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Abstract: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive brain tumor with rare
survival beyond two years. This poor prognosis is largely due to the tumor's highly infiltrative
and invasive nature. Previous reports demonstrate upregulation of the transcription factor ID1
with H3K27M and ACVRI mutations, but this has not been confirmed in human tumors or
therapeutically targeted. We developed an in utero electroporation (IUE) murine H3K27M-
driven tumor model, which demonstrates increased ID1 expression in H3K27M- and ACVRI-
mutated tumor cells. In human tumors, elevated ID1 expression is associated with
H3K27M/ACVR I-mutation, brainstem location, and reduced survival. The /DI promoter
demonstrates a similar active epigenetic state in H3K27M tumor cells and murine prenatal
hindbrain cells. In the developing human brain, ID1 is expressed highest in oligo/astrocyte-
precursor cells (OAPCs). These ID1"/SPARCLI1" cells share a transcriptional program with
astrocyte-like (AC-like) DIPG cells, and demonstrate upregulation of gene sets involved with
regulation of cell migration. Both genetic and pharmacologic [cannabidiol (CBD)] suppression
of ID1 results in decreased DIPG cell invasion/migration in vitro and invasion/tumor growth in
multiple in vivo models. CBD reduces proliferation through reactive oxygen species (ROS)
production at low micromolar concentrations, which we found to be achievable in the murine

brainstem. Further, pediatric high-grade glioma patients treated off-trial with CBD (n=15)

demonstrate tumor ID1 reduction and improved overall survival compared to historical controls.

Our study identifies that /D1 is upregulated in DIPG through reactivation of a developmental
OAPC transcriptional state, and ID1-driven invasiveness of DIPG is therapeutically targetable

with CBD.
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3

INTRODUCTION

Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor that originates in the
pons (/). With a median survival of 10-11 months, DIPG remains the most aggressive primary
brain tumor in children (2). Standard of care consists of palliative radiation, and experimental
chemotherapies have yet to demonstrate benefit beyond radiation (2). Even with the advent of
precision-based medicine, clinical trials targeting specific molecular targets are lacking,
highlighting the need to identify novel therapeutic targets in DIPG.

As many as 80% of DIPGs harbor mutations in histone H3, which leads to a lysine-to-
methionine substitution (H3K27M) in H3.34 (H3F3A4) and H3C2 (HISTI1H3B) (I, 3). H3K27M
is now understood to define a distinct clinical and biological subgroup in DIPG, and is associated
with a worse prognosis (4). The H3K27M mutation represses the polycomb repressive complex 2
(PRC2), resulting in global reduction of H3K27me3 (with focal gains) (5) and global increases in
acetylation of H3K27 (H3K27ac), associated with upregulation of tumor-driving genes (6, 7).

Basic helix-loop-helix (bHLH) transcription factors are key regulators of tissue and lineage-
specific gene expression, and constitutive expression of Inhibitor of DNA binding (ID) proteins
have been shown to inhibit the differentiation of multiple tissues (8). ID proteins dimerize with
bHLH transcription factors, preventing DNA binding (9). Overexpression of the Inhibitor of
DNA binding 1 (ID1) gene has been tied to the pathogenesis of multiple human cancers (/0-12).
A role for ID1 in DIPG has been proposed, based on its downstream association with activin A
receptor type 1 (ACVRI) signaling, which is recurrently mutated/activated in 25% of human
DIPGs (/3-15). Germline ACVRI mutations in the congenital malformation syndrome
fibrodysplasia ossificans progressiva (FOP) activate the bone morphogenetic protein (BMP)

signaling pathway, through enhanced recruitment and phosphorylation of SMAD1/5/8, which in
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90 turn increases ID1 expression (/6). Prior studies have shown K27M and ACVRI to upregulate
91  IDI in cultured human astrocytes and murine models of DIPG (73, /4). ID1 has been shown to
92  drive an invasive tumor phenotype in multiple solid tumors (/0, /7). Invasion into normal
93  pontine tissue is a pathognomonic feature of DIPG, but its regulation remains poorly understood.
94  Further, analysis of ID1 in human DIPG, and its regulation and targetability, have not been
95  previously investigated.
96 In the present study, we show that human DIPGs demonstrate epigenetic activation and
97  increased expression of ID1, influenced by H3K27M and 4ACVR I mutational status and brain
98 location. This epigenetic activation mimics ID1 regulation in the developing human and murine
99  prenatal pons. Genetic knockdown and pharmacologic [cannabidiol (CBD)] inhibition of ID1
100  decreases invasion and migration and improves survival in multiple preclinical DIPG models and
101  human patients. These findings represent an exciting new direction for understanding the
102 regulation and targetability of invasion in DIPG, with broad implications for therapeutic

103 targeting of solid tumors with ID1 up-regulation.

104

105 RESULTS

106  Increased ID1 expression with H3K27M and ACVRI1 mutations in murine DIPG tumor
107  model

108 We first sought to confirm whether ID1 expression is affected by the presence of

109  H3K27M and ACVRI mutations. We adopted an in utero electroporation (IUE) model of

110  pediatric high-grade glioma (pHGG), as previously described by our group (/7). Mice developed
111 tumors [mutant TP53, mutant PDGFRA (D842V) with H3.34 K27M mutation (“PPK”) or H3.34

112 wildtype (“PPW?”)] via plasmid injection into the lateral ventricles of E13.5 embryonic CD1
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5
113 mice (Fig. 1A-B). Transfection efficiency and tumor growth/size were monitored using in vivo
114  bioluminescence imaging, and primary neurosphere cell cultures were generated for each group
115 by tumor dissociation (Fig. 1B). Survival analysis revealed that PPK mice (n=15) had
116  significantly reduced survival compared to their H3Wildype (WD counterparts (PPW; n=10) (Fig.
117 1C). Additionally, immunohistochemistry (IHC) and western blot analyses of murine tumors
118  showed tumor-specific expression of H3K27M and global loss of H3K27me3 expression, a
119  salient feature expected in H3K27M-mutant DIPG tumors (Fig. 1D-E) (/8). Importantly, ID1
120  expression was elevated in PPK tumors compared to PPW (Fig. 1E). In order to determine the
121  impact of ACVRI mutation on ID1 expression in DIPG, we introduced ACVRI mutation via
122 lentiviral (LV) transduction into PPK tumor cells and primary H3.34 K27M/ACVRIVT human
123 DIPG cells (DIPGXIIIp). Western blot analysis revealed increased ID1 expression and SMAD
124 activation with the introduction of ACVRI mutation in both PPK and DIPGXIIIp tumor cells
125  (Fig. 1F), consistent with previous reports (13, 14).
126
127  ID1 expression increased in human DIPG and associated with lower overall survival
128 We next assessed the impact of H3K27M (H3.34 or H3C2) and ACVRI mutations on
129  IDI expression in DIPG and non-brainstem pHGG. Whole transcriptome sequencing was
130  performed on 34 DIPG and 18 normal post-mortem brain tissue specimens taken from a single
131  institutional cohort (Sick Kids, Toronto). Compared to normal brain (cortex), DIPG tissue
132 showed significantly higher /D expression (Fig. 1G). Single cell RNA-sequencing (scRNA-seq)
133 data from H3K27M-mutant DIPG tumors [Dana-Farber Cancer Institute (DFCI) cohort (/9)]
134 confirmed that malignant cells display significantly higher /DI expression compared to

135  nonmalignant cells within these tumors (Fig. SIA). SCRNA-seq data from H3K27M-pHGG
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6
patients (n=14) revealed higher /D1 expression in pontine H3K27M-DIPG cells compared to
thalamic and cortical pHGG tumors (Fig. 1H). This was confirmed in bulk RNA-seq [ICR cohort
(Institute for Cancer Research), n=198 (20)], in which brainstem pHGG tumors (DIPG) showed
significantly higher /D] expression than cortical pHGGs (Fig. 1I). High /D1 expression has been
linked to lower overall survival (OS) in multiple cancers (2/). Indeed, DIPG patients with
higher bulk /D1 expression (ICR cohort) have lower OS (Fig. 1J). These data support that ID1 is

involved in the pathogenesis of human DIPG.

ID1 expression influenced by H3 and ACVR1 mutational status in human DIPG
Introduction of the recurrent mutations H3.34 K27M and ACVRI have been shown to
increase /D1 expression in cultured astrocytes (13, /4), consistent with findings in our IUE
tumor model (Fig. 1E). Analysis of bulk tumor RNA-seq (ICR cohort) revealed that /D]
expression is significantly increased in pHGGs harboring H3K27M (H3.34 or H3C2) compared
to H3WT and H3G34R tumors (Fig. 1K) (20). ACVRI-mutant tumors (Fig. 1L) and those with co-
mutation (H3K27M and ACVR1, Fig. 1M) have significantly higher /D[ expression compared to
WT tumors. Interestingly, in scRNA-seq data (DFCI cohort), elevated /D1 expression is seen in
a higher proportion of malignant cells within pontine H3K27M tumors (n=4; 35-69%) in
comparison to thalamic H3K27M tumors (n=2; 6-9%) (Fig. S1B). Taken together, these data
support that /D] expression in pHGG is driven by both mutational status of H3 and ACVRI and

regional (anatomic) influences.

Epigenetic state of ID1 loci in H3K27M tumor cells and murine prenatal hindbrain cells
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In patients with germline ACVR [-mutant FOP or DIPG tumors with somatic ACVRI
mutations, ID1 expression is activated by BMP signaling (15, 22). However, the mechanism of
H3K27M mutation promoting increased ID1 expression is less understood. We assessed whether
H3K27ac and H3K27me3 marks at regulatory regions of the /DI gene could be contributing to
the increased /D1 expression observed in human DIPG. Quantitative PCR (qPCR) demonstrated
ID1 expression to be higher in H3K27M and ACVR [-mutant DIPG autopsy samples (n=4 tumor
sites) compared to H3WT/ACVRIVT DIPG tissue (n=6 tumor sites) and normal brain tissue
samples (n=4 sites) Fig. 2B and S2A-C). ChIP-Seq at the ID1 gene loci on normal adolescent
pontine (n=1), H3VT DIPG (n=1) and H3K27M DIPG (n=4) samples revealed a marked increase
in H3K27ac deposition at /D1 gene body elements in H3K27M DIPG tumor tissue compared to
H3WT DIPG tumor and normal pontine tissue, with minimal H3K27me3 marks across the ID1
loci in all tissue types (Fig. 2C). Subsequent ChIP-qPCR for quantification (primers in
Supplemental Table 1) demonstrated significantly elevated H3K27ac at predicted promotor and
gene body regions of the ID1 locus compared to HYWT/ACVRI1WT DIPG tumor samples (Fig.
2D). Decreased H3K27me3 was also observed, though this was only significant at one of the
predicted promotor regions between H3K27M/ACVRIMYT and H3VT/ACVRIWT DIPG sample
groups (Fig. 2E). Taken together, however, the effects of these changes in H3K27ac and
K3K27me3 marks correspond with H3K27M-mutant samples being epigenetically activated for
ID1 expression.

