of the same strain type might originate from independent
150 colonization events, we quantified genomic divergence using a reference-based approach and
151 focused primarily on single nucleotide variants (SNVs) (Methods; Figure 1). This approach
152 captures the vast majority of the intraspecies variation because *C. acnes* has a small accessory
153 genome (~10% variation between strain types), primarily composed of genomic islands that do
154 not vary among colonies of the same strain type (Brzuszkiewicz et al., 2011; Scholz et al., 2016;
155 Tomida et al., 2013) (Table S3). Plasmids make up most of the mobile gene content, and 31%
156 colonies have evidence of a plasmid (Brüggemann et al., 2012; Kasimatis et al., 2013) (Methods;
157 Table S2).

158

159 We found that colonies from the same individual, but not different individuals, were often very
160 closely related: while >99% of pairs of colonies from different subjects were separated by >35
161 SNVs across their genomes, 28% of pairs of colonies from the same subject had genetic
162 distances below this threshold (Figure S1). This disparity suggests that closely related colonies
163 emerge from on-person diversification from a recent ancestor on that individual (Zhao et al.,
164 2019; Zhou et al., 2020). We therefore clustered colonies into lineages based on genetic
165 distances, resulting in 54 lineages — each of which contains colonies from only one subject
166 (Methods; Figure 2B-D; Table S4). Because we imposed a minimum cluster size of 3 colonies,

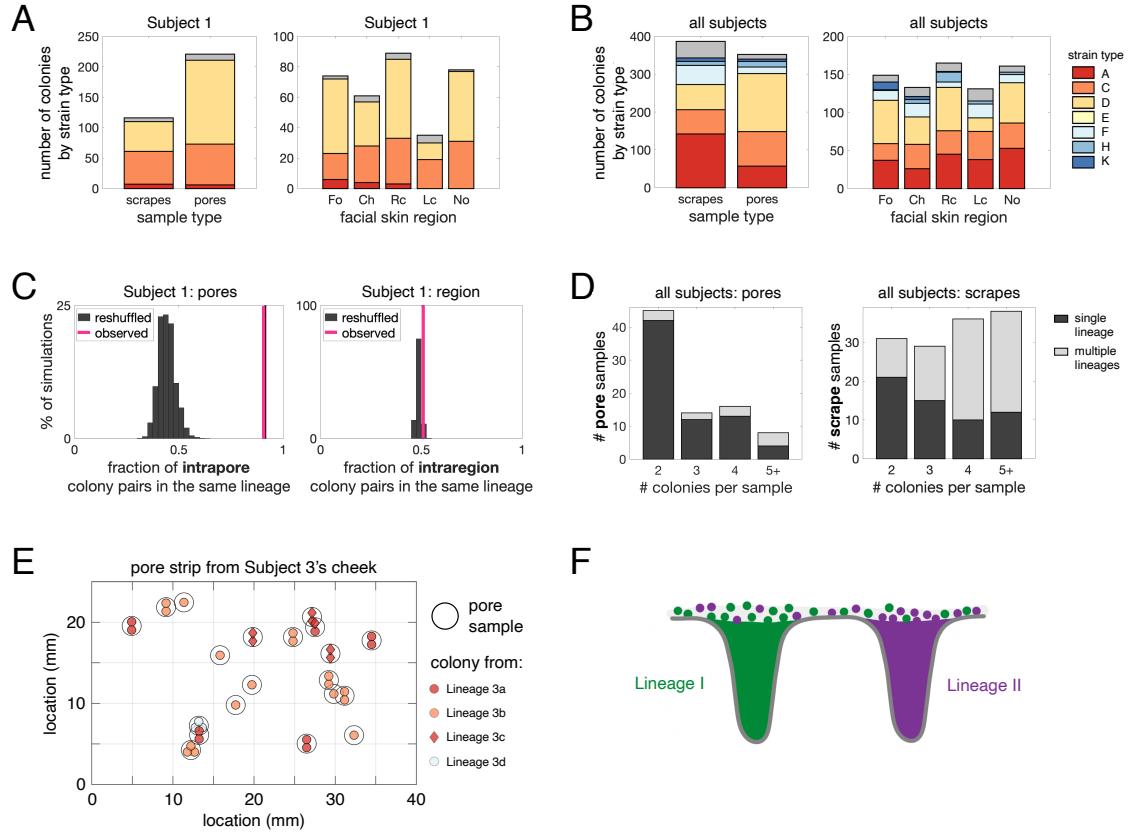
167 some colonies do not belong to any cluster; these represent either low-abundance genotypes or
 168 transient non-resident genotypes from the external environment. While colonies within a cluster
 169 have diverged only 0-26 SNVs from their lineage's inferred common ancestors (median within a
 170 cluster; Table S5), lineages are much more divergent from one another (Figure 2C-D).
 171

172 The clustering of colonies into lineages allowed us to estimate the number of colonization events
 173 on each individual. Each lineage might represent a distinct colonization event (Zhao et al.,
 174 2019), or a lineage might reflect multiple colonization events if a person is colonized by multiple
 175 closely related genotypes (e.g. multiple genotypes from a parental lineage transferred to a child).
 176 Therefore, the number of *C. acnes* lineages found on a person represents the minimum number
 177 of *C. acnes* genotypes that successfully colonized a person. We note that we underestimate
 178 lineage coexistence on many subjects, as most were not sampled exhaustively (Figure S1, Table
 179 S1). Intriguingly, we often detected multiple lineages of the same strain type on an individual
 180 subject (Figure 2B), demonstrating that an individual host can be colonized by the same strain
 181 type multiple times. In the most extreme case, Subject 2 has been colonized at least 9 distinct
 182 lineages from 6 strain types.
 183

FIGURE 2: *C. acnes* lineages from distinct colonization sources coexist on individuals. (A) Multiple coexisting strain types of *C. acnes* typically reside on the skin of healthy adults, with the strain-level composition varying between individuals (lower panel). The number of *C. acnes* colonies per subject is shown in the top panel, with the number of unclustered colonies in light gray. Only subjects for whom at least 20 colonies passed quality filters are shown (Methods). The relative abundances of *C. acnes* strain types on each subject is based on an established *C. acnes* strain typing scheme (Scholz et al., 2014). (B) Subjects often have multiple lineages belonging to the same strain type. We note that the number of lineages detected on an individual is sensitive to sampling depth (Figure S1). (C) Phylogenetic relationship of 53 *C. acnes* lineages detected across all subjects is shown and colored by *C. acnes* strain type. All six distinct coexisting lineages found on Subject 1 are highlighted. (D) A zoom-in of strain type C illustrates that lineages within a strain type are separated by large genetic distances relative to intralineage diversity. The heights of triangles are proportional to the number of colonies in each lineage and their widths represent the extent of intralineage genetic divergence. Lineages are named by subject number and then indexed by size within each subject using lowercase letters.

184 **Coexistence of *C. acnes* strain types does not arise from specificity to anatomical**
185 **niche**

187 To test if strain types coexist because they are equally competitive, we measured their growth
188 rates *in vitro*. Even in the simplest of laboratory conditions, we noticed substantial differences
189 between strains originating from the same person. We assessed growth rates for 18 colonies
190 from the 3 most abundant lineages on Subject 1 (the most intensively sampled subject), all from
191 different strain types and cultured from the same timepoint (Figure S2). We find that growth
192 rates vary up to 30% across colonies ($p < 10^{-12}$, ANOVA), with variation apparent both within
193 and across lineages. We therefore sought to identify what enables *C. acnes* strain types with
194 different competitive abilities to coexist *in vivo*.


195
196 The stable coexistence of diverse *C. acnes* strain types might arise from niche specialization to
197 anatomical features. In particular, the environment on the skin surface differs dramatically from
198 that inside skin pores in terms of oxygen concentration, nutrient availability, and other factors
199 (Adamson and Lipoff, 2021; Plewig et al., 2019). We therefore looked for differences in strain
200 types when sampling directly from the follicle of a pore (extract and pore strip samples) as
201 compared with sampling across the skin surface (scrape samples). However, we did not observe
202 strain specificity to the skin surface vs skin pores on Subject 1 (Figure 3A) or across subjects
203 (Figure 3B). This suggests that *C. acnes* strain types are not specialized to either the pore or the
204 skin surface environment and that diverse strain types are similarly competitive across
205 anatomical settings.

206
207 We next explored the possibility that some strain types are better adapted to particular skin
208 regions (e.g. nose vs forehead), but we find no signature of specialization on the face. Diverse
209 strain types coexist in close proximity within facial skin regions on Subject 1 (Figure 3A). This
210 pattern holds across subjects, where we do not find any enrichment patterns indicating facial
211 region specificity (Figure 3B). This lack of specialization on the face is consistent with previous
212 metagenomic and culture-based studies (Lomholt et al., 2017; Oh et al., 2014, 2016). Some
213 subjects, however, harbor substantial compositional differences in their *C. acnes* strain types
214 between the face and back, a pattern also apparent in publicly available metagenomic data
215 (Figure S3) (Oh et al., 2014). Interestingly, we find no consistency in which strain types are
216 enriched on faces and backs. This lack of consistency argues against a 'back-adapted' or 'face-
217 adapted' strain and instead implicates neutral forces such as limited migration or priority effects
218 (forces that favor early colonizers over new migrants). Together, these findings support a model
219 in which *C. acnes* strain types are not specialized to specific anatomical regions.

220
221 **Each skin pore is dominated by only one lineage**
222
223 The lack of niche specialization to anatomical features raises the question of how the skin
224 environment prevents strain types from outcompeting each other. We next investigated fine-
225 scale spatial resolution, focusing on the lineage level and on samples obtained from pore follicles
226 (pore strips and extracts).

