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Abstract 

Colony growth on solid media is a simple and effective measure for high-throughput genomic 

experiments such as yeast-two hybrid, Synthetic Genetic Arrays and Synthetic Physical 

Interaction screens. The development of robotic pinning tools has facilitated the experimental 

design of these assays, and different imaging software can be used to automatically measure 

colony sizes on plates. However, comparison to control plates and statistical data analysis is 

often laborious and pinning issues or plate specific growth effects can lead to the detection of 

false positive growth defects. We have developed ScreenGarden, a shinyR application, to 

enable easy, quick and robust data analysis of plate-based high throughput assays.  

 

Introduction 

The budding yeast Saccharomyces cerevisiae is a widely used model organism to understand 

basic molecular processes in eukaryotic cells. Over the past decades, the development of new 

genetic techniques enabled the creation of comprehensive clone and gene deletion libraries 

in yeast. These libraries can be used for many different high-throughput experiments, such as 

synthetic lethality and synthetic dose lethality screens1–3, chemical genetic screens3, and yeast 

two hybrid and Synthetic Physical Interaction screens to unravel unknown protein-protein 

interactions4,5. Although investigating different research aspects, the common read-out of 

these screening methods is colony growth on solid media. Libraries are typically organised in 

arrays of 96, 384 and 1536 colonies per plate and the colony size of experimental and control 

conditions are compared to determine growth effects. Library based screens efficiently 

generate robust and large datasets in a short time, however, data analysis can be challenging 

and merely visual comparison of colonies lacks normalisation of plate differences and is highly 

subjective. Quantitative data analysis of colony growth can be used to define the strength of 

growth defects in an unbiased manner. Colony size can be quantified using tools such as 
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ImageJ, HT Colony Grid Analyser, CellProfiler, gittr or Spotsizer6–9, but these have limited 

capacity for downstream analysis. Other tools which allow more sophisticated data analysis 

include proprietary tools such as PhenoBooth Colony Imager (Singer Instruments Ltd, UK), or 

the ScreenMill software suite. The ‘DR engine’ and ‘SV engine’ of the ScreenMill software suite 

were developed to facilitate statistical analysis and offered web-based applications which 

allowed reviewing and visualising of screening data6. However, ScreenMill was designed to 

compare each experimental plate to a single control. Assays that compare experimental plates 

to two controls, such as Synthetic Physical Interaction screens, require further data processing, 

which is laborious and can lead to errors. Furthermore, the ScreenMill web application is 

currently not accessible and the software is composed of different programming languages 

making it difficult to run the analysis for inexperienced data analysts.  

To simplify the analysis of plate-based high throughput screens, we have developed 

ScreenGarden, a Shiny R application (https://shiny.rstudio.com/) for statistical analysis of 

screen-based assays independent of ScreenMills’ ‘DR engine’ and ‘SV engine’. ScreenGarden 

can be run as a web application or offline using RStudio (https://www.rstudio.com/), which 

makes it also very easy to adjust and customise the script. ScreenGarden is further developed 

to facilitate screen analysis which compare experimental plates to two independent controls. 

Furthermore, ScreenGarden allows direct quality control of screens and plotting of data 

without exporting the output files into other data analysis software. At the same time, 

ScreenGarden produces the raw numbers behind each step of data analysis enabling more 

sophisticated data interpretation downstream for users who require this. 

 

Results  

The ScreenGarden application was designed to enable statistical analysis of plate-based assays 

using colony size as a readout. Data analysis using ScreenGarden can be performed in one step 

if there is a single control condition for each experiment (Figure 1). Log growth ratios (LGRs) 

and Z-scores are calculated for a single control using the ‘CalculateLGRs’ command. The user 

can download a ‘mean file’ which averages the data over the number of replicates, or a 

‘replicates file’, which contains the separate data of each individual replicate. Additionally, 

ScreenGarden can combine data from experiments that use two independent controls using 

the ‘Combine2controls’; the comparisons to two different controls are combined and 
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downloaded as a ‘merge file’. Finally, the data can be plotted automatically for analysis and 

quality control, and plots can be directly downloaded from the website. A detailed description 

of how to use the ScreenGarden web application can be found in the appendix (Supplementary 

file 1) or downloaded from the ScreenGarden homepage.  

