

1 **Improved Genome Packaging Efficiency of AAV Vectors Using Rep Hybrids[#]**

4 Mario Mietzsch¹, Courtnee Eddington¹, Ariana Jose¹, Jane Hsi¹, Paul Chipman¹, Tom Henley²,
5 Modassir Choudhry², Robert McKenna^{1,*}, and Mavis Agbandje-McKenna¹

8 ¹ Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight
9 Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA

10 ² Intima Bioscience, New York, USA

13 [#] Written in loving memory of Mavis Agbandje-McKenna

18 *Corresponding author: Robert McKenna, Department of Biochemistry and Molecular
19 Biology, 1600 SW Archer Road, P.O. Box 100245, Gainesville, FL 32610-0266, USA; Tel: +1
20 352 294 8395; e-mail: rmckenna@ufl.edu

25 Key words: Adeno-associated virus, Rep protein, capsid, genome packaging, cryo-electron
26 microscopy, hybrid, empty and full capsids.

27

Abstract

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Recombinant Adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last two decades research focused primarily on the characterization and isolation of new *cap* genes resulting in hundreds of natural and engineered AAV capsid variants while the *rep* gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the *rep* gene from AAV serotype 2 (AAV2) enables the ssDNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major byproduct of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the *rep* genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 *rep* was replaced with the *rep* gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-*rep* system. In further experiments the 3'end of the AAV2 *rep* gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids ~2-4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production.

48
49

Importance

50 A major byproduct of all Adeno-associated virus (AAV) vector production systems are “empty”
51 capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for
52 the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional
53 immune responses *in vivo* gene therapies if not removed by additional purification steps. Thus,
54 there is a need to increase the genome packaging efficiency and reduce the number of empty
55 capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in
56 this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes
57 and improve overall yields of genome-containing AAV capsids at the same time. They can likely
58 be integrated easily into existing AAV manufacturing protocols to optimize the production of the
59 generated AAV gene therapy products.

60

Introduction

61 Adeno-associated viruses (AAVs) are not associated with any pathogenic effects but are
62 widely studied as they have been developed into one of the most promising gene therapy
63 vectors for *in vivo* gene therapy for a wide variety of monogenetic diseases (1). To date, three
64 AAV-vector-mediated gene therapies have gained approval for commercialization: Glybera, an
65 AAV1 vector for the treatment of lipoprotein lipase deficiency (2); Luxturna, an AAV2 vector for
66 the treatment of Leber's congenital amaurosis (3); and Zolgensma, an AAV9 vector for the
67 treatment of spinal muscular atrophy type 1 (4). Common to all natural and engineered AAVs
68 are their small, non-enveloped icosahedral capsids, of ~260 Å diameter, that contain a linear
69 single-stranded DNA (ssDNA) genome (5). The wild-type AAVs have a genome size of
70 approximately 4.7 kb (6). Both ends of the genome contain identical inverted terminal repeats
71 (ITRs) of ~150 nucleotides (nts) that form T-shaped hairpin secondary structures and are
72 important for genome replication and packaging (7). Between these ITRs, two open reading
73 frames (ORFs) encode a series of replication (Rep) and virus proteins (VP) (8), as well as two
74 smaller accessory proteins: the assembly activating protein (AAP) and the membrane-
75 associated accessory protein (MAAP) (9, 10). For recombinant AAV vectors, these viral ORFs
76 are replaced with an approximately similar-sized therapeutic gene of interest and only the
77 flanking *cis*-active ITRs are retained to allow packaging of the recombinant genomes into the
78 capsids. Nevertheless, the Rep and VP proteins are also needed for vector manufacturing but
79 can be supplied in *trans* (11, 12).

80

81 The Rep proteins play critical roles in the viral replication cycle as well as for vector
82 production (8). The four Rep proteins, Rep78, Rep68, Rep52, and Rep40, are situated in the
83 same ORF and are translated from transcripts generated by the p5 and p19 promoter (13). The
84 larger Rep78/68 proteins are extended by ~224 amino acids at their N-terminus in comparison
85 to Rep52/40 and the C-terminus of Rep68/40 differs from those of Rep78/52 due to differential
86 splicing (13). All Rep proteins share a central 305 amino acid stretch that contains a

86 helicase/ATPase domain (14) and nuclear localization signals (15). The N-terminus of Rep78/68
87 contains a DNA binding and endonuclease domain (16) whereas the C-terminus of Rep78/52 is
88 suggested to contain a zinc finger domain (17). The large Rep proteins Rep78/68 are
89 indispensable for genome replication and were shown to bind to a specific DNA sequence also
90 present in the ITRs. The small Rep proteins Rep52/40 are essential for packaging of the
91 genome into the capsids (18) formed by VP1, VP2, and VP3 that are encoded by the second
92 ORF.

93 Similar to the Rep proteins the VPs are located in one ORF and share a common C-
94 terminus. They are generated from transcripts of the p40 promoter by differential splicing and by
95 the utilization of alternate start codons. VP1 is the largest capsid protein with approximately 735
96 amino acids and is encoded within the entire ORF. VP2 and VP3 are truncated at their N-
97 termini relative to VP1 with ~598 and 533 amino acids, respectively. The VPs are expressed
98 and incorporated into the capsid in an approximate ratio of 1:1:10 (VP1:VP2:VP3) (19). The
99 capsid assembly is assisted by AAP which is encoded within the *cap* gene but situated in an
100 alternate reading frame (9). Similarly, the second accessory protein MAAP is also encoded in an
101 alternate reading frame within the *cap* gene and was suggested to have a role in capsid egress
102 (10).

103 Packaging of the wild-type or recombinant vector genomes occurs in the nucleus into
104 preformed “empty” VP capsids (20). Following replication of the genomes by the large Rep
105 proteins, the generated ssDNA genomes are thought to be translocated into the capsid in 3' to
106 5' direction by the helicase/ATPase domain of the small Rep proteins (18). The translocation of
107 the ssDNA into the preformed capsid is proposed to occur through a channel at the 5-fold
108 symmetry axis of the AAV capsids (5). Since genome packaging is considered to be the rate
109 limiting step a significant number of capsids go unpacked and remain empty. For AAV-mediated
110 gene therapy these empty capsids are not desired as they do not provide any therapeutic
111 benefit and may induce unwanted immune responses.

112 For the AAVs 13 primate AAV serotypes and numerous genotypes or engineered
113 capsids have been described (21). The Rep and Capsid proteins of the AAV serotypes vary in
114 amino acid sequence identity between ~52-99% (Table 1). This wide variety of available
115 capsids is utilized in AAV-mediated gene therapy to package the transgene of choice into the
116 capsid with the desired characteristics and tissue tropism. However, for the vast majority of
117 manufactured AAV vectors the ITRs and *rep* gene of serotype 2 (AAV2) are utilized and only the
118 *cap* gene is changed resulting in pseudotyped AAVs (22). While the Rep proteins of AAV2 are
119 able to package vector genomes in all AAV serotype capsids their packaging efficiency is lower
120 for some capsids compared to AAV2 (23). As a result, AAV vector preparations with non-AAV2
121 capsids contain a higher percentage of empty capsids.

122 Thus, in order to characterize the utilization of other *rep* genes in AAV vector
123 productions, in this study the AAV2 *rep* gene was replaced with the *rep* gene of the same AAV
124 serotype as the *cap* gene for a selection of different AAV serotypes. However, this substitution
125 led to an overall lower VP expression for the analyzed AAV serotypes relative to the standard
126 AAV2-*rep* system. Reverting the 3' end of the *rep* gene back to AAV2 as well as corrections in
127 the DNA-binding domain of AAV8 Rep restored high capsid expression. In addition, a higher
128 packaging efficiency of vector genomes was observed. In a series of chimeras, primarily the
129 DNA binding and endonuclease domain of the AAV1 and AAV8 Rep was shown to be
130 responsible for improved vector genome packaging for AAV1 and AAV8 vectors. These
131 observations were confirmed by ELISA, qPCR, alkaline gel electrophoresis, and cryo-electron
132 microscopy (cryo-EM) of affinity-purified AAV vector preparations and show that the new Rep
133 hybrids can increase the number of genome-containing capsids 2 to 4-fold in the case of AAV1
134 and AAV8 when compared to AAV2-*rep* produced vectors. Furthermore, utilization of these
135 hybrids for other AAVs such as AAV6, AAV9, and AAVrh.10 also show higher genome
136 packaging efficiency. These observations indicate that the utilization of these Rep chimeras
137 could revolutionize AAV vector production.

138

Results and Discussion

139 *Substitution of the standard AAV2 rep gene*

140 In the last two decades a lot of research has focused on the characterization and
141 isolation of new *cap* genes resulting in hundreds of natural and engineered AAV capsid variants
142 (21, 24-27). At the same time, the *rep* gene has been largely ignored due to the fact that the
143 Rep proteins of AAV2 also package recombinant vector genomes into almost all AAV serotypes
144 or variant capsids. A major byproduct of all vector productions is empty AAV capsids, with even
145 lower packaging efficiencies for non-AAV2 vectors (23). Compared to AAV2, the amino acid
146 sequence identity of VP1 ranges from 82-88% for most AAV serotype capsids, with the
147 exception of AAV4/5/11/12 (Table 1). For the foremost AAV serotypes, the amino acid
148 sequence identity of Rep78 shows a similar range of 85-90% indicating a potential co-evolution
149 of the Rep proteins with the capsid VPs, potentially due to optimal interaction of Rep proteins
150 with the matched serotype capsids during genome packaging.

151 Thus, to understand the impact for the utilization of different AAV Rep proteins for AAV
152 vector production, the AAV2 *rep* gene was replaced in the producer plasmids with the *rep* gene
153 of the AAV serotype identical to the *cap* gene for the serotypes AAV1, 6, and 8 (Figure 1A).
154 When the expression of the capsid proteins was analyzed all of new constructs demonstrated
155 low to no VP expression (in the case of AAV8) compared to the standard AAV2 *rep* constructs
156 (Figure 1B). The majority of AAV producer plasmids utilize AAV2 *rep* genes with the Rep78 start
157 codon changed to an ACG, to lower the expression of the large Rep proteins in favor of the
158 small Rep proteins (28). This strategy was shown to improve the overall AAV yield (29). Thus,
159 ATG and ACG constructs for each producer plasmid were generated. While the Rep78 start
160 codon had no significant effect on VP expression for any construct, the ACG start codon
161 reduced Rep78/68 expression in all constructs as anticipated (Figure 1B) but in contrast to
162 previous observations the overall yield of AAV vectors was not increased when using the ACG-
163 Rep2 constructs (Figure 1C). In fact, the yield of AAV1 and AAV6 vectors using the AAV1 and

164 AAV6 *rep* constructs showed higher yields with the Rep78 having an ATG start codon. Another
165 observation for the AAV1 and AAV6 *rep* constructs was their lower expression levels of spliced
166 Rep proteins, Rep68 and Rep40, compared to the AAV2 *rep* constructs. The similar behavior of
167 the AAV1 and 6 constructs was expected as their *rep* genes differ only in 36 nucleotides
168 resulting in only four amino acid differences or 99% sequence identity (Table 1). This level of
169 similarity between AAV1 and 6 is comparable to VP1 with only six amino acid differences
170 between the AAV serotypes.

171

172 *Reintroduction of AAV2 sequences at the 3' end of AAV1 rep gene rescues VP expression*

173 The low expression of the capsid proteins prevents efficient AAV vector production. As
174 the VPs are translated from transcripts generated from the p40 promoter, which is located in the
175 3' end of the *rep* gene, there was the possibility that the AAV1, 6, or 8 p40 promoter does not
176 have same activity as the AAV2 p40 promoter. Alternatively, the observed reduced expression
177 of Rep68/40 (Figure 1B) could indicate a disruption of mRNA splicing. The capsid proteins have
178 been reported to be primarily translated from spliced p40 transcripts and mutations of the splice
179 donor site resulted in a strong reduction of VP expression (30, 31). However, the splice donor
180 consensus sequence of AAV1, 6, and 8 is identical to AAV2 (31). In order to test the first
181 possibility, AAV p40-promoter luciferase reporter constructs were generated for AAV1, 2, and 8
182 and their luciferase expression analyzed (Figure 2A). Indeed, the AAV1 p40-promoter (AAV6
183 differs only by a single nucleotide) showed only about a quarter of the expression compared to
184 AAV2. However, the AAV8 p40-promoter showed ~60% of the AAV2 p40-mediated expression
185 (Figure 2A) even though VP expression was lower for the AAV8 construct compared to AAV1
186 (Figure 1B). Thus, there is the possibility of overlapping detrimental effects.

