

1 **Identification of translocation inhibitors targeting the type III secretion**
2 **system of enteropathogenic *Escherichia coli***

3

4 Sabrina Mühlen^{a,b,c}, Viktor A. Zapol'skii^d, Ursula Bilitewski^e, Petra Dersch^{a,b,c}
5

6

7 ^a Institute for Infectiology, University of Münster, Münster, Germany

8 ^b Department of Molecular Infection Biology, Helmholtz Centre for Infection Research,
9 Braunschweig, Germany

10 ^c German Center for Infection Research (DZIF), Partner site HZI Braunschweig and
11 associated site University of Münster, Germany

12 ^d Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-
13 Zellerfeld, Germany

14 ^e Compound Profiling und Screening, Helmholtz Centre for Infection Research, Braun-
15 schweig, Germany

16 *

17 Corresponding author

18 e-mail: petra.dersch@uni-muenster.de

19

20

21

22 Running title: Translocation inhibitors of the EPEC T3SS

23 ABSTRACT

24 Infections with enteropathogenic *E. coli* (EPEC) cause severe diarrhea in children. The
25 non-invasive bacteria adhere to enterocytes of the small intestine and use a type III
26 secretion system (T3SS) to inject effector proteins into host cells to modify and exploit
27 cellular processes in favor of bacterial survival and replication. Several studies have
28 shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore,
29 the loss of T3SS-mediated effector translocation results in increased immune
30 recognition and clearance of the bacteria. The T3SS is, therefore, considered a
31 promising target for antivirulence strategies and novel therapeutics development. Here,
32 we report the results of a high-throughput screening assay based on the translocation of
33 the EPEC effector protein Tir. Using this assay, we screened more than 13,000 small
34 molecular compounds of six different compound libraries and identified three
35 substances which showed a significant dose-dependent effect on translocation without
36 adverse effects on bacterial or eukaryotic cell viability. Additionally, these substances
37 reduced bacterial binding to host cells, effector-dependent cell detachment and
38 abolished A/E lesion formation without affecting the expression of components of the
39 T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial
40 motility or Shiga-toxin expression were observed. In summary, we have identified three
41 new compounds that strongly inhibit T3SS-mediated translocation of effectors into
42 mammalian cells, which could be valuable as lead substances for treating EPEC and
43 EHEC infections.

44

45 Keywords: EHEC, EPEC, T3SS, virulence inhibitors, small molecule inhibitors,
46 antivirulence strategy

47 **INTRODUCTION**

48 Infection with enteropathogenic *Escherichia coli* (EPEC) is a major cause of infantile
49 diarrhea in children in developing countries (1). EPEC is a member of the family of
50 attaching and effacing (A/E) pathogens, which also includes enterohaemorrhagic *E. coli*
51 (EHEC) and the mouse pathogen *Citrobacter rodentium*. The bacteria in this family
52 intimately adhere to the surface of enterocytes by inducing the formation of
53 characteristic actin-rich pedestals (attachment) and the loss of microvilli (effacement)
54 (2). Subversion of the host actin signaling is mediated by the injection of bacterial
55 effector proteins via a type III secretion system (T3SS). Both, the components of the
56 T3SS, as well as effectors involved in A/E lesion formation, are encoded on the locus of
57 enterocyte effacement pathogenicity island (LEE) located in the bacterial genome (3, 4).

58 The T3SS of EPEC consists of the basal body, needle, filament and translocon pore
59 (5). The needle is formed by multiple copies of EscF, which form a hollow tube (6)
60 essential for T3S and thus for virulence (7). It is associated on one end with the basal
61 body that powers the translocation and on the other end with a filament made of EspA
62 multimers (6). Together, needle and filament form a channel that upon host cell contact
63 connects the bacterial cytosol with the host cell membrane and initiates the formation of
64 the translocation pore. The translocon pore is formed by heterooligomers of EspB and
65 EspD subunits that are translocated through the channel to the top of which they bind.
66 This complex then inserts into the host cell membrane to form the pore for effector
67 translocation (8). In addition to the T3SS, most translocated effector proteins that are

68 essential for intimate attachment and pathogenesis are located on the LEE. The trans-
69 located intimin receptor (Tir) is the most important and best-studied effector protein of
70 EPEC. After translocation, it inserts into the host cell membrane and acts as a receptor
71 for the bacterial outer membrane protein intimin (9, 10). EPEC strains with a non-
72 functional secretion system, such as Δ escN and Δ espA mutants, are unable to
73 intimately adhere to enterocytes and were shown to be avirulent in infection models (7).

74 T3SSs are highly conserved and shared by more than 25 human, plant and zoonotic
75 Gram-negative pathogens (11). Loss of a functional T3SS was also linked with
76 avirulence in the human enteric pathogens *Salmonella*, *Yersinia* and *Shigella* sp. (11).
77 High conservation among the structural components of the T3SSs (11) makes it likely
78 that inhibitors may be found that target the T3SS of more than one bacterial pathogen.
79 Additionally, off-target effects of inhibitors against the T3SS, such as destruction of
80 protective members of the microbiota should be rare, given as T3SSs are only found in
81 pathogenic bacteria. Additionally, the development of resistance mutations to cope with
82 the stresses produced by an inhibitor of the T3SS is less likely as such a substance
83 does not affect bacterial viability or structural integrity (12).

84 A growing number of studies have identified promising inhibitory compounds that
85 target the T3SS of pathogenic bacteria (13-17). While several, such as Aurodox (18),
86 were shown to be selective in inhibiting the T3SS of only one genus, other compounds,
87 including the salicylidene acylhydrazides showed a broader specificity (19-22).
88 Furthermore, some compounds targeted not only the T3SSs but also bacterial motility
89 (23, 24), suggesting that they affect a conserved target in the basal structure shared
90 between virulence-associated T3SSs and the flagellar export system (25).

91 Here, we used a high throughput screen to identify substances that inhibit T3S-
92 mediated Tir-effector translocation from EPEC into eukaryotic cells. We identified three
93 promising substances which were able to inhibit Tir translocation into host cells without
94 adverse effects on bacterial or eukaryotic cell viability. We were able to show that the
95 inhibitors interfered with intimate bacterial attachment as well as T3SS-dependent cell
96 detachment in response to infection with an EPEC $\Delta espZ$ mutant. Inhibitors did not
97 affect the amount of LEE-encoded protein expression or motility.

98

99

100 **RESULTS**

101 **Screening of natural and chemical compound libraries identified substances that**
102 **interfere with effector translocation.** Translocation of the EPEC effector protein Tir
103 into the host cell was monitored using an EPEC E2348/69 strain expressing a Tir- β -
104 lactamase (TEM) fusion protein encoded under the native promoter in the EPEC
105 genome (26) and the β -lactamase FRET substrate CCF4-AM, which contains the
106 coumarin- and fluorescein-conjugated β -lactam cephalosporin and is green fluorescent.
107 Using a 96-well plate setup, cells were seeded and subsequently infected with EPEC
108 E2348/69 wildtype or E2346/69 $P_{LEE5}tir-blaM$. The bacteria were first grown in T3SS-
109 inducing conditions for two hours and then preincubated in the presence of the
110 screening substances (see **Table 1** for concentrations) for one hour before infection. If
111 translocated into the host cells, the β -lactamase cleaves the CCF4-AM substrate,
112 changing its fluorescence signal from green to blue, which can be quantified in a
113 microtiter plate reader (**Figure 1A**).

114 Using this assay, we screened two natural and four chemical compound libraries with
115 a total of 13,360 substances (**Table 1, S1**). The z' -values ranged between 0.5 and 0.94
116 with an average z' -value of 0.76 and an average standard to noise ratio (S/N) of 31.8.
117 Of the tested substances, 50 reduced translocation efficiency by 50 to 75%, while 27
118 were able to reduce the translocation efficiency of Tir-TEM by more than 75% compared
119 to the control (translocation by untreated E2346/69 $P_{LEE5}tir\text{-}blaM$). 24 compounds
120 showed a reduction of 100% (**Figure 1B, Figure S1, Table S1**). These commonly
121 corresponded to known or published antimicrobial substances including
122 chloramphenicol and rifampicin, thuggacin (27-29), tartrolon (30, 31) as well as
123 derivatives of myxovirescin (32), myxovalargin (33, 34) and sorangicin (35). In total, 45
124 of the primary hit compounds were identified as antimicrobials or compounds with
125 structural homology to known antibiotics, and were thus excluded from further analyses.
126

127 **Effects of primary hit substances on bacterial growth and cell viability.** The
128 remaining 56 inhibitory substances identified in the primary translocation screen were
129 then tested for their dose-dependent effect on bacterial growth behavior. For this, over-
130 night cultures of E2348/69 wildtype were diluted to an OD_{600} of 0.02 and grown in the
131 presence of increasing concentrations of each substance (2.5 μM – 50 μM) at 37°C
132 without shaking for eight hours. At regular intervals (every two hours), the optical
133 density of each sample was measured. Of the 56 compounds retested in dose-response
134 assays, only 35 were confirmed to inhibit translocation. Eight of these substances
135 showed an antibacterial effect, reducing the growth of EPEC E2348/69 by >75% at the
136 highest tested concentration (50 μM) (**Figure 1B**).

137 To further determine whether the inhibitory substances themselves had any effect on
138 the health of the eukaryotic cells (HEp-2), these were seeded in the presence of the
139 substances and incubated at 37°C with 5% CO₂ for three days. Subsequently, the cell
140 viability was determined by XTT assay. Here, 23 of the tested substances showed
141 marked effects on cellular viability of which two were also shown to have antibiotic
142 activity (**Figure 1B**). In summary, of all tested substances that were neither
143 antimicrobial nor cytotoxic to eukaryotic cells, only six were able to inhibit translocation
144 repeatedly.

145

146 **Dose-response assays confirmed three substances that inhibit effector trans-**
147 **location without cytotoxicity to eukaryotic cells or EPEC.** The six substances,
148 which were able to inhibit T3SS-mediated translocation of the Tir-TEM fusion
149 repeatedly, were purchased or acquired from their respective sources to allow for
150 further analyses. Repetition of the growth, cell viability and translocation assays with the
151 freshly prepared substances demonstrated that three substances (S3 and S4 from
152 SPECS and S6 from the Var library) robustly inhibited Tir-TEM translocation in a dose-
153 dependent manner (**Figure 2A**) with no adverse effects on bacterial or eukaryotic cell
154 viability (**Figure S2**), with their ID₅₀ values given in **Table 2**.

