

1

2 Bisphenol A derivatives act as novel coactivator binding inhibitors 3 for estrogen receptor β

4

5 Masaki Iwamoto^{1†}, Takahiro Masuya^{1†}, Mari Hosose¹, Koki Tagawa¹, Tomoka Ishibashi¹,
6 Eiji Yoshihara^{2,3,4}, Michael Downes², Ronald M. Evans², and Ayami Matsushima^{1*}

7 ¹Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of
8 Science, Kyushu University, Fukuoka 819-0395, Japan.

9 ²Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.

10 ³Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance,
11 CA, USA.

12 ⁴David Geffen School of Medicine at University of California, Los Angeles, Los Angeles,
13 CA, USA.

14

15

16

17 *Corresponding author. Email: ayami@chem.kyushu-univ.jp

18 [†]These authors contributed equally to this work.

19

20 Running title

21 Dual activity of bisphenols as ER α -agonists and ER β -antagonists

22

23 Abstract

24 Bisphenol A and its derivatives are recognized endocrine disruptors based on their complex
25 effects on estrogen receptor (ER) signaling. While the effects of bisphenol derivatives on
26 ER α have been thoroughly evaluated, how these chemicals affect ER β signaling is not well
27 understood. Herein, we identified novel ER β ligands by screening a chemical library of
28 bisphenol derivatives. Many of the compounds identified showed intriguing dual activities
29 as ER α agonists and ER β antagonists. Docking simulations suggested that these compounds
30 act as coactivator binding inhibitors (CBIs). Direct binding experiments using wild-type and
31 mutated ER β demonstrated the presence of a second ligand interaction position at the
32 coactivator binding site in ER β . Our study is the first to propose that bisphenol derivatives
33 act as CBIs, presenting a critical view point for future ER signaling-based drug development.

34

35 Keywords

36 endocrinology, estrogen receptor, gene transcription, humoral response, inhibitor, nuclear
37 receptor, transcriptional coactivator

43 Introduction

44 Estrogen receptors (ERs) are members of the nuclear receptor family of transcription factors
45 that directly bind to consensus nucleotide sequences to induce gene transcription. 48 human
46 nuclear receptors have been identified, including those for sex steroid hormones,
47 glucocorticoids, retinoids, and vitamin D (1, 2), with many of these receptors recognized as
48 therapeutic targets for a wide range of diseases (3). In particular, ERs are major drug targets
49 for breast cancer (4) and menopausal disorders. Two ER isoforms exist, ER α and ER β , that
50 have high amino acid similarity in both the DNA-binding domains (DBDs) and ligand-
51 binding domains (LBDs) (5). Many ER α and/or ER β -associated gene disruption
52 experiments have been reported (6). Female mice lacking ER α are infertile, while males
53 exhibit decreased fertility (7). Disruption of ER α in female mice leads to hypoplastic uteri,
54 and ER α -disrupted females do not respond to estradiol treatments. ER β knockout mice
55 present with less severe phenotypes than those with ER α knockout, even though ER β -
56 disrupted female mice are subfertile predominantly due to reduced ovarian efficiency (8).
57 Moreover, ER α and ER β double-knockout mice show normal reproductive tract
58 development during the prepubertal period. However, those animals present with similar
59 features to ER α knockout mice during adulthood. Furthermore, this diagnostic phenotype
60 indicates that ER β plays a role in oocyte progression in the postnatal ovary (9, 10). Both
61 ER α and ER β are activated by endogenous estrogens, however, their expression patterns
62 and actions are different (11), with each receptor assumed to have specific biological
63 functions.

64 A growing body of work in laboratory animals supports bisphenol A (BPA) as an
65 endocrine disrupting chemical (EDC) (12) that has adverse effects on not only the female
66 reproductive system, but also on the brain and immune system (13). BPA is used extensively
67 as a raw material for making polycarbonate plastics and epoxy resins. However, its likely
68 adverse effects on humans, especially infants and fetuses, has recently led to BPA being
69 phased out of polycarbonate plastic and resin production (14). Various BPA derivatives
70 have been developed to create more firm and stable plastics and resins, and these derivatives
71 are now preferred as raw materials (15) (Fig. 1). However, BPA analogues have already
72 been detected in the environment (15, 16). Fluorine-containing BPA, i.e., bisphenol AF
73 (BPAF, 2,2-Bis(4-hydroxyphenyl)hexafluoropropane, CAS No. 1478-61-1), is seen as a
74 practical alternative to BPA, despite reported estrogenic activity in MCF-7 breast cancer
75 cells (17). Eight BPA derivatives, including BPAF, have been detected in sediments
76 collected from industrialized areas (18) and indoor dust (19). In addition, BPA analogs have
77 been found in urine samples from individuals living close to a BPAF manufacturing plant
78 (20) and a municipal solid waste incineration plant(21). Chlorine-containing BPA, i.e.,
79 bisphenol C, (BPC, also known as bisphenol C2 or bisphenol Cl2, 1,1-Dichloro-2,2-bis(4-
80 hydroxyphenyl)ethylene, CAS No. 14868-03-2), is a beneficial substrate for polymer
81 production due to the high thermal stability of BPC-containing polycarbonate (22, 23, 24).
82 Notably, BPC is structurally similar to two banned pesticides
83 dichlorodiphenyltrichloroethane (DDT, 1,1'-(2,2,2-trichloroethylidene)bis(4-
84 chlorobenzene), CAS No. 50-29-3) and methoxychlor (1,1'-(2,2,2-
85 trichloroethylidene)bis(4-methoxybenzene), CAS No. 72-43-5) (25, 26). Based on its high
86 affinity for endogenous ERs in MCF-7 cells (27), BPC was considered but ultimately not
87 included in the list of *in vitro* endocrine disruptors by the Interagency Coordinating
88 Committee on the Validation of Alternative Methods (ICCVAM) (NIH Publication No: 03-
89 4503) in 2003. Historically, the designation of 2,2-bis(4-hydroxy-3-methylphenyl) propane
90 (CAS No. 79-97-0, which does not have chlorine atoms), as BPC has led to some confusion

91 in the literature, however chlorine-containing BPC has been detected in human breast milk
92 (28).

93 ER α and/or ER β are major targets of EDCs which interfere with their estrogen-
94 responsive signaling pathways (29). Human ER α and ER β have almost identical DBDs,
95 differing by only two amino acids, and both receptors bind the same estrogen-response
96 elements in transcriptional control regions. Although ER α and ER β also have similar LBDs,
97 they have some distinctive features in terms of ligand selectivity and target gene regulation
98 (30). Endogenous estrogen, 17- β estradiol (E2), binds to ER α slightly stronger than to ER β .
99 Similarly, BPA binds ER α with higher affinity than ER β , although its binding abilities are
100 much weaker than those of E2. In contrast, BPAF and BPC display higher affinity for both
101 ER α and ER β than BPA, with a preference for ER β over ER α binding. BPAF and BPC
102 show antagonistic activity against ER β in reporter gene assays using HeLa cells (31, 32).
103 BPAF and BPC show much stronger antagonist activity for ER β than ER α , (32, 33). While
104 crystal structures have provided insight into ER α activation/inactivation mediated by of
105 BPAF and BPC binding (32, 33), the structural changes induced by the strong antagonistic
106 activity of BPAF and BPC against ER β are not well established. Recently, we found that
107 the bisphenol moiety is a privileged structure for ER α . Here we describe the biphasic
108 binding of BPAF and BPC to ER β and propose a novel two-site binding model of the ER β -
109 BPC complex, based on the crystal structure of 4-hydroxytamoxifen (4OHT) bound to ER β .
110 This is the first study to mechanistically associate the antagonistic actions of EDCs with
111 interactions at the coactivator-binding site, thereby providing insight into developing safer
112 raw materials that do not exhibit endocrine-disrupting features.
113

114 Results

115 The bisphenol scaffold binds both ER α and ER β

116 We screened a library of 119 bisphenol derivatives and related compounds using a
117 radioligand competitive binding assay with [3 H]E2 for ER β . Some of these bisphenol
118 derivatives have been detected in human biological samples (16). The CAS registry numbers
119 (RNs), common names, and IUPAC names are provided in Supplementary Table 1. We
120 found 18 bisphenol derivatives with similar or stronger ER β binding compared to BPA
121 (Table 1 and Fig. S1). BPC showed the strongest ER β (IC₅₀: 2.99 nM), and highest ER α
122 (IC₅₀ of 2.81 nM) binding affinity of the derivatives examined. The second strongest ER β
123 binding was seen with Compound No.2 (4,4'-(1,3-dimethylbutylidene)bisphenol; IC₅₀: 16.1
124 nM), although higher affinity was measured with ER α (IC₅₀: 5.75 nM). 4,4'-(1,3-
125 Dimethylbutylidene)bisphenol 2,2-bis(*p*-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) (3)
126 and BPAF showed comparable binding ability to ER β (IC₅₀: ~18 nM). Contrary to the results
127 for 4,4'-(1,3-dimethylbutylidene)bisphenol (2), HPTE (3) and BPAF were preferential ER β
128 ligands, displaying three times stronger binding to ER β than ER α . Although bisphenol Z
129 (BPZ, 5), 4,4'-(2-ethylhexylidene)bisphenol (6) and 4,4'-(2-hydroxybenzylidene)-bis(2,3,6-
130 trimethylphenol) (7) showed similar results to BPAF, they bound more strongly to ER α .
131 The majority of the chemicals tested elicited comparable binding to both ER α and ER β . Of
132 the 18 derivatives with similar or stronger ER β binding compared to BPA, 14 showed
133 slightly stronger binding abilities to ER α than ER β (Table 1). We reported that 18 bisphenol
134 derivatives bound to ER α more strongly than did BPA (34). Bulky functional groups at their
135 sp³-carbon connecting two phenol groups were beneficial for ER β binding, similar to the
136 results previously observed for ER α (34). However, ER β binding abilities did not precisely
137 correlate with those of ER α . Fluorene derivatives, 9,9-bis(4-hydroxyphenyl)fluorene (14)

138 and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (15), not only bound to ER α (34, 35) but
139 also to ER β (35), with their ER β binding ability stronger than that of BPA. Bisphenol
140 derivatives possessing halogen atoms between two phenol groups, especially chlorine-
141 containing derivatives, showed strong ER β binding.

142 To gain insight into the differences observed in ER β and ER α binding, we compared
143 the ligand binding cavities in the deposited ER β and ER α LBD crystal structures. The sizes
144 of the canonical binding pockets were calculated for 45 ER α and 25 ER β structures in their
145 active conformations using SiteFinder function, and the amino acid residues surrounding
146 the bound ligands identified (Tables S2 and S3). The average ER β pocket was smaller than
147 for ER α , (430.9 Å³ and 369.3 Å³ for ER α and ER β , respectively; Fig. 2A). The typical
148 ligand-binding pockets of each receptor in the active conformation is illustrated (Figs. 2C
149 and 2D). Moreover, the average size of the ligand binding pocket in 17 β -estradiol-bound
150 ER α and ER β structures was 419.4 Å³ and 385.0 Å³, respectively, and in genistein-bound
151 ER α and ER β structures was 475.9 Å³ and 375.8 Å³, respectively. Although these results
152 suggested that ER α is able to accept larger ligands than ER β , the amino acid residues
153 surrounding the ligands differ slightly. Some of the smaller ligands fit more adequately into
154 the ER β compared to the ER α ligand binding pocket.

155 **BPC and BPAF bind but fail to activate ER β**

156 Reporter assays using HeLa cells were performed to evaluate ER β transcriptional activity
157 induced by BPA, BPC, BPAF, and 17 bisphenol derivatives (Fig. 2B). BPA elicited the
158 strongest ER β agonistic activity of the derivatives, with the activity at 10 μM comparable
159 to that seen with the endogenous ligand E2 despite its affinity being 400 times weaker than
160 that of E2. 4,4'-(1,3-dimethylbutylidene)bisphenol (2) and bisphenol B (8) achieved ~50%
161 of BPA-induced transcriptional activity at the highest concentration of 10 μM. While
162 compound 2, found as an impurity in industrial-grade BPA, has been shown to function as
163 an ER α agonist in yeast-two hybrid assays (36), our results reveal a high affinity for and
164 functional activation of ER β . Compound 2 and 8 are structurally similar to BPA, possessing
165 one methyl group on the sp³-carbon that bridges the two phenol groups, suggesting that this
166 conformation is beneficial for ER β activation. BPC, HTPE, BPAF, BPZ, 1,1-bis(4-hydroxy-
167 3-methylphenyl)cyclohexane (9), 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (15), and
168 2,2-bis(4-hydroxy-3-methylphenyl)propane (18) functioned as partial agonists, inducing
169 20% to 30% of the E2-induced transcriptional activity. The transcriptional activity of BPC,
170 HTPE, and BPAF was consistent with a previous report investigating ER α and ER β , in
171 which these compounds elicited weaker activity against ER β than ER α (32, 33).
172 Surprisingly, 4,4'-(2-ethylhexylidene)bisphenol (6), 4,4'-(2-hydroxybenzylidene)-bis(2,3,6-
173 trimethylphenol) (7), bisphenol M (10), α , α , α '-tris(4-hydroxyphenyl)-1-ethyl-4-
174 isopropylbenzene (12), bisphenol P (16), and α , α '-bis(4-hydroxy-3,5-dimethylphenyl)-1,4-
175 diisopropylbenzene (20) showed no agonist activity against ER β . These findings contrast
176 with ER α , where the majority of bisphenol derivatives with strong binding affinity also
177 showed strong agonistic activity (34).

