

1 **Title: Therapeutic reversal of prenatal pontine ID1 signaling in DIPG**

2

3 **Authors:** Viveka Nand Yadav^{1*}, Micah K. Harris¹, Dana Messinger¹, Chase Thomas¹, Jessica
4 R. Cummings¹, Tao Yang², Rinette Woo³, Robert Siddaway⁴, Martin Burkert⁵, Stefanie
5 Stallard¹, Tingting Qin⁷, Brendan Mullan¹, Ruby Siada¹, Ramya Ravindran¹, Michael Niculcea¹,
6 Kevin F. Ginn⁸, Melissa A.H. Gener⁹, Kathleen Dorris¹⁰, Nicholas A. Vitanza¹¹, Susanne V.
7 Schmidt¹², Jasper Spitzer¹², Jiang Li¹³, Mariella G. Filbin¹³, Xuhong Cao¹⁴, Maria G. Castro¹⁵,
8 Pedro R. Lowenstein¹⁴, Rajen Mody¹, Arul Chinnaiyan¹³, Pierre-Yves Desprez³, Sean
9 McAllister³, Cynthia Hawkins⁴, Sebastian M. Waszak^{5,6}, Sriram Venneti^{1,14}, and Carl
10 Koschmann^{1*}

11

12 **Affiliations:**

13 ¹Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan
14 Medical School; Ann Arbor, USA.

15 ²Department of Neurology, University of Michigan Medical School; Ann Arbor, USA.

16 ³Cancer Research, California Pacific Medical Center Research Institute; San Francisco, USA.

17 ⁴Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University
18 of Toronto; Toronto, Canada.

19 ⁵Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of
20 Oslo and Oslo University Hospital; Oslo, Norway.

21 ⁶Department of Pediatric Research, Division of Pediatric and Adolescent Medicine,
22 Rikshospitalet, Oslo University Hospital; Oslo, Norway.

23 ⁷Department of Computational Medicine and Bioinformatics, University of Michigan Medical
24 School; Ann Arbor, USA.

25 ⁸Department of Pediatrics, Children's Mercy Kansas City; Kansas City, USA.

26 ⁹Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City; Kansas
27 City, USA.

28 ¹⁰Department of Pediatrics, University of Colorado School of Medicine; Aurora, USA.

29 ¹¹Department of Pediatrics, Seattle Children's; Seattle, USA.

30 ¹²Institute of Innate Immunity, AG Immunogenomics, University Bonn; Bonn, Germany.

31 ¹³Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood
32 Disorders Center; Boston, USA.

33 ¹⁴Department of Pathology, University of Michigan Medical School; Ann Arbor, USA.

34 ¹⁵Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan
35 Medical School; Ann Arbor, USA.

36 *Corresponding author. Viveka Nand Yadav¹, PhD (vyadav@med.umich.edu) and Carl J.
37 Koschmann¹, MD (ckoschma@med.umich.edu). ¹Department of Pediatrics, Division of Pediatric
38 Hematology-Oncology, University of Michigan Medical School, 1540 E Hospital Dr., Ann
39 Arbor, Michigan 48109, USA (Tel: 734-936-9814; Fax: 734-232-8740)

40

41 **One Sentence Summary:** The transcription factor ID1 is upregulated in a subset of DIPG tumor
42 cells, and ID1-driven invasiveness is therapeutically targetable with CBD.

44 **Abstract:** Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive brain tumor with rare
45 survival beyond two years. This poor prognosis is largely due to the tumor's highly infiltrative
46 and invasive nature. Previous reports demonstrate upregulation of the transcription factor ID1
47 with H3K27M and *ACVR1* mutations, but this has not been confirmed in human tumors or
48 therapeutically targeted. We developed an in utero electroporation (IUE) murine H3K27M-
49 driven tumor model, which demonstrates increased ID1 expression in H3K27M- and *ACVR1*-
50 mutated tumor cells. In human tumors, elevated ID1 expression is associated with
51 H3K27M/*ACVR1*-mutation, brainstem location, and reduced survival. The *ID1* promoter
52 demonstrates a similar active epigenetic state in H3K27M tumor cells and murine prenatal
53 hindbrain cells. In the developing human brain, ID1 is expressed highest in oligo/astrocyte-
54 precursor cells (OAPCs). These ID1⁺/SPARCL1⁺ cells share a transcriptional program with
55 astrocyte-like (AC-like) DIPG cells, and demonstrate upregulation of gene sets involved with
56 regulation of cell migration. Both genetic and pharmacologic [cannabidiol (CBD)] suppression
57 of ID1 results in decreased DIPG cell invasion/migration in vitro and invasion/tumor growth in
58 multiple in vivo models. CBD reduces proliferation through reactive oxygen species (ROS)
59 production at low micromolar concentrations, which we found to be achievable in the murine
60 brainstem. Further, pediatric high-grade glioma patients treated off-trial with CBD (n=15)
61 demonstrate tumor ID1 reduction and improved overall survival compared to historical controls.
62 Our study identifies that *ID1* is upregulated in DIPG through reactivation of a developmental
63 OAPC transcriptional state, and ID1-driven invasiveness of DIPG is therapeutically targetable
64 with CBD.
65
66

67 **INTRODUCTION**

68 Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor that originates in the
69 pons (1). With a median survival of 10-11 months, DIPG remains the most aggressive primary
70 brain tumor in children (2). Standard of care consists of palliative radiation, and experimental
71 chemotherapies have yet to demonstrate benefit beyond radiation (2). Even with the advent of
72 precision-based medicine, clinical trials targeting specific molecular targets are lacking,
73 highlighting the need to identify novel therapeutic targets in DIPG.

74 As many as 80% of DIPGs harbor mutations in histone H3, which leads to a lysine-to-
75 methionine substitution (H3K27M) in *H3.3A* (*H3F3A*) and *H3C2* (*HIST1H3B*) (1, 3). H3K27M
76 is now understood to define a distinct clinical and biological subgroup in DIPG, and is associated
77 with a worse prognosis (4). The H3K27M mutation represses the polycomb repressive complex 2
78 (PRC2), resulting in global reduction of H3K27me3 (with focal gains) (5) and global increases in
79 acetylation of H3K27 (H3K27ac), associated with upregulation of tumor-driving genes (6, 7).

80 Basic helix-loop-helix (bHLH) transcription factors are key regulators of tissue and lineage-
81 specific gene expression, and constitutive expression of Inhibitor of DNA binding (ID) proteins
82 have been shown to inhibit the differentiation of multiple tissues (8). ID proteins dimerize with
83 bHLH transcription factors, preventing DNA binding (9). Overexpression of the Inhibitor of
84 DNA binding 1 (*ID1*) gene has been tied to the pathogenesis of multiple human cancers (10-12).
85 A role for *ID1* in DIPG has been proposed, based on its downstream association with activin A
86 receptor type 1 (ACVR1) signaling, which is recurrently mutated/activated in 25% of human
87 DIPGs (13-15). Germline *ACVR1* mutations in the congenital malformation syndrome
88 fibrodysplasia ossificans progressiva (FOP) activate the bone morphogenetic protein (BMP)
89 signaling pathway, through enhanced recruitment and phosphorylation of SMAD1/5/8, which in

90 turn increases ID1 expression (16). Prior studies have shown K27M and *ACVR1* to upregulate
91 *ID1* in cultured human astrocytes and murine models of DIPG (13, 14). ID1 has been shown to
92 drive an invasive tumor phenotype in multiple solid tumors (10, 11). Invasion into normal
93 pontine tissue is a pathognomonic feature of DIPG, but its regulation remains poorly understood.
94 Further, analysis of ID1 in human DIPG, and its regulation and targetability, have not been
95 previously investigated.

96 In the present study, we show that human DIPGs demonstrate epigenetic activation and
97 increased expression of ID1, influenced by H3K27M and *ACVR1* mutational status and brain
98 location. This epigenetic activation mimics ID1 regulation in the developing human and murine
99 prenatal pons. Genetic knockdown and pharmacologic [cannabidiol (CBD)] inhibition of ID1
100 decreases invasion and migration and improves survival in multiple preclinical DIPG models and
101 human patients. These findings represent an exciting new direction for understanding the
102 regulation and targetability of invasion in DIPG, with broad implications for therapeutic
103 targeting of solid tumors with ID1 up-regulation.

104

105 RESULTS

106 Increased ID1 expression with H3K27M and ACVR1 mutations in murine DIPG tumor 107 model

108 We first sought to confirm whether ID1 expression is affected by the presence of
109 H3K27M and *ACVR1* mutations. We adopted an in utero electroporation (IUE) model of
110 pediatric high-grade glioma (pHGG), as previously described by our group (17). Mice developed
111 tumors [mutant TP53, mutant PDGFRA (D842V) with *H3.3A* K27M mutation (“PPK”) or *H3.3A*
112 wildtype (“PPW”)] via plasmid injection into the lateral ventricles of E13.5 embryonic CD1

113 mice (Fig. 1A-B). Transfection efficiency and tumor growth/size were monitored using *in vivo*
114 bioluminescence imaging, and primary neurosphere cell cultures were generated for each group
115 by tumor dissociation (Fig. 1B). Survival analysis revealed that PPK mice (n=15) had
116 significantly reduced survival compared to their H3^{Wildtype (WT)} counterparts (PPW; n=10) (Fig.
117 1C). Additionally, immunohistochemistry (IHC) and western blot analyses of murine tumors
118 showed tumor-specific expression of H3K27M and global loss of H3K27me3 expression, a
119 salient feature expected in H3K27M-mutant DIPG tumors (Fig. 1D-E) (18). Importantly, ID1
120 expression was elevated in PPK tumors compared to PPW (Fig. 1E). In order to determine the
121 impact of *ACVR1* mutation on ID1 expression in DIPG, we introduced *ACVR1* mutation via
122 lentiviral (LV) transduction into PPK tumor cells and primary *H3.3A* K27M/*ACVR1*^{WT} human
123 DIPG cells (DIPGXIIIp). Western blot analysis revealed increased ID1 expression and SMAD
124 activation with the introduction of *ACVR1* mutation in both PPK and DIPGXIIIp tumor cells
125 (Fig. 1F), consistent with previous reports (13, 14).

126

127 **ID1 expression increased in human DIPG and associated with lower overall survival**

128 We next assessed the impact of H3K27M (*H3.3A* or *H3C2*) and *ACVR1* mutations on
129 *ID1* expression in DIPG and non-brainstem pHGG. Whole transcriptome sequencing was
130 performed on 34 DIPG and 18 normal post-mortem brain tissue specimens taken from a single
131 institutional cohort (Sick Kids, Toronto). Compared to normal brain (cortex), DIPG tissue
132 showed significantly higher *ID1* expression (Fig. 1G). Single cell RNA-sequencing (scRNA-seq)
133 data from H3K27M-mutant DIPG tumors [Dana-Farber Cancer Institute (DFCI) cohort (19)]
134 confirmed that malignant cells display significantly higher *ID1* expression compared to
135 nonmalignant cells within these tumors (Fig. S1A). ScRNA-seq data from H3K27M-pHGG

136 patients (n=14) revealed higher *ID1* expression in pontine H3K27M-DIPG cells compared to
137 thalamic and cortical pHGG tumors (Fig. 1H). This was confirmed in bulk RNA-seq [ICR cohort
138 (Institute for Cancer Research), n=198 (20)], in which brainstem pHGG tumors (DIPG) showed
139 significantly higher *ID1* expression than cortical pHGGs (Fig. 1I). High *ID1* expression has been
140 linked to lower overall survival (OS) in multiple cancers (21). Indeed, DIPG patients with
141 higher bulk *ID1* expression (ICR cohort) have lower OS (Fig. 1J). These data support that *ID1* is
142 involved in the pathogenesis of human DIPG.

143

144 **ID1 expression influenced by H3 and ACVR1 mutational status in human DIPG**

145 Introduction of the recurrent mutations *H3.3A* K27M and *ACVR1* have been shown to
146 increase *ID1* expression in cultured astrocytes (13, 14), consistent with findings in our IUE
147 tumor model (Fig. 1E). Analysis of bulk tumor RNA-seq (ICR cohort) revealed that *ID1*
148 expression is significantly increased in pHGGs harboring H3K27M (*H3.3A* or *H3C2*) compared
149 to H3^{WT} and H3G34R tumors (Fig. 1K) (20). *ACVR1*-mutant tumors (Fig. 1L) and those with co-
150 mutation (H3K27M and *ACVR1*, Fig. 1M) have significantly higher *ID1* expression compared to
151 WT tumors. Interestingly, in scRNA-seq data (DFCI cohort), elevated *ID1* expression is seen in
152 a higher proportion of malignant cells within pontine H3K27M tumors (n=4; 35-69%) in
153 comparison to thalamic H3K27M tumors (n=2; 6-9%) (Fig. S1B). Taken together, these data
154 support that *ID1* expression in pHGG is driven by both mutational status of H3 and *ACVR1* and
155 regional (anatomic) influences.

156

157 **Epigenetic state of *ID1* loci in H3K27M tumor cells and murine prenatal hindbrain cells**

158 In patients with germline *ACVR1*-mutant FOP or DIPG tumors with somatic *ACVR1*
159 mutations, ID1 expression is activated by BMP signaling (15, 22). However, the mechanism of
160 H3K27M mutation promoting increased ID1 expression is less understood. We assessed whether
161 H3K27ac and H3K27me3 marks at regulatory regions of the *ID1* gene could be contributing to
162 the increased *ID1* expression observed in human DIPG. Quantitative PCR (qPCR) demonstrated
163 *ID1* expression to be higher in H3K27M and *ACVR1*-mutant DIPG autopsy samples (n=4 tumor
164 sites) compared to H3WT/*ACVR1*^{WT} DIPG tissue (n=6 tumor sites) and normal brain tissue
165 samples (n=4 sites) Fig. 2B and S2A-C). ChIP-Seq at the *ID1* gene loci on normal adolescent
166 pontine (n=1), H3^{WT} DIPG (n=1) and H3K27M DIPG (n=4) samples revealed a marked increase
167 in H3K27ac deposition at *ID1* gene body elements in H3K27M DIPG tumor tissue compared to
168 H3^{WT} DIPG tumor and normal pontine tissue, with minimal H3K27me3 marks across the *ID1*
169 loci in all tissue types (Fig. 2C). Subsequent ChIP-qPCR for quantification (primers in
170 Supplemental Table 1) demonstrated significantly elevated H3K27ac at predicted promotor and
171 gene body regions of the *ID1* locus compared to H3WT/*ACVR1*^{WT} DIPG tumor samples (Fig.
172 2D). Decreased H3K27me3 was also observed, though this was only significant at one of the
173 predicted promotor regions between H3K27M/*ACVR1*^{MUT} and H3^{WT}/*ACVR1*^{WT} DIPG sample
174 groups (Fig. 2E). Taken together, however, the effects of these changes in H3K27ac and
175 K3K27me3 marks correspond with H3K27M-mutant samples being epigenetically activated for
176 *ID1* expression.

177 While brainstem tumors broadly show increased *ID1* expression compared to normal
178 brain, we noted differences in expression by qPCR between multi-focal autopsy samples.
179 Expanded multi-focal (n=6) bulk RNA-sequencing of a single H3K27M/*ACVR1*-mutant DIPG
180 patient (UMPED12) confirmed varying levels of *ID1* expression across different regions of the

181 tumor (Fig. 2F). This finding led us to analyze scRNA-seq in order to determine whether a
182 specific malignant cell subpopulation could be contributing to the increased *ID1* expression seen
183 in DIPG. Assessment of *ID1* expression across all malignant cell types in DIPG cells from four
184 patients showed that *ID1* is most highly expressed in DIPG cells with an astrocytic
185 differentiation program [“AC-like cells” (19)], followed by oligodendrocyte precursor cell-like
186 (“OPC-like”) cells (Fig. 2G and S3A). OPC-like cells are known to constitute the majority of
187 cycling cells in DIPG (19). Previous analysis showed that nearly all cycling DIPG cells have an
188 OPC-like phenotype (19) and we observed higher levels of *ID1* expression in cycling compared
189 to non-cycling cells (Fig. S3B).

190

191 **Single-cell transcriptional analysis of *ID1*⁺ cells in human developing brain and H3K27M
192 tumors**

193 Anatomic location and developmental context strongly influence the formation of many
194 pediatric tumors, including DIPG. We next assessed *ID1* expression and histone modifications
195 across pre- and post-natal mouse brain developmental stages. RNA in-situ hybridization data
196 (Allen Brain Atlas) demonstrated *ID1* to be highest expressed in the developing prenatal mouse
197 hindbrain (including the developing pons) compared to forebrain or midbrain, with minimal *ID1*
198 expression throughout the entire postnatal mouse brain (Fig. 3A-B and S4). In E15.5 mouse
199 brains, ENCODE data (23, 24) revealed H3K27ac to be elevated at *ID1* enhancer sites in the
200 hindbrain compared to midbrain and forebrain (Fig. S5A-B).

201 Analysis of developing human (25) and mouse (26) brain scRNA-seq data showed that
202 *ID1* expression peaks at gestational week (GW) 12-22 in the human pons (Fig. 3C) and early
203 postnatal mouse pons (P0; Fig. S6-S7), and is most highly expressed in astrocytes. *ID1*

204 expression is also high in human endothelial cells, consistent with previous data (Fig. 3C) (27).
205 IHC analyses of pre- and post-natal brains confirmed elevated ID1 in the murine embryonic
206 brain (E18; Fig. 3D) and human GW 20.5 brain (Fig. 3E) in subventricular regions lining the 4th
207 ventricle, compared to all postnatal brain locations.

208 We next sought to assess whether *ID1*⁺ sub-populations of malignant DIPG cells share a
209 transcriptional program with *ID1*⁺ developing brain cells. Interestingly, AC-like cells from all
210 four DIPG tumors show the strongest overlap with the transcriptional program of the recently
211 defined OAPC cell population (28) in the developing human brain (Fig. 3F). The OAPC program
212 was not enriched in OPC-like cells in any of the four DIPG tumors (Fig. 3F). OAPCs are present
213 primarily in the outer subventricular zone during the neurogenesis-to-gliogenesis switch period
214 and express both astrocyte (GFAP) and oligodendrocyte (OLIG1, OLIG2) marker genes as well
215 as SPARCL1, which is involved in regulation of cell adhesion (28). We found *ID1* to be a
216 marker gene for both AC-like DIPG cells and OAPCs. Immunofluorescence of human H3K27M-
217 DIPG samples revealed co-localization of ID1 and SPARCL1 expression in sub-populations of
218 cells (Fig. 3G). Assessment of SPARCL1 expression across all malignant cell types in DIPG
219 cells from four patients showed that SPARCL1 is most highly expressed in AC-like DIPG cells.
220 Importantly, AC-like DIPG cells demonstrate enrichment of gene sets involved in regulation of
221 cell adhesion and migration (Fig. S9), further implicating the potential role of *ID1*⁺ AC-like cells
222 in the regulation of DIPG tumor cell invasion and migration.

223

224 **Impact of genetic and pharmacologic knockout of ID1 on invasion and migration**

225 To examine the phenotypic impact of *ID1* in human DIPG cells, a patient-derived DIPG
226 cell culture with *H3.3A* K27M and *ACVR1* mutation (DIPG007) was lentivirally-transduced with

227 ID1-targeting shRNA or scrambled shRNA control (Fig. 4A). *ID1* knockdown (shRNA-64)
228 resulted in reduced SPARCL1 expression in DIPG007 cells by western blot, further implicating
229 the role of *ID1* in the regulation of this OAPC/AC-like cell marker gene (Fig. 4B). *ID1*
230 knockdown significantly reduced DIPG007 invasion (Fig. 4C) and migration, as measured by
231 scratch assay percent wound closure (Fig. 4D-E). In comparison, invasion and migration of
232 human embryonic kidney cell line HEK293 was not affected upon *ID1* knockdown (Fig. S10A-
233 C).

234 A few compounds that reduce *ID1* expression include Cannabidiol (CBD), Pimozide, 2-
235 Methoxyestradiol and MK615 (29-31). Of these, CBD is the most studied, clinically available
236 and CNS-penetrant agent (32, 33). CBD is the non-psychoactive compound found in *Cannabis*
237 *sativa* (34). CBD has wide-ranging impacts on cellular behavior, including the ability to
238 downregulate expression of *ID1* and to inhibit invasion in multiple pre-clinical cancer models
239 (12, 35-37). Based on these studies, we sought to investigate the targeting of ID1 in DIPG
240 through use of CBD. Treatment of human DIPG007 and mouse PPK cells with CBD reduced
241 *ID1* expression (Fig. 4F) and cell viability (Fig. 4G), with an IC₅₀ of 2.4 and 2.5 μ M,
242 respectively. We also treated two additional human DIPG cell cultures with H3K27M/ACVR1^{WT}
243 status, DIPGXIIIp and PBT-29, with CBD, and found reductions in cell viability at an IC₅₀ of 6.8
244 and 7.2 μ M, respectively (Fig. S11A-B). Additionally, CBD treatment resulted in significantly
245 reduced invasion and migration of human DIPG007 cells (Fig. 4H-I and S12A-B) and human
246 PBT-29 cells (Fig. S12C-F) in the 5-10 μ M range.

247 CBD has been reported to increase intracellular levels of reactive oxygen species (ROS)
248 (38). In line with this, our data reveal that DIPG007 cells treated with CBD show a dose
249 dependent increase in ROS levels (Fig. 4J). Additional treatment with α -tocopherol (TOC), a

250 ROS scavenger (37, 38), severely restricted the ability of CBD to inhibit proliferation of
251 DIPG007 cells (Fig. 4K).

252

253 **Genetic knockdown of ID1 in IUE murine model**

254 In order to assess whether *ID1* suppression would impede tumor growth in PPK mice, we
255 developed a PBase-responsive ID1-shRNA plasmid and scrambled short hairpin (“sh-control”).
256 PPK-ShID1 mice exhibited significantly prolonged survival when compared to PPK-Sh-control
257 mice (Fig. 5A). PPK-ShID1 mice demonstrated significantly-extended median survival (p=0.01)
258 and reduced luminescent tumor signals when compared to control mice (Fig. 5B-C). IHC
259 analysis of moribund tumors demonstrated reductions in ID1 and Ki67 expression (Fig. 5D-E) in
260 PPK-ShID1 tumors. PPK-ShID1 tumors also exhibited more distinct tumor borders (e.g. reduced
261 tumor invasion into normal brain) in vivo (Fig. 5F). Implantation of DIPG007 cells with ShID1
262 (or control) into the brainstem of NSG mice also demonstrated reduced pace of luminescent
263 growth (Fig. S13A-C), although this did not affect overall tumor survival. These data indicate
264 that genetic ID1 knockdown inhibits tumor growth in vivo and reduces tumor invasion and
265 proliferation.

266

267 **Pharmacological inhibition of ID1 with Cannabidiol (CBD) in IUE murine model**

268 We next proceeded to our IUE PPK murine model to assess the impact of CBD in vivo.
269 We performed daily treatment with CBD (15 mg/kg), or vehicle control. CBD treatment
270 significantly improved median survival compared to vehicle control (Fig. 6A). Moribund tumors
271 treated with CBD showed reductions in ID1 and Ki67 expression following CBD treatment (Fig.
272 6B-C). Additionally, CBD-treated tumors displayed reduced invasiveness of tumor cells

273 compared to vehicle-treated mice (Fig. S14). Both genetic (ShID1) and pharmacologic (CBD)
274 knockdown of ID1 in murine models resulted in reduced tumor infiltration into the contralateral
275 hippocampus compared to controls (Fig. 6D). These data indicate that CBD reduces ID1
276 expression and tumor invasion and significantly improves survival of H3K27M-mutant tumors in
277 vivo.

