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Abstract 11 

The ability to discover new cell populations by unsupervised clustering of single-cell 12 

transcriptomics data has revolutionized biology. Currently, there is no principled way to decide, 13 

whether a cluster of cells contains meaningful subpopulations that should be further resolved. 14 

Here we present SIGMA, a clusterability measure derived from random matrix theory, that can 15 

be used to identify cell clusters with non-random sub-structure, testably leading to the 16 

discovery of previously overlooked phenotypes. 17 

 18 

Main 19 

Unsupervised clustering methods1–4 are integral to most single-cell RNA-sequencing (scRNA-20 

seq) analysis pipelines5. All existing clustering algorithms have adjustable parameters, which 21 

have to be chosen carefully to reveal the true biological structure of the data. If the data is 22 

over-clustered, many clusters are driven purely by technical noise and do not reflect distinct 23 

biological states. If the data is under-clustered, subtly distinct phenotypes might be grouped 24 

with others and will thus be overlooked. Existing tools to assess clustering quality, such as the 25 

widely used silhouette coefficient, cannot reveal if the variability within a cluster is due to the 26 

presence of subpopulations or random noise. 27 
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 28 

To alleviate this problem, we developed SIGnal-Measurement-Angle (SIGMA), a clusterability 29 

measure for scRNA-seq data. We consider clusterability to be the theoretically achievable 30 

agreement with the unknown ground truth clustering, for a given signal-to-noise ratio. 31 

Importantly, our measure can estimate the level of achievable agreement without knowledge 32 

of the ground truth. High clusterability (indicated by SIGMA close to 1) means that multiple 33 

phenotypic subpopulations are present and clustering algorithms should be able to distinguish 34 

them. Low clusterability (indicated by SIGMA close to 0) means that the noise is too strong for 35 

even the best possible clustering algorithm to find any clusters accurately. If SIGMA equals 0, 36 

the observed variability within a cluster is consistent with random noise. 37 

 38 

To derive SIGMA, we considered the unobserved, actual gene expression profiles (the signal 39 

matrix) as a perturbation to a random noise matrix (Fig. 1a). This is the exact opposite of the 40 

conventional view, which considers noise as a perturbation to a signal. Note that both the 41 

biological variability within a phenotype as well as technical variability (due to variable capture 42 

and conversion efficiencies etc.) contribute to random noise. Our point of view allowed us to 43 

leverage well-established results from random matrix theory6,7 and perturbation theory8. 44 

Briefly, we first calculate the singular value distribution of the measured expression matrix. If 45 

the data is preprocessed appropriately (Extended Data Fig. 1), the bulk of this distribution is 46 

described by the Marchenko-Pastur (MP) distribution, which corresponds to the random 47 

component of the measurement. The singular values outside of the MP distribution and above 48 

the Tracy Widom (TW) threshold correspond to the signal (i.e. the unobserved gene 49 

expression profiles). Using just these singular values and the dimensions of the measurement 50 

matrix, we can calculate the angles between the singular vectors of the measured expression 51 

matrix and those of the (unobserved) signal matrix. SIGMA is the squared cosine of the 52 

smallest angle. See Supplementary Note 1 for a detailed derivation. Simulations of data sets 53 
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with varying signal-to-noise ratios illustrate the calculation of SIGMA (Fig. 1b,c). Data sets with 54 

higher signal-to-noise ratios have more easily separable clusters and larger singular values 55 

outside of the MP distribution (Fig. 1b). By definition, that results in higher values of SIGMA 56 

(Fig. 1c).  57 

 58 

To show that SIGMA is a proxy for clusterability, we have to make the concept of clusterability 59 

more precise and quantifiable. First, we adopted the Adjusted Rand Index (ARI)9 as a well-60 

established measure for the agreement between an empirically obtained clustering and the 61 

ground truth. Next, we argued that perfect agreement with the ground truth (ARI = 1) is not 62 

achievable in the presence of noise, even with the best conceivable clustering algorithm. Using 63 

a simple case of two clusters of cells with varying signal-to-noise ratios, we estimated the 64 

Bayesian error rate10 (i.e. the lowest possible error) for this binary classification problem in 65 

simulated data (Extended Data Fig. 2a). Based on this error rate, we calculated a theoretically 66 

achievable ARI (tARI, see also Supplementary Note 1). We showed empirically that commonly 67 

used clustering methods do not exceed this limit (Extended Data Fig. 2b,c). The tARI, 68 

therefore, quantifies our notion of clusterability. Importantly, SIGMA is strongly correlated with 69 

the tARI (Fig. 1d) and thus allows us to estimate clusterability without knowing the ground 70 

truth. To confirm this result in experimentally measured data, we chose two very distinct 71 

clusters from a PBMC data set11 and created two new clusters as weighted averages, which 72 

allowed us control over the signal-to-noise ratio. Also for this data, SIGMA strongly correlates 73 

with the tARI (Fig. 1d). As an alternative to the tARI, we also calculated the theoretically 74 

achievable silhouette coefficient12 (tSIL), which considers the distances between the best 75 

possible clusters (Extended Data Fig. 3 a-c). The tSIL quickly jumps to higher values for 76 

minimal deviations from pure noise, due to the correct classification of a few outlier cells, which 77 

makes it less useful for assessing overall clusterability. We also compared SIGMA to 78 