https://screengarden.shinyapps.io/screengardenapp/  

  
 
Figure 1. Steps of data analysis using ScreenGarden. 
The ScreenGarden application offers a tool for stepwise analysis of plate-based high-throughput 
screens and was specifically adapted to facilitate the analysis of screens with one or two independent 
controls. The ‘Calculate-LGRs’ script performs statistical analysis of colony sizes compared to a single 
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control. Using the ‘Combine2Controls’ script, two comparisons can be combined to generate a ‘merge 
file’ with average LGRs and Z-scores. At last, the data can be uploaded and plotted for quality control, 
data analysis and data visualisation. 
 

Here, we applied ScreenGarden analysis to previously published data from genome wide 

Synthetic Physical Interaction screens10 to compare this software with another established 

method. Synthetic Physical Interaction screens rely on a GBP-GFP binding system to forcibly 

associate GPB-tagged proteins to the yeast proteome5 and a negative impact on cell-growth 

upon protein-protein interaction is defined as a Synthetic Physical Interaction. 

 

Comparison of experimental and control colony sizes 

ScreenGarden analysis can be performed with different array sizes (384 and 1536 colonies on 

each plate) and a replicate number of 4 or 16 colonies per yeast library strain. The software 

requires a ‘Log file’ and a ‘Key file’ as input files. Here, we used ScreenMills’ CM Engine to 

measure colony sizes on plate, which automatically produces a ‘Log file’ as a list of colony sizes 

ordered by plate position (starting from A1, A2, A3 … H12 for 96 colonies on plate, 

Supplementary file 2). Other software tools, such as HT Colony Grid Analyser, can be used to 

measure colony sizes on plate, but files have to be converted to the specified format 

(Supplementary file 3). The ‘Key file’ contains information about the yeast library and assigns 

the genotype of each strain to its specific plate position (Supplementary file 4). It is necessary 

that both, ‘Log file’ and ‘Key file’ are in the format as shown in the examples and that the files 

are uploaded into ScreenGarden as tab delimited or comma separated files. Here, we applied 

ScreenGarden analysis to Synthetic Physical Interaction screen data with the outer kinetochore 

subunit Dad2 (Supplementary data 1). In this screen, GBP-tagged Dad2 was recruited to 6234 

different GFP-strains and the screen was performed in 4 replicates, 1536 colonies on a total of 

17 plates. First, colony sizes are normalised by the plate median to correct for plate specific 

effects on growth. Median plate correction is important to prevent false-positive growth 

defects which might occur due to differences in nutrition, humidity and other external factors11 

(Figure 2A,B). However, for screens with a high number of growth defects, median-

normalisation should be omitted, as a low median colony size might reflect an experimentally 

valid negative effect on growth. Alternatively, the data can be normalised to the median 

growth value of positive control colonies located at specific positions on the plate which have 

to be identified as ‘Control’ in the open reading frame (ORF) defining column in the ‘Key file’. 
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A second difficulty for plate-based screens are spatial anomalies within a plate array. Colonies 

often grow faster at the plate periphery (Figure 2C) as there is less competition for 

nutrients12,13. We have incorporated a simple smoothing algorithm from Ólafsson and Thorpe5, 

which adjusts colony sizes based on their plate position to counteract spatial anomalies across 

the plate. Incorporating the smoothing algorithm into ScreenGarden analysis successfully limits 

spatial effects (Figure 2F). After median-correction and smoothing, LGRs are calculated 

separately for each replicate of each strain on each plate. The LGR is the natural logarithm of 

the ratio of the control colony size divided by the experimental colony size. The difference 

between the control and experimental replicates is evaluated by applying a Student’s t-Test to 

generate a p-value. To compensate for false positive growth defects, which naturally occur in 

large-scale screens, these p-values are adjusted using a false discovery rate (FDR) correction 

method after Benjamini and Hochberg 14, resulting in more conservative q-values. For both, p-

values and q-values, the negative natural logarithm is determined, which is useful for 

generating Volcano plots which compare LGRs against their p- or q-values.  Subsequently, 

mean LGRs are determined as the average of the 4 or 16 replicate LGRs. Finally, Z-scores for 

each mean LGR are calculated, which can be used to assess growth defects.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443457
http://creativecommons.org/licenses/by/4.0/