278 We next assed the pharmacokinetic distribution of CBD in normal brain and brain tumor
279 cells (Fig. 6E-F). After IP administration of a 45 mg/kg dose of CBD, we noted a similar peak
280 concentration of CBD in the brainstem and plasma (6 and 7 uM, respectively) (Fig. 6G), which is
281 above the previously determined IC₅₀ dose of CBD in our DIPG cells. At 2 hours, we found
282 equivalent doses of CBD in plasma, brain and brain tumor samples in our PPK model (Fig. 6H).

283

284 **CBD treatment in pHGG patients**

285 CBD is increasingly popular as an off-trial, non-prescribed therapy among patients with
286 pHGG (39), including DIPG. However, its use remains controversial as no preclinical efficacy,
287 mechanistic data, dosing or clinical studies of CBD in DIPG have been performed. We gathered
288 patient-reported CBD dosing from families of pHGG patients at two institutions (n=15 total, n=8
289 DIPG, n=11 H3K27M), including patients on an IRB-approved prospective observational study
290 at Children's Hospital of Colorado for children and young adults with brain tumors undergoing
291 patient-directed medical marijuana therapy (NCT03052738), and retrospective interviews with
292 families of patients who underwent research autopsy at the University of Michigan. CBD was
293 obtained through medical and recreational marijuana dispensaries without prescription; and
294 given orally in all but one case (suppository) one to three times per day with a wide range of
295 dosing (0.07 mg/kg to 25 mg/kg/day, Fig. 7A). No parents reported adverse effects from the

296 CBD aside from taste, and some reported improved nausea and anxiety control. We performed
297 ID1 staining on autopsy samples from high-dose and low-dose H3K27M-mutant tumors. As
298 representative cases, patient UMPED83, with the highest reported dosing (25 mg/kg/day CBD),
299 demonstrated reduced ID1 staining on autopsy sample (Fig. 7B), while UMPED86 underwent
300 low dosing (0.4 mg/kg/day) and demonstrated strong nuclear ID1 staining (Fig. 7C). Patients
301 with pHGG undergoing CBD treatment showed variable ID1 staining in post-mortem tumor
302 tissue, but lower average expression with higher-dose (>3 mg/kg/day) treatments (Fig. 7D).

303 Patients with H3K27M-mutant tumors treated with CBD (n=10) showed improved
304 survival compared to historical controls (20), in both high (>3 mg/kg/day) and low (<3
305 mg/kg/day) CBD treatment groups (Fig. 7E, Supplemental Table 2). These data represent the
306 promise and feasibility of CBD treatment in DIPG, with the clear need for further data in a
307 prospective therapeutic clinical trial.

308

309 **DISCUSSION**

310 ID proteins are necessary for appropriate tissue differentiation during embryogenesis, and
311 *ID1* is highly expressed in the normal developing brain followed by quiescence of *ID1*
312 expression in CNS tissue postnatally (40). Consistent with the role of ID1 in the pathogenesis of
313 multiple human diseases and cancers (40-42), our data indicate that ID1 promotes invasion in
314 DIPG cells, which is a disease-defining feature of this infiltrative tumor. We propose a model by
315 which ID1 is upregulated through multiple mechanisms (H3K27M, ACVR1, region/micro-
316 environment) in order to “re-activate” prenatal brain developmental signaling. Our data support
317 that *ID1*⁺ AC-like DIPG tumor cells hijack the transcriptional program of developmental *ID1*⁺
318 OAPC cells in the developing brain cells to produce a “migratory” transcriptional cell state (Fig.

319 8). We also demonstrate the ability to reverse this ID1-driven phenotype with CBD treatment,
320 and the potential for optimization of this therapeutic targeting.

321 Our studies implicate an active epigenetic state at the *ID1* locus shared between H3K27M
322 tumor cells and the prenatal precursor brain cells, which is consistent with prior studies focused
323 on H3K27M mutations that have associated changes in H3K27ac/H3K27me3 with differential
324 regulation of key DIPG-associated genes (43, 44). Additionally, we provide evidence that post-
325 natal activation of ID1 in tumor cells replicates a prenatal “migratory” transcriptional state seen
326 in a recently discovered subset of developing OAPC brain cells. These OAPCs (*Olig2*⁺
327 *SPARCL1*⁺*HOPX*⁺ glial progenitor cells) were recently identified as astrocyte-like at the
328 molecular and transcriptional levels (28). In line with this, we found AC-like DIPG cells to
329 transcriptionally mimic the program of OAPCs, with the OAPC-marker *SPARCL1* and *ID1* co-
330 localizing in a subset of H3K27M tumor cells. Interestingly, previous work has suggested a role
331 for *SPARCL1* in promoting DIPG cell invasion into the subventricular zone (SVZ) (45).
332 Secretion of SPARCL1 and pleiotrophin from neural precursor cells (NPCs) was shown to act as
333 a chemoattractant for the DIPG cells, encouraging their infiltration into the SVZ (45). Our data
334 demonstrate that *ID1* is most highly expressed by non-cycling AC-like cells in DIPG tumors and
335 *SPARCL1* is one of the strongest expression markers of these cells. This raises the possibility that
336 *SPARCL1* is expressed/secreted *within* DIPG cells, further coordinating or contributing to the
337 invasion of DIPG tumor cells. While further studies are needed to confirm an ID1-driven
338 OAPC/AC-like cellular state, our data raise important insights into the mechanisms underlying
339 one of the most critical and problematic features of DIPG tumors: invasion.
340 Our data show that ID1 knockdown has the potential to severely impede DIPG tumor cell
341 migration and invasion in pre-clinical models. These phenotypes are consistent with the inherent

342 invasion into normal brainstem tissue that is observed histologically in DIPGs, and with the role
343 of ID1 in other cancers (11, 42). In our experiments involving both genetically-engineered and
344 intracranial implantation models, H3K27M-mutant tumors cells with ID1 reduction show
345 reduced tumor growth and invasion.

346 Cannabidiol is a non-toxic and non-psychoactive member of the endocannabinoid family
347 found in *Cannabis sativa*. CBD has been observed to reduce *ID1* transcription in pre-clinical
348 models of adult cancers (12). In the present study, CBD reduced DIPG cell viability
349 and *ID1* expression at concentrations that are likely clinically achievable in the human brain. Our
350 PK studies demonstrated peak brain concentrations of CBD above established IC₅₀, despite use
351 of a human equivalent doses (46) of only 3 mg/kg, which is well below previously tolerated
352 human CBD dosing. In a phase 1 study, adult patients showed excellent tolerance of oral CBD at
353 750 mg (15 mg/kg) daily with some non-dose limiting increases in diarrhea and somatic
354 symptoms (muscle ache, fatigue) at 1500 mg (30 mg/kg) daily (47). This resulted in peak plasma
355 concentrations of CBD of 1-5 uM (15 mg/kg) and 1.7-10 uM (30 mg/kg) depending on fat
356 content in diet (47). Our data showed equivalent plasma and brain concentrations of CBD after
357 IP administration. Previous work has shown that oral administration of CBD in mice results in a
358 3-4-fold higher concentration in the brain than plasma, likely due to the high lipophilicity of
359 CBD (35). CBD is already being used for palliative purposes in pediatric oncology, and CBD has
360 been shown to decrease *ID1* expression and associated oncogenic phenotypes in multiple other
361 cancers in vivo (11, 12, 48). Mechanistically, our data suggest that CBD acts to regulate ID1
362 expression and DIPG cell proliferation partially through increasing intracellular levels of ROS,
363 as previous studies have shown CBD to act through this mechanism in both breast cancer and
364 GBM cells (37, 38).

365 Patients with H3K27M-mutant tumors treated with CBD off-trial show promising
366 improvement in OS compared to historical controls. However, it is important to note that this is
367 limited by the retrospective and heterogeneous nature of our cohort, as well as an unknown
368 number of historical controls that may also have undergone treatment with CBD. Nevertheless,
369 our data make significant strides in establishing the mechanism of this controversial and popular
370 off-trial supplemental compound in high-risk brain tumor patients, and lays the groundwork for
371 future clinical trials. A recent CBD formulation (Epidiolex) has been FDA-approved for epilepsy
372 treatment (49), opening the door to a future clinical trial in DIPG (and other ID1-driven tumors).

373 Our data support a model in which multifactorial genetic and epigenetic processes
374 promote ID1-driven prenatal development transcriptional programs, which also promote the
375 invasive features of DIPG. These results improve our understanding of the pathogenesis of DIPG
376 tumors and provide a strong argument for the inclusion of ID1-targeting therapies into future
377 treatments.

378

379 **METHODS**

380 **Study design**

381 The objective of this work was to investigate the role of ID1 in the highly-invasive nature
382 of DIPG and to determine the *in vivo* antitumor efficacy of genetic and pharmacologic inhibition
383 of ID1 using our IUE *H3.3A*-K27M-mutated murine tumor model. We performed a
384 comprehensive analysis of *ID1* expression by RNA-sequencing of DIPG tissue samples with
385 $H3^{WT}$, $H3K27M/ACVR1^{WT}$, or $H3K27M/ACVR^{MUT}$. We next performed an integrative analysis
386 of H3K27ac and H3K27me3 deposition at the *ID1* gene locus by performing Mint-ChIP-
387 sequencing on these DIPG samples. We further performed transcriptional program analyses of

388 *ID1*-expressing DIPG tumor cells using publicly-available scRNA-seq datasets. To test the in
389 vivo impact of ID1 inhibition, we performed *ID1* knockdown in our PPK tumor model. In vivo
390 pharmacological inhibition of ID1 in our PPK tumor model was performed with CBD. Sample
391 size and any data inclusion/exclusion were defined individually for each mouse experiment. The
392 number of replicates varied between experiments and is presented in figure legends. We
393 performed blinding for quantitative immunohistochemistry scoring of ID1 and Ki67 staining.
394 Finally, we measured ID1 expression in DIPG patient samples which underwent different doses
395 of CBD (non-prescribed) during the course of treatment (Supplement Table 2).

396

397 **Murine IUE model of pHGG**

398 All animal studies were conducted according to the guidelines approved by the
399 University Committee on Use and Care of Animals (UCUCA) at the University of Michigan.
400 IUE was performed using sterile technique on isoflurane/oxygen-anesthetized pregnant CD1
401 females at embryonic stage E13.5, using established methodology. In this study, we injected the
402 following four plasmids together: [1] PBase, [2] PB-CAG-DNp53-Ires-Luciferase (dominant
403 negative TP53 or TP53 hereafter), [3] PB-CAG-PdgfraD824V-Ires-eGFP (PDGFRA D842V),
404 and [4] PB-CAG-H3.3 K27M-Ires-eGFP (H3K27M), referred to as “PPK” model (as previously
405 published) (17) (see Supplementary for details).

406

407 **Whole exome and transcriptome sequencing (Sick Kids, Toronto)**

408 Use of patient tissues was approved by the Hospital for Sick Children (Toronto) Research
409 Ethics Board. WES/WGS (accession EGAS00001000575) from DIPG samples plus matched
410 normal was using DNA extracted from fresh-frozen tissues as described (13). Fresh-frozen tissue

411 was used for total RNA extraction with the RNeasy mini kit (QIAGEN, CA, USA) (see
412 Supplementary for details).

413

414 **Mint-ChIP-sequencing**

415 Analyses for the two classical histone modifications H3K27ac and H3K27me3
416 representing accessible and repressed chromatin states were performed as part of a MiNT-ChIP
417 analysis for 9 tumor samples of DIPG patients in comparison to a control tissue sample of
418 healthy pons according to the protocol published by Buenstro et al., 2013 (see Supplementary for
419 details).

420

421 **ScRNA-seq analysis from developing brain and H3K27M-mutant DIPGs**

422
423 Single-cell gene expression data and their clusters in the developing brain were obtained
424 from GSE133531 (mouse pons), GSE120046 (human pons, gestational week 8-28), and
425 GSE144462 (human cortex, gestational week 21-26) (see Supplementary for details).

426

427 **Native ChIP-qPCR**

428 Native ChIP-qPCR was performed on post-mortem tissue using antibodies against
429 H3K27ac (2 µl, cat# 07360, Millipore Sigma), H3K27me3 (1 µg, cat# 07449, Millipore Sigma),
430 and control IgG (2 µg Cat#12370, Millipore Sigma) (see Supplementary for details).

431

432 **Invasion assay**

433 Invasion assays were performed using growth factor-reduced Matrigel invasion chambers
434 (Cat #354483, Corning) as previously described (see Supplementary for details) (50).

435

436 **Migration (scratch) assay**

437 Scratches were made in 80%-confluent 6-well plates, and migration was monitored using
438 the IncuCyte® system (see Supplementary for details).

439

440 **CBD treatment studies in murine IUE PPK model**

441 Mice harboring IUE-generated PPK HGG tumors were treated with CBD when tumors
442 reached logarithmic growth phase (minimum 2×10^6 photons/sec via bioluminescent imaging).
443 Mice litters from each experimental group were randomized to treatment with: (A) 15 mg/kg
444 CBD (10% CBD suspended in Ethanol, 80% DPBS, 10% Tween-80) and (B) control treatment
445 (10% Ethanol, 80% DPBS, 10% Tween-80). Mice were treated 5 days/week until morbidity (see
446 Supplementary for details).

447

448 **CBD pharmacokinetic analysis**

449 CBD administration to non-tumor bearing CD1 mice and PPK tumor bearing mice for PK
450 studies were performed by IP injection at zero time point. Timeline for CBD injection and
451 plasma, brainstem and/or tumor collection were depicted in Fig. 7 E-F (see Supplementary for
452 details).

453

454 **Human studies**

455 Informed consent was obtained for all patient samples. Two patients (CHC001 and
456 CHC002) were enrolled on an ongoing IRB-approved prospective observational study at

457 Children's Hospital of Colorado for children and young adults with brain tumors undergoing
458 patient-directed medical marijuana therapy (NCT03052738) (see Supplementary for details).

459

460 Supplementary Materials

461 Materials and Methods

462 Fig. S1. *ID1* expression in DIPG by cell malignancy and tumor location.

463 Fig. S2. Multifocal ChIP-qPCR analysis of *ID1* expression in human DIPG.

464 Fig. S3. *ID1* expression from scRNA-seq of six different H3K27M-DMG patients across
465 varying regions and malignant cell types.

466 Fig. S4. In situ hybridization for *ID1* RNA in developing mouse brain.

467 Fig. S5. H3K27ac at *ID1* locus during murine development.

468 Fig. S6. *ID1* expression in varying cell types during normal murine pontine development.

469 Fig. S7. *ID1* expression from single-cell transcriptome analysis of varying cell types in
470 normal developing murine pons.

471 Fig. S8. *ID1* expression from scRNA-seq of four different H3K27M-DMG patients
472 across varying malignant cell types.

473 Fig. S9. Gene ontology (GO) analysis of higher *ID1*-expressing AC-like cells from
474 H3K27M-mutated tumor patients.

475 Fig. S10. *ID1* knockdown in HEK293 cells.

476 Fig. S11. Impact of CBD treatment on *ID1* expression in human DIPG cells.

477 Fig. S12. Effect of pharmacologic (CBD) suppression of ID1 on DIPG007 and PBT-29
478 tumor cell invasion and migration.

479 Fig. S13. ID1-deficient DIPG007 cells display slower in vivo tumor growth.

480 Fig. S14. Tumor cell invasion assessment in CBD- vs control-treated PPK mice.

481 Fig. S15. Detailed vector map of pGIPZ lentiviral vector.

482 Table S1. Primer sequences for use in ChIP-qPCR and qPCR.

483 Table S2. Clinical details of pHGG patients treated with CBD.

484

485

486 **References and Notes**

- 487 1. K. M. Schroeder, C. M. Hoeman, O. J. Becher, Children are not just little adults: recent
488 advances in understanding of diffuse intrinsic pontine glioma biology. *Pediatr Res* **75**,
489 205-209 (2014).
- 490 2. Z. Miklja, A. Pasternak, S. Stallard, T. Nicolaides, C. Kline-Nunnally, B. Cole, R.
491 Beroukhim, P. Bandopadhyay, S. Chi, S. H. Ramkissoon, B. Mullan, A. K. Bruzek, A.
492 Gauthier, T. Garcia, C. Atchison, B. Marini, M. Fouladi, D. W. Parsons, S. Leary, S.
493 Mueller, K. L. Ligon, C. Koschmann, Molecular profiling and targeted therapy in
494 pediatric gliomas: review and consensus recommendations. *Neuro Oncol*, (2019).
- 495 3. D. Castel, C. Philippe, R. Calmon, L. Le Dret, N. Truffaux, N. Boddaert, M. Pages, K. R.
496 Taylor, P. Saulnier, L. Lacroix, A. Mackay, C. Jones, C. Sainte-Rose, T. Blauwblomme,
497 F. Andreiuolo, S. Puget, J. Grill, P. Varlet, M. A. Debily, Histone H3F3A and

498 HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas
499 with different prognosis and phenotypes. *Acta Neuropathol* **130**, 815-827 (2015).

500 4. D. A. Khuong-Quang, P. Buczkowicz, P. Rakopoulos, X. Y. Liu, A. M. Fontebasso, E.
501 Bouffet, U. Bartels, S. Albrecht, J. Schwartzentruber, L. Letourneau, M. Bourgey, G.
502 Bourque, A. Montpetit, G. Bourret, P. Lepage, A. Fleming, P. Lichter, M. Kool, A. von
503 Deimling, D. Sturm, A. Korshunov, D. Faury, D. T. Jones, J. Majewski, S. M. Pfister, N.
504 Jabado, C. Hawkins, K27M mutation in histone H3.3 defines clinically and biologically
505 distinct subgroups of pediatric diffuse intrinsic pontine gliomas. *Acta Neuropathol* **124**,
506 439-447 (2012).

507 5. K. M. Chan, D. Fang, H. Gan, R. Hashizume, C. Yu, M. Schroeder, N. Gupta, S. Mueller,
508 C. D. James, R. Jenkins, J. Sarkaria, Z. Zhang, The histone H3.3K27M mutation in
509 pediatric glioma reprograms H3K27 methylation and gene expression. *Genes Dev* **27**,
510 985-990 (2013).

511 6. F. Mohammad, S. Weissmann, B. Leblanc, D. P. Pandey, J. W. Hojfeldt, I. Comet, C.
512 Zheng, J. V. Johansen, N. Rapin, B. T. Porse, A. Tvardovskiy, O. N. Jensen, N. G.
513 Olaciregui, C. Lavarino, M. Sunol, C. de Torres, J. Mora, A. M. Carcaboso, K. Helin,
514 EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. *Nat Med*
515 **23**, 483-492 (2017).

516 7. S. Nagaraja, M. A. Quezada, S. M. Gillespie, M. Arzt, J. J. Lennon, P. J. Woo, V.
517 Hovestadt, M. Kambhampati, M. G. Filbin, M. L. Suva, J. Nazarian, M. Monje, Histone
518 Variant and Cell Context Determine H3K27M Reprogramming of the Enhancer
519 Landscape and Oncogenic State. *Mol Cell* **76**, 965-980 e912 (2019).

520 8. J. D. Norton, R. W. Deed, G. Craggs, F. Sablitzky, Id helix-loop-helix proteins in cell
521 growth and differentiation. *Trends Cell Biol* **8**, 58-65 (1998).

522 9. R. Benezra, R. L. Davis, D. Lockshon, D. L. Turner, H. Weintraub, The protein Id: a
523 negative regulator of helix-loop-helix DNA binding proteins. *Cell* **61**, 49-59 (1990).

524 10. S. Fong, R. J. Debs, P. Y. Desprez, Id genes and proteins as promising targets in cancer
525 therapy. *Trends Mol Med* **10**, 387-392 (2004).

526 11. L. Soroceanu, R. Murase, C. Limbad, E. Singer, J. Allison, I. Adrados, R. Kawamura, A.
527 Pakdel, Y. Fukuyo, D. Nguyen, S. Khan, R. Arauz, G. L. Yount, D. H. Moore, P. Y.
528 Desprez, S. D. McAllister, Id-1 is a key transcriptional regulator of glioblastoma
529 aggressiveness and a novel therapeutic target. *Cancer Res* **73**, 1559-1569 (2013).

530 12. S. D. McAllister, R. T. Christian, M. P. Horowitz, A. Garcia, P. Y. Desprez, Cannabidiol
531 as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. *Mol Cancer
532 Ther* **6**, 2921-2927 (2007).

533 13. P. Buczkowicz, C. Hoeman, P. Rakopoulos, S. Pajovic, L. Letourneau, M. Dzamba, A.
534 Morrison, P. Lewis, E. Bouffet, U. Bartels, J. Zuccaro, S. Agnihotri, S. Ryall, M.
535 Barszczky, Y. Chornenky, M. Bourgey, G. Bourque, A. Montpetit, F. Cordero, P.
536 Castelo-Branco, J. Mangerel, U. Tabori, K. C. Ho, A. Huang, K. R. Taylor, A. Mackay,
537 A. E. Bendel, J. Nazarian, J. R. Fangusaro, M. A. Karajannis, D. Zagzag, N. K. Foreman,
538 A. Donson, J. V. Hegert, A. Smith, J. Chan, L. Lafay-Cousin, S. Dunn, J. Hukin, C.
539 Dunham, K. Scheinemann, J. Michaud, S. Zelcer, D. Ramsay, J. Cain, C. Brennan, M. M.
540 Souweidane, C. Jones, C. D. Allis, M. Brudno, O. Becher, C. Hawkins, Genomic analysis
541 of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent
542 activating ACVR1 mutations. *Nature genetics* **46**, 451-456 (2014).

543 14. C. M. Hoeman, F. J. Cordero, G. Hu, K. Misuraca, M. M. Romero, H. J. Cardona, J.
544 Nazarian, R. Hashizume, R. McLendon, P. Yu, D. Procissi, S. Gadd, O. J. Becher,
545 ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine
546 glioma pathogenesis. *Nat Commun* **10**, 1023 (2019).

547 15. J. Fortin, R. Tian, I. Zarrabi, G. Hill, E. Williams, G. Sanchez-Duffhues, M. Thorikay, P.
548 Ramachandran, R. Siddaway, J. F. Wong, A. Wu, L. N. Apuzzo, J. Haight, A. You-Ten,
549 B. E. Snow, A. Wakeham, D. J. Goldhamer, D. Schramek, A. N. Bullock, P. T. Dijke, C.
550 Hawkins, T. W. Mak, Mutant ACVR1 Arrests Glial Cell Differentiation to Drive
551 Tumorigenesis in Pediatric Gliomas. *Cancer Cell* **37**, 308-323 e312 (2020).

552 16. B. Schmierer, C. S. Hill, TGF β –SMAD signal transduction: molecular specificity and
553 functional flexibility. *Nature reviews Molecular cell biology* **8**, 970-982 (2007).

554 17. Z. Miklja, V. N. Yadav, R. T. Cartaxo, R. Siada, C. C. Thomas, J. R. Cummings, B.
555 Mullan, S. Stallard, A. Paul, A. K. Bruzek, Everolimus improves the efficacy of dasatinib
556 in PDGFR α -driven glioma. *The Journal of clinical investigation* **130**, (2020).

557 18. P. W. Lewis, M. M. Muller, M. S. Koletsky, F. Cordero, S. Lin, L. A. Banaszynski, B. A.
558 Garcia, T. W. Muir, O. J. Becher, C. D. Allis, Inhibition of PRC2 activity by a gain-of-
559 function H3 mutation found in pediatric glioblastoma. *Science* **340**, 857-861 (2013).