178 **BPA derivatives function as ER β antagonists**

180 The finding that many BPA derivatives with high binding affinities showed almost no
181 agonist activity suggested that they function as ER β antagonists. To explore this possibility,
182 the inhibitory effects of the BPA derivatives (100 pM, 1 μM, 10 μM) against 10 nM E2-
183 induced ER β activation were measured (Fig. 2E). BPC showed the strongest antagonistic

184 activity, with additional halogen-containing bisphenols (i.e., HPTE, and BPAF) also elicited
185 antagonistic activities, consistent with previous reports (31-33). 4,4'-(1,3-
186 dimethylbutylidene)bisphenol (2), which had the second strongest binding ability and
187 partial agonist activity compared to BPA, showed weak antagonist activity, contrasting with
188 its reported ER α agonism. Bisphenol B (8) showed similar weak antagonist activity, with
189 both Bisphenol B (8) and 4,4'-(1,3-dimethylbutylidene)bisphenol (2) inhibiting 50% of
190 BPA-induced activation. Tricycle bisphenols (i.e., bisphenol M (10), α , α , α' -tris(4-
191 hydroxyphenyl)-1-ethyl-4-isopropylbenzene (12), bisphenol P (16), and α , α' -bis(4-
192 hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene (20)) showed antagonistic activity,
193 presumably through the disruption of the active conformation, as reported for ER α (34).
194 While demonstrating no agonist activity, 4,4'-(2-ethylhexylidene)bisphenol (6) and 4,4'-(2-
195 hydroxybenzylidene)-bis(2,3,6-trimethylphenol) (7), suppressed 90% of E2-induced
196 activation at the 10 μ M concentration. Interestingly, the fluorene derivative, 9,9-bis(4-
197 hydroxy-3-methylphenyl)fluorene (15) functioned as a weak antagonist, demonstrating that
198 fluorene derivatives 14 and 15 can exhibit both ER β and ER α antagonistic activity (34,
199 35). With the exception of the tricyclic bisphenols, these findings indicate that most
200 bisphenol derivatives with strong ER β binding functioned as antagonists, even though they
201 showed only agonist activities to ER α (34).

203 Docking analysis predicts BPC binding to the surface of ER β

204 To investigate the contrasting actions of BPA derivatives as ER β antagonists and ER α
205 agonists, we performed docking simulations using the LBD of human ER β and BPC, the
206 strongest binder among the BPA derivatives examined using a competitive binding assay
207 with [3 H]E2. Possible ligand binding sites in 38 deposited ER β crystal structures were
208 identified using SiteFinder, a program for binding site analysis equipped in the Molecular
209 Operating Environment (MOE). Canonical, as well as putative binding sites were ranked
210 according to PLB, a specific parameter in SiteFinder (37). Consistently, the top five
211 predicted sites in each structure were the canonical ligand-binding sites. Interestingly, an
212 actual surface 4OHT binding site close to the hydrophobic groove for the coactivator
213 recognition surface of ER β (PDB ID: 2FSZ) was ranked 11th in the PLB order. Moreover,
214 this location was a predicted binding site on all antagonist-bound ER β structures, based on
215 PLB. Notably, this second site was not predicted as a binding site on over half of the agonist-
216 bound structures (Supplementary Table S4). These predictions suggest that ER β
217 antagonism induced by BPC and other BPA derivatives may be due to inhibition of
218 coactivator recruitment. Next, we performed a docking simulation for ER β LBD and BPC
219 using both its canonical and second binding sites as target rooms. BPC was able to fit and
220 bind in both rooms, with one of its chlorine atoms interacting with the tryptophan residue
221 (Trp335) on helix 5 via halogen interaction (Fig. 3, A and B). The obtained model structure
222 suggested that BPC binding to the second binding site prevented recruitment of coactivators
223 for gene transcriptions, similar to 4OHT (Fig. 3, C and D). We hypothesized that the binding
224 affinity of BPA derivatives to this coactivator binding site would correlate with antagonistic
225 activity. To explore this notion, docking simulations were performed for each BPA
226 derivatives (Fig. S2) and the free energy of ligand binding evaluated using a docking
227 simulation and the GBVI/WSA dG scoring function (larger negative scores indicate more
228 stable ligand/receptor complexes) (38). Correlation of the GBVI/WSA dG scores with the
229 extent of antagonism (reported as the % inhibition of 10 nM E2 induced transcriptional
230 activity) revealed a linear relationship (correlation coefficient of -0.83), suggesting that

231 inhibition of coactivator recruitment underlies the antagonism of ER β by BPA derivatives
232 (Fig. 3E).

233

234 **Biphasic 4OHT binding indicative of two ER β binding sites**

235 To further support the presence of a second ligand binding site, competitive binding assays
236 were performed using BPA, BPC and BPAF and tritium-labeled 4OHT ($[^3\text{H}]4\text{OHT}$) (Fig.
237 4A). Notably, a biphasic dose-response curve was observed for BPC (18.1 nM and 2281
238 nM IC_{50}) that was not evident in the $[^3\text{H}]E2$ competitive analyses. Similarly, BPAF
239 displayed a biphasic binding curve, albeit with weaker binding at both the high- and low-
240 affinity sites compared to BPC. Moreover, 4OHT showed a biphasic curve, consistent with
241 the 4OHT/ER β crystal structure (PDB:ID 2FSZ). In contrast, BPA, which did not elicit
242 antagonistic activity, showed a sigmoidal curve indicative of a single ligand binding site.
243 Interestingly, the tri-fluorine substitution of the methyl groups in BPAF increased ER β
244 binding ~50 fold compared to BPA. These results confirmed the presence of two
245 distinguishable binding sites for BPC and BPAF on ER β . In contrast, the typical sigmoidal
246 curves seen in E2 competitive binding assays using $[^3\text{H}]4\text{OHT}$ and $[^3\text{H}]E2$ are indicative of
247 single ligand binding site.

248 **Trp335 is required for biphasic ligand binding**

249 The docking simulations suggested that hydrophobic interactions between the BPA
250 derivatives and the indole group of Trp335 were required for ER β binding, and identified a
251 potential halogen interaction between the chlorine atom of BPC and the indole ring. To
252 determine the contributions of these putative interaction to BPC binding, the corresponding
253 tryptophan was mutated to alanine (A). Saturation binding assays revealed a typical
254 sigmoidal dose-response curve and a K_d of 23.1 nM for E2 against ER β (W335A), indicating
255 preservation of the canonical binding site (Fig. S3, A).

256 Competitive binding assays confirmed two 4OHT binding sites in ER β , with K_d
257 values of 4.6 nM and 53.1 nM. In contrast, a single binding site was evident in ER β (W335A)
258 (K_d 34.2 nM) (Fig. S3, B). Similarly, the biphasic binding of BPC and BPAF were lost in
259 the ER β (W335A) mutant (Fig. 4, A and B). The IC_{50} values of 4OHT, BPC, and BPAF
260 were 106 ± 51 nM, 691 ± 29 nM, and 1249 ± 579 nM, respectively. BPA illustrated a typical
261 sigmoidal competitive dose-response curve against ER β (W335A), similar to the result
262 against ER β . These results indicated that replacing Trp for Ala compromises the second
263 4OHT and BPA derivatives binding site on the surface of ER β LBD.

264

265 **W335A reduces ER β transcription activity**

266 Reporter assays revealed that E2-induced transcriptional activation was markedly
267 reduced by the tryptophan to alanine substitution in ER β (Fig. 4, C and D). Given that E2
268 binding ability was retained, this is consistent with reduced coactivator binding. Indeed, in
269 the active conformation, Trp335 interacts with Leu491, Met494, and Leu495 on H12 (Fig.
270 4E). These results indicated that Trp335 on the ER β coactivator-binding site plays an
271 important role, not only in interacting with bisphenol derivatives, but also in recruiting
272 coactivators on the surface of ER β by stabilizing H12 in its active conformation.

273 **Discussion**

274 Here we report the ER β transcriptional activities of BPA derivatives including BPC and
275 BPAF using a combination of receptor binding and reporter assays. Unexpectedly, our
276 results clearly showed that many BPA derivatives function as ER β antagonists, contrasting
277 with their previously reported ER α agonism. Docking simulations indicated that BPA
278 derivatives bind to a second site located near the coactivator binding site on the surface of
279 ER β -LBD that requires interactions with Trp335. Mutation of tryptophan to alanine led to
280 the loss of this low affinity binding site in ER β . These results indicated that some BPA
281 derivatives act as antagonists, although most of endocrine-disrupting chemicals, including
282 BPA, are assumed ER agonists. We previously reported that most of the BPA derivatives
283 examined in this study act as weak agonists for ER α . The results obtained in this study
284 demonstrate the importance of screening for both agonist and antagonist activity, especially
285 against ER β .

286 We previously reported that tricyclic bisphenols, i.e., Bisphenol M, α , α , α' -tris(4-
287 hydroxyphenyl)-1-ethyl-4-isopropylbenzene, bisphenol P, and α , α' -Bis(4-hydroxy-3,5-
288 dimethylphenyl)-1,4-diisopropylbenzene, act as antagonists against ER α because of the
289 steric hindrance caused by the third aromatic ring structure (34). This study showed that
290 this feature is also valid for ER β ; tricyclic bisphenols act as antagonists not only for ER α
291 but also ER β . In addition to tricyclic bisphenols, many BPA derivatives, including BPAF
292 and BPC, elicit antagonist activity. Our finding for BPAF and BPC are consistent with
293 reports that both chemicals showed partial agonism for ER α and antagonism for ER β (31,
294 32, 39, 40).

295 Several ER α - or ER β -specific agonists have been reported, including
296 propylpyrazole triol (PPT) that selectively binds to and transcriptionally activates ER α (41).
297 The first chemical shown to function as an ER α agonist and ER β antagonist is 2,2-bis(*p*-
298 hydroxyphenyl)-1,1,1-trichloroethane (HPTE), a metabolite of the banned pesticide,
299 methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane] (42, 43). Accumulated
300 knowledge gained from protein crystal structures emphasize the importance of halogens in
301 receptor-ligand interactions (44, 45). We found that in addition to the halogen containing
302 BPAF and BPC, many BPA derivatives display ER α agonist activities similar to HPTE.
303 These results indicate the complexity of establishing the mechanisms of action of
304 environmental chemicals that activate or suppress the physiological functions of one or
305 more nuclear receptors. In particular, antagonist activities might be overlooked if both
306 binding affinity and transcriptional activity are not determined, as environmental chemicals
307 are typically categorized based on the ability to active ERs.

308 Recent studies have indicated the value of small molecules that bind to coactivator
309 protein-binding sites on nuclear receptors (46). Coactivator-binding inhibitors (CBIs) have
310 been developed for ERs, an androgen receptor, a progesterone receptor, a vitamin D receptor,
311 a thyroid hormone receptor, a pregnane X receptor, a retinoid X receptor, and peroxisome
312 proliferator-activated receptors (47-50). This study is the first to conclude that endocrine-
313 disrupting chemicals can function as CBIs for ER β , indicating the importance of assessing
314 both agonist and antagonist activities of these chemicals.

315 In summary, we showed that tricyclic bisphenols elicit antagonistic activity against
316 both ER α and ER β . Our results also indicate that many next-generation bisphenols are
317 agonists and antagonists of ER α and ER β . Mutagenesis of an ER β surface amino acid
318 indicated that these next-generation bisphenols act as CBIs. While *in silico* docking analyses
319 support this mechanism of action, future crystallographic studies will be required to provide

320 more direct information on CBIs. This study highlights the mechanistic complexity of the
321 next-generation of bisphenols acting as endocrine-disrupting chemicals.
322

323 **Materials and Methods**

324 **Chemicals**

325 17 β -estradiol (E2, CAS RN 50-28-2, >98.9%) was obtained from Research Biochemicals
326 International (Natick, MA, USA). 4-hydroxytamoxifen (4OHT, CAS RN 68047-06-3,
327 >98%) and 2,2-bis(*p*-hydroxyphenyl)-1,1,1-trichloroethane (CAS RN 2971-36-0, >98.9%)
328 were obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). 4,4'-
329 dihydroxydiphenylmethane (bisphenol F or BPF, CAS RN 620-92-8, >99.0%) and hexestrol
330 (CAS RN 84-16-2, >99.0%) were obtained from FUJIFILM Wako Pure Chemical
331 Corporation (Osaka, Japan); the remaining 117 chemicals were purchased from Tokyo
332 Chemical Industry Co., Ltd. (Tokyo, Japan). Dimethyl sulfoxide (DMSO), used to dissolve
333 each compound in a 10 mM stock solution, was obtained from Sigma-Aldrich. Tritium-
334 labeled 17 β -estradiol ([³H]E2, 4458 GBq/mmol) and 4-hydroxytamoxifen ([³H]4OHT,
335 2960 GBq/mmol) were purchased from PerkinElmer (Waltham, MA, USA).

336

337 **ER β expression and purification**

338 The LBD of ER β (amino acids 263-530) was expressed as a glutathione S-transferase
339 (GST)-fused protein for receptor binding assays. Human ER β cDNA was obtained from
340 OriGene Technologies (Rockville, MD, USA). The cDNA of ER β -LBD was amplified
341 using PCR, and subcloned into an pGEX-6p-1 expression vector (Cytiva, Marlborough, MA,
342 USA). The expression of GST-fused ER β -LBD was induced by 1 mM isopropyl- β -D-1-
343 thiogalactopyranoside (IPTG) in *Escherichia coli* BL21 α at 16°C for overnight. The
344 resulting crude protein was affinity-purified using Glutathione-Sepharose 4B (Cytiva),
345 followed by gel filtration in a Sephadex G-10 column (Cytiva).