155 To ensure that the observed inhibition of translocation is not due to an effect on the
156 host cells, preventing host-pathogen interaction, HEp-2 cells were pre-treated with the
157 compounds prior to infection. As shown in **Figure S3**, no inhibition of Tir-TEM
158 translocation was observed.

159 The chemical structures of the three identified substances are shown in **Figure 2B**.

160 The substances can be categorized as follows: S3 is a 1,2,4-triazine-5-one, S4 is a p-
161 methoxy-hydrocinnamamide, and substance S6 is a 3-chloroquinoxalin-2(1*H*)-one 4-
162 oxide.

163

164 **Intimate attachment of EPEC to eukaryotic cells was impaired in the presence of**
165 **compounds.** T3SS-mediated translocation of Tir is followed by its integration into the
166 host cell membrane and interaction with the bacterial outer membrane protein intimin.
167 This induces a phosphorylation cascade that results in the accumulation of F-actin
168 underneath the adherent bacteria and the formation of actin-rich pedestals upon which
169 the bacteria reside (2). HEp-2 cells seeded one day before infection were infected with
170 fluorescently-labelled EPEC strain E2348/69 as described for the translocation assay.
171 Cells were fixed after 1.5 hours of infection, and actin pedestals were visualized by
172 fluorescent actin staining (FAS) using phalloidin. While cells infected with wildtype
173 EPEC in the presence of DMSO (negative control) showed the characteristic actin
174 aggregation where bacteria were attached to the cells, no microcolonies or pedestals
175 could be observed in cells treated with either of the compounds (**Figure 3, Figure S4**).
176 In the presence of the compounds, the majority of the bacteria still visible on the cells
177 were not intimately attached to the surface of the cells, no pedestals were formed
178 (**Figure 3**). No obvious differences were observed between the different compounds.
179 This confirmed previous results showing that all three substances blocked Tir
180 translocation, a prerequisite for pedestal formation.

181

182 **Substances inhibited translocation-dependent cell detachment.** In a previous
183 study, Berger *et al.* identified EspZ as essential for regulating T3SS-dependent protein
184 translocation (36). They showed that a $\Delta espZ$ mutant induced cell detachment and cell
185 death due to uncontrolled high effector translocation into host cells (36). Here, we used
186 infection of HeLa cells with an EPEC E2348/69 $\Delta espZ$ mutant in the presence of
187 inhibitors or DMSO to assess whether the inhibitors could block uncontrolled
188 translocation of effector proteins into the host cell and thus inhibit the described cell
189 detachment phenotype. While infection of HeLa cells with wildtype EPEC or the T3SS
190 mutant $\Delta escN$ had little effect on cell loss, only approximately 15% of cells remained
191 attached after infection with the $\Delta espZ$ mutant in the presence of DMSO (**Figure 4A**
192 **and B**). Interestingly, while cell detachment was inhibited in the presence of inhibitors
193 50 μ M S4 or 25 μ M S6, which had an average of ~98% and ~108% of adherent cells
194 compared to uninfected, 50 μ M S3 had a less significant effect on cell loss compared to
195 DMSO-treated cells, with ~75% of cells remaining after infection (**Figure 4A and B**,
196 **Figure S5**).

197
198 **Expression of LEE-encoded proteins remained unaffected in the presence of the**
199 **inhibitory compounds.** The observed effect of the inhibitors on T3SS-mediated trans-
200 location of effector proteins such as Tir may be due to a direct effect on the function of
201 the T3S machinery or an indirect inhibition of the process. An indirect effect could
202 reduce the amount of LEE-proteins (either structural components of the T3SS system or
203 translocated effector proteins) expressed in the presence of the substances. To
204 determine whether such an effect on protein expression could be detected, bacteria

205 were grown under T3S-inducing conditions in the presence of the inhibitors, and
206 bacterial cell lysates were assessed by immunoblotting. As can be seen in **Figure 5**, the
207 expression levels of the structural components EspA, EspB and EspD as well as the
208 effector protein Tir (fused to β -lactamase as described above) were comparable in
209 inhibitor-treated bacteria and the DMSO-treated negative control (-) (**Figure 5**). This
210 indicated that either the assembly or the export-translocation function of the effectors of
211 the T3S machinery is inhibited by the compounds.

212

213 **The hemolytic activity of EPEC is affected differently by the different inhibitors.**

214 T3SS-dependent hemolysis of sheep red blood cells (RBCs) was described for EPEC
215 (37) and has been attributed to the formation of the T3SS translocon pore in the
216 erythrocyte membrane (8). In a previous study, Kimura *et al.* used this phenotype in
217 their high-throughput screen, which identified Aurodox (18). Here, RBCs were infected
218 with EPEC wildtype in the presence or absence of inhibitors and hemolysis was
219 determined after two hours. A Δ escN mutant was used as a control for the T3SS-
220 mediated effect, uninfected RBCs were used as a negative, and saponin-treated cells
221 as a positive control. S3 had no effect on hemolysis, while S4 and S6 significant
222 inhibited hemolysis by ~20% and ~10%, respectively, compared to DMSO-treated cells
223 (**Figure 6**). This indicated that S3 does not seem to interfere with the assembly and
224 translocon pore formation by the T3SS system.

225

226 **Compounds showed no effect on bacterial motility.** Due to the high homology
227 between the basal bodies of the T3SS and flagella (25), a possible effect of the

228 identified compounds on bacterial motility was investigated. Bacterial motility assays
229 were conducted using LB and DMEM soft agar plates supplemented with 50 μ M of each
230 substance. As the motility diameter indicates (**Figure 7**), bacteria were more motile on
231 LB plates (~15 mm) compared to on DMEM plates (~4 mm). Nevertheless, none of the
232 investigated compounds affected bacterial motility when compared to the negative
233 control (DMSO; **Figure 7**). Bacterial growth in both LB and DMEM was confirmed to be
234 unaffected under the respective conditions (**Figure S6**).

235
236 **Inhibitory substances did not induce Shiga toxin production in reporter-gene**
237 **assays.** Previous results of this study suggest that S3, S4 and S6 are effective com-
238 pounds suppressing the translocation of crucial virulence factors by the T3SS
239 expressed by EPEC but also by EHEC. This could make them to promising candidates
240 for the treatment or the prevention of bloody diarrhea and the development of hemolytic-
241 uremic syndrome (HUS) in infected patients (38, 39), which is associated with the
242 expression of the Shiga toxin (Stx) by EHEC. As many antimicrobial compounds, that
243 induce DNA damage also induce the expression of the Shiga toxin genes (*stx*) which
244 are encoded on a lambdoid prophage, we wanted to ensure that the induction of toxin
245 expression in response to the identified inhibitors can be excluded. To test this, Shiga
246 toxin expression was assessed using *Gaussia* luciferase reporter gene assays in both,
247 *E. coli* K12 (C600) and *Citrobacter rodentium* (DBS100) strains encoding the *Gaussia*
248 luciferase gene (*Gluc*) under the control of the respective *stx2* promoters (40).
249 Ciprofloxacin, a potent inducer of Shiga toxin expression, was used as a positive
250 control. At their tested maximum concentrations, none of the tested inhibitors induced

251 reporter-gene expression in *E. coli* K-12 ϕ stx2_a::Gluc (**Figure 8A**) or *C. rodentium*
252 ϕ stx2_{dact}::Gluc (**Figure 8B**) compared to DMSO treated control samples. As expected,
253 reporter strains treated with ciprofloxacin showed strong induction of luciferase
254 expression (**Figure 8A and B**). Therefore, it can be concluded that neither of the
255 inhibitors affects Shiga toxin expression, making them safe not only for the treatment of
256 EPEC infections but also as potential drugs against infections with EHEC.

257

258

259 **DISCUSSION**

260 The dramatic increase in antibiotic resistance in recent years has led to a shift in anti-
261 bacterial strategies towards more focused antivirulence-targeted approaches. Interfe-
262 rence with virulence mechanisms instead of bacterial survival is promising to reduce the
263 necessity for resistance development as bacteria will only be impaired in their
264 colonization or pathogenicity but able to survive. With no effect on cell survival, the
265 development of resistance mutations or the necessity for uptake of resistance genes is
266 greatly reduced. Anti-virulence strategies have targeted different virulence factors and
267 virulence-associated processes including motility, adhesion and invasion, effector
268 secretion and inter-bacterial signaling (quorum sensing) (12, 16, 17, 22, 41, 42).

269 Bacterial secretion systems, especially type III and IV secretion systems, are strongly
270 associated with bacterial virulence, as they are used to inject bacterial effectors into the
271 host cells to modulate disease. The loss of functional secretion systems has, therefore,
272 been associated with a loss of pathogenicity of the respective bacteria, rendering patho-
273 gens virtually harmless (11). The phenotypes that are associated with functional T3SSs

274 are diverse. Pathogenic *E. coli* translocate several effector proteins involved in the inti-
275 mate attachment of the bacteria to the cell surface to withstand being washed off during
276 diarrhea. Other effector proteins mediate the loss of cell-cell junction integrity to invade
277 lower tissues. Furthermore, several effector proteins are involved in the inhibition of
278 innate immune signaling pathways, resulting in the inhibition of cytokine and chemokine
279 release which, in turn, interferes with the recruitment of and clearance by immune cells
280 (43, 44). The formation of the T3SS has also been associated with the formation of
281 pores in and subsequent hemolysis of erythrocytes (8, 37). Moreover, aberrant
282 translocation due to the loss of effectors which control the amount of effector
283 translocation will lead to cell death and detachment (36).

284 Here, we monitored effector translocation assays in a primary screen to identify small
285 molecule inhibitors that interfere with this process. A Tir-β-lactamase (TEM)-expressing
286 EPEC strain has been used before to study the dynamics of effector translocation in this
287 pathogen (26). Furthermore, this TEM-based assay is commonly used to either screen
288 or confirm identified inhibitory compounds not only in enteropathogenic *E. coli* but also
289 in other T3SS or T4SS-containing pathogens. It has been used to identify or
290 characterize secretion system inhibitors of *Salmonella* (SipB, (23)), *Pseudomonas*
291 *aeruginosa* (ExoS, (45)) and *Yersinia* (YopE, (46); YopB, (47)), but has also been
292 employed for the T4SSs of *Helicobacter pylori* (48) and *Coxiella burnetii* (49). On the
293 other hand, T3SS-mediated hemolysis was employed as a primary screen in the study,
294 which initially identified the LEE-inhibitor Aurodox (18), while subversion of the host NF-
295 κB inflammatory signaling pathway has been assessed in a study which aimed to

296 identify inhibitors of the *Yersinia* T3SS and identified the inhibitory substance Piericidin
297 A (50).

