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Abstract

The ability to discover new cell populations by unsupervised clustering of single-cell
transcriptomics data has revolutionized biology. Currently, there is no principled way to decide,
whether a cluster of cells contains meaningful subpopulations that should be further resolved.
Here we present SIGMA, a clusterability measure derived from random matrix theory, that can
be used to identify cell clusters with non-random sub-structure, testably leading to the

discovery of previously overlooked phenotypes.

Main

Unsupervised clustering methods'# are integral to most single-cell RNA-sequencing (scRNA-
seq) analysis pipelines®. All existing clustering algorithms have adjustable parameters, which
have to be chosen carefully to reveal the true biological structure of the data. If the data is
over-clustered, many clusters are driven purely by technical noise and do not reflect distinct
biological states. If the data is under-clustered, subtly distinct phenotypes might be grouped
with others and will thus be overlooked. Existing tools to assess clustering quality, such as the
widely used silhouette coefficient, cannot reveal if the variability within a cluster is due to the

presence of subpopulations or random noise.
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To alleviate this problem, we developed SIGnal-Measurement-Angle (SIGMA), a clusterability
measure for scRNA-seq data. We consider clusterability to be the theoretically achievable
agreement with the unknown ground truth clustering, for a given signal-to-noise ratio.
Importantly, our measure can estimate the level of achievable agreement without knowledge
of the ground truth. High clusterability (indicated by SIGMA close to 1) means that multiple
phenotypic subpopulations are present and clustering algorithms should be able to distinguish
them. Low clusterability (indicated by SIGMA close to 0) means that the noise is too strong for
even the best possible clustering algorithm to find any clusters accurately. If SIGMA equals 0,

the observed variability within a cluster is consistent with random noise.

To derive SIGMA, we considered the unobserved, actual gene expression profiles (the signal
matrix) as a perturbation to a random noise matrix (Fig. 1a). This is the exact opposite of the
conventional view, which considers noise as a perturbation to a signal. Note that both the
biological variability within a phenotype as well as technical variability (due to variable capture
and conversion efficiencies etc.) contribute to random noise. Our point of view allowed us to
leverage well-established results from random matrix theory®” and perturbation theory?.
Briefly, we first calculate the singular value distribution of the measured expression matrix. If
the data is preprocessed appropriately (Extended Data Fig. 1), the bulk of this distribution is
described by the Marchenko-Pastur (MP) distribution, which corresponds to the random
component of the measurement. The singular values outside of the MP distribution and above
the Tracy Widom (TW) threshold correspond to the signal (i.e. the unobserved gene
expression profiles). Using just these singular values and the dimensions of the measurement
matrix, we can calculate the angles between the singular vectors of the measured expression
matrix and those of the (unobserved) signal matrix. SIGMA is the squared cosine of the

smallest angle. See Supplementary Note 1 for a detailed derivation. Simulations of data sets
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with varying signal-to-noise ratios illustrate the calculation of SIGMA (Fig. 1b,c). Data sets with
higher signal-to-noise ratios have more easily separable clusters and larger singular values
outside of the MP distribution (Fig. 1b). By definition, that results in higher values of SIGMA

(Fig. 1c).

To show that SIGMA is a proxy for clusterability, we have to make the concept of clusterability
more precise and quantifiable. First, we adopted the Adjusted Rand Index (ARI)? as a well-
established measure for the agreement between an empirically obtained clustering and the
ground truth. Next, we argued that perfect agreement with the ground truth (ARI = 1) is not
achievable in the presence of noise, even with the best conceivable clustering algorithm. Using
a simple case of two clusters of cells with varying signal-to-noise ratios, we estimated the
Bayesian error rate'© (i.e. the lowest possible error) for this binary classification problem in
simulated data (Extended Data Fig. 2a). Based on this error rate, we calculated a theoretically
achievable ARI (tARI, see also Supplementary Note 1). We showed empirically that commonly
used clustering methods do not exceed this limit (Extended Data Fig. 2b,c). The tARlI,
therefore, quantifies our notion of clusterability. Importantly, SIGMA is strongly correlated with
the tARI (Fig. 1d) and thus allows us to estimate clusterability without knowing the ground
truth. To confirm this result in experimentally measured data, we chose two very distinct
clusters from a PBMC data set'" and created two new clusters as weighted averages, which
allowed us control over the signal-to-noise ratio. Also for this data, SIGMA strongly correlates
with the tARI (Fig. 1d). As an alternative to the tARI, we also calculated the theoretically
achievable silhouette coefficient’2 (tSIL), which considers the distances between the best
possible clusters (Extended Data Fig. 3 a-c). The tSIL quickly jumps to higher values for
minimal deviations from pure noise, due to the correct classification of a few outlier cells, which
makes it less useful for assessing overall clusterability. We also compared SIGMA to