227
228 At the level of individual pores, we observe a striking absence of diversity (Figures 3C-D). This
229 can be most clearly seen by close examination of Subject 1, from whom we sampled the greatest
230 number of pores. Pairs of colonies from Subject 1 originating from a pore belong to the same
231 lineage at a significantly higher rate than would be expected if genotypes were randomly
232 distributed (91% vs 44%, $p < .0001$; Figure 3C). Notably, from the most densely sampled pore, 11
233 of 11 colonies are from the same lineage (sample 5 in Lineage 1a). Across all subjects, we observe

235 similar trends of lineage-enrichment within pores, despite lineage coexistence within scrapes
 236 (Figure 3D). This segregation persists even when pores are closely spaced; for instance, in a 1
 237 square cm section of a pore strip from Subject 3, we found 3 different lineages, despite each pore
 238 containing only a single lineage (Figure 3E).
 239

FIGURE 3: *C. acnes* lineages are spatially segregated into different pores despite coexistence on skin regions. (A-B) Niche specificity does not explain coexistence of strain types on an individual. Strain types follow the same color scheme as in Figure 2. (A) *C. acnes* strain types on Subject 1 are not specific to sample type (coarse scrape samples vs pore samples) or to skin regions (Fo=forehead, Ch=chin, Rc=right cheek, Lc=left cheek, No=nose). (C) Multiple strain types or lineages do not typically coexist within the same pore. Pairs of colonies from the same pore belong to the same lineage 91% of the time (pink line). In contrast, randomly reshuffled colonies from the same pore belong to the same lineage only 44% of the time (gray histogram; $p<0.0001$). In comparison, colonies originating from different pores within the same facial region are only slightly more likely to be from the same lineage than when compared to a random model ($p=0.03$). (D) The enrichment of single lineages within individual pores persists across all subjects. Colonies from the same pore sample typically belong to the same lineage (left), whereas colonies from the same coarse samples often belong to more than one lineage (right). Analyses in (C) and (D) exclude pore samples originating from more than one follicle. (E) A pore strip from Subject 3 (left cheek section) illustrates how pores housing different lineages can be in close vicinity to each other. Each black circle represents a single pore sample, and each interior symbol represents a colony from that follicle. Symbol colors indicate strain type and symbol shapes indicate lineage. (F) These findings demonstrate that lineages are spatially segregated into different pores, despite lineage coexistence within skin regions.

241 Although low within-pore diversity (Figure 3F) might arise from sampling methods that only
242 capture representatives from a part of the follicle, we note that previous work using light
243 microscopy to image skin biopsies after blackhead extraction suggests that extractions are
244 capable of removing the majority of the follicular contents (Plewig, 1974).

245

246

247 **Monocolonization of pores results from neutral bottlenecks**

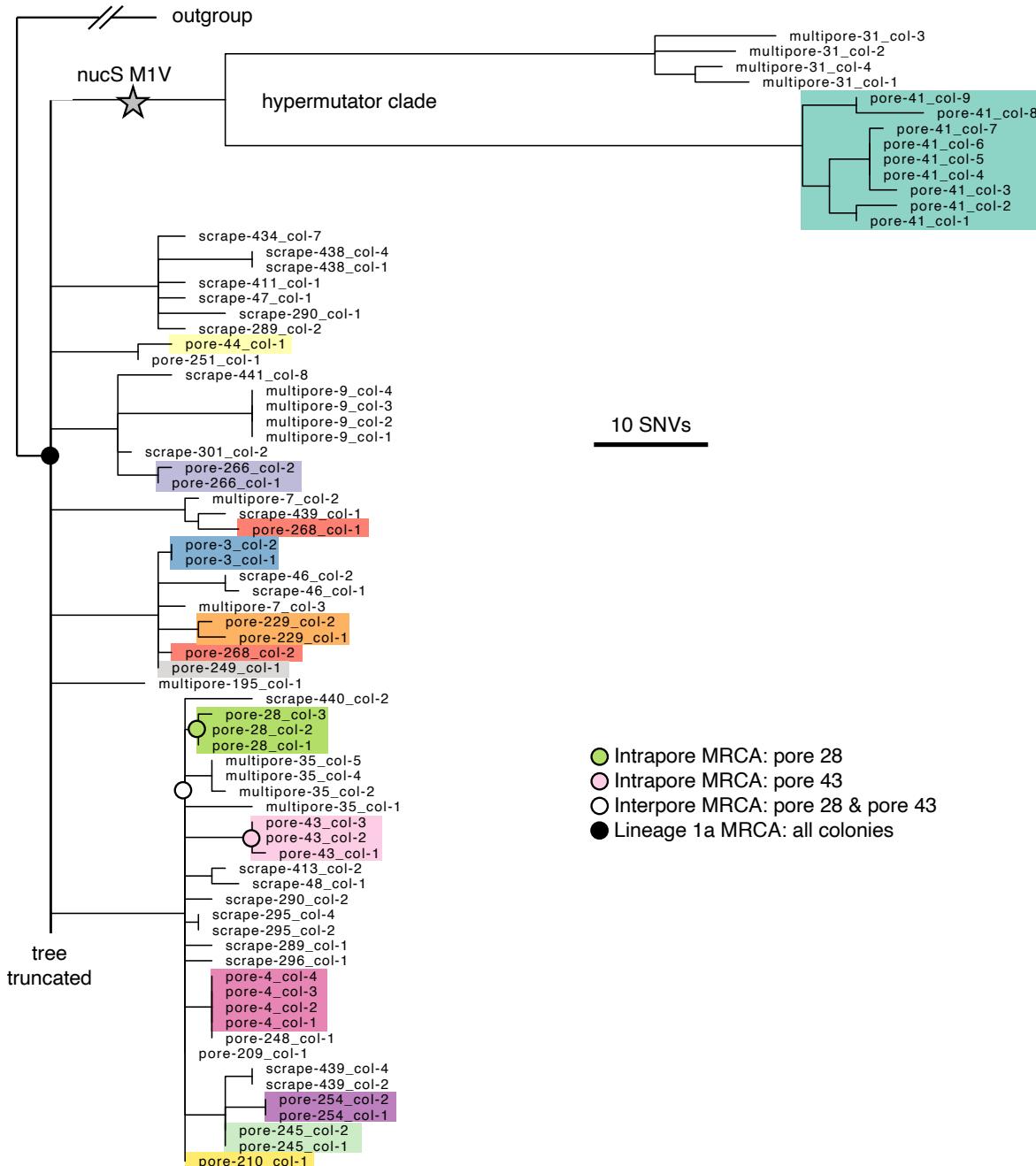
248

249 Spatial segregation of *C. acnes* lineages in skin pores could arise from priority effects or from
250 pore-specific selection shaped by the host or other microbes. We reasoned that these
251 mechanisms would result in different degrees of within-pore diversity when examined at the
252 whole-genome level, as well as different signals of adaptive evolution. Exclusion via priority
253 effect or adaptive sweep within a pore would result in a single genotype within each pore, while
254 selection for members of a particular lineage would sometimes result in coexistence of distinct
255 migrants of the same lineage.

256

257 At the level of individual SNVs (Methods; Table S5), we find a striking lack of *C. acnes* intrapore
258 diversity, with colonies from the same pore clustering tightly together on the phylogeny (Figure
259 4; Figures S4-6). Colonies from the same pore often form monophyletic clades, and in some
260 cases share mutations not detected anywhere else or rare plasmid variants (Figure S7).

261


262 Moreover, metrics of intrapore diversity are extremely low relative to each lineage's total
263 diversity, as assessed by genetic distances to various inferred most recent common ancestors
264 (MRCA). Colonies in Lineage 1a (the largest lineage from Subject 1) from single pore samples
265 have on average less than 1 mutation since their intrapore MRCA, whereas pairs of pores from
266 this lineage typically have 4-8.5 mutations (25%-75% percentiles) since their interpore MRCA
267 (Figure 5A). This pattern of extremely low intrapore diversity, in both absolute and relative
268 scales, is consistent across lineages and subjects (Figure 5A; Figures S4-6; Table S5).

269

270 Although the molecular clock rate for *C. acnes* is not known and we were unable to accurately
271 measure it (Figure S8), all reported bacterial molecular clocks from human infection or
272 colonization range between 0.5 SNVs/genome/year and 30 SNVs/genome/year (Didelot et al.,
273 2016; Zhao et al., 2019). Therefore, our observation of low intrapore diversity (median 0 SNVs
274 since pore MRCA, 25%-75% percentiles: 0-0.6 SNVs; Methods) suggests that the population
275 within each pore typically descended from a single cell about 1 year ago and hints that priority
276 effects may be important to the exclusion of other strain types.

277

278 There are two pore samples in Lineage 1a that have diverged further from the lineage MRCA (45
279 and 56 SNVs vs a mean of 9 SNVs; Grubbs outlier test) and harbor more intrapore diversity. We
280 suspected that this excess diversity might be due to hypermutation, an accelerated mutation rate
281 that is common in laboratory experiments (Sniegowski et al., 1997) and *in vivo* (LeClerc et al.,
282 1996), usually caused by a defect in DNA repair (Oliver, 2010). Consistent with this hypothesis,
283 these colonies share a mutation that eliminates the start codon of the *nucS* gene, which encodes
284 for an endonuclease critical for the repair of transition mutations (Castañeda-García et al.,
285 2020; Ishino et al., 2018). Indeed, we observe an enhancement in the ratio of transition to
286 transversion mutations in the hypermutator clade (Figure S4). This finding suggests that these
287 pores were physiologically similar to other pores, and that an increased mutation rate enabled *C.*
288 *acnes* to accumulate more diversity between the most recent single-cell ancestor and sampling.

FIGURE 4: Each pore harbors only a small fraction of intralineage diversity. Maximum parsimony tree of the most abundant lineage on Subject 1, Lineage 1a, in which each leaf represents a single colony. Colonies are colored by pore (excluding multipore samples and pore samples with only one colony), emphasizing low within-pore diversity. The long branches at the top of the phylogeny display a hypermutator phenotype (Figure S4). For any given non-hypermutator pore, the mean genetic distance of colonies to the pore's inferred most recent common ancestor (MRCA) is usually less than 1 SNVs (median across pores: 0 SNVs; 25%-75% percentiles: 0 to 1.1 SNVs). Four example inferred ancestral genotypes are marked on the tree. Due to space limitations, the tree is truncated; see Figure S4 for the complete tree.

290 The finding of a recent single-cell ancestor for each pore is particularly surprising given that
291 single pores contain on average 50,000 colony-forming units of *C. acnes* (max 10^8 CFU; Figure
292 S9) (Claesen et al., 2020). Such large population sizes generally limit the speed of neutral
293 genetic drift (Hartl and Clark, 2006); classic models of neutral evolution predict that it would
294 take over 100,000 bacterial generations (in this case, likely hundreds of years) for a neutral
295 mutation to sweep a population of this size. Therefore, our observations suggest the presence of
296 either conditions that enhance genetic drift or adaptive mutational sweeps that swiftly purge
297 diversity.