346

347 **Radioligand binding assay**

348 Radioligand binding assays for ER β and ER β (W335A) were performed mainly according
349 to a previously reported method (31, 34). Saturation binding assays were conducted with
350 [³H]E2 or [³H]4OHT using GST-ER β -LBD or GST-ER β (W335A)-LBD to evaluate the
351 binding ability of radio-labeled compounds. The reaction mixtures of each LBD (20 ng) and
352 a series of concentrations of [³H]E2 (0.01–10 nM) or [³H]4OHT (0.1–30 nM) were
353 incubated in a total volume of 100 μ L of binding buffer (10 mM Tris-buffered saline (pH
354 7.4), 1 mM ethylene glycol-bis (2-aminoethyl ether)-*N, N, N', N'*-tetraacetic acid (EGTA),
355 1 mM ethylenediaminetetraacetic acid (EDTA), 10% glycerol, , 0.5 mM
356 phenylmethylsulfonyl fluoride, 0.2 mM leupeptin, and 1 mM sodium vanadate (V)) at 20°C
357 for 2 h, to analyze total binding. Corresponding reaction mixtures, containing 10 μ M non-
358 labeled E2 or 4OHT, were incubated to detect each non-specific binding. [³H]E2 or
359 [³H]4OHT-specific binding was evaluated by subtracting the obtained radioactivity values
360 of total binding from the those of non-specific binding. Following successive incubation
361 with 100 μ L of 0.4% dextran-coated charcoal (DCC) (Sigma-Aldrich) in phosphate-
362 buffered saline (pH 7.4) on ice for 10 min, free radioligands bound to DCC were removed
363 using a vacuum filtration system with a 96-well filtration plate (MultiScreenHTS HV, 0.45-
364 mm pore size, Merck KGaA, Darmstadt, Germany) for the bound/free (B/F) separation. The
365 radioactivity of each eluent was measured using a liquid scintillation counter (LS6500;
366 Beckman Coulter, Fullerton, CA, USA) and Clear-sol I (Nacalai Tesque Inc., Kyoto, Japan).

367 Calculated specific binding of [³H]E2 was assessed using Scatchard plot analysis (51).
368 Competitive binding assays were performed to evaluate the binding ability of each test
369 compounds using [³H]E2, for a library screening or detailed BPA binding assay. Each
370 compound was dissolved in DMSO to prepare a 1.0 mM stock solution, and further diluted
371 to prepare a serial dilutions (10⁻¹²M to 10⁻⁵ M) in binding buffer. To assess their binding
372 abilities, each compound was incubated with GST-ER β -LBD or GST-ER β (W335A)-LBD
373 (20 ng) and radio-labeled ligand (5 nM of [³H]E2 or 5 nM of [³H]4OHT, final
374 concentration) for 2 h at 20°C. B/F separation was performed as described above, and the
375 radioactivity was determined using a MicroBeta microplate counter (PerkinElmer Inc.). The
376 IC₅₀ value of each test compounds was calculated from the dose-response curves generated
377 via nonlinear regression analysis using Prism software (GraphPad Software Inc., La Jolla,
378 CA, USA).

379

380 Luciferase reporter gene assay

381 Transcriptional activities of ER β and ER β (W335A) were measured as previously reported
382 previously (31, 34). HeLa cells were maintained in Eagle's minimum essential medium
383 (EMEM) (Nissui Pharmaceutical Co. Ltd, Tokyo, Japan) supplemented with dextran-coated
384 charcoal treated fetal bovine serum (DCC-FBS, 10%, v/v) with at 37°C under 5% CO₂. To
385 evaluate agonistic activity, HeLa cells were seeded at a density of 5 × 10⁵ cells per 60-mm
386 dish and cultured for 24 h, followed by transfection of the reporter plasmid (3 μ g, pGL4.23/3×ERE)
387 and each expression plasmid (1 μ g, pcDNA3.1/ER β or
388 pcDNA3.1/ER β (W335A)) using Lipofectamine LTX with Plus Reagent (Thermo Fisher
389 Scientific, Inc.), according to the manufacturer's instructions. After incubation for 24 h,
390 cells were harvested and seeded onto 96-well plates at 5 × 10⁴ cells/well, and then treated
391 with a series of the test compounds (10⁻¹² M to 10⁻⁵ M, final concentration) diluted with 1%
392 bovine serum albumin/PBS (v/v). After a 24-h incubation, luciferase activity was measured
393 using the ONE-GloTM Luciferase Assay System (Promega Co., Madison, WI, USA) on an
394 EnSpire multimode plate reader (Perkin Elmer, Inc.). To analyze antagonistic activity, serial
395 concentrations of test compounds (10⁻¹² M to 10⁻⁵ M) were treated in the presence of 10 nM
396 E2, which normally induces full transcriptional activity levels in transiently expressed ER β .

397

398 Docking simulation of each antagonist onto the ER β LBD

399 Three-dimensional (3D) coordinates of the compounds were obtained from the Cambridge
400 Structural Database (CSD-Core, The Cambridge Crystallographic Data Centre, Cambridge,
401 UK). Ligand IDs of compounds utilized for docking simulations are summarized in
402 Supplementary Table S5. For the compounds with no corresponding entry in the CSD-
403 System, 3D coordinates were constructed *in silico* using Gaussian 16 (Gaussian, Inc.,
404 Wallingford CT, USA), with the basis set of 6-31G. Docking simulations for the ligand/ER β
405 complex were performed using a Dock functions in the MOE package (Chemical
406 Computing Group, Montreal, QC, Canada); the free energy of each complex was evaluated
407 according to its GBVI/WSA dG score (38). Ligand-binding cavity volumes of the deposited
408 crystal structures were analyzed and calculated using the SiteFinder function in MOE.

409

410 Statistical analysis

411 Significance of the data between experimental groups was determined using unpaired *t*-
412 tests. Data are presented as the mean ± standard deviation (SD), and P values are presented
413 in each figure legend.

414

415 **References**

1. Committee, N. R. N. (1999) A unified nomenclature system for the nuclear receptor superfamily. *Cell* **97**, 161-163
2. Evans, R. M., and Mangelsdorf, D. J. (2014) Nuclear Receptors, RXR, and the Big Bang. *Cell* **157**, 255-266
3. Moore, J. T., Collins, J. L., and Pearce, K. H. (2006) The nuclear receptor superfamily and drug discovery. *ChemBioChem* **1**, 504-523
4. Renoir, J.-M., Marsaud, V., and Lazennec, G. (2013) Estrogen receptor signaling as a target for novel breast cancer therapeutics. *Biochem. Pharmacol.* **85**, 449-465
5. Kuiper, G., Enmark, E., PeltoHuikko, M., Nilsson, S., and Gustafsson, J. A. (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. *Proc. Nat. Acad. Sci. U.S.A* **93**, 5925-5930
6. Hewitt, S. C., Harrell, J. C., and Korach, K. S. (2005), Lessons in estrogen biology from knockout and transgenic animals. *Annu. Rev. Physiol.* **67**, 285-308
7. Krege, J. H., Hodgin, J. B., Couse, J. F., Enmark, E., Warner, M., Mahler, J. F., Sar, M., Korach, K. S., Gustafsson, J. A., and Smithies, O. (1998) *Proc. Nat. Acad. Sci. U.S.A.* **90**, 11162-11166
8. J. H. Krege, J. B. Hodgin, J. F. Couse, E. Enmark, M. Warner, J. F. Mahler, M. Sar, K. S. Korach, J. A. Gustafsson, O. Smithies, Generation and reproductive phenotypes of mice lacking estrogen receptor beta. *Proc. Nat. Acad. Sci. U.S.A.* **95**, 15677-15682 (1998).
9. Couse, J. F., Curtis Hewitt, S., Bunch, D. O., Sar, M., Walker, V. R., Davis, B. J., and Korach, K. S. (1999) Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β . *Science* **286**, 2328-2331
10. Dupont, S., Krust, A., Gansmuller, A., Dierich, A., Chambon, P., and Mark, M. (2000) Effect of single and compound knockouts of estrogen receptors α (ER α) and β (ER β) on mouse reproductive phenotypes. *Development* **127**, 4277-4291
11. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., Von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., Von Heijne, G., Nielsen, J., and Pontén, F. (2015) Proteomics. Tissue-based map of the human proteome. *Science* **347**, 1260419
12. Dodds, E. C., and Lawson, W. (1936) Synthetic estrogenic agents without the phenanthrene nucleus. *Nature* **137**, 996-996
13. Richter, C. A., Birnbaum, L. S., Farabollini, F., Newbold, R. R., Rubin, B. S., Talsness, C. E., Vandenbergh, J. G., Walser-Kuntz, D. R., and vom Saal, F. S. (2007) In vivo effects of bisphenol A in laboratory rodent studies. *Reprod. Toxicol.* **24**, 199-224
14. Usman, A., and Ahmad, M. (2016) From BPA to its analogues: Is it a safe journey? *Chemosphere* **158**, 131-142
15. Pelch, K., Wignall, J. A., Goldstone, A. E., Ross, P. K., Blain, R. B., Shapiro, A. J., Holmgren, S. D., Hsieh, J.-H., Svoboda, D., Auerbach, S. S., Parham, F. M., Masten, S. A., Walker, V., Rooney, A., and Thayer, K. A. (2019) A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. *Toxicology* **424**, 152235
16. Program, N. N. T., Pelch, K. E., Wignall, J. A., Goldstone, A. E., Ross, P. K., Blain, R. B., Shapiro, A. J., Holmgren, S. D., Hsieh, J.-H., Svoboda, D., Auerbach, S. S., Parham, F. M., Masten, S. A., and Thayer, K. A. (2017) “NTP research report on biological activity of

463 bisphenol A (BPA) structural analogues and functional alternatives" (National Toxicology
464 Program. Research Report 4, Research Triangle Park, NC, 2017).

465 17. Pérez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V.,
466 and Olea, N. (1998) The estrogenicity of bisphenol A-related diphenylalkanes with various
467 substituents at the central carbon and the hydroxy groups. *Environ. Health. Perspect.* **106**,
468 167-174

469 18. Liao, C., Liu, F., Moon, H.-B., Yamashita, N., Yun, S., and Kannan, K. (2012) Bisphenol
470 analogues in sediments from industrialized areas in the United States, Japan, and Korea:
471 spatial and temporal distributions. *Environm. Sci. Technol.* **46**, 11558-11565

472 19. Liao, C., Liu, F., Guo, Y., Moon, H.-B., Nakata, H., Wu, Q., and Kannan, K. (2012)
473 Occurrence of eight bisphenol analogues in indoor dust from the United States and several
474 Asian countries: implications for human exposure. *Environm. Sci. Technol.* **46**, 9138-9145

475 20. Yang, Y., Guan, J., Yin, J., Shao, B., and Li, H. (2014) Urinary levels of bisphenol
476 analogues in residents living near a manufacturing plant in south China. *Chemosphere* **112**,
477 481-486

478 21. Lu, S., Yang, D., Ge, X., Li, L., Zhao, Y., Li, C., Ma, S., and Yu, Y. (2020) The internal
479 exposure of phthalate metabolites and bisphenols in waste incineration plant workers and
480 the associated health risks. *Environ. Int.* **145**, 106101

481 22. Dobkowski, Z. (1984) Procedure for Evaluation of the Mark-Houwink Constants. *J. Appl.*
482 *Polym. Sci.* **29**, 2683-2694

483 23. Factor, A., and Orlando, C. M. (1980) Polycarbonates from 1,1 - dichloro - 2,2 - bis(4 -
484 hydroxyphenyl)ethylene and bisphenol A: A highly flame - resistant family of engineering
485 thermoplastics. *J. Polym. Sci.; Polym. Chem.* **18**, 579-592

486 24. Jurs, J. L., and Tour, J. M. (2003) Novel flame retardant polyarylethers: synthesis and
487 testing. *Polymer* **44**, 3709-3714

488 25. Glustrom, L. W., Mitton-Fry, R. M., and Wuttke, D. S. (2002) Re: 1,1-Dichloro-2,2-bis-(p-
489 chlorophenyl)ethylene and polychlorinated biphenyls and breast cancer: combined analysis
490 of five U.S. studies. *J. Nat. Cancer Instit.* **94**, 1337-1338- author reply 1338-1339

491 26. Matsushima, A. (2018) A novel action of endocrine-disrupting chemicals on wildlife; ddt
492 and its derivatives have remained in the environment. *Int. J. Mol. Sci.* **19**, 1377

493 27. Stoessel, S., and Leclercq, G. (1986) Competitive binding assay for estrogen receptor in
494 monolayer culture: Measure of receptor activation potency. *J. Steroid Biochem.* **25**, 677-
495 682

496 28. Deceuninck, Y., Bichon, E., Marchand, P., Boquien, C.-Y., Legrand, A., Boscher, C.,
497 Antignac, J. P., and Le Bizec, B. (2015) Determination of bisphenol A and related
498 substitutes/analogues in human breast milk using gas chromatography-tandem mass
499 spectrometry. *Anal. Bioanal. Chem.* **407**, 2485-2497

500 29. Shanle, E. K., and Xu, W. (2011) Endocrine disrupting chemicals targeting estrogen
501 receptor signaling: identification and mechanisms of action. *Chem. Res. Toxicol.* **24**, 6-19

502 30. Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Häggblad, J., Nilsson, S., and
503 Gustafsson, J. A. (1997) Comparison of the ligand binding specificity and transcript tissue
504 distribution of estrogen receptors alpha and beta. *Endocrinology* **138**, 863-870

505 31. Matsushima, A., Liu, X., Okada, H., Shimohigashi, M., and Shimohigashi, Y. (2010)
506 Bisphenol AF Is a Full Agonist for the Estrogen Receptor ER α but a Highly Specific
507 Antagonist for ER β . *Environ. Health. Perspect.* **118**, 1267-1272 (2010).