ROGUE?3, a recently published clusterability measure (Extended Data Fig. 3d). In contrast to
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80 SIGMA, ROGUE does not show collinearity with the tARI. Therefore, ROGUE seems to
81 estimate a notion of clusterability that is distinct from our point of view.
82
83  To further characterize the performance of SIGMA on experimental data sets with known
84  ground truth, we used a measurement of purified RNA from 3 cell types, mixed at different
85 ratios'* (Extended Data Fig. 4a). We noticed that the amount of input RNA used for each
86 mixture was a confounding factor that influenced the value of SIGMA (Extended Data Fig.
87  4b,c). It is well-established that various factors drive artefactual variability in single-cell RNA-
88 seq data''-'5. We therefore introduced a regression step, that removes the influence of any
89 nuisance variables, such as the number of total counts per cell, ribosomal gene expression,
90 mitochondrial gene expression or cell cycle phase (Extended Data Fig. 4b-c, see also
91 Supplementary Note 1). After correction, SIGMA successfully indicated the presence or
92  absence of sub-clusters for all tested combinations of the 7 original RNA mixtures (Extended
93 Data Fig. 5). By contrast, ROGUE only indicated the presence of sub-structure when the
94  merged clusters were very clearly distinguishable (Extended Data Fig. 5b,c). This indicates
95 that SIGMA is a more sensitive measure, which detects differences between highly similar
96 phenotypes.
97
98 Infull analogy to the reasoning outlined so far, our approach can also be used to characterize
99 variability in the space of genes. We call this conjugate measure G-SIGMA (see
100  Supplementary Note 1 for the derivation). Data sets with higher signal-to-noise ratios are
101 characterized by higher values of G-SIGMA (Extended Data Fig. 6a), which indicates a more
102  accurate estimation of differential gene expression after sub-clustering. Furthermore, genes
103  with higher absolute values in a certain gene-singular vector drive the variability observed in
104  the corresponding cell-singular vector (Extended Data Fig. 6 b-d). Our approach thus not only

105 identifies relevant sub-structure in a cell cluster but can also reveal the genes responsible for
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106 it. This is not a direct replacement for differential expression tests, but a way to understand
107  the variability within the cell-singular vectors.

108

109 Finally, we tested the performance of SIGMA and G-SIGMA in measurements of complex
110 tissues. In a data set of bone marrow mononuclear cells (BMNC)'¢ we calculated SIGMA for
111  the clusters reported by the authors. After correction for confounding factors (Extended Data
112 Fig. 4 d,e), SIGMA corresponded well with a visual inspection of the cluster UMAPs (Fig. 2a).
113 For all clusters, the bulk of the singular value distribution was well-described by the MP
114  distribution and, by construction, only clusters with SIGMA > 0 had significant singular values
115  (Fig. 2b). Reassuringly, many progenitor cell types received a high SIGMA (indicating possible
116  sub-structure) in agreement with the known higher variability in these cell types. Ranking
117  existing clusters by G-SIGMA resulted in a very similar order (Extended Data Fig. 7a). To
118  confirm the presence of relevant sub-structure, we sub-clustered the two original clusters with
119 the highest SIGMA (Extended Data Fig. 7 b-e). In the red blood cell (RBC) progenitors, we
120 identified 4 subsets that correspond to different stages of differentiation, ranging from erythroid
121  precursors to highly differentiated RBCs as identified by F.V Mello et al.’”. In the dendritic cell
122 (DC) progenitor cluster, two sub-clusters were identified, which correspond to precursors of
123 either classical or plasmacytoid DCs'8. For both examples, the variance-driving genes found
124  in the gene-singular vectors were localized to their corresponding clusters (Extended Data
125 Fig. 7 c,d) and overlapped strongly with differentially expressed genes found after sub-
126  clustering (see Supplementary Table 2).

127

128 In a second example, we applied SIGMA to a fetal human kidney data set we published
129  previously'® (Fig 3a). As for BMNCs, SIGMA corresponded well with a qualitative assessment
130  of cluster variability and G-SIGMA resulted in a similar ranking (Extended Data Fig. 8a). Sub-

131  clustering of the cluster with the highest SIGMA, ureteric bud/collecting duct (UBCD), revealed


https://doi.org/10.1101/2021.05.11.443685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443685; this version posted May 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