560 19. M. G. Filbin, I. Tirosh, V. Hovestadt, M. L. Shaw, L. E. Escalante, N. D. Mathewson, C.
561 Neftel, N. Frank, K. Pelton, C. M. Hebert, C. Haberler, K. Yizhak, J. Gojo, K. Egervari,
562 C. Mount, P. van Galen, D. M. Bonal, Q. D. Nguyen, A. Beck, C. Sinai, T. Czech, C.
563 Dorfer, L. Goumnerova, C. Lavarino, A. M. Carcaboso, J. Mora, R. Mylvaganam, C. C.
564 Luo, A. Peyrl, M. Popovic, A. Azizi, T. T. Batchelor, M. P. Frosch, M. Martinez-Lage,
565 M. W. Kieran, P. Bandopadhyay, R. Beroukhim, G. Fritsch, G. Getz, O. Rozenblatt-

566 Rosen, K. W. Wucherpfennig, D. N. Louis, M. Monje, I. Slavc, K. L. Ligon, T. R. Golub,
567 A. Regev, B. E. Bernstein, M. L. Suva, Developmental and oncogenic programs in
568 H3K27M gliomas dissected by single-cell RNA-seq. *Science* **360**, 331-335 (2018).

569 20. A. Mackay, A. Burford, D. Carvalho, E. Izquierdo, J. Fazal-Salom, K. R. Taylor, L.
570 Bjerke, M. Clarke, M. Vinci, M. Nandhabalan, S. Temelso, S. Popov, V. Molinari, P.
571 Raman, A. J. Waanders, H. J. Han, S. Gupta, L. Marshall, S. Zacharoulis, S. Vaidya, H.
572 C. Mandeville, L. R. Bridges, A. J. Martin, S. Al-Sarraj, C. Chandler, H. K. Ng, X. Li, K.
573 Mu, S. Trabelsi, D. H. Brahim, A. N. Kisljakov, D. M. Konovalov, A. S. Moore, A. M.
574 Carcaboso, M. Sunol, C. de Torres, O. Cruz, J. Mora, L. I. Shats, J. N. Stavale, L. T.
575 Bidinotto, R. M. Reis, N. Entz-Werle, M. Farrell, J. Cryan, D. Crimmins, J. Caird, J.
576 Pears, M. Monje, M. A. Debily, D. Castel, J. Grill, C. Hawkins, H. Nikbakht, N. Jabado,
577 S. J. Baker, S. M. Pfister, D. T. W. Jones, M. Fouladi, A. O. von Bueren, M. Baudis, A.
578 Resnick, C. Jones, Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade
579 and Diffuse Intrinsic Pontine Glioma. *Cancer Cell* **32**, 520-537 e525 (2017).

580 21. S. F. Schoppmann, M. Schindl, G. Bayer, K. Aumayr, J. Dienes, R. Horvat, M. Rudas,
581 M. Gnant, R. Jakesz, P. Birner, Overexpression of Id-1 is associated with poor clinical
582 outcome in node negative breast cancer. *Int J Cancer* **104**, 677-682 (2003).

583 22. G. Wu, A. K. Diaz, B. S. Paugh, S. L. Rankin, B. Ju, Y. Li, X. Zhu, C. Qu, X. Chen, J.
584 Zhang, J. Easton, M. Edmonson, X. Ma, C. Lu, P. Nagahawatte, E. Hedlund, M. Rusch,
585 S. Pounds, T. Lin, A. Onar-Thomas, R. Huether, R. Kriwacki, M. Parker, P. Gupta, J.
586 Becksfort, L. Wei, H. L. Mulder, K. Boggs, B. Vadodaria, D. Yergeau, J. C. Russell, K.
587 Ochoa, R. S. Fulton, L. L. Fulton, C. Jones, F. A. Boop, A. Broniscer, C. Wetmore, A.
588 Gajjar, L. Ding, E. R. Mardis, R. K. Wilson, M. R. Taylor, J. R. Downing, D. W. Ellison,

589 J. Zhang, S. J. Baker, The genomic landscape of diffuse intrinsic pontine glioma and
590 pediatric non-brainstem high-grade glioma. *Nat Genet* **46**, 444-450 (2014).

591 23. E. P. Consortium, An integrated encyclopedia of DNA elements in the human genome.
592 *Nature* **489**, 57-74 (2012).

593 24. C. A. Davis, B. C. Hitz, C. A. Sloan, E. T. Chan, J. M. Davidson, I. Gabdank, J. A.
594 Hilton, K. Jain, U. K. Baymuradov, A. K. Narayanan, K. C. Onate, K. Graham, S. R.
595 Miyasato, T. R. Dreszer, J. S. Strattan, O. Jolanki, F. Y. Tanaka, J. M. Cherry, The
596 Encyclopedia of DNA elements (ENCODE): data portal update. *Nucleic Acids Res* **46**,
597 D794-D801 (2018).

598 25. X. Fan, Y. Fu, X. Zhou, L. Sun, M. Yang, M. Wang, R. Chen, Q. Wu, J. Yong, J. Dong,
599 L. Wen, J. Qiao, X. Wang, F. Tang, Single-cell transcriptome analysis reveals cell
600 lineage specification in temporal-spatial patterns in human cortical development. *Sci Adv*
601 **6**, eaaz2978 (2020).

602 26. S. Jessa, A. Blanchet-Cohen, B. Krug, M. Vladoiu, M. Coutelier, D. Faury, B. Poreau, N.
603 De Jay, S. Hebert, J. Monlong, W. T. Farmer, L. K. Donovan, Y. Hu, M. K. McConechy,
604 F. M. G. Cavalli, L. G. Mikael, B. Ellezam, M. Richer, A. Allaire, A. G. Weil, J.
605 Atkinson, J. P. Farmer, R. W. R. Dudley, V. Larouche, L. Crevier, S. Albrecht, M. G.
606 Filbin, H. Sartelet, P. E. Lutz, C. Nagy, G. Turecki, S. Costantino, P. B. Dirks, K. K.
607 Murai, G. Bourque, J. Ragoussis, L. Garzia, M. D. Taylor, N. Jabado, C. L. Kleinman,
608 Stalled developmental programs at the root of pediatric brain tumors. *Nature genetics* **51**,
609 1702-1713 (2019).

610 27. D. Lyden, A. Z. Young, D. Zagzag, W. Yan, W. Gerald, R. O'Reilly, B. L. Bader, R. O.
611 Hynes, Y. Zhuang, K. Manova, R. Benezra, Id1 and Id3 are required for neurogenesis,
612 angiogenesis and vascularization of tumour xenografts. *Nature* **401**, 670-677 (1999).

613 28. Y. Fu, M. Yang, H. Yu, Y. Wang, X. Wu, J. Yong, Y. Mao, Y. Cui, X. Fan, L. Wen, J.
614 Qiao, F. Tang, Heterogeneity of glial progenitor cells during the neurogenesis-to-
615 gliogenesis switch in the developing human cerebral cortex. *Cell Rep* **34**, 108788 (2021).

616 29. R. Sachdeva, M. Wu, S. Smiljanic, O. Kaskun, K. Ghannad-Zadeh, A. Celebre, K. Isaev,
617 A. S. Morrissy, J. Guan, J. Tong, J. Chan, T. M. Wilson, S. Al-Omaishi, D. G. Munoz, P.
618 B. Dirks, M. F. Moran, M. D. Taylor, J. Reimand, S. Das, ID1 Is Critical for
619 Tumorigenesis and Regulates Chemoresistance in Glioblastoma. *Cancer Res* **79**, 4057-
620 4071 (2019).

621 30. K. Tada, K. Kawahara, S. Matsushita, T. Hashiguchi, I. Maruyama, T. Kanekura,
622 MK615, a *Prunus mume* Steb. Et Zucc ('Ume') extract, attenuates the growth of A375
623 melanoma cells by inhibiting the ERK1/2-Id-1 pathway. *Phytother Res* **26**, 833-838
624 (2012).

625 31. J. I. Huh, A. Calvo, R. Charles, J. E. Green, Distinct tumor stage-specific inhibitory
626 effects of 2-methoxyestradiol in a breast cancer mouse model associated with Id-1
627 expression. *Cancer Res* **66**, 3495-3503 (2006).

628 32. F. Afrin, M. Chi, A. L. Eamens, R. J. Duchatel, A. M. Douglas, J. Schneider, C. Gedye,
629 A. S. Woldu, M. D. Dun, Can Hemp Help? Low-THC Cannabis and Non-THC
630 Cannabinoids for the Treatment of Cancer. *Cancers (Basel)* **12**, (2020).

631 33. G. Wilkie, B. Sakr, T. Rizack, Medical Marijuana Use in Oncology: A Review. *JAMA*
632 *Oncol* **2**, 670-675 (2016).

633 34. M. M. Bergamaschi, R. H. Queiroz, A. W. Zuardi, J. A. Crippa, Safety and side effects of
634 cannabidiol, a Cannabis sativa constituent. *Curr Drug Saf* **6**, 237-249 (2011).

635 35. S. Deiana, A. Watanabe, Y. Yamasaki, N. Amada, M. Arthur, S. Fleming, H. Woodcock,
636 P. Dorward, B. Pigliacampo, S. Close, B. Platt, G. Riedel, Plasma and brain
637 pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Delta(9)-
638 tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral
639 and intraperitoneal administration and CBD action on obsessive-compulsive behaviour.
640 *Psychopharmacology (Berl)* **219**, 859-873 (2012).

641 36. O. Kovalchuk, I. Kovalchuk, Cannabinoids as anticancer therapeutic agents. *Cell Cycle*
642 **19**, 961-989 (2020).

643 37. S. D. McAllister, R. Murase, R. T. Christian, D. Lau, A. J. Zielinski, J. Allison, C.
644 Almanza, A. Pakdel, J. Lee, C. Limbad, Y. Liu, R. J. Debs, D. H. Moore, P. Y. Desprez,
645 Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell
646 proliferation, invasion, and metastasis. *Breast Cancer Res Treat* **129**, 37-47 (2011).

647 38. E. Singer, J. Judkins, N. Salomonis, L. Matlaf, P. Soteropoulos, S. McAllister, L.
648 Soroceanu, Reactive oxygen species-mediated therapeutic response and resistance in
649 glioblastoma. *Cell Death Dis* **6**, e1601 (2015).

650 39. G. Wilkie, B. Sakr, T. Rizack, Medical marijuana use in oncology: a review. *JAMA
651 oncology* **2**, 670-675 (2016).

652 40. S. F. Tzeng, J. de Vellis, Id1, Id2, and Id3 gene expression in neural cells during
653 development. *Glia* **24**, 372-381 (1998).

654 41. M. T. Ling, X. Wang, X. Zhang, Y. C. Wong, The multiple roles of Id-1 in cancer
655 progression. *Differentiation* **74**, 481-487 (2006).

656 42. R. Sachdeva, M. Wu, S. Smiljanic, O. Kaskun, K. Ghannad-Zadeh, A. Celebre, K. Isaev,
657 A. S. Morrissey, J. Guan, J. Tong, J. Chan, T. M. Wilson, S. Al-Omaishi, D. G. Munoz, P.
658 B. Dirks, M. F. Moran, M. D. Taylor, J. Reimand, S. Das, ID1 Is Critical for
659 Tumorigenesis and Regulates Chemoresistance in Glioblastoma. *Cancer Res*, (2019).

660 43. A. Piunti, R. Hashizume, M. A. Morgan, E. T. Bartom, C. M. Horbinski, S. A. Marshall,
661 E. J. Rendleman, Q. Ma, Y. H. Takahashi, A. R. Woodfin, A. V. Misharin, N. A.
662 Abshiru, R. R. Lulla, A. M. Saratsis, N. L. Kelleher, C. D. James, A. Shilatifard,
663 Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic
664 pontine gliomas. *Nat Med* **23**, 493-500 (2017).

665 44. J. D. Larson, L. H. Kasper, B. S. Paugh, H. Jin, G. Wu, C. H. Kwon, Y. Fan, T. I. Shaw,
666 A. B. Silveira, C. Qu, R. Xu, X. Zhu, J. Zhang, H. R. Russell, J. L. Peters, D. Finkelstein,
667 B. Xu, T. Lin, C. L. Tinkle, Z. Patay, A. Onar-Thomas, S. B. Pounds, P. J. McKinnon, D.
668 W. Ellison, J. Zhang, S. J. Baker, Histone H3.3 K27M Accelerates Spontaneous
669 Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. *Cancer*
670 *Cell* **35**, 140-155 e147 (2019).

671 45. E. Y. Qin, D. D. Cooper, K. L. Abbott, J. Lennon, S. Nagaraja, A. Mackay, C. Jones, H.
672 Vogel, P. K. Jackson, M. Monje, Neural Precursor-Derived Pleiotrophin Mediates
673 Subventricular Zone Invasion by Glioma. *Cell* **170**, 845-859 e819 (2017).

674 46. S. Reagan-Shaw, M. Nihal, N. Ahmad, Dose translation from animal to human studies
675 revisited. *The FASEB journal* **22**, 659-661 (2008).

676 47. L. Taylor, B. Gidal, G. Blakey, B. Tayo, G. Morrison, A phase I, randomized, double-
677 blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of

678 the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy
679 subjects. *CNS drugs* **32**, 1053-1067 (2018).

680 48. C. T. Campbell, M. S. Phillips, K. Manasco, Cannabinoids in Pediatrics. *J Pediatr*
681 *Pharmacol Ther* **22**, 176-185 (2017).

682 49. O. Devinsky, C. Verducci, E. A. Thiele, L. C. Laux, A. D. Patel, F. Filloux, J. P.
683 Szaflarski, A. Wilfong, G. D. Clark, Y. D. Park, L. E. Seltzer, E. M. Bebin, R. Flaminii,
684 R. T. Wechsler, D. Friedman, Open-label use of highly purified CBD (Epidiolex(R)) in
685 patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes.
686 *Epilepsy Behav* **86**, 131-137 (2018).

687 50. C. R. Justus, N. Leffler, M. Ruiz-Echevarria, L. V. Yang, In vitro cell migration and
688 invasion assays. *J Vis Exp*, (2014).

689 51. S. Pajovic, R. Siddaway, T. Bridge, J. Sheth, P. Rakopoulos, B. Kim, S. Ryall, S.
690 Agnihotri, L. Phillips, M. Yu, C. Li, S. Milos, P. Patel, D. Srikanthan, A. Huang, C.
691 Hawkins, Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. *Nat*
692 *Commun* **11**, 6216 (2020).

693 52. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina
694 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).

695 53. B. Li, C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with
696 or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

697 54. D. Pratt, S. Camelo-Piragua, K. McFadden, D. Leung, R. Mody, A. Chinnaian, C.
698 Koschmann, S. Venneti, in *Acta neuropathologica communications*. (England, 2018),
699 vol. 6, pp. 24.

700 55. C. Koschmann, Y.-M. Wu, C. Kumar-Sinha, R. Lonigro, P. Vats, K. Kasaian, M. Cieslik,
701 X. Cao, B. Anderson, K. Frank, Clinically integrated sequencing alters therapy in
702 children and young adults with high-risk glial brain tumors. *JCO precision oncology* **2**, 1-
703 34 (2018).

704 56. H. C. Gits, M. Anderson, S. Stallard, D. Pratt, B. Zon, C. Howell, C. Kumar-Sinha, P.
705 Vats, K. Kasaian, D. Polan, M. Matuszak, D. E. Spratt, M. Leonard, T. Qin, L. Zhao, J.
706 Leach, B. Chaney, N. Y. Escorza, J. Hendershot, B. Jones, C. Fuller, S. Leary, U. Bartels,
707 E. Bouffet, T. I. Yock, P. Robertson, R. Mody, S. Venneti, A. M. Chinnaiyan, M.
708 Fouladi, N. G. Gottardo, C. Koschmann, Medulloblastoma therapy generates risk of a
709 poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report
710 from the International DIPG Registry. *Acta neuropathologica communications* **6**, 67
711 (2018).

712 57. S. K. Patel, R. M. Hartley, X. Wei, R. Furnish, F. Escobar-Riquelme, H. Bear, K. Choi,
713 C. Fuller, T. N. Phoenix, Generation of diffuse intrinsic pontine glioma mouse models by
714 brainstem-targeted in utero electroporation. *Neuro-oncology* **22**, 381-392 (2020).

715 58. L. J. Donovan LL, Native Chromatin Immunoprecipitation from Brain Tissue Using
716 Magnetic Beads. *Medicinal Chemistry* **4**, 3 (2014).

717 59. S. Bender, Y. Tang, A. M. Lindroth, V. Hovestadt, D. T. Jones, M. Kool, M. Zapatka, P.
718 A. Northcott, D. Sturm, W. Wang, B. Radlwimmer, J. W. Hojfeldt, N. Truffaux, D.
719 Castel, S. Schubert, M. Ryzhova, H. Seker-Cin, J. Gronych, P. D. Johann, S. Stark, J.
720 Meyer, T. Milde, M. Schuhmann, M. Ebinger, C. M. Monoranu, A. Ponnuswami, S.
721 Chen, C. Jones, O. Witt, V. P. Collins, A. von Deimling, N. Jabado, S. Puget, J. Grill, K.
722 Helin, A. Korshunov, P. Lichter, M. Monje, C. Plass, Y. J. Cho, S. M. Pfister, Reduced

723 H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M
724 mutant pediatric high-grade gliomas. *Cancer Cell* **24**, 660-672 (2013).

725 60. T. D. Schmittgen, K. J. Livak, Analyzing real-time PCR data by the comparative C(T)
726 method. *Nat Protoc* **3**, 1101-1108 (2008).

727 61. M. Lerdrup, J. V. Johansen, S. Agrawal-Singh, K. Hansen, An interactive environment
728 for agile analysis and visualization of ChIP-sequencing data. *Nat Struct Mol Biol* **23**, 349-
729 357 (2016).

730 62. J. T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, J.
731 P. Mesirov, Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26 (2011).

732 63. M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan, Z. Wang, S.
733 Koplev, S. L. Jenkins, K. M. Jagodnik, A. Lachmann, M. G. McDermott, C. D. Monteiro,
734 G. W. Gundersen, A. Ma'ayan, Enrichr: a comprehensive gene set enrichment analysis
735 web server 2016 update. *Nucleic Acids Res* **44**, W90-97 (2016).

736 64. C. C. Liang, A. Y. Park, J. L. Guan, In vitro scratch assay: a convenient and inexpensive
737 method for analysis of cell migration in vitro. *Nat Protoc* **2**, 329-333 (2007).

738

739

740 **Acknowledgments:** The authors thank the patients and their families for participation in this
741 study.

742 **Funding:**

743 National Institutes of Health/National Institute of Neurological Disorders and Stroke
744 grant K08-NS099427-01 (CK)

745 The University of Michigan Chad Carr Pediatric Brain Tumor Center

746 The ChadTough Defeat DIPG Foundation

747 The DIPG Collaborative

748 U CAN-CER VIVE

749 Catching Up with Jack

750 The Morgan Behen Golf Classic

751 National Institutes of Health Clinical Sequencing Exploratory Research Award grant
752 1UM1HG006508 (AC)
753 National Institutes of Health grant R44CA206723 (SM and PYD)
754 The Research Council of Norway 187615 (SMW)
755 The South-Eastern Norway Regional Health Authority (SMW)
756 The University of Oslo (SMW)
757

758 **Author contributions:**

759 Conception and design of study: VNY, MKH, CK
760 Acquisition, analysis, or interpretation of data: VNY, MKH, DM, CT, JRC, TY, RW,
761 RoS, MB, SS, TQ, BM, RuS, RR, MN, KFG, MAHG, KD, NAV, JL, MGF, XC, MGC,
762 PRL, RM, AC, PYD, SM, CH, SMW, SV, CK
763 Drafting and revising the written manuscript: VNY, MKH, JRC, RuS, CK
764 Final approval of version to be published: VNY, MKH, DM, CT, JRC, TY, RW, RoS,
765 MB, SS, TQ, BM, RuS, RR, MN, KFG, MAHG, KD, NAV, SVS, JS, JL, MGF, XC,
766 MGC, PRL, RM, AC, PYD, SM, CH, SMW, SV, CK

767 **Competing interests:** Authors declare that they have no competing interests.

768 **Data and materials availability:** All data are available in the main text or the
769 supplementary materials.