While brainstem tumors broadly show increased /D1 expression compared to normal
brain, we noted differences in expression by qPCR between multi-focal autopsy samples.
Expanded multi-focal (n=6) bulk RNA-sequencing of a single H3K27M/ACVR [-mutant DIPG

patient (UMPED12) confirmed varying levels of /D1 expression across different regions of the
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8
tumor (Fig. 2F). This finding led us to analyze scRNA-seq in order to determine whether a
specific malignant cell subpopulation could be contributing to the increased /D1 expression seen
in DIPG. Assessment of /D1 expression across all malignant cell types in DIPG cells from four
patients showed that /D1 is most highly expressed in DIPG cells with an astrocytic
differentiation program [“AC-like cells” (/9)], followed by oligodendrocyte precursor cell-like
(“OPC-like”) cells (Fig. 2G and S3A). OPC-like cells are known to constitute the majority of
cycling cells in DIPG (/9). Previous analysis showed that nearly all cycling DIPG cells have an
OPC-like phenotype (/9) and we observed higher levels of /D1 expression in cycling compared

to non-cycling cells (Fig. S3B).

Single-cell transcriptional analysis of ID1" cells in human developing brain and H3K27M
tumors

Anatomic location and developmental context strongly influence the formation of many
pediatric tumors, including DIPG. We next assessed /D1 expression and histone modifications
across pre- and post-natal mouse brain developmental stages. RNA in-situ hybridization data
(Allen Brain Atlas) demonstrated /D1 to be highest expressed in the developing prenatal mouse
hindbrain (including the developing pons) compared to forebrain or midbrain, with minimal /D1
expression throughout the entire postnatal mouse brain (Fig. 3A-B and S4). In E15.5 mouse
brains, ENCODE data (23, 24) revealed H3K27ac to be elevated at /D enhancer sites in the
hindbrain compared to midbrain and forebrain (Fig. S5A-B).

Analysis of developing human (25) and mouse (26) brain scRNA-seq data showed that
ID1 expression peaks at gestational week (GW) 12-22 in the human pons (Fig. 3C) and early

postnatal mouse pons (PO; Fig. S6-S7), and is most highly expressed in astrocytes. /D]
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9
expression is also high in human endothelial cells, consistent with previous data (Fig. 3C) (27).
IHC analyses of pre- and post-natal brains confirmed elevated ID1 in the murine embryonic
brain (E18; Fig. 3D) and human GW 20.5 brain (Fig. 3E) in subventricular regions lining the 4%
ventricle, compared to all postnatal brain locations.

We next sought to assess whether /D" sub-populations of malignant DIPG cells share a
transcriptional program with ID/" developing brain cells. Interestingly, AC-like cells from all
four DIPG tumors show the strongest overlap with the transcriptional program of the recently
defined OAPC cell population (28) in the developing human brain (Fig. 3F). The OAPC program
was not enriched in OPC-like cells in any of the four DIPG tumors (Fig. 3F). OAPCs are present
primarily in the outer subventricular zone during the neurogenesis-to-gliogenesis switch period
and express both astrocyte (GFAP) and oligodendrocyte (OLIG1, OLIG2) marker genes as well
as SPARCLI1, which is involved in regulation of cell adhesion (28). We found /D! to be a
marker gene for both AC-like DIPG cells and OAPCs. Immunofluorescence of human H3K27M-
DIPG samples revealed co-localization of ID1 and SPARCLI expression in sub-populations of
cells (Fig. 3G). Assessment of SPARCLI1 expression across all malignant cell types in DIPG
cells from four patients showed that SPARCL1 is most highly expressed in AC-like DIPG cells.
Importantly, AC-like DIPG cells demonstrate enrichment of gene sets involved in regulation of
cell adhesion and migration (Fig. S9), further implicating the potential role of ID/* AC-like cells

in the regulation of DIPG tumor cell invasion and migration.

Impact of genetic and pharmacologic knockdown of ID1 on invasion and migration
To examine the phenotypic impact of /D/ in human DIPG cells, a patient-derived DIPG

cell culture with H3.34 K27M and ACVR I mutation (DIPG007) was lentivirally-transduced with
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227  IDI-targeting shRNA or scrambled shRNA control (Fig. 4A). IDI knockdown (shRNA-64)
228  resulted in reduced SPARCLI1 expression in DIPG007 cells by western blot, further implicating
229  therole of /DI in the regulation of this OAPC/AC-like cell marker gene (Fig. 4B). ID]

230  knockdown significantly reduced DIPGO007 invasion (Fig. 4C) and migration, as measured by
231  scratch assay percent wound closure (Fig. 4D-E). In comparison, invasion and migration of
232 human embryonic kidney cell line HEK293 was not affected upon /D7 knockdown (Fig. S10A-
233 O).

234 A few compounds that reduce /D1 expression include Cannabidiol (CBD), Pimozide, 2-
235  Methoxyestradiol and MK615 (29-317). Of these, CBD is the most studied, clinically available
236  and CNS-penetrant agent (32, 33). CBD is the non-psychoactive compound found in Cannabis
237  sativa (34). CBD has wide-ranging impacts on cellular behavior, including the ability to

238  downregulate expression of /D1 and to inhibit invasion in multiple pre-clinical cancer models
239 (12, 35-37). Based on these studies, we sought to investigate the targeting of ID1 in DIPG

240  through use of CBD. Treatment of human DIPG007 and mouse PPK cells with CBD reduced
241  IDI expression (Fig. 4F) and cell viability (Fig. 4G), with an ICspof 2.4 and 2.5 uM,

242 respectively. We also treated two additional human DIPG cell cultures with H3K27M/ACVRIWT
243 status, DIPGXIIIp and PBT-29, with CBD, and found reductions in cell viability at an ICso of 6.8
244 and 7.2 pM, respectively (Fig. S11A-B). Additionally, CBD treatment resulted in significantly
245  reduced invasion and migration of human DIPGO007 cells (Fig. 4H-I and S12A-B) and human
246  PBT-29 cells (Fig. SI2C-F) in the 5-10 uM range.

247 CBD has been reported to increase intracellular levels of reactive oxygen species (ROS)
248  (38). In line with this, our data reveal that DIPGO007 cells treated with CBD show a dose

249  dependent increase in ROS levels (Fig. 4J). Additional treatment with a-tocopherol (TOC), a
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ROS scavenger (37, 38), severely restricted the ability of CBD to inhibit proliferation of

DIPG007 cells (Fig. 4K).

Genetic knockdown of ID1 in IUE murine model

In order to assess whether /D1 suppression would impede tumor growth in PPK mice, we
developed a PBase-responsive ID1-shRNA plasmid and scrambled short hairpin (“sh-control”).
PPK-ShID1 mice exhibited significantly prolonged survival when compared to PPK-Sh-control
mice (Fig. 5A). PPK-ShID1 mice demonstrated significantly-extended median survival (p=0.01)
and reduced luminescent tumor signals when compared to control mice (Fig. 5B-C). IHC
analysis of moribund tumors demonstrated reductions in ID1 and Ki67 expression (Fig. 5D-E) in
PPK-ShID1 tumors. PPK-ShIDI tumors also exhibited more distinct tumor borders (e.g. reduced
tumor invasion into normal brain) in vivo (Fig. 5F). Implantation of DIPG007 cells with ShID1
(or control) into the brainstem of NSG mice also demonstrated reduced pace of luminescent
growth (Fig. S13A-C), although this did not affect overall tumor survival. These data indicate
that genetic ID1 knockdown inhibits tumor growth in vivo and reduces tumor invasion and

proliferation.

Pharmacological inhibition of ID1 with Cannabidiol (CBD) in IUE murine model

We next proceeded to our IUE PPK murine model to assess the impact of CBD in vivo.
We performed daily treatment with CBD (15 mg/kg), or vehicle control. CBD treatment
significantly improved median survival compared to vehicle control (Fig. 6A). Moribund tumors
treated with CBD showed reductions in ID1 and Ki67 expression following CBD treatment (Fig.

6B-C). Additionally, CBD-treated tumors displayed reduced invasiveness of tumor cells
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273  compared to vehicle-treated mice (Fig. S14). Both genetic (ShID1) and pharmacologic (CBD)
274  knockdown of ID1 in murine models resulted in reduced tumor infiltration into the contralateral
275  hippocampus compared to controls (Fig. 6D). These data indicate that CBD reduces ID1
276  expression and tumor invasion and significantly improves survival of H3K27M-mutant tumors in
277  vivo.
278 We next assed the pharmacokinetic distribution of CBD in normal brain and brain tumor
279  cells (Fig. 6E-F). After IP administration of a 45 mg/kg dose of CBD, we noted a similar peak
280  concentration of CBD in the brainstem and plasma (6 and 7 uM, respectively) (Fig. 6G), which is
281  above the previously determined ICso dose of CBD in our DIPG cells. At 2 hours, we found
282  equivalent doses of CBD in plasma, brain and brain tumor samples in our PPK model (Fig. 6H).
283
284  CBD treatment in pHGG patients
285 CBD is increasingly popular as an off-trial, non-prescribed therapy among patients with
286  pHGG (39), including DIPG. However, its use remains controversial as no preclinical efficacy,
287  mechanistic data, dosing or clinical studies of CBD in DIPG have been performed. We gathered
288  patient-reported CBD dosing from families of pHGG patients at two institutions (n=15 total, n=8
289  DIPG, n=11 H3K27M), including patients on an IRB-approved prospective observational study
290  at Children’s Hospital of Colorado for children and young adults with brain tumors undergoing
291  patient-directed medical marijuana therapy (NCT03052738), and retrospective interviews with
292  families of patients who underwent research autopsy at the University of Michigan. CBD was
293  obtained through medical and recreational marijuana dispensaries without prescription; and
294  given orally in all but one case (suppository) one to three times per day with a wide range of

295  dosing (0.07 mg/kg to 25 mg/kg/day, Fig. 7A). No parents reported adverse effects from the
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CBD aside from taste, and some reported improved nausea and anxiety control. We performed
ID1 staining on autopsy samples from high-dose and low-dose H3K27M-mutant tumors. As
representative cases, patient UMPEDS3, with the highest reported dosing (25 mg/kg/day CBD),
demonstrated reduced ID1 staining on autopsy sample (Fig. 7B), while UMPEDS86 underwent
low dosing (0.4 mg/kg/day) and demonstrated strong nuclear ID1 staining (Fig. 7C). Patients
with pHGG undergoing CBD treatment showed variable ID1 staining in post-mortem tumor
tissue, but lower average expression with higher-dose (>3 mg/kg/day) treatments (Fig. 7D).

Patients with H3K27M-mutant tumors treated with CBD (n=10) showed improved
survival compared to historical controls (20), in both high (>3 mg/kg/day) and low (<3
mg/kg/day) CBD treatment groups (Fig. 7E, Supplemental Table 2). These data represent the
promise and feasibility of CBD treatment in DIPG, with the clear need for further data in a

prospective therapeutic clinical trial.