132 a subset of cells with markers of urothelial cells (UPK1A, KRT7) (Fig. 3b, Extended Data Fig.
133  8b-e). Immunostaining of these two genes, together with CDH1 expressed in the collecting
134  system, in week 15 fetal kidney sections confirmed the presence of the urothelial subcluster
135  (Fig. 3c, Extended Data Fig. 9a). Another subset of cells we did not find in our original analysis,
136  are the parietal epithelial cells (PECs), which could now be identified within the SSBpr cluster
137  (S-shaped body proximal precursor cells) (Fig. 3b, Extended Data Fig. 8b-e). To reveal these
138 cells in situ, we stained for AKAP12 and CAV2, which were among the top differentially
139  expressed genes in this subcluster (Supplementary Table 3), together with CLDN1, a known
140  marker of PECs, and MAFB, a marker of the neighboring podocytes (Fig. 3d, Extended Data
141  Fig. 9b). Together with the PECs and proximal tubule precursor cells, SSBpr also contained a
142  few cells that were misclassified in the original analysis, indicating the additional usefulness
143  of SIGMA as a means to identify clustering errors. Further analysis of a cluster of interstitial
144  cells (ICa) revealed multiple subpopulations (Fig. 3b, Extended Data Fig. 8b-e).
145  Immunostainings revealed that a POSTN-positive population is found mostly in the cortex,
146  often surrounding blood vessels, whereas a SULT1E1-positive population is located in the
147 inner medulla and papilla, often surrounding tubules (Fig. 3e, Extended Data Fig. 9c).
148 CLDN11, another gene identified by analysis of the gene-singular vectors (Extended Data Fig.
149  8b-e) was found mostly in the medulla, but also in the outermost cortex. A more detailed,
150 Dbiological interpretation of the results can be found in Supplementary Note 2.

151

152  In summary, we presented SIGMA, a clusterability measure that can help to detect easily
153  overlooked, subtle phenotypes in scRNA-seq data. Our approach also identifies variance-
154  driving genes and brings renewed awareness to random noise as a factor setting hard limits
155  on clustering and identifying differential expression.

156

157

158
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159 Methods

160 Preprocessing

161  Before applying the method to simulated or measured single-cell RNA-seq data sets, several
162  preprocessing steps are necessary. The raw counts are first normalized and log-transformed.
163 Next, the expression matrix is standardized, first gene-wise, then cell-wise. These steps
164  assure the proper agreement of the bulk of the singular value distribution with the MP
165  distribution (Extended Data Fig. 1). See also Supplementary Note, Section 3.1.

166

167  Signal-Measurement angle (SIGMA)

168  SIGMA is based on the assumption that the expression matrix X measured by scRNA-seq,
169 can be written as the sum of a random matrix X, which contains random biological variability
170  and technical noise, and a signal matrix P, which contains the unobserved expression profiles
171  of each cell:

172

173 X=x+pP

174

175 Note that in this decomposition, cells that belong to the same cell type have identical
176  expression profiles in the signal matrix P. This notion of clusterability, based on the signal-to-
177  noise ratio, is inspired by the notion of detectability in networks20-21,

178

179  Treating the signal matrix P as a perturbation to the random matrix X, we can apply results
180 from both random matrix theory and low-rank perturbation theory. Random matrix theory?223
181  predicts that the singular value distribution of X is a Marchenko-Pastur (MP) distribution?.24.25,
182  which coincides with the bulk of the singular value distribution82627 of X . The singular values
183  of X above the values predicted by the MP distribution characterize the signal matrix P. Since

184  the agreement with the MP distribution holds strictly only for infinite matrices, we use two
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185  additional concepts to identify relevant singular values exceeding the range defined by the MP
186  distribution. The Tracy-Widom?2528 (TW) distribution describes the probability of a singular
187  value to exceed the MP distribution, if the matrix is finite. Additionally, since singular vectors
188 of a random matrix are normally distributed, relevant singular vectors have to be significantly
189  different from normalé. To test for normality we used the Shapiro-Wilk test.

190

191  We apply low-rank perturbation theory® to calculate the singular values (6;) of P from the

192  relevant singular values (y;) of the measured expression matrix X :

193
2c
194 6:(vo) = -
vt —(c+1) —\/(yiz —(c+1) —4c
195

196  where c is the cell-to-gene ratio, i.e. the total number of cells divided by the total number of
197 genes.

198

199  The values of 8; are then used to obtain the angles ¢; between the singular vectors of X and

200 P. These angles are conveniently expressed in terms of their squared cosine as

201

1+67
202 o, =cos(¢p)?>=1— ;iz(((;fﬂ)) .
203

204 The squared cosine of the smallest angle, i.e. the largest squared cosine, is then used as a
205 measure of clusterability:

206

207 o = max; cos(¢;)? = cos(min; $;)?,  ¢; €[0,m/2].

208

209  For a detailed derivation of SIGMA, see Supplementary Note 1, Section 2.1-2.4.
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210

211  Confounder regression

212 scRNA-seq data contains various confounding factors that drive uninformative variability.
213  These either emerge from technical issues (such as the varying efficiency of transcript
214  recovery, which cannot be fully eliminated by normalization) or biological factors (such as cell
215 cycle phase, metabolic state, or stress), see Extended Data Fig. 4. To account for these
216 factors, a regression step, inspired by current gene expression normalization methods'''3, is
217  included. If a singular vector is biased by any of the considered confounders, its singular value
218  will be reduced, which leads to a lower SIGMA value. See also Supplementary Note, Section
219 3.2.