298 In our study setup, bacteria were first grown in T3SS-inducing conditions for two
299 hours before exposing them to the inhibitory substances with which they were incubated
300 for an additional hour. Therefore, the inhibitors that were identified in this screen are
301 unlikely to affect the induction of T3SS-gene expression and injectisome formation as
302 after two hours at T3SS-inducing conditions, the T3SSs have already formed. This
303 hypothesis is supported by the fact that the expression of components of the T3SS as
304 well the Tir-TEM fusion protein is unaffected in the presence of the inhibitors (**Figure 5**).
305 All identified T3SS inhibitors S3, S4 and S6 reduced Tir-TEM translocation, effector-
306 dependent cell detachment and A/E lesion formation to a similar extent/in a comparable
307 manner. Most likely, Tir integration into the host cell membrane is impaired as no
308 translocation into the host cell cytosol could be observed for the Tir-TEM fusion protein
309 (**Figures 2, S2**). Furthermore, the absence of pedestals in the presence of the inhibitors
310 conclusively indicated that no intimate interaction occurred between the bacterial outer
311 membrane protein intimin and its receptor, Tir (**Figures 3 and S4**) (9, 10). In contrast,
312 T3SS-mediated hemolysis of erythrocytes was only inhibited by S4 and S6, but not by
313 S3. The inhibitory effect of S3 appears to be at the translocation/effector level and does
314 not seem to interfere with T3SS assembly as this inhibitor was unable to inhibit
315 hemolysis of erythrocytes (**Figure 6**). As hemolysis is a consequence of T3 translocon
316 pore formation in the erythrocyte membrane, which is dependent on the translocon pore
317 components EspB and EspD (8, 37), it is possible that S4 and S6 affect translocation of
318 all effectors (including the translocation of EspB and EspD) or that they affect translocon

319 pore-formation *per se* (**Figure 6**). Interestingly, pre-exposure of HEp-2 cells to these
320 inhibitors did not alter the translocation of Tir-TEM by EPEC (**Figure S3**), suggesting
321 that S3, S4 and S6 do not act by influencing host cells. It is likely, that they interfere with
322 the assembly or the function of the T3S apparatus, and it will be interesting to determine
323 the exact mechanism of action of these compounds in future studies.

324 All three identified inhibitors do not belong to the previously identified classes of
325 T3SS inhibitors. As opposed to previously described T3SS inhibitors (13-17), the
326 inhibitors identified in this study are more specific against the function of the T3SS than
327 previously identified inhibitors. Earlier screens commonly identified inhibitors that affect
328 either gene expression (Aurodox, (51), cytosporone B (52), benzimidazoles (53),
329 sulfonyl amino benzanilides (54), quinolines (55) and salicylidene anilides (24)) or
330 bacterial metabolism (salicylidene acylhydrazides (16), omeprazole ATPase inhibitors
331 (56-58)). While a selective inhibition of LEE (virulence) gene expression is also
332 desirable, inhibitors that affect bacterial metabolism may also result in rapid resistance
333 formation and may also influence the microbiota composition. An effect on the bacterial
334 respiratory chain, which would decrease the formation of the T3SS and thus
335 translocation of effectors was also ruled out for the compounds S3, S4 and S6 identified
336 in this study, as a short-term treatment of bacteria with these inhibitors did not result in
337 significant ATP release (**Figure S7**).

338 Considering that the identified inhibitors did not affect the expression of the proteins
339 that make up the T3SS or the translocated effector Tir (**Figure 5**), we tested the effect
340 of the inhibitors on the translocation of other effector proteins into the host cell by
341 making use of known effector deletion mutants and their associated phenotypes.

342 Deletion of the gene for the LEE-encoded effector protein EspZ results in aberrant
343 effector translocation into host cells, resulting in host cell detachment due to cell death
344 (36). Preincubation of bacteria in the presence of the inhibitors efficiently reduced cell
345 detachment compared to the positive control ($\Delta espZ$ + DMSO), suggesting that effector
346 translocation into the host cells was indeed impaired (**Figures 4 and S5**).

347 The homologies between the basal body of the T3SS and the bacterial flagellar basal
348 body are commonly appreciated (25). While an inhibitory effect on bacterial motility
349 would not be undesirable, no effect of any of the newly described substances could be
350 observed (**Figure 7**). This, too, supports the hypothesis that the inhibitors do not
351 interfere with conserved basal body structures of the T3SS, but rather with the
352 assembly of the injectisome or the translocation of the effector proteins. Also, other
353 compounds have been identified that interfere with T3SS function, e.g. (-)-hopeaphenol
354 which seem to localize on the outer membrane and interfere with the closely related
355 T3S apparatus of *Yersinia pseudotuberculosis*, *Pseudomonas aeruginosa* and
356 *Chlamydia trachomatis* (59), and thiazolidinone derivatives that inhibit T3SS in *S.*
357 *enterica* serovar *Typhimurium*, *Pseudomonas syringae* and *Francisella tularensis* most
358 likely by targeting the outer membrane secretin component of the T3SS (60). In
359 addition, a picolinic acid derivative and a symmetric dipropionate were found to be
360 active against effector secretion of *Y. pestis* without cytotoxicity against mammalian
361 cells, and notably, they were also active against the translocated intimin receptor Tir in
362 EPEC (46). As their molecular targets are also still unknown, it would be interesting to
363 investigate whether they inhibit identical T3SS functions as the identified compounds
364 S3, S4 or S6.

365 The effective blockage of T3SS expressed by EPEC as well as by frequent EHEC
366 strains makes the identified inhibitors promising candidates for therapies against hemo-
367 rrhagic uremic syndrome, which is not curable by common antibiotics such as cipro-
368 floxacin which induce the Shiga toxin genes encoded on lysogenic phages within the
369 bacterial genome (61, 62). As all three inhibitory substances showed no inducing effect
370 on Shiga toxin reporter-gene expression (**Figure 8**), they most likely do not
371 induce/enhance disease progression to HUS. Furthermore, we discovered that even 5-
372 fold excess concentrations (250 μ M) of the inhibitors did not affect bacterial growth in
373 MIC studies (**Figure S8**), providing further promise that resistance development against
374 these inhibitory substances may be slow as little selective pressure is induced.

375 Taken together, our study revealed three potent small molecule inhibitors blocking
376 T3SS-mediated translocation of crucial virulence factors of EPEC/EHEC. As all three
377 compounds interfere with the infection at later stages, e. g. after the T3SS has formed,
378 they constitute promising drugs for therapeutic treatment of the infection, as T3SS-
379 formation will have already occurred once treatment commences.

380

381 **Materials and Methods**

382 **Bacterial strains and cell lines.** Bacterial strains (listed in **Table S2**) were grown in
383 Luria Bertani (LB; Carl Roth, Germany) or Müller-Hinton (MH; Sigma Aldrich, Germany)
384 broth or DMEM GlutaMAX (Gibco) as indicated. LB overnight cultures were
385 supplemented with antibiotics tetracycline (30 μ g/ml), carbenicillin (100 μ g/ml) or
386 kanamycin (50 μ g/ml) for selection where required.

387 Cell lines and their respective growth media are given in **Table S3**. Eukaryotic cells
388 were cultured at 37°C, 5% CO₂.

389

390 **Infection of eukaryotic cells.** One day before infection, bacteria were inoculated into
391 LB broth and grown at 37°C and 180 rpm overnight. On the day of infection, overnight
392 cultures were diluted 1:75 in DMEM GlutaMAX (Gibco) and grown statically for three
393 hours at 37°C with 5% CO₂.

394 HEp-2 cells were washed twice with Dulbecco's PBS (DPBS; Sigma) and infected with
395 EPEC grown to an OD_{600 nm} of 0.03 for three hours.

396

397 **Small molecule compound libraries**

398 All used two natural and four chemical libraries are given in **Table 1** with concentration
399 of stock solutions and sources.

400

401 **Effector translocation assay.** For translocation assays, 2x10⁵ HEp-2 (ATCC CCL-23)
402 cells/ml were seeded into black 96-well plates with transparent bottom (Costar,
403 Germany). Bacterial overnight cultures were diluted 1:50 into an appropriate amount of
404 DMEM with GlutaMAX (Gibco, Germany) and incubated for two hours at 37°C 5% CO₂.
405 2.5 mM probenecid were added to the cultures which were diluted 1:2 in DMEM with
406 GlutaMAX (Gibco, Germany). 50 µl of the bacterial suspension were subsequently
407 added to the screening plates which contained 1 µl of compound per well
408 (concentrations are given in **Table 1**). These plates were incubated for an additional
409 hour. HEp-2 cells were washed once with Dulbecco's PBS (DPBS; Sigma, Germany)

410 and 50 μ l DMEM with GlutaMAX was added to each well. The bacteria-inhibitor
411 suspension (50 μ l per well) was then added to the cells, the plates were centrifuged at
412 1,000 x g for one minute (Eppendorf Centrifuge 5810R with a A-2-DWP-AT plate rotor)
413 and incubated for 1.5 hours (37°C, 5% CO₂). Media was then removed, and infected
414 cells were washed twice with DPBS. DMEM with GlutaMAX supplemented with 1 mM
415 HEPES (Biochrom, Germany) and 1x gentamicin (Sigma) was added to the cells and
416 mixed with LifeBLAzer CCF4-AM staining solution (Invitrogen). The plates were then
417 incubated for one hour at room temperature. Subsequently, the fluorescence was
418 determined in a VarioSkan (Fisher Scientific, Germany) or ClarioStar Plus (BMG
419 Labtech, Germany) plate reader using an excitation wavelength of 405 nm (10 nm
420 bandwidth). Emission was detected with 460 nm (20 nm bandwidth, blue fluorescence)
421 and 530 nm (15 nm bandwidth, green fluorescence) filters. Effector translocation was
422 determined by calculating the ratio of blue to green fluorescence (Em_{520 nm} / Em_{460 nm}).
423 The translocation efficiency of untreated, EPEC-infected cells was set to 100% while
424 that of untreated EPEC-infected cells was used as a negative control.

425

426 **Analysis of inhibitors on *in vitro* growth and cell viability.** Wildtype EPEC E2348/69
427 was grown overnight in LB at 37°C and resuspended to an optical density (OD_{600nm}) of
428 0.02. 100 μ l were added to each well of a 96-well plate containing appropriate amounts
429 of substance or control. Plates were incubated at 37°C without shaking and the OD_{600nm}
430 was determined every two hours for eight hours in a VarioSkan (Fisher Scientific,
431 Germany) or ClarioStar Plus (BMG Labtech, Germany) plate reader.