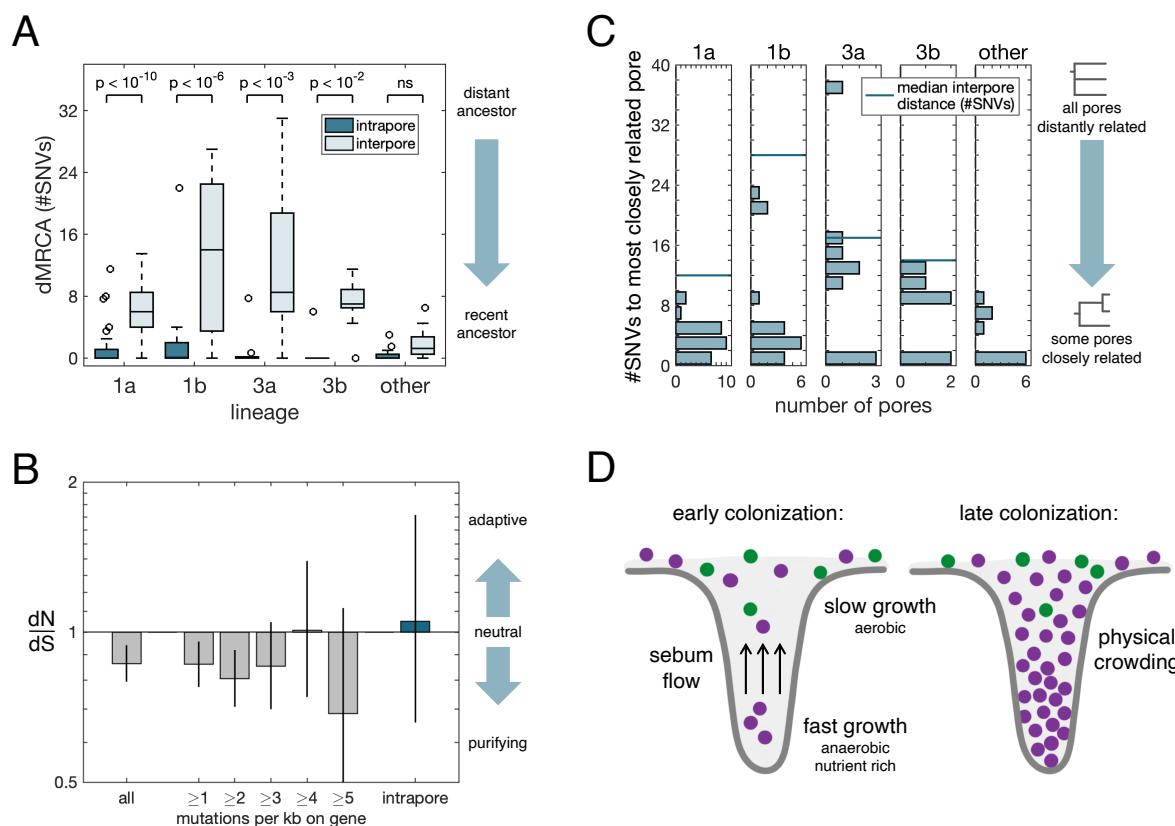
298 To test if adaptive sweeps might be responsible for purging diversity inside pores, we examined
299 within-lineage mutations for evidence of past adaptation. Parallel evolution is a common
300 signature of adaptation in bacteria that manifests as an enrichment of mutations in genes or
301 pathways under selection relative to a neutral model (Lieberman et al., 2011; Zhao et al., 2019).
302 However, we detected no cases of parallel evolution across all 2,445 *de novo* mutations in coding
303 regions, across mutations occurring on a subject, across mutations occurring within a lineage, or
304 among intrapore mutations (Figure S10, Methods). Moreover, we identified a depletion of
305 nonsynonymous (amino-acid changing) mutations relative to a neutral model among all *de novo*
306 mutations ($dN/dS < 1$, Figure 5B), which is invariant to the number of times a gene was
307 mutated, the inferred age of a mutation, or functional pathways (Figure S10). These signals
308 suggest that neutral forces shape on-person evolution of *C. acnes* and argue against selective
309 sweeps as the driver of within-pore bottlenecks. Instead, we propose that low within-pore
310 genetic diversity stems from frequent, neutral population bottlenecks induced by pore anatomy
311 and physiology.

312

313

314

315 **Pore anatomy and physiology are sufficient to create bottlenecks during 316 colonization**


317

318 We next asked if these recent population bottlenecks occurred long after pore populations were
319 established, or, instead, during recent migration into a pore. If pore populations are segregated
320 for long periods of time, the recent bottlenecks observed here would reflect only the most recent
321 bottleneck in a series of in-pore bottlenecks; in this case, sequential intrapore sweeps would
322 create large genetic distances between the MRCA of each pore. Instead, we find that most pores
323 have a closely related population in another pore, with many pairs of pores sharing SNVs
324 inferred to have occurred recently (Figure 5C; Figures S4-6). These findings are consistent with
325 recent transmission of genotypes between pores. Combined with our observations of young
326 populations within pores (Figure 5A), the finding of recent common ancestors between pores
327 supports a model in which neutral bottlenecking occurred during recent pore colonization or re-
328 colonization events.

329

330 We propose that pore physiology can create such bottlenecks (Figure 5D; Figure S11). We
331 modeled the process of pore colonization, using published values for relevant physiological
332 parameters (Butcher and Coonin, 1949; Cove et al., 1983; Plewig, 1974) and the assumption that
333 most *C. acnes* growth occurs in the favorable conditions at the bottom of pores. First, since *C.*
334 *acnes* is not motile (Brüggemann et al., 2004), it must rely on growth and diffusion in order to
335 reach the bottom of a pore. Estimations of the diffusion coefficient of a bacterial cell in sebum
336 and of the sebum flow speed suggest that most potential colonizers are quickly pushed out of the
337 follicle by the sebum flow (Butcher and Coonin, 1949; Plewig, 1974); it is rare for a cell to remain
338 in a pore for more than one doubling-time. Second, *C. acnes* cells likely cannot proliferate
339 rapidly until they reach lower depths in the pore, where the environment is anaerobic and
340 nutrient rich due to sebum production (Cove et al., 1983; Flowers and Grice, 2020). Third, solid

341 obstacles, including bacterial mass and dead human cells (Jahns and Alexeyev, 2014; Plewig et
 342 al., 2019), embedded in sebum will further slow diffusion, making it even more difficult for
 343 potential invaders to colonize. In this way, pore physiology could enable a lucky single cell to
 344 found a pore's resident population, with abundant growth at the bottom of the pore blocking
 345 new migrants.
 346

FIGURE 5: Neutral forces give rise to population bottlenecks during pore colonization.

(A) The pattern of small intrapore dMRCA (distance to the MRCA, averaged across colonies) as compared with interpore dMRCA (average distance from the two pore MRCA to their interpore MRCA) is consistent across subjects and lineages (Wilcoxon rank-sum test with Bonferroni correction). This indicates that pore populations are subject to recent strong bottlenecks and are ecologically isolated from each other. Analysis for (A) and (C) included all single pore samples (excluding hypermutators in Lineage 1a); pores from lineages containing fewer than five such samples are grouped as “other”. (B) Across all within-lineage SNVs, dN/dS (the ratio of nonsynonymous to synonymous mutations, relative to a neutral model; Methods) is slightly negative, indicative of purifying selection. Values of dN/dS for genes with high mutational densities among within-lineage mutations are consistent with a neutral model, as is dN/dS for mutations inferred to have occurred inside pores. These findings suggest that neutral evolution dominates *C. acnes* evolution on individuals and that adaptive sweeps are not responsible for low within-pore diversity. Error bars indicate 95% CIs. See Figure S10 for a more detailed analysis. (C) Pairs of pores on a person often share very recent common ancestry, suggesting that neutral bottlenecks occurred during a recent pore colonization or re-colonization event. The genetic distance between two pores is equal to twice the interpore dMRCA. Given that the number of pores sampled per subject was vastly smaller than the total number of pores on a person, these values underestimate the commonality of shared mutations between pore populations. (D) Pore physiology may contribute to the neutral bottlenecks process (see also Figure S11). Sebum flow out of the pore, the environmental gradient along the length of the pore, and physical crowding all make it more difficult for a cell to colonize a pore.

347 Despite small distances between some pore MRCA, the MRCA for each lineage as a whole is
348 substantially older (Figure 5C). These data are consistent with a model in which pore
349 populations studied here were established long after a given lineage initially migrated onto a
350 subject's skin. We therefore propose that these colonization events may represent pore re-
351 colonization events following a disturbance to the underlying community, perhaps caused by the
352 immune system, phage predation, or physical clearing.

353

354

355 **Pores are colonized by *C. acnes* genotypes from distant locations**

356

357 To understand migration dynamics across pores, we turned to pore strip data, where each pore
358 sampled has defined spatial coordinates (Figure S12; Table S6). In the case that pores are
359 colonized preferentially by their neighbors, we would expect to see spatial confinement of
360 genetic variants that emerged recently. However, similar to our previous observation that
361 lineages themselves are not specific to certain facial skin regions, we find that closely related
362 pores can be separated by large physical distances (e.g., Figure S5). To assess this quantitatively,
363 we created a neutral model in which spatial coordinates are randomly shuffled and assessed
364 whether pores with closely related genotypes were more likely to be in the vicinity of each other
365 than by random chance, and we find no evidence of spatial confinement at the SNV level (Figure
366 S13). This finding suggests that the timescale for a new genotype spreading across facial skin
367 regions is faster than the timescale for further genetic diversification. This is consistent with a
368 model in which *C. acnes* cells primarily grow within pores and are transferred across the skin to
369 newly opened pores via long-range dispersal mechanisms (e.g. washing or touching).

370

371

372 **Skin pores promote coexistence and stability of extant *C. acnes* lineages**

373

374 Altogether, our results support a model in which bottlenecking in skin pores and, therefore, skin
375 anatomy and physiology, play a major role in *C. acnes* on-person ecology. As a consequence of
376 severe spatial segregation into island-like units, *C. acnes* populations in different pores do not
377 rely on the same resources for growth. Theoretical work has proposed that such spatial
378 segregation promotes neutral coexistence by reducing the strength of ecological interactions
379 (Coyte et al., 2015). We propose that the reduction in competition promoted by isolated pores
380 can help explain the coexistence of *C. acnes* lineages on skin.

381

382 Moreover, the priority effects created by pores may help explain the surprising observations that
383 an individual's strain types are stable over time despite the skin's exposure to the outside world
384 (Oh et al., 2016). First, the physiology of pores insulates their *C. acnes* populations from the
385 external environment. Moreover, sebum flow ensures that *C. acnes* cells on the skin surface
386 originating from pores outnumber those originating from the environment. Consequently,
387 already established lineages will have a higher likelihood of colonizing a newly available pore.
388 Longer timeseries data will be crucial to understanding the extent to which pores stabilize
389 community dynamics over the host's lifetime.

390

391 Taken together, our findings support a model in which skin pores play a critical role in *C. acnes*
392 ecology. Skin pores provide an environment well-suited for *C. acnes* growth, but population
393 bottlenecking limits the amount of genetic diversity each pore harbors. As a consequence, skin
394 pores both reduce competition between strain types via spatial segregation and favor the
395 existing community via a priority effect. These forces work together to create a stable skin
396 population resilient to invasion.