220

221  Theoretically achievable clustering quality

222  To construct a Bayes classifier'?, which achieves the minimal error rate, we need to know the
223 ground truth clustering. Hence, we used data simulated with Splatter?®, containing two
224 clusters. For each ground truth cluster, we fit a multidimensional Gaussian to the
225  corresponding elements of the singular vectors (see Extended Data Fig. 2a). We only consider
226  singular vectors with singular values larger than predicted by the MP distribution. For the fit,
227  we use the mclust®® R package (V 5.4.6). We then construct a classifier by assigning a cell to
228  the cluster for which it has the highest value of the fitted Gaussian distribution. This classifier
229 is thus approximately a Bayes classifier (for a true Bayes classifier, we would need to know
230 the exact distributions of the singular vector entries). The ARI® calculated based on this
231  classification is thus approximately the best theoretically achievable ARI (tARI).

232 The silhouette coefficient'? was calculated on Euclidean distances in the first singular vectors
233  andthe average silhouette coefficient was reported. In the RNA-mix data, Euclidean distances
234  were calculated using singular vectors whose singular values exceed the range defined by the

235  MP distribution and the ground truth clustering. For the simulated data sets with 2 clusters,
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236 the silhouette coefficient was calculated on the first singular vector and the clusterings
237  produced by the different methods (Extended Data Fig. 3). tSIL was calculated with Euclidean
238 distances in the first singular vector on the best theoretically achievable clustering. The
239  calculation of tARI and tSIL is described in more detail in Supplementary Note 1, section 2.5.
240

241  Clustering methods

242 For the validation of the tARI and tSIL, several clustering methods were used on simulated
243  data with two clusters. Seurat clustering’ was performed with the Seurat R package with 10
244  principal components (PCs) and 20 nearest neighbors. Three different resolution parameters
245  were used: 0.1, 0.6, and 1.6. Scanpy clustering? was performed with the scanpy python
246  package with 10 PCs and 20 nearest neighbors. Three different resolution parameters were
247  used: 0.1, 0.6, and 1.6. Hierarchical clustering* was performed on the first 10 PCs and
248  Euclidean distances. The hierarchical tree was built with the Ward linkage and the tree was
249  cut at a height where 2 clusters could be identified. K-means® was performed on the first 10
250 PCs using Euclidean distances and two centers. TSCAN3' was calculated on the first 10 PCs.
251

252 ROGUE

253 ROGUE™ is an entropy-based clusterability measure. A null model is defined under the
254  assumption of Gamma-Poisson distributed gene expression and its differential entropy is then
255  compared to the actual differential entropy of the gene expression.

256  For the RNA-mix data set ROGUE (V 1.0) was used with 1 sample (see Fig S5), “UMI”
257 platform, and a span of 0.6. For the simulated data sets, ROGUE was used with k = 10
258  (Extended Data Fig. 2 d).

259

260 Variance driving genes

10
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261  Genes that drive the variance in the significant singular vectors can be used to explore the
262  biological information in the sub-structures. Genes with large positive or negative entries in a
263  gene-singular vector are localized in cells with high positive or negative entries in the
264  corresponding cell-singular vector. It is also possible to assess the signal-to-noise ratio for the
265 genes by calculating the angle between the gene singular vectors of the measured expression
266  matrix X and the gene singular vectors of the signal matrix P, given by15

_ (c+9i2)
02(62+1)’

267 G = cos(cf))2 =1

268  where cis the cell-to-gene ratio. We call 6 the gene SIGMA (G-SIGMA). See Supplementary
269 Note 1, section 2.4 for a more detailed discussion.

270

271 Data sets

272  Simulated data were produced with the splatter?® R package (V 1.10.1). The parameters used
273  for the simulation are shown in Supplementary Table 1. For Fig. 1c, Extended Data Fig. 2b,
274  Extended Data Fig. 2c, Extended Data Fig. 3, and Extended Data Fig. 6a the simulations for
275 each parameter were performed 50 times, each with a different seed. The results were
276  averaged over the 50 runs. Confounder regression was performed for the total number of
277  transcripts per cell.