770

771 **Figures**

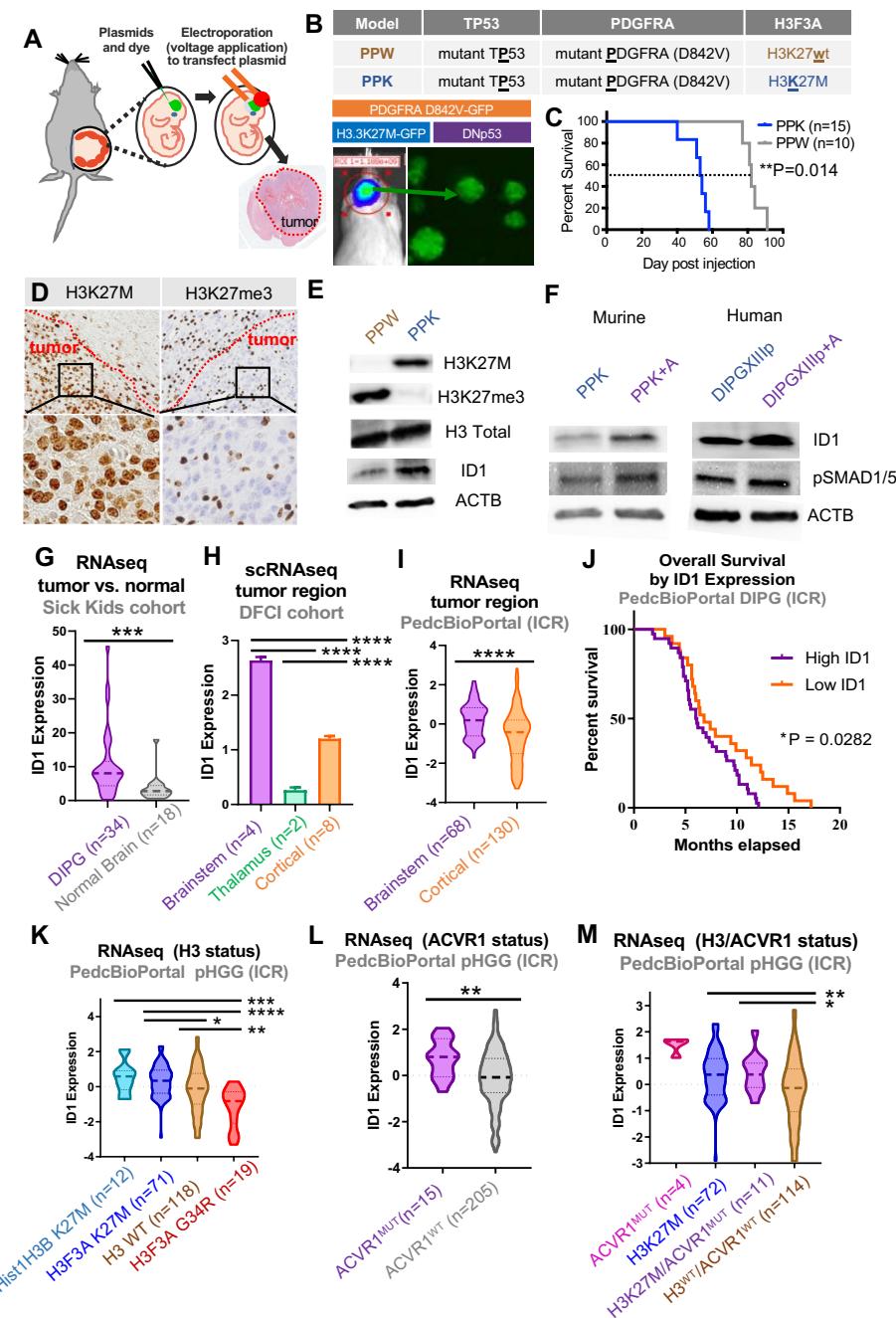
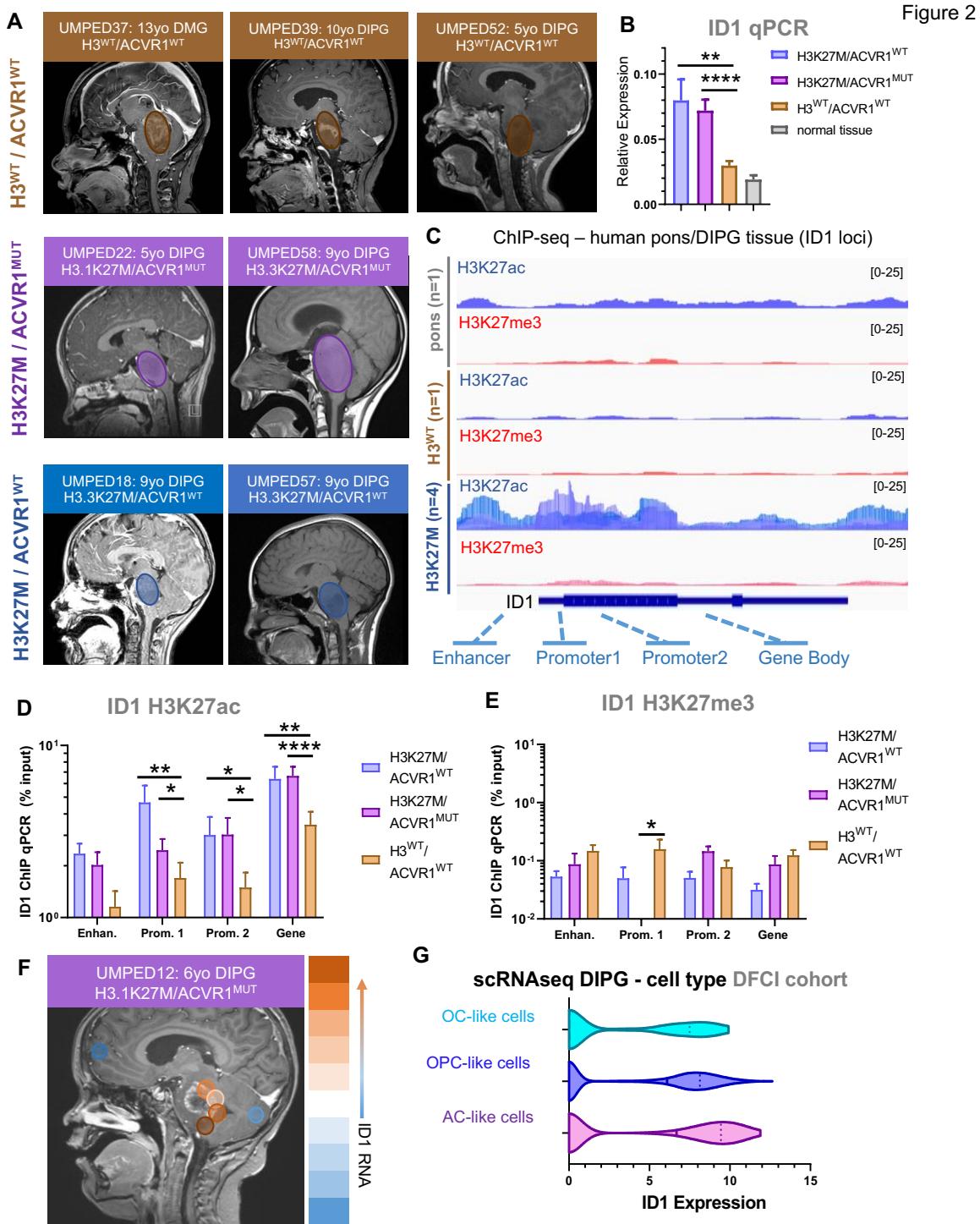
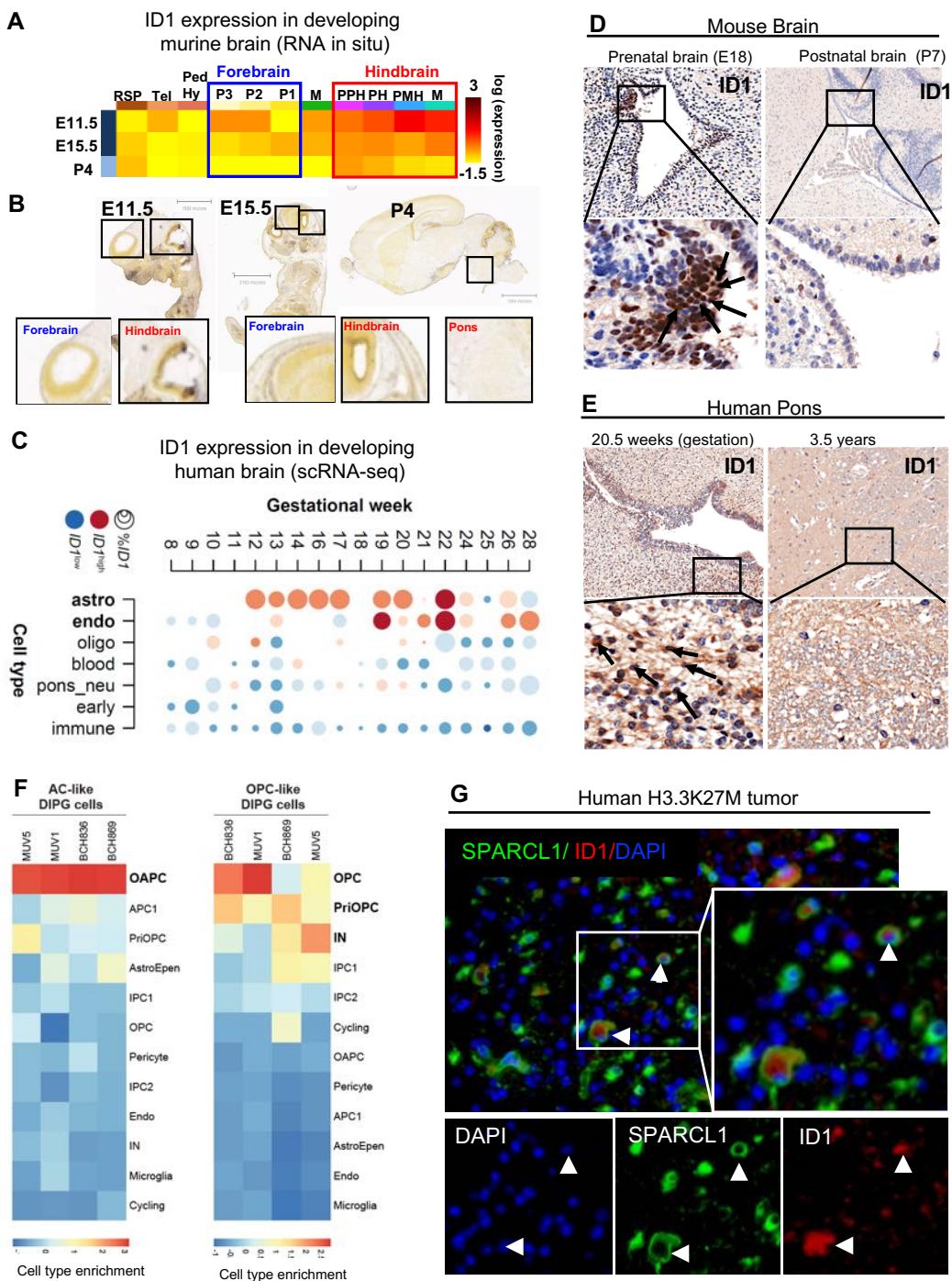



Figure 1

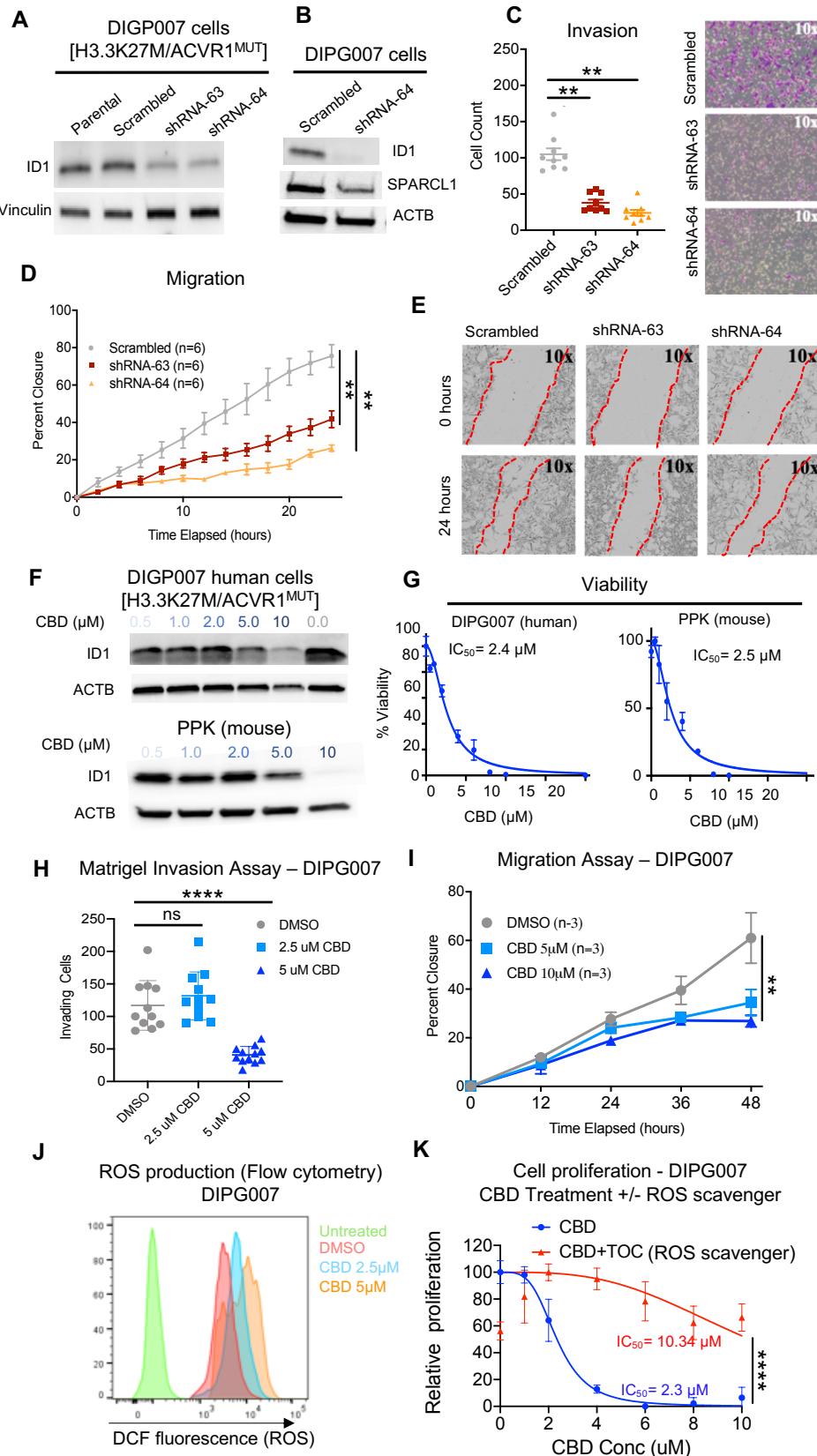
772 **Fig. 1. Elevated expression of *ID1* in DIPG population. (A)** IUE-mediated H3K27M-tumor
773 model. **(B)** PDGFRA^{MUT}-p53^{MUT}-H3^{WT} (“PPW”) and PDGFRA^{MUT}-p53^{MUT}-H3K27M (“PPK”)
774 tumors are generated by IUE. Tumor growth is monitored by in vivo bioluminescence imaging
775 and primary neurosphere cell cultures are generated by dissociation of tumor tissue. **(C)** Survival


776 curve for PPW and PPK mice displays significantly reduced survival of PPK compared to PPW
777 mice; **P=0.014, log-rank test. **(D)** IHC-stained images of PPK tumor show tumor-specific
778 H3K27M expression and reduced H3K27me3 (representative of n=3 PPK tumors).
779 Magnification = 10x (top row); 40x (bottom row). **(E)** Western blot (WB) of PPW and PPK
780 primary neurospheres for assessment of H3K27M, H3K27ac and ID1 expression by H3
781 mutational status. **(F)** WB of murine PPK and PPK+*ACVR1*^{MUT} (“PPK+A”) cells, and human
782 DIPGXiIip and DIPGXiIip+*ACVR1*^{MUT} cells, for assessment of ID1 and pSMAD expression.
783 **(G)** *ID1* expression of DIPG tissue (n=34) compared to matched normal brain tissue (n=18) from
784 the SickKids cohort; ***P < .001, unpaired parametric t-test. **(H)** *ID1* expression by scRNA-seq
785 from the DFCI cohort, including brainstem (n=4), thalamus (n=2) and cortex (n=8);
786 ****P<0.0001, one-way ANOVA t-test. **(I)** *ID1* expression of DIPG tissue (n=68) compared to
787 hemispheric pHGG tissue (n=130). Data from ICR cohort; ****P < 0.0001, unpaired t-test. **(J)**
788 Kaplan-Meier survival curve of DIPG patients (n=66) grouped by high and low *ID1* expression.
789 *P =0.0282, Mantel-Cox test. **(K)** *ID1* expression across *Hist1H3B* (*H3C2*) K27M (n=12),
790 *H3F3A* (*H3.3A*) K27M (n=71), H3^{WT} (n=118) and *H3F3A* (*H3.3A*) G34R (n=19) DIPG tumors.
791 Data from ICR cohort, presented in Mackay et al; *P<0.05, **P<0.01, ***P<0.001,
792 ****P<0.0001, one-way ANOVA t-test. **(L)** *ID1* expression of pHGG tissue by *ACVR1*
793 mutational status (n=15 *ACVR1*^{MUT}; n=205 *ACVR1*^{WT}). Data from ICR cohort; **P<0.01,
794 unpaired parametric t-test. **(M)** *ID1* expression of pHGG tumors with *ACVR1* mutation only
795 (n=4), H3K27M only (n=72), H3K27M and *ACVR1* mutations (n=11) and neither mutation
796 (H3WT/*ACVR1* WT; n=114). Data from ICR cohort; *P<0.05, **P<0.01, one-way ANOVA t-
797 test.

798 **Fig. 2. ID1 is epigenetically active in H3K27M-DIPG. (A)** Multifocal DIPG tumor samples
 799 were obtained at autopsy from n=2 patients with H3K27M mutation and wildtype *ACVR1*
 800 (ACVR1^{WT}), n=2 patients with H3K27M mutation and *ACVR1* mutation (ACVR1^{MUT}) and n=3

801 patients with wildtype H3 and *ACVR1*. Circles over MRI images represent the approximate
802 region of tumor. **(B)** *ID1* expression (qPCR) for multifocal samples collected from patients in
803 (A). Data represent mean+/-SEM; **P<0.01, ****P<0.0001, one-way ANOVA t-test. **(C)** ChIP-
804 sequencing of H3K27ac and H3K27me3 deposition at the *ID1* gene locus in normal human
805 pontine tissue (n=1), H3^{WT} DIPG tumor tissue (n=1) and H3K27M DIPG tumor tissue (n=1). **(D-**
806 **E)** ChIP-qPCR quantification of deposited (D) H3K27ac, and (E) H3K27me3 marks at gene
807 body elements identified in part C for the *ID1* gene. Data represent samples from patients in (A),
808 mean+/-SEM; *P<0.05, **P<0.01, ****P<0.0001, one-way ANOVA t-test. **(F)** MRI image of
809 H3K27M/*ACVR1*^{MUT} DIPG patient with circles representing regions where samples were
810 obtained at autopsy. Color scale on right displays relative level of *ID1* expression by qPCR
811 (orange=higher *ID1* expression; blue=lower *ID1* expression. **(G)** ScRNA-seq data (DFCI, n=4
812 DIPGs) of malignant DIPG cells plotted to show *ID1* expression across varying subtypes of cells
813 [oligodendrocyte-like (OC-like); OPC-like; AC-like].

Figure 3



814

815 **Fig. 3. ID1 expression is elevated in developing astrocyte cells in prenatal human and**
 816 **murine hindbrain. (A)** Heat map showing relative *ID1* expression by in situ hybridization (ISH)

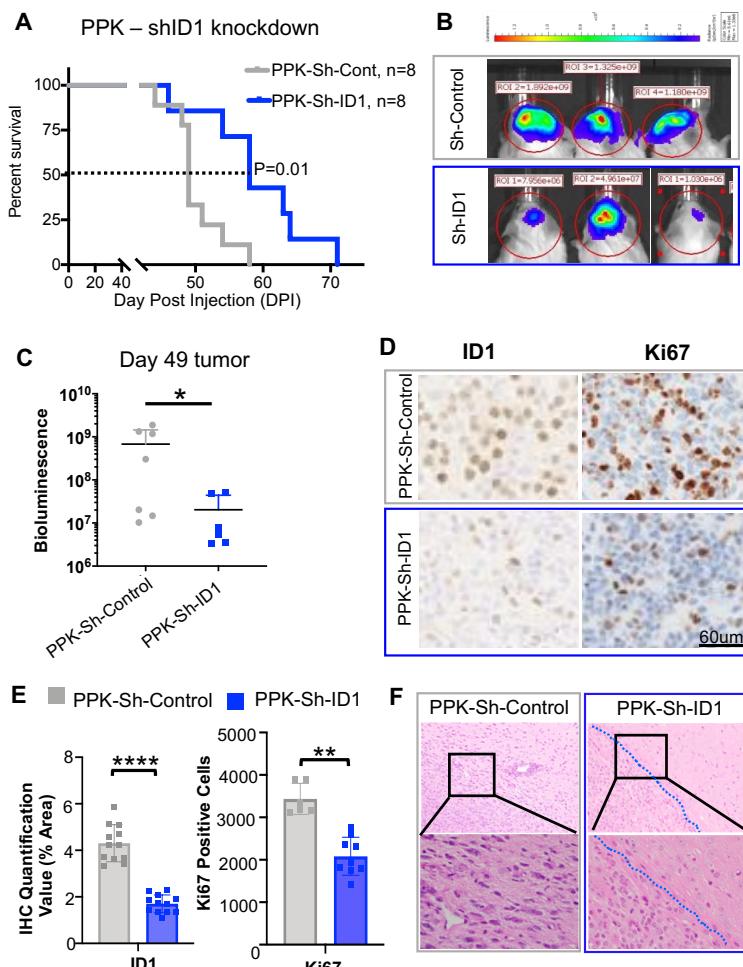
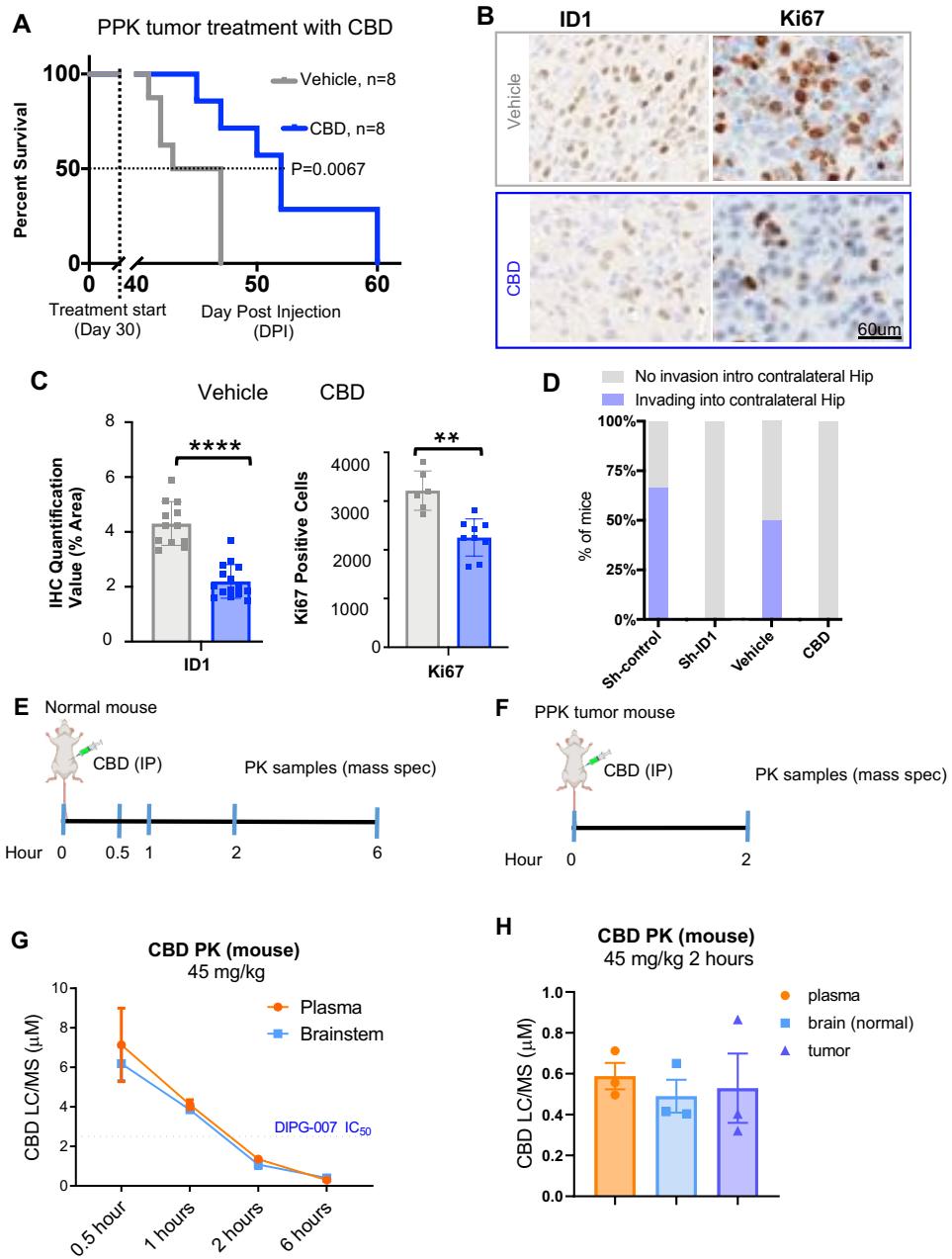

817 in murine brain across development. Available from: <http://developingmouse.brain-map.org/>. **(B)**
818 ISH of sagittal developing murine brain sections showing higher *ID1* RNA in embryonic
819 hindbrain than forebrain, and minimal *ID1* RNA in all post-natal brain [Allen Developing Mouse
820 Brain Atlas. Available from: <http://developingmouse.brain-map.org/>]. **(C)** Heatmap of *ID1*
821 expression across varying cell types during normal human pontine development [data from Fan
822 et al. (25)]. Circle size indicates the percentage of cells that express ID1 and color indicates the
823 expression level in *ID1*⁺ cells (red=high expression; blue=low expression). **(D)** *ID1* IHC staining
824 of normal human pontine tissue displays higher *ID1* expression in cells lining the 4th ventricle at
825 20.5 weeks gestation and minimal expression in brain tissue at 3.5 years of age. **(E)** *ID1* IHC of
826 normal murine pontine tissue at embryonic day 18 (E18) displays higher *ID1* expression
827 compared to postnatal day 7 (P7). Magnification = 10x (top row); 40x (bottom row). **(F)** Overlap
828 of genes expressed by cell types in the developing human pons Fu et al. (28) in DIPG tumor cell
829 subsets. (Red=cell type marker genes enriched in DIPG cells; blue=cell type marker genes not
830 enriched in DIPG cells). **(G)** Immunostaining of SPARCL1 (green) and *ID1* (red) in human
831 DIPG tissue showing co-localization of *ID1* and SPARCL1 in a subset of cells (white arrow).
832 Scale bar, 20 μ m. Tumor nuclei were stained with DAPI (blue). [For (A), from left to right (row
833 headings), RSP: rostral secondary prosencephalon, Tel: telencephalic vesicle, PedHy: peduncular
834 (caudal) hypothalamus, P3: prosomere 1, P2: prosomere 2, P1: prosomere 3, M: midbrain, PPH:
835 prepontine hindbrain, PH: pontine hindbrain, PMH: pontomedullary hindbrain, MH: medullary
836 hindbrain (medulla); from top to bottom (column headings), E11.5/15.5: embryonic day
837 11.5/15.5, P4: postnatal day 4].