 

Figure 2: Median-correction of colony sizes reduces the influence of plate differences.  
(A)External factors and discrepancies in pinning can result in differences in colony growth between 
plates. The mean LGRs organised by plate without median correction are plotted. (B) Correction of 
colony sizes using the plate median counteracts these plate differences, median-correction data from 
(A) is plotted. (C) A heatmap shows spatial anomalies of colony sizes on plate especially at the plate 
periphery. Red squares indicate a colony size greater than the plate median and blue squares highlight 
smaller colonies. The inset shows an example of the raw data. (D-F) Mean LGRs are plotted against the 
yeast library with the data organised on the x-axis, by plate, row and column to highlight the impact of 
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plate differences and spatial anomalies. Including the spatial smoothing algorithm further abolishes any 
differences based on colony position on plate.  
 
 
The ‘CalculateLGRs’ tool produces two output files, a ‘replicates file’ where each replicate is 

listed independently, and a ’mean file’ which contains the averaged LGRs and Z-scores of the 

replicates combined. Both files can be downloaded directly from the website as ‘.csv’ files and 

easily imported into R, Excel and other applications for data analysis.  

 

Combining two independent controls 

The second, optional step of screen analysis using ScreenGarden is the ‘Combine2controls’ 

tool, which is designed for plate-based screens with two independent controls (Figure 3A). 

After separately running the ‘Calculate LGRs’ script with each control, the resulting two ‘mean 

files’ can be uploaded and joined to a single ‘merge file’. The ‘merge file’ includes all the 

information from the single control analyses and further includes the mean LGRs and 

Z-scores and the maximum of p- and q-values from both controls. We chose the maximum p 

or q-value from both independent control datasets as measure for significance rather than 

calculating combined p- and q- values using Fisher’s method15, since the data originates from 

a single experimental dataset with different controls and the two p and q values are not truly 

independent. The maximum q-value should not be considered a measure of statistical 

likelihood for mean LGRs of two controls, but rather facilitate the identification of false positive 

growth defects based on pinning errors. The ‘Plot’ function of ScreenGarden allows these data 

to be compared, for example to compare the LGR values produced by the two controls. For 

example, for a Dad2 Synthetic Physical Interaction screen dataset, 18.2% (control 1) or 29.2% 

(control 2) of observed growth defects from single control comparisons were excluded using 

the average LGR (Figure 3B,C). Hence, ScreenGarden automatically defines a set of high 

confidence growth defects for screens based upon two independent controls.  
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Figure 3: Combining analyses with two independent controls using ScreenGarden 
(A) The raw data (plate images) from two control plates to the same experimental plate are shown 
together for one 1536 density plate with four replicates per strain. Control-specific hits are highlighted 
in red (control 1) and blue (control 2) boxes respectively. (B) The LGR values for comparing the 
experiment independently with each control are plotted. The dashed line visualises the empirical cut-
off value of LGR ≥ 0.4 for the average LGRs of both control comparisons. (C) These data are shown as a 
Venn diagram, with the dashed circle indicating all data with an average LGR (of the two controls) ≥ 0.4. 
Using two controls rather than one defines a subset of high-confidence growth defects and excludes 
control-specific effects. 
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Quality control using ScreenGarden 