ROGUE13, a recently published clusterability measure (Extended Data Fig. 3d). In contrast to 79 
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SIGMA, ROGUE does not show collinearity with the tARI. Therefore, ROGUE seems to 80 

estimate a notion of clusterability that is distinct from our point of view.   81 

 82 

To further characterize the performance of SIGMA on experimental data sets with known 83 

ground truth, we used a measurement of purified RNA from 3 cell types, mixed at different 84 

ratios14 (Extended Data Fig. 4a). We noticed that the amount of input RNA used for each 85 

mixture was a confounding factor that influenced the value of SIGMA (Extended Data Fig. 86 

4b,c). It is well-established that various factors drive artefactual variability in single-cell RNA-87 

seq data11,15. We therefore introduced a regression step, that removes the influence of any 88 

nuisance variables, such as the number of total counts per cell, ribosomal gene expression, 89 

mitochondrial gene expression or cell cycle phase (Extended Data Fig. 4b-c, see also 90 

Supplementary Note 1). After correction, SIGMA successfully indicated the presence or 91 

absence of sub-clusters for all tested combinations of the 7 original RNA mixtures (Extended 92 

Data Fig. 5). By contrast, ROGUE only indicated the presence of sub-structure when the 93 

merged clusters were very clearly distinguishable (Extended Data Fig. 5b,c). This indicates 94 

that SIGMA is a more sensitive measure, which detects differences between highly similar 95 

phenotypes. 96 

 97 

In full analogy to the reasoning outlined so far, our approach can also be used to characterize 98 

variability in the space of genes. We call this conjugate measure G-SIGMA (see 99 

Supplementary Note 1 for the derivation). Data sets with higher signal-to-noise ratios are 100 

characterized by higher values of G-SIGMA (Extended Data Fig. 6a), which indicates a more 101 

accurate estimation of differential gene expression after sub-clustering. Furthermore, genes 102 

with higher absolute values in a certain gene-singular vector drive the variability observed in 103 

the corresponding cell-singular vector (Extended Data Fig. 6 b-d). Our approach thus not only 104 

identifies relevant sub-structure in a cell cluster but can also reveal the genes responsible for 105 
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it. This is not a direct replacement for differential expression tests, but a way to understand 106 

the variability within the cell-singular vectors.  107 

 108 

Finally, we tested the performance of SIGMA and G-SIGMA in measurements of complex 109 

tissues. In a data set of bone marrow mononuclear cells (BMNC)16 we calculated SIGMA for 110 

the clusters reported by the authors. After correction for confounding factors (Extended Data 111 

Fig. 4 d,e), SIGMA corresponded well with a visual inspection of the cluster UMAPs (Fig. 2a). 112 

For all clusters, the bulk of the singular value distribution was well-described by the MP 113 

distribution and, by construction, only clusters with SIGMA > 0 had significant singular values 114 

(Fig. 2b). Reassuringly, many progenitor cell types received a high SIGMA (indicating possible 115 

sub-structure) in agreement with the known higher variability in these cell types. Ranking 116 

existing clusters by G-SIGMA resulted in a very similar order (Extended Data Fig. 7a). To 117 

confirm the presence of relevant sub-structure, we sub-clustered the two original clusters with 118 

the highest SIGMA (Extended Data Fig. 7 b-e). In the red blood cell (RBC) progenitors, we 119 

identified 4 subsets that correspond to different stages of differentiation, ranging from erythroid 120 

precursors to highly differentiated RBCs as identified by F.V Mello et al.17. In the dendritic cell 121 

(DC) progenitor cluster, two sub-clusters were identified, which correspond to precursors of 122 

either classical or plasmacytoid DCs18. For both examples, the variance-driving genes found 123 

in the gene-singular vectors were localized to their corresponding clusters (Extended Data 124 

Fig. 7 c,d) and overlapped strongly with differentially expressed genes found after sub-125 

clustering (see Supplementary Table 2).  126 

 127 

In a second example, we applied SIGMA to a fetal human kidney data set we published 128 

previously19 (Fig 3a). As for BMNCs, SIGMA corresponded well with a qualitative assessment 129 

of cluster variability and G-SIGMA resulted in a similar ranking (Extended Data Fig. 8a). Sub-130 

clustering of the cluster with the highest SIGMA, ureteric bud/collecting duct (UBCD), revealed 131 
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a subset of cells with markers of urothelial cells (UPK1A, KRT7) (Fig. 3b, Extended Data Fig. 132 

8b-e). Immunostaining of these two genes, together with CDH1 expressed in the collecting 133 

system, in week 15 fetal kidney sections confirmed the presence of the urothelial subcluster 134 

(Fig. 3c, Extended Data Fig. 9a). Another subset of cells we did not find in our original analysis, 135 

are the parietal epithelial cells (PECs), which could now be identified within the SSBpr cluster 136 