187 In order to rescue VP expression from the AAV1 *rep* constructs a series of swaps of the
188 3' end of the *rep* gene (or the C-terminus on protein level) for AAV1 and 2 were generated
189 (Figure 2B). These constructs were analyzed for their expression of the Rep and capsid

190 proteins. As seen before the VP expression of the construct with the entire AAV1 rep (R1V1)
191 was reduced and less Rep68/40 was observed compared to the standard AAV2 rep construct
192 (R2V1) (Figure 2C). Substitution of the 3' end of AAV1 *rep* to AAV2 (R2c1V2) resulted only in a
193 minor reduction of VP expression but showed less of Rep68/40. Vice versa, the introduction of
194 3' end of AAV2 *rep* in AAV1 increased VP expression and showed higher expression of the
195 spliced Rep68/40 proteins (Figure 2C). To further narrow down the region responsible for these
196 effects the 3' end of the rep gene was divided into two parts. The first (y) region contains the
197 p40-promoter and the splice donor site whereas the second (z) region comprises the sequence
198 encoding the zinc-finger domain (Figure 2B). Swapping the y region to the respective
199 sequences of the other AAV serotype resulted in little to no differences of the VP and Rep
200 expression when compared to the constructs with the wild-type AAV1 or AAV2 rep gene (Figure
201 2C). This observation was surprising given the differential p40-promoter activities (Figure 2A). In
202 contrast, swapping the zinc-finger domain sequences to the respective other AAV serotype
203 resulted in significant differences of VP and Rep expression. The R2z1V1 construct showed a
204 reduction of VP expression and a lower expression of Rep68/52 compared to Rep78/52 (Figure
205 2C). Vice versa, R1z2V1 showed an increase of VP expression and an approximately equal
206 expression of Rep68/52 to Rep78/52 unlike the R1V1 construct. Thus, it is possible that these
207 observations are linked, particularly since the VPs are translated from spliced p40 transcripts
208 and mutations of the splice sites result in a strong reduction of VP expression (30, 31). In
209 absence of nucleotide differences of the splice site in the AAV1 *rep* gene, the z-region, which
210 comprises the majority of the intron sequence, has to be responsible for the inefficient splicing.
211 Further research will be needed to determine whether the splice reduction is caused by the zinc-
212 finger domain of the Rep proteins or by the differences of the DNA sequences. However, for this
213 study the rescue of VP expression was achieved, and all subsequent variants contained the
214 3'end of the AAV2 *rep* gene.

215

216

217 *Rescue of AAV8 VP expression by correction of the AAV8 Rep DNA binding domain.*

218 The substitution of the 3'end of the *rep* gene to the sequences of AAV2 rescued AAV1
219 VP expression as shown above (Figure 2C) and AAV6 VP expression (data not shown). Thus,
220 the same strategy was pursued in the case of AAV8 vector production using the AAV8 *rep* gene
221 (Figure 3A). However, unlike the AAV1 and AAV6 constructs, no significant AAV8 VP
222 expression was observed with the R8c2V8 construct (Figure 3B), comparable to the R8V8
223 construct as seen before (Figure 1B). Furthermore, the inability to express VP proteins was not
224 just restricted to AAV8, as AAV1 and AAV6 VP expression is also inhibited when the AAV8 rep
225 gene was utilized (data not shown). Vice-versa, AAV8 VP expression can be restored when
226 using the AAV1 *rep* gene with the AAV2 3' end (R1c2V8) to a similar level compared to the
227 standard AAV2 *rep* system (Figure 3B). This observation was surprising given the 95% amino
228 acid sequence identity between AAV1 Rep and AAV8 Rep (Table 1). In order to identify the
229 region of the AAV8 *rep* gene responsible for this phenotype *rep* was sectioned into three
230 additional parts (n, d, and h) and substituted to the corresponding AAV1 sequences (Figure 3A).
231 Significant AAV8 VP expression was only achieved when the d-region was substituted for the
232 AAV1 sequences (R8d1c2V8, Figure 3B) which is equivalent to the sequence encoding the
233 DNA-binding domain. Further experiments showed that the lack of efficient AAV8 VP expression
234 with the AAV8 *rep* gene can also be rescued by the addition of an AAV1 Rep expression
235 construct (p5-Rep1) *in trans* (Figure 3C). Conversely, an AAV8 Rep expression construct (p5-
236 Rep8) does not repress AAV8 VP expression when using the standard AAV2 Rep system or
237 enhance VP expression in the R8c2V8 construct. These observations point to a defect of the
238 AAV8 Rep protein, that is associated with the DNA binding domain. A sequence analysis of
239 AAV8 to AAV1 Rep (and other AAV serotypes) in the affected region revealed two highly
240 variable regions termed VR-A (residues 117-126, with 8 amino acid substitutions and 1
241 insertion) and VR-B (residues 137-143, with 5 amino acid substitutions and 1 insertion) (Figure

242 3D). However, when the sequences were analyzed on DNA sequence level only two nucleotide
243 exchanges and 3 insertions were found for VR-A and one nucleotide exchange and 3 insertions
244 for VR-B, respectively. The fact that the individual nucleotide insertions of AAV8 are spread out
245 results in a shift of the reading frame relative to AAV1 and causes the high amino acid variability
246 despite little differences at the DNA level. Since both VRs contain 3 nucleotide insertions the
247 ribosomes shift back into the original reading frame during translation (Figure 3D). The
248 occurrence of the 3 spaced-out nucleotide insertions is unlikely to happen naturally as they
249 would need to be introduced simultaneously. Otherwise, the individual insertions would shift the
250 reading frame and truncate the Rep proteins significantly. Thus, it is more likely that these
251 insertions represent sequencing errors of the deposited AAV8 *rep* gene sequence. Therefore,
252 the nucleotide sequences of VR-A and VR-B were corrected by removing the nucleotide
253 insertions relative to AAV1 which resulted in a highly similar amino acid sequences with only a
254 single amino acid substitution in VR-A and the identical amino acid sequence in VR-B (Figure
255 3D). Following transfection of these constructs the AAV8 VP expression was analyzed. While
256 the correction of VR-A alone did not improve VP expression, the construct with the corrected
257 VR-B showed significant VP expression (Figure 3E). This expression was further enhanced
258 when both corrected regions were combined resulting in a similar VP expression compared to
259 the R8d1c2V8 construct. The rescue of AAV8 VP expression can be explained based on a
260 previously determined X-ray crystallography structure of AAV2 Rep bound to its binding element
261 within the AAVS1 sequence (32). A model generated for the uncorrected AAV8 Rep protein
262 based on the AAV2 Rep structure placed VR-A distance from, but VR-B directly in the major
263 groove of the bound DNA (Figure 3F). While VR-A does not directly bind to the DNA, it could
264 stabilize the binding of VR-B to the DNA and thus, further enhance VP expression. As the Rep
265 proteins have been described as an activator of AAV transcription (33) it is possible that the
266 defective AAV8 Rep proteins are unable to transactivate the p40 promoter (34) needed for
267 efficient VP expression.

268

269 *AAV1/2 Rep hybrids can enhance vector genome packaging efficiency into AAV1 capsids.*

270 Initial analyses of lysates showed that vector genome titers were comparable to the
271 standard AAV2 rep system (R2V1) when the ATG-R1V1 construct was used despite displaying
272 lower VP expression (Figure 4A). Following the rescue of the VP expression with ATG-R1c2V1,
273 the genome titer was higher than R2V1 but at a similar VP expression level. However, this
274 enhancement was only observed for the ATG start codon constructs while the ACG constructs
275 showed very low genome titers (Figure 4A).

276 Thus, the genome packaging efficiency of the Rep hybrids into AAV1 capsids was
277 further investigated. For this purpose, the *rep* genes of AAV1 and AAV2 were divided into 3
278 additional regions (n, d, and h) similar as described for AAV8 above to identify which region
279 provides a potential benefit for genome packaging (Figure 4B). For these regions eight possible
280 permutations between AAV1 and AAV2 were generated (R2, R2n1, R2d1, R2h1, R1c2, R1nc2,
281 R1dc2, and R1hc2) and utilized for AAV1 vector production. As the packaging efficiency was
282 expected to vary slightly between different vector preparations three independent vector
283 preparations for each Rep variant were produced. The individual AAV1 vector preparations
284 were purified also independently by AVB affinity chromatography that indiscriminately binds
285 empty and full capsids (35). Subsequently, each of the AAV1 vector preparations were analyzed
286 by cryo-electron microscopy (cryo-EM) and the percentage of full capsids determined (Figure
287 4C). For the standard AAV2 Rep production system (R2V1) the percentage of full capsids in the
288 three vector preparations ranged from ~10-20% with a mean average of 15% (Table 2). In
289 contrast, for AAV1 Rep with the AAV2 C-terminus (R1c2V1) the percentage of full capsids in the
290 three vector preparations is approximately doubled and ranged from 25-37% with a mean
291 average of 32%. Swaps of the N-termini based on these constructs to the corresponding other
292 AAV serotype was detrimental to both constructs. While the AAV1 N-terminus in AAV2 Rep
293 (R2n1V1) resulted in a vast majority of empty capsids (% full: 1-2%, average: ~1%), the AAV2

294 N-terminus in AAV1 (R1nc2V1) reduced the percentage of full capsids to 9-11% with a mean
295 average of 10% (Figure 4C, Table 2). Similarly, the AAV2 DNA-binding domain inserted into
296 AAV1 Rep (R1dc2V1) also resulted in largely empty capsids (% full: 1-2%, average: ~2%).
297 These results could indicate that the AAV2 DNA binding domain is not compatible with the
298 AAV1 N-terminus which are expressed by the R2n1V1 and R1dc2V1 constructs. Vice versa, the
299 AAV1 DNA-binding domain is supported in AAV2 Rep and slightly enhanced packaging
300 efficiency (% full: 15-24%, average: ~20%). Swapping the AAV1 helicase domain into AAV2
301 (R2h1V1) did not affect the packaging efficiency significantly (% full: 9-17%, average: ~12%)
302 compared to R2V1. Lastly, the Rep hybrid with the best overall packaging efficiency contained
303 the AAV2 helicase within AAV1 Rep (R1hc2V1) with a percentage of full capsids in the four
304 vector preparations ranging from 24-48% with a mean average of 38% (Figure 4D, Table 2).
305 The approximate full-empty ratios for the different Rep hybrids were also confirmed by qPCR
306 when compared to the capsid titer determined by ELISA (data not shown). The packaged
307 genomes were also visualized by performing an alkaline gel electrophoresis loading equal
308 amounts of capsids (Figure 4D). Thus, vector preparations with a higher percentage of full
309 capsids will appear brighter such as for R1hc2V1 whereas no bands are seen for largely empty
310 capsids (R2n1V1 and R1dc2V1). Regardless of the utilized Rep hybrid during vector production,
311 no significant differences of the transduction efficiency of the purified AAV vectors were
312 observed (Figure 4E). This was expected as the Rep proteins are not part of the final purified
313 AAV vector preparations.

314

315 *The Rep hybrids also enhance vector genome packaging efficiency for other AAV serotypes.*

316 A similar screen for the genome packaging efficiency, as done for AAV1 (Figure 4A),
317 was conducted for AAV6 utilizing AAV6 hybrids with the AAV2 C-terminus. However, the AAV1
318 and AAV8 *rep* hybrids cloned upstream of the AAV6 *cap* gene appeared to exceed the
319 packaging efficiency over the AAV6 Rep hybrids (data not shown). Thus, the AAV1 and AAV8

320 Rep hybrids were utilized for AAV6 production and compared to the standard AAV2 Rep system
321 (Figure 5A). Similar to AAV1 the three independent AAV6 vector preparations were purified by
322 AVB-affinity chromatography and the percentage of full capsids determined by cryo-EM
323 imaging. For the standard AAV2 Rep system (R2V6) the percentage of full capsids ranged from
324 12-20% (average 17%) (Table 3). In contrast, the percentage of full capsids is increased for
325 each of the other tested Rep hybrids ranging from 20-39% (average 28%) for R2d1V6, 37-46%
326 (average 43%) for R1hc2V6, and 32-38% (average 36%) for R8d1c2V6 (Figure 5A, Table 3).
327 Due to the high sequence similarity of the AAV1 and AAV6 capsids (36) it was not surprising
328 that the Rep hybrids improved packaging efficiency similarly.