397

398

399

400 **DISCUSSION:**

401

402

403 **Skin pores promote strain coexistence via neutral processes**

404

405 In this work, we have shown that skin anatomy strongly influences the generation and
406 maintenance of intraspecies diversity in *C. acnes*, a prevalent and prominent commensal on
407 human skin. Our culture-based approach and fine-scaled sampling methods enabled us to
408 examine *C. acnes* biogeography with resolution down to single SNVs and single skin pores
409 (Figures 1-2). This resolution was essential for uncovering that the *C. acnes* population in a
410 single skin pore is extremely bottlenecked (Figures 3-5). We propose that this bottlenecking can
411 explain the stable coexistence of diverse *C. acnes* populations on individual adults (Oh et al.,
412 2016), despite differences in strain fitness and despite the skin's exposure to the environment.

413

414 We did not sample enough individuals in this study to characterize how different skincare
415 regimens or history of treatment for acne might alter *C. acnes* biogeography. As we only studied
416 adult subjects without acne vulgaris, future studies will be needed to understand implications of
417 these findings for acne (Dréno et al., 2018; Lomholt et al., 2017; McLaughlin et al., 2019; O'Neill
418 and Gallo, 2018). However, we note that we found similar patterns across all subjects studied,
419 suggesting that our observation of low within-pore *C. acnes* diversity is not driven by a specific
420 skincare regimen.

421

422 Future studies will be needed to understand if the findings we report for *C. acnes* are relevant to
423 other skin commensals, and, more broadly, if crypt-like structures promote intraspecies
424 diversity in other microbiomes. Intriguingly, our dataset includes 3 pore samples from which we
425 cultured multiple clonal *Cutibacterium granulosum* colonies (Figure S14), hinting that the
426 process leading to low within-pore *C. acnes* diversity may also apply to other related pore-
427 dwelling species on human skin (Mak et al., 2013). However, we do not necessarily expect these
428 patterns to hold for *Staphylococcus epidermidis* and related species, which are thought to grow
429 primarily at the tops of pores and on the skin surface (Plewig et al., 2019).

430

431 Beyond the skin, the crypts of the large intestine have been shown to promote priority effects
432 among *Bacteroides* in mice (Whitaker et al., 2017). However, at least for *Bacteroides*
433 *fragilis*, toxin secretion is thought to be integral to exclusion of other strains (Hecht et al.,
434 2016); this non-neutral filtering mechanism may explain why strain co-existence in this species
435 is rare (Garud et al., 2019) despite the presence of crypts and priority effects. We speculate that
436 the importance of crypt-like structures in maintaining intraspecies diversity will depend both on
437 microbial strategies and whether the particular anatomical and physiological conditions induce
438 single-cell bottlenecks.

439

440

441 **Role of skin pores in the balance of neutral and adaptive evolution**

442

443 Our finding that SNV-driven adaptive evolution is exceedingly rare in *C. acnes* evolution—to the
444 point where it is undetectable here (Figure 5; Figure S10)—is surprising in light of recent reports
445 of rapid adaptive evolution in other stable members of human microbiomes (Poyet et al., 2019;
446 Zhao et al., 2019). While low population sizes can limit adaptive evolution (Ghalayini et al.,
447 2018; Hartl and Clark, 2006), *C. acnes* populations on individuals can reach up to 10^{10} cells,
448 suggesting ample potential for on-person evolution. One possible explanation for our

449 observation is that exceedingly few beneficial mutations remain to be explored (Wielgoss et al.,
450 2013; Wiser et al., 2013). For example, the skin microenvironment might be relatively stable
451 compared to the variable environment of the human gut, selective pressure from bacteria might
452 be limited by the relatively low complexity of the microbial community on skin (Oh et al., 2014),
453 or follicle structure or sebum flow might limit phage predation (Lourenço et al., 2020)—all of
454 which would result in fewer opportunities for adaptation for skin commensals.
455

456 Alternatively, it is possible that our observations of largely neutral evolution arise from the
457 dominance of stochastic forces on the skin. To that end, we hypothesize that the physical
458 structure of pores may create an environment in which luck and location—rather than
459 genomically-encoded fitness—predict success, therefore limiting the adaptive potential of *C.*
460 *acnes* on individual people. Bottlenecking suppresses selective forces by both reducing
461 competition between cells with different genotypes and by introducing randomness in which
462 cells get to proliferate (Barrick and Lenski, 2013; Lieberman et al., 2005; Tenaillon et al., 2016).
463 In addition, genetic drift may be favored because the number of cells that are actually growing
464 might be substantially smaller than the census population (e.g. if bacterial replication were
465 restricted to the very bottom of the follicle) (Hartl and Clark, 2006). In the case of a narrow
466 growth region, physical crowding of cells inside a pore (Jahns and Alexeyev, 2014; Plewig et al.,
467 2019) may exclude beneficial mutants from the growth layer (Schreck et al., 2019). These
468 proposed mechanisms emphasize how host anatomy has the potential to suppress selective
469 forces and tip the balance toward more neutral outcomes. They also raise an interesting
470 question of whether these structures have evolved because limiting commensal evolution is
471 beneficial to the host (Foster et al., 2017).
472
473

474 **Implications for microbial therapeutics**

475
476 Understanding how host anatomy and physiology influence strain-level composition in
477 microbiomes is critical to the design of precision microbiome therapeutics—particularly those
478 that are intended to engraft into the existing community or remove a member of that
479 community. This study of skin pores exemplifies how host anatomy can contribute to strain-
480 level coexistence and stability via neutral means, with implications for the development of
481 microbiome-based therapeutics (Costello et al., 2009; Paetzold et al., 2019; Schmidt, 2020). In
482 particular, these results suggest that the ability of a probiotic strain to engraft on sebaceous skin
483 will hinge less on the probiotic strain’s competitive fitness and more on efficient removal or
484 destabilization of the existing community prior to treatment.
485

486 Here, we have shown that evolutionary reconstruction of mutations—including neutral ones—at
487 the SNV scale reveals migration dynamics in the microbiome and provides insight into the
488 processes by which genetic diversity is maintained. We anticipate that future studies applying
489 similar evolutionary approaches to other microbes will accelerate development of the
490 mechanistic understanding needed for precision microbiome engineering.
491
492
493
494

495 **MATERIALS AND METHODS:**

496

497

498 **Human subjects and sample collection**

499

500 Healthy adult subjects who had not taken antibiotics in the past 3 months were recruited under
501 a protocol approved by MIT's Institutional Review Board. Subjects were asked to wash their face
502 with gentle soap prior to sampling to enrich for resident bacteria. In order to sample from
503 diverse anatomical features—including skin pores (sebaceous follicles) and the skin surface—
504 three sampling methods were employed (Figure 1).

505

506 Scrape samples were collected using a long sterile toothpick to survey bacteria from both the
507 surface and the tops of pores within a given facial region. Scrape samples were collected from
508 each subject at 8 standardized regions: forehead, left cheek, right cheek, chin, upper right back,
509 upper left back, lower left back, and lower right back. From some subjects, additional scrape
510 samples were collected (Tables S1 and S2). Each toothpick was dragged at an angle using 1-2
511 inch strokes about 10 times over the region to be sampled, turning occasionally to maximize
512 biomass collection. Each toothpick was then used to immediately inoculate Brucella Blood Agar
513 plates (Hardy Diagnostics) and spread for single colonies using fresh inoculator loops.

514

515 For select subjects, samples from inside pore follicles were collected using a comedone extractor
516 or pore strips. Pilosebaceous units (pores) to be sampled via comedone extraction were
517 identified visually as blackheads or whiteheads, and a sterilized comedone extractor was used to
518 apply pressure to the surrounding area of skin. Most extracts removed contents from a single
519 pore as a semi-solid plug. However, some attempts resulted in the extraction of contents from
520 multiple follicles; these samples were labeled as 'multipore' samples. For single-pore and
521 multipore samples, a sterile plastic inoculator loop was then used to transfer the pore contents
522 to a Brucella Blood Agar plate. This first inoculator loop was struck multiple times on the plate
523 to disturb the follicular plug, which was then struck out for single colonies as above. When
524 multiple pores were extracted simultaneously, contents from all extracted pores were processed
525 together and the sample was labeled as containing contents from multiple pores. Some extracts
526 (indicated in Table S1) were processed like pore strip samples (below) in order to conduct
527 amplicon sequencing as well.

528

529 For pore strips, a commercially available product (Charcoal Blackhead Mask, Mengkou) was
530 applied to the cheeks, nose, and forehead and allowed to dry. The dried film was carefully peeled
531 off and segments were placed into sterile petri dishes for processing. Spatial coordinates for pore
532 strip samples are available in Table S6. Under a dissection microscope, individual extracts were
533 plucked off using sterilized forceps and placed into individual wells of a microplate containing
534 50 μ L of QuickExtract buffer (EpiCentre). Extracts were disturbed by pipetting up and down
535 (samples did not completely dissolve even after mixing). A 5 μ L aliquot was used to inoculate a
536 Brucella Blood Agar plate and struck for single colonies. The remainder was used for amplicon
537 sequencing as described below (see 16S amplicon sequencing).