(S-shaped body proximal precursor cells) (Fig. 3b, Extended Data Fig. 8b-e). To reveal these 137 

cells in situ, we stained for AKAP12 and CAV2, which were among the top differentially 138 

expressed genes in this subcluster (Supplementary Table 3), together with CLDN1, a known 139 

marker of PECs, and MAFB, a marker of the neighboring podocytes (Fig. 3d, Extended Data 140 

Fig. 9b). Together with the PECs and proximal tubule precursor cells, SSBpr also contained a 141 

few cells that were misclassified in the original analysis, indicating the additional usefulness 142 

of SIGMA as a means to identify clustering errors. Further analysis of a cluster of interstitial 143 

cells (ICa) revealed multiple subpopulations (Fig. 3b, Extended Data Fig. 8b-e). 144 

Immunostainings revealed that a POSTN-positive population is found mostly in the cortex, 145 

often surrounding blood vessels, whereas a SULT1E1-positive population is located in the 146 

inner medulla and papilla, often surrounding tubules (Fig. 3e, Extended Data Fig. 9c). 147 

CLDN11, another gene identified by analysis of the gene-singular vectors (Extended Data Fig. 148 

8b-e) was found mostly in the medulla, but also in the outermost cortex. A more detailed, 149 

biological interpretation of the results can be found in Supplementary Note 2. 150 

 151 

In summary, we presented SIGMA, a clusterability measure that can help to detect easily 152 

overlooked, subtle phenotypes in scRNA-seq data. Our approach also identifies variance-153 

driving genes and brings renewed awareness to random noise as a factor setting hard limits 154 

on clustering and identifying differential expression. 155 

 156 

 157 

158 
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Methods  159 

Preprocessing 160 

Before applying the method to simulated or measured single-cell RNA-seq data sets, several 161 

preprocessing steps are necessary. The raw counts are first normalized and log-transformed. 162 

Next, the expression matrix is standardized, first gene-wise, then cell-wise. These steps 163 

assure the proper agreement of the bulk of the singular value distribution with the MP 164 

distribution (Extended Data Fig. 1). See also Supplementary Note, Section 3.1. 165 

 166 

Signal-Measurement angle (SIGMA) 167 

SIGMA is based on the assumption that the expression matrix 𝑋" measured by scRNA-seq, 168 

can be written as the sum of a random matrix 𝑋, which contains random biological variability 169 

and technical noise, and a signal matrix 𝑃, which contains the unobserved expression profiles 170 

of each cell:  171 

 172 

𝑋" = 𝑋 + 𝑃 173 

 174 

Note that in this decomposition, cells that belong to the same cell type have identical 175 

expression profiles in the signal matrix 𝑃. This notion of clusterability, based on the signal-to-176 

noise ratio, is inspired by the notion of detectability in networks20,21. 177 

 178 

Treating the signal matrix 𝑃 as a perturbation to the random matrix 𝑋, we can apply results 179 

from both random matrix theory and low-rank perturbation theory. Random matrix theory22,23 180 

predicts that the singular value distribution of 𝑋 is a Marchenko-Pastur (MP) distribution7,24,25, 181 

which coincides with the bulk of the singular value distribution6,26,27 of 𝑋	' . The singular values 182 

of 𝑋" above the values predicted by the MP distribution characterize the signal matrix 𝑃. Since 183 

the agreement with the MP distribution holds strictly only for infinite matrices, we use two 184 
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additional concepts to identify relevant singular values exceeding the range defined by the MP 185 

distribution. The Tracy-Widom25,28 (TW) distribution describes the probability of a singular 186 

value to exceed the MP distribution, if the matrix is finite. Additionally, since singular vectors 187 

of a random matrix are normally distributed, relevant singular vectors have to be significantly 188 

different from normal6. To test for normality we used the Shapiro-Wilk test.  189 

 190 

We apply low-rank perturbation theory8 to calculate the singular values (𝜃*) of 𝑃 from the 191 

relevant singular values (𝛾*) of the measured expression matrix 𝑋	' :  192 

 193 

𝜃*(𝛾*) = -
2𝑐

𝛾*0 − (𝑐 + 1) − 34𝛾*0 − (𝑐 + 1)5
0
− 4𝑐

 194 

 195 

where c is the cell-to-gene ratio, i.e. the total number of cells divided by the total number of 196 

genes. 197 

 198 

The values of 𝜃* are then used to obtain the angles 𝜙* between the singular vectors of 𝑋" and 199 

𝑃. These angles are conveniently expressed in terms of their squared cosine as 200 

 201 

𝜎* = 𝑐𝑜𝑠(𝜙*)0 = 	1 − ;4<=>?
@5

>?
@4>?