Figure 4

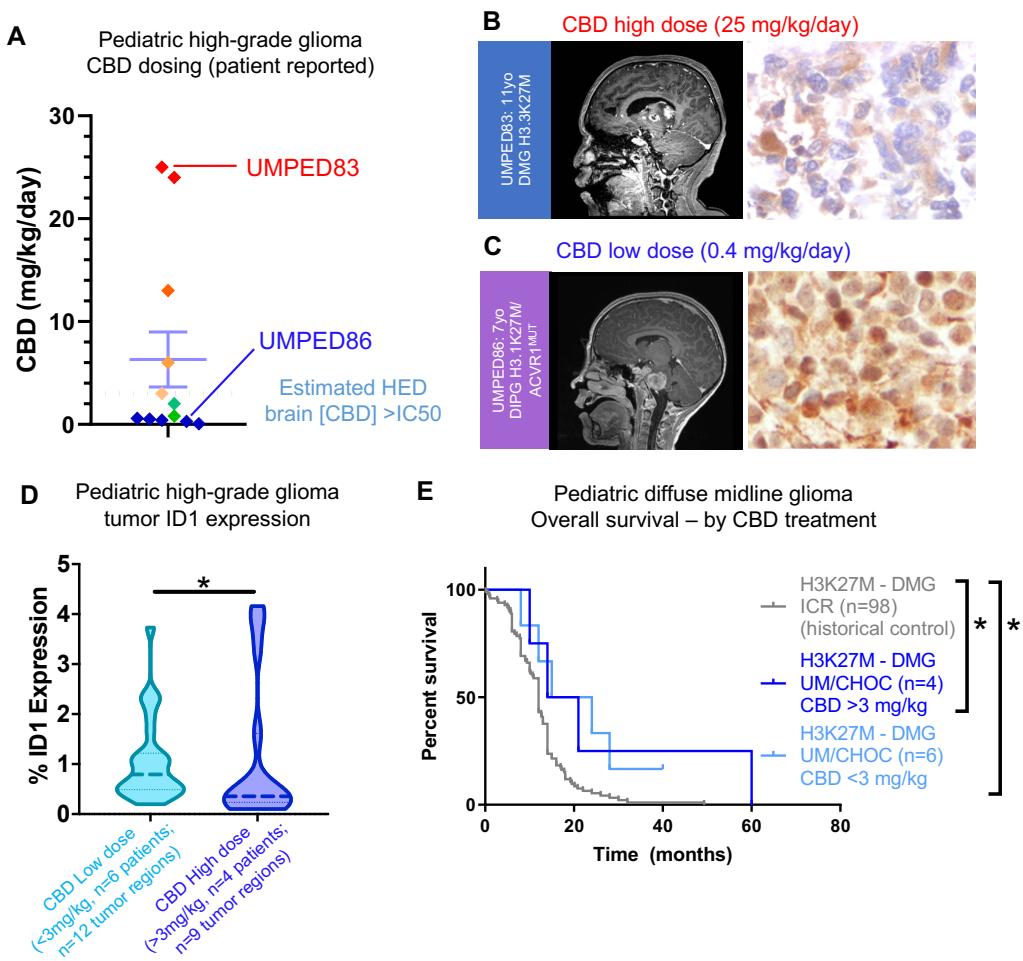
838 Fig. 4. Genetic and Pharmacological inhibition of *ID1* decreases DIPG cell invasion and

839 **migration.** **(A)** Western blot (WB) confirming *ID1* knockdown in DIPG007 cells. **(B)** WB
840 depicting reduction in SPARCL1 expression along with decreased *ID1* expression in *ID1*-
841 knockdown DIPG007 cells. **(C)** Effect of *ID1* knockdown on invasion as measured by Matrigel-
842 coated Boyden chamber assay. Images show invading cells stained with crystal violet. Each data
843 point represents an individual image; **P < 0.01, unpaired parametric t-test. **(D-E)** Effect of *ID1*
844 knockdown on DIPG007 migration as measured by scratch assay, quantified as percent wound
845 closure. Images show representative scratch at 0 and 24 hours outlined in dotted red line.
846 Experiment was completed in triplicate and data points represent mean+/-SEM, **P < 0.01;
847 images taken with Incucyte; area measured by ImageJ. **(F)** WB for *ID1* and ACTB expression in
848 DIPG007 and PPK cells treated with increasing concentrations of CBD or DMSO control. **(G)**
849 Viability of DIPG007 and PPK cells treated with increasing concentrations of CBD (0.5-20 μ M)
850 relative to DMSO-treated control. Experiment was completed in triplicate and data points
851 represent mean+/-SEM. **(H)** DIPG007 cells were treated for 2 days with DMSO (control), 2.5 μ M
852 or 5 μ M CBD and invasion was measured by Matrigel-coated Boyden chamber. Each data point
853 represents an individual image, mean+/-SEM; ****P < 0.0001, unpaired parametric t-test. **(I)**
854 Effect of CBD treatment (5-10 μ M) on DIPG007 migration as measured by scratch assay,
855 quantified as percent wound closure. Experiment was completed in triplicate and data points
856 represent mean+/-SEM, **P < 0.005, two-way ANOVA t-test. **(J)** Histogram showing increase
857 in DCF (ROS) with increasing doses of CBD. **(K)** Production of ROS mediates the inhibitory
858 activity of CBD through *ID1*. DIPG007 cells were treated for 72 hours with vehicle (DMSO) or
859 different concentrations of CBD (10, 8, 6, 4, 2, 1 μ M) in the presence and absence of 50 μ M
860 TOC. IC₅₀ was 2.3 μ M for CBD treatment alone and 10.34 μ M for CBD + TOC; ****P < 0.0001,
861 two-way ANOVA t-test. Cell proliferation was measured using XTT assay.


Figure 5

862 **Fig. 5. Genetic targeting of ID1 decreases cell viability and slows murine tumor growth in**
 863 **PPK IUE tumor model. (A)** Standard Kaplan-Meier survival plot reveals notable increase in
 864 survival for PPK-Sh-ID1 [*PDGFRA*-, *TP53*- and H3K27M-mutant with ID1 knockout (n=8)]
 865 mice with median survival 58 days post-IUE injection compared to PPK-Sh-control (n=8) mice
 866 with median survival of 49 days; P=0.01, Log-rank test. **(B)** Representative bioluminescence
 867 images of PPK-Sh-control tumors and PPK-Sh-ID1 (representative from n=8), 49 days after IUE
 868 injection, displaying lower average luminescence in the PPK-Sh-ID1 group than in the PPK-Sh-
 869 control. **(C)** IUE PPK bioluminescence tumor monitor growth data with statistical significance
 870 between PPK-Sh-control and PPK-Sh-ID1 groups 49 days after IUE injection. *P<0.05, one-way
 871 ANOVA t-test. **(D)** IHC analysis of ID1 and Ki67 expression in tumors from PPK-Sh-ID1 and

872 PPK-Sh-control mice. Images representative of each experimental cohort. Magnification=40x.
873 **(E)** IHC quantification for PPK-Sh-control and PPK-Sh-ID1 mice for ID1 and Ki67 expression
874 levels. **P=0.0065 and ****P ≤ 0.0001, one-way ANOVA t-test. Data points include 3 animals
875 per treatment group and 4 images per animal. Data represent the mean+/-SEM. **(F)** Images of
876 IUE-generated PPK-Sh-Control and PPK-Sh-ID1 tumor borders for assessment of tumor cell
877 invasiveness. Magnification = 10x (top row); 40x (bottom row).


Figure 6

878 **Fig. 6. Therapeutic inhibition of ID1 with CBD decreases ID1 expression and improves**
 879 **survival of PPK tumor-bearing mice. (A)** Survival curve for PPK mice shows that median
 880 survival for control condition was 45 days post-IUE injection (n=8) and 55 days for CBD
 881 condition (15 mg/kg, n=8). **P<0.005, Log-rank test. **(B-C)** IHC analysis and quantification of
 882 tumor images reveals that CBD treatment reduced expression of ID1 and Ki67 compared to

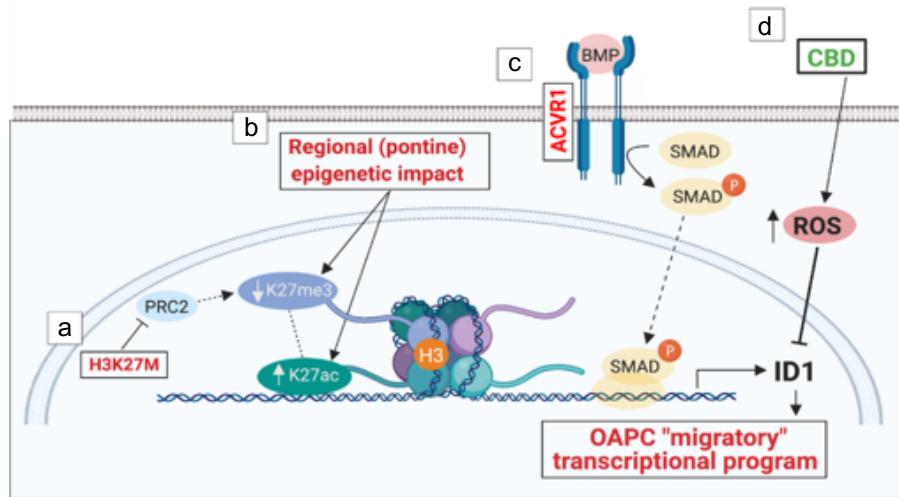

883 vehicle-treated tumors (representative of n=3 tumors); **P=0.0065 and ****P ≤ 0.0001,
884 Dunnett's multiple comparisons test. N=3 animals per treatment group and 4 images per animal.
885 Data represent the mean+/-SEM. Magnification=10x. **(D)** Analysis of tumor invasion in tumor-
886 bearing mice (n=3 mice per group) with genetic (sh-ID1) or pharmacologic (CBD) ID1
887 knockdown. Invasion was defined as tumor infiltration into the contralateral hippocampus (Hip).
888 **(E)** Timeline for pharmacokinetic (PK) liquid chromatography (LC)/mass spectrometry (MS)
889 analysis of CBD treatment by intraperitoneal (IP) injection in normal mouse plasma and
890 brainstem. **(F)** Timeline for PK mass spec analysis of CBD treatment by IP injection in PPK
891 mouse plasma, normal brain and tumor. **(G)** PK analysis results for normal (non-tumor-bearing)
892 mice treated with 45 mg/kg CBD (n=3 mice per time point). Data represent CBD concentrations
893 as determined by LC/MS for the plasma and brainstem; mean+/-SEM. Blue dashed line
894 represents estimated IC₅₀ of CBD for DIPG007 cells. **(H)** PK analysis results for n=3 PPK mice
895 treated with 45 mg/kg CBD. Data represent CBD concentrations as determined by LC/MS for
896 the plasma, normal brain and tumor; mean+/-SEM.

Figure 7

897 **Fig. 7. Treatment of human pHGG patients with CBD. (A)** Plot representing the CBD dosing
898 range (mg/kg/day) in human patients, including one high (UMPED83) and one low (UMPED86)
899 dose of CBD, as indicated by red and blue lines. **(B-C)** IHC-stained tumor tissue from DIPG
900 patients (B) UMPED83 treated with CBD (25 mg/kg) and (C) UMPED86 treated with CBD (0.4
901 mg/kg/day) during treatment course for assessment of ID1 expression. IHC images
902 representative of n=3 images taken using Aperio ImageScope, magnification=40x. **(D)** ID1 IHC
903 analysis and quantification of human DIPG tumor samples with low (n=6) and high dose (n=4)
904 of CBD; *P=0.0388, Mann-Whitney U test. **(E)** Survival of H3K27M-mutant tumor patients
905 treated with CBD from higher than 3mg/kg (n=4) and lower than <3mg/kg (n=6) with historical
906 control (n=98).

Figure 8

907 **Fig. 8. Proposed model of ID1 activation in DIPG with H3K27M and ACVR1 mutations**

908 **and its inhibition with CBD.** The proposed model is made up of the following sub-sections: (a)
 909 H3K27M inhibits PRC2, leading to global decreases in H3K27me3 and subsequently allowing
 910 for increased H3K27ac. (b) Regional or tissue-specific factors and/ or (c) constitutively
 911 activating *ACVR1* mutations increase *ID1* expression via SMAD protein signaling. We propose
 912 that *ID1* expression replicates the developing cell subtype OAPC transcriptional program, which
 913 promotes migration. (d) *ID1* expression is reduced by CBD treatment, which partially acts
 914 through increasing intracellular levels of reactive oxygen species (ROS). Image created with
 915 BioRender.

916

917

918

919

920 **Supplementary Materials**921 **Supplementary Methods**922 **Whole exome and transcriptome sequencing (Sick Kids, Toronto)**

923 Use of patient tissues was approved by the Hospital for Sick Children (Toronto) Research
924 Ethics Board. WES/WGS (accession EGAS00001000575) from DIPG samples plus matched
925 normal was using DNA extracted from fresh-frozen tissues as described (13). Fresh-frozen tissue
926 was used for total RNA extraction with the RNeasy mini kit (QIAGEN, CA, USA). 34 DIPG and
927 17 normal brain samples passed quality control. The TruSeq Stranded Total RNA Library Prep
928 with Ribo-Zero Gold Kit (Illumina, CA, USA) was used and paired end sequencing generated
929 with Illumina HiSeq 2500 machines (accession EGAD00001006450) (51). Sequencing quality
930 was confirmed with FastQC v0.11 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>).
931 Reads were quality trimmed with Trimmomatic (52) v0.35 before being aligned with RSEM (53)
932 v1.2 to human transcriptome build GRCh37 v75. Gene expression was quantified FPKM.

933

934 **Whole exome and transcriptome sequencing of tumor/normal tissue (University of
935 Michigan)**

936 Clinically integrated sequencing was performed according to previously published
937 methodology (54, 55). For living patients with DIPG/HGG, the PEDS-MIONCOSEQ study was
938 approved by the Institutional Review Board of the University of Michigan Medical School and
939 all patients or their parents or legal guardians provided informed consent (written assent if >10
940 years). For deceased patients, parents were consent for research autopsy and brain tumor/normal
941 banking separately from the MIONCOSEQ protocol. Tumor (FFPE or frozen) and normal
942 (cheek swab or blood, when available) samples were submitted for whole exome (paired tumor

943 and germline DNA) and transcriptome (tumor RNA) sequencing. Nucleic acid preparation, high-
944 throughput sequencing, and computational analysis were performed by the Michigan Center for
945 Translational Pathology (MCTP) sequencing laboratory using standard protocols in adherence to
946 the Clinical Laboratory Improvement Amendments (CLIA) (56).

947

948 **Analysis of tumors from Institute for Cancer Research (ICR)**

949 Whole exome and transcriptome sequencing data from 1067 pediatric high grade gliomas
950 (pHGGs) (compiled from the Jones lab, ICR London, Cancer Cell 2017) was retrieved from the
951 ICR cohort (20). Specimens with mRNA sequencing (n=247) were then separated by location
952 into brainstem/pons (n=68), hemispheric (n=130), and midline (n=49). PHGGs of the brainstem
953 were considered DIPGs. Of the 68 DIPGs from the ICR cohort, 2 did not have survival data and
954 were removed. Overall survival was defined from day of diagnosis to death of patient. High *ID1*
955 expression was defined as having a z-score greater than 0.2 (n=38), and low *ID1* expression as
956 less than 0.2 (n=25).

957

958 **In Utero Electroporation (IUE) and generation of primary cell lines from IUE tumors**

959 PiggyBac transposon plasmids containing *PDGFRA* mutation, *TP53* mutation, *H3F3A*-
960 K27M, and *H3F3A*-WT, were kind gifts from Dr. Timothy Phoenix (Cincinnati Children's
961 Hospital, Cincinnati, OH) (57). *In utero* electroporation was performed on isoflurane/oxygen-
962 anesthetized pregnant female mice at embryonic day E13.5 in the cortex. Subcutaneous delivery
963 of Vetersic and Carprofen at 0.1 mg/kg and 5 mg/kg, respectively, was also provided pre-
964 emptively. Briefly, IUE were performed using sterile technique on isoflurane/oxygen-
965 anesthetized pregnant CD1 females at E13.5. Uterine horns were exposed through a 1 cm

966 incision and embryos were digitally manipulated into the correct orientation. Borosilicate
967 capillaries were loaded with endotoxin-free DNA and Fast Green dye (0.05%, Sigma) for
968 visualization. Lateral ventricles were then injected with the DNA-dye mixture using a
969 microinjector (Eppendorf). 3-5 plasmids were injected at the same time, each at a concentration
970 of 2 μ l/ μ l. 1-2 μ l of total solution was injected into each embryo. DNA was electroporated into
971 cortical neural progenitors using 3 mm tweezertrodes (BTX), applying 5 square pulses at 35 V,
972 50 ms each with 950 ms intervals. Embryos were then returned into abdominal cavity, muscle
973 and skin sutured, and animal monitored until full recovery. Periodically, tumor growth was
974 monitored by IVIS as mice are treated starting 33 days post injection (dpi).

975 Primary cell lines with specific genetic alterations were generated from IUE-induced
976 pediatric high grade glioma models. Mice with confirmed large tumors (bioluminescence 10^7 –
977 10^8 photons/s/cm²/sr) were selected. Mice were euthanized with an overdose of isoflurane,
978 decapitated, and brain was dissected from the skull. Brain was then placed in a Petri dish, and
979 coronal cuts were made anterior and posterior to tumor using sterile scalpel. Tumor was
980 identified and dissected with fine forceps and placed in a 1.5 ml tube containing 300 μ l of Neural
981 Stem Cell Media (NSC Media: DMEM/F12 with B-27 supplement, N2 supplement, and
982 Normocin, supplemented with human recombinant EGF and bFGF at a concentration of 20
983 ng/ml each). Tumor was gently homogenized using a plastic pestle. 1 ml of enzyme free tissue
984 dissociation solution was added to homogenized tumor, and then incubated at 37°C for 5
985 minutes. Then, cell suspension was passed through a 70 μ m cell strainer, centrifuged at 300x g
986 for 4 min. Supernatant was decanted, and pellet resuspended in 7 ml of NSC media. Solution was
987 then plated onto a T25 tissue culture flask, and placed in tissue culture incubator at 37°C with
988 atmosphere of 95% air and 5% CO₂. After 3 days, neurospheres were removed and re-plated into

989 a T75 tissue culture flask. Cells were then maintained in NSC media appropriately. No
990 mycoplasma testing regimen was performed on murine cell lines as they are early passage tumor-
991 derived cells. If frozen, cells were cultured for 2 to 3 passages (2 weeks) following thawing for
992 experiments.

993

994 **Mint-ChIP-sequencing of tumor tissue**

995 Analyses for the two classical histone modifications H3K27ac and H3K27me3
996 representing accessible and repressed chromatin states were performed as part of a MiNT-ChIP
997 analysis for 9 tumor samples of DIPG patients in comparison to a control tissue sample of
998 healthy pons according to the protocol published by Buenstro et al., 2013. Up to 50 mm³ snap
999 frozen tumor tissue was digested with 2.5 mg/ml collagenase IV (Sigma-Aldrich, Germany) and
1000 dissociated via the gentleMACS Dissociator (Miltenyi, Germany). Subsequent
1001 immunoprecipitation for H3K27Ac and H3K27me3 was performed with 5 µg of ChIP-grade
1002 antibodies, monoclonal murine anti-H3K27Ac (MABI0309, ActiveMotif, Belgium) and a
1003 polyclonal rabbit anti-H3K27m3 (Merck Millipore, Germany).

1004 Over 50 mio reads were sequenced in 50 bp paired-end sequencing runs on a NovaSeq
1005 6000 system (NGS Core Facility, University Hospital, Bonn, Germany) and demultiplexed as
1006 described by Buenstro et al., 2013 (Core Unit Bioinformatics Data Analysis, University Hospital
1007 Bonn, Germany). Reads were aligned against the human reference genome hg19 by Bowtie2
1008 (v2.4.2). Tag directories of piled up reads were created using HOMER (v4.11)
1009 makeTagDirectory and visualized makeUCSCfile with the -fsize 5e8 option.

1010

1011 **Native ChIP-qPCR**

Protocol for native ChIP-qPCR was adapted from previously described methods, and optimized for frozen human tissue (58). Antibodies against H3K27ac (2 µl, cat# 07360, Millipore Sigma), H3K27me3 (1 µg, cat# 07449, Millipore Sigma), and control IgG (2 µg Cat#12370, Millipore Sigma) were used for immunoprecipitation.

Quantitative-PCR was performed per below methods, using 1µl of eluted ChIP DNA. Primers for *ID1* enhancer and promoter region target sites were predicted based on H3K27ac peaks observed in the four H3K27M DIPG tumor tissue samples analyzed via ChIP-sequencing in main Figure 2C. For a complete list of primers used in ChIP-qPCR, see Supplementary Table S1. NCBI RefSeq hg19 was used as reference genome (43). Enrichment at target sites was quantified using the percent input method as has been previously described (59). Gene expression was quantified relative to GAPDH using the comparative C_T method as previously described (60). For a complete list of primer sequences used in qPCR for gene expression, see Supplementary Table S2.

