bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443369; this version posted May 11, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Integrated phospho-proteogenomic and single-cell transcriptomic analysis of
meningiomas establishes robust subtyping and reveals subtype-specific immune

invasion

Christina Blume, Helin Dogan, Lisa Schweizer, Matthieu Peyre, Sophia Doll, Daniel Picard,
Roman Sankowski, Volker Hovestadt, Konstantin Okonechnikov, Philipp Sievers, Areeba
Patel, David Reuss, Mirco Friedrich, Damian Stichel, Daniel Schrimpf, Katja Beck, Hans-
Georg Wirsching, Gerhard Jungwirth, C Oliver Hanemann, Katrin Lamszus, Manfred
Westphal, Nima Etminan, Andreas Unterberg, Christian Mawrin, Marc Remke, Olivier
Ayrault, Peter Lichter, Stefan M Pfister, Guido Reifenberger, Michael Platten, Till Milde,
David TW Jones, Rachel Grossmann, Zvi Ram, Miriam Ratliff, Christel Herold-Mende, Jan-
Philipp Mallm, Marian C Neidert, Wolfgang Wick, Marco Prinz, Michael Weller, Matthias
Mann, Michel Kalamarides, Andreas von Deimling*, Matthias Schlesner*, Felix Sahm*

Dept. of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Cancer Research
Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany (CB, HD,
PS, AP, DR, DSt, DSc, AvD, FS), Department of Proteomics and Signal Transduction, Max Planck Institute of
Biochemistry, Martinsried, Germany (LS, SD, MM), NNF Center for Protein Research, Faculty of Health Sciences,
University of Copenhagen, Copenhagen, Denmark (MM), OmicEra Diagnostics GmbH, Planegg, Germany (SD),
Sorbonne Université and Department of Neurosurgery, Pitié Salpétriere Hospital, Paris, France (MPe, MKa),
Dept. of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research
Center (DKFZ), Disseldorf, Germany (MR) and Department of Neuropathology, Medical Faculty, University
Hospital Dusseldorf, Diisseldorf, Germany (DJP), Institute of Neuropathology, Faculty of Medicine, University of
Freiburg, Freiburg, Germany (RS, MPr), Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of
Medicine, University of Freiburg, Freiburg, Germany, Signalling Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany, Pediatric Oncology, Dana Faber Cander Institute, Boston, USA (VH), German
Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology,
German Cancer Research Center (DKFZ), Heidelberg, Germany (MF, MPI) and Department of Neurology,
University Hospital and Medical Faculty Mannheim, Mannheim, Germany (MPI), Dept. of Translational Medical
Oncology, National Center for TumorDiseases (NCT), Heidelberg, Germany (KB), Division of Molecular Genetics,
German Cancer Research Center (DKFZ), Heidelberg, Germany (PL), Department of Neurology and Brain
Tumour Centre, Cancer Centre Zirich, University Hospital and University of Zirich, Zurich, Switzerland (HGW,
MWel), Dept. of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany (GJ, AU, CHM), Faculty of
Health, Peninsula Medical School, University of Plymouth, Plymouth, UK (OH), Dept. of Neurosurgery, University
Hospital Hamburg (KL, MWes), Dept. of Neurosurgery, University Hospital Mannheim, Mannheim, Germany (NE,
MR), Dept. of Neuropathology, University Hospital Magdeburg (CM), Institut Curie, PSL Research University,
CNRS UMR, INSERM, Orsay, France and Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347,
INSERM U1021, Orsay, France (OR), Hopp Children's Cancer Center (KITZ), Heidelberg, Germany (KO, SMP,
TM, DTWJ, FS), Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer
Research Center (DKFZ), Heidelberg, Germany (KO, SMP, TM), Department of Pediatric Hematology and
Oncology, Heidelberg University Hospital, Heidelberg, Germany (SMP, TM), Dept. of Neuropathology, University
Hospital Dusseldorf, Dusseldorf, Germany (GR), Pediatric Glioma Research Group, German Cancer Research
Center (DKFZ), Heidelberg, Germany (DTWJ), Department of Neurosurgery, Tel Aviv Medical Center, Tel Aviv,
Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (RG, ZR), Division of Chromatin


https://doi.org/10.1101/2021.05.11.443369
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443369; this version posted May 11, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany (JPM), Department of
Neurosurgery and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
and Department of Neurosurgery, Kantonsspital St. Gallen and Medical School St. Gallen, St. Gallen, Switzerland
(MN), Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK),
German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Neurology and
Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg,
Germany (WW), Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science
and Medical Faculty, University of Augsburg, Augsburg, Germany (MSc)


https://doi.org/10.1101/2021.05.11.443369
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443369; this version posted May 11, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Meningiomas are the most frequent primary intracranial tumors. They can follow a wide
clinical spectrum from benign to highly aggressive clinical course. No specific therapy exists
for refractory cases or cases not amenable to resection and radiotherapy. Identification of
risk of recurrence and malignant transformation for the individual patients is challenging.
However, promising molecular markers and prognostic subgrouping by DNA methylation are
emerging. Still, the biological underpinnings of these diagnostic subgroups are elusive, and,
consequently, no novel therapeutic options arise thereof. Here we establish robust
subgroups across the full landscape of meningiomas, consistent through DNA methylation,
mutations, the transcriptomic, proteomic and phospho-proteomic level. Pronounced
proliferative stress and DNA damage repair signals in malignant cells and in clusters
exclusive to recurrent tumors are in line with their higher mitotic activity, but also provide an
explanation for the accumulation of genomic instability in anaplastic meningiomas. Although
homozygous deletion of CDKN2A/B is a diagnostic marker of high-grade meningioma, the
expression of its gene product increased from low to non-deleted high-grade cases.
Differences between subgroups in lymphocyte and myeloid cell infiltration, representing a
majority of tumor mass in low-grade NF2 tumors, could be assigned to cluster-specific
interaction with tumor cells. Activation to a more proinflammatory phenotype and decreased
infiltration of myeloid cells in high-grade cases correlated with lower expression of CSF1,
located on chromosome arm 1p, whose deletion is known as prognostic marker, with no
proposed mechanism before. Our results demonstrate a robust molecular subclassification of
a tumor type across multiple layers, provide insight into heterogeneous growth dynamics
despite shared pathognomonic mutations, and highlight immune infiltration modulation as a

novel target for meningioma therapy.


https://doi.org/10.1101/2021.05.11.443369
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443369; this version posted May 11, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Meningiomas are the most frequent primary Central Nervous System (CNS) tumors®. They
arise from the arachnoidal layer of the meninges and can follow highly divergent clinical
courses. While some meningiomas are incidentally detected at imaging or autopsy, most
cause symptoms that can only be relieved by resection. Some of these recur despite multiple
surgeries and radiation therapy, and patients succumb to the disease?. The challenges to
translational meningioma research thus comprise both the reliable identification of prognostic
factors for the individual patient, and the development of novel treatment concepts for tumors

not controlled by surgery and radiation alone.