@=;5
 . 202 

 203 

The squared cosine of the smallest angle, i.e. the largest squared cosine, is then used as a 204 

measure of clusterability: 205 

 206 

𝜎	 = 	𝑚𝑎𝑥*	𝑐𝑜𝑠(𝜙*)
0 = 	𝑐𝑜𝑠(𝑚𝑖𝑛*	𝜙*)0, 𝜙* 	∈ [0, 𝜋/2]	. 207 

 208 

For a detailed derivation of SIGMA, see Supplementary Note 1, Section 2.1-2.4. 209 
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 210 

Confounder regression 211 

scRNA-seq data contains various confounding factors that drive uninformative variability. 212 

These either emerge from technical issues (such as the varying efficiency of transcript 213 

recovery, which cannot be fully eliminated by normalization) or biological factors (such as cell 214 

cycle phase, metabolic state, or stress), see Extended Data Fig. 4. To account for these 215 

factors, a regression step, inspired by current gene expression normalization methods11,15, is 216 

included. If a singular vector is biased by any of the considered confounders, its singular value 217 

will be reduced, which leads to a lower SIGMA value. See also Supplementary Note, Section 218 

3.2. 219 

 220 

Theoretically achievable clustering quality 221 

To construct a Bayes classifier10, which achieves the minimal error rate, we need to know the 222 

ground truth clustering. Hence, we used data simulated with Splatter29, containing two 223 

clusters. For each ground truth cluster, we fit a multidimensional Gaussian to the 224 

corresponding elements of the singular vectors (see Extended Data Fig. 2a). We only consider 225 

singular vectors with singular values larger than predicted by the MP distribution. For the fit, 226 

we use the mclust30 R package (V 5.4.6). We then construct a classifier by assigning a cell to 227 

the cluster for which it has the highest value of the fitted Gaussian distribution. This classifier 228 

is thus approximately a Bayes classifier (for a true Bayes classifier, we would need to know 229 

the exact distributions of the singular vector entries).  The ARI9 calculated based on this 230 

classification is thus approximately the best theoretically achievable ARI (tARI).  231 

The silhouette coefficient12 was calculated on Euclidean distances in the first singular vectors 232 

and the average silhouette coefficient was reported. In the RNA-mix data, Euclidean distances 233 

were calculated using singular vectors whose singular values exceed the range defined by the 234 

MP distribution and the ground truth clustering. For the simulated data sets with 2 clusters, 235 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.11.443685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

the silhouette coefficient was calculated on the first singular vector and the clusterings 236 

produced by the different methods (Extended Data Fig. 3). tSIL was calculated with Euclidean 237 

distances in the first singular vector on the best theoretically achievable clustering. The 238 

calculation of tARI and tSIL is described in more detail in Supplementary Note 1, section 2.5. 239 

 240 

Clustering methods 241 

For the validation of the tARI and tSIL, several clustering methods were used on simulated 242 

data with two clusters. Seurat clustering1 was performed with the Seurat R package with 10 243 

principal components (PCs) and 20 nearest neighbors. Three different resolution parameters 244 

were used: 0.1, 0.6, and 1.6. Scanpy clustering2 was performed with the scanpy python 245 

package with 10 PCs and 20 nearest neighbors. Three different resolution parameters were 246 

used: 0.1, 0.6, and 1.6. Hierarchical clustering4 was performed on the first 10 PCs and 247 

Euclidean distances. The hierarchical tree was built with the Ward linkage and the tree was 248 

cut at a height where 2 clusters could be identified. K-means3 was performed on the first 10 249 

PCs using Euclidean distances and two centers. TSCAN31 was calculated on the first 10 PCs.  250 

 251 

ROGUE 252 

ROGUE13 is an entropy-based clusterability measure. A null model is defined under the 253 

assumption of Gamma-Poisson distributed gene expression and its differential entropy is then 254 

compared to the actual differential entropy of the gene expression.  255 

For the RNA-mix data set ROGUE (V 1.0) was used with 1 sample (see Fig S5), “UMI” 256 

platform, and a span of 0.6. For the simulated data sets, ROGUE was used with k = 10 257 

(Extended Data Fig. 2 d).  258 

 259 

Variance driving genes 260 
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Genes that drive the variance in the significant singular vectors can be used to explore the 261 

biological information in the sub-structures. Genes with large positive or negative entries in a 262 

gene-singular vector are localized in cells with high positive or negative entries in the 263 

corresponding cell-singular vector. It is also possible to assess the signal-to-noise ratio for the 264 

genes by calculating the angle between the gene singular vectors of the measured expression 265 

matrix 𝑋" and the gene singular vectors of the signal matrix 𝑃, given by15  266 

𝜎N = 𝑐𝑜𝑠4𝜙"50 = 1 − 4;=>?
@5

>?
@4>?

@=<5
 , 267 

where c is the cell-to-gene ratio.  We call 𝜎N the gene SIGMA (G-SIGMA). See Supplementary 268 

Note 1, section 2.4 for a more detailed discussion. 269 

 270 

Data sets 271 

Simulated data were produced with the splatter29 R package (V 1.10.1). The parameters used 272 

for the simulation are shown in Supplementary Table 1. For Fig. 1c, Extended Data Fig. 2b, 273 

Extended Data Fig. 2c, Extended Data Fig. 3, and Extended Data Fig. 6a the simulations for 274 

each parameter were performed 50 times, each with a different seed. The results were 275 

averaged over the 50 runs. Confounder regression was performed for the total number of 276 

transcripts per cell.  277 

PBMC data11 was downloaded from the 10x genomics website 278 

(https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz279 

). For the calculation of the tARI, clustering with Scanpy, TSCAN, k-means, and hierarchical 280 

clustering, preprocessing was performed with the scanpy python package (V 1.4.6) following 281 

the provided pipeline (https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html) for the 282 

filtering of cells and genes, normalization, and log-transformation as well as cluster annotation. 283 