1025
1026 **Analysis of developing murine brain**
1027 Call sets from the ENCODE portal (<https://encodeproject.org/>) were downloaded with the
1028 following identifiers: ENCSR691NQH, ENCSR428GHF, and ENCSR066XFL. ChIP-
1029 Sequencing peaks were quantified using EaSeq (<http://easeq.net>) (61). Graphic depictions of
1030 H3K27ac peaks at the *ID1* locus were generated using IGV browser (62). *ID1* in situ
1031 hybridization (ISH) data and images from the 2014 Allen Developing Mouse brain Atlas
1032 (<http://developingmouse.brain-map.org/>) were downloaded and analyzed.
1033
1034 **ScRNA-seq analysis from developing brain and H3K27M-mutant DIPGs**
1035

1036 Single-cell gene expression data and their clusters in the developing brain were obtained
1037 from GSE133531 (mouse pons), GSE120046 (human pons, gestational week 8-28), and
1038 GSE144462 (human cortex, gestational week 21-26). Raw mouse expression data was
1039 normalized to counts-per-million for each cell. Cells were assigned to clusters based on the joint
1040 clustering of cells from all four developmental stages (E15.5, P0, P3, P6). 1,792 cells were
1041 removed due to missing cluster assignments and Id1 expression was analyzed in the remaining
1042 22,682 cells. Analysis of normalized human pontine expression data was restricted to 4,228 cells
1043 that were detected across 18 gestational time points in the pons (≥ 3 cells per gestational week).
1044 Normalized human expression data for H3K27M-mutant DMGs was obtained from GSE102130.
1045 Tumor cells with an astrocytic differentiation (AC-like), oligodendrocytic differentiation (OC-
1046 like), and OPC-like program were determined using stemness- and lineage scores from Filbin et
1047 al. (19) and k -means clustering. Mann-Whitney U (MWU) tests were used to identify for each
1048 patient genes that separate AC-like and OPC-like cells. Cell type enrichments were calculated
1049 using significant marker genes (cell type set A) and full summary statistics obtained from
1050 differential marker gene analysis (enrichment score=z-transformed median -log10 MWU P
1051 values). Functional enrichment analysis of marker genes was performed using the Enrichr web
1052 service (63) and top 200 marker genes (sorted by MWU P-value).
1053

1054 **DIPG immunohistochemistry (IHC) staining and quantification**

1055 Mouse PPK tumor and human DIPG paraffin embedded tissue were sectioned and sent to
1056 Dr. Daniel Martinez (Department of Pathology, Children's Hospital of Philadelphia, PA) for ID1
1057 and Ki67 staining. Briefly, ID1 antibody (Biocheck BCH-1) was used to stain formalin-fixed
1058 paraffin embedded tissue slides. Slides were rinsed in 2 changes of xylene for 5 min each then

1059 rehydrated in a series of descending concentrations of ethanol. Slides were treated with .3%
1060 H₂O₂/methanol for 30min. and then treated in a pressure cooker (Biocare Medical) with 0.01M
1061 Citrate buffer pH 7.6. After cooling, slides were rinsed in 0.1M Tris Buffer and then blocked
1062 with 2% fetal bovine serum for 5 min. Slides were then incubated with ID1 antibody at a 1:25
1063 dilution overnight at 4 degrees C. Slides were then rinsed and incubated with biotinylated anti-
1064 Rabbit IgG (Vector Laboratories BA-1000) for 30min at room temp. After rinsing, slides were
1065 incubated with the avidin biotin complex (Vector Laboratories PK-6100) for 30 min at room
1066 temp. Slides were then rinsed and incubated with DAB (DAKO Cytomation K3468) for 10 min
1067 at room temp. Slides were counterstained with hematoxylin, then rinsed, dehydrated through a
1068 series of ascending concentrations of ethanol and xylene, then coverslipped. Ki67(SP6) antibody
1069 (Abcam ab16667) was used to stain formalin-fixed, paraffin-embedded tissue. Staining was
1070 performed on a Bond Max automated staining system (Leica Microsystems). The Bond Refine
1071 staining kit (Leica Microsystems DS9800) was used. The standard protocol was followed with
1072 the exception of the primary antibody incubation which was extended to 1 hour at room
1073 temperature. Ki67 was used at 1:400. Antigen retrieval was performed with E2 (Leica
1074 Microsystems) retrieval solution for 20min. After drying, slides were scanned at 20x
1075 magnification with an Aperio CS-O (Leica Biosystems) slide scanner and images were viewed
1076 using the Aperio ImageScope software. An individual blinded to the experiment captured five
1077 random images from each IHC slide at 10X magnification. Quantification of images for precent
1078 positive area were measured by ImageJ software.

1079

1080 **Human cell cultures**

1081 Primary H3.3K27M-mutant cell line DIPG007 was obtained from Dr. Rintaru Hashizume
1082 from (Northwestern University, Chicago, IL) who obtained them originally from Dr. Angel
1083 Carcaboso (Hospital Sant Joan dr Deu, Barcelona, Spain). DIPG-XIII was obtained from Dr.
1084 Michelle Monje (Stanford University, Stanford, CA). PBT-29 was obtained from Dr. Nicholas
1085 Vitanza,(Seattle Children's, Seattle, WA). Immortalized human embryonic kidney 293
1086 (HEK293) cells were obtained from Dr. Sriram Venneti (University of Michigan, Ann Arbor,
1087 MI). Cells were cultured for 2 to 3 passages (2 weeks) following thawing for experiments.

1088

1089 *DIPG007, DIPGXIIIp and PBT-29 cells*

1090 DIPG007, DIPGXIIIp and PBT-29 cells were cultured in TSM N5 media: 250 ml DMEM (1X,
1091 Cat#11995065, Gibco); 250 ml NeuroBasal-A Medium (1X, Cat#0888022, Gibco); 5 ml HEPES
1092 (1M, Cat#15630080, Gibco); 5 ml Sodium Pyruvate (100mM, Cat#11360070, Gibco); B-27
1093 Supplement without Vitamin A (50X, Cat #12587010, Gibco); 5 ml MEM NEAA (100X,
1094 Cat#11140050, Gibco); 5 ml Antibiotic-Antimycotic (100X, Cat#15240062, Gibco); 250 μ l
1095 Heparin Solution (Cat#07980, STEMCELL Technologies); 10 μ l human PDGF-AA every 3 days
1096 (10 ng/ml, Cat#10016, Shenandoah Biotechnology); 1 ml Normocin (Cat#antnr1, InvivoGen); 10
1097 μ l human PDGF-BB every 3 days (10 ng/ml, Cat#10018, Shenandoah Biotechnology); 20 μ l
1098 FGF every 3 days (20 ng/ml, Cat#10018B, PeproTech); 20 μ l EGF every 3 days (20 ng/ml,
1099 Cat#10047, PeproTech). For adherent conditions, FBS was diluted in media to 10%. For
1100 neurosphere culture, FBS was not added. At each passage, cells were dissociated using StemPro
1101 Accutase (Cat#A1110501, Gibco).

1102

1103 *Human Embryonic Kidney 293 (HEK293) cells*

1104 HEK293 cells were cultured in: 500 ml DMEM (1X, Cat#11995065, Gibco); 333 μ l Gluta-Max
1105 (200 mM, Cat#25030081, Gibco); 1 ml Normocin (Cat#antnr1, InvivoGen). FBS was diluted in
1106 media to 10%. At each passage, cells were dissociated using StemPro Accutase (Cat#A1110501,
1107 Gibco).

1108

1109 **ShRNA-mediated gene silencing by lentiviral transduction of cultured cells**

1110 ShRNA-mediated gene silencing for DIPG007, HEK293, or NHA cell cultures was
1111 performed by lentiviral transduction with pGIPZ shRNAs (Dharmacon, GE) targeting *ID1*
1112 (Clone ID's V2LHS_133263, V2LHS_133264) or scrambled control (Cat#RHS4346). A map of
1113 this vector is provided in Supplementary Figure S15. Protocol for lentiviral transduction was
1114 modified from the University of Michigan Vector Core as follows. 24 hours prior to
1115 transduction, cells were split into 6-well tissue culture plates at a density that they would reach
1116 approximately 60% confluency the following day. The next day, media was aspirated and
1117 replaced with 1.35 ml of fresh media. Then, 0.15 ml of 10x viral supernatant was added, along
1118 with 2.5 μ l of 4mg/ml Polybrene (Cat#G062, ABM). Plate was then rocked gently on shaker to
1119 evenly distribute virus and Polybrene. Cells were then placed in cell incubator at 37°C for
1120 approximately 24 hours. Exact time was dependent on when cells began expressing GFP, which
1121 was contained in the lenti-vector.

1122

1123 **Western Blotting**

1124 Western blotting was performed using antibodies against ID1 (1:1000, Cat#133104,
1125 Santa Cruz Biotechnology), Vinculin (1:10000, Cat#700062, Invitrogen), H3K27M (1:500,

1126 EMD, Cat#ABE419), H3K27me3 (1:500, EMD, Cat#07-449) and ACTB (1:10000, Cat#A2228,
1127 Sigma-Aldrich), Secondary antibodies biotinylated horse anti-mouse IgG (Cat#BA2000, Vector
1128 Laboratories), HRP goat anti-rabbit IgG (Cat#PI1000, Vector Laboratories), and m-IgG_k BP-
1129 HRP (Cat#sc516102, Santa Cruz Biotechnology) were used. Chemiluminescent blots were
1130 imaged and processed using the FluroChem M system (ProteinSimple, San Jose, CA).

1131

1132 **Cannabidiol treatment studies in vitro**

1133 Treatment was performed as previously described (12). 3,000 primary DIPG007 and PPK
1134 cells were plated in 96-well plates and incubated for 24 hours. The next day, cells were treated
1135 with different doses of cannabidiol (CBD) cat # 90080 (Cayman Chemical). After 72 hours, in
1136 vitro cell viability was monitored by XTT Cell Proliferation Assay kit (Cayman Chemical).

1137

1138 **Invasion assay**

1139 Invasion assays were performed using growth factor-reduced matrigel invasion chambers
1140 with 8 uM pores (Cat #354483, Corning) as described in previously published work (50).
1141 Seeding density and incubation time was optimized for each cell line. FBS was used as
1142 chemoattractant. Invading cells were stained with crystal violet. To count invading cells,
1143 transwell membranes were viewed underneath an inverted microscope at 10x magnification, and
1144 four pictures were taken at random locations to get an average sum.

1145

1146 **Migration (scratch) assay**

1147 Migration assays were performed following a previously published protocol with slight
1148 modifications (64). Cells were seeded in 6-well plates, and grown to approximately 80%

1149 confluence. Scratches were made using a 200 μ l pipette tip, and migration was then monitored
1150 using the IncuCyte® live-cell analysis system (Sartorius, Ann Arbor, MI). Images were analyzed
1151 using ImageJ's MRI Wound healing tool (http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Wound_Healing_Tool). Percent closure was calculated as $[(Area_{t=0} - Area_t) / Area_{t=0}] * 100$.
1152
1153

1154

1155 **Proliferation and viability assays**

1156 Cell viability was quantified using the MTT Cell Proliferation Assay Kit (Cat#ab211091,
1157 ABCAM), following manufacturer instruction for adherent cells. For proliferation, cells were
1158 seeded in 96-well plates and monitored for confluence using the IncuCyte® live-cell analysis
1159 system (Sartorius, Ann Arbor, MI).

1160

1161 **Implantation of DIPG007 cells and bioluminescence imaging**

1162 *Implantation of mouse cells*

1163 Male and female NSG™ mice were obtained from Jackson Labs (Bar Harbor, ME) and
1164 were 6-10 weeks of age at the start of surgery. All animal studies were conducted according to
1165 the guidelines approved by the Institutional Animal Care & Use Committee (IACUC) at the
1166 University of Michigan. Mice were anesthetized with injection of 120 mg/kg ketamine and 0.5
1167 mg/kg dexmedetomidine. Hair above scalp was shaven, disinfected with iodine, and a 1 cm
1168 incision was made above scalp to expose cranium. The periosteum was removed with scalpel.
1169 Next, a 0.6mm burr hole was drilled 2 mm right of midline and 0.2 mm anterior to the bregma
1170 with the Ideal Micro Drill (MD-1200 120V) from Braintree Scientific Inc. Mice were placed in a
1171 Mouse/Neonatal Rat Adaptor stereotactic frame (#51615) from Stoelting. A 10 ul syringe

1172 (#7635-01) fitted with 33-gauge needle (#7762-06) from Hamilton, was filled with cell
1173 suspension (15,000 cells per uL) and penetrated 3 mm into brain tissue. After waiting two
1174 minutes, one microliter of cell suspension was injected over one minute and needle was slowly
1175 removed after waiting 3 minutes after injection. Incision was closed with 4-0 nylon and mouse
1176 was given 1 mg/kg atipamezole for reversal and monitored for recovery. Mice were monitored
1177 for symptoms of morbidity, including impaired mobility, scruffed fur, hunched posture, ataxia,
1178 and seizures.

1179 *Bioluminescence imaging*

1180 Mice were imaged using IVIS Spectrum #2 machine at the Center for Molecular Imaging
1181 at the University of Michigan Core Facility. Mice were injected with 160 mg/kg D-luciferin
1182 (#115144-35-9) from Gold Biotechnology and anesthetized with 2% isoflurane. 10 minutes after
1183 luciferin injection, mice were placed into machine in a prone position and bioluminescence was
1184 measured. Mice were imaged until peak signal was obtained for each mouse. Tumor
1185 bioluminescent signal is measured in radiance (photons) (p/s/cm³/sr) in a circular region of
1186 interest (ROI) over the cranium of each mouse with Living Image Software (PerkinElmer Inc).

1187

1188 **CBD treatment studies in murine IUE PPK model**

1189 Mice harboring IUE-generated PPK HGG tumors were treated with CBD when tumors
1190 reached logarithmic growth phase (minimum 2 x 10⁶ photons/sec via bioluminescent imaging).
1191 Mice litters from each experimental group were randomized to treatment with: (A) 15 mg/kg
1192 CBD (10% CBD suspended in Ethanol, 80% DPBS, 10% Tween-80) and (B) control treatment
1193 (10% Ethanol, 80% DPBS, 10% Tween-80). Mice were treated 5 days/week until morbidity.
1194 Animals displaying symptoms of morbidity after treatment were euthanized for

1195 immunohistochemistry (IHC) analysis. For IHC analysis, mice were perfused with Tyrode's
1196 Solution followed by 4% paraformaldehyde fixative solution to preserve the structures of the
1197 brain. For IHC quantification (Ki67 and ID1), 3-4 random images per tumor (n=3 tumors per
1198 group) were taken at 10x magnification using Aperio ImageScope and percent positive area was
1199 calculated using ImageJ software.

1200

1201 **CBD Pharmacokinetic analysis**

1202 *Mouse PK sample procurement*

1203 CBD administration to non-tumor bearing CD1 mice and PPK tumor bearing mice for PK
1204 studies were performed by IP injection at zero time point. Timeline for CBD injection and
1205 plasma, brainstem and/or tumor collection were depicted in Fig. 7 E-F. At half, one, two, and six
1206 hours after the CBD injection, the mice were isoflurane/oxygen-anesthetized and 500 μ L to 1 mL
1207 of blood was drawn from the apex of the heart within the mouse's enclosed cavity. Immediately,
1208 the withdrawn blood was centrifuged within a microvette EDTA coated conical tube for 10
1209 minutes at 10,000 RPM, and the plasma was separated and stored at -80°C until PK analysis was
1210 performed. Following the blood draw, the mouse was sacrificed and the brain, brain stem, and/or
1211 tumor were extracted separately and stored at -80°C until PK analysis was performed.

1212

1213 *Chemicals and reagents*

1214 For PK studies, CBD powder was procured from Cayman chemical USA. Liquid
1215 chromatography–mass spectrometry (LC-MS) grade acetonitrile was purchased from Sigma-
1216 Aldrich. Formic acid (98%; LC-MS grade) was obtained from Fluka. A Milli-Q water system
1217 from Millipore was used to obtain ultrapure deionized water.

1218

1219 *Sample preparation*

1220 Plasma (40 μ L) was dispensed into a Fisher Scientific 96-well plate, to which 40 μ L of
1221 ice-cold acetonitrile (100%) and 120 μ L of internal standard solution (1000 ng/mL) were added.
1222 Next, the plate was vortexed for 10 minutes. The plate was then centrifuged at 3500 revolutions
1223 per minute (RPM) for 10 minutes at 4°C to precipitate the protein. LC–tandem mass
1224 spectrometry (LC-MS/MS) was used to analyze 5 μ L of the supernatant. The plasma samples
1225 were sonicated prior to being transferred to the 96-well plates. Tissue samples were weighed and
1226 suspended in 20% acetonitrile (80% water; 1:5 wt/vol). The samples were then homogenized
1227 four times for 20 seconds each time at 6,500 RPM in a Precellys Evolution system. For LC-
1228 MS/MS analysis, the CBD in brain tissue homogenates were extracted from the samples in the
1229 same manner as the CBD in plasma. Prior to extraction, samples that were above the upper limit
1230 of qualification were diluted with the same matrix. Calibrator-standard samples and quality
1231 control samples were prepared by mixing 40 μ L of blank bio matrix, 40 μ L of working solution,
1232 and 120 μ L of internal standard solution.

1233

1234 *Calibration curve*

1235 Analytical curves were made with 12 nonzero standards by plotting the peak area ratio of
1236 CBD to the internal standard vs the concentration. The curve was created with linear regression
1237 and weighted (1/X²). The correlation coefficient demonstrated the linearity of the relationship
1238 between peak area ratio and concentration.

1239

1240 *Liquid chromatography tandem–mass spectrometry*

1241 The concentrations of CBD were determined with a Sciex AB-5500 Qtrap mass
1242 spectrometer with electrospray ionization source, interfaced with a Shimadzu high-performance
1243 LC system. The LC-MS/MS system was controlled with Analyst Software version 1.6 from
1244 Applied Biosystems; this was also used for acquisition and processing of data. Separation was
1245 performed on a Waters Xbridge C18 column (50 × 2.1 mm ID, 3.5 µm); the flow rate was 0.4
1246 mL/min. A (100% H₂O with 0.1% formic acid) and B (100% acetonitrile with 0.1% formic acid)
1247 comprised the mobile phase. The gradient began with 5% B for 30 seconds and then linearly
1248 increased to 99% B at 2 minute and then reduced to 5% B at 4.1 minutes to 5.5 minutes with a
1249 runtime of 6 minutes in total. The mass spectrometer was operated in positive mode; multiple
1250 reaction monitoring was used for analysis. The Q1 m/z and Q3 m/z was 487.9 and 401.1,
1251 respectively.

1252

1253 **Statistical analyses**

1254 Statistical analyses were performed in consultation with a bioinformatician. Graphs were
1255 plotted and statistical analyses were performed using GraphPad Prism software (version
1256 7.00/8.00, GraphPad, La Jolla, CA) and Microsoft Excel. Unpaired, two-sided analysis of
1257 variance (ANOVA) followed by multiple comparison analyses were used to analyze data as
1258 indicated. Survival analyses in animals were performed using Kaplan-Meier analyses with the
1259 Log-Rank test. Data were considered significant if p values were below 0.05 (95% confidence
1260 intervals).

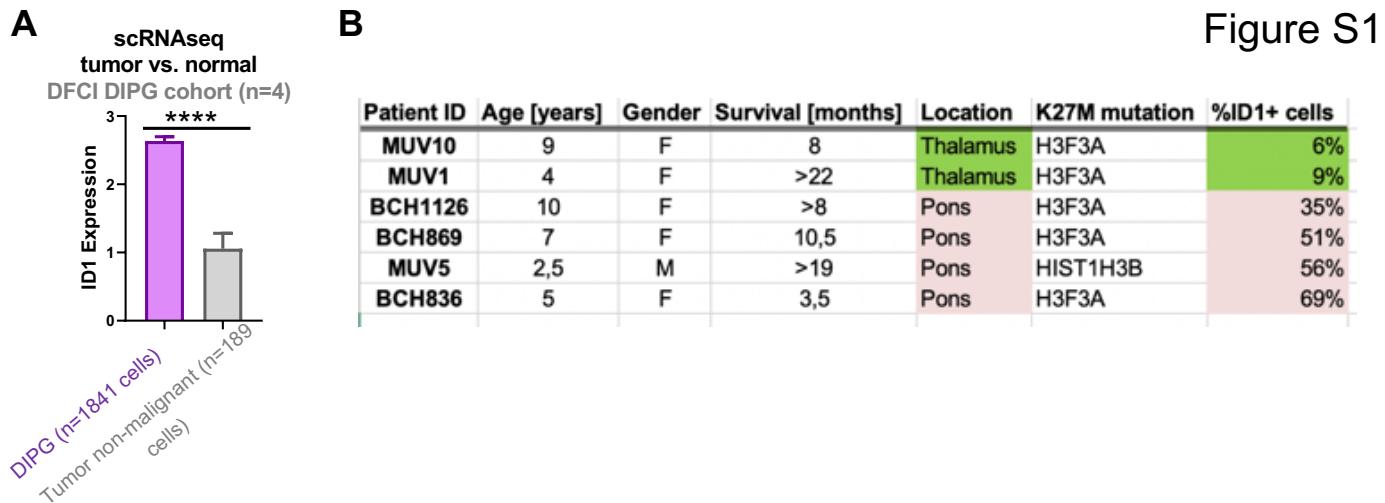
1261

1262 **Human studies**

1263 Informed consent was obtained for all patient samples. Two patients (CHC001 and
1264 CHC002) were enrolled on an ongoing IRB-approved prospective observational study at
1265 Children's Hospital of Colorado for children and young adults with brain tumors undergoing
1266 patient-directed medical marijuana therapy (NCT03052738). The University of Michigan cohort
1267 consisted of retrospective interviews with families of patients who underwent research autopsy.
1268 The patients all underwent research autopsy consent and were contacted to confirm use of patient
1269 details and tumor samples for this study. Patients who reported CBD therapy at any point in their
1270 care were included in this study, and CBD dosage was confirmed by pictures of CBD bottle,
1271 discussion with dispensary, etc., when possible.

1272

1273


1274

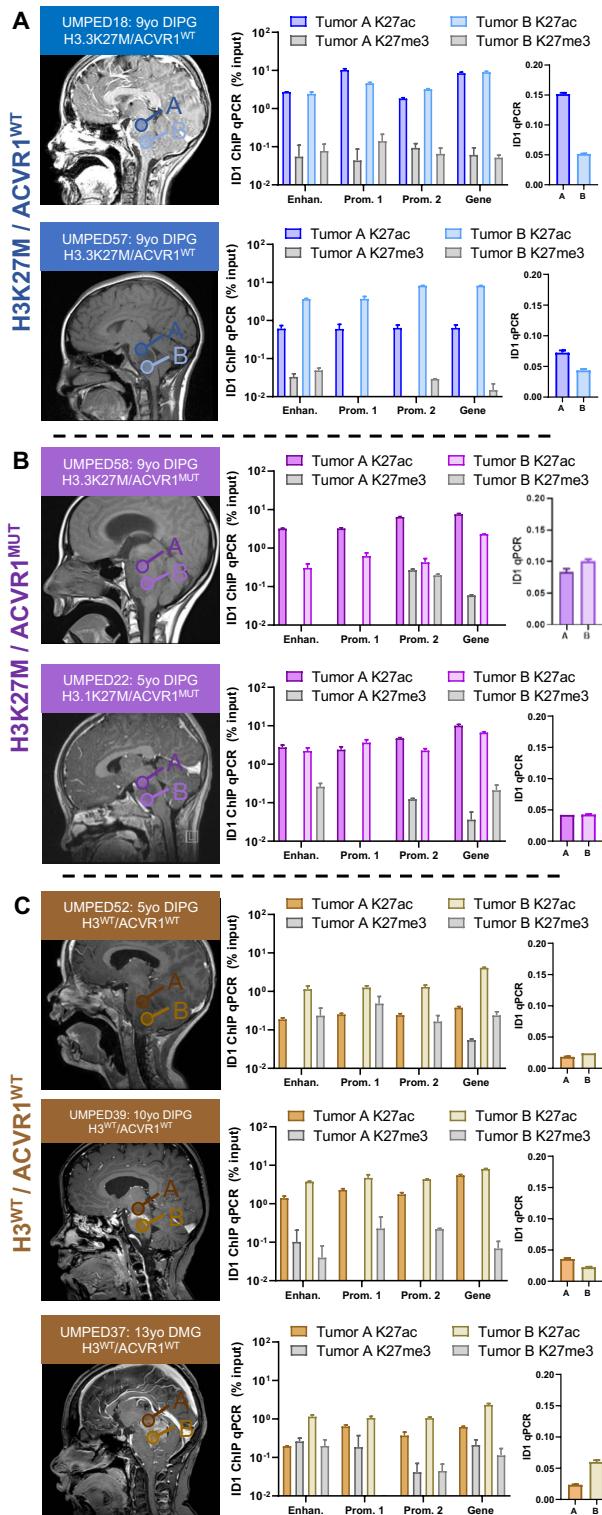
1275

1276

1277

1278

1279 **Supplementary figures**1280 **Supplementary Figure S1. *ID1* expression in DIPG by cell malignancy and tumor location.**1281 **(A)** *ID1* expression of DIPG tumor by cell malignancy from the Dana-Farber Cancer Institute1282 (DFCI) DIPG cohort (n=4 patients). *ID1* expression was compared between malignant DIPG


1283 cells (n=1841) and non-malignant tumor cells (n=189) from single-cell RNA-seq (scRNA-seq)

1284 data. Data represent mean +/- SEM; ****P<0.0001, unpaired parametric t test. **(B)** *ID1* is

1285 frequently (35-69%) expressed in pontine DIPG cells and rarely (6-9%) expressed in thalamic

1286 DMGs.

Figure S2

1288 **Supplementary Figure S2. Multifocal ChIP-qPCR analysis of *ID1* expression in human**

1289 **DIPG. (A-C)** [Left panel]: Multifocal DIPG tumor samples (2 per tumor) were obtained at

1290 autopsy from n=2 patients with H3K27M mutation and wildtype *ACVR1* (*ACVR1*^{WT}), n=2

1291 patients with H3K27M mutation and *ACVR1* mutation ($ACVR1^{\text{MUT}}$) and n=3 patients with
1292 wildtype H3 ($H3^{\text{WT}}$) and *ACVR1*. Circles labeled “A” and “B” over MRI images represent the
1293 approximate region of tumor where a sample was obtained from. [Right panel]: Graphs on left
1294 represent percent relative enrichment for H3K27ac and H3K27me3 marks by ChIP-qPCR for
1295 each of the predicted *ID1* gene body elements shown in main figure 2. Graphs on right represent
1296 *ID1* expression, measured by qPCR, for the multifocal samples collected from patients in shown
1297 in left MRI images. Data represent mean +/- SEM.

