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Abstract

In natural and agricultural ecosystems, survival and growth of plants depend substantially on
microbes in the endosphere and rhizosphere. Although numerous studies have reported the
presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a
major challenge to understand how sets of microbial species positively or negatively affect
plants’ performance. By conducting a series of single- and dual-inoculation experiments of 13
endophytic and soil fungi targeting a Brassicaceae plant species, we here evaluated how
microbial effects on plants depend on presence/absence of co-occurring microbes. The
comparison of single- and dual-inoculation experiments showed that combinations of the
fungal isolates with the highest plant-growth promoting effects in single inoculations did not
yield highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast,
pairs of fungi including small/moderate contributions to plants in single-inoculation contexts
showed the greatest effects on plants among the 78 fungal pairs examined. These results on
the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of
single microbial species/isolates can result in the overestimation or underestimation of
microbial functions in multi-species contexts. Because keeping single-microbe systems in
outdoor conditions is impractical, designing sets of microbes that can maximize performance
of crop plants is an important step for the use of microbial functions in sustainable

agriculture.

Keywords: biodiversity, endophytes, microbe-microbe interactions, microbial functions,

plant-fungus interactions, species interactions, symbiosis
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INTRODUCTION

Plants in natural and agricultural ecosystems are associated with diverse taxonomic groups of
microbes, forming both positive and negative interactions with the microbiomes (Lundberg et
al., 2012; Peay et al., 2016; Busby et al., 2017; Toju et al., 2018b). In particular, bacteria and
fungi found within and around root systems have been reported as key determinants of plants’
survival and growth (Hiruma et al., 2016, 2018; Castrillo et al., 2017; Trivedi et al., 2020). A
number of rhizosphere bacteria, for example, are known to stimulate plants’ growth by
producing phytohormones (Lugtenberg and Kamilova, 2009; Bhattacharyya and Jha, 2012;
Finkel et al., 2020). Mycorrhizal fungi are ancient symbionts of land plants (Remy et al.,
1994; Taylor et al., 1995), providing soil phosphorus and/or nitrogen to their hosts
(Richardson et al., 2009; Tedersoo et al., 2010; Jansa et al., 2019). Moreover, a growing
number of studies have shown that diverse clades of endophytic and soil fungi support host
plants by provisioning inorganic/organic forms of nutrients (Usuki and Narisawa, 2007;
Newsham, 2011; Hiruma et al., 2016), activating plant immune systems (van Wees et al.,
2008; Pieterse et al., 2014), and suppressing populations of pathogens/pests in the rhizosphere
(Narisawa et al., 2004; Khastini et al., 2012; Gu et al., 2020). Thus, developing scientific
bases for maximizing the benefits from those plant-associated microbiomes is an essential
step for fostering sustainable agriculture and restoring forest/grassland ecosystems (Bulgarelli

et al., 2013; Carlstrom et al., 2019; Wagg et al., 2019; Saad et al., 2020).

One of the major challenges in utilizing plant-associated microbiome functions is to
design sets of microbial species/isolates (Vorholt et al., 2017; Paredes et al., 2018; Toju et al.,
2018a; Wei et al., 2019). While a single microbial species or isolate can have specific
functions in promoting plant growth, broader ranges of positive effects on plants are
potentially obtained by introducing multiple microbial species/isolates (Wang et al., 2011;
Wazny et al., 2018; He et al., 2020). For example, a fungal species degrading organic nitrogen
(Newsham, 2011) and that suppressing soil pathogens (Vinale et al., 2008) may provide
plants with a broader spectrum of physiological functions than each of them alone, potentially
having additive or synergistic effects on the growth of their hosts. Meanwhile, sets of
microbes trying to colonize the plant endosphere or rhizosphere may compete for
resources/space (Kennedy et al., 2009; Werner and Kiers, 2015; Toju et al., 2016) or inhibit
each other’s growth (Helfrich et al., 2018), making their impacts on host plants more negative
than that observed in single-inoculation conditions (i.e., offset effects) (Nelson et al., 2018).