278 PBMC data' was downloaded from the 10x genomics website
279  (https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
280 ). For the calculation of the tARI, clustering with Scanpy, TSCAN, k-means, and hierarchical

281  clustering, preprocessing was performed with the scanpy python package (V 1.4.6) following

282  the provided pipeline (https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html) for the
283 filtering of cells and genes, normalization, and log-transformation as well as cluster annotation.
284  For the clustering with Seurat, the provided Seurat pipeline was used

285  (https://satijalab.org/seurat/archive/v3.2/pbmc3k _tutorial.html) for preprocessing, such as cell

286  and gene filtering, normalization, log-transformation and cluster annotation using the Seurat

11
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287 R package (V 3.1.5). CD8 T cells and B cells were extracted from the data and each cluster
288 was standardized gene-wise and cell-wise before the calculation of the singular value
289  decomposition. To remove any sub-structure in these clusters and before the reconstruction
290 of the matrices from the SVD, singular values above the MP distribution were moved into the
291  bulk, and the transcriptome mode (i.e. the singular vector that would have the largest singular
292  value without normalization, see Supplementary Methods Note 1) was moved above the MP
293  distribution. Then, two synthetic clusters containing 150 cells each were created from the
294  cleaned-up original clusters. For cluster 1, a weighted average of a randomly picked B cell
295  with expression profile cg and a randomly picked CD8 T cell with expression profile cpg + was
296 calculated accordingto:¢c; = a-cg + (1 — @) - ccpgr - FOr cluster 2, the weights were flipped:
297 ;= (1—a)-cg+a-cepgr - @ Was chosen in a range from 0 to 1. a close to 0.5 produced
298  highly similar clusters, while a close to 0 or 1 produced maximally different clusters (see Fig
299  S2d). For each value of a, the procedure was repeated 50 times, each with a different seed
300 for selecting 300 cells per cell type, and the results were averaged.

301 RNA-mix data'* was downloaded from the provided GitHub page. The data were normalized
302 with the R scran package (V 1.14.6) and then log-transformed. Confounder regression was
303 performed for the total number of transcripts, average mitochondrial gene expression, and
304 average ribosomal gene expression. Two different merged clusters were created from the
305 provided RNA mixtures as shown in Extended Data Fig. 5.

306 Bone marrow mononuclear cell data set (BMNC)'® was downloaded from the R package
307 SeuratData (bmcite, V 0.2.1). Normalization and the calculation of the G2M score32 were
308 performed with the Seurat R package (V 3.1.5). Confounder regression was performed for the
309 log-transformed total number of transcripts, cell cycle score, and average expressions of each:
310 mitochondrial genes and ribosomal genes (list obtained from the HGNC website).

311 For the fetal kidney data set'®, the same preprocessing and normalization was used as

312  reported previously (scran R package®). The data was then log-transformed and the G2M

12
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313  score was calculated with the Seurat R package. Confounder regression was performed for
314  the log-transformed total number of transcripts, G2M scores, and the average expressions of
315 each: mitochondrial genes, ribosomal genes, and stress-related genes34.

316

317 Embedding

318 Uniform Manifold Approximation and Projections3® (UMAPs) for individual clusters were
319 calculated with the R package umap (V 0.2.7.0) on the first 10 PCs, 20 nearest neighbors,
320 min_dist = 0.3, and Euclidean distances. The umap for BMNC data was calculated with the
321  Seurat R package using 2000 highly variable genes (hvg), d = 50, k = 50, min.dist = 0.6 and
322  metric = cosine. For the fetal kidney data set a force-directed graph layout was calculated
323  using the scanpy python package. The graph was constructed using 100 nearest neighbors,
324 50 PCs, and the ForceAtlas2 layout for visualization.

325

326 Differential expression test

327 Differentially expressed genes within the sub-clusters found in Extended Data Fig. 7 and
328 Extended Data Fig. 8 were calculated with the function findMarkers of the scran R package
329 on log-transformed normalized counts. Genes with a false discovery rate below 0.05 were
330 selected and then sorted by log2 fold change. In Figures S7e and S8e, genes with the top 20
331 highest/lowest values in the gene singular vectors are listed and colored blue if they
332  correspond to the top 20 DE genes.

333

334  Staining

335 A human fetal kidney (female) at week 15 of gestation was used for immunofluorescence
336 using the same procedure as reported previously'®. The following primary antibodies were
337 used: rabbit anti-UPK1A (1:35, HPA049879, Atlas Antibodies), mouse anti-KRT7 (1:200,

338 #MA5-11986, Thermo Fisher Scientific), rabbit anti-CDH1 (1:50, SC-7870, Santa Cruz), rabbit
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339 anti-CLDN1 (1:100, #717800, Thermo Fisher Scientific), goat anti-CAV2 (1:100, AF5788-SP,
340 R&D Systems), mouse anti-AKAP12 (1:50, sc-376740, Santa Cruz), rabbit anti-CLDN11
341  (1:50, HPA013166, Sigma Aldrich), mouse anti-POSTN (1:100, sc-398631, Santa Cruz) and
342  goat anti-SULT1E1 (1:50, AF5545-SP, R&D Systems). The secondary antibodies were all
343  purchased from Invitrogen and diluted to 1:500: Alexa Fluor 594 donkey anti-mouse (A21203),
344  Alexa Fluor 594 donkey anti-rabbit (A21207), Alexa Fluor 647 donkey anti-mouse (A31571),
345  Alexa Fluor 647 donkey anti-rabbit (A31573), Alexa Fluor 647 donkey anti-goat (A21447). The
346  sections were imaged on a Nikon Ti-Eclipse epifluorescence microscope equipped with an
347  Andor iXON Ultra 888 EMCCD camera (Nikon, Tokyo, Japan).