For the clustering with Seurat, the provided Seurat pipeline was used 284 

(https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html) for preprocessing, such as cell 285 

and gene filtering, normalization, log-transformation and cluster annotation using the Seurat 286 
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R package (V 3.1.5). CD8 T cells and B cells were extracted from the data and each cluster 287 

was standardized gene-wise and cell-wise before the calculation of the singular value 288 

decomposition. To remove any sub-structure in these clusters and before the reconstruction 289 

of the matrices from the SVD, singular values above the MP distribution were moved into the 290 

bulk, and the transcriptome mode (i.e. the singular vector that would have the largest singular 291 

value without normalization, see Supplementary Methods Note 1) was moved above the MP 292 

distribution. Then, two synthetic clusters containing 150 cells each were created from the 293 

cleaned-up original clusters. For cluster 1, a weighted average of a randomly picked B cell 294 

with expression profile 𝑐O and a randomly picked CD8 T cell with expression profile 𝑐PQR	S was 295 

calculated according to: 𝑐< = 	𝛼 ∙ 𝑐O + (1 − 	𝛼) ∙ 𝑐PQR	S . For cluster 2, the weights were flipped: 296 

𝑐0 = 	 (1 − 𝛼) ∙ 𝑐O + 𝛼 ∙ 𝑐PQR	S . 𝛼 was chosen in a range from 0 to 1. 𝛼 close to 0.5 produced 297 

highly similar clusters, while 𝛼 close to 0 or 1 produced maximally different clusters (see Fig 298 

S2d). For each value of 𝛼, the procedure was repeated 50 times, each with a different seed 299 

for selecting 300 cells per cell type, and the results were averaged. 300 

RNA-mix data14 was downloaded from the provided GitHub page. The data were normalized 301 

with the R scran package (V 1.14.6) and then log-transformed. Confounder regression was 302 

performed for the total number of transcripts, average mitochondrial gene expression, and 303 

average ribosomal gene expression. Two different merged clusters were created from the 304 

provided RNA mixtures as shown in Extended Data Fig. 5.  305 

Bone marrow mononuclear cell data set (BMNC)16 was downloaded from the R package 306 

SeuratData (bmcite, V 0.2.1). Normalization and the calculation of the G2M score32 were 307 

performed with the Seurat R package (V 3.1.5). Confounder regression was performed for the 308 

log-transformed total number of transcripts, cell cycle score, and average expressions of each: 309 

mitochondrial genes and ribosomal genes (list obtained from the HGNC website). 310 

For the fetal kidney data set19, the same preprocessing and normalization was used as 311 

reported previously (scran R package33). The data was then log-transformed and the G2M 312 
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score was calculated with the Seurat R package. Confounder regression was performed for 313 

the log-transformed total number of transcripts, G2M scores, and the average expressions of 314 

each: mitochondrial genes, ribosomal genes, and stress-related genes34.  315 

 316 

Embedding 317 

Uniform Manifold Approximation and Projections35 (UMAPs) for individual clusters were 318 

calculated with the R package umap (V 0.2.7.0) on the first 10 PCs, 20 nearest neighbors, 319 

min_dist = 0.3, and Euclidean distances. The umap for BMNC data was calculated with the 320 

Seurat R package using 2000 highly variable genes (hvg), d = 50, k = 50, min.dist = 0.6 and 321 

metric = cosine. For the fetal kidney data set a force-directed graph layout was calculated 322 

using the scanpy python package. The graph was constructed using 100 nearest neighbors, 323 

50 PCs, and the ForceAtlas2 layout for visualization. 324 

 325 

Differential expression test 326 

Differentially expressed genes within the sub-clusters found in Extended Data Fig. 7 and 327 

Extended Data Fig. 8 were calculated with the function findMarkers of the scran R package 328 

on log-transformed normalized counts. Genes with a false discovery rate below 0.05 were 329 

selected and then sorted by log2 fold change. In Figures S7e and S8e, genes with the top 20 330 

highest/lowest values in the gene singular vectors are listed and colored blue if they 331 

correspond to the top 20 DE genes.  332 

 333 

Staining 334 

A human fetal kidney (female) at week 15 of gestation was used for immunofluorescence 335 

using the same procedure as reported previously19. The following primary antibodies were 336 

used: rabbit anti-UPK1A (1:35, HPA049879, Atlas Antibodies), mouse anti-KRT7 (1:200, 337 

#MA5-11986, Thermo Fisher Scientific), rabbit anti-CDH1 (1:50, SC-7870, Santa Cruz), rabbit 338 
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anti-CLDN1 (1:100, #717800, Thermo Fisher Scientific), goat anti-CAV2 (1:100, AF5788-SP, 339 

R&D Systems), mouse anti-AKAP12 (1:50, sc-376740, Santa Cruz), rabbit anti-CLDN11 340 

(1:50, HPA013166, Sigma Aldrich), mouse anti-POSTN (1:100, sc-398631, Santa Cruz) and 341 

goat anti-SULT1E1 (1:50, AF5545-SP, R&D Systems). The secondary antibodies were all 342 

purchased from Invitrogen and diluted to 1:500: Alexa Fluor 594 donkey anti-mouse (A21203), 343 