508 32. Delfosse, V., Grimaldi, M., Pons, J.-L., Boulahouf, A., Le Maire, A., Cavaillès, V.,
509 Labesse, G., Bourguet, W., and Balaguer, P. (2012) Structural and mechanistic insights into
510 bisphenols action provide guidelines for risk assessment and discovery of bisphenol A
511 substitutes. *Proc. Nat. Acad. Sci. U.S.A.* **109**, 14930-14935

512 33. Delfosse, V., Grimaldi, M., Cavaillès, V., Balaguer, P., and Bourguet, W. (2014) Structural
513 and functional profiling of environmental ligands for estrogen receptors. *Environ. Health.
514 Perspect.* **122**, 1306-1313

515 34. Masuya, T., Iwamoto, M., Liu, X., and Matsushima, A. (2019) Discovery of novel oestrogen
516 receptor α agonists and antagonists by screening a revisited privileged structure moiety for
517 nuclear receptors. *Sci. Rep.* **9**, 1267

518 35. Zhang, Z., Hu, Y., Guo, J., Yu, T., Sun, L., Xiao, X., Zhu, D., Nakanishi, T., Hiromori, Y.,
519 Li, J., Fan, X., Wan, Y., Cheng, S., Li, J., Guo, X., and Hu, J. (2017) Fluorene-9-bisphenol
520 is anti-oestrogenic and may cause adverse pregnancy outcomes in mice. *Nat. Commun.* **8**,
521 14585

522 36. Terasaki, M., Shiraishi, F., Nishikawa, T., Edmonds, J. S., Morita, M., and Makino, M.
523 (2005) Estrogenic activity of impurities in industrial grade bisphenol A. *Environm. Sci.
524 Technol.* **39**, 3703-3707

525 37. Soga, S., Shirai, H., Kobori, M., and Hirayama, N. (2007) Identification of the druggable
526 concavity in homology models using the PLB index. *J. Chem. Inf. Model.* **47**, 2287-2292

527 38. Corbeil, C. R., Williams, C. I., and Labute, P. (2012) Variability in docking success rates
528 due to dataset preparation. *J. Comput. Aided Mol. Des.* **26**, 775-786

529 39. Kojima, H., Takeuchi, S., Sanoh, S., Okuda, K., Kitamura, S., Uramaru, N., Sugihara, K.,
530 and Yoshinari, K. (2019) Profiling of bisphenol A and eight its analogues on transcriptional
531 activity via human nuclear receptors. *Toxicology* **413**, 48-55

532 40. Li, Y., Perera, L., Coons, L. A., Burns, K. A., Tyler Ramsey, J., Pelch, K. E., Houtman, R.,
533 van Beuningen, R., Teng, C. T., and Korach, K. S. (2018) Differential in vitro biological
534 action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA),
535 BPAF, and BPS ligand-ER α complexes. *Environ. Health. Perspect.* **126**, 017012

536 41. Stauffer, S. R., Coletta, C. J., Tedesco, R., Nishiguchi, G., Carlson, K., Sun, J.,
537 Katzenellenbogen, B. S., and Katzenellenbogen, J. A. (2000) Pyrazole ligands: Structure -
538 Affinity/activity relationships and estrogen receptor- α -selective agonists. *J. Med. Chem.* **43**,
539 4934-4947

540 42. Gaido, K. W., Leonard, L. S., Maness, S. C., Hall, J. M., McDonnell, D. P., Saville, B., and
541 Safe, S. (1999) Differential interaction of the methoxychlor metabolite 2,2-bis-(p-
542 hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors α and β . *Endocrinology* **140**,
543 5746-5753

544 43. Gaido, K. W., Maness, S. C., McDonnell, D. P., Dehal, S. S., Kupfer, D., and Safe, S. (2000)
545 Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta,
546 and androgen receptor: structure-activity studies. *Mol. Pharmacol.* **58**, 852-858

547 44. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., and Terraneo,
548 G. (2016) The Halogen Bond. *Chem. Rev.* **116**, 2478-2601

549 45. Bauzá, A., Mooibroek, T. J., and Frontera, A. (2015) The bright future of unconventional
550 σ/π -hole interactions. *ChemPhysChem* **16**, 2496-2517

551 46. Skowron, K. J., Booker, K., Cheng, C., Creed, S., David, B. P., Lazzara, P. R., Lian, A.,
552 Siddiqui, Z., Speltz, T. E., and Moore, T. W. (2019) Steroid receptor/coactivator binding
553 inhibitors: An update. *Mol. Cell. Endocrinol.* **493**, 110471

554 47. Shapiro, D. J., Mao, C., and Cherian, M. T. (2011) Small molecule inhibitors as probes for
555 estrogen and androgen receptor action. *J. Biol. Chem.* **286**, 4043-4048

556 48. Hughes, T. S., Giri, P. K., de Vera, I. M. S., Marciano, D. P., Kuruvilla, D. S., Shin, Y.,
557 Blayo, A.-L., Kamenecka, T. M., Burris, T. P., Griffin, P. R., and Kojetin, D. J. (2014) An
558 alternate binding site for PPAR γ 3 ligands. *Nat. Commun.* **5**, 1-13

559 49. Staudinger, J. L. (2019) Clinical applications of small molecule inhibitors of Pregnan X
560 receptor. *Mol. Cell. Endocrinol.* **485**, 61-71

561 50. Tice, C. M., and Zheng, Y.-J. (2016) Non-canonical modulators of nuclear receptors.
562 *Bioorg. Med. Chem. Lett.* **26**, 4157-4164

563 51. Scatchard, G. The Attractions of Proteins for Small Molecules and Ions. *Proc. Nat. Acad.*
564 *Sci. U.S.A.* **51**, 660-672 (1949).

565 **Supporting information**

566 This article contains supporting information (Figs. S1 to S3 and Tables S1 to S5).

567 **Acknowledgments**

568 We appreciate R.T. Yu, and A.R. Atkins (Salk Institute for Biological Studies) for their
569 helpful suggestions and discussions. We appreciate Y. Shimohigashi (Kyushu University)
570 for providing the chemical library, and X. Liu (Kyushu University) for providing the ER β -
571 mutated plasmid. We thank the RIKEN BRC Cell Bank, and Cell Resource Center for
572 Biomedical Research Institute of Development, Aging and Cancer, Tohoku University, for
573 providing the HeLa cells.

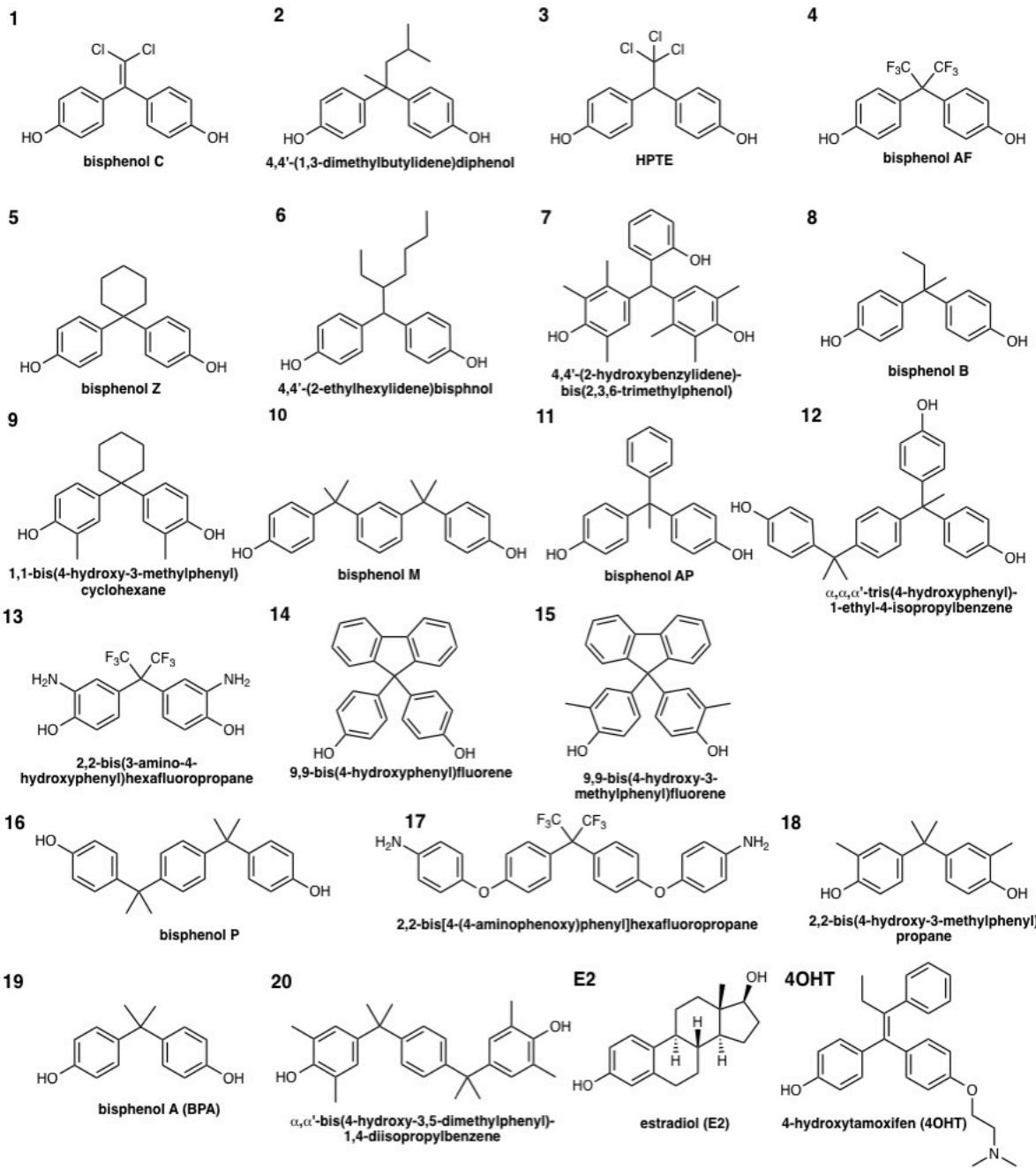
574 **Author contributions**

575 A.M. conceived and designed the experimental approaches. A.M., M.I., and T.M. performed
576 most of the experiments. M.H. contributed to the docking simulation analysis. K.T. and T.I.
577 performed the experiments. A.M. wrote the manuscript. E.Y., M.D., and R.M.E. provided
578 critical comments and contributed to the editing of the manuscript.

579 **Funding and additional information**

580 This work was supported by JSPS KAKENHI JP17H01881, JP18K19147, 18KK0320, and
581 20H00635, to A.M, and in part by a grant from Izumi Science and Technology Foundation.
582 R.M.E. holds the March of Dimes Chair in Molecular and Developmental Biology at the
583 Salk Institute, and is supported by the NOMIS Foundation - Science of Health. M.D. and
584 R.M.E. was supported in part by the National Institute of Environmental Health Sciences of
585 the National Institutes of Health under Award Number P42ES010337. The content is solely
586 the responsibility of the authors and does not necessarily represent the official views of the
587 National Institutes of Health.