DISCUSSION

ID proteins are necessary for appropriate tissue differentiation during embryogenesis, and
ID1 is highly expressed in the normal developing brain followed by quiescence of /D1
expression in CNS tissue postnatally (40). Consistent with the role of ID1 in the pathogenesis of
multiple human diseases and cancers (40-42), our data indicate that ID1 promotes invasion in
DIPG cells, which is a disease-defining feature of this infiltrative tumor. We propose a model by
which ID1 is upregulated through multiple mechanisms (H3K27M, ACVRI, region/micro-
environment) in order to “re-activate” prenatal brain developmental signaling. Our data support
that ID1* AC-like DIPG tumor cells hijack the transcriptional program of developmental /D"

OAPC cells in the developing brain cells to produce a “migratory” transcriptional cell state (Fig.
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8). We also demonstrate the ability to reverse this ID1-driven phenotype with CBD treatment,
and the potential for optimization of this therapeutic targeting.

Our studies implicate an active epigenetic state at the /D1 locus shared between H3K27M
tumor cells and the prenatal precursor brain cells, which is consistent with prior studies focused
on H3K27M mutations that have associated changes in H3K27ac/H3K27me3 with differential
regulation of key DIPG-associated genes (43, 44). Additionally, we provide evidence that post-
natal activation of ID1 in tumor cells replicates a prenatal “migratory” transcriptional state seen
in a recently discovered subset of developing OAPC brain cells. These OAPCs (Olig2*
SPARCLI*HOPX" glial progenitor cells) were recently identified as astrocyte-like at the
molecular and transcriptional levels (28). In line with this, we found AC-like DIPG cells to
transcriptionally mimic the program of OAPCs, with the OAPC-marker SPARCLI and ID1 co-
localizing in a subset of H3K27M tumor cells. Interestingly, previous work has suggested a role
for SPARCLI in promoting DIPG cell invasion into the subventricular zone (SVZ) (45).
Secretion of SPARCL1 and pleiotrophin from neural precursor cells (NPCs) was shown to act as
a chemoattractant for the DIPG cells, encouraging their infiltration into the SVZ (45). Our data
demonstrate that /D is most highly expressed by non-cycling AC-like cells in DIPG tumors and
SPARCLI is one of the strongest expression markers of these cells. This raises the possibility that
SPARCLI is expressed/secreted within DIPG cells, further coordinating or contributing to the
invasion of DIPG tumor cells. While further studies are needed to confirm an ID1-driven
OAPC/AC-like cellular state, our data raise important insights into the mechanisms underlying
one of the most critical and problematic features of DIPG tumors: invasion.

Our data show that ID1 knockdown has the potential to severely impede DIPG tumor cell

migration and invasion in pre-clinical models. These phenotypes are consistent with the inherent


https://doi.org/10.1101/2021.05.10.443452
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443452; this version posted May 11, 2021. The copyright holder for this preprint (which

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15
invasion into normal brainstem tissue that is observed histologically in DIPGs, and with the role
of ID1 in other cancers (71, 42). In our experiments involving both genetically-engineered and
intracranial implantation models, H3K27M-mutant tumors cells with ID1 reduction show
reduced tumor growth and invasion.

Cannabidiol is a non-toxic and non-psychoactive member of the endocannabinoid family
found in Cannabis sativa. CBD has been observed to reduce /D1 transcription in pre-clinical
models of adult cancers (/2). In the present study, CBD reduced DIPG cell viability
and /D1 expression at concentrations that are likely clinically achievable in the human brain. Our
PK studies demonstrated peak brain concentrations of CBD above established ICso, despite use
of a human equivalent doses (46) of only 3 mg/kg, which is well below previously tolerated
human CBD dosing. In a phase 1 study, adult patients showed excellent tolerance of oral CBD at
750 mg (15 mg/kg) daily with some non-dose limiting increases in diarrhea and somatic
symptoms (muscle ache, fatigue) at 1500 mg (30 mg/kg) daily (47). This resulted in peak plasma
concentrations of CBD of 1-5 uM (15 mg/kg) and 1.7-10 uM (30 mg/kg) depending on fat
content in diet (47). Our data showed equivalent plasma and brain concentrations of CBD after
IP administration. Previous work has shown that oral administration of CBD in mice results in a
3-4-fold higher concentration in the brain than plasma, likely due to the high lipophilicity of
CBD (35). CBD is already being used for palliative purposes in pediatric oncology, and CBD has
been shown to decrease /D1 expression and associated oncogenic phenotypes in multiple other
cancers in vivo (11, 12, 48). Mechanistically, our data suggest that CBD acts to regulate ID1
expression and DIPG cell proliferation partially through increasing intracellular levels of ROS,
as previous studies have shown CBD to act through this mechanism in both breast cancer and

GBM cells (37, 38).
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Patients with H3K27M-mutant tumors treated with CBD off-trial show promising
improvement in OS compared to historical controls. However, it is important to note that this is
limited by the retrospective and heterogeneous nature of our cohort, as well as an unknown
number of historical controls that may also have underwent treatment with CBD. Nevertheless,
our data make significant strides in establishing the mechanism of this controversial and popular
off-trial supplemental compound in high-risk brain tumor patients, and lays the groundwork for
future clinical trials. A recent CBD formulation (Epidiolex) has been FDA-approved for epilepsy
treatment (49), opening the door to a future clinical trial in DIPG (and other ID1-driven tumors).

Our data support a model in which multifactorial genetic and epigenetic processes
promote ID1-driven prenatal development transcriptional programs, which also promote the
invasive features of DIPG. These results improve our understanding of the pathogenesis of DIPG
tumors and provide a strong argument for the inclusion of ID1-targeting therapies into future

treatments.

METHODS
Study design

The objective of this work was to investigate the role of ID1 in the highly-invasive nature
of DIPG and to determine the in vivo antitumor efficacy of genetic and pharmacologic inhibition
of ID1 using our IUE H3.34-K27M-mutated murine tumor model. We performed a
comprehensive analysis of /D1 expression by RNA-sequencing of DIPG tissue samples with
H3WT, H3K27M/ACVRIWYT, or H3K27M/ACVRMYT, We next performed an integrative analysis
of H3K27ac and H3K27me3 deposition at the /D1 gene locus by performing Mint-ChIP-

sequencing on these DIPG samples. We further performed transcriptional program analyses of
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388  IDI-expressing DIPG tumor cells using publicly-available scRNA-seq datasets. To test the in
389  vivo impact of ID1 inhibition, we performed /D7 knockdown in our PPK tumor model. In vivo
390  pharmacological inhibition of ID1 in our PPK tumor model was performed with CBD. Sample
391  size and any data inclusion/exclusion were defined individually for each mouse experiment. The
392  number of replicates varied between experiments and is presented in figure legends. We
393  performed blinding for quantitative immunohistochemistry scoring of ID1 and Ki67 staining.
394  Finally, we measured ID1 expression in DIPG patient samples which underwent different doses
395  of CBD (non-prescribed) during the course of treatment (Supplement Table 2).
396
397  Murine IUE model of pHGG
398 All animal studies were conducted according to the guidelines approved by the
399  University Committee on Use and Care of Animals (UCUCA) at the University of Michigan.
400 IUE was performed using sterile technique on isoflurane/oxygen-anesthetized pregnant CD1
401  females at embryonic stage E13.5, using established methodology. In this study, we injected the
402  following four plasmids together: [1] PBase, [2] PB-CAG-DNp53-Ires-Luciferase (dominant
403  negative TP53 or TP53 hereafter), [3] PB-CAG-PdgfraD824V-Ires-eGFP (PDGFRA D842V),
404  and [4] PB-CAG-H3.3 K27M-Ires-eGFP (H3K27M), referred to as “PPK” model (as previously
405  published) (/7) (see Supplementary for details).
406
407  Whole exome and transcriptome sequencing (Sick Kids, Toronto)
408 Use of patient tissues was approved by the Hospital for Sick Children (Toronto) Research
409  Ethics Board. WES/WGS (accession EGAS00001000575) from DIPG samples plus matched

410  normal was using DNA extracted from fresh-frozen tissues as described (/3). Fresh-frozen tissue
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411  was used for total RNA extraction with the RNeasy mini kit (QIAGEN, CA, USA) (see
412 Supplementary for details).
413
414  Mint-ChIP-sequencing
415 Analyses for the two classical histone modifications H3K27ac and H3K27me3
416  representing accessible and repressed chromatin states were performed as part of a MiNT-ChIP
417  analysis for 9 tumor samples of DIPG patients in comparison to a control tissue sample of
418  healthy pons according to the protocol published by Buenstro et al., 2013 (see Supplementary for
419  details).
420
421  ScRNA-seq analysis from developing brain and H3K27M-mutant DIPGs
fég Single-cell gene expression data and their clusters in the developing brain were obtained
424  from GSE133531 (mouse pons), GSE120046 (human pons, gestational week 8-28), and
425  GSE144462 (human cortex, gestational week 21-26) (see Supplementary for details).
426
427  Native ChIP-qPCR
428 Native ChIP-qPCR was performed on post-mortem tissue using antibodies against
429  H3K27ac (2 pl, cat# 07360, Millipore Sigma), H3K27me3 (1 pg, cat# 07449, Millipore Sigma),
430  and control IgG (2 pg Cat#12370, Millipore Sigma) (see Supplementary for details).
431
432  Invasion assay
433 Invasion assays were performed using growth factor-reduced Matrigel invasion chambers

434  (Cat #354483, Corning) as previously described (see Supplementary for details) (50).


https://doi.org/10.1101/2021.05.10.443452
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443452; this version posted May 11, 2021. The copyright holder for this preprint (which

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19

Migration (scratch) assay
Scratches were made in 80%-confluent 6-well plates, and migration was monitored using

the IncuCyte® system (see Supplementary for details).

CBD treatment studies in murine IUE PPK model

Mice harboring IUE-generated PPK HGG tumors were treated with CBD when tumors
reached logarithmic growth phase (minimum 2 x 10 photons/sec via bioluminescent imaging).
Mice litters from each experimental group were randomized to treatment with: (A) 15 mg/kg
CBD (10% CBD suspended in Ethanol, 80% DPBS, 10% Tween-80) and (B) control treatment
(10% Ethanol, 80% DPBS, 10% Tween-80). Mice were treated 5 days/week until morbidity (see

Supplementary for details).

CBD pharmacokinetic analysis

CBD administration to non-tumor bearing CD1 mice and PPK tumor bearing mice for PK
studies were performed by IP injection at zero time point. Timeline for CBD injection and
plasma, brainstem and/or tumor collection were depicted in Fig. 7 E-F (see Supplementary for

details).

Human studies

Informed consent was obtained for all patient samples. Two patients (CHC001 and

CHCO002) were enrolled on an ongoing IRB-approved prospective observational study at
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Children’s Hospital of Colorado for children and young adults with brain tumors undergoing

patient-directed medical marijuana therapy (NCT03052738) (see Supplementary for details).

Supplementary Materials

Materials and Methods

Fig. S1. ID1 expression in DIPG by cell malignancy and tumor location.

Fig. S2. Multifocal ChIP-qPCR analysis of /D1 expression in human DIPG.

Fig. S3. ID1 expression from scRNA-seq of six different H3K27M-DMG patients across

varying regions and malignant cell types.

Fig. S4. In situ hybridization for /D] RNA in developing mouse brain.

Fig. S5. H3K27ac at ID1 locus during murine development.

Fig. S6. ID1 expression in varying cell types during normal murine pontine development.

Fig. S7. ID1 expression from single-cell transcriptome analysis of varying cell types in

normal developing murine pons.