1298

1299

1300

1301

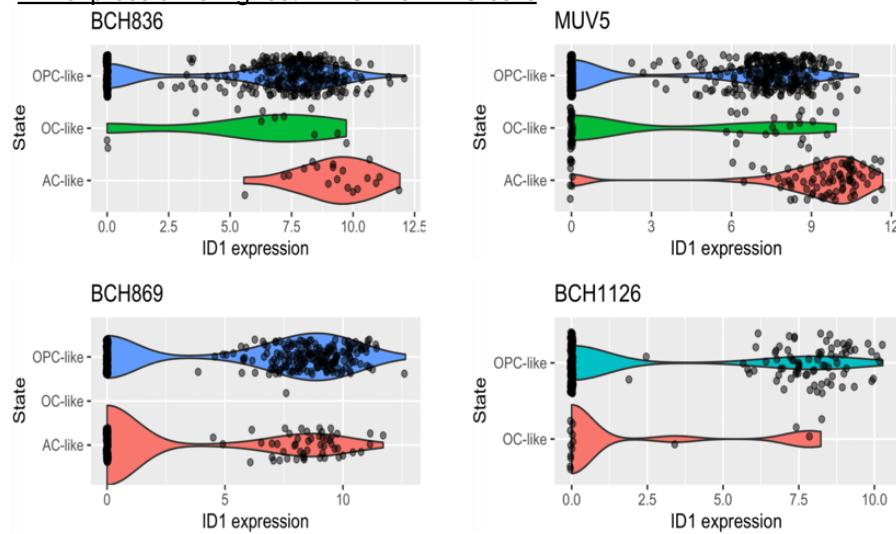
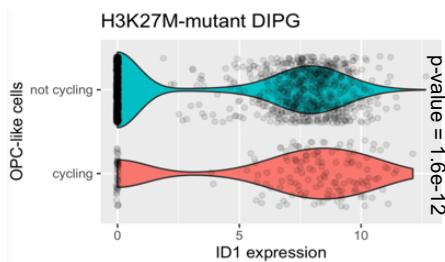
1302

1303

1304

1305

1306



1307

1308

1309

1310

Figure S3

A ID1 expression is highest in AC-like DIPG cells**B** ID1 expression is higher in cycling OPC-like DIPGs

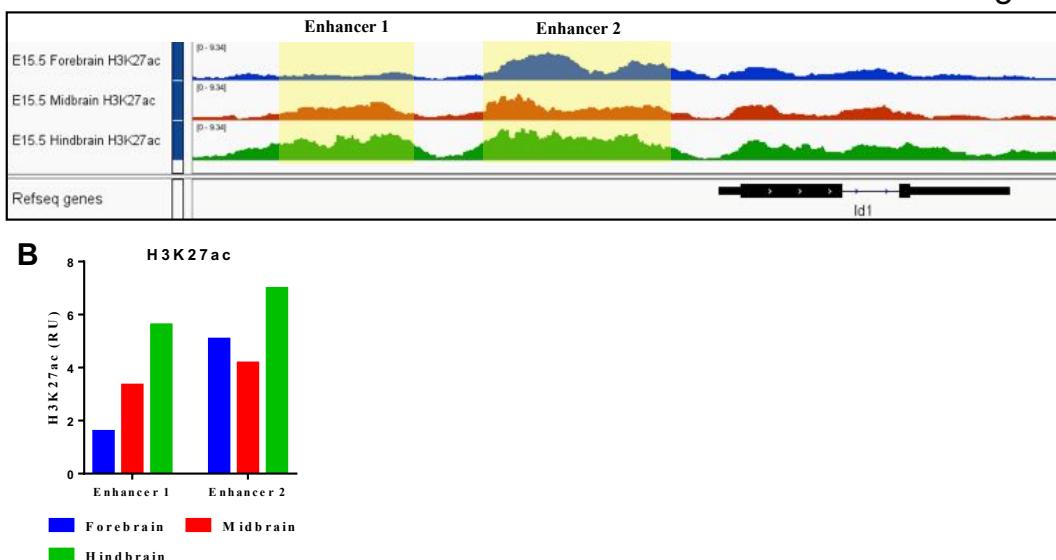
1311

1312 **Supplementary Figure S3. ID1 expression from single cell RNA-sequencing of six different**
 1313 **H3K27M-DMG patients across varying regions and malignant cell types. (A)** Violin plots
 1314 depicting ID1 expression in three subtypes of H3K27M-DIPG malignant cells [Data from
 1315 pontine DIPG patients in Fig. 1B]. **(B)** Violin plots depicting ID1 expression in cycling vs non-
 1316 cycling malignant H3K27M-DIPG cells; $P=1.6e^{-12}$, Mann-Whitney U test. [OPC-
 1317 Oligodendrocyte precursor cell; OC- Oligodendrocyte; AC- Astrocyte]. Primary data for parts
 1318 (A) and (B) from Filbin et al., *Science*, 2018.

Figure S4

1319 **Supplementary Figure S4. In situ hybridization for *ID1* RNA in developing mouse brain.**
 1320 *ID1* RNA is high in the developing embryonic murine brain, and drastically reduced in the post-
 1321 natal brain. Image credit: Allen Institute. © 2014 Allen Developing Mouse Brain Atlas.

1322 Available from: <http://developingmouse.brain-map.org/>


1323

1324

1325

1326

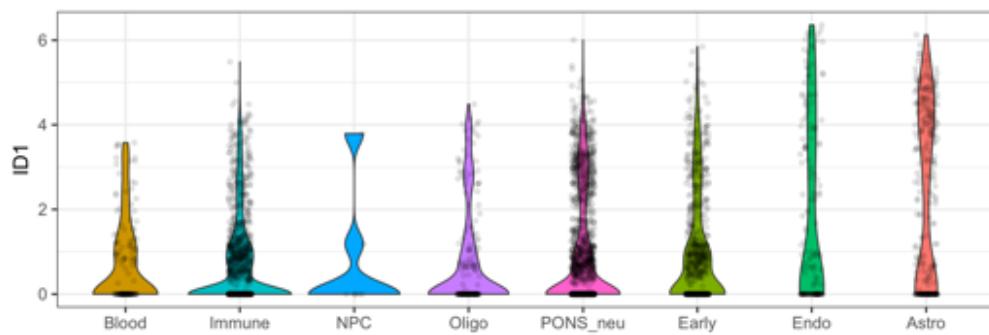
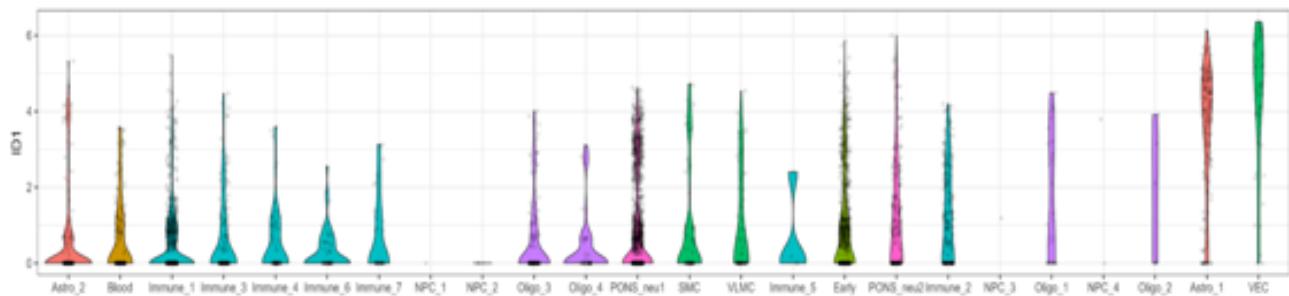
Figure S5

1327 **Supplementary Figure S5. H3K27ac at *ID1* locus during murine development. (A)** H3K27ac
 1328 peaks at the *ID1* locus in E15.5 mouse brain and predicted *ID1* enhancer regions [Image
 1329 generated using IGV browser]. **(B)** Relative enrichment of H3K27ac at predicted *ID1* enhancers
 1330 in E15.5 murine brain regions. Data retrieved from ENCODE Consortium; highlighted regions
 1331 quantified using EaSeq (<http://easeq.net>).

1332

1333

1334



1335

1336

1337

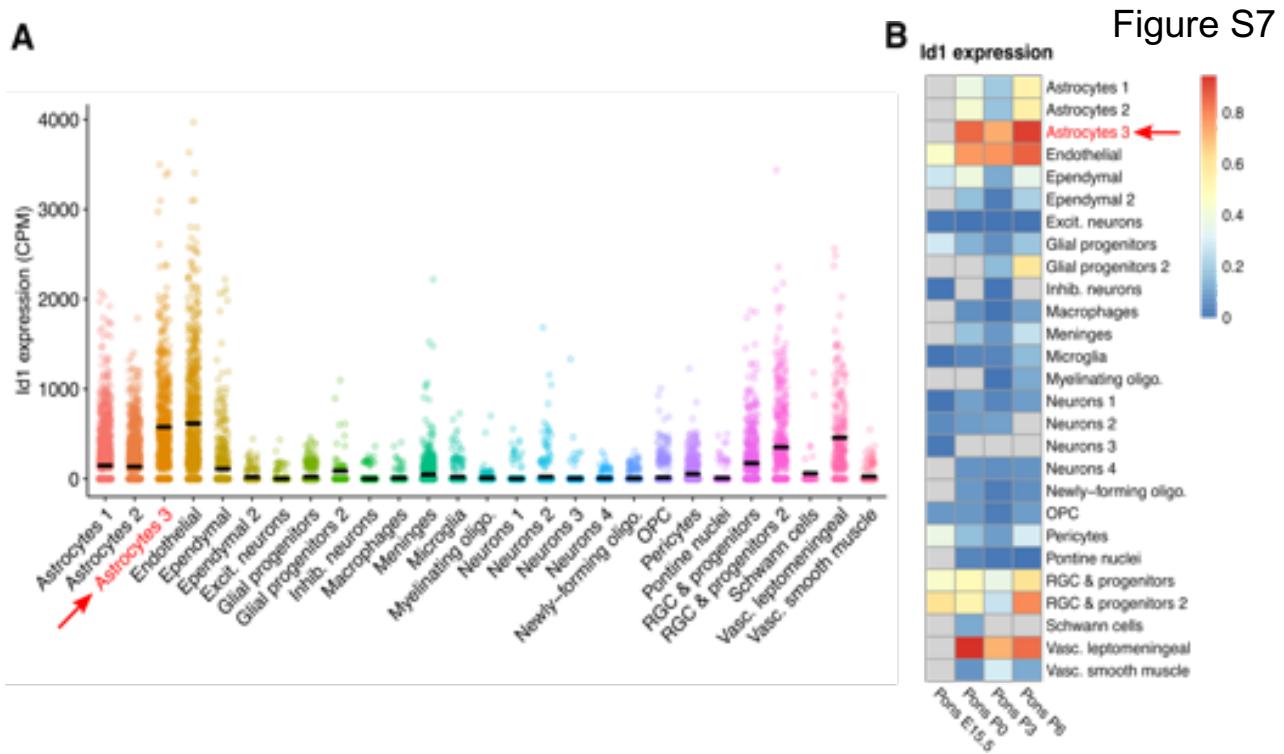
1338

Figure S6

A ID1 expression in developing human pons**B ID1 expression in developing human pons**

1339 **Supplementary Figure S6. ID1 expression in varying cell types during normal murine**
 1340 **pontine development. (A-B)** Violin plots from analysis of Fan et al., *Science Advances*, 2020,
 1341 depicting that AC-like cells show maximum ID1 expression during normal murine pontine
 1342 development. Data points from all gestational weeks are combined for each cell type and sorted
 1343 by median. [Astro- Astrocyte].

1344


1345

1346

1347

1348

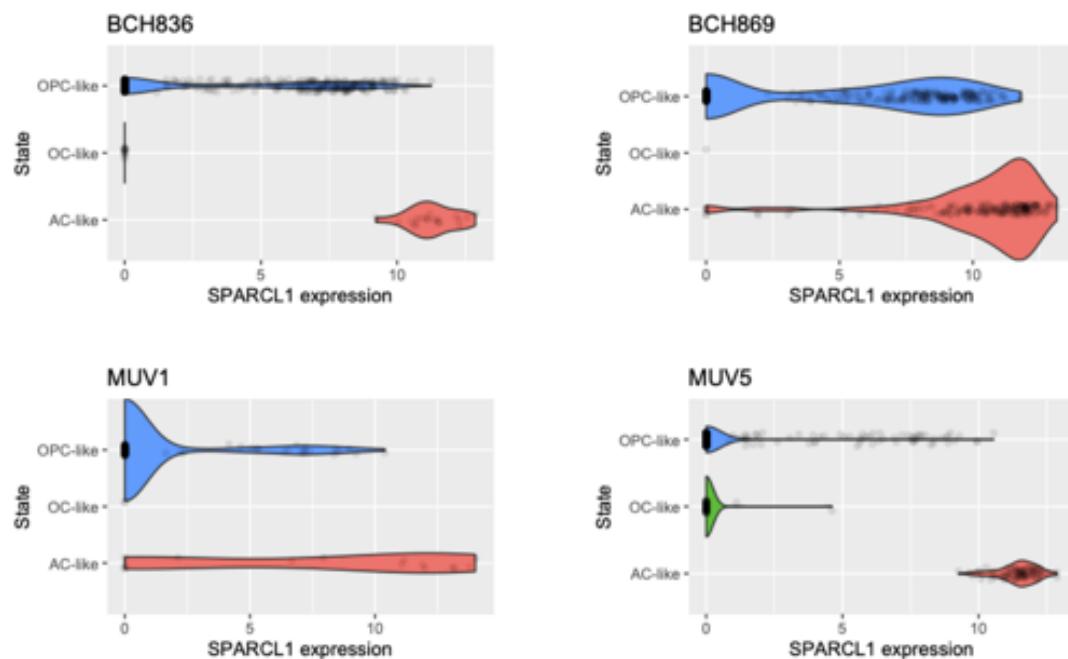
1349

1350 **Supplementary Figure S7. ID1 expression from single-cell transcriptome analysis of**
 1351 **varying cell types in normal developing murine pons. (A)** Single-cell ID1 expression in
 1352 varying cell types in normal murine pontine development. **(B)** Heatmap of ID1 expression during
 1353 normal murine pontine development [E15.5- Embryonic day 15.5; P0- Postnatal day 0]. Red
 1354 arrow indicates increased ID1 expression in astrocytes from P0-P6. Primary data for parts (A)
 1355 and (B) from Jessa et al., *Nature Genetics*, 2019.

1356

1357

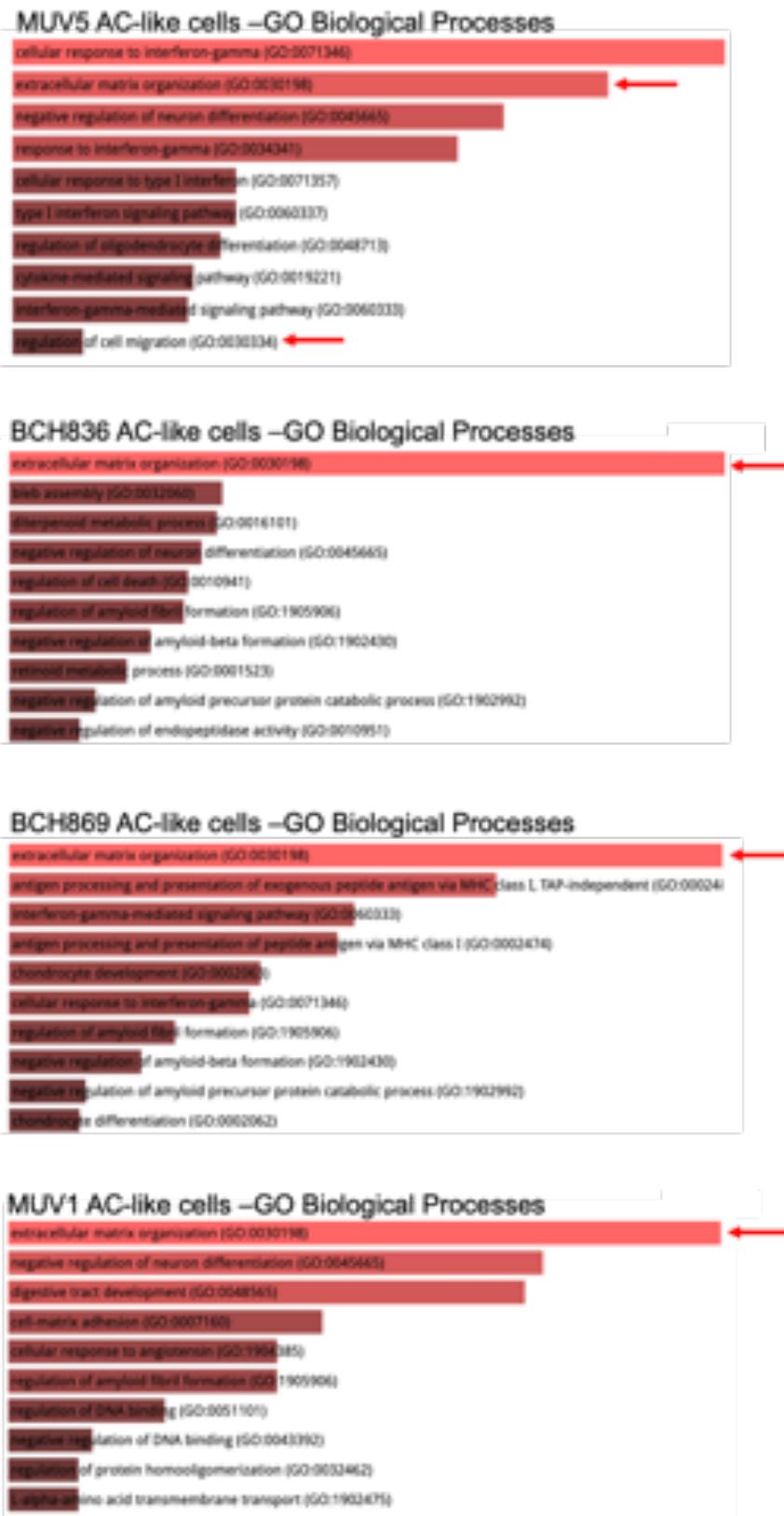
1358

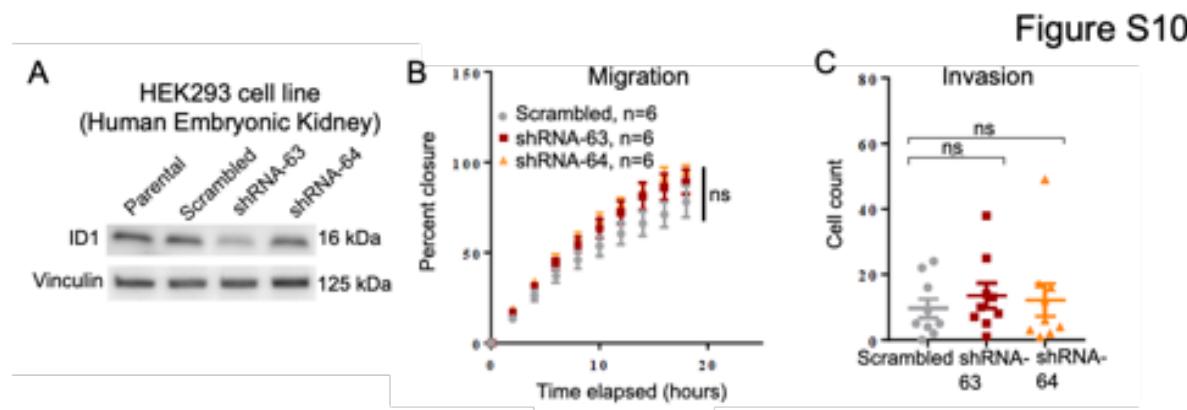

1359

1360

1361

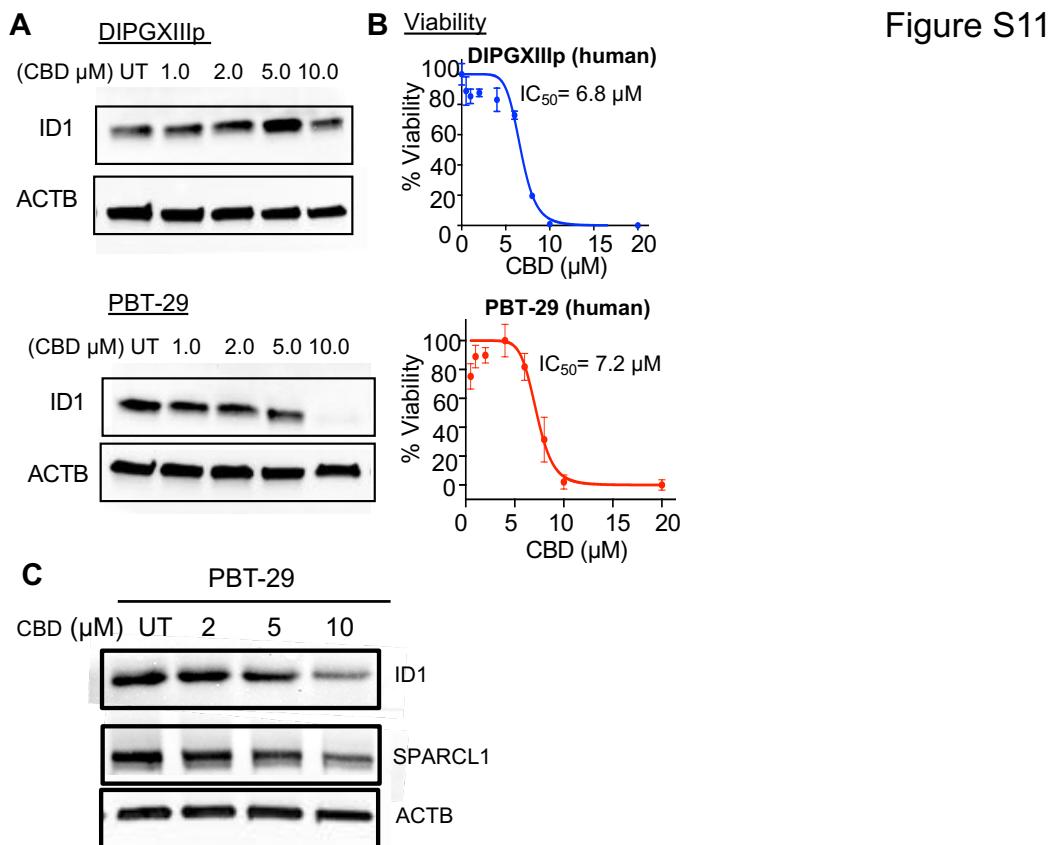
SPARCL1 expression is highest in AC-like DIPG cells


Figure S8


1362 **Supplementary Figure S8. *ID1* expression from single cell RNA-sequencing of four**
 1363 **different H3K27M-DMG patients across varying malignant cell types.** Violin plots depicting
 1364 SPARCL1 expression in three subtypes of H3K27M-DIPG malignant cells [Data from pontine
 1365 DIPG patients in Fig. S1B]. Primary data from Filbin et al., *Science*, 2018. Patients MUV5,
 1366 BCH836, BCH869- pontine tumors. Patient MUV1- thalamic tumor. [OPC- Oligodendrocyte
 1367 precursor cell; OC- Oligodendrocyte; AC- Astrocyte].