588 **Conflict of interests**

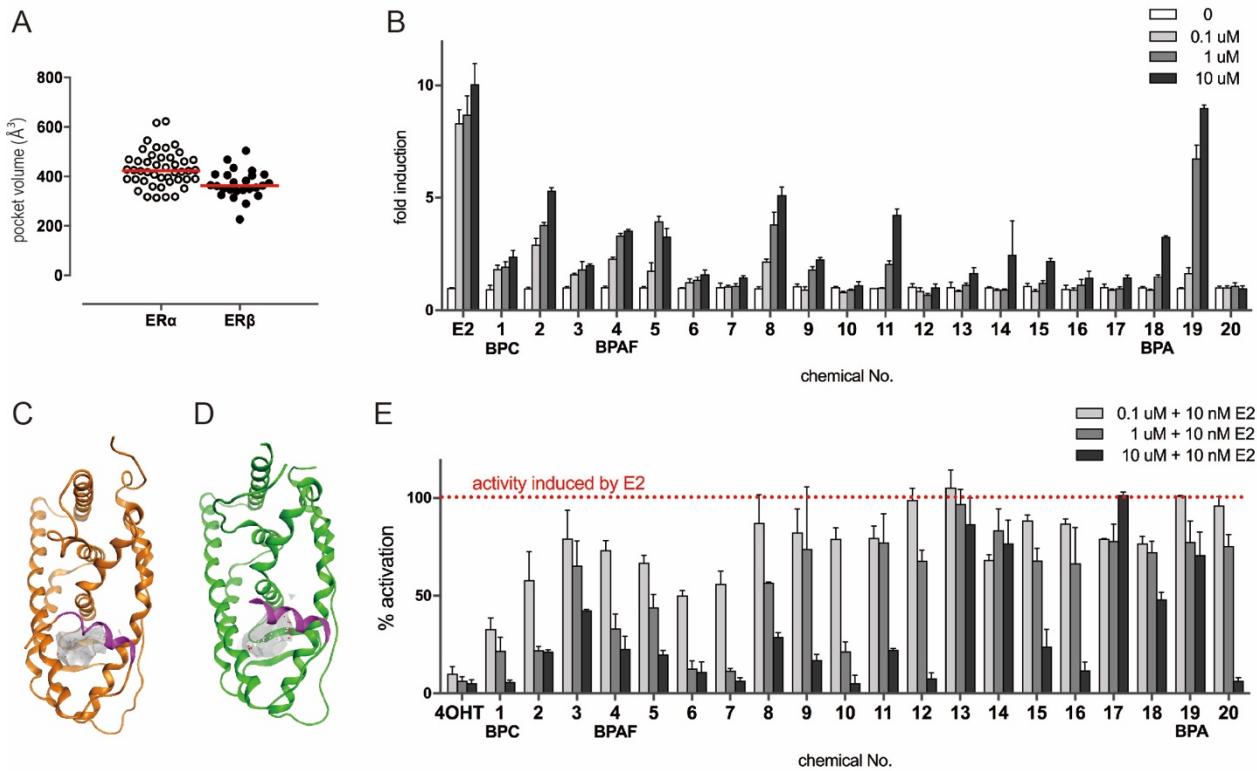

589 Authors declare no competing interests.

590 **Data and materials availability**

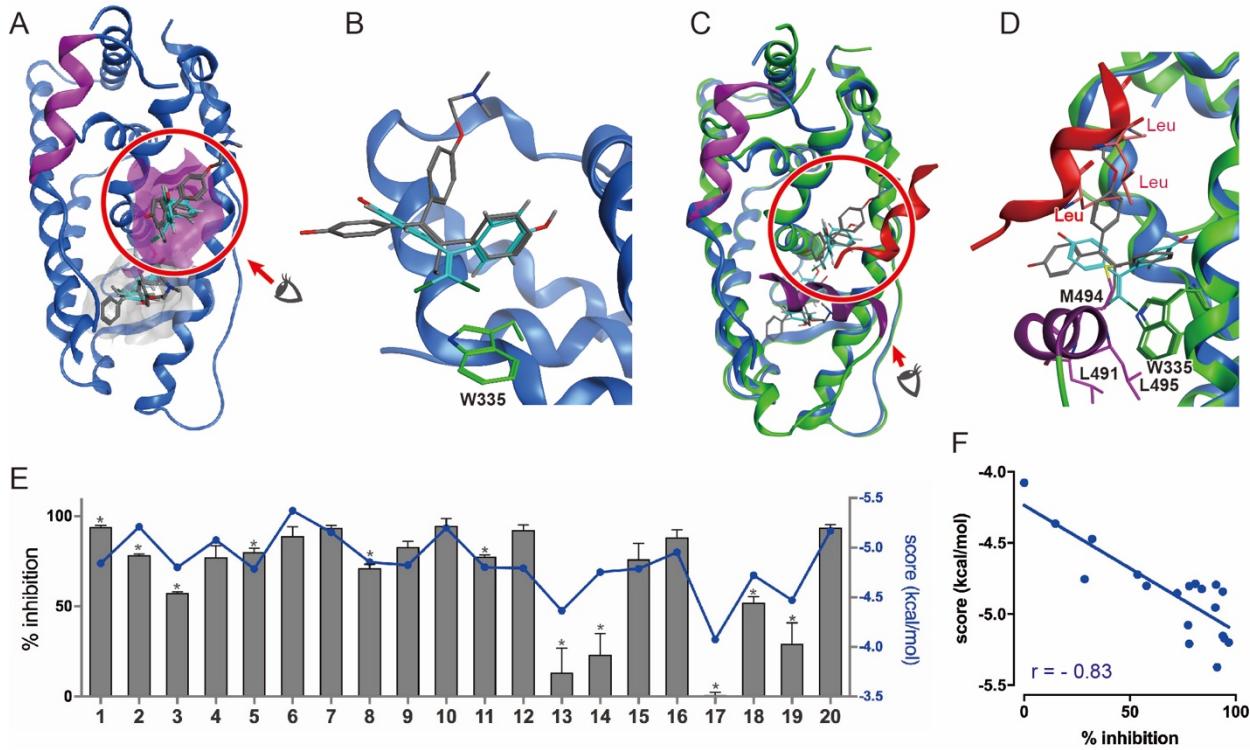
591 All data needed to evaluate the conclusions in the paper are present in the paper and/or the
592 Supplementary Materials.

602 **Figures and Tables**

603 **figure 1.**

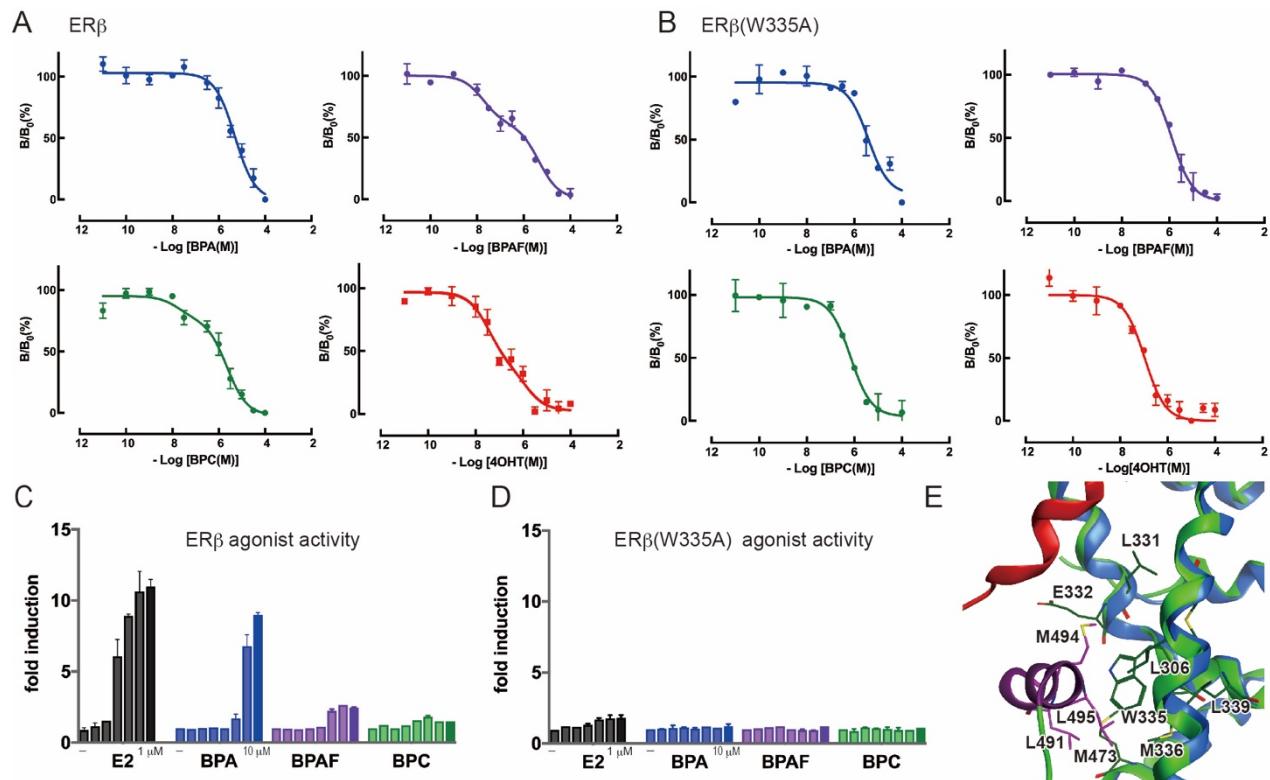


633 **Figure 1**


634 **Fig. 1. Structures of BPA derivatives selected via screening using an ER β binding assay.**

635 Chemical structures of E2, 4OHT, and 20 BPA-related compounds exhibited
636 stronger binding abilities than, or comparable to, BPA; BPC had the highest binding
637 ability to ER β . Fluorine-containing BPA derivatives, i.e., 9,9-Bis(4-
638 hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, exerted
639 stronger binding abilities than did BPA.

651
652
653
654
655
656


672
673
674
675
676

677
678
679
680 **Fig. 3. ER β harbors two ligands in its LBD.** (A) Two BPC bound to ER β during the
681 docking simulation. The canonical binding site is indicated in gray; the second
682 binding site, located on the surface of the receptor, is shown in magenta. The
683 activation helix, H12, is indicated in magenta. (B) Chlorine, a halogen atom of BPC,
684 interacted with the Trp335side chain via halogen interaction in the second binding
685 site. BPC and 4OHT are illustrated in blue and gray, respectively, in the stick model.
686 (C) Superimposition of the calculated BPC-bound ER β structure (blue) and its
687 agonist form with the nuclear receptor coactivator 1, SRC1. (green, PDB ID, 3OLL).
688 SRC1 is indicated as a red α -helix, H12 of its agonist form is indicated in purple,
689 BPC is illustrated in blue, and 4OHT is shown in gray. BPC clashed with the amino
690 acid residues on H12 in the ER β agonist form; therefore, BPC prevented the ER β
691 activation. BPC and 4OHT disrupted the SRC1 binding due to steric hindrance of
692 the amino acid residues shown in the red stick models. (D) In ER β -agonist form,
693 amino acid residues surrounding Trp335 within 4.5 \AA on H12 are shown in the
694 purple stick model, while leucine residues on the SRC1 LXXLL motif are indicated
695 via the red stick model. (E, F) Correlation of the calculated binding scores and
696 inhibitory activity for ER β . Inhibitory activity is defined as the ratio of chemicals
697 inhibiting transcriptional activity induced by 10 nM E2. * $p < 0.05$.

698
699

700
701
702
703

Fig. 4. Binding properties and transcriptional features of BPAF and BPC showed the importance of ER β W335 for their receptor binding and activation. (A) Detailed competitive binding curves of BPA, BPAF, BPC, and 4OHT using [3 H]4OHT illustrated a biphasic binding curve, in which chemicals compete with [3 H]4OHT in two binding sites on wild type ER β . (B) ER β (W335A) competitive binding assays showed typical sigmoidal binding curves. (C) The reporter gene assay indicated that BPAF and BPC induced weak transcriptional activity in wild type ER β , while E2 and BPA showed strong transcriptional activity. (D) ER β (W335A) lost E2 or BPA-induced transcriptional activity, indicating that Trp335 substitution disrupted active conformation. (E) In ER β agonist form, amino acid residues surrounding Trp335 within 4.5 Å are represented as green and purple stick models. (PDB ID, 3OLL).

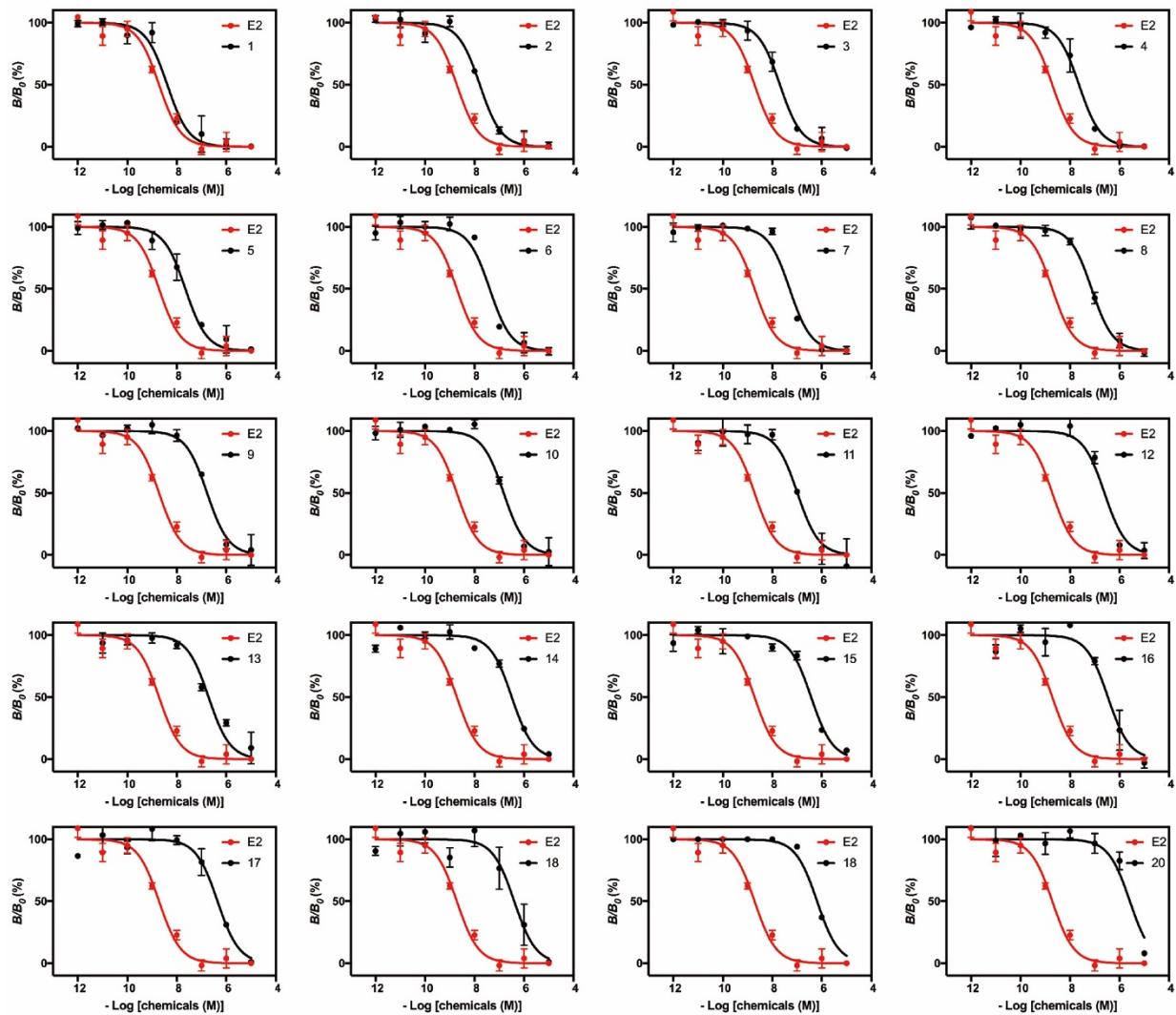
723
724
725
726
727
728
729

Table 1. Receptor binding affinity (mean \pm SD) of BPA derivatives for ER β . Receptor binding affinity were evaluated by competitive binding assay using [3 H] 17 β -estradiol as a radioligand.