Besides traditional histopathological evaluation, molecular parameters have been proposed
as risk predictors. Several studies have elucidated a dichotomy in the molecular meningioma
landscape, with NF2 altered cases accounting for a about two third on the one, and cases
with a variety of other mutations, mostly AKT1, KLF4, TRAF7 and SMO, on the other hand*
’. strikingly, NF2 mutations can occur across the entire spectrum of clinical manifestations,
from benign to highly aggressive, whereas the others are restricted to low-grade cases’®.
Thus, patients with meningiomas harboring a targetable alteration such as in AKT1 or SMO
are typically not in need for any adjuvant treatment thanks to the benign nature of the
tumor”®. In turn, presence of an NF2 alteration neither provides an established target, nor
reliably informs about the risk of reccurrence - since NF2 mutations are found across the

entire spectrum of malignancy.

In order to identify prognostic subgroups of meningioma that overcome the limitations of
stratification by mutation or the necessarily subjective and sampling-dependent
morphological assessment, we devised an epigenetic classification of meningiomas based
on DNA methylation-derived subgroups®. Stratification for these subgroups has higher
predictive power than the grading criteria of the WHO classification of brain tumors. Six
methylation classes (MC) were delineated, three of which display a benign outcome (MC
ben-1, 2, 3), two with intermediate course (MC int-A, B), and one with highly aggressive
growth (MC mal). These six MCs correlate not only with outcome, but also with other
molecular characteristics: While ben-2 encompasses cases with AKT1, SMO, KLF4, TRAF7
mutations, the NF2 mutant cases are found in the other five MCs. In line with the data on
copy-number variations (CNVs), there is a benign MC with only 22q deletion, the arm on
which NF2 is located, and the number of CNVs increases in the more aggressive MCs int-A,

B and mal®*°.

Although this epigenetic classification is highly valuable for risk prediction, it still leaves the

underlying biological mechanisms unexplained that transform a low-grade to a high-grade
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meningioma, and why only the NF2-mutant cases seem to be susceptible to this

transformation.

Here, we set out to identify the decisive steps of meningioma progression on RNA level in
bulk tissue samples, proceed with single-cell resolution to identify common and distinct
subpopulations in meningiomas across the stages of malignancy, and correlate these

findings with their translational effects on the proteomic level.
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RESULTS

Subgroups are consistently recapitulated on multiple levels

To characterize meningioma subtypes based on the transcriptional as well as on the
proteome level, RNA sequencing (RNA-Seq) and proteomics data was generated for a
cohort comprising 44 meningioma samples, with both data types being available for 40 of
them. The sample set comprised tumors of WHO grades 1, 2, and 3, and of MCs ben-1, ben-
2, and mal (Fig. 1A), representing NF2 low grade (ben-1), NF2 high grade (mal) and non-
NF2 cases (ben-2). As the MC classification is based purely on methylation data, we sought
to investigate whether the separation observed there can be recapitulated on mRNA and
protein expression levels. To this end, similarity matrices were generated, in which each pair
of samples was allocated a score based on similarity in their expression profiles for RNA-Seq
and proteomics data individually. In a next step, a similarity network fusion (SNF) analysis
was conducted combining both data modalities. In the SNF, all three MCs clearly separated
(Fig. 1B). Thus, the individual MCs can be recapitulated by the combined information of

MRNA and protein expression profiles.

Strong enrichment of immune-related pathways in MC ben-1

For a more detailed characterization of the differences between meningioma subclasses, the
proteomic and RNA-Seq data sets were subjected to an Ingenuity Pathway Analysis (IPA)
based on the differentially expressed genes or proteins in each MC. Interestingly, a strong
enrichment in pathways related to the immune system was observed for MC ben-1 compared
to the other MCs on both RNA and protein level (Fig. 1C). Tumors of both MC ben-2 and MC
mal on the other hand showed a strong signature for MSP-RON signaling in macrophages as
well as the PD-1/PD-L1 pathway on both levels (Fig. 1D,E).

Moreover, MC ben-2 tumors were enriched for pathways regulating axon guidance (Reelin
signaling pathway, Semaphorin Neuronal Repulsive Signaling Pathway). In addition, the
tumor suppressive PTEN signaling pathway displayed increased activity in this MC on mRNA

as well as protein level (Fig. 1D).

In MC mal tumors an enrichment of cell cycle related pathways was observed, which is in
line with the increased proliferative activity of MC mal tumors (Fig. 1E).

Single-nuclei RNA-Seq allows characterization of infiltrating cell type composition
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In order to investigate whether the strong enrichment for immune response related pathways
in MC ben-1 can be traced back to differences in numbers and types of infiltrating cells, an
additional 28 meningioma samples from 21 patients were analyzed by single-nuclei RNA-
sequencing (10X Single Cell 3 mRNA Kit v2). Within 26 samples passing QC, all WHO
grades and the five most frequent of the six meningioma MCs were represented: seven
samples of MC ben-1, three samples of MC ben-2, five samples of MC int-A, three samples
of MC int-B and nine samples of MC mal (Suppl. Table 1). The rare ben-3 group, mostly
harboring angiomatous meningioma, was not included due to lack of representative samples
suitable for isolation.

Individual nuclei, for simplicity in the following denoted as cells, of all samples were clustered
in an integrative approach according to similarities in their expression profiles (Fig. 2A).
Thereby, multiple clusters of cells with similar expression profiles could be identified, some of
which were joint clusters comprising cells from multiple samples while other clusters were
unique to individual samples. Using the Human Primary Cell Atlas* as a reference,
infiltrating cell types were assigned based on similarity in expression profiles*?. The obtained
cell type annotations were subsequently confirmed through the evaluation of cell type-
specific marker gene expression. As a result, one intermixed cluster with cells from multiple
samples was classified as macrophages (MRC1, MS4A7, CD163, LYVE1l, STAB1l) as

1315 These cells displayed expression

described by us before during neuroinflammation
profiles characteristic for monocyte-derived macrophages (CD14, FCGR1A, FCGR3A/B,
MRC1), although with expression of P2RY12, SLC2A5, and TMEM119 this cell population
also exhibited markers typically found in microglia®®. In addition, one intermixed cluster was
identified as lymphocyte cluster comprising T cells (TRAC, TRBC2, CD52, 1L32) as well as
NK cells (NKG7, KLRB1, PRF1, GZMB, GZMA). Only few B cells (CD79A, IGHG4, IGLL5)
were present, which clustered together with T cells and NK cells. Furthermore, one
endothelial cell cluster (HSPG2, PLVAP, FLT1, VWF, CD34), and one mast cell cluster
(CPAS, KIT) were identified (Suppl. Fig. 1A). All remaining clusters were classified as
neoplastic cell clusters by expression of meningioma-specific markers, such as SSTR2. This
classification was further validated with copy number variation (CNV) profiles estimated from
the gene expression data (Fig. 2B). Nearly all neoplastic clusters exhibited changes in their
CNV profiles, with deletions on chromosome 22q and chromosome 1p being the most
common. Only three samples comprised neoplastic cells with no copy number alterations
(MNG-17, MNG-18, MNG-20), all of which were of MC ben-2 and displayed flat CNV profiles
also in DNA methylation array data (Suppl. Fig. 2A-C). MC ben-2 tumors have previously
been shown to differ from the other MCs by virtually flat CNV profiles®.
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The neoplastic cell clusters mostly formed individual clusters unique to samples. Only the
WHO grade 1 tumor samples of MC ben-1 clustered more closely together (Fig. 1C,D). The
mean distances in the UMAP between samples were smaller for WHO grade 1 and MC ben-
1/2 meningiomas compared to the higher-grade tumors (Welch two sample t-test on pairwise
centroid distances for samples of WHO 1 vs 3 p-value = 6.06e-4, MC ben-1 vs mal p-value =
7.69e-10, MC ben-2 vs mal p-value = 6.84e-3), indicating a higher inter-sample
heterogeneity with increasing malignancy (Suppl. Fig. 1B).