Fig. S8. ID1 expression from scRNA-seq of four different H3K27M-DMG patients

across varying malignant cell types.

Fig. S9. Gene ontology (GO) analysis of higher /D/-expressing AC-like cells from

H3K27M-mutated tumor patients.

Fig. S10. /DI knockdown in HEK293 cells.

Fig. S11. Impact of CBD treatment on ID1 expression in human DIPG cells.
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Fig. S12. Effect of pharmacologic (CBD) suppression of ID1 on DIPG007 and PBT-29

tumor cell invasion and migration.

Fig. S13. ID1-deficient DIPG007 cells display slower in vivo tumor growth.

Fig. S14. Tumor cell invasion assessment in CBD- vs control-treated PPK mice.

Fig. S15. Detailed vector map of pGIPZ lentiviral vector.

Table S1. Primer sequences for use in ChIP-qPCR and qPCR.

Table S2. Clinical details of pHGG patients treated with CBD.
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Fig. 1. Elevated expression of IDI in DIPG population. (A) IUE-mediated H3K27M-tumor

model. (B) PDGFRAMVTp53MUT_H3WT (“pPPW™) and PDGFRAMUTp53MUT.H3K27M (“PPK”)

tumors are generated by IUE. Tumor growth is monitored by in vivo bioluminescence imaging

and primary neurosphere cell cultures are generated by dissociation of tumor tissue. (C) Survival
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776  curve for PPW and PPK mice displays significantly reduced survival of PPK compared to PPW
777  mice; **P=0.014, log-rank test. (D) IHC-stained images of PPK tumor show tumor-specific
778  H3K27M expression and reduced H3K27me3 (representative of n=3 PPK tumors).
779  Magnification = 10x (top row); 40x (bottom row). (E) Western blot (WB) of PPW and PPK
780  primary neurospheres for assessment of H3K27M, H3K27ac and ID1 expression by H3
781  mutational status. (F) WB of murine PPK and PPK+4CVRIMUT (“PPK+A”) cells, and human
782  DIPGXIIIp and DIPGXIIIp+4CVRIMYT cells, for assessment of ID1 and pSMAD expression.
783  (G) ID1 expression of DIPG tissue (n=34) compared to matched normal brain tissue (n=18) from
784  the SickKids cohort; ***P <.001, unpaired parametric t-test. (H) /D expression by scRNA-seq
785  from the DFCI cohort, including brainstem (n=4), thalamus (n=2) and cortex (n=8);
786  ****P<(.0001, one-way ANOVA t-test. (I) /DI expression of DIPG tissue (n=68) compared to
787  hemispheric pHGG tissue (n=130). Data from ICR cohort; ****P < 0.0001, unpaired t-test. (J)
788  Kaplan-Meier survival curve of DIPG patients (n=66) grouped by high and low /D1 expression.
789  *P =0.0282, Mantel-Cox test. (K) /D1 expression across Hist/H3B (H3C2) K27M (n=12),
790  H3F3A4 (H3.34) K27TM (n=71), H3WT (n=118) and H3F34 (H3.34) G34R (n=19) DIPG tumors.
791  Data from ICR cohort, presented in Mackay et al; *P<0.05, **P<0.01, ***P<0.001,
792  **#**P<0.0001, one-way ANOVA t-test. (L) /D1 expression of pHGG tissue by ACVRI
793 mutational status (n=15 ACVRIMUT ; n=205 ACVR1%"T). Data from ICR cohort; **P<0.01,
794  unpaired parametric t-test. (M) /D1 expression of pHGG tumors with ACVRI mutation only
795  (n=4), H3K27M only (n=72), H3K27M and ACVRI mutations (n=11) and neither mutation
796  (H3WT/ACVRI WT; n=114). Data from ICR cohort; *P<0.05, **P<0.01, one-way ANOVA t-

797  test.
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Fig. 2. ID1 is epigenetically active in H3K27M-DIPG. (A) Multifocal DIPG tumor samples
were obtained at autopsy from n=2 patients with H3K27M mutation and wildtype ACVRI

(ACVRIWT), n=2 patients with H3K27M mutation and ACVRI mutation (ACVRI1MYT) and n=3
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patients with wildtype H3 and ACVRI. Circles over MRI images represent the approximate
region of tumor. (B) /D1 expression (QPCR) for multifocal samples collected from patients in
(A). Data represent mean+/-SEM; **P<0.01, ****P<(0.0001, one-way ANOVA t-test. (C) ChIP-
sequencing of H3K27ac and H3K27me3 deposition at the /D] gene locus in normal human
pontine tissue (n=1), H3VT DIPG tumor tissue (n=1) and H3K27M DIPG tumor tissue (n=1). (D-
E) ChIP-qPCR quantification of deposited (D) H3K27ac, and (E) H3K27me3 marks at gene
body elements identified in part C for the /D1 gene. Data represent samples from patients in (A),
mean+/-SEM; *P<0.05, **P<0.01, ****P<0.0001, one-way ANOVA t-test. (F) MRI image of
H3K27M/ACVRIMUT DIPG patient with circles representing regions where samples were
obtained at autopsy. Color scale on right displays relative level of /DI expression by qPCR
(orange=higher /D[ expression; blue=lower ID1 expression. (G) ScCRNA-seq data (DFCI, n=4
DIPGs) of malignant DIPG cells plotted to show ID1 expression across varying subtypes of cells

[oligodendrocyte-like (OC-like); OPC-like; AC-like].
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murine hindbrain. (A) Heat map showing relative /D] expression by in situ hybridization (ISH)
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in murine brain across development. Available from: http://developingmouse.brain-map.org/. (B)

ISH of sagittal developing murine brain sections showing higher /D/ RNA in embryonic
hindbrain than forebrain, and minimal /D] RNA in all post-natal brain [Allen Developing Mouse

Brain Atlas. Available from: http://developingmouse.brain-map.org/]. (C) Heatmap of /D]

expression across varying cell types during normal human pontine development [data from Fan
et al. (25)]. Circle size indicates the percentage of cells that express ID1 and color indicates the
expression level in ID17 cells (red=high expression; blue=low expression). (D) ID1 IHC staining
of normal human pontine tissue displays higher ID1 expression in cells lining the 4" ventricle at
20.5 weeks gestation and minimal expression in brain tissue at 3.5 years of age. (E) ID1 IHC of
normal murine pontine tissue at embryonic day 18 (E18) displays higher ID1 expression
compared to postnatal day 7 (P7). Magnification = 10x (top row); 40x (bottom row). (F) Overlap
of genes expressed by cell types in the developing human pons Fu et al. (28) in DIPG tumor cell
subsets. (Red=cell type marker genes enriched in DIPG cells; blue=cell type marker genes not
enriched in DIPG cells). (G) Immunostaining of SPARCLI1 (green) and ID1 (red) in human
DIPG tissue showing co-localization of ID1 and SPARCLI in a subset of cells (white arrow).
Scale bar, 20 pm. Tumor nuclei were stained with DAPI (blue). [For (A), from left to right (row
headings), RSP: rostral secondary prosencephalon, Tel: telencephalic vesicle, PedHy: peduncular
(caudal) hypothalamus, P3: prosomere 1, P2: prosomere 2, P1: prosomere 3, M: midbrain, PPH:
prepontine hindbrain, PH: pontine hindbrain, PMH: pontomedullary hindbrain, MH: medullary
hindbrain (medulla); from top to bottom (column headings), E11.5/15.5: embryonic day

11.5/15.5, P4: postnatal day 4].
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migration. (A) Western blot (WB) confirming /D] knockdown in DIPG007 cells. (B) WB
depicting reduction in SPARCLI expression along with decreased ID1 expression in /D1-
knockdown DIPGOO07 cells. (C) Effect of /D1 knockdown on invasion as measured by Matrigel-
coated Boyden chamber assay. Images show invading cells stained with crystal violet. Each data
point represents an individual image; **P < 0.01, unpaired parametric t-test. (D-E) Effect of ID/
knockdown on DIPG007 migration as measured by scratch assay, quantified as percent wound
closure. Images show representative scratch at 0 and 24 hours outlined in dotted red line.
Experiment was completed in triplicate and data points represent mean+/-SEM, **P < 0.01;
images taken with Incucyte; area measured by ImagelJ. (F) WB for ID1 and ACTB expression in
DIPGO007 and PPK cells treated with increasing concentrations of CBD or DMSO control. (G)
Viability of DIPG007 and PPK cells treated with increasing concentrations of CBD (0.5-20uM)
relative to DMSO-treated control. Experiment was completed in triplicate and data points
represent mean+/-SEM. (H) DIPG007 cells were treated for 2 days with DMSO (control), 2.5uM
or 5uM CBD and invasion was measured by Matrigel-coated Boyden chamber. Each data point
represents an individual image, mean+/-SEM; ****P < (.0001, unpaired parametric t-test. (I)
Effect of CBD treatment (5-10uM) on DIPG007 migration as measured by scratch assay,
quantified as percent wound closure. Experiment was completed in triplicate and data points
represent mean+/-SEM, **P < 0.005, two-way ANOVA t-test. (J) Histogram showing increase
in DCF (ROS) with increasing doses of CBD. (K) Production of ROS mediates the inhibitory
activity of CBD through ID1. DIPG007 cells were treated for 72 hours with vehicle (DMSO) or
different concentrations of CBD (10, &, 6, 4, 2, 1 uM) in the presence and absence of 50 uM
TOC. ICso was 2.3uM for CBD treatment alone and 10.34uM for CBD + TOC; ****P < 0.0001,

two-way ANOVA t-test. Cell proliferation was measured using XTT assay.
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Figure 5

Fig. 5. Genetic targeting of ID1 decreases cell viability and slows murine tumor growth in

PPK IUE tumor model. (A) Standard Kaplan-Meier survival plot reveals notable increase in

survival for PPK-Sh-ID1 [PDGFRA-, TP53- and H3K27M-mutant with ID1 knockout (n=8)]

mice with median survival 58 days post-IUE injection compared to PPK-Sh-control (n=8) mice

with median survival of 49 days; P=0.01, Log-rank test. (B) Representative bioluminescence

images of PPK-Sh-control tumors and PPK-Sh-ID1 (representative from n=8), 49 days after IUE

injection, displaying lower average luminescence in the PPK-Sh-ID1 group than in the PPK-Sh-

control. (C) IUE PPK bioluminescence tumor monitor growth data with statistical significance

between PPK-Sh-control and PPK-Sh-ID1 groups 49 days after IUE injection. *P<0.05, one-way