432 To determine the effect of inhibitory substances on the viability of eukaryotic cells, 100
433 μ l of a 2×10^4 cells/ml solution was used to resuspend the inhibitors of interest, and the
434 resulting solution was transferred to a tissue culture treated 96-well plate. Plates were
435 incubated at 37°C, 5% CO₂ for three days. Subsequently, media was aspirated, and a
436 solution of XTT/PMS (Cell Proliferation Kit II; Merck, Germany) and culture medium was
437 added to the wells. Cells were then incubated at 37°C 5% CO₂ for an additional two
438 hours after which cell viability was determined at 475 nm in a VarioSkan (Fisher
439 Scientific, Germany) or ClarioStar Plus (BMG Labtech, Germany) plate reader.

440

441 **Fluorescent actin stain (FAS).** Cells seeded on coverslips at 2×10^5 cells/ml were
442 infected as described above. After infection, cells were washed twice with DPBS, fixed
443 with 4% paraformaldehyde (Sigma, Germany) for 20 min and permeabilized with 0.1%
444 Triton X-100 (OMNI Life Science, Germany) for five minutes at RT. After washing, cells
445 were stained with TRITC-Phalloidin (Sigma Aldrich, Germany), washed again and
446 mounted using Prolong Diamond mounting medium containing DAPI (Thermo Fisher
447 Scientific, Germany). Actin pedestals on cells were visualized using a Keyence Biorevo
448 BZ-9000 (Keyence, Germany).

449

450 **Cell detachment assay.** Cell detachment assays were carried out, as described in
451 (36). In short, HeLa cells were seeded 48 hours prior to infection with EPEC primed in
452 the presence or absence of inhibitors. After one hour of infection, cells were washed five
453 times with DPBS, incubated in the presence of inhibitors for an additional hour and
454 washed again five times with DPBS. Cells were trypsinized and counted in a

455 hemocytometer to determine the percentage of remaining cells. For visualization, HeLa
456 cells grown in 8-well removable cell culture chambers (Sarstedt, Germany) or on
457 coverslips were infected and treated as described above. Following the second washing
458 step, cells were fixed with 4% PFA and subsequently stained using the Hematoxylin-
459 Eosin fast staining kit (Carl Roth, Germany) according to (36).

460

461 **Motility assay.** LB and DMEM motility agar plates (0.3% agar) containing inhibitory
462 substances at a concentration of 50 μ M/ml were stab-inoculated using 2 μ l of an EPEC
463 E2348/69 overnight culture and incubated at 37°C overnight. The diameter of the
464 motility halos was documented after 6 (LB) or 24 (DMEM) hours. Triplicate stabs were
465 done per assay for each inhibitor.

466

467 **Protein expression and extraction.** For analysis of effector protein expression, LB
468 overnight cultures of bacteria were diluted 1:50 into DMEM GlutaMAX in the presence
469 or absence of inhibitors. After stationary incubation of the cultures at 37°C, 5% CO₂ for
470 three hours, equalized amounts of cells were harvested by centrifugation at 8,000 x g
471 for 10 minutes. The supernatants were discarded, and the bacterial pellets were
472 resuspended in BugBuster protein extraction reagent (Merck, Germany). The cell
473 suspensions were incubated on a rotary shaker for 20 minutes. SDS sample buffer was
474 added before the samples were boiled at 95°C for 10 minutes before further analysis.

475

476 **SDS-PAGE and immunoblotting.** 12% SDS-polyacrylamide gels were used to
477 separate proteins with the BioRad MiniPROTEAN Electrophoresis System (BioRad,

478 Germany) followed by transfer of the proteins onto Immobilon FL PVDF membrane
479 (Millipore, Germany). Antibodies against the T3SS components EspA (1:500), EspB
480 (1:10,000) and EspD (1:10,000) (63) and anti- β -lactamase antibody (Abcam; 1:5,000)
481 against the Tir- β -lactamase fusion protein were used to detect protein by
482 immunoblotting. GAPDH (MA5-15738; 1:5,000; ThermoFisherScientific, Germany) was
483 used as a loading control. Using anti-mouse IgG HRP-linked secondary antibody (Cell
484 Signaling Technology, Germany), proteins were detected with WesternLightning ECL
485 Reagent (Perkin Elmer, Germany) and exposure of the membrane to CL-Xposure film
486 (ThermoFisher Scientific, Germany).

487

488 **Hemolysis assay.** EPEC overnight cultures were diluted 1:25 in DMEM high glucose
489 without Phenol Red (Sigma, Germany) and grown for three hours at 37°C, 5% CO₂ in
490 the presence or absence of inhibitors. Sheep RBCs in Alsever (Fiebig Nährstofftechnik,
491 Germany) were washed three times in PBS and resuspended to 5% (vol/vol) in DMEM
492 high glucose without Phenol Red (Sigma, Germany). Bacterial cultures were equalized
493 to 1x10⁸ in 500 μ l and added to 500 μ l sheep RBCs (5% vol/vol) in two ml Eppendorf
494 tubes. Uninfected RBCs in DMEM were used as a negative control. Total lysis was
495 achieved by the addition of 0.2% saponin to the culture medium. To synchronize
496 infection and mediate bacterial-cell contact, tubes were centrifuged one minute at 2,500
497 \times g (Eppendorf MiniSpin) before incubation at 37°C, 5% CO₂. After two hours, cells
498 were gently resuspended, followed by centrifugation at 2,500 \times g for one minute. 100 μ l
499 of each supernatant was transferred to a 96-well plate, and the amount of hemoglobin
500 released was assessed at 543 nm in a ClarioStar Plus plate reader (BMG Labtech,

501 Germany). Hemolysis was calculated as the percentage of hemoglobin released by the
502 DMSO-treated wildtype-infected RBCs.

503
504 **Reporter-gene assays.** C600 (*stx2::Gluc*) and DBS100 (*stx2_{dact}::Gluc*). Bacteria were
505 inoculated into LB broth and grown at 37°C, 200 rpm for 16 hours in the presence of
506 either the inhibitors at their highest non-cytotoxic concentration, DMSO (negative
507 control; AppliChem) or 40 ng/ml ciprofloxacin (positive control; Sigma). The optical
508 density of each culture was determined, and a volume corresponding to an OD_{600nm} of
509 one (10⁹ cells) was pelleted at 14,000 x g for one minute (Eppendorf MiniSpin). 20 µl of
510 supernatant was mixed with 50 µl BioLux *Gaussia* Luciferase Assay substrate (New
511 England Biolabs, Germany) and the luciferase activity was determined in a ClarioStar
512 Plus plate reader (BMG Labtech, Germany) according to the manufacturer's recommen-
513 dations. Values were compared to untreated culture supernatant, and LB medium was
514 used as blank.

515
516 **Acknowledgements**
517 We thank Ilan Rosenshine for kindly providing the E2348/69 P_{LEE5}*tir-blaM* strain and
518 Martin Koeppel and Bärbel Stecher for the use of C600 φ*stx2_a::Gluc* and DBS770
519 φ*stx2_{dact}::Gluc*. We also thank Sandra Stengel and Amrei Rolof for technical assistance
520 with the HTS. Petra Dersch, Ursula Bilitewski and Sabrina Mühlen are supported by the
521 Deutsche Zentrum für Infektionsforschung (DZIF TTU-GI, TTU 06.801-2,
522 TTU_06_819_00).

523

524

525 **REFERENCES**

526 1. Nataro JP, Kaper JB. 1998. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev 11:142-201.

527

528 2. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. 1998. Enteropathogenic and enterohaemorrhagic *Escherichia coli*: more subversive 529 elements. Mol Microbiol 30:911-21.

530

531 3. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, Harris D, 532 Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail MA, Thurston S, Dougan G, 533 Hayashi T, Parkhill J, Frankel G. 2009. Complete genome sequence and 534 comparative genome analysis of enteropathogenic *Escherichia coli* O127:H6 strain 535 E2348/69. J Bacteriol 191:347-54.

536

537 4. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of 538 enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92:1664-8.

539

540 5. Gaytan MO, Martinez-Santos VI, Soto E, Gonzalez-Pedrajo B. 2016. Type three 541 secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 6:129.

542

543 6. Wilson RK, Shaw RK, Daniell S, Knutton S, Frankel G. 2001. Role of EscF, a 544 putative needle complex protein, in the type III protein translocation system of 545 enteropathogenic *Escherichia coli*. Cell Microbiol 3:753-62.

546

7. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, Barba J, Ibarra JA, O'Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB.

547 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity
548 island. *Proc Natl Acad Sci U S A* 101:3597-602.

549 8. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA. 2001.
550 Characterization of translocation pores inserted into plasma membranes by type III-
551 secreted Esp proteins of enteropathogenic *Escherichia coli*. *Cell Microbiol* 3:669-79.

552 9. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997.
553 Enteropathogenic *E. coli* (EPEC) transfers its receptor for intimate adherence into
554 mammalian cells. *Cell* 91:511-20.

555 10. Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S, Dougan G, Knutton S,
556 Connerton I, Frankel G. 1999. Binding of intimin from enteropathogenic *Escherichia*
557 *coli* to Tir and to host cells. *Mol Microbiol* 32:151-8.

558 11. Cornelis GR. 2006. The type III secretion injectisome. *Nat Rev Microbiol* 4:811-25.

559 12. Muhlen S, Dersch P. 2016. Anti-virulence strategies to target bacterial infections.
560 *Curr Top Microbiol Immunol* 398:147-183.

561 13. Charro N, Mota LJ. 2015. Approaches targeting the type III secretion system to treat
562 or prevent bacterial infections. *Expert Opin Drug Discov* 10:373-87.

563 14. Duncan MC, Linington RG, Auerbuch V. 2012. Chemical inhibitors of the type three
564 secretion system: disarming bacterial pathogens. *Antimicrob Agents Chemother*
565 56:5433-41.

566 15. Pendergrass HA, May AE. 2019. Natural product type III secretion system inhibitors.
567 *Antibiotics (Basel)* 8.

568 16. Zambelloni R, Marquez R, Roe AJ. 2015. Development of antivirulence compounds:
569 a biochemical review. *Chem Biol Drug Des* 85:43-55.

570 17. McShan AC, De Guzman RN. 2015. The bacterial type III secretion system as a
571 target for developing new antibiotics. *Chem Biol Drug Des* 85:30-42.