Infiltrating immune cells differ strongly between MCs

Characterizing the infiltrating immune cells in greater detail, profound differences between
WHO grades and MCs in the number and type of infiltrating cells became apparent, in
concordance to what was observed from the bulk data. WHO grade 1 tumors displayed
slightly larger numbers of infiltrating lymphocytes (Fig. 2E; 1.8 % in WHO grade 1 and 0.9 %
in WHO grade 3; Welch two sample t-test on proportions in WHO grade 1 vs grade 3 p-value
= 0.0262). The difference in infiltrating macrophages was even clearer, being more abundant
in WHO grade 1 compared with higher grade tumors (Fig. 2E; 38.7 %, 12.9 %, and 5.2 % for
WHO grade 1, 2, and 3, respectively; Welch two sample t-test on proportions in WHO grade
1 vs grade 3 p-value = 0.0292). When comparing samples by epigenetic group instead of
WHO grade, the difference between MC ben-1 and MC mal tumors was yet more
pronounced towards higher macrophage infiltration in benign tumors (Fig. 2E; 73.6 % in MC
ben-1 and 8.4 % in MC mal; Welch two sample t-test on proportions in MC ben-1 vs MC mal
p-value = 0.00520). These results were also validated by immunohistochemistry (51 samples
across all MCs, Fig. 2H).

Interestingly, a differential gene expression analysis between the macrophage populations of
MC ben-1 and MC mal tumors revealed an upregulation of proinflammatory cytokines (CCL3,
CCL4) in macrophages infiltrating MC mal tumors (Suppl. Fig. 3A). For further
characterization of the macrophage phenotype, macrophages were assigned a
proinflammatory score based on the expression of proinflammatory genes (TNF, IL1B, IL6,
IL12A, IL23A, CCL2, CCL8), and similarly an anti-inflammatory score (CD163, MSR1, IL10,
CD274). The difference in these scores was termed inflammation score. Macrophages of a
proinflammatory phenotype were overrepresented in the MC ben-2, but also the MC mal
meningiomas (Welch two sample t-test on proportions in MC ben-1 vs MC mal p-value =
0.0498, and comparing MC ben-1 vs MC ben-2 p-value = 0.0137, respectively; Suppl. Fig.
1E,F). Although the enrichment of proinflammatory macrophages was consistent across

samples for MC ben-2, it displayed high variability for MC mal when investigating individual
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samples (Fig. 2F). While some samples presented a high number of proinflammatory
macrophages, others were in the distribution of the inflammation score comparable to the

phenotypically more anti-inflammatory MC ben-1 macrophages.

For comparison with the bulk RNA-Seq data, cell populations were estimated from the bulk
data through enrichment analysis for gene signatures of the respective cell types. The
obtained enrichment scores allow comparisons across samples, although not between cell
types within a sample. In line with the single cell data and pathway analysis, enrichment
scores for macrophages were highly increased in MC ben-1 (Suppl. Fig. 1C). Applying the
inflammation score from the single-nuclei data, which mitigates a bias due to differing total
numbers of macrophages by evaluating only the ratio of proinflammatory and anti-
inflammatory macrophages, a trend of MC ben-2 and MC mal macrophages towards a
proinflammatory phenotype was observed, while MC ben-1 macrophages were more inclined
towards an anti-inflammatory phenotype (Suppl. Fig. 1D). This was again fully in

concordance with the findings from the single-nuclei dataset.

Besides macrophages, lymphocyte types as determined based on hierarchical correlation to
a tumor microenvironment reference'’ also differed between tumor grades and MCs. While
an increased number of CD4 T cells was detected in MC mal tumors (Welch two sample t-
test on proportions in MC ben-1 and MC mal p-value = 0.0691), the number of CD8 T cells
was lower in this class as in lower grade meningiomas (Fig. 2G; Welch two sample t-test on
proportions in MC ben-1 and MC mal p-value = 0.00875). NK cells were more abundant in
MC mal tumors by trend (Welch two sample t-test on proportions in MC ben-1 and MC mal p-
value = 0.0564). Regulatory T cells and B cells were observed only at very low numbers that

did not allow for comparisons.

Interestingly, when investigating receptor-ligand interactions between macrophage and
lymphocyte populations within each tumor, an increased interaction of macrophages with NK
cells through NK cell receptors such as KLRC2 and KIR3DL1 was predicted specifically for
MC ben-1 tumors (Suppl. Fig. 1G). Furthermore, an IPA comparing macrophage populations
between MCs was conducted in a pairwise manner to avoid a bias from the significantly
larger numbers of macrophages in MC ben-1 tumors. Thereby, pathways such as Natural
Killer Cell Signaling as well as IL-15 Production, an NK cell-activating cytokine, were found to
be upregulated in MC ben-1 macrophages (Suppl. Fig. 3B,D). AMPK Signaling, which
promotes an anti-inflammatory phenotype in macrophages, was also enriched in
macrophages of this MC. Although both MC ben-2 and MC mal macrophages displayed
proinflammatory properties, an activation of T and B lymphocytes was observed primarily for

MC ben-2 macrophages (Suppl. Fig. 3C,D) while interactions between MC mal macrophages
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and lymphocytes were less pronounced (Suppl. Fig. 1G,H). The MC mal macrophages
instead expressed neutrophil-attracting cytokines such as IL8 or IL17F (Suppl. Fig. 3B).

CDKNZ2A expression and FOXML1 activity are enhanced with increasing malignancy

Homozygous deletion of CDKN2A/B has recently been introduced as an independent
grading criterion for WHO grade 3 meningiomas. Expression levels of CDKN2A/B in the
single nuclei data set revealed that, surprisingly, across all samples only few cells in the
WHO grade 1 and MC ben-1/2 clusters expressed CDKN2A (Fig. 3A). In WHO grade 2 and
3, and MC int-A/B and mal, tumors, on the other hand, expression levels of CDKN2A were
heterogenous between samples: Some (MNG-13) showed high expression whereas in
others (MNG-9, MNG-25) the transcript seemed to be absent. All higher-grade tumors with
missing CDKN2A expression displayed a homozygous deletion of the gene locus as
determined on the DNA level (Suppl. Fig. 2D-F). The same finding, namely low CDKN2A
expression levels in MCs ben-1 and ben-2 and variable expression levels in MC mal, was

also observed on RNA as well as protein level in the bulk data (Fig. 3B).