538

539

540 **Culturing and single-colony sequencing**

541

542 Culture plates were incubated in an anaerobic environment at 37°C for 5-7 days to enrich for *C. acnes*. Random colonies suspected to be *C. acnes* based on colony morphology were selected for
543 further profiling. From most samples, up to 4 colonies were chosen for further processing;
544 additional colonies were chosen on a few samples for further depth (see Table S2 for details on
545

546 colonies that passed all filters). Selected colonies were resuspended in 200 μ L of PBS, and 150
547 μ L of the material was used for gDNA extraction. To obtain more pure freezer stocks, a small
548 subset of colonies was restreaked prior to making freezer stocks; these isolates were used for
549 growth-rate analysis and long-read sequencing and are indicated in Figure S2 and below (see *C.*
550 *acnes* plasmid analysis), respectively. The remainder of the colony was mixed with glycerol to
551 reach a final concentration of 20% and frozen at -80°C. DNA was extracted in 96-well plates
552 using the PureLink DNA Extraction Kit (Invitrogen), using instructions for gram-positive
553 bacteria, with the exception of longer incubations times (12 hours lysozyme step; 3 hours
554 proteinase K step) and elution into a smaller volume (20 μ L). Genomic libraries for Illumina
555 sequencing were prepared according to a previously described protocol (Baym et al., 2015).
556 Libraries were pooled and sequenced on Illumina NextSeq and HiSeq using 75-bp paired end
557 reads to an average depth of 76 reads for colonies passing eventual filters (Table S2).
558
559

560 **Clustering colonies into lineages**

561

562 Colonies were clustered into lineages using SNV calls from an alignment-based approach with
563 pipelines implemented in snakemake (v5.6.0) (Mölder et al., 2021) and Matlab (v2018a) (code
564 will be available at: https://github.com/arolynconwill/cacnes_biogeo). Adapters were removed
565 using cutadapt (Martin, 2011) and reads were trimmed using sickle (v1.33; -q 20 -l 50 -x -n)
566 (Joshi and Fass, 2011). Next, reads were aligned using bowtie2 (v2.2.6; -X 2000 --no-mixed --
567 dovetail) against *Cutibacterium acnes* C1 (RefSeq NC_018707) (Langmead et al., 2009;
568 Minegishi et al., 2013). Candidate single nucleotide variants were called using samtools (v1.5)
569 mpileup (-q30 -t SP -d3000), bcftools call (-c), and bcftools view (-v snps -q .75) (Li et al.,
570 2009). For each candidate variant, information for all reads aligning to that position (e.g. base
571 call, quality, coverage), across all samples, were aggregated into a data structure for local
572 filtering and analysis. Colonies were omitted from further analysis if less than 90% of their reads
573 were assigned to *Cutibacterium acnes* according to bracken (v2.5) (Lu et al., 2017; Wood et al.,
574 2019) with the standard Univec database including all RefSeq genomes (153 of an initial 1546
575 colonies), if they had a median coverage below 10 across candidate variant positions (283 of
576 1393 colonies remaining), or if they had a major allele frequency below 0.65 for over 1% of
577 variant positions with coverage greater or equal to 4 reads (50 colonies of 1110 remaining). In
578 all, these filters retained 1080 colonies.
579

580 We filtered candidate SNVs using publicly available code (see Data Availability) similar to that
581 previously published (Lieberman et al., 2014). Basecalls were marked as ambiguous if the FQ
582 score produced by samtools was above -30, the coverage per strand was below 3, the major allele
583 frequency was below 0.9, or more than 50% of reads supported indels. Remaining variant
584 positions were discarded for clustering analysis if no unmasked polymorphisms remained. In
585 addition, all SNVs in regions of the reference genome with homology to *C. acnes* plasmids were
586 removed (see section on *C. acnes* plasmids). These SNV calls were used to calculate pairwise
587 distances between colonies, equal to the number of positions where both colonies had non-
588 ambiguous base calls and where the base calls differed. This distance matrix was used as input
589 to clustering algorithm DBSCAN, using a distance threshold of 35 SNVs and a minimum cluster
590 size of 3 (Figure S1). Clusters with a mean pairwise distance of below 80 SNVs were allowed to
591 merge together (this allowed the hypermutator colonies to be part of Lineage 1a; see Figure S4).
592

593 Some colonies showed evidence of non-purity at this step, with mixed alleles at positions that
594 distinguished colonies within the same initial cluster from each other. This nonpurity could have
595 emerged during initial sample collection (no attempt was made to purify colonies into isolates
596 before sequencing), during sample processing (all samples were processed in 96 well plates), or

597 due to index hopping. Thus, after performing initial clustering, we removed colonies with a
598 mean major allele frequency below 0.95 across within-cluster SNVs (variant positions that had
599 base calls in at least 67% of colonies and with a median coverage of at least 10) for which the
600 colony had sufficient coverage (greater or equal to 8 reads). Clustering and SNV identification
601 were then repeated iteratively until no colonies with evidence of impurity remained, first by
602 restricting clustering to colonies from the same subject only, and then by allowing clustering
603 across subjects and allowing cluster merging (106 colonies were removed during this step).
604 Finally, there were 7 colonies that clustered with Subject 1 despite originating from other
605 subjects; these were removed due to suspected contamination, since Subject 1 was involved in
606 sample acquisition and processing. In all, 947 high quality colonies and 53 clusters remained
607 and were used in subsequent analysis (Tables S1, S2, and S4).

608

609

610 **Classification of lineages into *C. acnes* strains types**

611

612 We used lineage-specific assemblies (see Mobile element analysis) to identify the global strain-
613 types, using the previously described SLST scheme (Scholz et al., 2014). We used BLAST to
614 compare known SLST types to custom BLAST databases created from lineage assemblies. Some
615 lineages had no exact matches, indicating a new SLST. In this case, we classified the lineage by
616 the super-SLST level (e.g. “A” for SLST “A1”), based on SLST with the best alignment (blastn
617 with default parameters; highest bit score for alignment lengths greater or equal to 480 bp)
618 (Altschul et al., 1990; Camacho et al., 2009). The super-SLST for each lineage is available in
619 Table S4.

620

621

622 **SNV calling and evolutionary inference**

623

624 In order to determine SNV positions within each lineage, basecalling was repeated using the
625 following process: first, basecalls were marked as ambiguous if the FQ score produced by
626 samtools was above -30, the coverage per strand was below 3, the major allele frequency was
627 below 0.75, or more than 25% of reads supported indels; second, genomic positions with a
628 median coverage below 12 reads across samples or where at least 34% of basecalls were
629 ambiguous across samples were omitted. In addition, to remove variants that emerged from
630 recombination or other complex events, we identified SNVs that were less than 500 bases apart
631 and for which the correlation of non-ancestral allele frequencies (see below) across colonies
632 within a lineage exceeded 0.75 (Table S7); these positions, as well as regions on the reference
633 genome with homology to plasmids (see *C. acnes* plasmid analysis), were removed from
634 downstream analysis.

635

636 All remaining genomic positions that passed these strict filters and retained two non-ambiguous
637 alleles were considered SNV positions and were investigated across samples. In order to have
638 genotypes for as many colonies as possible at these SNV positions, including ones with low
639 coverage, basecalls were repopulated from the raw data and only marked as ambiguous only if
640 the coverage per strand was below 1, the total coverage below 3, or the major allele frequency
641 below 0.67. Details on SNVs detected in each lineage are available in Table S5.

642

643 Phylogenetic reconstruction was done using dnaps from PHYLIP v3.69 (Felsenstein, 2005).
644 Trees were rooted using the ancestral allele as determined below. Example trees are shown in
645 Figure 4 and Figures S4-6. Ancestral alleles were determined by using the most closely related
646 lineage from a different subject (as measured by mean pairwise distance between colonies
647 belonging to different lineages) as an outgroup: the ancestral allele was taken as the most

648 common allele across 10 random colonies from the outgroup (or fewer colonies if the outgroup
649 lineage contained less than 10 colonies). If outgroup colonies did not have any calls at that
650 position, then the reference genome was used as the ancestral allele.

651
652 Phylogenetic reconstruction across lineages (Figure 2C) was performed using the inferred
653 ancestral genotype of each lineage (for positions that did not vary within the lineage, the
654 ancestral genotype was taken as the basecall across non-ambiguous samples; for positions that
655 did vary within the lineage, the ancestral genotype was determined from an outgroup as
656 described above). A parsimony tree was generated using dnaps as above, using variable
657 positions with basecalls in greater than 10% of lineage ancestors. The tree is midpoint-rooted.
658
659

660 **Calculation of distances to MRCA**

661
662 To understand the evolutionary history of bacteria within and between pores, we calculated
663 values of dMRCA (distance to most recent common ancestor) for sets of colonies (Figures 4 and
664 5). For vertically evolving organisms, this value has more interpretability than other metrics of
665 diversity (e.g. average pairwise difference), representing the relative time since the set of
666 organisms under consideration had a single-celled ancestor. In addition, dMRCA is robust to
667 unequal sampling depth between clades on a phylogeny.
668

669 For each calculation of dMRCA, we inferred the genotype of the MRCA by assuming that, for
670 each variable genomic position within the set of colonies, the ancestral allele was equal to that
671 defined for the lineage ancestor (see SNV calling and evolutionary inference). We define the
672 dMRCA for each pore as the mean of the number of SNVs distinguishing each colony from the
673 pore MRCA. We exclude multipore samples as well as pore samples with only a single colony
674 from calculations of intrapore dMRCA. We define the interpore dMRCA for a pair of pores as
675 the mean number of SNVs distinguishing the MRCA of each of the two pores and interpore
676 MRCA. The genetic distances between pores reported in Figure 5C refer to the number of SNVs
677 differing between the inferred ancestors of a given pair of pores.
678
679

680 **Parallel evolution analysis**

681
682 In order to search for genes with evidence of mutational enrichment, we first counted how many
683 times each gene was mutated (m_i). We then computed the probability of observing $\geq m_i$
684 mutations according to a Poisson distribution with $\lambda = Mp_i$, where M is the total number of
685 mutations observed on coding regions and p_i is the expected probability that a random mutation
686 lands that gene (taking into account gene length, codon distribution, and observed mutational
687 spectrum). This analysis masked all regions of the reference genome with homology to *C. acnes*
688 plasmids (see *C. acnes* plasmid analysis). To account for multiple hypotheses, we performed the
689 Benjamini-Hochberg procedure (treating each unmasked gene on the genome as a hypothesis).
690 We find no compelling evidence of parallel evolution when considering all *de novo* mutations or
691 mutations at the intrasubject or intralineage levels (Figure S10).
692

693 In order to look for signs of adaptation, we computed dN/dS, the ratio of nonsynonymous
694 mutations to synonymous mutations relative to a neutral model. Observed mutations were
695 called as nonsynonymous (N) or synonymous (S) according to the reading frames in the
696 annotated reference genome; in the event that there was an ancestral mutation (fixed in all
697 colonies in a lineage) that differed from the reference genome, the basecall at that position was
698 considered when determining if a SNV on that codon was N or S. Our neutral model was used to

699 assess the expected N/S ratio, based on the observed mutational spectrum and the codon
700 distribution of each gene. Figure 5B shows a summary of this analysis, and Figure S10 shows an
701 extended version that considers mutations by subject, lineage, mutational age, and gene
702 function. All results were consistent with neutrality or with weak purifying selection. We note
703 that one limitation of this study is that it focused on ongoing evolution and would not capture
704 any potential adaptive sweeps that occurred in the past, for example, immediately after a strain
705 colonizes an individual.

706
707

708 **Mobile element analysis**

709

710 To systematically identify gains and losses within each lineage, we constructed pan-genomes for
711 each lineage. Only colonies with $\geq 95\%$ of reads assigned to *C. acnes* at the species level by
712 bracken were included (see Clustering colonies into lineages). For each lineage, we then
713 concatenated up to 250,000 reads from each member colony and assembled a reference genome
714 with SPAdes (v3.13, careful mode) (Bankevich et al., 2012) and a minimum contig length of 500
715 bp. We then aligned reads from each member colony to its assembled pangenome (see SNV
716 calling and evolutionary inference).