572 18. Kimura K, Iwatsuki M, Nagai T, Matsumoto A, Takahashi Y, Shiomi K, Omura S,
573 Abe A. 2011. A small-molecule inhibitor of the bacterial type III secretion system
574 protects against *in vivo* infection with *Citrobacter rodentium*. *J Antibiot (Tokyo)*
575 64:197-203.

576 19. Veenendaal AK, Sundin C, Blocker AJ. 2009. Small-molecule type III secretion
577 system inhibitors block assembly of the *Shigella* type III secreton. *J Bacteriol*
578 191:563-70.

579 20. Wolf K, Betts HJ, Chellas-Gery B, Hower S, Linton CN, Fields KA. 2006. Treatment
580 of *Chlamydia trachomatis* with a small molecule inhibitor of the *Yersinia* type III
581 secretion system disrupts progression of the chlamydial developmental cycle. *Mol*
582 *Microbiol* 61:1543-55.

583 21. Izore T, Job V, Dessen A. 2011. Biogenesis, regulation, and targeting of the type III
584 secretion system. *Structure* 19:603-12.

585 22. Beckham KS, Roe AJ. 2014. From screen to target: insights and approaches for the
586 development of anti-virulence compounds. *Front Cell Infect Microbiol* 4:139.

587 23. Negrea A, Bjur E, Ygberg SE, Elofsson M, Wolf-Watz H, Rhen M. 2007.
588 Salicylidene acylhydrazides that affect type III protein secretion in *Salmonella*
589 *enterica* serovar *typhimurium*. *Antimicrob Agents Chemother* 51:2867-76.

590 24. Kauppi AM, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M. 2003. Targeting
591 bacterial virulence: inhibitors of type III secretion in *Yersinia*. *Chem Biol* 10:241-9.

592 25. Diepold A, Armitage JP. 2015. Type III secretion systems: the bacterial flagellum
593 and the injectisome. *Philos Trans R Soc Lond B Biol Sci* 370.

594 26. Mills E, Baruch K, Charpentier X, Kobi S, Rosenshine I. 2008. Real-time analysis of
595 effector translocation by the type III secretion system of enteropathogenic
596 *Escherichia coli*. *Cell Host Microbe* 3:104-13.

597 27. Irschik H, Reichenbach H, Hofle G, Jansen R. 2007. The thuggacins, novel
598 antibacterial macrolides from *Sorangium cellulosum* acting against selected Gram-
599 positive bacteria. *J Antibiot (Tokyo)* 60:733-8.

600 28. Buntin K, Irschik H, Weissman KJ, Luxenburger E, Blocker H, Muller R. 2010.
601 Biosynthesis of thuggacins in myxobacteria: comparative cluster analysis reveals
602 basis for natural product structural diversity. *Chem Biol* 17:342-56.

603 29. Bock M, Dehn R, Kirschning A. 2008. Total synthesis of thuggacin B. *Angew Chem*
604 *Int Ed Engl* 47:9134-7.

605 30. Irschik H, Schummer D, Gerth K, Hofle G, Reichenbach H. 1995. The tartrolons,
606 new boron-containing antibiotics from a myxobacterium, *Sorangium cellulosum*. *J*
607 *Antibiot (Tokyo)* 48:26-30.

608 31. Elshahawi SI, Trindade-Silva AE, Hanora A, Han AW, Flores MS, Vizzoni V,
609 Schrago CG, Soares CA, Concepcion GP, Distel DL, Schmidt EW, Haygood MG.
610 2013. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading
611 bacteria in shipworm gills. *Proc Natl Acad Sci U S A* 110:E295-304.

612 32. Gerth K, Irschik H, Reichenbach H, Trowitzsch W. 1982. The myxovirescins, a
613 family of antibiotics from *Myxococcus virescens* (Myxobacterales). *J Antibiot*
614 *(Tokyo)* 35:1454-9.

615 33. Irschik H, Gerth K, Kemmer T, Steinmetz H, Reichenbach H. 1983. The
616 myxovalargins, new peptide antibiotics from *Myxococcus fulvus* (Myxobacterales). I.
617 Cultivation, isolation, and some chemical and biological properties. *J Antibiot*
618 (Tokyo) 36:6-12.

619 34. Irschik H, Reichenbach H. 1985. The mechanism of action of myxovalargin A, a
620 peptide antibiotic from *Myxococcus fulvus*. *J Antibiot* (Tokyo) 38:1237-45.

621 35. Irschik H, Jansen R, Gerth K, Hofle G, Reichenbach H. 1987. The sorangicins,
622 novel and powerful inhibitors of eubacterial RNA polymerase isolated from
623 myxobacteria. *J Antibiot* (Tokyo) 40:7-13.

624 36. Berger CN, Crepin VF, Baruch K, Mousnier A, Rosenshine I, Frankel G. 2012. EspZ
625 of enteropathogenic and enterohemorrhagic *Escherichia coli* regulates type III
626 secretion system protein translocation. *mBio* 3.

627 37. Warawa J, Finlay BB, Kenny B. 1999. Type III secretion-dependent hemolytic
628 activity of enteropathogenic *Escherichia coli*. *Infect Immun* 67:5538-40.

629 38. Karmali MA, Steele BT, Petric M, Lim C. 1983. Sporadic cases of haemolytic-
630 uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing
631 *Escherichia coli* in stools. *Lancet* 1:619-20.

632 39. O'Brien AD, Lively TA, Chang TW, Gorbach SL. 1983. Purification of *Shigella*
633 dysenteriae 1 (Shiga)-like toxin from *Escherichia coli* O157:H7 strain associated
634 with haemorrhagic colitis. *Lancet* 2:573.

635 40. Muhlen S, Ramming I, Pils MC, Koeppel M, Glaser J, Leong J, Flieger A, Stecher B,
636 Dersch P. 2020. Identification of antibiotics that diminish disease in a murine model

637 of enterohemorrhagic *Escherichia coli* infection. *Antimicrob Agents Chemother*
638 doi:10.1128/AAC.02159-19.

639 41. Escaich S. 2008. Antivirulence as a new antibacterial approach for chemotherapy.
640 *Curr Opin Chem Biol* 12:400-8.

641 42. Dickey SW, Cheung GYC, Otto M. 2017. Different drugs for bad bugs: antivirulence
642 strategies in the age of antibiotic resistance. *Nat Rev Drug Discov* 16:457-471.

643 43. Shenoy AR, Furniss RCD, Goddard PJ, Clements A. 2018. Modulation of host cell
644 processes by T3SS effectors. *Curr Top Microbiol Immunol* 416:73-115.

645 44. Riebisch AK, Muhlen S. 2020. Attaching and effacing pathogens: the effector ABC
646 of immune subversion. *Future Microbiol* 15:945-958.

647 45. Aiello D, Williams JD, Majgier-Baranowska H, Patel I, Peet NP, Huang J, Lory S,
648 Bowlin TL, Moir DT. 2010. Discovery and characterization of inhibitors of
649 *Pseudomonas aeruginosa* type III secretion. *Antimicrob Agents Chemother*
650 54:1988-99.

651 46. Pan NJ, Brady MJ, Leong JM, Goguen JD. 2009. Targeting type III secretion in
652 *Yersinia pestis*. *Antimicrob Agents Chemother* 53:385-92.

653 47. Harmon DE, Davis AJ, Castillo C, Mecsas J. 2010. Identification and
654 characterization of small-molecule inhibitors of Yop translocation in *Yersinia*
655 *pseudotuberculosis*. *Antimicrob Agents Chemother* 54:3241-54.

656 48. Schindele F, Weiss E, Haas R, Fischer W. 2016. Quantitative analysis of CagA type
657 IV secretion by *Helicobacter pylori* reveals substrate recognition and translocation
658 requirements. *Mol Microbiol* 100:188-203.

659 49. Newton P, Thomas DR, Reed SCO, Lau N, Xu B, Ong SY, Pasricha S,
660 Madhamshettiar PB, Edgington-Mitchell LE, Simpson KJ, Roy CR, Newton HJ.
661 2020. Lysosomal degradation products induce *Coxiella burnetii* virulence. Proc Natl
662 Acad Sci U S A 117:6801-6810.

663 50. Duncan MC, Wong WR, Dupzyk AJ, Bray WM, Linington RG, Auerbuch V. 2014. An
664 NF- κ B-based high-throughput screen identifies piericidins as inhibitors of the
665 *Yersinia pseudotuberculosis* type III secretion system. Antimicrob Agents
666 Chemother 58:1118-26.

667 51. McHugh RE, O'Boyle N, Connolly JPR, Hoskisson PA, Roe AJ. 2019.
668 Characterization of the mode of action of Aurodox, a type III secretion system
669 Inhibitor from *Streptomyces goldiniensis*. Infect Immun 87.

670 52. Li J, Lv C, Sun W, Li Z, Han X, Li Y, Shen Y. 2013. Cytosporone B, an inhibitor of
671 the type III secretion system of *Salmonella enterica* serovar Typhimurium.
672 Antimicrob Agents Chemother 57:2191-8.

673 53. Marsden AE, King JM, Spies MA, Kim OK, Yahr TL. 2016. Inhibition of
674 *Pseudomonas aeruginosa* ExsA DNA-binding activity by N-Hydroxybenzimidazoles.
675 Antimicrob Agents Chemother 60:766-76.

676 54. Gauthier A, Robertson ML, Lowden M, Ibarra JA, Puente JL, Finlay BB. 2005.
677 Transcriptional inhibitor of virulence factors in enteropathogenic *Escherichia coli*.
678 Antimicrob Agents Chemother 49:4101-9.

679 55. Koppolu V, Osaka I, Skredenske JM, Kettle B, Hefty PS, Li J, Egan SM. 2013.
680 Small-molecule inhibitor of the *Shigella flexneri* master virulence regulator VirF.
681 Infect Immun 81:4220-31.

682 56. Case HB, Mattock DS, Dickenson NE. 2018. Shutting down *Shigella* secretion:
683 characterizing small molecule type three secretion system ATPase inhibitors.
684 *Biochemistry* 57:6906-6916.

685 57. Puiac S, Sem X, Negrea A, Rhen M. 2011. Small-molecular virulence inhibitors
686 show divergent and immunomodulatory effects in infection models of *Salmonella*
687 *enterica* serovar Typhimurium. *Int J Antimicrob Agents* 38:409-16.