1368

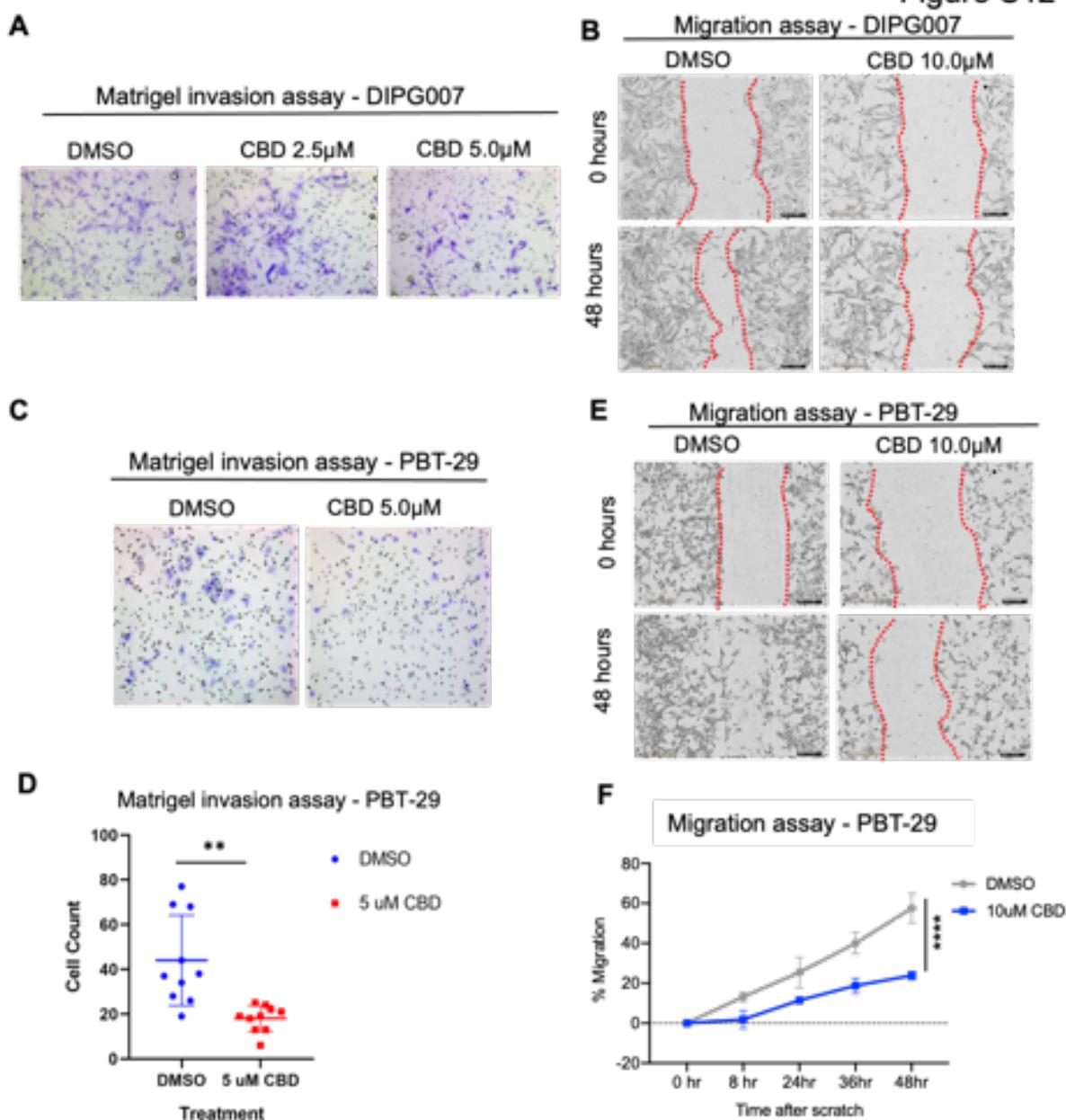
Figure S9



1370 **Supplementary Figure S9. Gene ontology (GO) analysis of higher *ID1*-expressing AC-like**
 1371 **cells from H3K27M-mutated tumor patients.** GO analysis of primary data from Filbin et al.,
 1372 *Science*, 2018, demonstrates increased expression of genes related to extracellular matrix
 1373 organization and regulation of cell migration in AC-like cells. Patients MUV5, BCH836,
 1374 BCH869- pontine tumors. Patient MUV1- thalamic tumor.

1375

1376 **Supplementary Figure S10. *ID1* knockdown in HEK293 cells. (A)** Western blot confirming
 1377 *ID1* knockdown in HEK293 cells. **(B)** Effect of *ID1* knockdown on cell invasion, as measured by
 1378 Matrigel-coated Boyden chamber assays. Each data point represents an individual image (4
 1379 random images were taken per well). NS, $P > 0.05$, unpaired t test. **(C)** Effect of *ID1* knockdown
 1380 on migration as measured by scratch assay. NS, $P > 0.05$, unpaired t test.



1381

1382 **Supplementary Figure S11. Impact of CBD treatment on ID1 expression in human DIPG**
 1383 **cells. (A)** ID1 western blot of human DIPGXIIp and PBT-29 cells treated with increasing
 1384 concentrations of CBD, or DMSO control (UT- untreated). Expression levels of ID1 and ACTB
 1385 were measured. **(B)** Viability of DIPGXIIp and PBT-029 cells treated with increasing
 1386 concentrations of CBD (0.5 μM to 20 μM) relative to DMSO-treated control. Experiment was
 1387 completed in triplicate and data points represent mean +/- SEM. **(C)** Western blot of ID1 and
 1388 SPARCL1 expression in PBT-29 cells treated with increasing concentrations of CBD or DMSO
 1389 control (UT). Experiments for all western blots were completed in triplicate.

1390

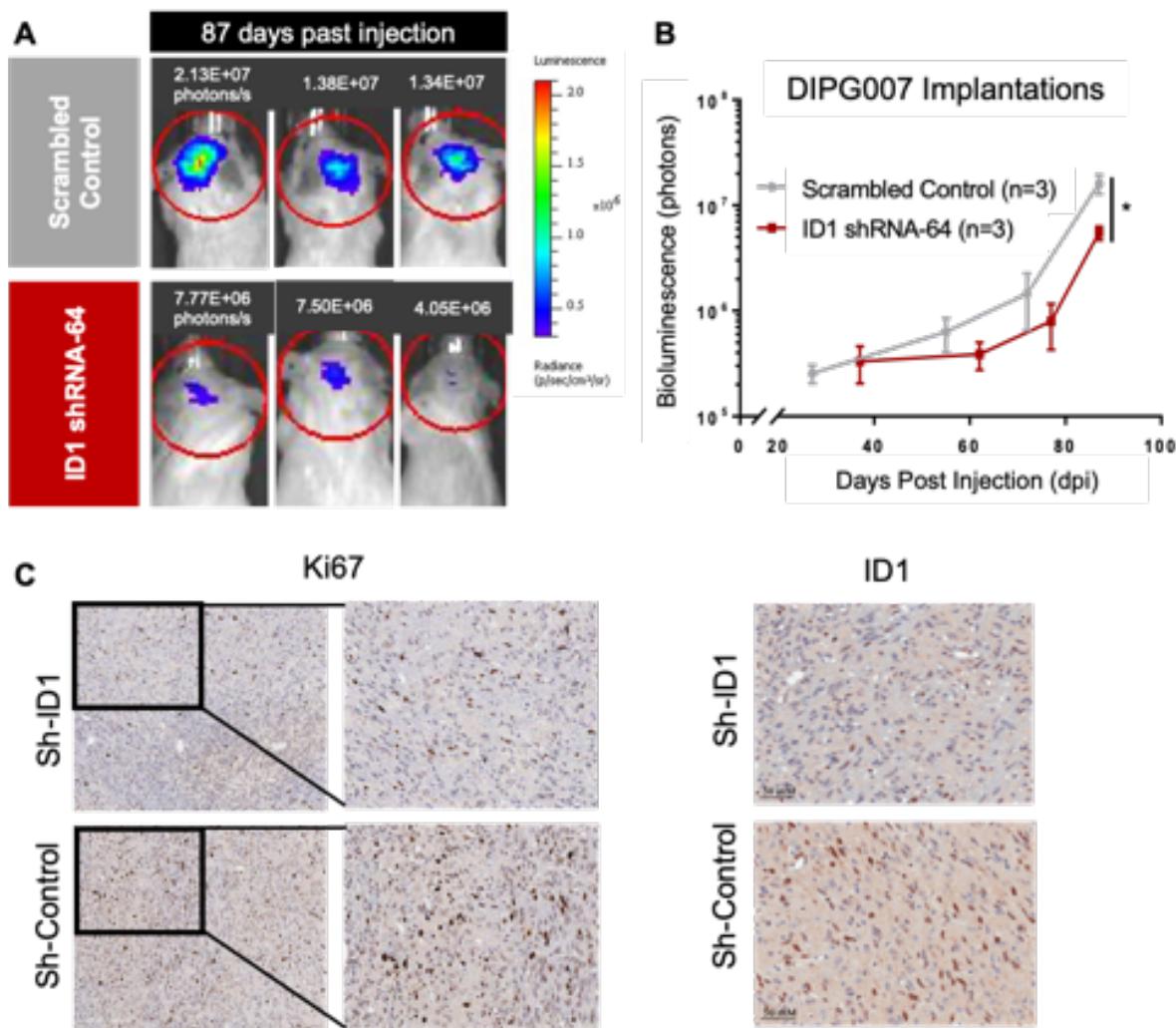
Figure S12

1391

1392 **Supplementary Figure S12. Effect of pharmacologic (CBD) suppression of ID1 on DIPG007**1393 **and PBT-29 tumor cell invasion and migration.** (A) Effect of CBD treatment (2.5 μ M - 5 μ M)

1394 on invasion of human DIPG007 cells as measured by Matrigel-coated Boyden chamber assay.

1395 Images show invading cells stained with crystal violet. Number of invading cells were counted


1396 using ImageJ software. (B) Images displaying effect of CBD treatment (DMSO control vs

1397 10 μ M) on DIPG007 cell migration as measured by scratch assay. **(C)** Effect of CBD treatment
1398 (5 μ M) on invasion of human PBT-29 cells as measured by Matrigel-coated Boyden chamber
1399 assay. **(D)** Quantification of invading PBT-29 cells treated with either DMSO (control) or 5 μ M
1400 CBD shown in part C determined using ImageJ; **P<0.01, unpaired parametric t test. **(E-F)**
1401 Images displaying effect of CBD treatment (DMSO control vs 5 μ M) on PBT-29 cell migration
1402 as measured by scratch assay. Migration was quantified using ImageJ to determine percent
1403 wound (outlined with red dashed line) closure. Experiment was completed in triplicate. Data
1404 represent mean +/- SEM; ****P<0.0001, unpaired t test. [Magnification for all images is 20x].

1405

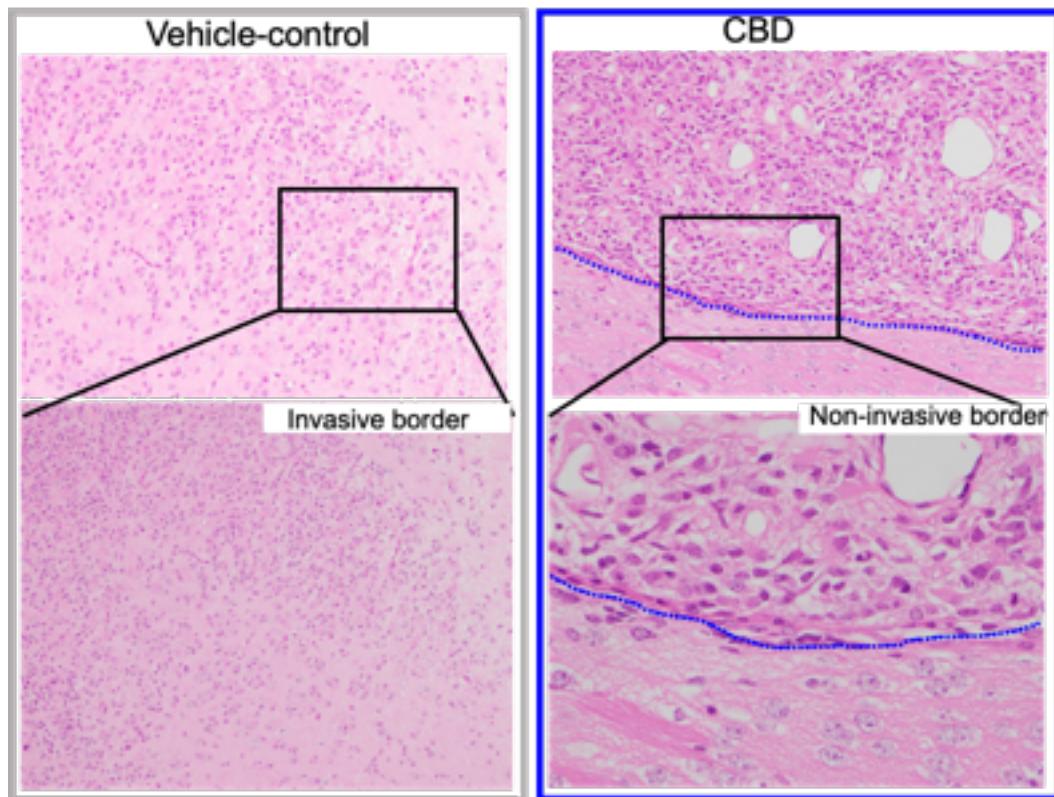

1406

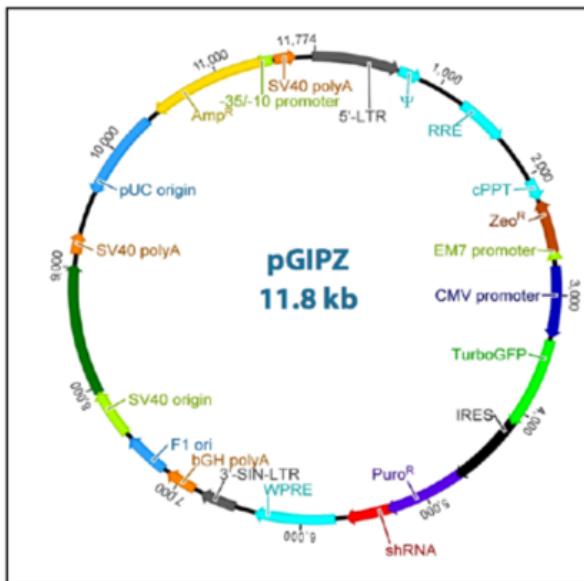
Figure S13

1408 **Supplementary Figure S13. ID1-deficient human DIPG007 cells display slower tumor**
 1409 **growth in in vivo model (A)** Representative images of bioluminescent tumors from intracranial
 1410 injection of scrambled-control or ID1-shRNA DIPG007 cells at DPI-97. **(B)** Bioluminescence of
 1411 intracranially-injected scrambled or ID1-shRNA DIPG007 cells over days-post-injection. **(C)**
 1412 Example images of IHC staining for Ki67 (left) and ID1 (right) in a sagittal tissue section
 1413 (tumors generated from implantation of DIPG007 cells). Magnification is 20x.

Figure S14

1414

1415


1416 **Supplementary Figure S14. Tumor cell invasion assessment in CBD- vs control-treated**
1417 **PPK mice.** Images of IUE-generated PPK tumor borders treated with or without CBD (DMSO
1418 vs. 15mg/kg CBD) for assessment of tumor cell invasiveness. Magnification for top row images
1419 is 10x and magnification for bottom row is 40x.

1420

1421

1422

Figure S15

1430 **Supplementary Figure S15. Detailed vector map of pGIPZ lentiviral vector.** Lentivirus
 1431 vector backbone used for ID1-targeting shRNA constructs. Image credit: Dharmacon. Available
 1432 from: <https://dharmacon.horizondiscovery.com/uploadedFiles/Resources/gipz-lentiviral-shrna-manual.pdf>

Supplementary Table S1. Primer sequences for use in ChIP-qPCR and qPCR

Primer	Forward	Reverse	Species
ID1 Enhancer	CTGGCGTCTAACGGTCT	CTGCGGAGCTACAGTCT	Human
ID1 Promoter 1	GAGGCTGGACCTAGGAG	GAGCCACAGCTTGTCTT	Human
ID1 Promoter 2	CTCTCATTCCACGTTCTAAC	CTGGCGACTTCATGATT	Human
ID1 Gene Body	AGATCCAGATCCGACCAC	AGGTACCCGCAAGGATG	Human
PAX4 Promoter	TGGCTGAGGACTGGATCTT	CTGGAGACAACAGCTGTCCA	Human

Primers for use in qPCR for gene expression analysis

Primer	Forward	Reverse	Species
ID1	CGAGGCAGGCATGCGTTC	GGAGACCCACAGAGCACGTAAT	Human
GAPDH	CGCTCTCTGCTCCTCCTGTT	CCATGGTGTCTGAGCGATGT	Human

1435 **Supplementary Table S2. Clinical details of pediatric HGG patients treated with CBD.**

Patient ID	Age	Diagnosis	Molecular	Therapies given	Time to first progression	Overall survival from Diagnosis	CBD duration/dosing/toxicity noted
CHCO01	11	DMG, H3K27M (thalamus)	H3K27M mutant	Radiation	24 months	40 months (still alive)	CBD 2.5g mg (~0.07 mg/kg/day); PO daily; CBD therapy started adjuvantly after initial radiation
CHCO02	15	DMG, H3 WT (bi-thalamic)	H3 WT; BARD1 E19* mutation; increased tumor mutational burden	Radiation; TMZ/CCNU; olaparib; pembrolizumab	14 months	26 months	CBD 50 mg (0.8 mg/kg/day); PO BID (+THC); CBD therapy started at diagnosis
UMPED18	9	DMG, H3K27M (brainstem, DIPG)	H3F3A K27M; PIK3CA E545K; TCF12 V650D	Radiation (+AZD-1775); panobinostat + everolimus	8 months	10 months	CBD 300 (13 mg/kg/day) + THC; no toxicity; PO daily; therapy started at radiation – taken until passing
UMPED22	5 yo	DMG, H3K27M (brainstem, DIPG)	HIST1H3B K27M; ACVR1 G328E	Radiation; hyper-baric O ₂ ; Re-irradiation	9 months	12 months	CBD 45 mg (2 mg/kg/day) + THC; PO BID or TID; therapy started at radiation – taken until passing
UMPED37	13	DMG, H3 WT (bi-thalamic)	H3 WT; EGFR V292L; EGFR in-frame deletion; deletion CDKN2C	Chemotherapy (thioguanine, procarbazine, lomustine, and vincristine); Radiation; osimertinib; bevacizumab	5 months	17 months	CBD 150 mg (3 mg/kg/day) after radiation -> 50 mg (1 mg/kg/day), until passing due to nausea; PO daily; therapy started at radiation – taken until passing
UMPED56	8 yo	DMG, H3K27M (brainstem, DIPG)	HIST1H3B K27M; ACVR1 R206H	Radiation; ONC201; bevacizumab	13 months	24 months	CBD (0.6 mg/kg/day) + THC; PO daily; therapy started at radiation – taken until passing
UMPED58	9 yo	DMG, H3K27M (brainstem, DIPG)	H3F3A K27M; ATRX Q119*; PPM1D G463fs; PDGFRA amplification	Radiation; multi-agent intra-arterial; ONC201	18 months	21 months	CBD (? Dose) + THC; PO or per rectum daily; therapy started at radiation – taken until passing
UMPED65	16 yo	DMG, H3K27M (brainstem, DIPG)	H3F3A K27M; TP53; PIK3CA	Radiation; ONC201; panobinostat; re-irradiation; paxilisib	16 months	24 months	CBD (0.3 mg/kg/day); PO BID/TID, intermittent early in therapy, stopped 7 months prior to passing
UMPED67	7 yo	DMG, H3K27M (thalamus)	H3F3A K27M; TP53 C277F; NF1 H2434fs	Radiation; ONC201; re-irradiation; bevacizumab	10 months	15 months	CBD (0.7 mg/kg/day) + THC; PO daily; therapy started at radiation, stopped 4-5 months prior to passing

UMPED69	4 yo	DMG, H3K27M (brainstem, DIPG)	HIST1H3B K27M	Radiation; convection- enhanced delivery (CED) trial; re- irradiation; ONC201; paxalisib	13 months	28 months	CBD 9 mg (0.5 mg/kg/day) + THC; PO TID; therapy started at radiation – taken until passing
UMPED83	11 yo	DMG, H3K27M (thalamus)	H3F3A K27M; TP53 S241C	Chemotherapy (temozolomide, irinotecan, bevacizumab); Radiation; ONC201	36 months	60 months	CBD 1500 mg (25 mg/kg/day) + THC; PO TID; therapy started at radiation, stopped one year prior to passing
UMPED86	7 yo	DMG, H3K27M (brainstem, DIPG)	HIST1H3B K27M; ACVR1 G328E; PI3KCB; PPM1D	Radiation; ONC201; Re- irradiation	6 months	8 months	CBD 3 mg (0.4 mg/kg/day); PO TID or QID; therapy started at radiation – taken until passing
UMPED97	16	Cortical anaplastic astrocytoma	H3 WT; Tp53 R342* (+germline); CDK4 gain; KRAS gain	Chemotherapy (procarbazine, CCNU, and vincristine); Radiation; irinotecan and bevacizumab	5 months	19 months	CBD 400 mg (6 mg/kg/day) after radiation, until passing due to nausea; PO twice daily (Epidiolex); therapy started at radiation – taken until passing
UMPED101	6	DMG, H3K27M (brainstem,	H3F3A K27M mutant	Radiation; ONC201; re- irradiation; bevacizumab	10 months	14 months	CBD 600 mg (24 mg/kg/day) PO TID; CBD therapy started after radiation – taken until passing