329 For AAV8 vectors produced with AAV2 *rep* and the percentage of full capsids ranged
330 from 18-23% (average 20%) (Figure 5B, Table 3). The utilization of the Rep hybrids that also
331 rescued AAV8 VP expression (Figure 3) improved the percentage of genome-containing
332 capsids to 27-41% (average 33%) for R1c2V8, 28-47% (average 36%) for R8d1c2V8, and 30-
333 62% (average 43%) for the corrected R8c2V8. Following the correction of the AAV8 DNA
334 binding domain (Figure 3D) the resulting Rep protein of the R8c2V8 construct varies only in two
335 amino acids from the R8d1c2 Rep hybrid. Thus, a similar level of enhancement of genome
336 packaging efficiency was expected.

337 For AAV9 and AAVrh.10 the *rep* genes or Rep protein sequences have not been
338 isolated or deposited (21). Alternatively, the most promising Rep hybrids for AAV1, AAV6, and
339 AAV8 were cloned upstream of the AAV9 or AAVrh.10 *cap* gene and the yield of the constructs
340 by qPCR compared to the VP expression intensity by Western-blot (data not shown). For both
341 AAVs the R8d1c2 Rep hybrid came ahead of the standard AAV2 Rep and three independent
342 AAV preparations were generated with either Rep variant as with the previous AAV serotypes
343 for detailed analysis. For AAV9 the percentage of full capsids ranged from 14-22% (average:
344 18%) with R2V9 whereas genome-containing capsids were increased to 29-36% (average:
345 32%) with R8d1c2V9 (Figure 5C). For AAVrh.10 the results were similar with 11-28% (average

346 17%) full capsids with R2Vrh.10 and 27-34% (average 31%) full capsids with R8d1c2Vrh.10
347 (Figure 5D, Table 3).

348 These results indicate that the new Rep hybrids may improve packaging regardless of
349 which capsids are utilized as the amino acid sequence identity of these capsids vary from 82-
350 99% (Table 1). In order to confirm this conclusion, the effects of the Rep hybrids were also
351 analyzed on AAV2 vector production. As expected, the overall yield of capsids with the different
352 Rep hybrids were comparable (Figure 6A) but the vector genome cassettes were packaged
353 equally (Figure 6B). As previously mentioned, packaging of vector genomes into AAV2 capsids
354 is generally more efficient (23). This was also observed using cryo-EM imaging with the R2V2
355 construct generating ~47% of full capsids (Figure 6C). In contrast, the percentage of full capsids
356 for the other AAV serotypes ranged from 12-20% when the AAV2 *rep* gene was used (Figure
357 4C, Figure 5). With the different Rep hybrids, the percentage of full AAV2 capsids ranged
358 between 32 – 65% (Figure 6C) which corresponds to a 0.7-1.4-fold decrease or increase
359 relative to the wtAAV2 Rep construct, respectively. As the portion of genome-containing capsids
360 was high for AAV2 to start with, a further improvement of packaging was not expected. On the
361 other hand, utilizing the Rep hybrids such as R1c2 or R8d1c2 for AAV2 vector production the
362 percentage of full AAV2 capsids did not drop significantly either. This questioned the initial
363 hypothesis that the Rep proteins of an AAV serotype might be adapted to its own capsid. Thus,
364 there has to be an alternative explanation for the higher percentage of full capsids when using
365 these Rep hybrids. The Rep hybrids that allowed the best packaging efficiency contained the
366 ~240 N-terminal amino acids of either AAV1 or AAV8 Rep78/68 which contains the DNA-
367 binding and endonuclease domain of the Rep proteins (16). This region is indispensable for
368 genome replication (18, 37, 38). Thus, it is possible that the Rep hybrids replicate the vector
369 genomes to higher copy numbers prior to their packaging. However, the copy number of vector
370 genomes determined by qPCR after lysis of transfected cells without DNase treatment showed
371 similar level of replicated genomes for all Rep variants (data not shown). The small Rep proteins

372 (Rep52/40) have been suggested to be responsible for the encapsidation of the genomes into
373 the capsids (18). However, the small Rep proteins are largely identical between Rep2 and the
374 R1hc2 variant (Figure 4D) except for a single amino acid substitution (K234R). Thus, it is likely
375 that the large Rep proteins are also involved in the encapsidation process with the Rep hybrids
376 improving genome packaging by a currently unknown mechanism.

377

378 *Conclusions.*

379 The vast majority of AAV production systems utilize AAV2 *rep* for vector manufacturing.
380 The few exceptions reported previously include the utilization of the *rep* gene of AAV3 (39) and
381 AAV4 (22) for production. In both cases the vector yield was described to be higher, but no
382 further investigation was conducted. In this study the *rep* genes of different AAV serotypes were
383 analyzed and while they were not directly usable “as is”, they were modified to generate hybrids
384 supporting high capsid expression and improved packaging efficiency. The fact that the Rep
385 hybrids enhanced packaging efficiency across multiple, widely used AAV serotypes in gene
386 therapy trials indicates that they can be possibly used for almost all AAV capsids to improve
387 overall vector yield and increase of the percentage of genome-containing capsids. As the *rep*
388 gene is often provided *in trans* for most AAV production system the new hybrid *rep* genes can
389 easily replace the AAV2 *rep* constructs. Furthermore, during AAV vector purification the Rep
390 proteins are removed, making the final product indistinguishable to the AAV2 *rep* system except
391 for the higher content of genome-containing capsids. While the exact mechanism of the
392 enhancement of packaging remains unclear further research on the Rep proteins is needed in
393 general. It will be also interesting to see if the Rep hybrids also improve packaging in insect
394 cells for large scale AAV production setups that often suffer from high empty-to-full capsid ratios
395 (40). Empty capsids are generally not desired in AAV vector preparations as they do not provide
396 any curative benefit for the treatment of the targeted disease and can reduce overall
397 transduction efficiencies (41). Some purification protocols do not actively remove empty capsid

398 which could be problematic when administered to a patient with a given genome-containing
399 vector dose as the empty particle titer can be 5 to 10-fold higher. These empty capsids can then
400 potentially elicit additional immune responses *in vivo* gene therapies.

401

Materials and Methods

402 *Plasmids and cloning*

403 The *rep* genes of AAV1, AAV6, and AAV8 were synthesized by GenArt (Thermo Fisher)
404 based on the deposited AAV serotype genomes; accession numbers: AF063497 (AAV1),
405 AF043303 (AAV2), and AF513852 (AAV8). These *rep* genes were inserted into plasmids
406 containing the AAV2 *rep* gene and either the AAV1, 6, or 8 *cap* gene (R2V1, R2V6, or R2V8) by
407 replacing the AAV2 *rep* gene to generate R1V1, R6V6, or R8V8, respectively. Site-directed
408 mutagenesis was utilized by as previously described (42) to mutate the Rep78 start codon or to
409 correct the AAV8 *rep* gene. In order to generate Rep hybrid proteins, the *rep* gene was
410 subdivided into four regions and cloned using restriction sites that are conserved in equivalent
411 positions of the AAV1, 2, 6, and 8 *rep* genes. Briefly, the N-terminal region (n) extends to *Ncol*
412 (nt position 305 of the AAV1 *rep* gene, amino acid position 102 of AAV1 Rep), the DNA-binding
413 domain (d) to *BamHI* (nt position 725, amino acid position 242), the helicase domain (h) to *SaII*
414 (nt position 1108, amino acid position 370) and the C-terminal region consists all the sequences
415 past *SaII*. In absence of usable restrictions site Gibson assembly was performed using the NEB
416 Gibson assembly master mix according to the manufacturer instructions to further subdivide the
417 C-terminal region at nt position 1590, amino acid position 530 (AAV1 numbering), termed y and
418 z region. To determine the p40 promoter activity the nts 1442-1878 (AAV1), nts 1428-1887
419 (AAV2), and nts 1340-1776 (AAV8) from the accession numbers listed above were cloned
420 upstream of a luciferase gene.

421

422 *Cell culture*

423 HEK293 cells were maintained in Dulbecco's Modified Eagle Medium (DMEM)
424 supplemented with 10% heat-inactivated fetal calf serum and 100 U of penicillin/ml and 100 µg
425 of streptomycin at 37°C in 5% CO₂.

426

427 *AAV production and purification*

428 Recombinant AAV vectors, with a packaged luciferase gene, were produced by triple
429 transfection of HEK293 cells, utilizing pTR-UF3-Luciferase, pHelper (Stratagene), and a *rep-cap*
430 plasmid containing either the wild-type or hybrid *rep* genes. The transfected cells were
431 harvested 72 h post transfection as previously described (42). The cleared lysates containing
432 AAV capsids were purified by AVB Sepharose (Thermo Fisher) in the case of AAV1, 2, and 6
433 and by POROS CaptureSelect™ AAV8 (Thermo Fisher) affinity chromatography as previously
434 described (35).

435

436 *SDS-PAGE and Western-blot analysis*

437 The purity of the AAV preparations were confirmed by sodium dodecyl sulfate
438 polyacrylamide gel electrophoresis (SDS-PAGE). For this purpose, the samples were incubated
439 with 6x Laemmle Sample Buffer (Bio-Rad) with 10% β -mercaptoethanol and boiled for 5 min at
440 100°C. The denatured proteins were applied to a 10% polyacrylamide gel and ran at 120 V. The
441 gel was washed three times with distilled water (diH₂O) and stained with GelCode Blue Protein
442 Safe stain (Invitrogen). In order to confirm and evaluate Rep and Cap expression from the new
443 Rep hybrid plasmids Western-blot analyses were performed. For this purpose, the proteins were
444 transferred to a nitrocellulose membrane following SDS-PAGE by electroblotting. The
445 membrane was blocked in 6% milk in 1xPBS and probed with hybridoma supernatants
446 containing MAbs B1, detecting VP1, VP2, and VP3, (43) or MAbs 1F, detecting Rep78, Rep68,
447 Rep52, and Rep40 (29). Following the incubation with a secondary antibody with a linked horse
448 radish peroxidase the proteins were visualized by applying Immobilon™ Chemiluminescent
449 Substrate (Millipore) and detection on an X-ray film.

450

451 *Quantification of AAV vectors.*

452 Aliquots from the AAV vector preparations were digested with Proteinase K to release
453 the AAV vector genomes from the capsids. To this end, the samples were incubated in buffer
454 containing 10 mM Tris pH 8, 10 mM EDTA, 1% SDS for 2 h at 56°C. The released DNA was
455 purified utilizing the PureLink PCR Purification Kit (Thermo Fisher). The copy number of vector
456 genome DNAs were determined by quantitative PCR using iQ™ SYBR® Green Supermix
457 (BioRad, Hercules, CA). Primers specific for the luciferase gene of the vector genome were
458 used (Forward primer 5'-GCAAAACGCTTCCATCTTCC-3' and reverse primer 5'-
459 AGATCCACAAACCTTCGCTTC -3').

460

461 *AAV capsid ELISA.*

462 For the quantification of the physical capsid titer AAV Titration ELISA (Progen) were
463 utilized. All the steps were done according to the protocol provided by the manufacturer in
464 triplicate. The colorimetric assay was analyzed by a Synergy HT plate reader (BioTek).

465

466 *Alkaline gel electrophoresis.*

467 For the alkaline gel electrophoresis, a 0.8 % agarose gel in 1xTAE buffer (40 mM Tris,
468 20 mM acetic acid, and 1 mM EDTA) was utilized. Following solidification, the gel was
469 equilibrated in 1x denaturing buffer (0.5 M NaOH, 50 mM EDTA) for 4 h. Prior to the loading, the
470 samples were mixed with denaturing loading dye (final concentration: 1x Ficoll loading buffer, 1x
471 denaturing buffer, 10% SDS). The agarose gel was run at low voltage overnight at 4°C. After the
472 run the gel was washed and neutralized in 1xTAE for 30 min and subsequently stained in a
473 0.02% SyBr-Gold solution in 1xTAE. The gel was imaged under UV light using a BioRad
474 GelDoc system.

475

476 Analysis of transduction efficiency and promoter activity

477 Purified AAV vectors with a packaged luciferase expression cassette were used to infect
478 HEK-293 cells at a 10^5 MOI (multiplicity of infection). After 48 h, cells were lysed and luciferase
479 activity assayed using a luciferase assay kit (Promega) as described in the manufacturer's
480 protocol. Luminescence was measured on a Synergy HT plate reader (BioTek). In order to
481 determine the p40 promoter activity in HEK293 cells the AAV-p40-luciferase constructs were
482 transfected and the cells incubated for 24 hours. The subsequent steps were performed
483 identically as described above for the analysis of transduction efficiency.