Another established hallmark of high-grade meningiomas is FOXM1 network activation.
Genes regulated by the FOXM1 transcription factor have previously been demonstrated to
be activated specifically in high grade/MC mal tumors*®*#*°_ From the single-nuclei RNA-Seq
data, transcription factor activities were estimated via the expression levels of the respective
target genes. Thereby, FOXM1 was indeed found to be inactive in lower grade tumors, while
in WHO grade 2 and 3 tumors of MC mal an activation of this transcription factor was
observed (Fig. 3C). Interestingly, this activation did not occur homogeneously across all cells
of the respective tumor sample, but was rather confined in each case to a small subcluster of

cells which also displayed an increased proliferative activity (Suppl. Fig. 3E,F).

Novel tumor subpopulations emerge in recurrence compared to primary tumor

As recurrences are likely to emerge from a subpopulation of aggressive cells within the
primary tumor, neoplastic cell populations were compared between primary and recurrent
tumor to identify common and novel cell clusters and their defining features. Therefore,
respective samples from a single matched primary and the recurrent tumor pair (primary:
WHO grade 1, MC int-B; recurrent: WHO grade 3, MC mal), were integrated by regression of
batch effects for a combined analysis (Fig. 3D). Batch effect regression was performed in this

case as the biological background can be expected to be more similar in tumors from the
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same patient. To this end, canonical correlation analysis was performed jointly on both data
sets, and mutual nearest neighbors from this representation were used as integration
anchors?.

A trajectory analysis based on the sequence of changes in gene expression patterns was
conducted under exclusion of infiltrating cells. Cells are ordered along this trajectory and
annotated with a value in pseudotime based on their position on the trajectory. Thus, the
pseudotime reflects the dynamic process which the cell population is undergoing. The cells in
the cluster with the least copy number alterations were selected as initial cells and the
obtained trajectory revealed a branching point with two alternative end points for cell
progression (Figure 3D). Interestingly, one of the end points falls within a cluster mainly
made up from cells of the primary tumor, while the second end point is located in a cluster of

cells exclusively stemming from the recurrent tumor.

A gene ontology (GO) term enrichment analysis for the marker genes that are differentially
expressed and specific for each cell cluster along the trajectory was performed. Cells early in
pseudotime displayed a strong enrichment for terms related to translation (Fig. 3E), whereas
cells at an intermediate stage in pseudotime exhibited a prominence of terms related to ECM
organization and development as well as BMP signaling (Fig. 3F). For the cells late in
pseudotime close to the trajectory endpoint within the primary tumor, terms associated with
axonogenesis and tissue development were enriched (Fig. 3G), while cells close to the
endpoint within the exclusively recurrent tumor cell cluster were enriched for terms

connected to stress response and metabolism (Fig. 3H).

Six tumor cell subgroups with distinct phenotypes can be identified across samples

The findings on the initial Uniform Manifold Approximation and Projection (UMAP) indicate
that inter-tumor heterogeneity in meningiomas increases with malignancy. Since the low-
grade cases cluster closely together, we next set out to identify traces of common evolution
across samples. To find common tumor cell subgroups with similar activities in transcriptomic
programs across samples, non-negative matrix factorization (NMF) was applied. This
analysis revealed in total six so-called tumor cell meta-clusters with distinct transcriptional
signatures, each comprising cells from multiple meningioma samples (Fig. 4A,B). Genes
characteristic for each of these meta-clusters were termed signature genes. Based on GO
term enrichment analysis for the respective signature genes, different phenotypes were
assigned to each meta-cluster. One meta-cluster was mainly comprised of cycling cells,
matching well with the cell population that was assigned to the G2M/S phase previously
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(Suppl. Fig. 3F), whereas another meta-cluster displayed elevated expression levels of
genes connected to translational activity. The remaining meta-clusters were enriched for GO
terms related to synapse assembly, myelination, extra-cellular matrix (ECM) organization, or
angiogenesis, respectively (Suppl. Fig. 4A). Intriguingly, cells of the different MCs were not
evenly distributed across the meta-clusters: The majority of cells in the meta-clusters of cell
cycle activation, ECM organizing, and angiogenic tumor cells stemmed from MC mal
meningiomas, whereas the synaptogenesis related meta-cluster was dominated by cells from
benign and intermediate meningiomas (Fig. 4C). The translational and myelination related
meta-clusters displayed no clear difference in their distribution across MCs. The
synaptogenesis and myelination related meta-clusters were the only meta-clusters present
across all samples, however to smaller extent in the MC mal tumors. A gene set enrichment
analysis based on the scoring of each gene in the respective meta-cluster indicated an
increased expression of genes related to VEGFA as well as TGFB signaling in the
angiogenesis meta-cluster (Suppl. Fig. 4C), while the synapse assembly-related meta-cluster
was enriched for the PISK/AKT signaling pathway, but also the MAPK signaling pathway
(Suppl. Fig. 4B).

Through investigation of the receptor-ligand interactions between meta-clusters, inferred
from matching expression patterns of ligand and receptor in a pair of clusters®, the meta-
cluster of the angiogenic phenotype was found to act through activation of VEGFA receptors
on all other meta-clusters, except the ECM organization cluster (Fig. 4D). This was in
concordance with the elevated VEGFA expression levels observed for this cluster (Fig. 4E).
Moreover, the ligand-receptor interaction analysis revealed a strong signaling signature and
elevated expression levels of NRG1 in the ECM organizing meta-cluster (Fig. 4F,G), mainly
consisting of cells from meningiomas of MC mal. NRG1 signaling through ERBB4 can
activate the MAPK as well as the AKT/PI3K signaling cascade. NRG1 has previously been
shown to be secreted at high levels in meningiomas upon loss of NF2%2. This is in line with
the finding that virtually no cells from MC ben-2 meningiomas, which do not have this

deletion, were represented in this meta-cluster.

Similarly, interactions of the tumor meta-clusters with the immune cell populations,
specifically the infiltrating macrophages, were investigated in greater detail. Types and
degree of interaction with the macrophages differed strongly between meta-clusters.
Strongest interactions were observed for the meta-clusters with synaptic, translational, and
myelinating signatures enriched in benign and intermediate MCs (Fig. 4H). Interestingly, cells
in these meta-clusters seemed to stimulate macrophages via their CSF1R by secreting
CSF1, while cells in the angiogenic meta-cluster secreted CSF3 acting on the same receptor
(Fig. 4H).
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Phosphoproteomic analyses reveal MAPK/ERK pathway activity restricted to benign

meningiomas

To investigate activated pathways in greater detail, phosphoproteomics data was generated
for ten samples representing WHO grades 1 and 3, and MCs ben-1, ben-2, and mal.
Repeating the SNF analysis for the eight samples with MCs ben-1/2 and mal with complete
data, here also including the phosphoproteomics layer in addition to proteomics and RNA
level, illustrated a similar pattern as above with MCs clustering separately and MC ben-2 and
mal more closely related (Suppl. Fig. 5A).