717

718 We then looked for genomic regions that were missing from some, but not all, colonies in a
719 lineage. We identified candidate mobile elements as continuous regions over 500 bp with a copy
720 number (relative to the rest of the genome) below 0.25x in a given colony. We also considered
721 each contig from the assembled genome as a candidate mobile element region. We then filtered
722 these candidate regions, requiring a mean copy number (relative to the rest of the genome) less
723 than or equal to 0.15x and mean coverage of less than or equal to 2.5 reads; we also required
724 that the region to have strong support in at least one other colony (mean copy number greater or
725 equal to 0.85x). Regions with homology to *C. acnes* plasmids were masked (see next section).
726 We merged all overlapping regions found in colonies from the same lineage, and these regions
727 are reported in Table S3.

728

729

730 ***C. acnes* plasmid analysis**

731

732 During the mobile element analysis, we noted the presence of gain/loss regions with homology
733 to known *C. acnes* plasmids (NCBI CP003294 and CP017041) (Brüggemann et al., 2012;
734 Kasimatis et al., 2013). We also suspected that additional gain/loss regions belonged to plasmids
735 because they had similar coverage patterns across samples to known plasmid regions. To better
736 understand plasmid architecture and identify additional plasmid gene content, we performed
737 long read sequencing for five isolates, which cover diverse genotypes on Subject 1: subj-
738 1_scrape-439_col-5, subj-1_scrape-440_col-3, subj-1_scrape-441_col-3, subj-1_scrape-
739 442_col-6, and subj-1_scrape-443_col-6. We used the Qiagen High-Molecular Weight Genomic
740 DNA Kit (Catalog #67563) following the protocol recommended for gram-positive bacteria, but
741 with increased lysozyme as above (see Culturing and single-colony sequencing). MIT's
742 BioMicroCenter performed size selection with SPRI beads to remove fragments below 10 kbp,
743 library preparation with Oxford Nanopore kits EXP-NBD104 and SQK-LSK109, and sequencing
744 on a R9 PromethION flow cell over 72 hours. Long reads were filtered using filtlong (vo.2.0, --
745 min_length 20000 --keep_percent 99 --target_bases 500000000) (Wick, 2018), and hybrid
746 assemblies were generated using unicycler (vo.4.8, default parameters) (Wick et al., 2017).
747 Scaffolds with homology (blastn, default parameters, total alignment lengths over 2,000 bp) to
748 known *C. acnes* plasmids were designated as plasmid scaffolds and ranged in length from

749 16,360bp to 72,583bp (two contigs from isolate subj-1_scrape-440_col-3 were concatenated; all
750 others had a single plasmid contig).

751
752 In order to determine which colonies in our dataset had evidence of plasmid presence, we
753 aligned short reads to these five plasmid scaffolds using the same procedure for alignments to
754 the *C. acnes* reference genome. A colony was deemed as having a plasmid if it had a copy
755 number over 0.33x (relative to rest of genome) across at least 90% of at least one of the plasmid
756 scaffolds. Plasmid presence/absence is available in Table S2 and indicated on lineage trees in
757 Figures S4-6. To see how the plasmids in our dataset were related to each other, we generated a
758 phylogenetic tree comparing a region common to as many plasmids as possible. We used
759 alignments to the plasmid scaffold generated from isolate subj-1_scrape-441_col-3 (this scaffold
760 had the most lineages with at least one positive colony). We then masked positions where fewer
761 than 67% of plasmid-positive colonies had a copy number over 0.75 and removed colonies that
762 had a copy number of less than 0.75 over fewer than 75% of these positions (this maintained 215
763 of 291 plasmid-positive colonies). Basecalls were marked as ambiguous if the quality was below
764 30, the coverage per strand was below 3, or the major allele frequency was below 0.67. This
765 retained 769 variable positions, which were used to generate a parsimony tree using the same
766 procedure as for lineage trees (Figure S7).

767
768 In order to avoid calling SNVs on mobile elements for genome focused analyses, we masked
769 plasmid regions on the reference genome where there was an alignment to one of our plasmid
770 scaffolds or to known plasmid genotypes CP003294 and CP017041 (blastn using default
771 parameters with a minimum alignment length of 200 bp and a maximum e-value of 0.001). In
772 our analysis of gain/loss regions, we additionally masked any contig for which these alignments
773 covered over half of the contig positions.

774

775

776 ***Cutibacterium granulosum* analysis**

777

778 There were 50 colonies for which greater or equal to 75% of reads were assigned as
779 *Cutibacterium granulosum* according to bracken (see Clustering colonies into lineages). In
780 order to characterize the within-species *C. granulosum* diversity, we used an alignment-based
781 approach following the same procedure as above, but with *C. granulosum* NCTC 11865 (RefSeq
782 NZ_LT906441.1) as the reference genome. Colonies were removed from the analysis if less than
783 72% of reads aligned to the reference genome (7 colonies) or if they had a mean coverage of 5x
784 or below across candidate variant positions (1 colony). Basecalls were marked as ambiguous if
785 the FQ score produced by samtools was above -30, the coverage per strand was below 3, or the
786 major allele frequency was below .75. Remaining variant positions were discarded if 34% or
787 more of all colonies were called as ambiguous, if the median coverage across all colonies at that
788 position was below 12, or if no polymorphisms remained. Any colonies for which greater than
789 30% of variant positions were marked as ambiguous at this stage were removed (this removed 3
790 colonies). In all, these filters retained ~90,000 variable positions across 39 colonies. Basecalls
791 were repopulated from the raw data and only marked as ambiguous only if the FQ score was
792 above -30, the coverage was below 5, or the major allele frequency was below .67. A parsimony
793 tree (Figure S14, left panel) was generated using the same process as for *C. acnes*.

794

795 We identified three pores (Subject 1, pore 17; Subject 1, pore 18; Subject 2, pore 87) for which
796 there were multiple *C. granulosum* colonies and for which these colonies were monophyletic on
797 the tree constructed above. For each case, we assembled a genome using the same procedure as
798 for *C. acnes* lineages, using reads from all colonies from that pore. We then aligned reads from
799 each colony (including all colonies from that pore and any additional colonies within 100 SNVs

800 according to the above tree) onto its pore-specific assembled genome and called SNVs using the
801 same filters as above in order to generate parsimony trees (Figure S14, right panels).

802

803

804 **16S amplicon sequencing**

805

806 Samples collected for community profiling were collected in QuickExtract buffer (see Human
807 subjects and sample collection). After streaking for single colonies, the remainder of samples
808 were lysed by adding 1 μ l of ReadyLyse (EpiCentre) and incubating at room temperature for 12
809 hours. A 1 μ L aliquot was used to amplify the V1-V3 region using HiFi HotStart ReadyMix
810 (KAPA BioSystems) and the Illumina PCR protocol. A spike of genomic DNA from *Caulobacter*
811 *crecentus*, a species typically found in freshwater, was included in each PCR reaction to estimate
812 the number of unique sequencing reads. Samples were cleaned and pooled as in (Baym et al.,
813 2015). Samples were sequenced on an Illumina MiSeq (300 PE) to an average read depth of
814 ~16,500.

815

816 In order to classify amplicon sequence variants (ASV) on a species level, a classifier was built
817 using the V1-V3 region of the raw sequences and taxonomy of the SILVA database (version 132)
818 (Quast et al., 2013), with taxonomically-mislabeled sequences identified by the phylogeny-aware
819 pipeline SATIVA (Kozlov et al., 2016) either corrected or removed. *Staphylococcus* species were
820 specifically filtered by the methods presented in (Khadka et al., 2021). The genera
821 *Cutibacterium*, *Acidipropionibacterium*, *Pseudopropionibacterium*, *Propionibacterium*, and
822 the *Corynebacteriaceae* and chronically-mislabelled *Neisseriaceae* families were also cleaned by
823 the following filters: (i) sequences with incorrect higher taxonomic classes (ex. a species with the
824 family *Corynebacteriaceae* but the genus *Cutibacterium*) were removed, (ii) sequences missing a
825 species classification or assigned to non-species taxa (ex. *Corynebacterium* sp.) were removed,
826 (iii) species with >60% similarity with other taxa were relabeled as a specific “taxa cluster”, (iv)
827 taxonomically mislabeled sequences identified using SATIVA with greater than 90% confidence
828 were relabeled and sequences with below 90% confidence removed. To reduce computational
829 load, each family or genera within the same family were grouped together in independent
830 SATIVA runs. This removed about 2% of sequences from each group. This database was then
831 used to train a naive Bayes classifier in QIIME2 (2020.01).

832

833 QIIME2 was used to process and classify 16S reads, using cutadapt and DADA2 (Bolyen et al.,
834 2018; Callahan et al., 2016; Martin, 2011). In order to visualize species diversity, all spike-in
835 sequences, unclassified reads, and reads with only a domain-level classification were removed
836 from further analysis (Figure S9).

837

838

839

840 **DATA AND SOFTWARE AVAILABILITY**

841

842 All raw sequencing data will be deposited to the SRA prior to publication under submission
843 number SUB9587388. Data analysis code and genome assemblies will be available at
844 https://github.com/arolynconwill/cacnes_biogeo.

845

846

847

848 **AUTHOR CONTRIBUTIONS:**

849

850 T.D.L. designed the study within input from E.J.A., T.D.L., and A.K. collected samples from
851 human subjects. T.D.L. and J.S.B. prepared samples for whole genome sequencing. A.C. and
852 T.D.L. analyzed the data. A.D.T. performed growth curve experiments. A.K., A.P., and T.D.L.
853 collected and analyzed 16S amplicon sequencing data. R.D. and A.C. prepared samples for long
854 read sequencing and analyzed mobile genetic elements. E.J.A. and T.D.L. secured funding and
855 materials. A.C. and T.D.L. wrote the manuscript with input from all authors.
856
857
858

859 **DECLARATION OF INTERESTS:**

860 The authors declare no competing interests.
861
862
863
864

865 **ACKNOWLEDGMENTS:**

866
867 We thank Sarah Bi, Sean Kearny, Sean Gibbons, Allison Perrotta, Claire Duvallet, Tucker Lynn,
868 and all Lieberman Lab members for experimental assistance and helpful discussions, the MIT
869 BioMicroCenter for assistance in sequencing, and Oskar Hallatschek for helpful discussions. We
870 thank Vicki Mountain and Scott Olesen for assistance with IRB protocols. This work was funded
871 by grants from the Broad Institute (to E.J.A.), the Smith Family Foundation (to T.D.L.), the MIT
872 Center for Microbiome Informatics and Therapeutics (to T.D.L.), and the National Institutes of
873 Health (1DP2GM140922-01 to T.D.L.).
874
875
876

877 **REFERENCES:**

- 878
879 Adamson, A.S., and Lipoff, J.B. (2021). Reconsidering Named Honorifics in Medicine—the
880 Troubling Legacy of Dermatologist Albert Kligman. *Jama Dermatol* *157*, 153–155.
881 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment
882 search tool. *J Mol Biol* *215*, 403–410.
883 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
884 Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: A New Genome Assembly
885 Algorithm and Its Applications to Single-Cell Sequencing. *J Comput Biol* *19*, 455–477.
886 Barrick, J.E., and Lenski, R.E. (2013). Genome dynamics during experimental evolution. *Nat
887 Rev Genet* *14*, 827–839.
888 Baym, M., Kryazhimskiy, S., Lieberman, T.D., Chung, H., Desai, M.M., and Kishony, R. (2015).
889 Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes. *Plos One* *10*,
890 e0128036.
891 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A., Alexander,
892 H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2018). QIIME 2: Reproducible, interactive,
893 scalable, and extensible microbiome data science. *PeerJ Prepr* *6*, e27295v2.