484

485 *Cryo-Electron microscopy imaging*

486 For each of the purified AAV capsids, 3.5 μ L was applied to a glow-discharged Quantifoil
487 copper grid with 2 nm continuous carbon support over holes (Quantifoil R 2/4 400 mesh),
488 blotted, and vitrified using a Vitrobot Mark 4 (FEI) at 95% humidity and 4°C. Images were
489 collected using an FEI Tecnai G2 F20-TWIN microscope (FEI) operated under low-dose
490 conditions (200 kV, $\sim 20\text{e}^-/\text{\AA}^2$) on a GatanUltraScan 4000 CCD camera (Gatan). The number of
491 empty and full capsids in these images were counted manually.

492

493 **Acknowledgments**

494 The authors thank the UF-ICBR Electron microscopy core for access to electron microscopes
495 utilized for cryo-electron micrograph screening.

496

497 **Conflicts of Interest**

498 The University of Florida Research Foundation has filed and licensed patent applications based
499 on the findings described herein.

500

Figure Legends

501 **Figure 1:** Substitution of the AAV2 *rep* gene. **A)** Overview of the utilized *rep-cap* constructs.
502 AAV genes derived from AAV1 are colored in purple, AAV2 in blue, AAV6 in pink, and AAV8 in
503 green. The construct name indicates the utilized Rep78 start codon (ATG or ACG) as well as
504 the origin of the *rep* (R) and *cap* (V) gene (e.g. R2V1: *rep* gene from AAV2 and *cap* gene from
505 AAV1). **B)** Analysis of Rep and VP expression by Western-blot following transfection of the
506 constructs in HEK293 cells. Top blots were probed with MAb B1 and lower blots with MAb 1F.
507 The individual VPs and Rep proteins are indicated.

508

509 **Figure 2:** Role of the 3' end of the *rep* gene in VP expression. **A)** Analysis of the p40 promoter
510 activity from AAV1, AAV2, and AAV8 driving luciferase expression in HEK293 cells 24 h post
511 transfection. The nucleotide positions of the fragments used are shown below the constructs
512 based on the accession numbers: AF063497 (AAV1), AF043303 (AAV2), and AF513852
513 (AAV8). RLU: relative light units. **B)** Schematic depiction of the Rep protein with its main
514 domains. The approximate position of the p40 promoter in the *rep* gene is indicated. Below the
515 p5 and p19 transcripts are shown with the translated regions for Rep78, Rep68, Rep52, and
516 Rep40. The C-terminal (c) ~250 aa has been subdivided into a N-terminal y-region and C-
517 terminal z-region. The construct generated with all permutations between AAV1 and AAV2
518 involving these regions are depicted. Rep gene fragments derived from AAV1 are colored in
519 purple and AAV2 in blue. **C)** Western-blot analysis to determine Rep and VP expression of the
520 constructs. Top blots were probed with MAb B1 and lower blots with MAb 1F. The individual
521 VPs and Rep proteins are indicated.

522

523 **Figure 3:** Rescuing VP expression utilizing the AAV8 *rep* gene. **A)** Schematic depiction of the
524 Rep protein with its main domains. The approximate position of the p40 promoter in the *rep*
525 gene is indicated. Below the p5 and p19 transcripts are shown with the translated regions for

526 Rep78, Rep68, Rep52, and Rep40. Rep has been subdivided into a N-terminal domain (n), the
527 DNA-binding domain (d), the helicase domain (h), and a C-terminal domain (c). The generated
528 constructs containing different domains from AAV1, AAV2, and AAV8 are depicted below. Rep
529 gene fragments derived from AAV1 are colored in purple, AAV2 in blue, and AAV8 in green. **B)**
530 Western-blot analysis to determine Rep and VP expression of the constructs shown in A. Top
531 blots were probed with MAb B1 and lower blots with MAb 1F. The individual VPs and Rep
532 proteins are indicated. **C)** Analysis as in (B) in presence or absence of co-transfected Rep
533 constructs. **D)** Amino acid sequence alignment of AAV1 and AAV8 in the DNA-binding domain
534 (aa110 to aa150). Identical residues are highlighted in yellow and amino acid with similar
535 properties in green. The two regions of significant amino acid difference termed VR-A and VR-B
536 are indicated. Below an analysis of these regions are shown at nucleotide level with the
537 encoded amino acids shown. Deletions in AAV1 relative to AAV8 are highlighted in red. The
538 insertions in AAV8 potentially result in shifts to an alternative reading frame. Removal of these
539 insertion (AAV8*) result in a similar amino acid sequence to AAV1. **E)** Analysis as in (B) utilizing
540 the AAV8 Rep variants with the removed insertions. The intensity of the VP bands was
541 quantified using ImageJ and normalized to R8d1c2V8. **F)** Structural analysis of the DNA-binding
542 site for AAV2-Rep (blue) and a superposed AAV8-Rep model (green) to AAVS1 dsDNA. The
543 position of VR-A and VR-B is indicated.

544

545 **Figure 4:** AAV1/2 Rep hybrids improve AAV1 genome packaging efficiency. **A)** Analysis of VP
546 expression by Western-blot and the AAV1 vector yield by qPCR following transfection of the
547 constructs in HEK293 cells. The Western blot was probed with MAb B1. The individual VPs and
548 Rep proteins are indicated. **B)** Schematic depiction of the Rep protein with its main domains.
549 The approximate position of the p40 promoter in the *rep* gene is indicated. Below the p5 and
550 p19 transcripts are shown with the translated regions for Rep78, Rep68, Rep52, and Rep40.
551 Rep has been subdivided into a N-terminal domain (n), the DNA-binding domain (d), the

552 helicase domain (h), and a C-terminal domain (c). The generated constructs containing different
553 domains from AAV1 and AAV2 are depicted below. Rep gene fragments derived from AAV1 are
554 colored in purple and AAV2 in blue. **C)** Analysis of the AVB-purified AAV1 vector preparations.
555 Sections of SDS-PAGEs containing VP1, VP2, and VP3 and representative example cryo-EM
556 micrographs are shown for each Rep hybrid. White arrows point to empty capsids (light
557 appearance) and black arrows to full capsids (dark appearance). The determined percentage of
558 full capsids of at least three independently produced and purified AAV1 vector preparations are
559 displayed with the total particle count of all micrographs collected for the individual sample.
560 Scale bar (shown in R2V1 micrograph): 50 nm. **D)** Alkaline gel electrophoresis of the AAV1
561 vector preparations. Capsid amount loaded is the same for all samples based on the ELISA
562 titer. The size of the packaged vector genome (vg) is ~3.9 kb. **E)** Analysis of the transduction
563 efficiency of the AAV1 vectors produced with different Rep hybrids in HEK 293 cells.

564

565 **Figure 5:** The Rep hybrids also enhance packaging efficiency for other AAV serotypes. **A)**
566 Analysis of the AVB-purified AAV6 vector preparations. Sections of SDS-PAGEs containing
567 VP1, VP2, and VP3 and representative example cryo-EM micrographs are shown for each Rep
568 variant. White arrows point to empty capsids (light appearance) and black arrows to full capsids
569 (dark appearance). The determined percentage of full capsids of three independently produced
570 and purified AAV6 vector preparations are displayed with the total particle count of all
571 micrographs collected for the individual sample. Scale bar (shown in R2V6 micrograph): 50 nm.
572 **B)** Analysis as in (A) for AAV8-Capture select affinity ligand purified AAV8 vectors. **C)** Analysis
573 as in (A) for AAV9-Capture select affinity ligand purified AAV9 vectors. **D)** Analysis as in (A) for
574 AVB-purified AAVrh.10 vectors.

575

576 **Figure 6:** The effect of the Rep hybrids on genome encapsidation of AAV2. **A)** SDS-PAGE of
577 the AVB-purified AAV2 vector preparations produced with different Rep variants. VP1, VP2, and

578 VP3 are indicated. **B)** Alkaline gel electrophoresis of the AAV2 vector preparations. Capsid
579 amount loaded is the same for all samples. The size of the packaged vector genome (vg) is
580 ~3.9 kb. **C)** Representative example cryo-EM micrographs are shown for each Rep variant.
581 White arrows point to empty capsids (light appearance) and black arrows to full capsids (dark
582 appearance). The determined percentage of full capsids of the vector preparations are
583 displayed with the total particle count of all micrographs collected for the individual sample.
584 Scale bar (shown in R2V2 micrograph): 50 nm.

585

Table 1: Comparison of the VP1 and Rep78 amino acid sequence identity of the AAV serotypes

	AAV1	AAV2	AAV3	AAV4	AAV5	AAV6	AAV7	AAV8	AAV9	AAV10	AAV11	AAV12	AAV13
AAV1		83	87	63	58	99	85	84	82	85	66	60	87
AAV2	87		88	60	57	83	82	83	82	84	63	60	88
AAV3	89	89		63	58	87	85	86	84	86	65	61	94
AAV4	90	90	93		53	63	63	63	62	63	81	78	65
AAV5	58	58	58	58		58	58	58	57	57	53	52	58
AAV6	99	87	89	89	58		85	84	82	85	66	60	87
AAV7	98	88	90	90	58	98		88	82	88	67	62	85
AAV8	95	85	87	88	57	95	96		85	93	65	62	85
AAV9	N/A		86	64	60	84							
AAV10	97	88	89	90	58	97	97	95	N/A		66	61	86
AAV11	97	88	89	89	58	97	97	95	N/A	100		84	65
AAV12	87	88	89	88	58	87	88	85	N/A	88	88		60
AAV13	89	90	93	99	58	89	90	88	N/A	89	89	88	

Rep78 amino acid sequence identity [%]

586

VP1
amino
acid
sequence
identity
[%]

587

Table 2: Summary of the quantification of the full capsids for AAV1

AAV serotype (capsid)	Utilized Rep variant	biological replicate	percentage "full" capsids	mean
AAV1	R2	I	10%	15%
		II	17%	
		III	19%	
	R2n1	I	1%	1%
		II	2%	
		III	1%	
	R2d1	I	24%	20%
		II	15%	
		III	21%	
	R2h1	I	9%	12%
		II	17%	
		III	9%	
	R1c2	I	37%	32%
		II	35%	
		III	25%	
	R1nc2	I	9%	10%
		II	11%	
		III	10%	
	R1dc2	I	2%	2%
		II	1%	
		III	2%	
	R1hc2	I	44%	38%
		II	48%	
		III	35%	
		IV	24%	

588

589

Table 3: Summary of the quantification of the full capsids for AAV6, 8, 9, and rh.10

AAV serotype (capsid)	Utilized Rep variant	biological replicate	percentage "full" capsids	mean
AAV6	R2	I	12%	17%
		II	18%	
		III	20%	
	R1hc2	I	37%	43%
		II	45%	
		III	46%	
	R2d1	I	20%	28%
		II	25%	
		III	39%	
	R8d1c2	I	37%	36%
		II	38%	
		III	32%	
AAV8	R2	I	18%	20%
		II	23%	
		III	19%	
	R8d1c2	I	28%	36%
		II	47%	
		III	34%	
	R1c2	I	41%	33%
		II	32%	
		III	27%	
	R8*c2	I	62%	43%
		II	30%	
		III	36%	
AAV9	R2	I	18%	18%
		II	14%	
		III	22%	
	R8d1c2	I	36%	32%
		II	29%	
		III	31%	
AAVrh.10	R2	I	12%	17%
		II	28%	
		III	11%	
	R8d1c2	I	27%	31%
		II	34%	
		III	31%	