A subsequent kinase perturbation analysis revealed elevated activities for several kinases of
the MAPK family (MAPK1/ERK2, MAPK3/ERK1, MAPK14/p38a) in MC ben-1 as well as ben-
2, clearly indicating an activation of the MAPK/ERK pathway in these meningiomas (Suppl.
Fig. 5B). This is in line with previous findings, where low grade meningioma displayed an

increased activation of the MAPK pathway compared to higher grade meningiomas?®.

In addition, AKT1 displayed activity exclusively in MC ben-2 tumors (Suppl. Fig. 5B),
reflecting frequent AKT1/PIK3CA mutations in this MC, and indicating an activated AKT/PI3K

signaling pathway.

MC mal tumors on the other hand showed elevated activity levels for cell cycle regulating

kinases (CDK2, CDK?7), consistent with their increased proliferative activity (Suppl. Fig. 5B).
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DISCUSSION

The landscape of meningioma can be dissected into the continuum of NF2 mutant cases
from high to low grade on the one, and the non-NF2 cases, mostly low grade, on the other
hand®>*’. Several stratification approaches into clinically meaningful subgroups have been
proposed based on these molecular markers, including DNA methylation-based MCs®. Here,
we demonstrate that these MCs delineate biological groups that are consistently
recapitulated across epigenomic, transcriptional and proteomic levels. These findings

support the role of MCs as robust subtyping approach in meningioma classification.

Within the MCs, the differences in proportions of infiltrating lymphocytes and even more so of
infiltrating monocyte-derived macrophages is intriguing. As this was also validated by
computational decomposition of bulk RNA-Seq data as well as immunohistochemistry, a
technical artifact during nuclei extraction can be excluded. The highly MC-specific distribution
of lymphocytes, along with an activation of the immune checkpoint axis in some MCs (MC
ben-2 and MC mal), may provide the rationale for intensified studies on immunotherapy in

meningioma.

The expression profile of the monocyte-derived macrophage cell population, on the other
hand, does not fully conform with macrophages, but in addition exhibits microglial markers.
Meningiomas are non-parenchymal tumors of the CNS, and none of the meningiomas
included here presented with brain invasion. Therefore, an infiltration with actual microglia
seems unlikely based on current knowledge, even when considering concepts of
CNS/meningeal lymphatics®*™’. Hence, the expression profile may suggest the presence of a
specific macrophage subset. CX3CR1+ resident macrophages are present in the dura and
arachnoidea mater and specifically also found in the choroid plexus®®, another location in
which NF2 mutant meningiomas are frequent®®. The enrichment of NF2 mutant meningioma
in the lateral ventricles is consequently in line with the association of NF2 mutations/NF2
mutant subtype MC ben-1 and CX3CR1+ macrophages, while a non-convexity localization is

typical for non-NF2 mutant meningiomas.

However, not only abundance, but also activation of cells within the tumor microenvironment
differed between MCs. Macrophages of MC ben-1 tumors are capable of activating NK cells,
thus possibly aiding in preventing rapid tumor growth as seen in high grade tumors. By
contrast, macrophages in MC mal meningiomas preferentially attracted neutrophils, probably
due to necrotic areas occurring in high grade tumors. Given these differences in numbers
and activation patterns of lymphocytes and macrophages between low- and high-grade
tumors, infiltrating immune cells might play an important role in determining the malignancy

of a meningioma.
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In search of further interdependence of tumor growth and myeloid cell infiltration, we found
that especially the tumor subpopulations dominated by cells from low-grade tumors
stimulated macrophage production and differentiation via CSF1. As this gene is located on
chromosome 1p, a gene locus frequently deleted in high-grade meningioma, absence of
CSF1 could be one factor in MC mal tumors contributing to the decreasing numbers of
infiltrating macrophages with increasing malignancy. Accordingly, in MC int-A, for which
cases with and without chromosome 1p deletion were available, a decrease in CSF1
expression was observed in the 1p deleted cases. Controversially, elevated CSF1
expression levels have been associated with an unfavorable outcome in various tumor
diseases® . Along these lines, a recent study found elevated levels of CSF1 in the plasma
of meningioma patients, a correlation of CSF1 expression and an increased number of
infiltrating macrophages of an anti-inflammatory phenotype, and a beneficial effect of

CSF1/CSF1R targeting antibody treatment in a meningioma mouse model**.

Analyzing single nuclei from meningioma cells across the different WHO grades and MCs,
we were able to define several tumor subpopulations with distinct phenotypes, with varying
abundance depending on tumor grade. Present in all samples but significantly more
prevalent in lower-grade tumors, are cells with a synaptogenesis related phenotype and
activity in the MAPK as well as AKT/PI3K signaling pathway. A similar phenotype was
observed in bulk data on transcriptional and translational level for MC ben-2 tumors. A
second subpopulation with an ECM organizing phenotype was predicted to interact with
these cells via secretion of NRG1, which may activate both MAPK and AKT/PI3K signaling
through ERBB4 receptors. This subpopulation was mainly present in high-grade tumors and
absent in MC ben-2 tumors without NF2 loss, which has been shown to induce elevated
expression of NRG1%. A malignant cell population of similar phenotype was found at an
intermediate stage of a trajectory for a matched primary and recurrent tumor pair, before
branching of and giving rise to a cell population dominated by stress response exclusive to
the recurrent tumor. This stress response, and signals of DNA repair, are in line with
increased proliferation, but the emergence of hypoxia also has a correlate in the
morphologically detected necrosis in these tumors. In turn, the proliferative stress in these
cells may be the cause for the accumulation of chromosomal alterations and genome-wide
instability in malignant meningiomas®°. Similarly, an angiogenic tumor subpopulation with
cells under hypoxic stress with TGFB signaling activity was identified and expectedly
enriched in MC mal samples, further substantiating previous observations of TGF activation
in malignant meningioma and supporting the existing efforts of TGFB blockade in

meningiomas®*>*’.

Previous studies have proposed FOXM1 network activation as an underlying mechanism of

malignant transformation in meningioma. In support of this mechanism, our data indicate the
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development of a FOXM1-activated subset of cells within lower grade meningiomas, giving
rise to a high-grade tumor. Hence, these findings emphasize the role of FOXM1 activation as
an early marker and potential treatment target in high-grade meningioma. Surprisingly, the
expression of the gene product of CDKN2A/B, pl16, was not uniformly altered in high grade
compared to low grade cases. While the homozygous deletion of CDKN2A/B is a novel
marker for anaplasia in the upcoming WHO classification of brain tumors, its expression
increased from low-grade to high-grade cases, consistently on transcriptomic and proteomic
levels, except for cases with homozygous deletion. This may indicate a cell-intrinsic barrier to
further malignant transformation, while exposing the highly translated, “open” CDKN2A/B
locus to rearrangements and deletion events. Clinically, this concept of a further segregation
between high-grade CDKN2A/B intact and homozygously deleted cases is in line with the
even more unfavorable outcome of the latter. From a diagnostic perspective, this observation
may also explain why p16 immunohistochemistry has so far not proven useful in grading of
meningioma.