ANOVA t-test. (D) IHC analysis of ID1 and Ki67 expression in tumors from PPK-Sh-ID1 and
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PPK-Sh-control mice. Images representative of each experimental cohort. Magnification=40x.
(E) IHC quantification for PPK-Sh-control and PPK-Sh-ID1 mice for ID1 and Ki67 expression
levels. **P=0.0065 and ****P < 0.0001, one-way ANOVA t-test. Data points include 3 animals
per treatment group and 4 images per animal. Data represent the mean+/-SEM. (F) Images of
IUE-generated PPK-Sh-Control and PPK-Sh-ID1 tumor borders for assessment of tumor cell

invasiveness. Magnification = 10x (top row); 40x (bottom row).
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Fig. 6. Therapeutic inhibition of ID1 with CBD decreases ID1 expression and improves
survival of PPK tumor-bearing mice. (A) Survival curve for PPK mice shows that median

survival for control condition was 45 days post-IUE injection (n=8) and 55 days for CBD
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condition (15 mg/kg, n=8). **P<0.005, Log-rank test. (B-C) IHC analysis and quantification of

tumor images reveals that CBD treatment reduced expression of ID1 and Ki67 compared to
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vehicle-treated tumors (representative of n=3 tumors); **P=0.0065 and ****P <0.0001,
Dunnett’s multiple comparisons test. N=3 animals per treatment group and 4 images per animal.
Data represent the mean+/-SEM. Magnification=10x. (D) Analysis of tumor invasion in tumor-
bearing mice (n=3 mice per group) with genetic (sh-ID1) or pharmacologic (CBD) ID1
knockdown. Invasion was defined as tumor infiltration into the contralateral hippocampus (Hip).
(E) Timeline for pharmacokinetic (PK) liquid chromatography (LC)/mass spectrometry (MS)
analysis of CBD treatment by intraperitoneal (IP) injection in normal mouse plasma and
brainstem. (F) Timeline for PK mass spec analysis of CBD treatment by IP injection in PPK
mouse plasma, normal brain and tumor. (G) PK analysis results for normal (non-tumor-bearing)
mice treated with 45 mg/kg CBD (n=3 mice per time point). Data represent CBD concentrations
as determined by LC/MS for the plasma and brainstem; mean+/-SEM. Blue dashed line
represents estimated ICso of CBD for DIPG007 cells. (H) PK analysis results for n=3 PPK mice
treated with 45 mg/kg CBD. Data represent CBD concentrations as determined by LC/MS for

the plasma, normal brain and tumor; mean+/-SEM.
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Figure 7
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Fig. 7. Treatment of human pHGG patients with CBD. (A) Plot representing the CBD dosing
range (mg/kg/day) in human patients, including one high (UMPEDS83) and one low (UMPEDS86)
dose of CBD, as indicated by red and blue lines. (B-C) IHC-stained tumor tissue from DIPG
patients (B) UMPEDS3 treated with CBD (25 mg/kg) and (C) UMPEDS6 treated with CBD (0.4
mg/kg/day) during treatment course for assessment of ID1 expression. IHC images
representative of n=3 images taken using Aperio ImageScope, magnification=40x. (D) ID1 IHC
analysis and quantification of human DIPG tumor samples with low (n=6) and high dose (n=4)
of CBD; *P=0.0388, Mann-Whitney U test. (E) Survival of H3K27M-mutant tumor patients

treated with CBD from higher than 3mg/kg (n=4) and lower than <3mg/kg (n=6) with historical

control (n=98).
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Figure 8
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Fig. 8. Proposed model of ID1 activation in DIPG with H3K27M and ACVR1 mutations
and its inhibition with CBD. The proposed model is made up of the following sub-sections: (a)
H3K27M inhibits PRC2, leading to global decreases in H3K27me3 and subsequently allowing
for increased H3K27ac. (b) Regional or tissue-specific factors and/ or (¢) constitutively
activating ACVR I mutations increase /D1 expression via SMAD protein signaling. We propose
that ID1 expression replicates the developing cell subtype OAPC transcriptional program, which
promotes migration. (d) ID1 expression is reduced by CBD treatment, which partially acts
through increasing intracellular levels of reactive oxygen species (ROS). Image created with

BioRender.
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Supplementary Materials

Supplementary Methods

Whole exome and transcriptome sequencing (Sick Kids, Toronto)

Use of patient tissues was approved by the Hospital for Sick Children (Toronto) Research
Ethics Board. WES/WGS (accession EGAS00001000575) from DIPG samples plus matched
normal was using DNA extracted from fresh-frozen tissues as described (/3). Fresh-frozen tissue
was used for total RNA extraction with the RNeasy mini kit (QIAGEN, CA, USA). 34 DIPG and
17 normal brain samples passed quality control. The TruSeq Stranded Total RNA Library Prep
with Ribo-Zero Gold Kit (Illumina, CA, USA) was used and paired end sequencing generated
with Illumina HiSeq 2500 machines (accession EGAD00001006450) (57). Sequencing quality
was confirmed with FastQC v0.11 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Reads were quality trimmed with Trimmomatic (52) v0.35 before being aligned with RSEM (53)

v1.2 to human transcriptome build GRCh37 v75. Gene expression was quantified FPKM.

Whole exome and transcriptome sequencing of tumor/normal tissue (University of

Michigan)

Clinically integrated sequencing was performed according to previously published
methodology (54, 55). For living patients with DIPG/HGG, the PEDS-MIONCOSEQ study was
approved by the Institutional Review Board of the University of Michigan Medical School and
all patients or their parents or legal guardians provided informed consent (written assent if >10
years). For deceased patients, parents were consent for research autopsy and brain tumor/normal
banking separately from the MIONCOSEQ protocol. Tumor (FFPE or frozen) and normal

(cheek swab or blood, when available) samples were submitted for whole exome (paired tumor



943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

49

and germline DNA) and transcriptome (tumor RNA) sequencing. Nucleic acid preparation, high-
throughput sequencing, and computational analysis were performed by the Michigan Center for
Translational Pathology (MCTP) sequencing laboratory using standard protocols in adherence to

the Clinical Laboratory Improvement Amendments (CLIA) (56).

Analysis of tumors from Institute for Cancer Research (ICR)

Whole exome and transcriptome sequencing data from 1067 pediatric high grade gliomas
(pHGGS) (compiled from the Jones lab, ICR London, Cancer Cell 2017) was retrieved from the
ICR cohort (20). Specimens with mRNA sequencing (n=247) were then separated by location
into brainstem/pons (n=68), hemispheric (n=130), and midline (n=49). PHGGs of the brainstem
were considered DIPGs. Of the 68 DIPGs from the ICR cohort, 2 did not have survival data and
were removed. Overall survival was defined from day of diagnosis to death of patient. High /D1

expression was defined as having a z-score greater than 0.2 (n=38), and low /D[ expression as

less than 0.2 (n=25).

In Utero Electroporation (IUE) and generation of primary cell lines from IUE tumors
PiggyBac transposon plasmids containing PDGFRA mutation, 7P53 mutation, H3F3A4-
K27M, and H3F3A4-WT, were kind gifts from Dr. Timothy Phoenix (Cincinnati Children’s
Hospital, Cincinnati, OH) (57). In utero electroporation was performed on isoflurane/oxygen-
anesthetized pregnant female mice at embryonic day E13.5 in the cortex. Subcutaneous delivery
of Vetergesic and Carpofen at 0.1 mg/kg and 5 mg/kg, respectively, was also provided pre-
emptively. Briefly, IUE were performed using sterile technique on isoflurane/oxygen-

anesthetized pregnant CD1 females at E13.5. Uterine horns were exposed through a 1 cm
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incision and embryos were digitally manipulated into the correct orientation. Borosilicate
capillaries were loaded with endotoxin-free DNA and Fast Green dye (0.05%, Sigma) for
visualization. Lateral ventricles were then injected with the DNA-dye mixture using a
microinjector (Eppendorf). 3-5 plasmids were injected at the same time, each at a concentration
of 2 pul/ul. 1-2 pl of total solution was injected into each embryo. DNA was electroporated into
cortical neural progenitors using 3 mm tweezertrodes (BTX), applying 5 square pulses at 35V,
50 ms each with 950 ms intervals. Embryos were then returned into abdominal cavity, muscle
and skin sutured, and animal monitored until full recovery. Periodically, tumor growth was
monitored by IVIS as mice are treated starting 33 days post injection (dpi).

Primary cell lines with specific genetic alterations were generated from IUE-induced
pediatric high grade glioma models. Mice with confirmed large tumors (bioluminescence 107 —
108 photons/s/cm?/sr) were selected. Mice were euthanized with an overdose of isoflurane,
decapitated, and brain was dissected from the skull. Brain was then placed in a Petri dish, and
coronal cuts were made anterior and posterior to tumor using sterile scalpel. Tumor was
identified and dissected with fine forceps and placed in a 1.5 ml tube containing 300 pl of Neural
Stem Cell Media (NSC Media: DMEM/F12 with B-27 supplement, N2 supplement, and
Normocin, supplemented with human recombinant EGF and bFGF at a concentration of 20
ng/ml each). Tumor was gently homogenized using a plastic pestle. 1 ml of enzyme free tissue
dissociation solution was added to homogenized tumor, and then incubated at 37°C for 5
minutes. Then, cell suspension was passed through a 70 um cell strainer, centrifuged at 300x g
for 4 min. Supernatant was decanted, and pellet resuspended in 7 ml of NSC media. Solution was
then plated onto a T25 tissue culture flask, and placed in tissue culture incubator at 37°C with

atmosphere of 95% air and 5% CO,. After 3 days, neurospheres were removed and re-plated into
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a T75 tissue culture flask. Cells were then maintained in NSC media appropriately. No
mycoplasma testing regimen was performed on murine cell lines as they are early passage tumor-
derived cells. If frozen, cells were cultured for 2 to 3 passages (2 weeks) following thawing for

experiments.

Mint-ChIP-sequencing of tumor tissue

Analyses for the two classical histone modifications H3K27ac and H3K27me3
representing accessible and repressed chromatin states were performed as part of a MiNT-ChIP
analysis for 9 tumor samples of DIPG patients in comparison to a control tissue sample of
healthy pons according to the protocol published by Buenstro et al., 2013. Up to 50 mm? snap
frozen tumor tissue was digested with 2.5 mg/ml collagenase IV (Sigma-Aldrich, Germany) and
dissociated via the gentleMACS Dissociator (Miltenyi, Germany). Subsequent
immunoprecipitation for H3K27Ac and H3K27me3 was performed with 5 ug of ChIP-grade
antibodies, monoclonal murine anti-H3K27Ac (MABI0309, ActiveMotif, Belgium) and a
polyclonal rabbit anti-H3K27m3 (Merck Millipore, Germany).

Over 50 mio reads were sequenced in 50 bp paired-end sequencing runs on a NovaSeq
6000 system (NGS Core Facility, University Hospital, Bonn, Germany) and demultiplexed as
described by Buenstro et al., 2013 (Core Unit Bioinformatics Data Analysis, University Hospital
Bonn, Germany). Reads were aligned against the human reference genome hg19 by Bowtie2
(v2.4.2). Tag directories of piled up reads were created using HOMER (v4.11)

makeTagDirectory and visualized makeUCSCfile with the -fsize 5e8 option.

Native ChIP-qPCR
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Protocol for native ChIP-qPCR was adapted from previously described methods, and
optimized for frozen human tissue (58). Antibodies against H3K27ac (2 pl, cat# 07360,
Millipore Sigma), H3K27me3 (1 pg, cat# 07449, Millipore Sigma), and control IgG (2 pg
Cat#12370, Millipore Sigma) were used for immunoprecipitation.