590

591

References

- 592 1. **Rittié L, Athanasopoulos T, Calero-Garcia M, Davies ML, Dow DJ, Howe SJ, Morrison A, Ricciardelli I, Saudemont A, Jespers L, Clay TM.** 2019. The Landscape of Early Clinical Gene Therapies outside of Oncology. *Mol Ther* **27**:1706-1717.
- 593 2. **Scott LJ.** 2015. Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. *Drugs* **75**:175-182.
- 594 3. **Lloyd A, Piglowska N, Ciulla T, Pitluck S, Johnson S, Buessing M, O'Connell T.** 2019. Estimation of impact of RPE65-mediated inherited retinal disease on quality of life and the potential benefits of gene therapy. *Br J Ophthalmol* doi:10.1136/bjophthalmol-2018-313089.
- 595 4. **Waldrop MA, Kolb SJ.** 2019. Current Treatment Options in Neurology-SMA Therapeutics. *Curr Treat Options Neurol* **21**:25.
- 596 5. **Mietzsch M, Penzes JJ, Agbandje-McKenna M.** 2019. Twenty-Five Years of Structural Parvovirology. *Viruses* **11**.
- 597 6. **Srivastava A, Lusby EW, Berns KI.** 1983. Nucleotide sequence and organization of the adeno-associated virus 2 genome. *J Virol* **45**:555-564.
- 598 7. **Bennett A, Mietzsch M, Agbandje-McKenna M.** 2017. Understanding capsid assembly and genome packaging for adeno-associated viruses. *Future Virology* **12**:283-297.
- 599 8. **Weitzman MD, Linden RM.** 2011. Adeno-associated virus biology. *Methods Mol Biol* **807**:1-23.
- 600 9. **Sonntag F, Schmidt K, Kleinschmidt JA.** 2010. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. *Proceedings of the National Academy of Sciences of the United States of America* **107**:10220-10225.
- 601 10. **Ogden PJ, Kelsic ED, Sinai S, Church GM.** 2019. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. *Science* **366**:1139-1143.
- 602 11. **Gray JT, Zolotukhin S.** 2011. Design and construction of functional AAV vectors. *Methods Mol Biol* **807**:25-46.
- 603 12. **Grieger JC, Samulski RJ.** 2012. Adeno-associated virus vectorology, manufacturing, and clinical applications. *Methods Enzymol* **507**:229-254.
- 604 13. **Qiu J, Soderlund-Venermo M, Young NS.** 2017. Human Parvoviruses. *Clin Microbiol Rev* **30**:43-113.
- 605 14. **Smith RH, Kotin RM.** 1998. The Rep52 gene product of adeno-associated virus is a DNA helicase with 3'-to-5' polarity. *J Virol* **72**:4874-4881.
- 606 15. **Cassell GD, Weitzman MD.** 2004. Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins. *Virology* **327**:206-214.
- 607 16. **Im D-S, Muzyczka N.** 1990. The AAV origin-binding protein Rep68 is an ATP-dependent site-specific endonuclease with helicase activity. *Cell* **61**:447-457.
- 608 17. **Di Pasquale G, Stacey SN.** 1998. Adeno-associated virus Rep78 protein interacts with protein kinase A and its homolog PRKX and inhibits CREB-dependent transcriptional activation. *J Virol* **72**:7916-7925.
- 609 18. **King JA, Dubielzig R, Grimm D, Kleinschmidt JA.** 2001. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. *EMBO J* **20**:3282-3291.
- 610 19. **Wörner TP, Bennett A, Habka S, Snijder J, Friese O, Powers T, Agbandje-McKenna M, Heck AJR.** 2021. Adeno-associated virus capsid assembly is divergent and stochastic. *Nat Commun* **12**:1642.
- 611 20. **Yoon-Robarts M, Blouin AG, Bleker S, Kleinschmidt JA, Aggarwal AK, Escalante CR, Linden RM.** 2004. Residues within the B' motif are critical for DNA binding by the superfamily 3 helicase Rep40 of adeno-associated virus type 2. *J Biol Chem* **279**:50472-50481.

637 21. **Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM.** 2004. Clades of
638 Adeno-associated viruses are widely disseminated in human tissues. *J Virol* **78**:6381-6388.

639 22. **Grimm D, Kay MA, Kleinschmidt JA.** 2003. Helper virus-free, optically controllable, and two-
640 plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. *Mol Ther* **7**:839-
641 850.

642 23. **Nass SA, Mattingly MA, Woodcock DA, Burnham BL, Arding JA, Osmond SE, Frederick AM,
643 Scaria A, Cheng SH, O'Riordan CR.** 2018. Universal Method for the Purification of Recombinant
644 AAV Vectors of Differing Serotypes. *Mol Ther Methods Clin Dev* **9**:33-46.

645 24. **Li C, Samulski RJ.** 2020. Engineering adeno-associated virus vectors for gene therapy. *Nat Rev
646 Genet* **21**:255-272.

647 25. **Viney L, Bürckstümmer T, Eddington C, Mietzsch M, Choudhry M, Henley T, Agbandje-
648 McKenna M.** 2021. Adeno-associated Virus (AAV) Capsid Chimeras with Enhanced Infectivity
649 Reveal a Core Element in the AAV Genome Critical for both Cell Transduction and Capsid
650 Assembly. *J Virol* doi:10.1128/jvi.02023-20.

651 26. **Havlik LP, Simon KE, Smith JK, Klinc KA, Tse LV, Oh DK, Fanous MM, Meganck RM, Mietzsch M,
652 Agbandje-McKenna M, Asokan A.** 2020. Co-evolution of AAV capsid antigenicity and tropism
653 through a structure-guided approach. *J Virol* doi:10.1128/jvi.00976-20.

654 27. **Tse LV, Klinc KA, Madigan VJ, Castellanos Rivera RM, Wells LF, Havlik LP, Smith JK, Agbandje-
655 McKenna M, Asokan A.** 2017. Structure-guided evolution of antigenically distinct adeno-
656 associated virus variants for immune evasion. *Proc Natl Acad Sci U S A* **114**:E4812-e4821.

657 28. **Xiao X, Li J, Samulski RJ.** 1998. Production of high-titer recombinant adeno-associated virus
658 vectors in the absence of helper adenovirus. *J Virol* **72**:2224-2232.

659 29. **Li J, Samulski RJ, Xiao X.** 1997. Role for highly regulated rep gene expression in adeno-
660 associated virus vector production. *J Virol* **71**:5236-5243.

661 30. **Farris KD, Pintel DJ.** 2008. Improved splicing of adeno-associated viral (AAV) capsid protein-
662 supplying pre-mRNAs leads to increased recombinant AAV vector production. *Hum Gene Ther*
663 **19**:1421-1427.

664 31. **Stutika C, Gogol-Doring A, Botschen L, Mietzsch M, Weger S, Feldkamp M, Chen W, Heilbronn
665 R.** 2015. A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2
666 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins. *J Virol*
667 **90**:1278-1289.

668 32. **Musayev FN, Zarate-Perez F, Bishop C, Burgner JW, 2nd, Escalante CR.** 2015. Structural Insights
669 into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site
670 AAVS1. *J Biol Chem* **290**:27487-27499.

671 33. **Pereira DJ, McCarty DM, Muzychka N.** 1997. The adeno-associated virus (AAV) Rep protein acts
672 as both a repressor and an activator to regulate AAV transcription during a productive infection.
673 *J Virol* **71**:1079-1088.

674 34. **Pereira DJ, Muzychka N.** 1997. The adeno-associated virus type 2 p40 promoter requires a
675 proximal Sp1 interaction and a p19 CArG-like element to facilitate Rep transactivation. *J Virol*
676 **71**:4300-4309.

677 35. **Mietzsch M, Smith JK, Yu JC, Banala V, Emmanuel SN, Jose A, Chipman P, Bhattacharya N,
678 McKenna R, Agbandje-McKenna M.** 2020. Characterization of AAV-Specific Affinity Ligands:
679 Consequences for Vector Purification and Development Strategies. *Mol Ther Methods Clin Dev*
680 **19**:362-373.

681 36. **Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ, Parent KN, Baker TS,
682 Agbandje-McKenna M.** 2010. Structural characterization of the dual glycan binding adeno-
683 associated virus serotype 6. *J Virol* **84**:12945-12957.

684 37. **Im DS, Muzyczka N.** 1989. Factors that bind to adeno-associated virus terminal repeats. *J Virol* **63**:3095-3104.

685 38. **Alex M, Weger S, Mietzsch M, Slanina H, Cathomen T, Heilbronn R.** 2012. DNA-binding activity of adeno-associated virus Rep is required for inverted terminal repeat-dependent complex formation with herpes simplex virus ICP8. *J Virol* **86**:2859-2863.

686 39. **Ling C, Yin Z, Li J, Zhang D, Aslanidi G, Srivastava A.** 2016. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors. *Mol Ther Methods Clin Dev* **3**:16029.

687 40. **Wang L, Blouin V, Brument N, Bello-Roufai M, Francois A.** 2011. Production and purification of recombinant adeno-associated vectors. *Methods Mol Biol* **807**:361-404.

688 41. **Gao K, Li M, Zhong L, Su Q, Li J, Li S, He R, Zhang Y, Hendricks G, Wang J, Gao G.** 2014. Empty Virions In AAV8 Vector Preparations Reduce Transduction Efficiency And May Cause Total Viral Particle Dose-Limiting Side-Effects. *Mol Ther Methods Clin Dev* **1**:20139.

689 42. **Jose A, Mietzsch M, Smith JK, Kurian J, Chipman P, McKenna R, Chiorini J, Agbandje-McKenna M.** 2019. High-Resolution Structural Characterization of a New Adeno-associated Virus Serotype 5 Antibody Epitope toward Engineering Antibody-Resistant Recombinant Gene Delivery Vectors. *J Virol* **93**.

690 43. **Wobus CE, Hugle-Dorr B, Girod A, Petersen G, Hallek M, Kleinschmidt JA.** 2000. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. *J Virol* **74**:9281-9293.