Collectively, we identified molecular subgroups of meningioma that are robust throughout
several molecular layers from epigenetic regulation to translation, emphasizing their
relevance for biological and clinically meaningful classification, and suggest subtype-specific

pathway and immune activation as potential novel treatment targets.
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METHODS

TISSUE SELECTION

Tissues were selected from the archives of the Dept. of Neuropathology and Neurosurgery
Heidelberg, Mannheim, Paris and Zurich based on tissue availability and in order to cover all
WHO grade and MCs (2018-614N-MA, 005/2003). Especially for frozen tissue, quality was

determined by frozen sections.

BULK RNA-SEQUENCING

RNA-Seq was performed as previously described38. In short, library preparation was
performed with the TruSeq RNA Library Prep for Enrichment kit (lllumina) and paired-end
reads were sequenced on a NextSeq 500 instrument (lllumina). After adapter trimming,
reads were aligned to the human genome (GRCh37) with the STAR aligner39 and counted
using RSEM. Differential expression analysis was performed in R v.4.0.0* using the
DESeq2 package*’. P-values for differentially expressed genes were adjusted for multiple

testing with the Benjamini-Hochberg procedure.

PROTEOMICS AND PHOSPHOPROTEOMICS

FFPE tissue was deparaffinized and prepared as described recently**. To generate reference
libraries for data-independent analyses, one ug of each sample was pooled and separated
into 16 fractions using high pH reversed-phased pre-fractionation**. Phosphorylated peptides
were enriched on an AssayMAP Bravo automation platform (Agilent Technologies) using 5
pL Fe(lll)-NTA cartridges (Agilent, G5496-60085) according to the instructions of the
manufacturer. Subsequently, liquid chromatography (LC) - mass spectrometry (MS)
measurements were conducted either on a QExactiveTM HFX Orbitrap (Thermo Fisher
Scientific) or a timsTOFPro (Bruker Daltonics) instrument coupled to an EASY-nLC 1200
ultrahigh-pressure system (Thermo Fisher Scientific). MS data were acquired using data-
independent (DIA) or data-dependent (DDA) modes employing acquisition parameters as

43,45

defined earlier MS data were processed in a hybrid approach combining the

SprectromineTM (version 1.0.21621.11.1692, Biognosys) and SpectronautTM (version
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13.1.190621.43655, Biognosys) software. Phosphoproteomic data were analyzed in
MaxQuant (v 1.6.17.0). All searches were accomplished using the human Uniprot reference
databases UP000005640 9606 and UP000005640 9606 additional. For phosphoproteomic

data, Phospho (STY) were additionally specified as sites of variable modification.

DNA METHYLATION ANALYSIS

All methylation data were generated using the lllumina MethylationEPIC (850k) array
platform according to the manufacturer’'s instructions (lllumina). Sample preparation was
performed as previously described*®. DNA methylation status of 10,000 CpG sites was
analyzed on the current version v12b4 of the Classifier

(https://www.molecularneuropathology.org/mnp).

SIMILARITY NETWORK FUSION FOR RNA-SEQ AND PROTEOMICS

Similarity Network Fusion (SNF) was applied to RNA-Seq, proteomics, and, in a second set,
phosphoproteomics data if available®’. No prior feature selection was conducted, but instead
Euclidean distances between samples were calculated from the full feature matrices. From
these, first affinities were calculated using the R package SNFtool*® with the number of
nearest neighbors set to ten (and three for the smaller sample set including the proteomic
data) and the hyperparameter alpha set to 0.5 and affinity matrices were subsequently fused
into one consensus network with the number of iterations for the diffusion process set to ten.
In the resulting consensus network weak similarities are removed while weights of

connections supported by similarities in several data modalities are increased.

INGENUITY PATHWAY ANALYSIS (IPA)

For pathway analyses, differentially expressed genes and proteins, respectively, were
calculated in a pairwise fashion between MCs. Genes and proteins with an adjusted p-value
< 0.05 were considered significantly differentially expressed. From the RNA-Seq data, only
genes with an absolute log fold change > 1 were included in the pathway analysis. IPA
(QIAGEN Inc., https://www.giagenbioinformatics.com/products/ingenuity-pathway-analysis)
was conducted based on fold changes and pathways with a p-value < 0.05 were considered

significant.

SINGLE NUCLEI EXTRACTION

Single nuclei suspensions were obtained from frozen tumor tissues as described by Ernst et
al.*® with some modifications. Briefly, the tumor content was assessed on a Hematoxylin and
eosin stain and a fragment of 30-40 mg tissue was cut in the same orientation. The tissue
was mechanically lysed with a scalpel in a total volume of 5 ml lysis buffer (0.32 M sucrose
[Sigma-Aldrich 84097], 5 mM calcium dichloride [Sigma-Aldrich 21115], 3 mM magnesium
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acetate [Sigma-Aldrich 63052], 2.0 mM EDTA [Invitrogen 15575-038], 0.5 mM EGTA [Alfa
Aesar J61721], 10 mM Tris-HCI, pH 8.0 [Invitrogen AM98556], 1 mM DTT [Sigma-Aldrich
10197777001] and 0.1% Triton X-100 [Sigma-Aldrich 93443]). Next, the suspension was
transferred into a glass douncer (Sigma-Aldrich D9063) and further lysed by douncing eight
strokes each with pestle A and B. The lysate was directly filtered through a 100 um filter
(Greiner Bio-One 542000) followed by a 40 um filter (Greiner Bio-One 542040) into a pre-
cooled and coated Falcon tube. After spinning (500g, 5 min at 4°) and washing for a
maximum of three times (wash buffer: lysis buffer w/o Triton X-100 and DTT), the nuclear
pellet was resuspended in a volume of 1 ml storage buffer (0.43 M sucrose [Sigma-Aldrich
84097], 70 mM potassium chloride [ThermoFischer Scientific AM9640G], 2 mM magnesium
dichloride [ThermoFischer Scientific AM95306], 10 mM Tris-HCI, pH 7.2 [Sigma-Aldrich
T2069] and 5 mM EGTA [Alfa Aesar J61721]). Subsequently, the nuclei suspension was
mixed by using a 200 ul pipette to minimize clump formation. The final nuclei number was
guantified on a bright-field automated cell counter after staining an aliquot with trypan blue at

1:1 (Luna-BF, Logos Biosystems).

SINGLE-NUCLEI RNA-SEQ LIBRARY PREPARATION & SEQUENCING

Single-nuclei RNA-seq libraries were prepared according to the Chromium Next GEM Single
Cell 3' Reagent Kits v2 User Guide (10x Genomics). After counting, nuclei concentrations
were adjusted to the desired capture number based on the number of available nuclei. A
slightly higher number of nuclei were used to compensate losses in subsequent steps. To
minimize potential multiplets, we typically aimed to capture around 5,000 nuclei per sample.
For cDNA amplification a total number of 14 cycles was set. QC of the cDNA as well as the
final sequencing libraries were performed on the TapeStation 4200 platforms. Concentrations
were determined on a Fluorometer (Qubit 4 Fluorometer, Thermo Fisher Scientific) with the
Invitrogen Qubit DNA HS Assay Kit (Thermo Fisher Scientific, Q32854).