348

349  Ethics statement

350 The collection and use of human material in this study was approved by the Medical Ethics
351 Committee from the Leiden University Medical Center (P08.087). The gestational age was
352  determined by ultrasonography, and the tissue was obtained from women undergoing elective
353  abortion. The material was donated with written informed consent. Questions about the human

354  material should be directed to S. M. Chuva de Sousa Lopes (Lopes@|umc.nl)

355
356 Data availability

357 The BMNC data can be downloaded with the R package SeuratData, named “bmcite”. The

358 fetal kidney data is available with the SIGMA R package at https://github.com/Siliegia/SIGMA,
359 named “sce_kidney”. The PBMC data can be downloaded at

360 https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k filtered gene bc matrices.tar.gz

361 and the RNA-mix data is available at https:/github.com/LuyiTian/sc_mixology, named

362 “‘mRNAmIx_qc”.
363

364
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365 Code availability

366 The R package implementing SIGMA is available at https:/github.com/Siliegia/SIGMA.
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Fig. 11 SIGMA, a clusterability measure for scRNA-seq data derived from random matrix
theory, is a proxy for the theoretically achievable adjusted rand index (tARl).

a Scheme illustrating the rationale. b Singular value spectra of simulated data sets with 5 clusters and
different levels of noise; Red: low signal-to-noise, Green: high signal-to-noise. The MP distribution is
indicated by a solid line, significant singular values are highlighted with asterisks. Inserts show UMAPs
of the data. The data set with a higher signal-to-noise ratio has more significant singular values and
those singular values are bigger. ¢ Value of the largest singular value versus SIGMA for simulated data.

Arrows indicate where the examples from panel a are located. The relationship between the largest
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singular values and SIGMA only depends on the dimensions of the expression matrix. Simulations with
different cell-to-gene ratios are shown in different colors. d SIGMA versus theoretically achievable ARI
(tARI). Red data points: Simulated data sets with two clusters. The number of differentially expressed
(DE) genes was varied, the log fold change between clusters was fixed. Green data points: Simulated
data sets with two clusters. The log fold change between clusters was varied, the number of differentially
expressed genes was fixed. Blue data points: Two synthetic clusters were created by weighted
averages of cells from two clusters in the PBMC data set. Cluster weights were varied. The grey dashed
line indicates identity. Inset: UMAP of PBMC data set with the two clusters used indicated by red solid

circles.
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507 Fig. 2| Application of SIGMA to BMNC data can drive the discovery of biologically meaningful
508  sub-clusters. a UMAP and SIGMA for BMNC data set. Inset: UMAP of clusters with low, intermediate,
509  and high values of SIGMA. b MP distribution of clusters with low, intermediate, and high values of
510 SIGMA.
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Fig. 3 | Application of SIGMA to a human fetal kidney leads to the discovery of biologically

meaningful sub-clusters. a Force-directed graph layout and SIGMA for the fetal kidney data set. Inset:

UMAP of clusters with low, intermediate, and high values for SIGMA. b UMAPs of the UBCD, SSBpr,
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and ICa clusters. Left: Colors indicate sub-clusters. Right: Colors indicate the log-normalized gene
expression of the two indicated genes. One gene follows the red color spectrum, the other gene the
green color spectrum. The combined expression of two genes is either dark (low expression in both
genes) or yellow (high expression in both genes). c-e Immunostainings of week 15 fetal kidney sections.
¢ UPK1A and KRT7 are expressed in the urothelial cells of the developing ureter (upper panel) and
absent from the tubules in the adjacent inner medulla (lower panel). d PECs express CLDN1 and CAV2
(upper panel), as well as CLDN1 at the capillary loop stage and further (lower panel). MAFB staining is
found in podocytes and their precursors in the SSB (lower panel). e CLDN11 and POSTN are expressed
in interstitial cells visualized by immunostaining (upper panel), expression of SULT1E1 in the interstitial

cells surrounding the ureter (UPK1A), and the tubule in the inner medulla (lower panel). Scale bars: 100

ym.
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554  Extended Data Fig. 1
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555