691

692

693

694

695

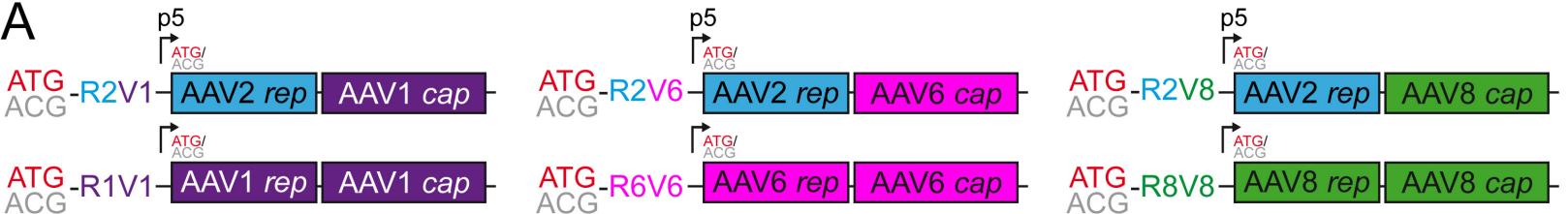
696

697

698

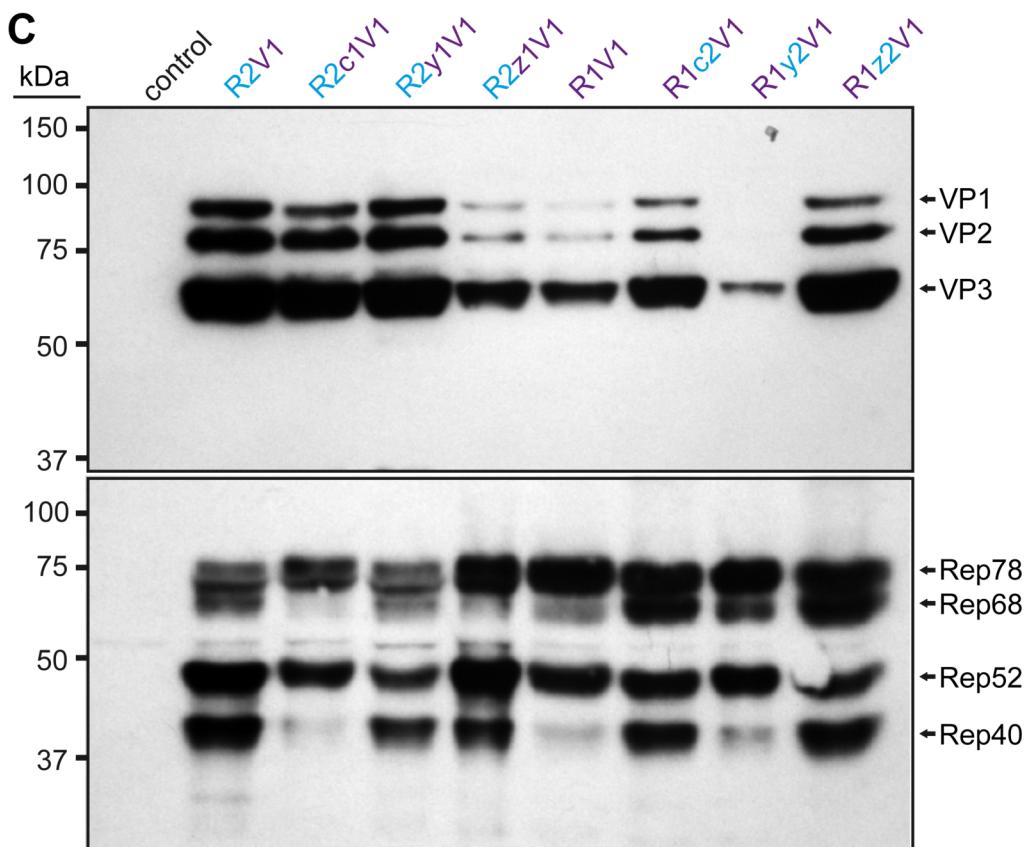
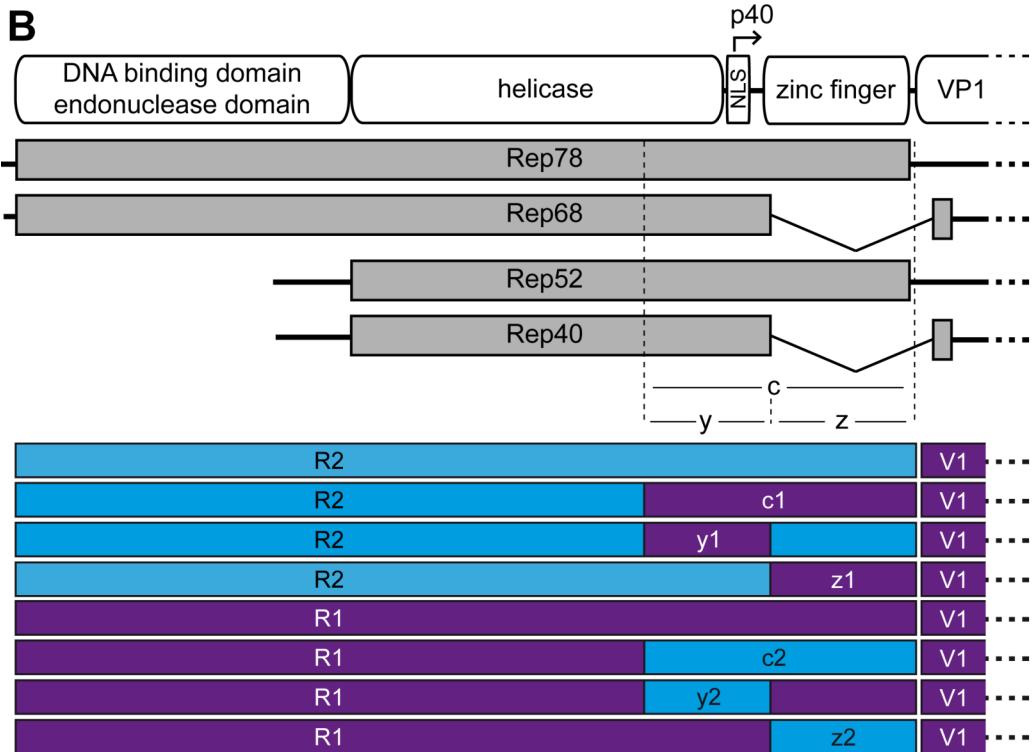
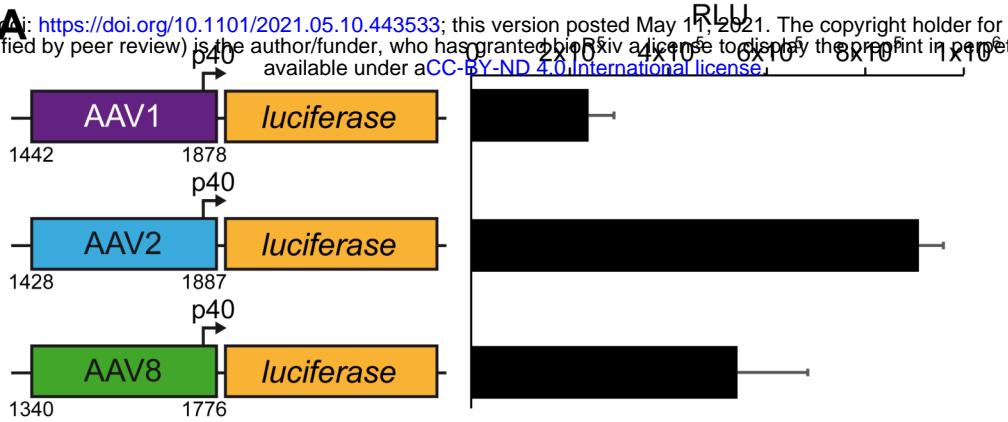
699

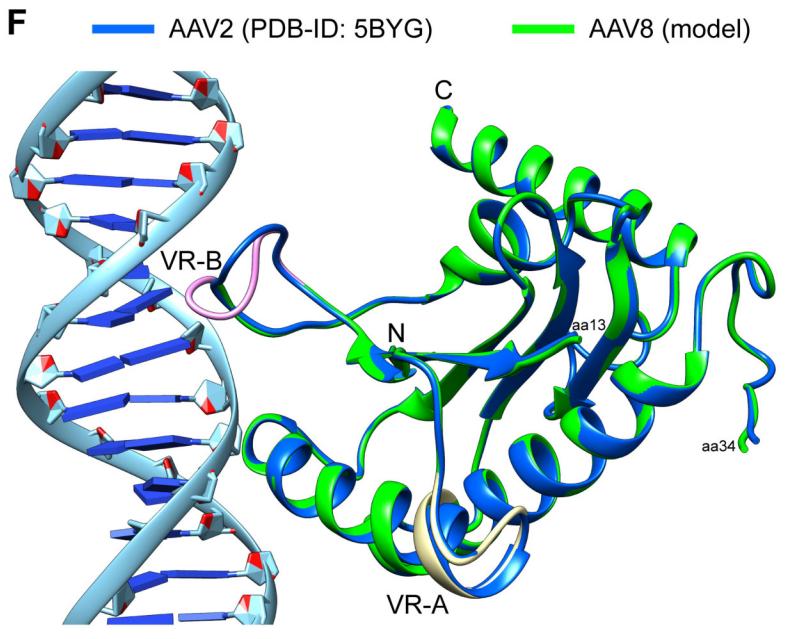
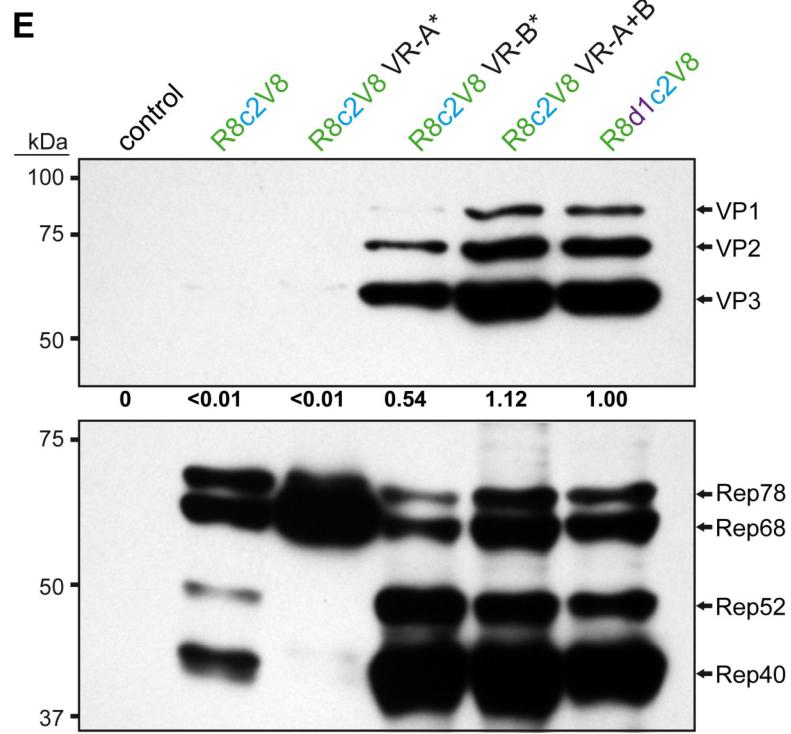
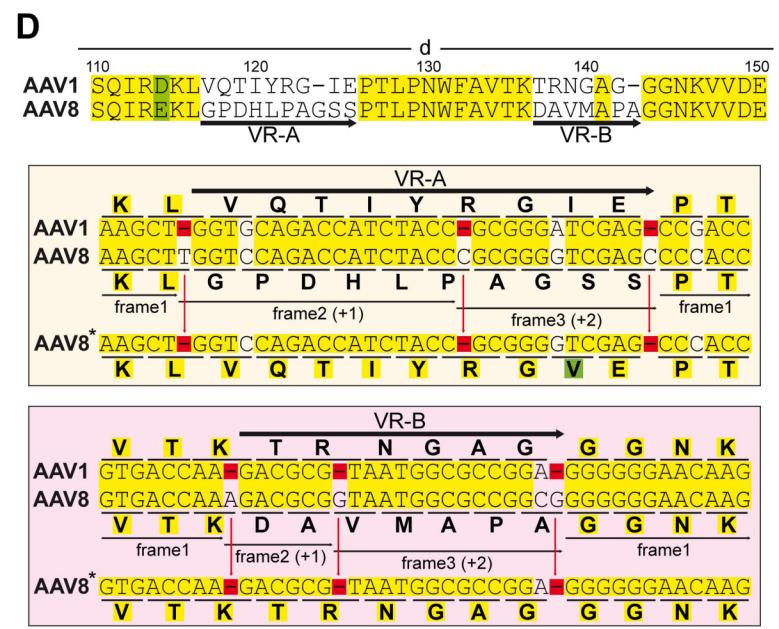
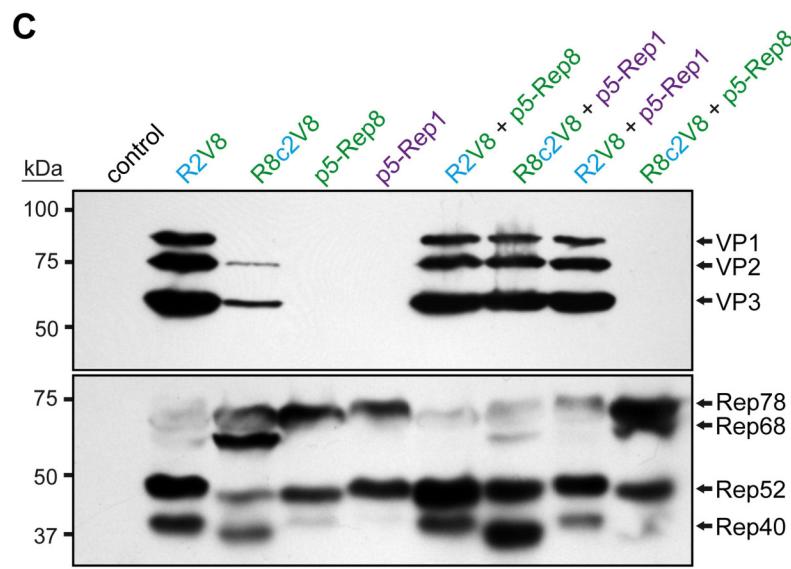
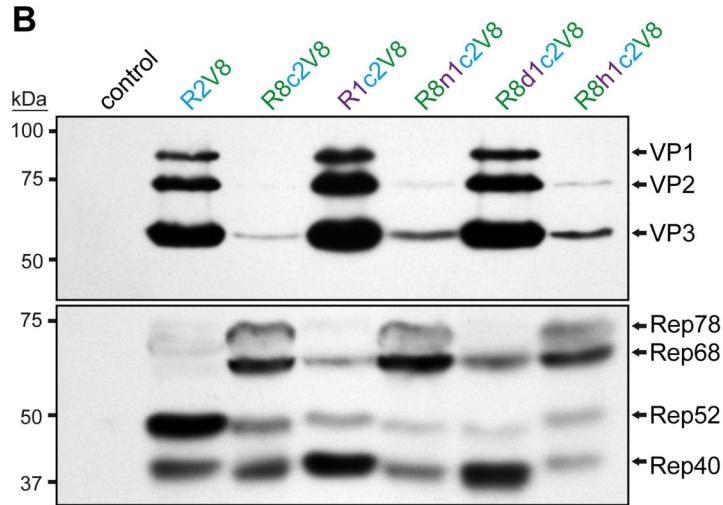
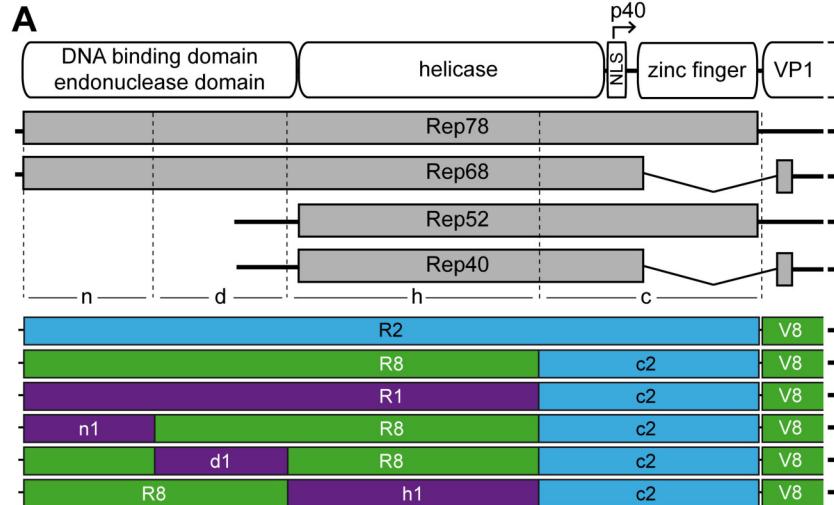
700