ScreenGarden can be used to plot results directly without laborious reimporting and 

reformatting in a different application, such as R or Excel. Using the ‘Plots’ tab, either the ‘mean 

file’, if experiments are compared to one control, or the ‘merge file’, if the screen was 

performed using two controls, can be uploaded and any two columns can be plotted against 

each other. Plotting is useful for quality control of screen data, and for example, it allows users 

to assess the data plate by plate to identify whether any plates produced anomalous LGR 

values (Figure 4A). Since the data can be plotted by Row or Column, the data can be scrutinised 

to ask whether the smoothing algorithm efficiently reduced spatial effects, i.e. whether or not 

specific rows or columns have higher or lower LGR values (Figure 4B,C). In the ‘Plot’ function 

the distribution of LGRs is automatically visualised in a histogram with an adjustable number 

of bins (Figure 4D). Plotting mean LGRs against the negative natural logarithm of p- or q-vales 

respectively allows for rapid assessment of reproducibility, as high p-/q-values account for a 

large difference in replicate colony sizes. Hence, strains that have inconsistent replicates in the 

data can be easily identified and if necessary excluded from further analysis. Only three 

Synthetic Physical Interactions of the Dad2 dataset were above the q-value threshold of 0.05. 

We used ScreenGarden to analyse Synthetic Physical Interactions with the nucleolar protein 

Nop10, a second dataset from Berry and colleagues10 (Supplementary data 2). Nop10 

association caused a higher number of growth defects compared to the Dad2 dataset, and we 

found 19 growth defects with a q-value below the threshold (Figure 4F). Notably, strains with 

a low value for -lnQ vary in replicate colony sizes (Figure 4G). We compared these growth 

defects to the validation screens performed by Berry and colleagues, who identified 7 of these 

19 interactions as false positive growth defects (Figure 4G,H). Exclusion of growth defects 

based on high q-values decreased the false-discovery rate for the Nop10 screen by 

approximately 5% (Figure 4H). 
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Figure 4: Quality control of plate-based screens using ScreenGarden 
Using the ‘Plots’ tab, users can upload .csv files downloaded from ‘ClaculateLGRs’ or 
‘Combine2Controls’ and plot any column against each other. For quality control, mean LGRs were 
plotted against plate (A), row (B) and column (C) number. (D) Histogram showing the distribution of 
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data. The majority of LGRs are distributed close to zero. The red dashed line highlights a LGR of 0.04. 
(E) Negative max lnQ values were plotted against mean LGRs to identify replicate inconsitencies in the 
Dad2 Synthetic Physical Interactions data set. The red dashed line highlights a LGR of 0.04, the black 
dahed line indicates a max lnQ of 2.99 (q = 0.05). (F) Negative max lnQ values were plotted against 
mean LGRs to identify replicate inconsitencies in the Nop10 SPI data set. The data points labelled a to 
f, most with low max -lnQ values, are analysed in the next panel. (G) Selected growth defects (a to e 
from panel F)  with a low max -lnQ value show inconsitencies in colony sizes on plate and 2 of them 
were identified as false positive growth defects according to Berry and colleagues10 (H) Exclusion based 
on low max -lnQ values reduced the number of false positive growth defects. 
 

Comparing ScreenGarden and ScreenMill 

Next, we compared the output of ScreenGarden analysis to a previously developed tool for 

statistical data analysis, the DR Engine of the ScreenMill software suite (Dittmar et al., 2010) 

(Supplementary data 3). The DR Engine calculates plate median normalised LGRs but does not 

automatically apply a smoothing algorithm, thus we first compared unsmoothed LGRs from 

both ScreenMill and ScreenGarden (Figure 5A). As expected, the datasets are highly correlated 

(R2 > 0.99), but, notably, not identical. This observed variance might be due to ScreenMill’s 

automatic exclusion of control-dead colonies for one of the two controls. Control-dead 

colonies are not excluded in ScreenGarden, but plate normalised colony sizes are reported in 

the dataset. Since data exclusion is subjective, we allow the user to manually exclude data if 

the normalised control colony size is below a certain threshold (e.g. 30% of the plate median). 