556 Extended Data Fig. 1 | Random matrix theory can be applied to measured single-cell RNA-seq
557  data sets after proper pre-processing. SV spectra of the fetal kidney single-cell RNA-seq data set
558 after different preprocessing steps. a Raw UMI counts. Arrow indicates transcriptome mode. Right:
559  Transcriptome mode was excluded. The bulk of the SV spectrum does not coincide with the MP
560  distribution. b Log-transformed, normalized UMI counts. Arrow indicates transcriptome mode. Right:
561  Transcriptome mode was excluded. The SV spectrum does not coincide with the MP distribution. ¢ Log-
562  transformed, -normalized data as in b, that were additionally centered gene-wise. The SV spectrum
563 approximately coincides with the bulk of the MP distribution and the transcriptome mode, visible as the
564 highest singular value in b and ¢ appears close to 0 (indicated by the arrow). d Log-transformed,
565 normalized, and gene-wise standardized data, as in c, that was additionally standardized cell-wise. The
566 SV spectrum coincides with the bulk of the MP distribution. There are no free parameters to fit. The MP
567  distribution is fully determined by the number of measured genes and cells.
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Extended Data Fig. 2
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Extended Data Fig. 2 | An approximate upper limit to the achievable ARI can be derived from an
estimate of the Bayesian error rate. a First two singular vectors of a simulated data set with two
clusters. Only the first singular vector is significant. Right: Histogram of the first singular vector. The
color indicates to which simulated (ground truth) cluster the cells belong. Two normal distributions fitted
separately to the singular vector entries belonging to the two clusters are shown as solid lines. The
Bayesian error rate is estimated from the overlap of these two distributions and used to calculate the
theoretical ARI (tARI). b ARI achieved by various clustering methods compared to the ground truth and
tARI for simulated data with two clusters. The number of differentially expressed genes was varied. ¢
ARI achieved by various clustering methods compared to the ground truth and tARI for simulated data

with two clusters. The log fold change between clusters was varied. d ARl achieved by various
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581  clustering methods compared to the ground truth and tARI for PBMC cell-type mixture. The mixture
582  proportions were varied from 0 to 1. b,c,d The numbers in the legend indicate the resolution parameter

583 used.
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606 Extended Data Fig. 3
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607

608 Extended Data Fig. 3 | An approximate upper limit to the best possible silhouette coefficient and
609 accordance of ROGUE with tARIL. a Silhouette coefficient (SIL) achieved by various clustering
610 methods and theoretical SIL (tSIL) for simulated data with two clusters. The number of differentially
611  expressed (DE) genes was varied. b SIL achieved by various clustering methods and tSIL for simulated
612  data with two clusters. The log fold change between clusters was varied. a,b The numbers in the legend
613 indicate the resolution parameter used. ¢ tSIL versus SIGMA. Red data points: Simulated data sets
614  with two clusters. The number of DE genes was varied, the log fold change between clusters was fixed.
615  Green data points: Simulated data sets with two clusters. The log fold change between clusters was
616  varied, the number of DE genes was fixed. Blue data points: Two synthetic clusters were created by
617  weighted averages of cells from two clusters in the PBMC data set (see Fig. 2c). Cluster weights were
618 varied. The Grey dashed line indicates identity. d tARI versus 1 - [ROGUE] score. Red data points:
619  Simulated data sets with two clusters. The number of DE genes was varied, the log fold change between
620 clusters was fixed. Green data points: Simulated data sets with two clusters. The log fold change

621  between clusters was varied, the number of DE genes was fixed. Blue data points: Two synthetic
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622  clusters were created by weighted averages of cells from two clusters in a PBMC data set (see Fig. 2c).
623  Cluster weights were varied. The Grey dashed line indicates identity.
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Extended Data Fig. 4
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Extended Data Fig. 4 — Singular vectors from measured data contain confounding technical

variability. The singular vectors are correlated with several confounding variables. a First two singular

vectors of the RNA-mix data set. Clusters are indicated by color. b First two singular vectors of the

cluster indicated by a red solid ellipse in a. The amount of mMRNA per mixture [pg] is indicated in color.

¢ Normalized total counts per mixture versus first singular vector of the cluster shown in b. Linear

regression (dashed line) is used to regress out the correlation with the total counts. Grey area indicates

standard deviation. d First singular vector of Prog RBC cluster in the BMNC data set versus normalized

total counts per cell, normalized expression of ribosomal genes, and normalized expression of

mitochondrial genes. Right: Second singular vector versus normalized G2M score. The dashed line

indicates the linear regression and the grey area indicates the standard deviation. e Left: UMAP of MAIT

cluster in BMNC data set. The color indicates the normalized total counts per cell. Middle: SV spectrum