688 58. Layton AN, Hudson DL, Thompson A, Hinton JC, Stevens JM, Galyov EE, Stevens
689 MP. 2010. Salicylidene acylhydrazide-mediated inhibition of type III secretion
690 system-1 in *Salmonella enterica* serovar Typhimurium is associated with iron
691 restriction and can be reversed by free iron. *FEMS Microbiol Lett* 302:114-22.

692 59. Zetterstrom CE, Hasselgren J, Salin O, Davis RA, Quinn RJ, Sundin C, Elofsson M.
693 2013. The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the
694 gram-negative pathogens *Yersinia pseudotuberculosis* and *Pseudomonas*
695 *aeruginosa*. *PLoS One* 8:e81969.

696 60. Felise HB, Nguyen HV, Pfuetzner RA, Barry KC, Jackson SR, Blanc MP, Bronstein
697 PA, Kline T, Miller SI. 2008. An inhibitor of gram-negative bacterial virulence protein
698 secretion. *Cell Host Microbe* 4:325-36.

699 61. Kakoullis L, Papachristodoulou E, Chra P, Panos G. 2019. Shiga toxin-induced
700 haemolytic uraemic syndrome and the role of antibiotics: a global overview. *J Infect*
701 79:75-94.

702 62. Zimmerhackl LB. 2000. *E. coli*, antibiotics, and the hemolytic-uremic syndrome. *N
703 Engl J Med* 342:1990-1.

704 63. Beinke C, Laarmann S, Wachter C, Karch H, Greune L, Schmidt MA. 1998.
705 Diffusely adhering *Escherichia coli* strains induce attaching and effacing phenotypes
706 and secrete homologs of Esp proteins. *Infect Immun* 66:528-39.

707

708

709

710 **TABLES:**

711

712 **Table 1:** Screened natural and chemical compound libraries

Compound library	Source	Number of compounds	Stock solution concentration [mM]	Remarks
NCh + ExNCI	HIPS, Univ. Tübingen via DZIF	264 + 352	1 and 10	Microbial secondary metabolites
SPECS	Specs, The Netherlands	2171	10	Chemical synthesis
LOPAC	Sigma	1408	10	Known bioactive compounds
Var	Various research groups	2933	5 or 10	Chemical synthesis
EMC	EMC microcollections GmbH, Tübingen	6232	1	Chemical synthesis

713

714

715 **Table 2:** IC₅₀ values for translocation efficiency of Tir-TEM as determined with
716 GraphPad Prism using a non-linear regression fit, variable slope (four parameters) with
717 95% confidence interval

Compound	IC ₅₀ [μM]
S3	± 33.77
S4	± 8.207
S6	± 9.347

718

719

720

721 **FIGURE LEGENDS**

722 **FIG 1** Illustration of inhibitor screen setup and screen summary. For the translocation
723 assay, bacteria were grown overnight in LB broth and diluted 1:50 into DMEM. The
724 infection cultures were grown under T3SS-inducing conditions (37°C, 5% CO₂) for two
725 hours and subsequently added to 96-well plates containing one μ l of the screen sub-
726 stances per well. The bacteria were incubated for an additional hour in the presence of
727 substances before being added to a 96-well plate containing HEp-2 cells. Infection was
728 synchronized by centrifugation. Cells were infected in the presence of inhibitors for 1.5
729 hours. Bacteria were removed and cells stained with the FRET substrate CCF4-AM for
730 one hour. Translocation efficiency was assessed by measuring blue and green
731 fluorescence (**A**). Of all the libraries screened, compounds that reduced the
732 translocation by more than 50% in the initial screen were further assessed for cytotoxic
733 and antibacterial side-effects. Three inhibitory compounds without adverse effects were
734 used for further analysis (**B**). Figures were created with BioRender.com.

735

736 **FIG 2** Three substances of the initial high-throughput screen inhibit Tir translocation in a
737 dose-dependent manner. Translocation assays were carried out as described for the
738 high throughput screen. The dose-dependent translocation of Tir-TEM in the presence
739 of the three inhibitory substances identified in the high throughput screen was
740 determined with purchased substances. The ratio of blue/green fluorescence was
741 determined, and values are given as mean (\pm SEM) of two independent experiments.
742 Curves are analyzed in GraphPad Prism using a non-linear regression fit, variable slope

743 (four parameters) with 95% confidence interval (**A**). Chemical structures of the three
744 substances (drawn using ChemDraw) (**B**).

745

746 **FIG 3** Intimate attachment of EPEC is abolished in the presence of inhibitory
747 substances. HEp-2 cells were infected with EPEC strain E2348/69 pP_{gapdh}amCyan
748 (green) in the presence of either inhibitory substances or DMSO (control) for 1.5 hours.
749 After rinsing with DPBS, cells were fixed, permeabilized and stained with TRITC-
750 Phalloidin to visualize F-actin (red). Coverslips were mounted with ProLong Diamond
751 mounting medium containing DAPI for staining of DNA (blue). Cells were visualized
752 using a Keyence Biorevo BZ-9000. Scale bars depict 10 μ m.

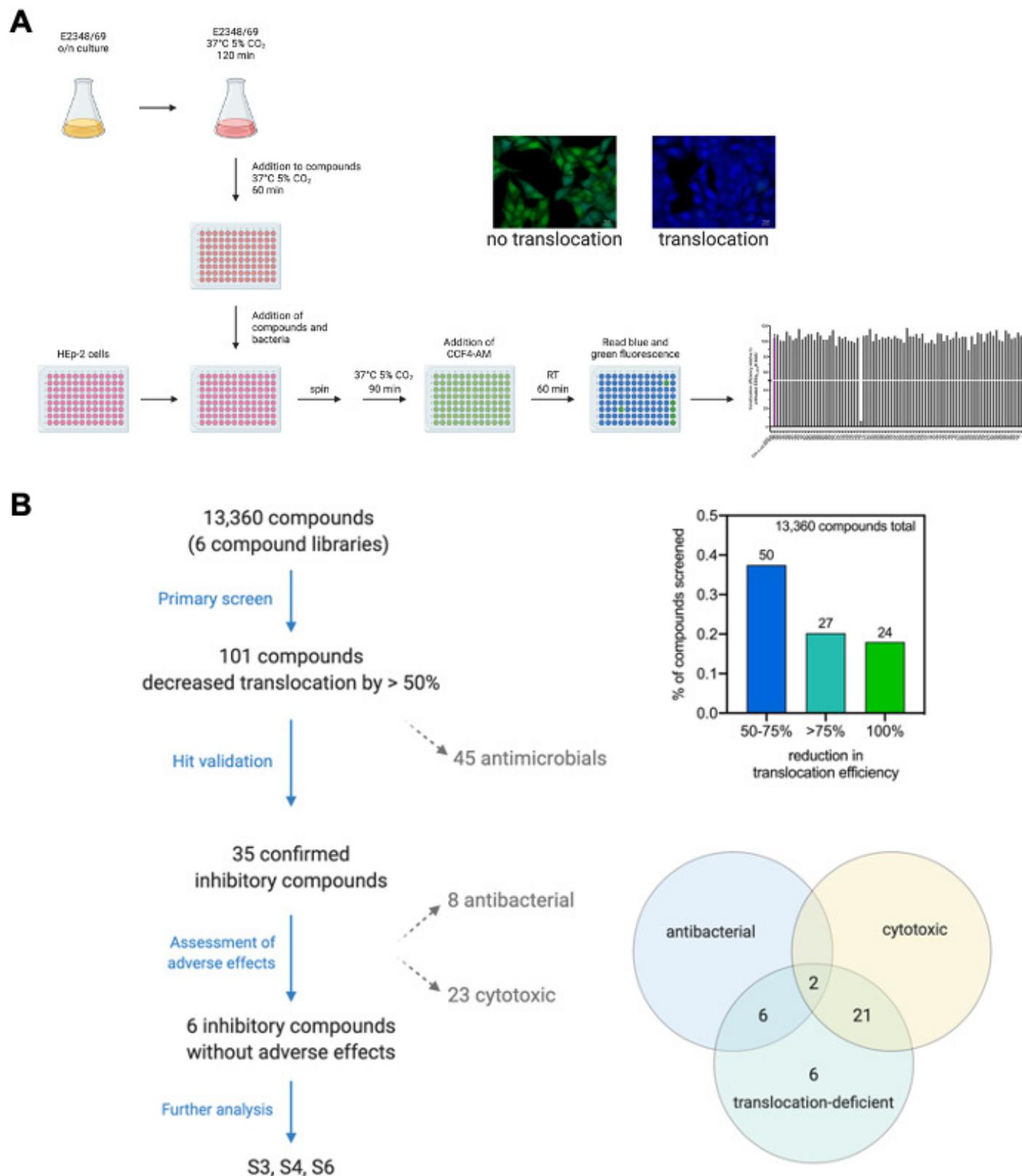
753

754 **FIG 4** Substances inhibit effector-mediated cell loss. Cells were infected with an EPEC
755 E2348/69 Δ espZ mutant in the presence of either 50 μ M S3 or S4 and 25 μ M S6 or an
756 equivalent amount of DMSO for three hours. Cells were thoroughly washed with DPBS
757 five times every hour. The number of adherent cells after infection was determined by
758 trypsinizing remaining cells at the end of the experiment and counting them in a
759 hemocytometer. The number of cells in uninfected, untreated samples was set to 100%.
760 Shown are the mean values (\pm SEM) of adherent cells determined in three independent
761 experiments performed at least in triplicate. Statistical analysis was performed via
762 Welch's t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001), with all treated
763 groups compared to DMSO-treated, Δ espZ-infected control cells (**A**). To visualize the
764 amount of cells remaining after three hours, cells were fixed and stained with
765 Hematoxylin Eosin staining solution. Cells were visualized using a Keyence Biorevo BZ-