- 894 Brüggemann, H., Henne, A., Hoster, F., Liesegang, H., Wiezer, A., Strittmatter, A., Hujer, S.,
895 Dürre, P., and Gottschalk, G. (2004). The Complete Genome Sequence of *Propionibacterium*
896 *Acnes*, a Commensal of Human Skin. *Science* *305*, 671.
- 897 Brüggemann, H., Lomholt, H.B., Tettelin, H., and Kilian, M. (2012). CRISPR/cas Loci of Type II
898 *Propionibacterium acnes* Confer Immunity against Acquisition of Mobile Elements Present in
899 Type I *P. acnes*. *Plos One* *7*, e34171.
- 900 Brzuszkiewicz, E., Weiner, J., Wollherr, A., Thürmer, A., Hüpeden, J., Lomholt, H.B., Kilian, M.,
901 Gottschalk, G., Daniel, R., Mollenkopf, H.-J., et al. (2011). Comparative Genomics and
902 Transcriptomics of *Propionibacterium acnes*. *Plos One* *6*, e21581.
- 903 Butcher, E., and Coonin, A. (1949). The physical properties of human sebum. *J Investigative*
904 *Dermatology* *12*, 249–254.
- 905 Byrd, A.L., Belkaid, Y., and Segre, J.A. (2018). The human skin microbiome. *Nat Rev Microbiol*
906 *16*, 143–155.
- 907 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P.
908 (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods*
909 *13*, 581–583.
- 910 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L.
911 (2009). BLAST+: architecture and applications. *Bmc Bioinformatics* *10*, 421.
- 912 Castañeda-García, A., Martín-Blecua, I., Cebrián-Sastre, E., Chiner-Oms, A., Torres-Puente, M.,
913 Comas, I., and Blázquez, J. (2020). Specificity and mutagenesis bias of the mycobacterial
914 alternative mismatch repair analyzed by mutation accumulation studies. *Sci Adv* *6*, eaay4453.
- 915 Chung, H., Lieberman, T.D., Vargas, S.O., Flett, K.B., McAdam, A.J., Priebe, G.P., and Kishony, R.
916 (2017). Global and local selection acting on the pathogen *Stenotrophomonas maltophilia* in
917 the human lung. *Nat Commun* *8*, 14078.
- 918 Claesen, J., Spagnolo, J.B., Ramos, S.F., Kurita, K.L., Byrd, A.L., Aksenov, A.A., Melnik, A.V.,
919 Wong, W.R., Wang, S., Hernandez, R.D., et al. (2020). A *Cutibacterium acnes* antibiotic
920 modulates human skin microbiota composition in hair follicles. *Sci Transl Med* *12*, eaay5445.
- 921 Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight, R. (2009).
922 Bacterial Community Variation in Human Body Habitats Across Space and Time. *Science* *326*,
923 1694–1697.
- 924 Cove, J.H., Holland, K.T., and Cunliffe, W.J. (1983). Effects of Oxygen Concentration on
925 Biomass Production, Maximum Specific Growth Rate and Extracellular Enzyme Production by
926 Three Species of Cutaneous *Propionibacteria* Grown in Continuous Culture. *Microbiology* *129*,
927 3327–3334.
- 928 Coyte, K.Z., Schluter, J., and Foster, K.R. (2015). The ecology of the microbiome: Networks,
929 competition, and stability. *Science* *350*, 663–666.

- 930 Didelot, X., Walker, A.S., Peto, T.E., Crook, D.W., and Wilson, D.J. (2016). Within-host
931 evolution of bacterial pathogens. *Nat Rev Microbiol* *14*, 150–162.
- 932 Dréno, B., Pécastaings, S., Corvec, S., Veraldi, S., Khammari, A., and Roques, C. (2018).
933 Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest
934 updates. *J Eur Acad Dermatol* *32*, 5–14.
- 935 Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6 (Distributed by the
936 author: Department of Genome Sciences, University of Washington, Seattle).
- 937 Ferreiro, A., Crook, N., Gasparini, A.J., and Dantas, G. (2018). Multiscale Evolutionary
938 Dynamics of Host-Associated Microbiomes. *Cell* *172*, 1216–1227.
- 939 Fitz-Gibbon, S., Tomida, S., Chiu, B.-H., Nguyen, L., Du, C., Liu, M., Elashoff, D., Erfe, M.C.,
940 Loncaric, A., Kim, J., et al. (2013). Propionibacterium acnes Strain Populations in the Human
941 Skin Microbiome Associated with Acne. *J Invest Dermatol* *133*, 2152–2160.
- 942 Flowers, L., and Grice, E.A. (2020). The Skin Microbiota: Balancing Risk and Reward. *Cell Host
943 Microbe* *28*, 190–200.
- 944 Foster, K.R., Schluter, J., Coyte, K.Z., and Rakoff-Nahoum, S. (2017). The evolution of the host
945 microbiome as an ecosystem on a leash. *Nature* *548*, 43–51.
- 946 Garud, N.R., Good, B.H., Hallatschek, O., and Pollard, K.S. (2019). Evolutionary dynamics of
947 bacteria in the gut microbiome within and across hosts. *Plos Biol* *17*, e3000102.
- 948 Ghalayini, M., Launay, A., Bridier-Nahmias, A., Clermont, O., Denamur, E., Lescat, M., and
949 Tenaillon, O. (2018). Evolution of a Dominant Natural Isolate of *Escherichia coli* in the Human
950 Gut over the Course of a Year Suggests a Neutral Evolution with Reduced Effective Population
951 Size. *Appl Environ Microb* *84*, eo2377-17.
- 952 Grice, E.A., and Segre, J.A. (2011). The skin microbiome. *Nat Rev Microbiol* *9*, 244–253.
- 953 Hall, J.B., Cong, Z., Imamura-Kawasawa, Y., Kidd, B.A., Dudley, J.T., Thiboutot, D.M., and
954 Nelson, A.M. (2018). Isolation and Identification of the Follicular Microbiome: Implications
955 for Acne Research. *J Invest Dermatol* *138*, 2033–2040.
- 956 Hartl, D.L., and Clark, A.G. (2006). *Principles of Population Genetics* (Oxford University Press).
- 957 Hecht, A.L., Casterline, B.W., Earley, Z.M., Goo, Y.A., Goodlett, D.R., and Wardenburg, J.B.
958 (2016). Strain competition restricts colonization of an enteric pathogen and prevents colitis.
959 *Embo Rep* *17*, 1281–1291.
- 960 Ishino, S., Skouloubris, S., Kudo, H., l'Hermitte-Stead, C., Es-Sadik, A., Lambry, J.-C., Ishino,
961 Y., and Myllykallio, H. (2018). Activation of the mismatch-specific endonuclease EndoMS/NucS
962 by the replication clamp is required for high fidelity DNA replication. *Nucleic Acids Res* *46*,
963 gky460-.
- 964 Jahns, A.C., and Alexeyev, O.A. (2014). Three dimensional distribution of *Propionibacterium
965 acnes* biofilms in human skin. *Exp Dermatol* *23*, 687–689.

- 966 Jorth, P., Staudinger, B.J., Wu, X., Hisert, K.B., Hayden, H., Garudathri, J., Harding, C.L.,
967 Radey, M.C., Rezayat, A., Bautista, G., et al. (2015). Regional Isolation Drives Bacterial
968 Diversification within Cystic Fibrosis Lungs. *Cell Host Microbe* *18*, 307–319.
- 969 Joshi, N., and Fass, J. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool
970 for FastQ files [software].
- 971 Kasimatis, G., Fitz-Gibbon, S., Tomida, S., Wong, M., and Li, H. (2013). Analysis of Complete
972 Genomes of *Propionibacterium acnes* Reveals a Novel Plasmid and Increased Pseudogenes in an
973 Acne Associated Strain. *Biomed Res Int* *2013*, 1–11.
- 974 Kerr, B., Riley, M.A., Feldman, M.W., and Bohannan, B.J.M. (2002). Local dispersal promotes
975 biodiversity in a real-life game of rock–paper–scissors. *Nature* *418*, 171–174.
- 976 Khadka, V.D., Key, F.M., Romo-González, C., Martínez-Gayosso, A., Campos-Cabrera, B.L.,
977 Gerónimo-Gallegos, A., Lynn, T.C., Durán-McKinster, C., Coria-Jiménez, R., Lieberman, T.D., et
978 al. (2021). A randomised longitudinal study of the skin microbiome during treatment for atopic
979 dermatitis in children. In Review.
- 980 Koskella, B., Hall, L.J., and Metcalf, C.J.E. (2017). The microbiome beyond the horizon of
981 ecological and evolutionary theory. *Nat Ecol Evol* *1*, 1606–1615.
- 982 Kozlov, A.M., Zhang, J., Yilmaz, P., Glöckner, F.O., and Stamatakis, A. (2016). Phylogeny-aware
983 identification and correction of taxonomically mislabeled sequences. *Nucleic Acids Res* *44*,
984 5022–5033.
- 985 Ladau, J., and Eloe-Fadrosh, E.A. (2019). Spatial, Temporal, and Phylogenetic Scales of
986 Microbial Ecology. *Trends Microbiol* *27*, 662–669.
- 987 Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient
988 alignment of short DNA sequences to the human genome. *Genome Biol* *10*, R25.
- 989 LeClerc, J.E., Li, B., Payne, W.L., and Cebula, T.A. (1996). High Mutation Frequencies Among
990 *Escherichia coli* and *Salmonella* Pathogens. *Science* *274*, 1208–1211.
- 991 Leeming, J.P., Holland, K.T., and Cunliffe, W.J. (1984). The Microbial Ecology of Pilosebaceous
992 Units Isolated from Human Skin. *Microbiology+* *130*, 803–807.
- 993 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
994 Durbin, R., and Subgroup, 1000 Genome Project Data Processing (2009). The Sequence
995 Alignment/Map format and SAMtools. *Bioinformatics* *25*, 2078–2079.
- 996 Lieberman, E., Hauert, C., and Nowak, M.A. (2005). Evolutionary dynamics on graphs. *Nature*
997 *433*, 312–316.
- 998 Lieberman, T.D., Michel, J.-B., Aingaran, M., Potter-Bynoe, G., Roux, D., Davis, M.R., Skurnik,
999 D., Leiby, N., LiPuma, J.J., Goldberg, J.B., et al. (2011). Parallel bacterial evolution within
1000 multiple patients identifies candidate pathogenicity genes. *Nat Genet* *43*, 1275–1280.