Alexa Fluor 594 donkey anti-rabbit (A21207), Alexa Fluor 647 donkey anti-mouse (A31571), 344 

Alexa Fluor 647 donkey anti-rabbit (A31573), Alexa Fluor 647 donkey anti-goat (A21447). The 345 

sections were imaged on a Nikon Ti-Eclipse epifluorescence microscope equipped with an 346 

Andor iXON Ultra 888 EMCCD camera (Nikon, Tokyo, Japan).  347 

 348 

Ethics statement 349 

The collection and use of human material in this study was approved by the Medical Ethics 350 

Committee from the Leiden University Medical Center (P08.087). The gestational age was 351 

determined by ultrasonography, and the tissue was obtained from women undergoing elective 352 

abortion. The material was donated with written informed consent. Questions about the human 353 

material should be directed to S. M. Chuva de Sousa Lopes (Lopes@lumc.nl) 354 

 355 

Data availability 356 

The BMNC data can be downloaded with the R package SeuratData, named “bmcite”. The 357 

fetal kidney data is available with the SIGMA R package at https://github.com/Siliegia/SIGMA, 358 

named “sce_kidney”. The PBMC data can be downloaded at 359 

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz 360 

and the RNA-mix data is available at https://github.com/LuyiTian/sc_mixology, named 361 

“mRNAmix_qc”.  362 

 363 

 364 
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Code availability 365 

The R package implementing SIGMA is available at https://github.com/Siliegia/SIGMA.  366 
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Figures 468 

Figure 1 469 

 470 

Fig. 1 | SIGMA, a clusterability measure for scRNA-seq data derived from random matrix 471 

theory, is a proxy for the theoretically achievable adjusted rand index (tARI). 472 

a Scheme illustrating the rationale. b Singular value spectra of simulated data sets with 5 clusters and 473 

different levels of noise; Red: low signal-to-noise, Green: high signal-to-noise. The MP distribution is 474 

indicated by a solid line, significant singular values are highlighted with asterisks. Inserts show UMAPs 475 

of the data. The data set with a higher signal-to-noise ratio has more significant singular values and 476 

those singular values are bigger. c Value of the largest singular value versus SIGMA for simulated data. 477 

Arrows indicate where the examples from panel a are located. The relationship between the largest 478 
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singular values and SIGMA only depends on the dimensions of the expression matrix. Simulations with 479 

different cell-to-gene ratios are shown in different colors. d SIGMA versus theoretically achievable ARI 480 

(tARI). Red data points: Simulated data sets with two clusters. The number of differentially expressed 481 

(DE) genes was varied, the log fold change between clusters was fixed. Green data points: Simulated 482 

data sets with two clusters. The log fold change between clusters was varied, the number of differentially 483 

expressed genes was fixed. Blue data points: Two synthetic clusters were created by weighted 484 

averages of cells from two clusters in the PBMC data set. Cluster weights were varied. The grey dashed 485 

line indicates identity. Inset: UMAP of PBMC data set with the two clusters used indicated by red solid 486 

circles. 487 

  488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.11.443685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Figure 2 505 

 506 

Fig. 2 | Application of SIGMA to BMNC data can drive the discovery of biologically meaningful 507 

sub-clusters. a UMAP and SIGMA for BMNC data set. Inset: UMAP of clusters with low, intermediate, 508 

and high values of SIGMA. b MP distribution of clusters with low, intermediate, and high values of 509 

SIGMA.  510 
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Figure 3 522 

 523 

Fig. 3 | Application of SIGMA to a human fetal kidney leads to the discovery of biologically 524 

meaningful sub-clusters. a Force-directed graph layout and SIGMA for the fetal kidney data set. Inset: 525 

UMAP of clusters with low, intermediate, and high values for SIGMA. b UMAPs of the UBCD, SSBpr, 526 
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and ICa clusters. Left: Colors indicate sub-clusters. Right: Colors indicate the log-normalized gene 527 

expression of the two indicated genes. One gene follows the red color spectrum, the other gene the 528 

green color spectrum. The combined expression of two genes is either dark (low expression in both 529 

genes) or yellow (high expression in both genes). c-e Immunostainings of week 15 fetal kidney sections. 530 

c UPK1A and KRT7 are expressed in the urothelial cells of the developing ureter (upper panel) and 531 

absent from the tubules in the adjacent inner medulla (lower panel). d PECs express CLDN1 and CAV2 532 

(upper panel), as well as CLDN1 at the capillary loop stage and further (lower panel). MAFB staining is 533 

found in podocytes and their precursors in the SSB (lower panel). e CLDN11 and POSTN are expressed 534 

in interstitial cells visualized by immunostaining (upper panel), expression of SULT1E1 in the interstitial 535 

cells surrounding the ureter (UPK1A), and the tubule in the inner medulla (lower panel). Scale bars: 100 536 

µm.  537 
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Extended Data Fig. 1 554 