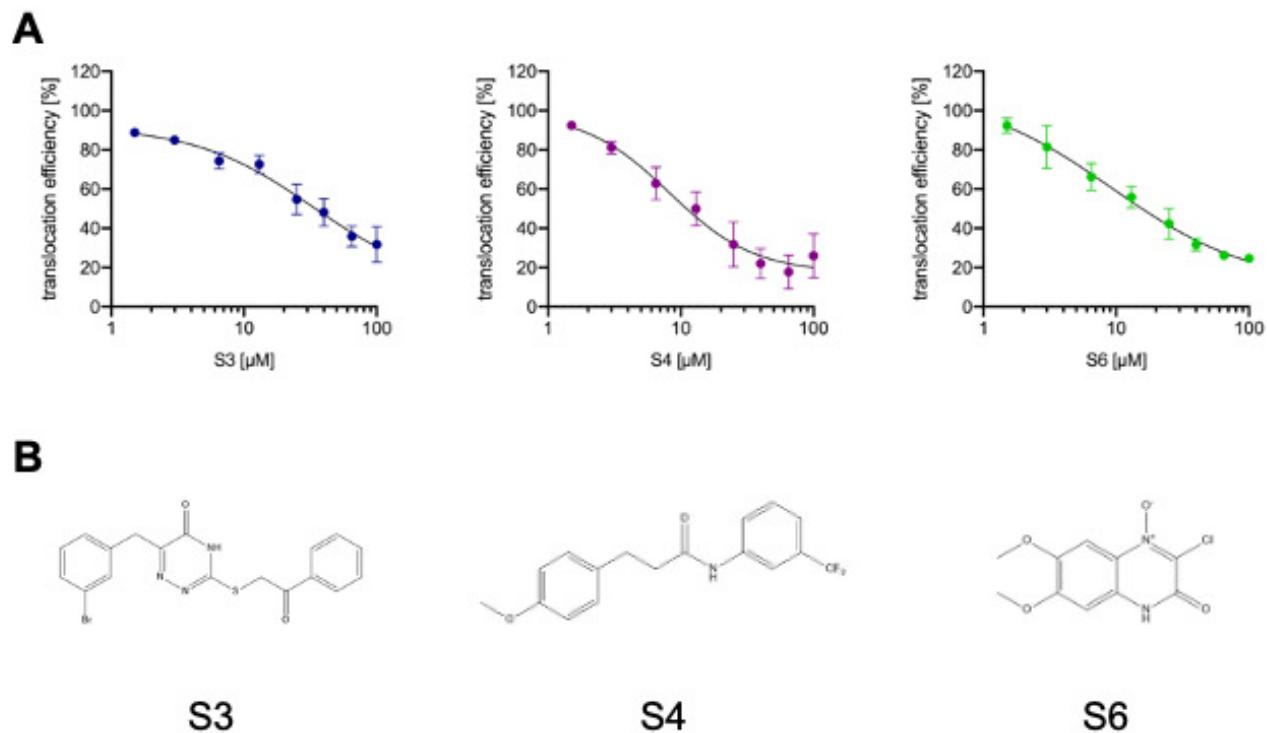
766 9000 (**B**). Pictures are representative of three independent experiments conducted in
767 triplicate.

768

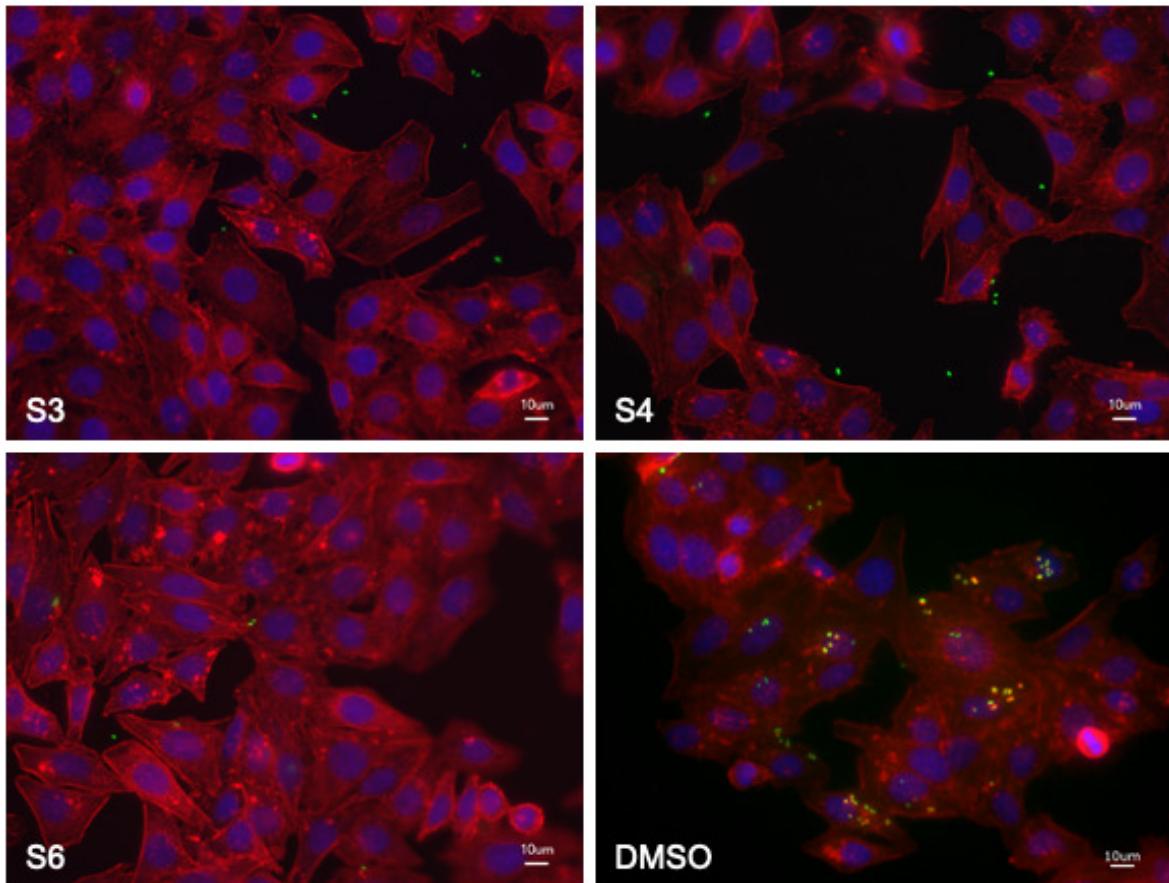
769 **FIG 5** The expression levels of LEE-encoded T3SS proteins are unaffected by the
770 translocation inhibitors. Cell lysates of bacteria grown under T3SS-inducing conditions
771 (37°C, 5% CO₂) for three hours and equalized for cell numbers were separated by SDS-
772 PAGE. The protein expression levels of the proteins EspA, EspB and EspD, which
773 make up the T3SS filament and translocon pore, as well as the level of the Tir-TEM
774 fusion protein were evaluated by immunoblotting. Depicted blots are representative of at
775 least three independent experiments (**A**). The schematic of the T3SS shows the
776 localization of the analyzed components in the T3SS complex. The figure was created
777 with BioRender.com (**B**).