A second explanation for the slight variation in data values of ScreenGarden compared to 

ScreenMill is the way LGRs are calculated. The LGRs are used as a measure of growth defect 

because if, as commonly assumed, the colony sizes are distributed according to a lognormal 

distribution then the LGRs will be distributed normally. ScreenMill calculates the LGR as 

ln(average control colony size/average experimental colony size) whereas 

ScreenGarden calculates the LGR for each colony compared to the equivalent position on the 

control plate before averaging across replicates of the same genotype. This latter approach of 

applying the logarithm before averaging is more accurate as an approximator of the mean LGR 

than applying the logarithm to the averaged values, since growth ratios are distributed 

according to a lognormal distribution and hence LGRs are distributed normally. This effect is 

generally small but can be significant when the variance between colony sizes is large. Next, 

we applied the smoothing algorithm to the unsmoothed ScreenMill output data and compared 

this to smoothed ScreenGarden data using four independent datasets (Figure 5B-E). The 

smoothed data correlated well for each screen (R2 = 0.92-0.95), however the variance was 
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greater compared to unsmoothed data. This variance is likely based on the timepoint of 

smoothing. Using ScreenGarden, LGRs are smoothed before averaging and independently for 

each control, whereas ScreenMill data was smoothed manually after calculating mean LGRs of 

two controls. Last, we analysed the reproducibility of growth defects identified using 

ScreenGarden and ScreenMill. We compared mean LGRs ≥ 0.4 to the results of validation 

screens performed by Berry and colleagues to distinguish between reproducible growth 

defects and false positives (Figure 5F). Both ScreenGarden and ScreenMill performed well in 

identifying growth defects in the majority of screens, hence we conclude that ScreenGarden 

analysis can be used to successfully identify reproducible growth defects at least as effectively 

as ScreenMill analysis. 
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Figure 5: Comparison of ScreenGarden and ScreenMill 
(A) Unsmoothed data of the Dad2 SPI screen analysed with ScreenGarden and ScreenMill are 
compared. Regression (red line) and Pearson correlation were calculated using the stats 3.6.2. package 
in RStudio. (B) Smoothed data of the Dad2 SPI screen analysed with ScreenGarden and ScreenMill are 
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compared. ScreenMill does not automatically smooth data, thus smoothing was performed using PERL 
based on mean LGRs5. Smoothed data of the (C) Nop10, (D) Hta2 and (E) Sec63 SPI screens analysed 
with ScreenGarden and ScreenMill are compared. (F) Both ScreenGarden and ScreenMill analysis 
accounted for similar ratios of true growth defects and false positives when compared to the validation 
screen data from Berry and colleagues10.  
 

Defining cut-offs for growth inhibition 

Defining the right LGR value or threshold to identify a growth effect varies from screen to 

screen and is often subjective. However, the threshold choice is important to prevent high 

rates of false positives whilst at the same time allowing sensitive identification of growth 

defects. In this study, we used an empirical cut-off value of LGR = 0.4 to determine growth 

defects, as previously defined for Synthetic Physical Interaction screens16,17. At LGR = 0.4, a 

growth defect is moderate but visible compared to control plates. However, ScreenGarden 

also offers mathematical approaches to define cut-off thresholds, based on the data 

distribution. ScreenGarden automatically calculates Z-scores, as Z-transformation fits a normal 

distribution to a dataset and uses the mean and variance of the data to define Z-scores for 

each data point. The region (-1.96,1.96) in Z-space represents the 95% of the data in a normal 

distribution, hence a Z-score above ~2 accounts for the strongest 2.5% growth effects within 

the data. Z-scores have an advantage of allowing datasets to be compared even when the 

produce quantitatively very different growth effects. However, there are several problems 

with using Z-scores. First, growth data are typically not normally distributed and second when 

a normal distribution of is applied to a large dataset, there will always be ~2.5% of the data 

with a Z-score >2 regardless of whether any growth defects were present.  Screens that result 

in some growth defects are likely to display a multimodal or fat-tailed distribution, which are 

characterised by a longer tail in the positive region of the distribution curve (Figure 4D). In a 

previous study, Howell and colleagues have shown that proteome-wide screens such as SPI 

screens with a high number of growth defects can be described using bimodal normal mixture 

models18–20. Based on the mixture model, the data distribution is composed of two separate 

components 1 and 2 with distinct peaks (Figure 6A). Component 1 describes the central peak 

and contains unaffected strains with LGRs ~0, whereas component 2 or the ‘hit peak’ accounts 

for growth defects with higher LGRs. We have incorporated this script into ScreenGarden in 

the ‘Mixture Model’ tab, which enables the user to upload their previously calculated ‘mean 

file’ or ‘merge file’. The bimodal normal mixture model then calculates an FDR-adjusted q-
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value, with q(x) defined as the probability of inclusion in component 2, given a measured LGR 

of x. Hence, a q(x) = 0.5 is defined as cut-off point as LGRs are equally likely to be in component 