Compound No.	Chemicals	Binding affinity (IC ₅₀ , nM)		
		ER β	ER α ^[34]	
E2	estradiol	2.17 \pm 0.6	0.88 \pm 0.13	
1	bisphenol C	2.99 \pm 1.0	2.81 \pm 0.61	
4OHT	4-hydroxytamoxifen	4.66 \pm 1.5	2.85 \pm 0.20	
2	4,4'-(1,3-dimethylbutylidene)bisphenol	16.1 \pm 6.1	5.75 \pm 1.92	
3	2,2-bis(<i>p</i> -hydroxyphenyl)-1,1,1-trichloroethane (HPTE)	18.1 \pm 4.9	59.1 \pm 1.5	
4	bisphenol AF	18.9 \pm 8.4	53.4 \pm 7.3	
5	bisphenol Z	21.6 \pm 1.9	56.9 \pm 0.6	
6	4,4'-(2-ethylhexylidene)bisphenol	25.9 \pm 8.5	18.5 \pm 6.7	
7	4,4'-(2-hydroxybenzylidene)-bis(2,3,6-trimethylphenol)	41.5 \pm 2.0	12.3 \pm 7.3	
8	bisphenol B	79.8 \pm 12.6	195 \pm 44	
9	1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane	132 \pm 6.5	38.6 \pm 7.2	
10	bisphenol M	148 \pm 80	56.8 \pm 11.7	
11	bisphenol AP	158 \pm 33	259 \pm 41	
12	α, α, α' -tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene	212 \pm 36	61.7 \pm 10.4	
13	2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane	224 \pm 113	334 \pm 112	
14	9,9-Bis(4-hydroxyphenyl)fluorene	325 \pm 60	2230 \pm 202	
15	9,9-bis(4-hydroxy-3-methylphenyl)fluorene	405 \pm 108	321 \pm 103	
16	bisphenol P	607 \pm 28	176 \pm 35	
17	2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane	609 \pm 81	1030 \pm 375	
18	2,2-bis(4-hydroxy-3-methylphenyl)propane	744 \pm 429	368 \pm 22	
19	bisphenol A	900 \pm 70	1780 \pm 764	
20	α, α' -bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene	10000 >	733 \pm 628	

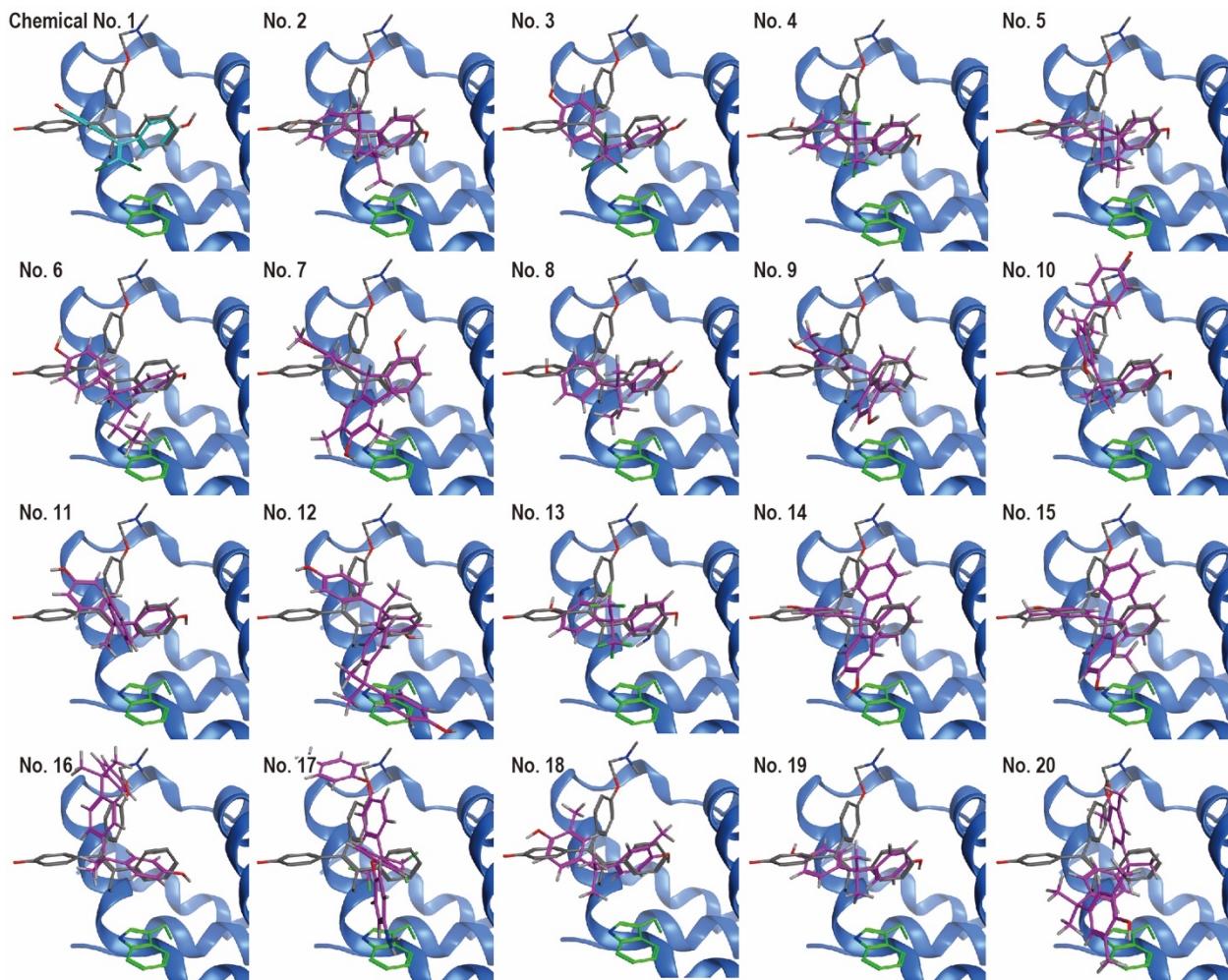
730
731
732
733
734

Supplementary Materials for **Bisphenol A derivatives act as novel coactivator binding inhibitors for estrogen receptor β**

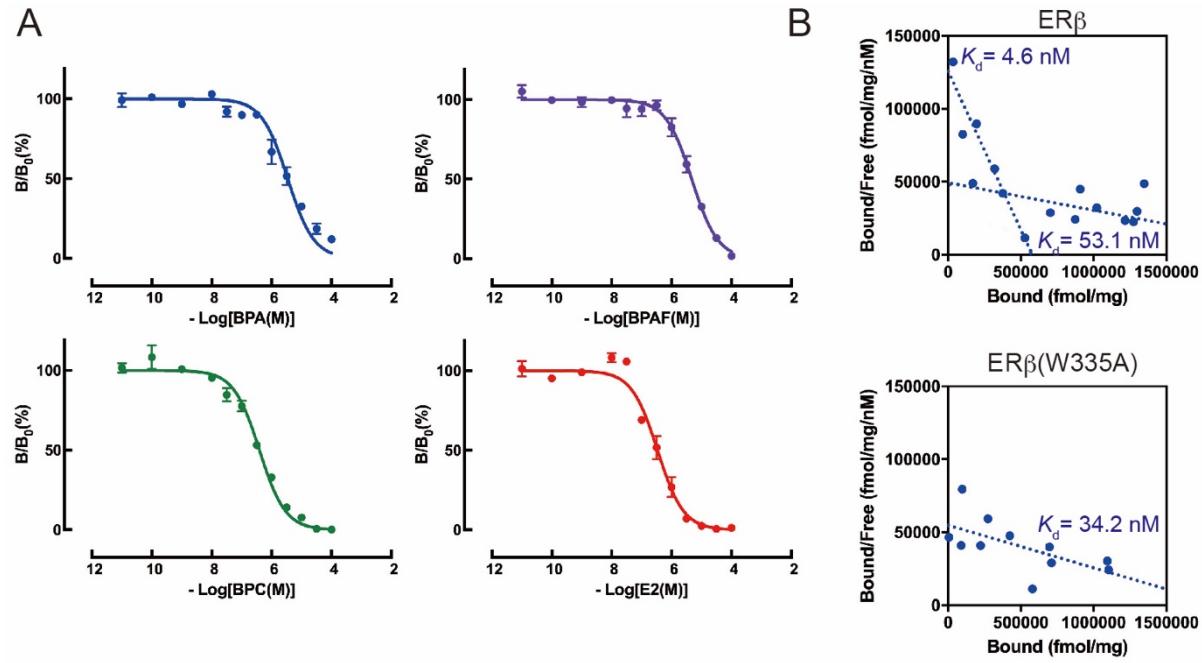

Masaki Iwamoto[†], Takahiro Masuya[†], Mari Hosose, Koki Tagawa, Tomoka Ishibashi, Eiji Yoshihara, Michael Downes, and Ayami Matsushima*

*Corresponding author. Email: ayami@chem.kyushu-univ.jp

[†]These authors contributed equally to this work.


This PDF file includes:

Figs. S1 to S3
Tables S1 to S5


Fig. S1.

Binding curves indicated the binding ability of each bisphenol derivatives using competitive binding assays with $[^3\text{H}]E2$. B/B_0 is the ratio of displacement by the chemical tested (B) against the maximum specific binding ($B_0 = 100\%$) of $[^3\text{H}]E2$.

Fig. S2.

Docking simulation indicated the binding possibilities of BPA derivatives on the second binding site located on the coactivator-binding surface of ER β . Calculated coordinates of BPC (blue stick model, No. 1) and the other BPA derivatives (magenta stick model, No. 2 to 20) were located close to W335. 4OHT in the crystal structure used for the docking simulation is indicated via a gray stick model.

Fig. S3. Binding experiments showed that ER β has two 4OHT binding sites, and only a single binding site for E2. (A) Competitive binding assay of ER β (W335A) using [3 H]E2 showed that ER β (W335A) retained its binding activity for E2 and other BPA derivatives. (B) Saturation binding assays using [3 H]4OHT estimated that ER β has both a high and low binding sites for 4OHT, while ER β (W335A) has only one binding site.

Table S1.

CAS RNs, common names, and IUPAC names of all the chemicals whose binding ability to ER β was analyzed using competitive binding assays in this study.

CAS RN®	common name	IUPAC name
603-44-1	4,4',4"-trihydroxytriphenylmethane	4,4',4"-methanetriyltriphenol
79-95-8	tetrachloro bisphenol A	4,4'-(propane-2,2-diyl)bis(2,6-dichlorophenol)
79-94-7	tetrabromo bisphenol A	4,4'-(propane-2,2-diyl)bis(2,6-dibromophenol)
77-40-7	bisphenol B	4,4'-(butane-2,2-diyl)diphenol
1571-75-1	bisphenol AP	4,4'-(1-phenylethane-1,1-diyl)diphenol
5613-46-7	tetramethyl bisphenol A	4,4'-(propane-2,2-diyl)bis(2,6-dimethylphenol)
79-97-0	2,2-bis(4-hydroxy-3-methylphenyl)propane	4,4'-(propane-2,2-diyl)bis(2-methylphenol)
27955-94-8	1,1',1"-tris(4-hydroxyphenyl)ethane	4,4',4"-ethane-1,1,1-triyltriphenol
599-64-4	4- α -cumyl phenol	4-(2-phenylpropan-2-yl)phenol
2167-51-3	bisphenol P	4,4'-(1,4-phenylenebis(propane-2,2-diyl))diphenol
14868-03-2	bisphenol C	4,4'-(2,2-dichloroethene-1,1-diyl)diphenol
80-05-7	bisphenol A	4,4'-(propane-2,2-diyl)diphenol
70-30-4	hexachlorophene	6,6'-methylenebis(2,4,5-trichlorophenol)
110726-28-8	α , α , α '-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene	4,4'-(1-(4-(2-(4-hydroxyphenyl)propan-2-yl)phenyl)ethane-1,1-diyl)diphenol
2716-10-1	α , α '-bis(4-aminophenyl)-1,4-diisopropylbenzene	4,4'-(1,4-phenylenebis(propane-2,2-diyl))dianiline
57100-74-0	2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane	4,4'-(propane-2,2-diyl)bis(2-cyclohexylphenol)
24038-68-4	2,2-bis(2-hydroxy-5-biphenyl)propane	5,5"-((propane-2,2-diyl)bis([1,1'-biphenyl]-2-ol))
1675-54-3	2,2-bis(4-glycidyloxyphenyl)propane	2,2'-(((propane-2,2-diyl)bis(4,1-phenylene))bis(oxy))bis(methylene))bis(oxirane)
10192-62-8	bisphenol A diacetate	propane-2,2-diylbis(4,1-phenylene) diacetate
4162-45-2	tetrabromobisphenol A bis(2-hydroxyethyl)ether	2,2'-((propane-2,2-diyl)bis(2,6-dibromo-4,1-phenylene))bis(oxy))diethanol
127-54-8	2,2-bis(4-hydroxy-3-isopropylphenyl)propane	4,4'-(propane-2,2-diyl)bis(2-isopropylphenol)
3539-42-2	4,4'-isopropylidenediphenoxycetic acid	2,2'-((propane-2,2-diyl)bis(4,1-phenylene))bis(oxy))diacetic acid
13080-86-9	2,2-bis[4-(4-aminophenoxy)-phenyl]propane	4,4'-(propane-2,2-diyl)bis(4,1-phenylene))bis(oxy))dianiline
36395-57-0	α , α '-bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene	4,4'-(1,4-phenylenebis(propane-2,2-diyl))bis(2,6-dimethylphenol)
2024-88-6	2,2-bis(4-chloroformyloxyphenyl)propane	propane-2,2-diylbis(4,1-phenylene) dicarbonochloride
32113-46-5	2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane	2-butan-2-yl-4-[2-(3-butan-2-yl-4-hydroxyphenyl)propan-2-yl]phenol
620-92-8	bisphenol F	4,4'-methylenediphenol
84-16-2	hexestrol	4,4'-(hexane-3,4-diyl)diphenol
1156-51-0	2,2-bis(4-cyanatophenyl)propane	4,4'-(propane-2,2-diyl)bis(cyanatobenzene)
479-13-0	coumestrol	3,9-dihydroxy-6H-benzofuro[3,2-c]chromen-6-one
1415-73-2	barbaloin	(10S)-1,8-dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-10H-anthracen-9-one
961-29-5	isoliquiritigenin	(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one
2467-25-6	4,4'-methylenebis(2-methylphenol)	4,4'-methylenebis(2-methylphenol)
17345-66-3	2,3,4-trihydroxydiphenylmethane	4-benzylbenzene-1,2,3-triol
75804-28-3	2,3-dimethyl-2,3-butanediamine	2,3-dimethylbutane-2,3-diamine
2081-08-5	bisphenol E	4,4'-(ethane-1,1-diyl)diphenol