Quantitative-PCR was performed per below methods, using 1l of eluted ChIP DNA. Primers
for ID1 enhancer and promoter region target sites were predicted based on H3K27ac peaks
observed in the four H3K27M DIPG tumor tissue samples analyzed via ChIP-sequencing in
main Figure 2C. For a complete list of primers used in ChIP-qPCR, see Supplementary Table S1.
NCBI RefSeq hgl9 was used as reference genome (43). Enrichment at target sites was quantified
using the percent input method as has been previously described (59). Gene expression was
quantified relative to GAPDH using the comparative Ct method as previously described (60).
For a complete list of primer sequences used in qPCR for gene expression, see Supplementary

Table S2.

Analysis of developing murine brain

Call sets from the ENCODE portal (https://encodeproject.org/) were downloaded with the

following identifiers: ENCSR691NQH, ENCSR428GHF, and ENCSR066XFL. ChIP-

Sequencing peaks were quantified using EaSeq (http://easeq.net) (61). Graphic depictions of

H3K27ac peaks at the /D1 locus were generated using IGV browser (62). ID1 in situ
hybridization (ISH) data and images from the 2014 Allen Developing Mouse brain Atlas

(http://developingmouse.brain-map.org/) were downloaded and analyzed.

ScRNA-seq analysis from developing brain and H3K27M-mutant DIPGs
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Single-cell gene expression data and their clusters in the developing brain were obtained
from GSE133531 (mouse pons), GSE120046 (human pons, gestational week 8-28), and
GSE144462 (human cortex, gestational week 21-26). Raw mouse expression data was
normalized to counts-per-million for each cell. Cells were assigned to clusters based on the joint
clustering of cells from all four developmental stages (E15.5, PO, P3, P6). 1,792 cells were
removed due to missing cluster assignments and Id1 expression was analyzed in the remaining
22,682 cells. Analysis of normalized human pontine expression data was restricted to 4,228 cells
that were detected across 18 gestational time points in the pons (>=3 cells per gestational week).
Normalized human expression data for H3K27M-mutant DMGs was obtained from GSE102130.
Tumor cells with an astrocytic differentiation (AC-like), oligodendrocytic differentiation (OC-
like), and OPC-like program were determined using stemness- and lineage scores from Filbin et
al. (/9) and k-means clustering. Mann-Whitney U (MWU) tests were used to identify for each
patient genes that separate AC-like and OPC-like cells. Cell type enrichments were calculated
using significant marker genes (cell type set A) and full summary statistics obtained from
differential marker gene analysis (enrichment score=z-transformed median -log10 MWU P
values). Functional enrichment analysis of marker genes was performed using the Enrichr web

service (63) and top 200 marker genes (sorted by MWU P-value).

DIPG immunohistochemistry (IHC) staining and quantification

Mouse PPK tumor and human DIPG paraffin embedded tissue were sectioned and sent to
Dr. Daniel Martinez (Department of Pathology, Children’s Hospital of Philadelphia, PA) for ID1
and Ki67 staining. Briefly, ID1 antibody (Biocheck BCH-1) was used to stain formalin-fixed

paraffin embedded tissue slides. Slides were rinsed in 2 changes of xylene for 5 min each then
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rehydrated in a series of descending concentrations of ethanol. Slides were treated with .3%
H202/methanol for 30min. and then treated in a pressure cooker (Biocare Medical) with 0.01M
Citrate buffer pH 7.6. After cooling, slides were rinsed in 0.1M Tris Buffer and then blocked
with 2% fetal bovine serum for 5 min. Slides were then incubated with ID1 antibody at a 1:25
dilution overnight at 4 degrees C. Slides were then rinsed and incubated with biotinylated anti-
Rabbit IgG (Vector Laboratories BA-1000) for 30min at room temp. After rinsing, slides were
incubated with the avidin biotin complex (Vector Laboratories PK-6100) for 30 min at room
temp. Slides were then rinsed and incubated with DAB (DAKO Cytomation K3468) for 10 min
at room temp. Slides were counterstained with hematoxylin, then rinsed, dehydrated through a
series of ascending concentrations of ethanol and xylene, then coverslipped. Ki67(SP6) antibody
(Abcam ab16667) was used to stain formalin-fixed, paraffin—embedded tissue. Staining was
performed on a Bond Max automated staining system (Leica Microsystems). The Bond Refine
staining kit (Leica Microsystems DS9800) was used. The standard protocol was followed with
the exception of the primary antibody incubation which was extended to 1 hour at room
temperature. Ki67 was used at 1:400. Antigen retrieval was performed with E2 (Leica
Microsystems) retrieval solution for 20min. After drying, slides were scanned at 20x
magnification with an Aperio CS-O (Leica Biosystems) slide scanner and images were viewed
using the Aperio ImageScope software. An individual blinded to the experiment captured five
random images from each THC slide at 10X magnification. Quantification of images for precent

positive area were measured by Imagel software.

Human cell cultures
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Primary H3.3K27M-mutant cell line DIPG007 was obtained from Dr. Rintaru Hashizume
from (Northwestern University, Chicago, IL) who obtained them originally from Dr. Angel
Carcaboso (Hospital Sant Joan dr Deu, Barcelona, Spain). DIPG-XIII was obtained from Dr.
Michelle Monje (Stanford University, Stanford, CA). PBT-29 was obtained from Dr. Nicholas
Vitanza,(Seattle Children’s, Seattle, WA). Immortalized human embryonic kidney 293
(HEK293) cells were obtained from Dr. Sriram Venneti (University of Michigan, Ann Arbor,

MI). Cells were cultured for 2 to 3 passages (2 weeks) following thawing for experiments.

DIGPO007, DIPGXIIIp and PBT-29 cells

DIPG007, DIPGXIIIp and PBT-29 cells were cultured in TSM N5 media: 250 ml DMEM (1X,
Cat#11995065, Gibco); 250 ml NeuroBasal-A Medium (1X, Cat#0888022, Gibco); 5 ml HEPES
(1M, Cat#15630080, Gibco); 5 ml Sodium Pyruvate (100mM, Cat#11360070, Gibco); B-27
Supplement without Vitamin A (50X, Cat #12587010, Gibco); 5 ml MEM NEAA (100X,
Cat#11140050, Gibco); 5 ml Antibiotic-Antimycotic (100X, Cat#15240062, Gibco); 250 pl
Heparin Solution (Cat#07980, STEMCELL Technologies); 10 ul human PDGF-AA every 3 days
(10 ng/ml, Cat#10016, Shenandoah Biotechnology); 1 ml Normocin (Cat#antnrl, InvivoGen); 10
ul human PDGF-BB every 3 days (10 ng/ml, Cat#10018, Shenandoah Biotechnology); 20 pl
FGF every 3 days (20 ng/ml, Cat#10018B, PeproTech); 20 ul EGF every 3 days (20 ng/ml,
Cat#10047, PeproTech). For adherent conditions, FBS was diluted in media to 10%. For
neurosphere culture, FBS was not added. At each passage, cells were dissociated using StemPro

Accutase (Cat#A1110501, Gibco).
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Human Embryonic Kidney 293 (HEK293) cells

HEK?293 cells were cultured in: 500 ml DMEM (1X, Cat#11995065, Gibco); 333 ul Gluta-Max

(200 mM, Cat#25030081, Gibco); 1 ml Normocin (Cat#antnrl, InvivoGen). FBS was diluted in

media to 10%. At each passage, cells were dissociated using StemPro Accutase (Cat#A1110501,

Gibco).

ShRNA-mediated gene silencing by lentiviral transduction of cultured cells
ShRNA-mediated gene silencing for DIPG007, HEK293, or NHA cell cultures was
performed by lentiviral transduction with pGIPZ shRNAs (Dharmacon, GE) targeting /D]
(Clone ID’s V2LHS 133263, V2LHS 133264) or scrambled control (Cat#RHS4346). A map of
this vector is provided in Supplementary Figure S15. Protocol for lentiviral transduction was
modified from the University of Michigan Vector Core as follows. 24 hours prior to
transduction, cells were split into 6-well tissue culture plates at a density that they would reach
approximately 60% confluency the following day. The next day, media was aspirated and
replaced with 1.35 ml of fresh media. Then, 0.15 ml of 10x viral supernatant was added, along
with 2.5 ul of 4mg/ml Polybrene (Cat#G062, ABM). Plate was then rocked gently on shaker to
evenly distribute virus and Polybrene. Cells were then placed in cell incubator at 37°C for
approximately 24 hours. Exact time was dependent on when cells began expressing GFP, which

was contained in the lenti-vector.

Western Blotting
Western blotting was performed using antibodies against ID1 (1:1000, Cat#133104,

Santa Cruz Biotechnology), Vinculin (1:10000, Cat#700062, Invitrogen), H3K27M (1:500,
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EMD, Cat#ABE419), H3K27me3 (1:500, EMD, Cat#07-449) and ACTB (1:10000, Cat#A2228,
Sigma-Aldrich), Secondary antibodies biotinylated horse anti-mouse IgG (Cat#BA2000, Vector
Laboratories), HRP goat anti-rabbit [gG (Cat#PI11000, Vector Laboratories), and m-IgGx BP-
HRP (Cat#sc516102, Santa Cruz Biotechnology) were used. Chemiluminescent blots were

imaged and processed using the FluroChem M system (ProteinSimple, San Jose, CA).

Cannabidiol treatment studies in vitro

Treatment was performed as previously described (/2). 3,000 primary DIPG007 and PPK
cells were plated in 96-well plates and incubated for 24 hours. The next day, cells were treated
with different doses of cannabidiol (CBD) cat # 90080 (Cayman Chemical). After 72 hours, in

vitro cell viability was monitored by XTT Cell Proliferation Assay kit (Cayman Chemical).

Invasion assay

Invasion assays were performed using growth factor-reduced matrigel invasion chambers
with 8 uM pores (Cat #354483, Corning) as described in previously published work (50).
Seeding density and incubation time was optimized for each cell line. FBS was used as
chemoattractant. Invading cells were stained with crystal violet. To count invading cells,
transwell membranes were viewed underneath an inverted microscope at 10x magnification, and

four pictures were taken at random locations to get an average sum.

Migration (scratch) assay
Migration assays were performed following a previously published protocol with slight

modifications (64). Cells were seeded in 6-well plates, and grown to approximately 80%
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confluence. Scratches were made using a 200 pl pipette tip, and migration was then monitored

using the IncuCyte® live-cell analysis system (Sartorius, Ann Arbor, MI). Images were analyzed

using ImageJ’s MRI Wound healing tool (http:/dev.mri.cnrs.fr/projects/imagej-

macros/wiki/Wound Healing Tool). Percent closure was calculated as [(Area=o— Area;) /

Area;=9]*100.

Proliferation and viability assays

Cell viability was quantified using the MTT Cell Proliferation Assay Kit (Cat#ab211091,
ABCAM), following manufacturer instruction for adherent cells. For proliferation, cells were
seeded in 96-well plates and monitored for confluence using the IncuCyte® live-cell analysis

system (Sartorius, Ann Arbor, MI).