1 or 2. We applied the mixture model fitting to SPI analysis of Nop10, as this screen resulted in 

a high number of growth defects (Figure 6A,B) (Supplementary data 4). We found that q ≥ 0.5 

accounted for Synthetic Physical Interactions with an LGR of approximately 0.22 or higher, with 

a Z-score of as low as 1.3. This led to the identification of more than double the number of 

growth defects compared to Z-score or LGR-based cut-off definition, however, most of these 

additional growth defects were not included in validation screens by Berry and colleagues and 

thus it remains unclear if they are true growth defects or false positives (Figure 6C). Our 

findings suggest that using a more conservative cut-off definition, like an empirical value for 

LGRs when growth is visibly affected, is useful for screens without additional validation to 

reduce false positives. In contrast, using the bimodal mixture model and subsequent validation 

screening can extensively increase the number of growth defects identified in screens. 
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Figure 6: Cut-offs can be defined based on the distribution of screen data. 
Screens which result in a high number of growth defects are more accurately described using a bimodal 
mixture model and are characterised by a ‘central peak’ and a second ‘hit peak’. Bimodal mixture 
models can be fitted automatically to screens with many growth defects using ScreenGarden and 
produce a Component plot (A) and a fit plot (B) as well as q-values for each LGR. If q ≥ 0.5, the data is 
predicted to follow the distribution of component 2 and thus LGRs account for predicted growth 
defects. (C) Mixture model, Z-transformation and empirically defined LGR cut-offs were compared for 
the Nop10 SPI dataset. Cut-off definition using a bimodal mixture model predicted more than twice the 
number of growth defects compared to Z-transformation or LGR-based thresholds. 
 

Discussion 

ScreenGarden is a useful tool for easy, quick and robust analysis of plate-based high 

throughput assays and facilitates screen analysis that use two independent controls. Data can 

be plotted immediately without exporting output files into a second application for data 

visualisation, and ScreenGarden analysis does not require prior experience with handling of 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443457
http://creativecommons.org/licenses/by/4.0/


large-scale data. ScreenGarden is an open-source Shiny R application. All code is written using 

RStudio and available for download from the ScreenGarden homepage or GitHub. Thus, 

ScreenGarden can be run not only as a web application but also locally using the open source 

RStudio software, which runs on Windows, Mac and Linux platforms. This renders the 

possibility to adapt the code for screen-specific needs and easy customisation of the code. All 

ScreenGarden tools can be run independently, since the files are directly uploaded for each 

specific step. The normalisation and smoothing algorithms prevent biases due to plate 

differences or spatial anomalies, making ScreenGarden a robust tool for data analysis. 

ScreenGarden can perform analysis within seconds and provides data visualisation. Plots can 

be downloaded as PDF files for further preparation or directly incorporated into presentations 

or reports. We have shown that ScreenGarden analysis can identify reproducible growth 

defects at least as well as ScreenMill. Thus, ScreenGarden provides an easy to use software 

tool for plate-based microbial screen analysis.  

 

Resources 

ScreenGarden can be run online as a Shiny R web application or locally using RStudio. 

ScreenGarden web-application:  

https://screengarden.shinyapps.io/screengardenapp/  

ScreenGarden R scripts: 

https://github.com/CinziaK/ScreenGarden 

If the user decides to run ScreenGarden locally, the following packages need to be installed 
prior ScreenGarden analysis: 

tidyverse21, lubridate22, rlang, ggplot223, Cairo, gghighlight, shiny, shinythemes, mclust20  
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