2971-36-0	HPTE	4,4'-(2,2,2-trichloroethane-1,1-diyl)diphenol
83558-87-6	2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane	4,4'-(perfluoropropane-2,2-diyl)bis(2-aminophenol)
47250-53-3	2,2-bis(3-aminophenyl)hexafluoropropane	3,3'-(perfluoropropane-2,2-diyl)dianiline
116325-74-7	2,2-bis(3-amino-4-methylphenyl)hexafluoropropane	5,5'-(perfluoropropane-2,2-diyl)bis(2-methylaniline)
1095-78-9	2,2-bis(4-aminophenyl)hexafluoropropane	4,4'-(perfluoropropane-2,2-diyl)dianiline
69563-88-8	2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane	4,4'(((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(oxy))dianiline
1478-61-1	bisphenol AF	4,4'-(perfluoropropane-2,2-diyl)diphenol
1107-00-2	4,4'-(hexafluoroisopropylidene)diphthalic anhydride	5,5'-(perfluoropropane-2,2-diyl)bis(isobenzofuran-1,3-dione)
1171-47-7	2,2-bis(4-carboxyphenyl)hexafluoropropane	4,4'-(perfluoropropane-2,2-diyl)dibenzoic acid
10224-18-7	2,2-bis(4-isocyanatophenyl)hexafluoropropane	4,4'-(perfluoropropane-2,2-diyl)bis(isocyanatobenzene)
83558-76-3	hexafluoro-2,2-diphenylpropane	(perfluoropropane-2,2-diyl)dibenzene
4221-68-5	1,1-bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane	4,4'-(cyclohexane-1,1-diyl)bis(2-cyclohexylphenol)
15499-84-0	9,9-bis(4-aminophenyl)fluorene	4,4'-(9 <i>H</i> -fluorene-9,9-diyl)dianiline
184355-68-8	4,4'-(2-hydroxybenzylidene)-bis(2,3,6-trimethylphenol)	4,4'((2-hydroxyphenyl)methylene)bis(2,3,6-trimethylphenol)
6807-17-6	4,4'-(1,3-dimethylbutylidene)diphenol	4,4'-(4-methylpentane-2,2-diyl)diphenol
3236-71-3	9,9-bis(4-hydroxyphenyl)fluorene	4,4'-(9 <i>H</i> -fluorene-9,9-diyl)diphenol
88938-12-9	9,9-bis(4-hydroxy-3-methylphenyl)fluorene	4,4'-(9 <i>H</i> -fluorene-9,9-diyl)bis(2-methylphenol)
74462-02-5	4,4'-(2-ethylhexylidene)diphenol	4,4'-(2-ethylhexane-1,1-diyl)diphenol
117344-32-8	9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene	2,2'(((9 <i>H</i> -fluorene-9,9-diyl)bis(4,1-phenylene))bis(oxy))diethanol
2362-14-3	1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane	4,4'-(cyclohexane-1,1-diyl)bis(2-methylphenol)
3282-99-3	1,1-bis(4-aminophenyl)cyclohexane	4,4'-(cyclohexane-1,1-diyl)dianiline
843-55-0	bisphenol Z	4,4'-(cyclohexane-1,1-diyl)diphenol
13595-25-0	1,3-bis[2-(4-hydroxyphenyl)-2-propyl]benzene	4,4'-(1,3-phenylenebis(propane-2,2-diyl))diphenol
20601-38-1	4,4'-bicyclohexanol	[1,1'-bi(cyclohexane)]-4,4'-diol
1980-4-69	2,2-bis(4-hydroxycyclohexyl)propane	4,4'-(propane-2,2-diyl)dicyclohexanol
2433-14-6	4-cyclohexylcyclohexanol	[1,1'-bi(cyclohexan)]-4-ol
119-42-6	2-cyclohexylphenol	2-cyclohexylphenol
947-42-2	diphenylsilanediol	diphenylsilanediol
20714-70-9	4-(phenylazo)phenol	(<i>E</i>)-4-(phenyldiazenyl)phenol
501-36-0	resveratrol	(<i>E</i>)-5-(4-hydroxystyryl)benzene-1,3-diol
3127-14-8	spirobicromane	4,4,4',4'-tetramethyl-2,2'-spirobi[chroman]-7,7'-diol
2246-46-0	4-(2-Thiazolylazo)resorcinol	(<i>E</i>)-4-(thiazol-2-ylidazenyl)benzene-1,3-diol
32737-35-2	6,6',7,7'-tetrahydroxy-4,4,4',4'-tetramethyl-2,2'-spirobichroman	4,4,4',4'-tetramethyl-2,2'-spirobi[chroman]-6,6',7,7'-tetraol
269409-97-4	4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenol	2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol
611-99-4	4,4'-dihydroxybenzophenone	bis(4-hydroxyphenyl)methanone
90-96-0	4,4'-dimethoxybenzophenone	bis(4-methoxyphenyl)methanone
61445-50-9	2,3',4,4'-tetrahydroxybenzophenone	(2,4-dihydroxyphenyl)(3,4-dihydroxyphenyl)methanone
131-55-5	2,2',4,4'-tetrahydroxybenzophenone	bis(2,4-dihydroxyphenyl)methanone
345-92-6	4,4'-difluorobenzophenone	bis(4-fluorophenyl)methanone
131-54-4	2,2'-dihydroxy-4,4'-dimethoxybenzophenone	bis(2-hydroxy-4-methoxyphenyl)methanone
90-98-2	4,4'-dichlorobenzophenone	bis(4-chlorophenyl)methanone
2421-28-5	3,3',4,4'-benzophenonetetracarboxylic dianhydride	5,5'-carbonylbis(isobenzofuran-1,3-dione)
85-58-5	benzophenone-2,4'-dicarboxylic acid monohydrate	2-(4-carboxybenzoyl)benzoic acid

342-25-6	2,4'-difluorobenzophenone	(2-fluorophenyl)(4-fluorophenyl)methanone
611-98-3	4,4'-diaminobenzophenone	bis(4-aminophenyl)methanone
83846-85-9	4-benzoyl 4'-methyldiphenyl sulfide	phenyl(4-(p-tolylthio)phenyl)methanone
964-68-1	benzophenone-4,4'-dicarboxylic acid	4,4'-carboxyldibenzonic acid
131-53-3	2,2'-dihydroxy-4-methoxybenzophenone	(2-hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone
85-29-0	2,4'-dichlorobenzophenone	(2-chlorophenyl)(4-chlorophenyl)methanone
1470-79-7	2,4,4'-trihydroxybenzophenone	(2,4-dihydroxyphenyl)(4-hydroxyphenyl)methanone
835-11-0	2,2'-dihydroxybenzophenone	bis(2-hydroxyphenyl)methanone
21222-05-9	3,3'-dinitrobenzophenone	bis(3-nitrophenyl)methanone
611-79-0	3,3'-diaminobenzophenone	bis(3-aminophenyl)methanone
2958-36-3	2-amino-2',5-dichlorobenzophenone	(2-amino-5-chlorophenyl)(2-chlorophenyl)methanone
33077-87-1	2,2',4-trimethoxybenzophenone	(2,4-dimethoxyphenyl)(2-methoxyphenyl)methanone
3708-39-2	4,4'-bis(methylamino)benzophenone	bis(4-(methylamino)phenyl)methanone
119-61-9	benzophenone	benzophenone
31127-54-5	2,3,4,4'-tetrahydroxybenzophenone	(4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone
118-82-1	4,4'-methylenebis(2,6-di-tert-butylphenol)	4,4'-methylenebis(2,6-di-tert-butylphenol)
122-25-8	methylenedisalicylic acid	5,5'-methylenebis(2-hydroxybenzoic acid)
105391-33-1	bis(3-ethyl-5-methyl-4-maleimidophenyl)methane	1,1'-(methylenebis(2-ethyl-6-methyl-4,1-phenylene))bis(1H-pyrrole-2,5-dione)
97-23-4	2,2'-methylenebis(4-chlorophenol)	2,2'-methylenebis(4-chlorophenol)
13676-54-5	4,4'-bismaleimidodiphenylmethane	1,1'-(methylenebis(4,1-phenylene))bis(1H-pyrrole-2,5-dione)
19900-72-2	4,4'-methylenebis(2-ethyl-6-methylaniline)	4,4'-methylenebis(2-ethyl-6-methylaniline)
838-88-0	4,4'-diamino-3,3'-dimethyldiphenylmethane	4,4'-methylenebis(2-methylaniline)
101-77-9	4,4'-diaminodiphenylmethane	4,4'-methylenedianiline
101-61-1	Bis[4-dimethylamino)-phenyl]methane	4,4'-methylenebis(N,N-dimethylaniline)
88-24-4	2,2'-methylenebis(6-tert-butyl-4-ethylphenol)	6,6'-methylenebis(2-(tert-butyl)-4-ethylphenol)
101-14-4	4,4'-methylenebis(2-chloroaniline)	4,4'-methylenebis(2-chloroaniline)
5384-21-4	4,4'-methylenebis(2,6-dimethylphenol)	4,4'-methylenebis(2,6-dimethylphenol)
19430-83-2	3,4'-diaminodiphenylmethane	3-(4-aminobenzyl)aniline
119-47-1	2,2'-methylenebis(6-tert-butyl-p-cresol)	6,6'-methylenebis(2-(tert-butyl)-4-methylphenol)
1817-74-9	4,4'-dinitrodiphenylmethane	bis(4-nitrophenyl)methane
42240-73-3	Bis(4-amino-2,3-dichlorophenyl)methane	4,4'-methylenebis(2,3-dichloroaniline)
3236-63-3	2,2'-methylenebis(4-methylphenol)	2,2'-methylenebis(4-methylphenol)
2467-03-0	2,4'-dihydroxydiphenylmethane	2-(4-hydroxybenzyl)phenol
457-68-1	4,4'-difluorodiphenylmethane	bis(4-fluorophenyl)methane
101-68-8	4,4'-diphenylmethane diisocyanate, (4,4'-Methylenebis(phenyl Isocyanate))	bis(4-isocyanatophenyl)methane
139-25-3	4,4'-diisocyanato-3,3'-dimethyldiphenylmethane	bis(4-isocyanato-3-methylphenyl)methane
19471-12-6	3,3'-diaminodiphenylmethane	3,3'-methylenedianiline
2467-02-9	2,2'-dihydroxydiphenylmethane	2,2'-methylenediphenol
1844-01-5	4,4'-dihydroxytetraphenylmethane	4,4'-(diphenylmethylenediphenol)
174462-43-2	2,3,4,4'-tetrahydroxydiphenylmethane	4-(4-hydroxybenzyl)benzene-1,2,3-triol

Table S2.

PDB IDs of ER α utilized for calculating of the volumes of each ligand-binding pocket. PDB IDs are listed in alphabetical order.