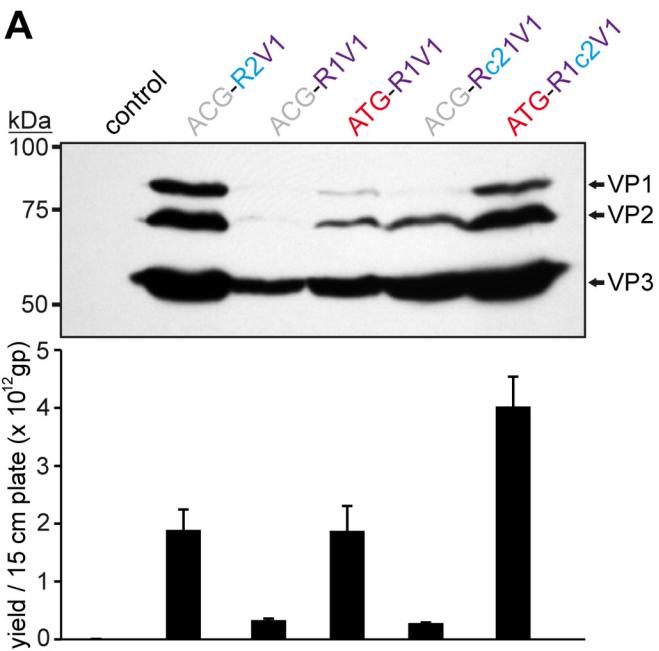

701

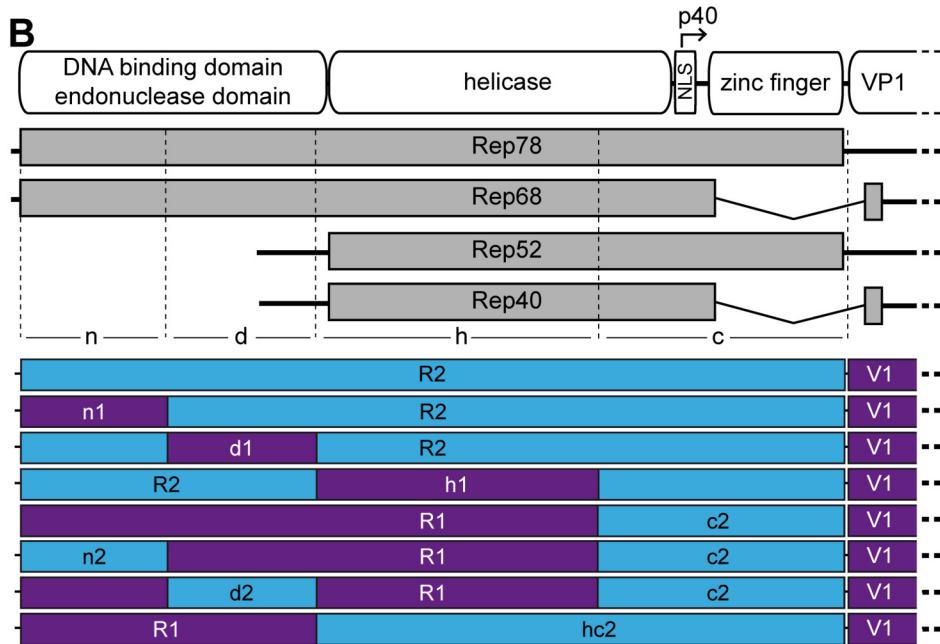
702

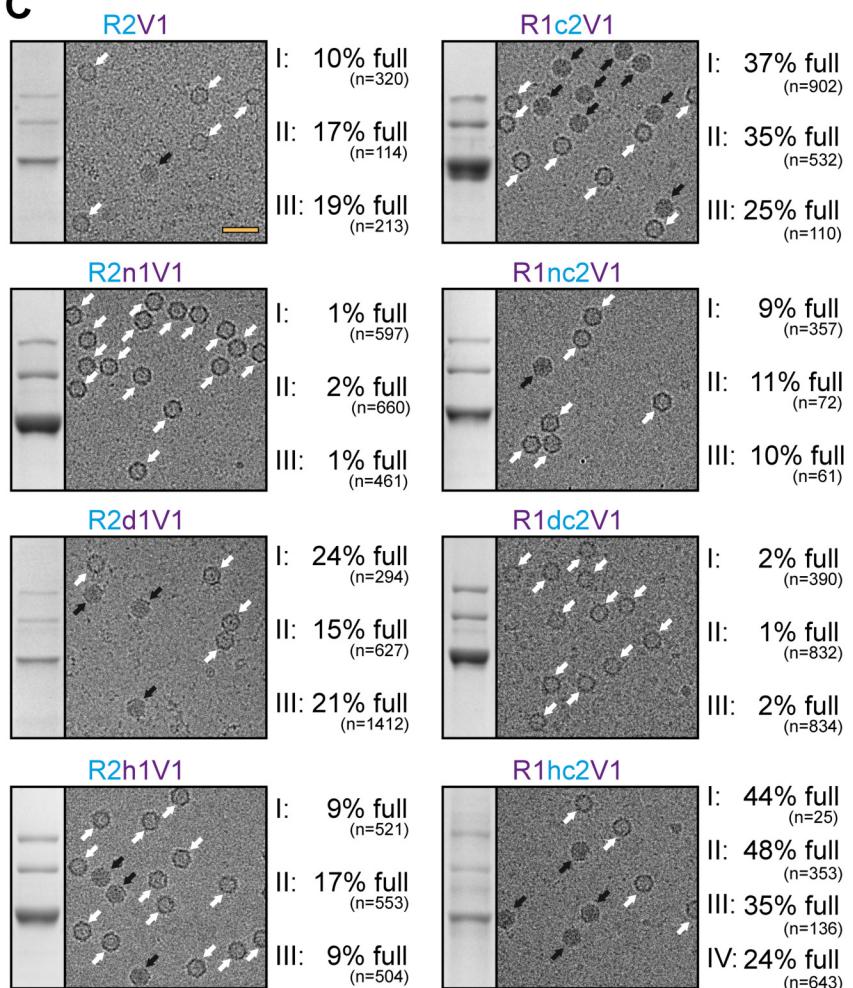
703

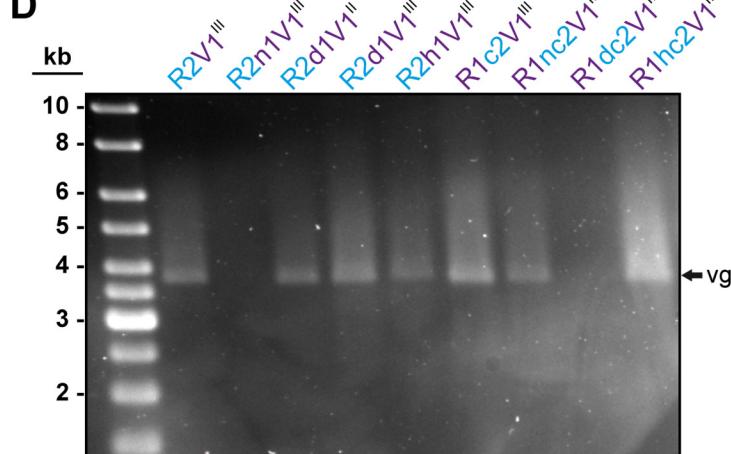



704

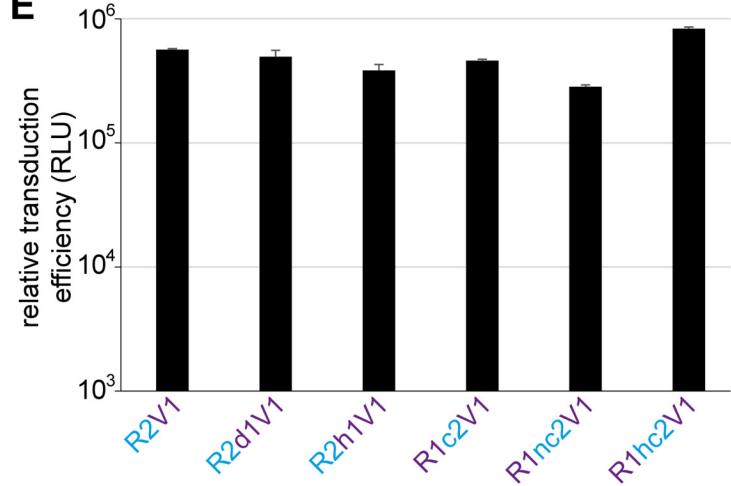






A

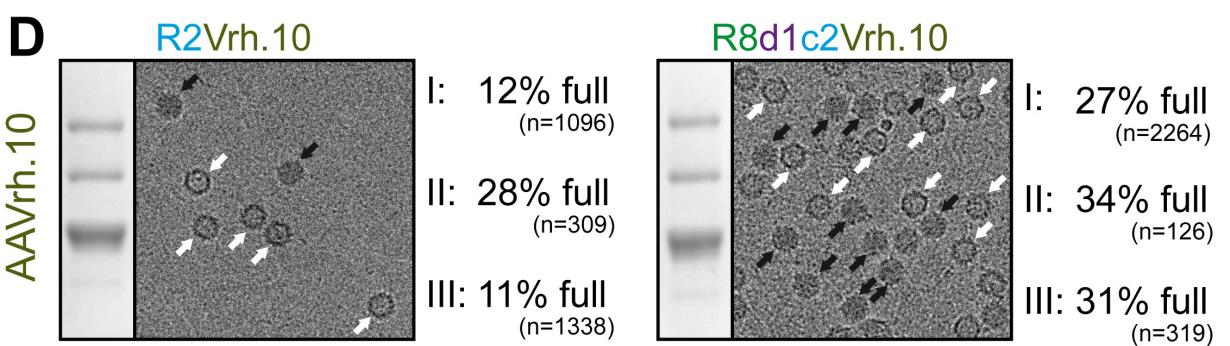