The final single indexed sequencing libraries were loaded on a NovaSeq 6000 (lllumina)
using 100 cycles kits and the following read lengths: 28 bp Read 1, 8 bp i7 index, 0 bp i5
index and 94 bp Read 2. The estimated saturation of detected nuclei was at approximately

20,000 reads per nucleus.

SINGLE-NUCLEI RNA-SEQ ANALYSIS

Single-nuclei RNA-Seq data was aligned to the genome and quality controlled with Cell
Ranger v.3.0.1 (10X Genomics). Cells with less than 200 detected features or a median
absolute deviation of more than three times in their detected features were excluded from the
analysis. Also, cells for which the percentage of mitochondrial genes was higher than three
times the median value within a sample were filtered out. All analyses were performed in R

v.4.0.0** with the Seurat package v.4.0.0°° unless otherwise specified.
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The data was normalized and scaled and the number of counts per cell was regressed out.
Cell type annotation was performed using SingleR* with the Human Primary Cell Atlas'! as
reference, and in addition based on the expression of cell type specific marker genes. Tumor
cells were identified based on CNV profiles. The CNV profiles were estimated using the
InferCNV R package®. To this end, within each sample expression profiles of five cells within
the same cluster were averaged, and for the thereby obtained meta-cell the CNV status was
determined by applying a sliding window across 200 neighboring genes within each
chromosome and median filtering for smoothing.

Cell-cell interactions were calculated for each sample individually with CellPhoneDB* based
on the expression levels of a receptor and its respective ligand in two defined cell

populations.

TRAJECTORY ANALYSIS OF MATCHED PRIMARY AND RECURRENT SINGLE-NUCLEIRNA-SEQ SAMPLE
Regression of batch effects was performed for the matched primary and recurrent tumor pair
in Seurat®. Therefore, both data sets were submitted jointly to a canonical correlation
analysis. This representation was used to determine nearest neighbors, which served as
integration anchors.

Trajectory analysis was performed using the Monocle 3 package®. The trajectory represents
a sequence of changes in gene expression, calculated on the UMAP reduction of the data
set. Cells with less alterations in their CNV profile were subsequently chosen as starting cells
to order the cells along a pseudo time with the starting cells at pseudo time point zero and
the remaining cells ordered based on the difference in expression patterns. Genes specific
for a certain stage in pseudo time were determined by comparing gene expression in tumor

cells at this time point to the expression at all other time points.

IDENTIFICATION OF TUMOR SUBPOPULATIONS WITH COMMON TRANSCRIPTIONAL PROGRAMS

To identify shared signatures in the expression profiles of tumor cells across samples, NMF
was applied as described. To this end, expression data for the tumor population of each
sample was centered and scaled before performing NMF with a factorization rank of three for
each sample individually>>. For all resulting factors, the top 30 genes with highest NMF
scores were selected as the gene signature specific for that factor and signatures were
scored in each cell. Scoring was performed by first determining those 100 genes with highest
difference in mean expression across the whole data set to the mean expression of the
respective gene and subsequently calculating the difference in expression of the respective
gene to the mean expression of those selected 100 genes in each cell. Scores for all genes
in a signature were averaged to obtain scores for the gene signature of all factors. These

signatures were then hierarchically clustered based on their scores per cell. This revealed six
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correlated signature sets. Cells were assigned to one of those six so-called meta-programs
on the basis of the highest average score in the respective cell. Genes specific for the meta-
programs were determined as the 50 genes with highest average score in the cells belonging

to that meta-program.

IMMUNOHISTOCHEMISTRY

Immunohistochemistry was performed on a BenchMark XT immunostainer and on a
BenchMark Ultra immunostainer (Ventana Medical Systems). Therefore, 0,5-um-thick
formalin-fixed, paraffin-embedded (FFPE) tissue sections were mounted on SuperFrost Plus
Adhesive slides (Thermo Scientific) followed by drying at 75 °C for 10 min.

Dilutions and antibody details are provided in Suppl. Table 2.

Slides were scanned on an Aperio AT2 Slide Scanner (Biosystems Switzerland AG) and

analyzed using Aperio ImageScope software (v11.0.2.725, Aperio Technologies).

ESTIMATION OF CELL TYPE ENRICHMENT SCORES FROM BULK RNA-SEQ DATA

Cell type proportions of infiltrating immune and stroma cells were estimated through an
enrichment analysis for cell type-specific expression profiles with xCell54. The enrichment of
the gene signature for a respective cell type in a bulk RNA-Seq dataset was compared
across samples and resulting enrichment scores were transformed to a linear scale. Scores

were averaged across samples within the same MC.
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FIGURES

Figure 1. A Meningioma dataset used for bulk RNA-Seq, proteomics, and phosphoproteomics
analyses with annotation of WHO grade, MC and mutation status for each tumor. B SNF graph
deducted from bulk RNA-Seq and proteomics data. Each node represents a sample with colors
indicating the respective MC. Edges between nodes indicate similarity between the sample with
edge width proportional to the extent of the similarity. C-E Results from an IPA on the bulk RNA-
Seq and proteomics data, always comparing each MC versus all others. Venn diagrams at the
top indicate the concordance between RNA and proteomics data in commonly differentially
regulated genes/proteins (left) and in pathways found to be significantly enriched in the respective
MC (right). Bar plots depict the top scoring pathways found within the RNA-Seq data set, with
pathways that are shared with the proteomics data being highlighted in bold italics. Z-Scores are
depicted on the x-axis, p-values by the color of the bars.

Figure 2. A Uniform manifold approximation and projection (UMAP) of the single-nuclei RNA-Seq
meningioma dataset comprising 26 samples. Colors indicate the sample of origin for each cell. B
CNV estimation from the single-nuclei RNA-Seq data for each sample with blue color indicating
loss and red color indicating gain at the respective position. At the top, CNV profiles of non-
malignant reference cells are shown. C-D UMAP from A, with colors representing MCs (C) and
WHO grades (D), respectively. E Proportions of individual cell types within the single-nuclei RNA-
Seq samples assigned to WHO grades (left) and MCs (right). F Distribution of inflammation
scores of individual macrophages by sample, colors indicating the respective MC. Samples are
sorted along the x-axis by decreasing mean inflammation score. G Proportions of infiltrating
lymphocyte subtypes within the single-nuclei RNA-Seq samples assigned to MCs. H
Immunohistochemical staining of an MC ben-1 tumor (left) and an MC mal tumor (right) for
macrophages (CD68), and CD4+ and CD8+ T-cells, respectively.