 555 

Extended Data Fig. 1 | Random matrix theory can be applied to measured single-cell RNA-seq 556 

data sets after proper pre-processing. SV spectra of the fetal kidney single-cell RNA-seq data set 557 

after different preprocessing steps. a Raw UMI counts. Arrow indicates transcriptome mode. Right: 558 

Transcriptome mode was excluded. The bulk of the SV spectrum does not coincide with the MP 559 

distribution. b Log-transformed, normalized UMI counts. Arrow indicates transcriptome mode. Right: 560 

Transcriptome mode was excluded. The SV spectrum does not coincide with the MP distribution. c Log-561 

transformed,  normalized data as in b, that were additionally centered gene-wise. The SV spectrum 562 

approximately coincides with the bulk of the MP distribution and the transcriptome mode, visible as the 563 

highest singular value in b and c appears close to 0 (indicated by the arrow). d Log-transformed, 564 

normalized, and gene-wise standardized data, as in c, that was additionally standardized cell-wise. The 565 

SV spectrum coincides with the bulk of the MP distribution. There are no free parameters to fit. The MP 566 

distribution is fully determined by the number of measured genes and cells. 567 

 568 
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Extended Data Fig. 2 569 

 570 

Extended Data Fig. 2 | An approximate upper limit to the achievable ARI can be derived from an 571 

estimate of the Bayesian error rate. a First two singular vectors of a simulated data set with two 572 

clusters. Only the first singular vector is significant. Right: Histogram of the first singular vector. The 573 

color indicates to which simulated (ground truth) cluster the cells belong. Two normal distributions fitted 574 

separately to the singular vector entries belonging to the two clusters are shown as solid lines. The 575 

Bayesian error rate is estimated from the overlap of these two distributions and used to calculate the 576 

theoretical ARI (tARI). b ARI achieved by various clustering methods compared to the ground truth and 577 

tARI for simulated data with two clusters. The number of differentially expressed genes was varied. c 578 

ARI achieved by various clustering methods compared to the ground truth and tARI for simulated data 579 

with two clusters. The log fold change between clusters was varied. d ARI achieved by various 580 
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clustering methods compared to the ground truth and tARI for PBMC cell-type mixture. The mixture 581 

proportions were varied from 0 to 1. b,c,d The numbers in the legend indicate the resolution parameter 582 

used.  583 
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Extended Data Fig. 3 606 

 607 

Extended Data Fig. 3 | An approximate upper limit to the best possible silhouette coefficient and 608 

accordance of ROGUE with tARI. a Silhouette coefficient (SIL) achieved by various clustering 609 

methods and theoretical SIL (tSIL) for simulated data with two clusters. The number of differentially 610 

expressed (DE) genes was varied. b SIL achieved by various clustering methods and tSIL for simulated 611 

data with two clusters. The log fold change between clusters was varied. a,b The numbers in the legend 612 

indicate the resolution parameter used. c tSIL versus SIGMA. Red data points: Simulated data sets 613 

with two clusters. The number of DE genes was varied, the log fold change between clusters was fixed. 614 

Green data points: Simulated data sets with two clusters. The log fold change between clusters was 615 

varied, the number of DE genes was fixed. Blue data points: Two synthetic clusters were created by 616 

weighted averages of cells from two clusters in the PBMC data set (see Fig. 2c). Cluster weights were 617 

varied. The Grey dashed line indicates identity. d tARI versus 1 - [ROGUE] score. Red data points: 618 

Simulated data sets with two clusters. The number of DE genes was varied, the log fold change between 619 

clusters was fixed. Green data points: Simulated data sets with two clusters. The log fold change 620 

between clusters was varied, the number of DE genes was fixed. Blue data points: Two synthetic 621 
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clusters were created by weighted averages of cells from two clusters in a PBMC data set (see Fig. 2c). 622 

Cluster weights were varied. The Grey dashed line indicates identity. 623 

 624 
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Extended Data Fig. 4 651 

 652 

Extended Data Fig. 4  – Singular vectors from measured data contain confounding technical 653 

variability. The singular vectors are correlated with several confounding variables. a First two singular 654 

vectors of the RNA-mix data set. Clusters are indicated by color. b First two singular vectors of the 655 

cluster indicated by a red solid ellipse in a. The amount of mRNA per mixture [pg] is indicated in color. 656 

c Normalized total counts per mixture versus first singular vector of the cluster shown in b. Linear 657 

regression (dashed line) is used to regress out the correlation with the total counts. Grey area indicates 658 

standard deviation. d First singular vector of Prog RBC cluster in the BMNC data set versus normalized 659 

total counts per cell, normalized expression of ribosomal genes, and normalized expression of 660 

mitochondrial genes. Right: Second singular vector versus normalized G2M score. The dashed line 661 

indicates the linear regression and the grey area indicates the standard deviation. e Left: UMAP of MAIT 662 

cluster in BMNC data set. The color indicates the normalized total counts per cell. Middle: SV spectrum 663 

and MP distribution of the MAIT cluster. Only 1 significant singular value is indicated by an asterisk. 664 
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Right: Normalized total counts per cell versus the singular vector associated with the significant singular 665 

value (here: 1st singular vector) in the MAIT cluster. 666 
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Extended Data Fig. 5 693 