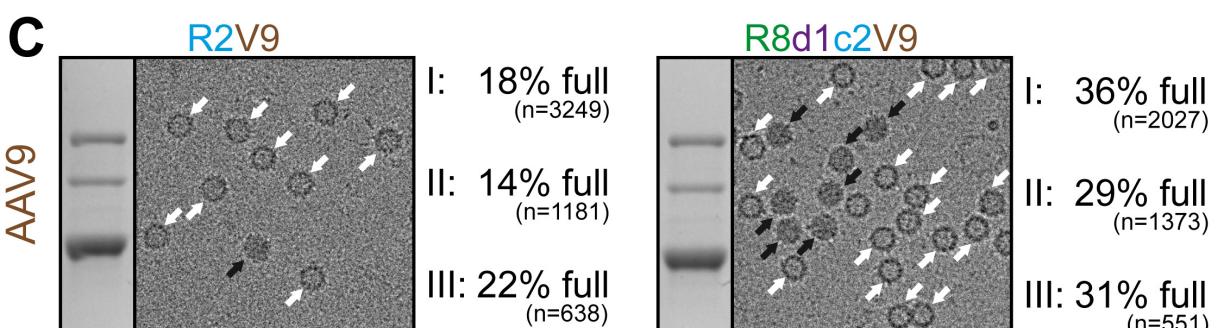
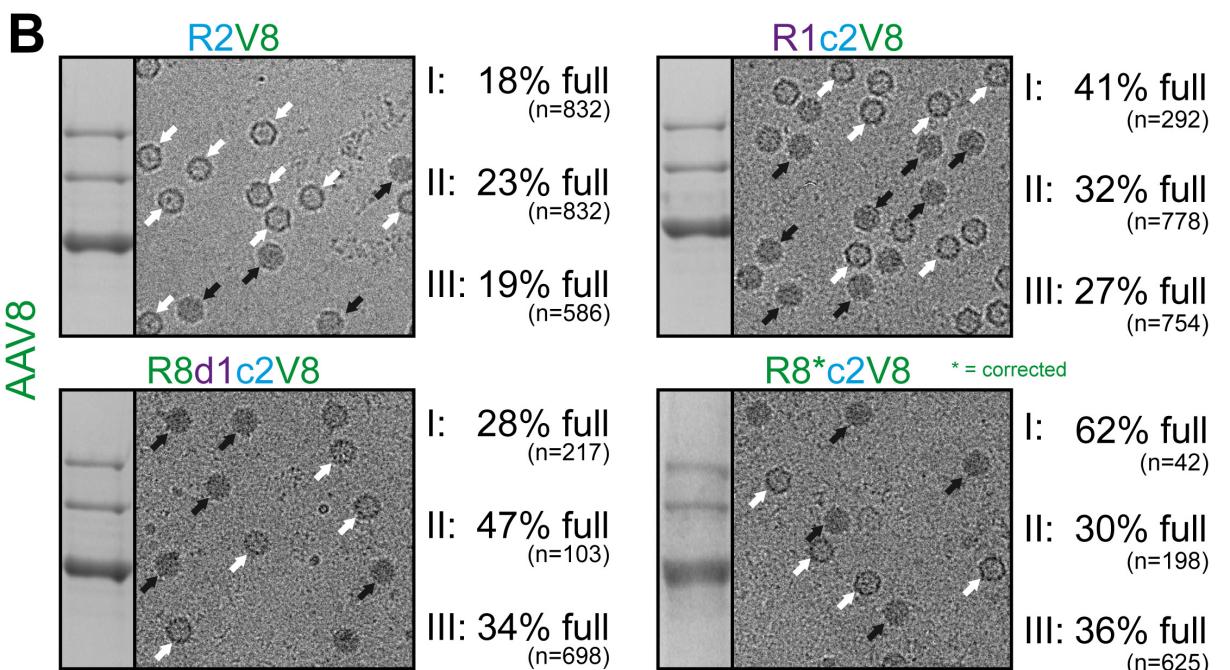
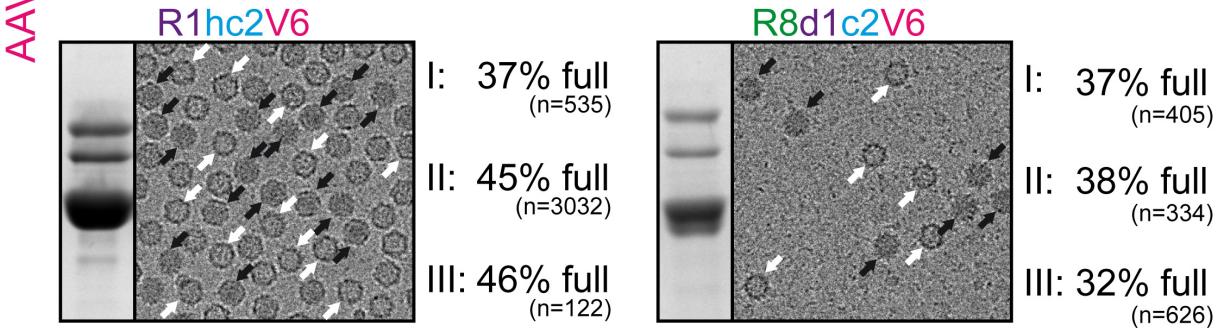
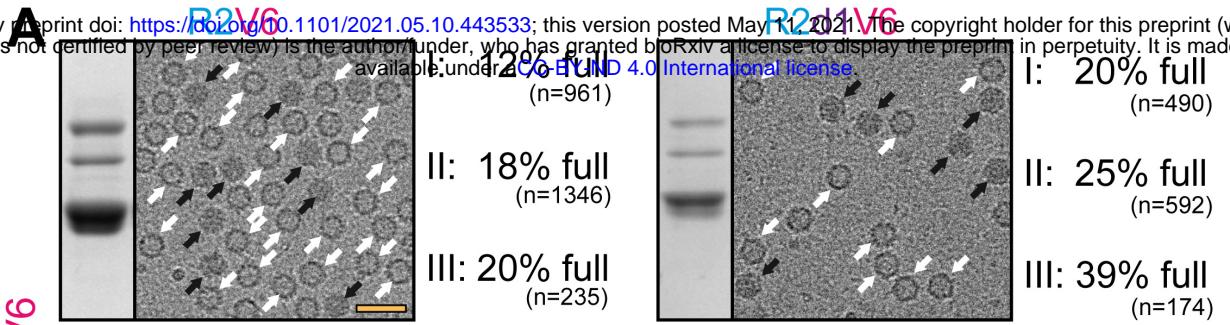

B

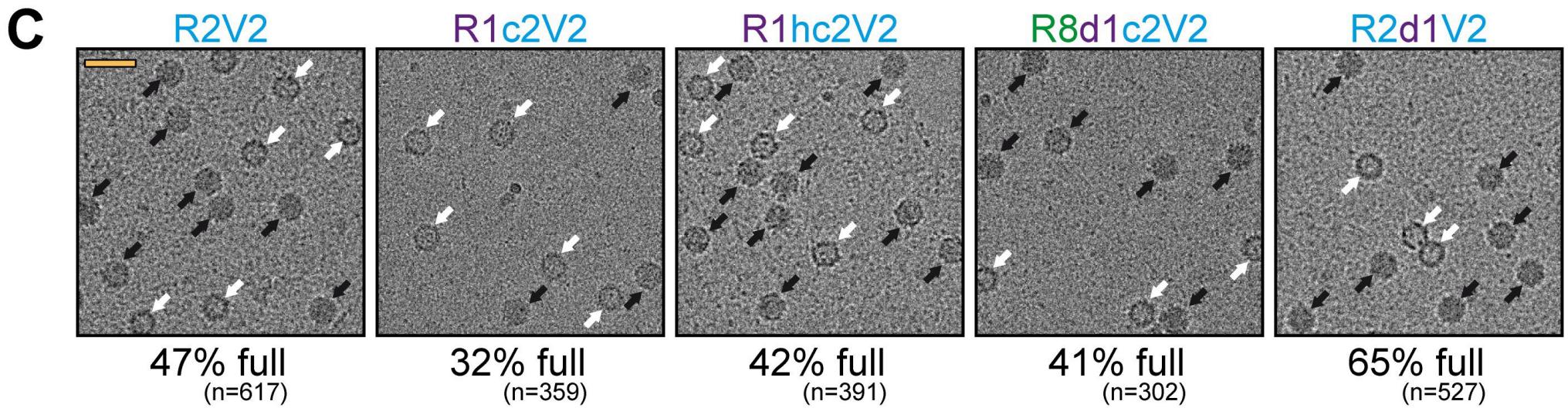
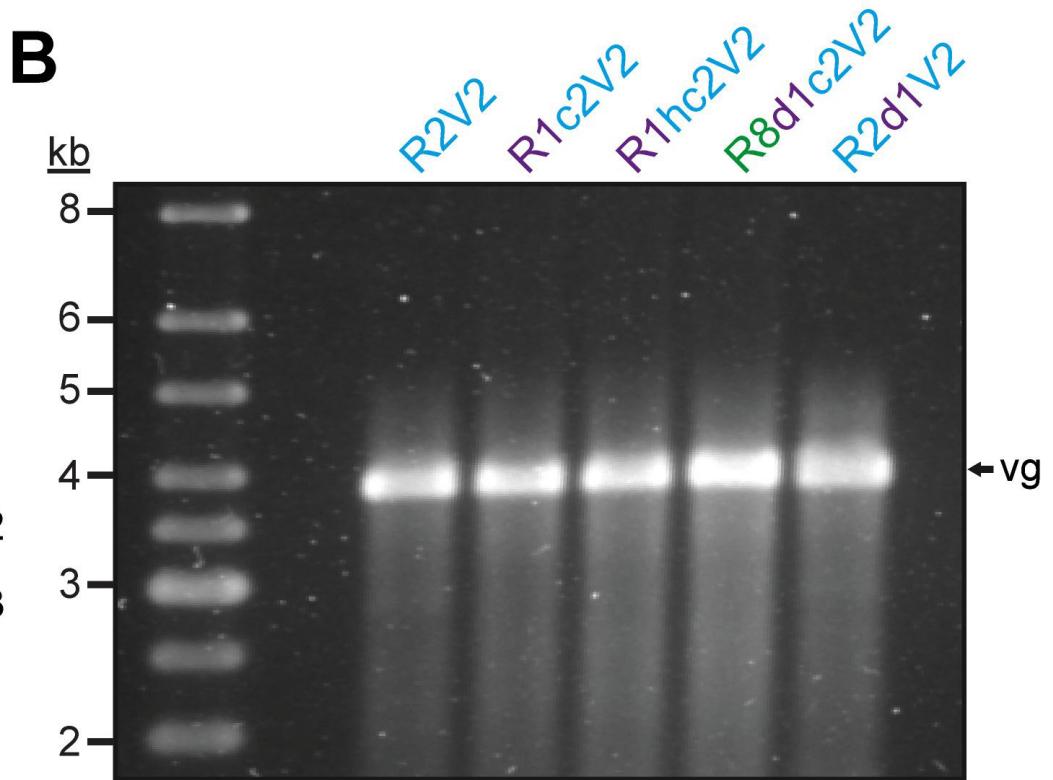
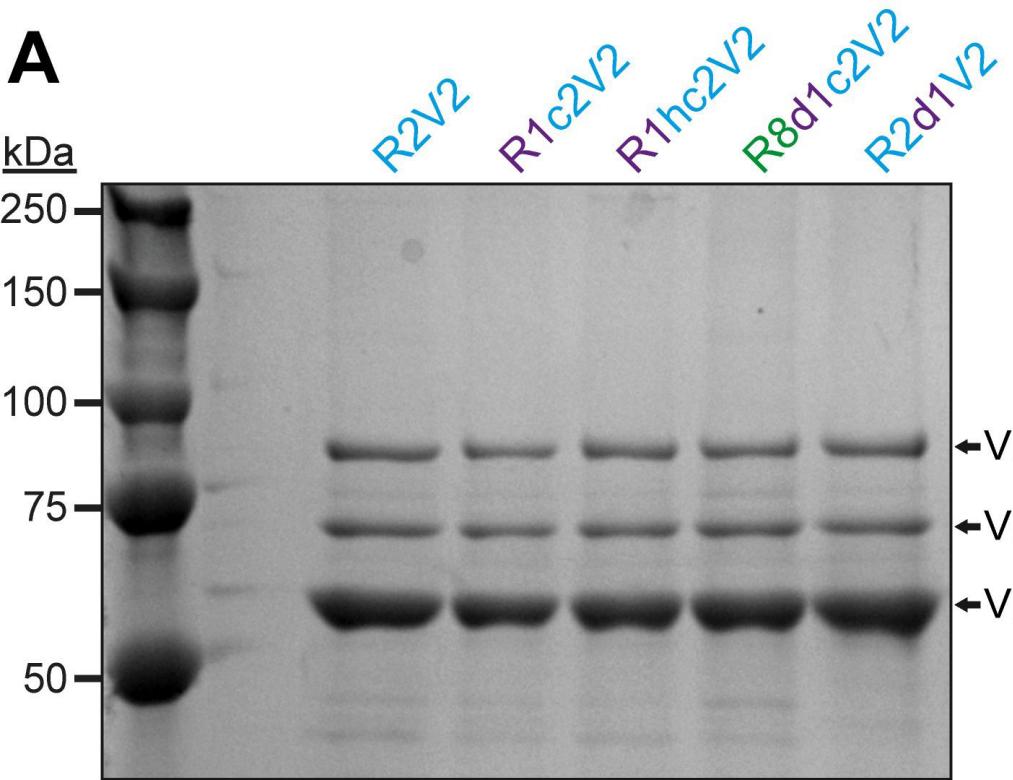



A


B


C




D

E