Implantation of DIPGO007 cells and bioluminescence imaging
Implantation of mouse cells

Male and female NSG™ mice were obtained from Jackson Labs (Bar Harbor, ME) and
were 6-10 weeks of age at the start of surgery. All animal studies were conducted according to
the guidelines approved by the Institutional Animal Care & Use Committee (IACUC) at the
University of Michigan. Mice were anesthetized with injection of 120 mg/kg ketamine and 0.5
mg/kg dexmedetomidine. Hair above scalp was shaven, disinfected with iodine, and a 1 cm
incision was made above scalp to expose cranium. The periosteum was removed with scalpel.
Next, a 0.6mm burr hole was drilled 2 mm right of midline and 0.2 mm anterior to the bregma
with the Ideal Micro Drill (MD-1200 120V) from Braintree Scientific Inc. Mice were placed in a

Mouse/Neonatal Rat Adaptor stereotactic frame (#51615) from Stoelting. A 10 ul syringe
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(#7635-01) fitted with 33-gauge needle (#7762-06) from Hamilton, was filled with cell
suspension (15,000 cells per uL) and penetrated 3 mm into brain tissue. After waiting two
minutes, one microliter of cell suspension was injected over one minute and needle was slowly
removed after waiting 3 minutes after injection. Incision was closed with 4-0 nylon and mouse
was given 1 mg/kg atipamezole for reversal and monitored for recovery. Mice were monitored
for symptoms of morbidity, including impaired mobility, scruffed fur, hunched posture, ataxia,
and seizures.
Bioluminescence imaging

Mice were imaged using IVIS Spectrum #2 machine at the Center for Molecular Imaging
at the University of Michigan Core Facility. Mice were injected with 160 mg/kg D-luciferin
(#115144-35-9) from Gold Biotechnology and anesthetized with 2% isoflurane. 10 minutes after
luciferin injection, mice were placed into machine in a prone position and bioluminescence was
measured. Mice were imaged until peak signal was obtained for each mouse. Tumor
bioluminescent signal is measured in radiance (photons) (p/s/cm?/sr) in a circular region of

interest (ROI) over the cranium of each mouse with Living Image Software (PerkinElmer Inc).

CBD treatment studies in murine IUE PPK model

Mice harboring IUE-generated PPK HGG tumors were treated with CBD when tumors
reached logarithmic growth phase (minimum 2 x 10 photons/sec via bioluminescent imaging).
Mice litters from each experimental group were randomized to treatment with: (A) 15 mg/kg
CBD (10% CBD suspended in Ethanol, 80% DPBS, 10% Tween-80) and (B) control treatment
(10% Ethanol, 80% DPBS, 10% Tween-80). Mice were treated 5 days/week until morbidity.

Animals displaying symptoms of morbidity after treatment were euthanized for
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immunohistochemistry (IHC) analysis. For IHC analysis, mice were perfused with Tyrode’s
Solution followed by 4% paraformaldehyde fixative solution to preserve the structures of the
brain. For IHC quantification (Ki67 and ID1), 3-4 random images per tumor (n=3 tumors per
group) were taken at 10x magnification using Aperio ImageScope and percent positive area was

calculated using ImagelJ software.

CBD Pharmacokinetic analysis
Mouse PK sample procurement

CBD administration to non-tumor bearing CD1 mice and PPK tumor bearing mice for PK
studies were performed by IP injection at zero time point. Timeline for CBD injection and
plasma, brainstem and/or tumor collection were depicted in Fig. 7 E-F. At half, one, two, and six
hours after the CBD injection, the mice were isoflurane/oxygen-anesthetized and 500 uL to 1 mL
of blood was drawn from the apex of the heart within the mouse’s enclosed cavity. Immediately,
the withdrawn blood was centrifuged within a microvette EDTA coated conical tube for 10
minutes at 10,000 RPM, and the plasma was separated and stored at -80°C until PK analysis was
performed. Following the blood draw, the mouse was sacrificed and the brain, brain stem, and/or

tumor were extracted separately and stored at -80°C until PK analysis was performed.

Chemicals and reagents

For PK studies, CBD powder was procured from Cayman chemical USA. Liquid
chromatography—mass spectrometry (LC-MS) grade acetonitrile was purchased from Sigma-
Aldrich. Formic acid (98%; LC-MS grade) was obtained from Fluka. A Milli-Q water system

from Millipore was used to obtain ultrapure deionized water.
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Sample preparation

Plasma (40 uL) was dispensed into a Fisher Scientific 96-well plate, to which 40 pL of
ice-cold acetonitrile (100%) and 120 pL of internal standard solution (1000 ng/mL) were added.
Next, the plate was vortexed for 10 minutes. The plate was then centrifuged at 3500 revolutions
per minute (RPM) for 10 minutes at 4°C to precipitate the protein. LC—tandem mass
spectrometry (LC-MS/MS) was used to analyze 5 pL of the supernatant. The plasma samples
were sonicated prior to being transferred to the 96-well plates. Tissue samples were weighed and
suspended in 20% acetonitrile (80% water; 1:5 wt/vol). The samples were then homogenized
four times for 20 seconds each time at 6,500 RPM in a Precellys Evolution system. For LC-
MS/MS analysis, the CBD in brain tissue homogenates were extracted from the samples in the
same manner as the CBD in plasma. Prior to extraction, samples that were above the upper limit
of qualification were diluted with the same matrix. Calibrator-standard samples and quality
control samples were prepared by mixing 40 pL of blank bio matrix, 40 uL of working solution,

and 120 pL of internal standard solution.

Calibration curve

Analytical curves were made with 12 nonzero standards by plotting the peak area ratio of
CBD to the internal standard vs the concentration. The curve was created with linear regression
and weighted (1/X2). The correlation coefficient demonstrated the linearity of the relationship

between peak area ratio and concentration.

Liquid chromatography tandem—mass spectrometry
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The concentrations of CBD were determined with a Sciex AB-5500 Qtrap mass
spectrometer with electrospray ionization source, interfaced with a Shimadzu high-performance
LC system. The LC-MS/MS system was controlled with Analyst Software version 1.6 from
Applied Biosystems; this was also used for acquisition and processing of data. Separation was
performed on a Waters Xbridge C18 column (50 x 2.1 mm ID, 3.5 um); the flow rate was 0.4
mL/min. A (100% H2O with 0.1% formic acid) and B (100% acetonitrile with 0.1% formic acid)
comprised the mobile phase. The gradient began with 5% B for 30 seconds and then linearly
increased to 99% B at 2 minute and then reduced to 5% B at 4.1 minutes to 5.5 minutes with a
runtime of 6 minutes in total. The mass spectrometer was operated in positive mode; multiple
reaction monitoring was used for analysis. The Q1 m/z and Q3 m/z was 487.9 and 401.1,

respectively.

Statistical analyses

Statistical analyses were performed in consultation with a bioinformatician. Graphs were
plotted and statistical analyses were performed using GraphPad Prism software (version
7.00/8.00, GraphPad, La Jolla, CA) and Microsoft Excel. Unpaired, two-sided analysis of
variance (ANOVA) followed by multiple comparison analyses were used to analyze data as
indicated. Survival analyses in animals were performed using Kaplan-Meier analyses with the
Log-Rank test. Data were considered significant if p values were below 0.05 (95% confidence

intervals).

Human studies
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Informed consent was obtained for all patient samples. Two patients (CHC001 and
CHCO002) were enrolled on an ongoing IRB-approved prospective observational study at
Children’s Hospital of Colorado for children and young adults with brain tumors undergoing
patient-directed medical marijuana therapy (NCT03052738). The University of Michigan cohort
consisted of retrospective interviews with families of patients who underwent research autopsy.
The patients all underwent research autopsy consent and were contacted to confirm use of patient
details and tumor samples for this study. Patients who reported CBD therapy at any point in their
care were included in this study, and CBD dosage was confirmed by pictures of CBD bottle,

discussion with dispensary, etc., when possible.
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1280  Supplementary Figure S1. ID1 expression in DIPG by cell malignancy and tumor location.
1281  (A) IDI expression of DIPG tumor by cell malignancy from the Dana-Farber Cancer Institute
1282  (DFCI) DIPG cohort (n=4 patients). ID1 expression was compared between malignant DIPG
1283  cells (n=1841) and non-malignant tumor cells (n=189) from single-cell RNA-seq (scRNA-seq)
1284  data. Data represent mean +/- SEM; ****P<(0.0001, unpaired parametric t test. (B) /D] is

1285  frequently (35-69%) expressed in pontine DIPG cells and rarely (6-9%) expressed in thalamic

1286  DMGs.
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1288  Supplementary Figure S2. Multifocal ChIP-qPCR analysis of ID1 expression in human

1289  DIPG. (A-C) [Left panel]: Multifocal DIPG tumor samples (2 per tumor) were obtained at

1290  autopsy from n=2 patients with H3K27M mutation and wildtype ACVRI (ACVRIVT), n=2
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patients with H3K27M mutation and ACVRI mutation (ACVRIMUT) and n=3 patients with
wildtype H3 (H3%"T) and ACVRI. Circles labeled “A” and “B” over MRI images represent the
approximate region of tumor where a sample was obtained from. [Right panel]: Graphs on left
represent percent relative enrichment for H3K27ac and H3K27me3 marks by ChIP-qPCR for
each of the predicted /DI gene body elements shown in main figure 2. Graphs on right represent
ID1 expression, measured by qPCR, for the multifocal samples collected from patients in shown

in left MRI images. Data represent mean +/- SEM.
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Figure S3

A D1 expression is highest in AC-like DIPG cells
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Supplementary Figure S3. ID1 expression from single cell RNA-sequencing of six different
H3K27M-DMG patients across varying regions and malignant cell types. (A) Violin plots
depicting ID1 expression in three subtypes of H3K27M-DIPG malignant cells [Data from
pontine DIPG patients in Fig. 1B]. (B) Violin plots depicting ID1 expression in cycling vs non-
cycling malignant H3K27M-DIPG cells; P=1.6e"'2, Mann-Whitney U test. [OPC-
Oligodendrocyte precursor cell; OC- Oligodendrocyte; AC- Astrocyte]. Primary data for parts

(A) and (B) from Filbin et al., Science, 2018.
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ID] RNA is high in the developing embryonic murine brain, and drastically reduced in the post-

natal brain. Image credit: Allen Institute. © 2014 Allen Developing Mouse Brain Atlas.