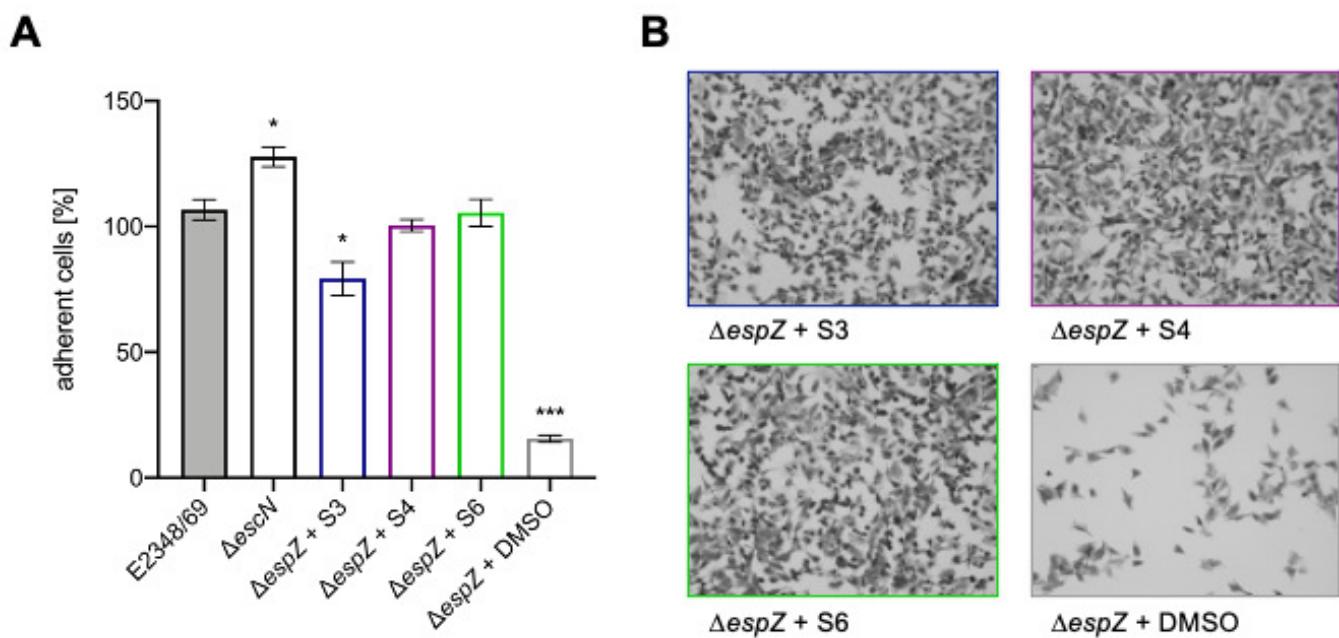

778

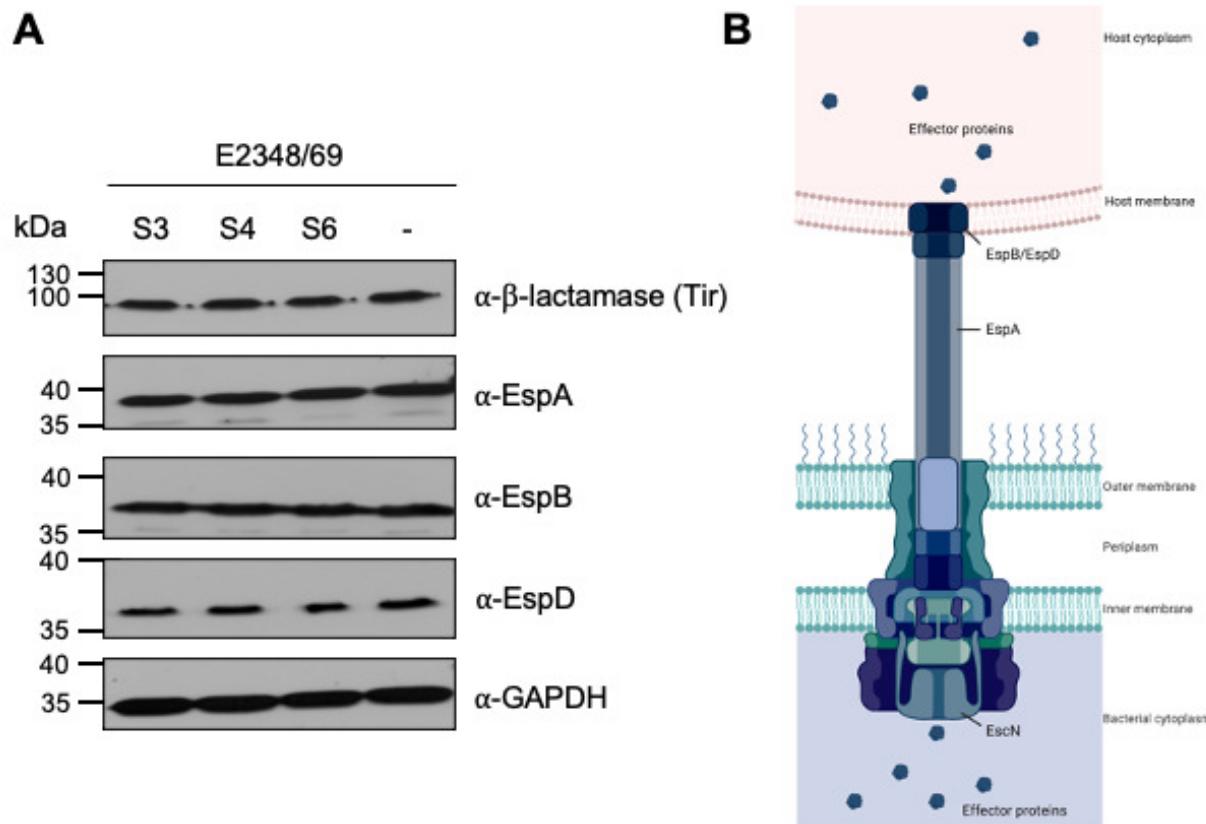
779 **FIG 6** Hemolysis of sheep red blood cells (RBC) was reduced in the presence of S4 and
780 S6 but not by S3. A 3% RBC suspension was incubated with 1x10⁸ bacteria in the
781 presence of either inhibitors or DMSO for two hours. Cells were pelleted, supernatants
782 transferred to 96-well plates, and the amount of hemoglobin released from the cells was
783 determined by measuring absorbance at 543 nm in a plate reader. Shown are the mean
784 values (\pm SEM) of the percentage of hemolysis inhibition determined in three
785 independent experiments performed in triplicate with all treated groups compared to
786 DMSO-treated, wildtype-infected control cells. Statistical analysis was performed via
787 Welch's t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).

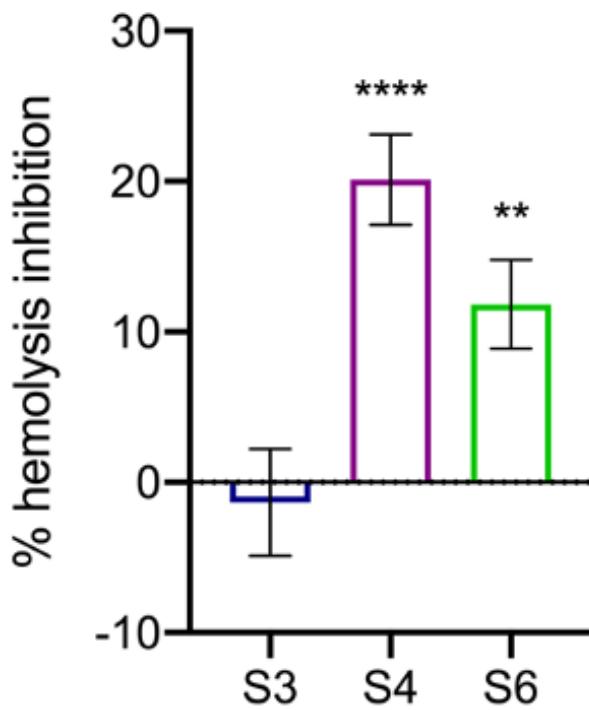

788

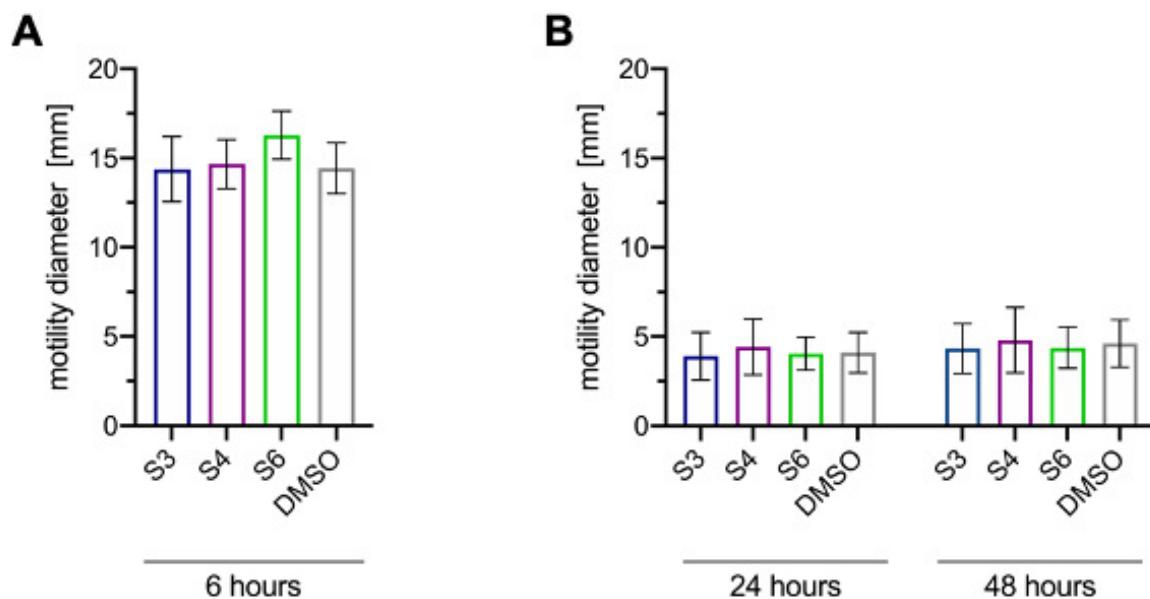
789 **FIG 7** The T3SS inhibiting compounds S3, S4 and S6 do not affect the flagellar T3SS.
790 Bacterial motility was assessed by stab-inoculating bacteria into LB- or DMEM-motility
791 agar containing inhibitors (50 μ M S3 or S4, 25 μ M S6) or DMSO. After six hours (LB;
792 **A**), 24 hours and 48 hours (DMEM; **B**) the diameters of the motility halo were
793 measured. All assays were carried out three times in triplicate. Differences in diameter
794 in the presence of substances compared to DMSO were not significant. Statistical
795 analysis was performed with Welch's t-test.


796
797 **FIG 8** The expression of Shiga toxin is unaffected by the inhibitory compounds. *E. coli*
798 (**A**) or *C. rodentium* (**B**) expressing the *Gaussia* luciferase gene (*Gluc*) under the control
799 of the Shiga toxin promoter were grown overnight in the presence of either compounds,
800 DMSO, or Ciprofloxacin (positive control), equalized and the amount of luciferase
801 released into the supernatant was determined by *Gaussia* luciferase assay. Given are
802 the mean RLU values (\pm SEM) of three independent experiments performed in triplicate.
803 Statistical analysis was performed via Welch's t-test (*, $P < 0.05$; **, $P < 0.01$; ***, $P <$
804 0.001; ****, $P < 0.0001$), with all treated groups compared to DMSO-treated control.


FIG 1 Mühlen *et al.* 2021


FIG 2 Mühlen *et al.* 2021


FIG 3 Mühlen *et al.* 2021


FIG 4 Mühlen *et al.* 2021

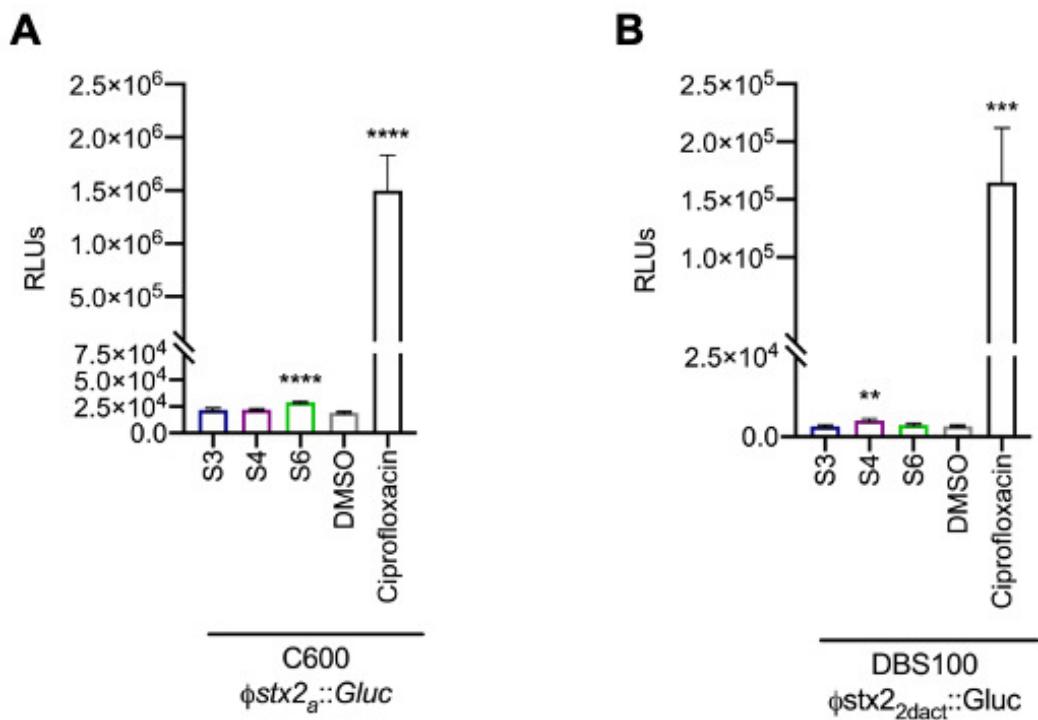

FIG 5 Mühlen *et al.* 2021

FIG 6 Mühlen *et al.* 2021

FIG 7 Mühlen *et al.* 2021

FIG 8 Mühlen *et al.* 2021