PDB ID	ligand name	pocket volume (\AA^3)
1A52	estradiol	389.6
1ERE	17beta-estradiol	461.4
1GWQ	raloxifene	425.4
1QKU	estradiol	407.1
1X7E	WAY-244	510.8
1X7R	genistein	457.9
2P15	ortho-trifluoromethylphenylvinyl estradiol	518.0
2QA6	4-(6-hydroxy-1 <i>H</i> -indazol-3-yl)benzene-1,3-diol	318.1
2QGT	(9beta,11alpha,13alpha,14beta,17alpha)-11-(methoxymethyl)estra-1(10),2,4-triene-3,17-diol	417.8
2QSE	4-OH-PhIP	545.0
2QXM	PhIP	529.1
3Q95	estriol	422.0
3UU7	bisphenol A	428.0
3UUA	bisphenol AF	623.0
3UUC	bisphenol C	316.8
4MGA	4-tert-octylphenol	153.3
4MGC	benzophenone-2	314.0
4MGD	HPTE	395.1
4PP6	resveratrol	340.4
4PPP	fluoro-resveratrol	388.5
4PPS	(1 <i>S</i> ,3 <i>alpha</i> <i>R</i> ,5 <i>R</i> ,7 <i>alpha</i> <i>S</i>)-5-(4-hydroxyphenyl)-7 <i>alpha</i> -methyloctahydro-1 <i>H</i> -inden-1-ol	466.4
4TV1	propylparaben	317.0
4ZN7	diethylstilbestrol	422.6
5DI7	(1 <i>S</i> ,3 <i>alpha</i> <i>R</i> ,5 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-5-(4-hydroxy-2-methylphenyl)-7 <i>alpha</i> -methyloctahydro-1 <i>H</i> -inden-1-ol	485.8
5DID	(1 <i>S</i> ,3 <i>alpha</i> <i>R</i> ,5 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-5-(2,3-difluoro-4-hydroxyphenyl)-7 <i>alpha</i> -methyloctahydro-1 <i>H</i> -inden-1-ol	460.4
5DIE	(1 <i>S</i> ,3 <i>alpha</i> <i>R</i> ,5 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-7 <i>alpha</i> -methyl-5-(2,3,5-trifluoro-4-hydroxyphenyl)octahydro-1 <i>H</i> -inden-1-ol	468.5
5DIG	(1 <i>S</i> ,3 <i>alpha</i> <i>R</i> ,5 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-5-[4-hydroxy-2-(trifluoromethyl)phenyl]-7 <i>alpha</i> -methyloctahydro-1 <i>H</i> -inden-1-ol	497.6
5EGV	3-chloranyl-4-[4-(2-chloranyl-4-oxidanyl-phenyl)furan-3-yl]phenol	395.0
5EI1	2-(4-hydroxyphenyl)-3-iodanyl-imidazo[1,2-alpha]pyridin-6-ol	389.9
5EIT	2-(4-hydroxyphenyl)-3-(trifluoromethyl)imidazo[1,2-alpha]pyridin-6-ol	381.4
5JMM	biochanin A	617.0
5KR9	coumestrol	350.9
5KRM	(1 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-5-(2,5-difluoro-4-hydroxyphenyl)-7 <i>alpha</i> -methyl-2,3,3 <i>alpha</i> ,4,7,7 <i>alpha</i> -hexahydro-1 <i>H</i> -inden-1-ol	475.8
5KRO	(8 <i>R</i> ,9 <i>S</i> ,13 <i>S</i> ,14 <i>S</i> ,17 <i>S</i>)-13-methyl-17-(methyl(phenyl)amino)-7,8,9,11,12,13,14,15,16,17-decahydro-6 <i>H</i> -cyclopenta[alpha]phenanthren-3-ol	378.5
5TLL	(<i>E</i>)-2-chloro-4'-hydroxy-4-((hydroxyiminio)methyl)-[1,1'-biphenyl]-3-olate	359.5
5TLU	(14beta,17alpha)-21-(4-aminophenyl)-19-norpregna-1(10),2,4-trien-20-yne-3,17-diol	416.8
5TMZ	(8 <i>S</i> ,9 <i>S</i> ,13 <i>S</i> ,14 <i>S</i> ,17 <i>S</i>)-16-(3-methoxybenzyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6 <i>H</i> -cyclopenta[alpha]phenanthrene-3,17-diol	436.8
5TN1	(8 <i>S</i> ,9 <i>S</i> ,13 <i>S</i> ,14 <i>S</i> , <i>E</i>)-17-((4-isopropylphenyl)imino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6 <i>H</i> -cyclopenta[alpha]phenanthren-3-ol	425.9

5TN3	(8 <i>S</i> ,9 <i>S</i> ,13 <i>S</i> ,14 <i>S</i>)-17-((4-isopropylphenyl)amino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6 <i>H</i> -cyclopenta[<i>alpha</i>]phenanthren-3-ol	475.9
5TN4	(<i>S</i>)-5-(4-hydroxy-3,5-dimethylphenyl)-2,3-dihydro-1 <i>H</i> -inden-1-ol	388.9
5TN5	(1 <i>S</i> ,3 <i>alpha</i> <i>S</i> ,5 <i>S</i> ,7 <i>alpha</i> <i>S</i>)-5-(4-hydroxyphenyl)-7 <i>alpha</i> -methyloctahydro-1 <i>H</i> -inden-1-ol	419.0
5TN6	(1 <i>S</i> ,1' <i>S</i> ,3 <i>alpha</i> ' <i>S</i> ,7 <i>alpha</i> ' <i>S</i>)-7 <i>alpha</i> '-methyl-1',2',3',3 <i>alpha</i> ',4',6',7',7 <i>alpha</i> '-decahydro-1,5'-spirobi[indene]-1',5-diol	448.0
5TN7	(<i>E</i>)-3'-fluoro-4'-hydroxy-3-((hydroxyiminio)methyl)-[1,1'-biphenyl]-4-olate	387.1
5TN8	(<i>E</i>)-4'-hydroxy-3-((hydroxyiminio)methyl)-[1,1'-biphenyl]-4-olate	355.3
5U2B	(8 <i>R</i> ,9 <i>S</i> ,13 <i>S</i> ,14 <i>S</i> ,17 <i>S</i>)-13-methyl-17-(phenylamino)-7,8,9,11,12,13,14,15,16,17-decahydro-6 <i>H</i> -cyclopenta[<i>alpha</i>]phenanthren-3-ol	515.8

Table S3.

PDB IDs of ER β agonist structures utilized for calculating of the volumes of each ligand binding pocket. PDB IDs are listed in alphabetical order.

PDB ID	ligand name	pocket volume (Å ³)
1QKN	raloxifene	382.3
1U3Q	4-(6-hydroxy-benzo[delta]isoxazol-3-yl)benzene-1,3-diol	344.9
1U3R	2-(5-hydroxy-naphthalen-1-yl)-1,3-benzooxazol-6-ol	364.3
1U3S	3-(6-hydroxy-naphthalen-2-yl)-benzo[delta]isooxazol-6-ol	407.9
1X76	5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-carbonitrile	354.4
1X78	[5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yl]acetonitrile	349.4
1X7B	2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3-benzoxazol-5-ol	314.0
1X7J	genistein	375.9
1YY4	1-chloro-6-(4-hydroxyphenyl)-2-naphthol	408.5
1YYE	3-(3-fluoro-4-hydroxyphenyl)-7-hydroxy-1-naphthonitrile	402.6
1ZAF	3-bromo-6-hydroxy-2-(4-hydroxyphenyl)-1H-inden-1-one	503.8
2J7X	estradiol	423.0
2J7Y	(16alpha,17alpha)-estr-1,3,5(10)-triene-3,16,17-triol	372.6
2NV7	4-(4-hydroxyphenyl)-1-naphthaldehyde oxime	340.6
2YJD	4-(2-propan-2-yloxybenzimidazol-1-yl)phenol	468.1
2LYL	<i>n</i> -cyclopropyl-4-oxidanyl- <i>n</i> -[(2 <i>R</i>)-2-oxidanyl-2-phenyl-propyl]benzenesulfonamide	226.3
3OLL	estradiol	361.9
3OLS	estradiol	404.9
3OMO	2-(trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-6-ol	289.0
3OMP	2-(trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-7-ol	321.3
3OMQ	2-[(trifluoromethyl)sulfonyl]-1,2,3,4-tetrahydroisoquinolin-6-ol	346.9
4J24	estradiol	324.9
4J26	estradiol	434.6
4ZI1	2-(4-hydroxyphenyl)-7-methyl-3-phenyl-1 <i>H</i> -inden-5-ol	350.4
5TOA	estradiol	361.0

Table S4.

PDB IDs of ER β LBDs utilized for SiteFinder calculations to analyze ligand-binding sites. PDB IDs are listed in alphabetical order.

PDB ID	rank of 1st site	rank of 2nd site	ligand	active or inactive	position of H12*
1HJ1	1	7	ICI164,384	inactive	free
1L2J	1	none	(<i>R,R</i>)-5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol	inactive	CBS
1NDE	1	none	4-(2-{[4-{{[3-(4-chlorophenyl)propyl]sulfanyl}]-6-(1-piperazinyl)-1,3,5-triazin-2-yl]amino}ethyl)phenol	inactive	CBS
1QKM	1	9	genistein	inactive	free
1QKN	1	10	raloxifene	inactive	free
1U3Q	1	none	4-(6-hydroxy-benzo[d]isoxazol-3-yl)benzene-1,3-diol	active	active position
1U3R	1	none	2-(5-hydroxy-naphthalen-1-yl)-1,3-benzoxazol-6-ol	active	active position
1U3S	1	none	3-(6-hydroxy-naphthalen-2-yl)-benzo[d]isoxazol-6-ol	active	active position
1U9E	1	3	2-(4-hydroxy-phenyl)benzofuran-5-ol	active	active position
1X76	1	3	5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-carbonitrile	active	active position
1X78	1	none	[5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yl]acetonitrile	active	active position
1X7B	1	none	2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3-benzoxazol-5-ol	active	active position
1X7J	5	none	genistein	active	active position
1YY4	1	none	1-chloro-6-(4-hydroxyphenyl)-2-naphthol	active	active position
1YYE	1	17	3-(3-fluoro-4-hydroxyphenyl)-7-hydroxy-1-naphthonitrile	active	active position
1ZAF	1	3	3-bromo-6-hydroxy-2-(4-hydroxyphenyl)-1 <i>H</i> -inden-1-one	active	active position
2FSZ	5	11	4-hydroxytamoxifen	inactive	free
2GIU	1	none	(9a <i>S</i>)-4-bromo-9a-butyl-7-hydroxy-1,2,9,9a-tetrahydro-3 <i>H</i> -fluoren-3-one	inactive	CBS
2I0G	1	none	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-4-(4-hydroxyphenyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-8-ol	inactive	CBS
2I0J	1	9	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-4-(4-hydroxyphenyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-8-ol	inactive	free
2J7X	1	none	estradiol	active	active position
2J7Y	1	none	(16alpha,17alpha)-estr-1,3,5(10)-triene-3,16,17-triol	active	active position
2JJ3	1	none	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-4-(4-hydroxyphenyl)-6-(methoxymethyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-8-ol	inactive	CBS
2NV7	1	13	4-(4-hydroxyphenyl)-1-naphthaldehyde oxime	active	active position
2POG	1	8	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-4-(4-hydroxyphenyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-9-ol	inactive	free
2Q TU	1	none	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-2,2-difluoro-4-(4-hydroxyphenyl)-6-(methoxymethyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-8-ol	inactive	CBS
2YJD	1	3	4-(2-propan-2-yloxybenzimidazol-1-yl)phenol	active	active position
2YLY	2	5	<i>N</i> -cyclopropyl-4-oxidanyl- <i>N</i> -[(2 <i>R</i>)-2-oxidanyl-2-phenylpropyl]benzenesulfonamide	active	active position
2Z4B	1	none	(3a <i>S</i> ,4 <i>R</i> ,9 <i>bR</i>)-2,2-difluoro-4-(4-hydroxyphenyl)-1,2,3,3a,4,9 <i>b</i> -hexahydrocyclopenta[c]chromen-8-ol	inactive	CBS
3OLL	1	8	estradiol	active	active position
3OLS	1	none	estradiol	active	active position
3OMO	1	none	2-(trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-6-ol	active	active position

3OMP	1	10	2-(trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-7-ol	active	active position
3OMQ	1	none	2-[(trifluoromethyl)sulfonyl]-1,2,3,4-tetrahydroisoquinolin-6-ol	active	active position
4J24	1	10	estradiol	active	active position
4J26	1	9	estradiol	active	active position
4ZI1	1	none	2-(4-hydroxyphenyl)-7-methyl-3-phenyl-1 <i>H</i> -inden-5-ol	active	active position
5TOA	1	7	estradiol	active	active position

* “CBS” means that H12 is located in an inactivated position on the ER β coactivator-binding site (CBS); 'free' means helix 12 is not visualized or is far outside of the LBD.

Table S5.

Compounds names, CAS RN, and ligand IDs of CDS-Core or Chemical IDs from the Protein Data Bank (PDB); 3D coordinates were utilized for docking simulation experiments. Chemical IDs from PDB are designated by three letters.

	common names	CAS RN®	Ligand ID
1	bisphenol C	14868-03-2	0D1 (PDB)
2	4,4'-(1,3-dimethylbutylidene)bisphenol	6807-17-6	ZUHRAX
3	2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE)	2971-36-0	-
4	bisphenol AF	1478-61-1	TIBVOQ
5	bisphenol Z	843-55-0	-
6	4,4'-(2-ethylhexylidene)bisphenol	74462-02-5	-
7	4,4'-(2-hydroxybenzylidene)-bis(2,3,6-trimethylphenol)	184355-68-8	-
8	bisphenol B	77-40-7	-
9	1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane	2362-14-3	SIJHOJ
10	bisphenol M	13595-25-0	-
11	bisphenol AP	1571-75-1	-
12	α, α' -tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene	110726-28-8	-
13	2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane	83558-87-6	-
14	9,9-Bis(4-hydroxyphenyl)fluorene	3236-71-3	ABUCOP
15	9,9-bis(4-hydroxy-3-methylphenyl)fluorene	15499-84-0	XOGJEI
16	bisphenol P	2167-51-3	-
17	2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane	69563-88-8	HOYZOL
18	2,2-bis(4-hydroxy-3-methylphenyl)propane	79-97-0	REGKOF
19	bisphenol A	80-05-7	2OH (PDB)
20	α, α' -bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene	36395-57-0	ACAYIN