- 1001 Lieberman, T.D., Flett, K.B., Yelin, I., Martin, T.R., McAdam, A.J., Priebe, G.P., and Kishony, R.
1002 (2014). Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides
1003 a record of selective pressures. *Nat Genet* **46**, 82–87.
- 1004 Lieberman, T.D., Wilson, D., Misra, R., Xiong, L.L., Moodley, P., Cohen, T., and Kishony, R.
1005 (2016). Genomic diversity in autopsy samples reveals within-host dissemination of HIV-
1006 associated *Mycobacterium tuberculosis*. *Nat Med* **22**, 1470–1474.
- 1007 Lomholt, H.B., Scholz, C.F.P., Brüggemann, H., Tettelin, H., and Kilian, M. (2017). A
1008 comparative study of *Cutibacterium* (*Propionibacterium*) *acnes* clones from acne patients and
1009 healthy controls. *Anaerobe* **47**, 57–63.
- 1010 Lourenço, M., Chaffringeon, L., Lamy-Besnier, Q., Pétron, T., Campagne, P., Eberl, C., Bérard,
1011 M., Stecher, B., Debarbieux, L., and Sordi, L.D. (2020). The Spatial Heterogeneity of the Gut
1012 Limits Predation and Fosters Coexistence of Bacteria and Bacteriophages. *Cell Host Microbe* **28**,
1013 390-401.e5.
- 1014 Lu, J., Breitwieser, F.P., Thielen, P., and Salzberg, S.L. (2017). Bracken: estimating species
1015 abundance in metagenomics data. *PeerJ Comput Sci* **3**, e104.
- 1016 Mak, T.N., Schmid, M., Brzuszkiewicz, E., Zeng, G., Meyer, R., Sfanos, K.S., Brinkmann, V.,
1017 Meyer, T.F., and Brüggemann, H. (2013). Comparative genomics reveals distinct host-
1018 interacting traits of three major human-associated propionibacteria. *Bmc Genomics* **14**, 640.
- 1019 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
1020 reads. *Embnet J* **17**, 10–12.
- 1021 McLaughlin, J., Watterson, S., Layton, A.M., Bjourson, A.J., Barnard, E., and McDowell, A.
1022 (2019). *Propionibacterium acnes* and *Acne Vulgaris*: New Insights from the Integration of
1023 Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. *Microorg* **7**, 128.
- 1024 Minegishi, K., Aikawa, C., Furukawa, A., Watanabe, T., Nakano, T., Ogura, Y., Ohtsubo, Y.,
1025 Kurokawa, K., Hayashi, T., Maruyama, F., et al. (2013). Complete Genome Sequence of a
1026 *Propionibacterium acnes* Isolate from a Sarcoidosis Patient. *Genome Announc* **1**, e00016-12.
- 1027 Miskin, J.E., Farrell, A.M., Cunliffe, W.J., and Holland, K.T. (1997). *Propionibacterium acnes*, a
1028 resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA.
1029 *Microbiology+* **143**, 1745–1755.
- 1030 Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J.,
1031 Lee, S., Twardziok, S.O., Kanitz, A., et al. (2021). Sustainable data analysis with Snakemake.
1032 *F1000research* **10**, 33.
- 1033 Oh, J., Byrd, A.L., Deming, C., Conlan, S., Barnabas, B., Blakesley, R., Bouffard, G., Brooks, S.,
1034 Coleman, H., Dekhtyar, M., et al. (2014). Biogeography and individuality shape function in the
1035 human skin metagenome. *Nature* **514**, 59–64.
- 1036 Oh, J., Byrd, A.L., Park, M., Program, N.C.S., Kong, H.H., and Segre, J.A. (2016). Temporal
1037 Stability of the Human Skin Microbiome. *Cell* **165**, 854–866.

- 1038 Oliver, A. (2010). Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms,
1039 and consequences for antimicrobial therapy. *International Journal of Medical Microbiology*
1040 *300*, 563–572.
- 1041 O'Neill, A.M., and Gallo, R.L. (2018). Host-microbiome interactions and recent progress into
1042 understanding the biology of acne vulgaris. *Microbiome* *6*, 177.
- 1043 Paetzold, B., Willis, J.R., Lima, J.P. de, Knödlseder, N., Brüggemann, H., Quist, S.R., Gabaldón,
1044 T., and Güell, M. (2019). Skin microbiome modulation induced by probiotic solutions.
1045 *Microbiome* *7*, 95.
- 1046 Plewig, G. (1974). Follicular Keratinization. *J Invest Dermatol* *62*, 308–315.
- 1047 Plewig, G., Melnik, B., and Chen, W. (2019). Plewig and Kligman's Acne and Rosacea.
- 1048 Poyet, M., Groussin, M., Gibbons, S.M., Avila-Pacheco, J., Jiang, X., Kearney, S.M., Perrotta,
1049 A.R., Berdy, B., Zhao, S., Lieberman, T.D., et al. (2019). A library of human gut bacterial isolates
1050 paired with longitudinal multiomics data enables mechanistic microbiome research. *Nat Med*
1051 *25*, 1442–1452.
- 1052 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner,
1053 F.O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and
1054 web-based tools. *Nucleic Acids Res* *41*, D590–D596.
- 1055 Rossum, T.V., Ferretti, P., Maistrenko, O.M., and Bork, P. (2020). Diversity within species:
1056 interpreting strains in microbiomes. *Nat Rev Microbiol* *18*, 491–506.
- 1057 Schmidt, C. (2020). Out of your skin. *Nat Biotechnol* *38*, 392–397.
- 1058 Scholz, C.F.P., Jensen, A., Lomholt, H.B., Brüggemann, H., and Kilian, M. (2014). A Novel High-
1059 Resolution Single Locus Sequence Typing Scheme for Mixed Populations of *Propionibacterium*
1060 *acnes* In Vivo. *Plos One* *9*, e104199.
- 1061 Scholz, C.F.P., Brüggemann, H., Lomholt, H.B., Tettelin, H., and Kilian, M. (2016). Genome
1062 stability of *Propionibacterium acnes*: a comprehensive study of indels and homopolymeric
1063 tracts. *Sci Rep-Uk* *6*, 20662.
- 1064 Schreck, C.F., Fusco, D., Karita, Y., Martis, S., Kayser, J., Duvernoy, M.-C., and Hallatschek, O.
1065 (2019). Impact of crowding on the diversity of expanding populations. *Biorxiv* 743534.
- 1066 Sniegowski, P.D., Gerrish, P.J., and Lenski, R.E. (1997). Evolution of high mutation rates in
1067 experimental populations of *E. coli*. *Nature* *387*, 703–705.
- 1068 Tenaillon, O., Barrick, J.E., Ribeck, N., Deatherage, D.E., Blanchard, J.L., Dasgupta, A., Wu,
1069 G.C., Wielgoss, S., Cruveiller, S., Médigue, C., et al. (2016). Tempo and mode of genome
1070 evolution in a 50,000-generation experiment. *Nature* *536*, 165–170.
- 1071 Tomida, S., Nguyen, L., Chiu, B.-H., Liu, J., Sodergren, E., Weinstock, G.M., and Li, H. (2013).
1072 Pan-Genome and Comparative Genome Analyses of *Propionibacterium acnes* Reveal Its
1073 Genomic Diversity in the Healthy and Diseased Human Skin Microbiome. *Mbio* *4*, e00003-13.

- 1074 Tropini, C., Earle, K.A., Huang, K.C., and Sonnenburg, J.L. (2017). The Gut Microbiome:
1075 Connecting Spatial Organization to Function. *Cell Host Microbe* *21*, 433–442.
- 1076 Welch, J.L.M., Rossetti, B.J., Rieken, C.W., Dewhirst, F.E., and Borisy, G.G. (2016).
1077 Biogeography of a human oral microbiome at the micron scale. *Proc National Acad Sci* *113*,
1078 E791–E800.
- 1079 Whitaker, W.R., Shepherd, E.S., and Sonnenburg, J.L. (2017). Tunable Expression Tools Enable
1080 Single-Cell Strain Distinction in the Gut Microbiome. *Cell* *169*, 538-546.e12.
- 1081 Wick, R. (2018). Filtlong vo.2.0 (<https://github.com/rrwick/Filtlong>).
- 1082 Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: Resolving bacterial
1083 genome assemblies from short and long sequencing reads. *Plos Comput Biol* *13*, e1005595.
- 1084 Wielgoss, S., Barrick, J.E., Tenaillon, O., Wiser, M.J., Dittmar, W.J., Cruveiller, S., Chane-
1085 Woon-Ming, B., Médigue, C., Lenski, R.E., and Schneider, D. (2013). Mutation rate dynamics in
1086 a bacterial population reflect tension between adaptation and genetic load. *Proc National Acad
1087 Sci* *110*, 222–227.
- 1088 Wiser, M.J., Ribeck, N., and Lenski, R.E. (2013). Long-Term Dynamics of Adaptation in Asexual
1089 Populations. *Science* *342*, 1364–1367.
- 1090 Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic analysis with Kraken 2.
1091 *Genome Biol* *20*, 257.
- 1092 Zhao, S., Lieberman, T.D., Poyet, M., Kauffman, K.M., Gibbons, S.M., Groussin, M., Xavier, R.J.,
1093 and Alm, E.J. (2019). Adaptive Evolution within Gut Microbiomes of Healthy People. *Cell Host
1094 Microbe* *25*, 656-667.e8.
- 1095 Zhou, W., Spoto, M., Hardy, R., Guan, C., Fleming, E., Larson, P.J., Brown, J.S., and Oh, J.
1096 (2020). Host-Specific Evolutionary and Transmission Dynamics Shape the Functional
1097 Diversification of *Staphylococcus epidermidis* in Human Skin. *Cell* *180*, 454-470.e18.
- 1098