and MP distribution of the MAIT cluster. Only 1 significant singular value is indicated by an asterisk.
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665  Right: Normalized total counts per cell versus the singular vector associated with the significant singular
666  value (here: 1st singular vector) in the MAIT cluster.
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Extended Data Fig. 5
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Extended Data Fig. 5 | SIGMA outperforms other measures on experimental data. Clusters were
merged in different ways to vary the amount of variability in each merged cluster. Top: first two singular
vectors of RNA-mix data. Colors indicate different mixtures. Bottom: The values of SIGMA (rose), SIL
(orange), tARI (green) and 1 - [ROGUE] (blue) for each corresponding cluster. a Original RNA mixture.
b Merged clusters. Blue: 0-1-0 merged with 0.16-0.68-0.16. Pink: 0-0-1 merged with 0.16-0.16-0.68.
Orange: 1-0-0 merged with 0.68-0.16-0.16. ¢ Blue merged cluster contains mixtures 0.68-0.16-0.16,

0.16-0.68-0.16 and 0.16-0.16-0.68. Orange merged cluster contains mixtures 1-0-0, 0-1-0, and 0-0-1.
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Extended Data Fig. 6
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Extended Data Fig. 6 | Variance-driving genes identified by random matrix theory coincide with
differentially expressed genes in a simulated data set. Genes with high absolute values in the gene
singular vector contribute the most to the variability. a Value of the largest singular value versus the
squared cosine of the angle between the gene singular vector of the signal matrix and the gene singular
vector of the measured expression matrix (G-SIGMA) in simulated data. Arrows indicate examples
shown in Figure 2a. b First two gene singular vectors. Differentially expressed genes of each cluster
are indicated by color. ¢ First two singular vectors for the simulated data set shown in panel b. Dashed
grey lines indicate the 0 value on each of the axes. Cell clusters are indicated by color. d First two
singular vectors as in c. Dashed grey lines indicate the 0 value on each of the axes. The average log-
transformed expression of the top 1% genes driving the variance is indicated by color. The 4 panels
show, respectively, from left to right: genes corresponding to the highest values in gene singular vector
1, genes corresponding to the lowest values in gene singular vector 1, genes corresponding to the
highest values in gene singular vector 2, and genes corresponding to the lowest values in gene singular

vector 2.
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Extended Data Fig. 7
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Extended Data Fig. 7 | Congruence between variance-driving genes and differentially expressed
genes between sub-clusters in the fetal kidney. a G-SIGMA for each cluster in the BMNC data set.
b Singular vectors of the two clusters from the BMNC data set with the highest SIGMA. The color
indicates sub-clustering. Dashed grey lines indicate the 0 value on each of the axes. ¢ Singular vectors
of clusters shown in panel a with color indicating the average log-transformed gene expression of genes
with the 1% highest values in the first gene singular vector. d Singular vectors of clusters shown in
panel a with color indicating the average log-transformed gene expression of genes with the 1% lowest
values in the first gene singular vector. e Genes driving the variance in the two clusters shown in b.
These genes have the 20 highest/lowest values in the first gene singular vector respectively. In blue:
top 20 upregulated genes based on differential expression (DE) test between the sub-clusters using

findMarkers (from scran R package).
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Extended Data Fig. 8 | SIGMA indicates sub-structures in a fetal kidney data set. a G-SIGMA for

each cluster in the fetal kidney data set. b First two singular vectors of the three clusters from the fetal
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763  kidney data set with high SIGMA. The color indicates sub-clustering. Dashed grey lines indicate the 0
764  value on each of the axes. ¢ First two singular vectors of clusters shown in panel a with color

765 indicating the average log-transformed gene expression of genes with the 1% highest values in the
766  first gene singular vector. d First two singular vectors of clusters shown in panel a with color indicating
767  the average log-transformed gene expression of genes with the 1% lowest values in the first gene
768  singular vector. e Genes driving the variance in the three clusters shown in b. These genes have the
769 20 highest/lowest values in the first gene singular vector respectively. In blue: top 20 upregulated
770  genes based on differential expression (DE) test between the sub-clusters using findMarkers (from
771  scran R package).
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Extended Data Fig. 9 | Inmunostaining validates newly identified subclusters in fetal kidney data
set. a-¢ Upper panels show UMAPSs of the selected clusters in the fetal kidney data set. Log-normalized
expression of selected genes is indicated by color. Lower panels show immunostainings of week 15
fetal kidney sections. a UBCD cluster. UPK1A, CDH1, and KRT7 expressions are shown in a complete
section (leftmost image) and in the urothelial epithelium. b SSBpr cluster. Expression of AKAP12,
CLDN1 and CAV2 is shown. The dashed lines indicate S-shaped bodies, arrows indicate PECs in
developing glomeruli ¢ ICa cluster. Expression of SULT1E1 and UPK1A is shown around the ureter
expression of POSTN is shown in cortical areas, CLDN11 is shown in the cortical area (CLDN11, left

image) and around the ureter (CLDN11, right image). Scale bars: 100 ym.
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