Available from: http://developingmouse.brain-map.org/
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Supplementary Figure S5. H3K27ac at ID1 locus during murine development. (A) H3K27ac
peaks at the ID1 locus in E15.5 mouse brain and predicted ID1 enhancer regions [Image
generated using IGV browser]. (B) Relative enrichment of H3K27ac at predicted ID1 enhancers
in E15.5 murine brain regions. Data retrieved from ENCODE Consortium; highlighted regions

quantified using EaSeq (http://easeq.net).
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A ID1 expression in developing human pons .
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1339  Supplementary Figure S6. ID1 expression in varying cell types during normal murine

1340  pontine development. (A-B) Violin plots from analysis of Fan et al., Science Advances, 2020,
1341  depicting that AC-like cells show maximum ID1 expression during normal murine pontine
1342 development. Data points from all gestational weeks are combined for each cell type and sorted

1343 by median. [Astro- Astrocyte].
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A B Figure S7

varying cell types in normal murine pontine development. (B) Heatmap of ID1 expression during

normal murine pontine development [E15.5- Embryonic day 15.5; PO- Postnatal day 0]. Red
arrow indicates increased ID1 expression in astrocytes from PO-P6. Primary data for parts (A)

and (B) from Jessa et al., Nature Genetics, 2019.
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SPARCL1 expression is highest in AC-like DIPG cells Figure S8
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Supplementary Figure S8. ID1 expression from single cell RNA-sequencing of four
different H3K27M-DMG patients across varying malignant cell types. Violin plots depicting
SPARCLI1 expression in three subtypes of H3K27M-DIPG malignant cells [Data from pontine
DIPG patients in Fig. S1B]. Primary data from Filbin et al., Science, 2018. Patients MUV,
BCH836, BCH869- pontine tumors. Patient MUV 1- thalamic tumor. [OPC- Oligodendrocyte

precursor cell; OC- Oligodendrocyte; AC- Astrocyte].
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Supplementary Figure S9. Gene ontology (GO) analysis of higher IDI-expressing AC-like
cells from H3K27M-mutated tumor patients. GO analysis of primary data from Filbin et al.,
Science, 2018, demonstrates increased expression of genes related to extracellular matrix
organization and regulation of cell migration in AC-like cells. Patients MUV5, BCH836,

BCH869- pontine tumors. Patient MUV 1- thalamic tumor.
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Supplementary Figure S10. ID1 knockdown in HEK?293 cells. (A) Western blot confirming
ID1 knockdown in HEK293 cells. (B) Effect of /DI knockdown on cell invasion, as measured by
Matrigel-coated Boyden chamber assays. Each data point represents an individual image (4
random images were taken per well). NS, P > 0.05, unpaired t test. (C) Effect of /DI knockdown

on migration as measured by scratch assay. NS, P > 0.05, unpaired t test.
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Figure S11

Supplementary Figure S11. Impact of CBD treatment on ID1 expression in human DIPG

cells. (A) ID1 western blot of human DIPGXIIp and PBT-29 cells treated with increasing

concentrations of CBD, or DMSO control (UT- untreated). Expression levels of ID1 and ACTB

were measured. (B) Viability of DIPGXIIIp and PBT-029 cells treated with increasing

concentrations of CBD (0.5 uM to 20 uM) relative to DMSO-treated control. Experiment was

completed in triplicate and data points represent mean +/- SEM. (C) Western blot of ID1 and

SPARCLI expression in PBT-29 cells treated with increasing concentrations of CBD or DMSO

control (UT). Experiments for all western blots were completed in triplicate.
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Supplementary Figure S12. Effect of pharmacologic (CBD) suppression of ID1 on DIPG007

and PBT-29 tumor cell invasion and migration. (A) Effect of CBD treatment (2.5uM - 5uM)

on invasion of human DIPGO007 cells as measured by Matrigel-coated Boyden chamber assay.

Images show invading cells stained with crystal violet. Number of invading cells were counted

using ImageJ software. (B) Images displaying effect of CBD treatment (DMSO control vs
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10uM) on DIPGOO07 cell migration as measured by scratch assay. (C) Effect of CBD treatment
(5uM) on invasion of human PBT-29 cells as measured by Matrigel-coated Boyden chamber
assay. (D) Quantification of invading PBT-29 cells treated with either DMSO (control) or SpuM
CBD shown in part C determined using ImagelJ; **P<0.01, unpaired parametric t test. (E-F)
Images displaying effect of CBD treatment (DMSO control vs SuM) on PBT-29 cell migration
as measured by scratch assay. Migration was quantified using ImageJ to determine percent
wound (outlined with red dashed line) closure. Experiment was completed in triplicate. Data

represent mean +/- SEM; ****P<(.0001, unpaired t test. [Magnification for all images is 20x].
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1408 Supplementary Figure S13. ID1-deficient human DIPGO007 cells display slower tumor
1409  growth in in vivo model (A) Representative images of bioluminescent tumors from intracranial
1410  injection of scrambled-control or ID1-shRNA DIPG007 cells at DPI-97. (B) Bioluminescence of
1411  intracranially-injected scrambled or ID1-shRNA DIPGOO07 cells over days-post-injection. (C)
1412 Example images of IHC staining for Ki67 (left) and ID1 (right) in a sagittal tissue section

1413 (tumors generated from implantation of DIPGO007 cells). Magnification is 20x.
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Figure S14
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Supplementary Figure S14. Tumor cell invasion assessment in CBD- vs control-treated
PPK mice. Images of IUE-generated PPK tumor borders treated with or without CBD (DMSO
vs. 15mg/kg CBD) for assessment of tumor cell invasiveness. Magnification for top row images

is 10x and magnification for bottom row is 40x.
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Supplementary Figure S15. Detailed vector map of pGIPZ lentiviral vector. Lentivirus
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vector backbone used for ID1-targeting ShARNA constructs. Image credit: Dharmacon. Available

from: https://dharmacon.horizondiscovery.com/uploadedFiles/Resources/gipz-lentiviral-shrna-

manual.pdf

Supplementary Table S1. Primer sequences for use in ChIP-qPCR and qPCR

Primer Forward Reverse Species
ID1 CTGGCGTCTAACGGTCT CTGCGGAGCTACAGTCT Human
Enhancer
ID1 Prl"m"ter GAGGCTGGACCTAGGAG GAGCCACAGCTTGTCTTT | Human
ID1 Prz"m"ter CTCTCATTCCACGTTCTTAAC CTGGCGACTTTCATGATTC | Human
ID1 Gene
Body AGATCCAGATCCGACCAC AGGTACCCGCAAGGATG Human
Pfﬁjer TGGCTGAGGACTGGATCTTT | CTGGAGACAACAGCTGTCCA | Human
Primers for use in qPCR for gene expression analysis
Primer Forward Reverse Species
D1 CGAGGCGGCATGCGTTC GGAGACCCACAGAGCACGTAAT | Human
GAPDH CGCTCTCTGCTCCTCCTGTT CCATGGTGTCTGAGCGATGT | Human

1434
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Supplementary Table S2. Clinical details of pediatric HGG patients treated with CBD.

Patient ID

CHCOO01

CHCO02

UMPED18

UMPED37

UMPED58

UMPED67

11

15

5yo

13

8yo

9yo

16

yo

7 yo

Diagnosis

DMG,
H3K27M
(thalamus)

DMG, H3 WT
(bi-thalamic)

DMG,
H3K27M
(brainstem,
DIPG)

DMG,
H3K27M
(brainstem,
DIPG)

DMG, H3 WT
(bi-thalamic)

DMG,
H3K27M
(brainstem,
DIPG)

DMG,
H3K27M
(brainstem,
DIPG)

DMG,
H3K27M
(brainstem,
DIPG)

DMG,
H3K27M
(thalamus)

H3K27M
mutant

H3 WT;
BARD1 E19*
mutation;
increased
tumor
mutational
burden

H3F3A
K27M;
PIK3CA
E545K;
TCF12
V650D

HIST1H3B
K27M;
ACVR1
G328E

H3 WT; EGFR
V292L; EGFR
in-frame
deletion;
deletion
CDKN2C

HIST1H3B
K27M;
ACVR1
R206H

H3F3A
K27M; ATRX
Q119%;
PPM1D
G463fs;
PDGFRA
amplification

H3F3A
K27M; TP53;
PIK3CA

H3F3A
K27M; TP53
C277F; NF1
H2434fs

Therapies

given

Radiation

Radiation;
TMZ/CCNU;
olaparib;
pembrolizumab

Radiation
(+AZD-1775);
panobinostat +
everolimus

Radiation;
hyper-baric 02;
Re-irradiation

Chemotherapy
(thioguanine,
procarbazine,
lomustine, and
vincristine);
Radiation;
osimertinib;
bevacizumab

Radiation;
ONC201;
bevacizumab

Radiation;
multi-agent
intra-arterial;
ONC201

Radiation;
ONC201;
panobinostat;
re-irradiation;
paxilisib

Radiation;
ONC201; re-
irradiation;
bevacizumab

Time to first
progression

24 months

14 months

8 months

9 months

5 months

13 months

18 months

16 months

10 months

Overall
survival
from
Diagnosis

40 months
(still alive)

26 months

10 months

12 months

17 months

24 months

21 months

24 months

15 months

CBD duration/dosing/toxicity
noted

CBD 2.5g mg (~0.07 mg/kg/day);
PO daily; CBD therapy started
adjuvantly after initial radiation

CBD 50 mg (0.8 mg/kg/day); PO
BID (+THC); CBD therapy started
at diagnosis

CBD 300 (13 mg/kg/day) + THC;
no toxicity; PO daily; therapy
started at radiation — taken until
passing

CBD 45 mg (2 mg/kg/day) +THC;
PO BID or TID; therapy started at
radiation —taken until passing

CBD 150 mg (3 mg/kg/day) after
radiation -> 50 mg (1 mg/kg/day),
until passing due to nausea; PO
daily; therapy started at radiation
—taken until passing

CBD (0.6 mg/kg/day) +THC; PO
daily; therapy started at radiation
—taken until passing

CBD (? Dose) + THC; PO or per
rectum daily; therapy started at
radiation —taken until passing

CBD (0.3 mg/kg/day); PO BID/TID,
intermittent early in therapy,
stopped 7 months prior to
passing

CBD (0.7 mg/kg/day) + THC; PO
daily; therapy started at
radiation, stopped 4-5 months
prior to passing
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UMPED69

UMPEDS83

UMPED86

UMPED97

UMPED101

4yo

11
yo

7yo

16

6

DMG,
H3K27M
(brainstem,
DIPG)

DMG,
H3K27M
(thalamus)

DMG,
H3K27M
(brainstem,
DIPG)

Cortical
anaplastic
astrocytoma

DMG,
H3K27M
(brainstem,

HIST1H3B
K27M

H3F3A
K27M; TP53
S241C

HIST1H3B
K27M;
ACVR1
G328E;
PI3KCB;
PPM1D

H3 WT; Tp53
R342*
(+germline);
CDK4 gain;
KRAS gain

H3F3A K27M
mutant

Radiation;
convection-
enhanced
delivery (CED)
trial; re-
irradiation;
ONC201;
paxalisib

Chemotherapy
(temozolomide,
irinotecan,
bevacizumab);
Radiation;
ONC201

Radiation;
ONC201; Re-
irradiation

Chemotherapy
(procarbazine,
CCNU, and
vincristine);
Radiation;
irinotecan and
bevacizumab

Radiation;
ONC201; re-
irradiation;
bevacizumab

13 months

36 months

6 months

5 months

10 months

28 months

60 months

8 months

19 months

14 months
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CBD 9 mg (0.5 mg/kg/day) + THC;
PO TID; therapy started at
radiation —taken until passing

CBD 1500 mg (25 mg/kg/day) +
THC; PO TID; therapy started at
radiation, stopped one year prior
to passing

CBD 3 mg (0.4 mg/kg/day); PO
TID or QID; therapy started at
radiation —taken until passing

CBD 400 mg (6 mg/kg/day) after
radiation, until passing due to
nausea; PO twice daily
(Epidiolex); therapy started at
radiation —taken until passing

CBD 600 mg (24 mg/kg/day) PO
TID; CBD therapy started after
radiation —taken until passing