 694 

Extended Data Fig. 5 | SIGMA outperforms other measures on experimental data. Clusters were 695 

merged in different ways to vary the amount of variability in each merged cluster. Top: first two singular 696 

vectors of RNA-mix data. Colors indicate different mixtures. Bottom: The values of SIGMA (rose), SIL 697 

(orange), tARI (green) and 1 - [ROGUE] (blue) for each corresponding cluster. a Original RNA mixture. 698 

b Merged clusters. Blue: 0-1-0 merged with 0.16-0.68-0.16. Pink: 0-0-1 merged with 0.16-0.16-0.68. 699 

Orange: 1-0-0 merged with 0.68-0.16-0.16. c Blue merged cluster contains mixtures 0.68-0.16-0.16, 700 

0.16-0.68-0.16 and 0.16-0.16-0.68. Orange merged cluster contains mixtures 1-0-0, 0-1-0, and 0-0-1. 701 
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Extended Data Fig. 6 711 

 712 

Extended Data Fig. 6 | Variance-driving genes identified by random matrix theory coincide with 713 

differentially expressed genes in a simulated data set. Genes with high absolute values in the gene 714 

singular vector contribute the most to the variability. a Value of the largest singular value versus the 715 

squared cosine of the angle between the gene singular vector of the signal matrix and the gene singular 716 

vector of the measured expression matrix (G-SIGMA) in simulated data. Arrows indicate examples 717 

shown in Figure 2a. b First two gene singular vectors. Differentially expressed genes of each cluster 718 

are indicated by color. c First two singular vectors for the simulated data set shown in panel b. Dashed 719 

grey lines indicate the 0 value on each of the axes. Cell clusters are indicated by color. d First two 720 

singular vectors as in c. Dashed grey lines indicate the 0 value on each of the axes. The average log-721 

transformed expression of the top 1% genes driving the variance is indicated by color. The 4 panels 722 

show, respectively, from left to right: genes corresponding to the highest values in gene singular vector 723 

1, genes corresponding to the lowest values in gene singular vector 1, genes corresponding to the 724 

highest values in gene singular vector 2, and genes corresponding to the lowest values in gene singular 725 

vector 2. 726 

 727 
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Extended Data Fig. 7 728 

 729 
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 34 

Extended Data Fig. 7 | Congruence between variance-driving genes and differentially expressed 730 

genes between sub-clusters in the fetal kidney. a G-SIGMA for each cluster in the BMNC data set. 731 

b Singular vectors of the two clusters from the BMNC data set with the highest SIGMA. The color 732 

indicates sub-clustering. Dashed grey lines indicate the 0 value on each of the axes. c Singular vectors 733 

of clusters shown in panel a with color indicating the average log-transformed gene expression of genes 734 

with the 1% highest values in the first gene singular vector. d Singular vectors of clusters shown in 735 

panel a with color indicating the average log-transformed gene expression of genes with the 1% lowest 736 

values in the first gene singular vector. e Genes driving the variance in the two clusters shown in b. 737 

These genes have the 20 highest/lowest values in the first gene singular vector respectively. In blue: 738 

top 20 upregulated genes based on differential expression (DE) test between the sub-clusters using 739 

findMarkers (from scran R package). 740 
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Extended Data Fig. 8 759 

760 

Extended Data Fig. 8 | SIGMA indicates sub-structures in a fetal kidney data set. a G-SIGMA for 761 

each cluster in the fetal kidney data set. b First two singular vectors of the three clusters from the fetal 762 
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kidney data set with high SIGMA. The color indicates sub-clustering. Dashed grey lines indicate the 0 763 

value on each of the axes. c First two singular vectors of clusters shown in panel a with color 764 

indicating the average log-transformed gene expression of genes with the 1% highest values in the 765 

first gene singular vector. d First two singular vectors of clusters shown in panel a with color indicating 766 

the average log-transformed gene expression of genes with the 1% lowest values in the first gene 767 

singular vector. e Genes driving the variance in the three clusters shown in b. These genes have the 768 

20 highest/lowest values in the first gene singular vector respectively. In blue: top 20 upregulated 769 

genes based on differential expression (DE) test between the sub-clusters using findMarkers (from 770 

scran R package). 771 
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Extended Data Fig. 9 793 
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Extended Data Fig. 9 | Immunostaining validates newly identified subclusters in fetal kidney data 795 

set. a-c Upper panels show UMAPs of the selected clusters in the fetal kidney data set. Log-normalized 796 

expression of selected genes is indicated by color. Lower panels show immunostainings of week 15 797 

fetal kidney sections.  a UBCD cluster. UPK1A, CDH1, and KRT7 expressions are shown in a complete 798 

section (leftmost image) and in the urothelial epithelium. b SSBpr cluster. Expression of AKAP12, 799 

CLDN1 and CAV2 is shown. The dashed lines indicate S-shaped bodies, arrows indicate PECs in 800 

developing glomeruli c ICa cluster. Expression of SULT1E1 and UPK1A is shown around the ureter 801 

expression of POSTN is shown in cortical areas, CLDN11 is shown in the cortical area (CLDN11, left 802 

image)  and around the ureter (CLDN11, right image). Scale bars: 100 µm.  803 
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