Figure 3. A UMAP as in Fig. 2A restricted to the malignant cell population with color indicating
MC and status of the CDKN2A gene locus (left) and CDKN2A expression levels (right), where red
color indicates elevated expression levels. hetero/homo...MC mal with heterozygous or
homozygous CDKN2A deletion, respectively. B CDKN2A mRNA (left) and protein (right)
expression in meningioma bulk data. *...p-value < 0.05, ***,..p-value < 0.001, ****  p-value <
0.0001. C Violin plot indicating FOXM1 activity estimated from the expression of its target genes.
D UMAP of the integrated data from a matched primary and recurrent tumor sample. Colors
indicate the sample of origin (left) and the location in pseudotime along an estimated trajectory for
the tumor cell population (right). E-H Results from a GO enrichment analysis based on the genes
expressed early in pseudotime (E), at an intermediate time point (F), or late in pseudotime in the
branch specific for the primary (G), and the recurrent tumor (H), respectively.

Figure 4. A Heatmap indicating the enrichment for each of the six meta-signatures per cell
(column) sorted by MC. Red color indicates high score for the respective NMF meta-cluster, blue
indicates low score. B UMAP from Fig. 2A, restricted to the malignant cell population, with colors
representing the assignment of each cell to one of six identified meta-signatures. C Proportion of
cells per sample assigned to each of the meta-clusters sorted by MC. D Heatmap of interaction
scores between cells of the NMF meta-clusters involving VEGFA. Top annotation indicates
source of the interaction (expressing the ligand), bottom annotation indicates target (expressing
the receptor). E,F Violin plots indicating VEGFA (E) and NRG1 (F) expression per NMF meta-
cluster, respectively. G Heatmap of interaction scores between cells of the NMF meta-clusters
involving NRG1. Top annotation indicates source of the interaction (expressing the ligand),
bottom annotation indicates target (expressing the receptor). H Heatmap of interaction scores for
cells in each NMF meta-cluster with the infiltrating macrophage population for the 30 ligand-
receptor pairs with highest variability in interaction scores across meta-clusters.
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Supplementary Figure 1. A UMAP as in Fig. 2A with color indicating the cell type specific
marker gene expression for macrophages, T cells, NK cells, B cells, endothelial cells, and mast
cells. Blue color indicates low score for expression, yellow color indicates high score. B Mean
Euclidean distances between cluster centroids of the tumor cell population from the UMAP for
each pair of samples within the same WHO grade (left) and MC (right), respectively. C
Enrichment of infiltrating cell types in MCs ben-1, ben-2, and mal as estimated from bulk RNA-
Seq data with xCell. D Inflammation score estimated from the bulk RNA-Seq data based on the
difference in mean expression of proinflammatory genes and mean expression of anti-
inflammatory genes. E UMAP of the macrophage subpopulation after regression for batch effects
between samples. Colors indicate tumor of origin. F UMAPSs as in E split by MC, with colors
indicating the expression of proinflammatory marker genes. G,H Heatmap of interaction scores
between macrophage and lymphocyte populations within each tumor averaged by MC with
macrophages as source of the interaction (expressing the ligand, G) or as target (expressing the
receptor, H). ***...p-value < 0.001, ****__p-value < 0.0001.

Supplementary Figure 2. CNV profiles for three tumors of the single-nuclei RNA-Seq dataset
estimated from DNA methylation array. A-C Flat CNV profiles of MC ben-2 tumors. D-E Status of
the CDKN2A gene locus. In two samples (D,F) the CDKN2A locus is deleted, whereas it is intact
in the remaining sample (E).

Supplementary Figure 3. A Differentially expressed genes between the macrophage
populations of MC ben-1 and MC mal tumors. B-D Ingenuity Pathway Analysis (IPA) comparing
macrophage populations between MCs ben-1, ben-2, and mal in a pairwise fashion. E UMAP as
in Fig. 2A restricted to the malignant cell population with color indicating FOXM1 activity as
estimated from target gene expression. Red indicates high score for activity, blue indicates low
score. F UMAP as in Fig. 2A with color indicating the phase in the cell cycle for the respective
cell.

Supplementary Figure 4. A Results from a GO enrichment analysis based on the signature
genes identified for each of the six NMF meta-clusters. B,C Gene set enrichment analysis based
on the gene scores from the NMF analysis for the synapse assembly (B) and angiogenesis
related meta-cluster (C).

Supplementary Figure 5. A SNF graph deducted from bulk RNA-Seq, proteomics, and
phosphoproteomics data. Each node represents a sample with colors indicating the respective
MC. Edges between nodes indicate similarity between the sample with edge width proportional to
the extent of the similarity. B Results from a kinase perturbation analysis, calculated based on the
phosphoproteomics data as comparison of each MC versus all remaining samples. Red indicates
high predicted activity of the respective kinase, blue indicates low activity. Asterisks mark
significant kinases. Only kinases with at least three identified targets were included.
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SUPPLEMENT

ABBREVIATIONS

CNS Central nervous system

CNV Copy number variations

ECM Extracellular matrix

IPA Ingenuity pathway analysis

GO Gene ontology

MC Methylation class

NMF Non-negative matrix factorization
SNF Similarity network fusion
RNA-Seq RNA-Sequencing

UMAP Uniform Manifold Approximation and Projection
WHO World Health Organization

Suppl. Table 1. Single-nuclei RNA-Seq sample overview

MC WHO age gender localization patientID no. of cells
MNG-1 mal 3 65 w Cv 1 790
MNG-2 int-A 2 nav nav nav 2 2,597
MNG-3 ben-1 nav nav nav nav 3 1,521
MNG-4 mal 3 63 w Ccv 4 427
MNG-5 ben-1 nav 52 w CcVv 5 2,915
MNG-6 int-A nav nav nav nav 6 3,83
MNG-7 ben-1 1 67 w CVv 7 202
MNG-8 mal 2 62 w Ccv 8 3,418
MNG-9 mal 2 62 w Ccv 8 4,988
MNG-10 mal 3 75 m Ccv 9 179
MNG-11 ben-1 1 63 w Cv 1 171
MNG-12 mal 3 58 m Ccv 10 985
MNG-13 int-A 2 55 m CcVv 10 3,415
MNG-14 ben-1 1 47 w Ccv 11 3,211
MNG-15 int-B 3 75 w CVv 12 304
MNG-16 int-A 2 69 w Ccv 12 301
MNG-17 ben-2 1 35 w CVv 13 722
MNG-18 ben-2 1 65 m Ccv 14 1,459
MNG-19 mal 3 46 w Ccv 15 3,609
MNG-20 ben-2 1 78 w TE 16 1,038
MNG-21 int-A 2 74 w TE 17 1,109
MNG-22 mal 3 81 m Ccv 18 187
MNG-23 ben-1 1 60 w TE 19 966
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MNG-24 ben-1 1 71 w Cv 20 2,311
MNG-25 mal 8 78 m Cv 21 1,073
MNG-26 int-B 1 72 m Ccv 21 4,274

Suppl. Table 2. Antibodies and dilutions used for immunohistochemical stainings.

Antibody Manufacturer Clone Catalogue Pretreatment Antibody Antibody
No. dilution  incubation

CD4 Cell Marque SP35 104R-16 CC2 (pH=6,0), 56min  1:50 32min

CD8 Dako C8/144B M7103 CC1(pH=8,4),52min  1:50 32min

CD68 Dako PG-M1 MO0876 CC1 (pH=8,4), 36min  1:20 32min
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