Given that multiple microbial species inevitably interact with a single plant in agroecosystems
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76 (Toju et al., 2018a), knowledge of those synergistic and offset effects in plant-associated

77  microbiomes is crucial for optimizing microbial functions in agriculture.

78 A starting point for designing sets of microbes is to use the information of single-

79  inoculation assays, in each of which a single microbial species/isolate is introduced to a target
80  plant species/variety (Ahmad et al., 2008; Harbort et al., 2020). Through this initial assay,

81  respective species/isolates are scored in terms of their functions (e.g., plant-growth promotion
82  effects) in single-inoculation conditions (Nara, 2006; Dai et al., 2008; Taurian et al., 2010;

83  Tsolakidou et al., 2019). The next step is to consider how we can use these single-inoculation
84  scores for designing sets of microbes that potentially promote plant growth in synergistic

85  ways. As the number of combinations inflates with that of constituent species/isolates [e.g.,
86  {N x (N - 1)}/2 combinations in two-species systems], prioritizing candidate species/isolate
87  combinations based on single-inoculation results is an important step (Paredes et al., 2018;

88  Toju et al., 2018a, 2020). The simplest way of exploring best sets of microbes is to combine
89  microbes with highest single-inoculation scores. This strategy of combining microbes in

90  highest ranks is promising if synergistic (or additive) effects are common in plant-associated
91  microbiomes. In contrast, if offset effects of multiple microbes on plant performance are

92  ubiquitous, alternative strategies for exploring species/isolate combinations are required to

93  maximize benefits from plant-associated microbiomes.

94 In this study, we tested the hypothesis that synergistic effects on plant growth are

95  common in below-ground fungal biomes in a series of single- and dual-inoculation

96  experiments. By using 13 endophytic/soil fungal species belonging to various taxonomic

97  groups, we first evaluated their basic effects on plant growth in a single-inoculation

98  experiments with a Brassicaceae species (Brassica rapa var. perviridis). We also performed

99  dual-inoculation experiments for all the 78 possible combinations of the fungal species and
100  then evaluated the performance of the combinations in light of single-inoculation results. The
101  data then provided a platform for testing whether plant-growth promoting effects exceeding
102  those of all the single-inoculation conditions are attainable in dual-inoculation conditions. We
103 further examined whether such synergistic effects could be obtained with “high ranker x high
104  ranker” combinations or in other types of combinations. Overall, this study provides a basis
105  for understanding to what extent plant-growth promotion effects of microbiomes can be
106  expected from the information of single-species inoculations, illuminating the potential

107  importance of “non-additivity” in multi-microbe contexts.

108
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109 MATERIALS AND METHODS
110  Fungal isolates for inoculation experiments

111  In the inoculation experiments detailed below, we used diverse fungal species isolated from
112 plant roots or soil (Table 1). Among the 13 fungal isolates used (Table 1; Supplementary Data
113 SI1), some are reported as endophytic fungi promoting host plant growth [e.g., Colletotrichum
114 tofieldiae, Cladophialophora chaetospira, and Veronaeopsis simplex] in previous studies

115  (Usuki and Narisawa, 2007; Hiruma et al., 2016; Guo et al., 2018). In addition, a species of
116  Trichoderma with growth-promotion effects on tomato (Solanum lycopersicum) and Brassica
117  plants (Toju et al., 2020) was used in the experiment. To gain insights from a broad ecological
118  spectrum of fungi in the experiments, isolates belonging to diverse genera were selected from
119  the ca. 3,500 fungal isolates maintained in the culture collection of Centre for Ecological

120  Research, Kyoto University. Putative functional groups of these fungi were inferred using the
121 FUNGuild program (Nguyen et al., 2016) as shown in Table 1. Note that such profiling

122 information based on ecological guild databases should be interpreted with caution: even in a
123 fungal genus embracing a number of plant pathogenic species, some species can have positive

124 impacts on plants (Radhakrishnan et al., 2015; Hiruma et al., 2016).
125
126 ~ Fungal inocula

127  Prior to the inoculation experiments, fungal inocula were prepared. Each of the 1.3-L high-
128  density polyethylene bags with air-conditioning filters (Shinkoen Co. Ltd., Mino-kamo) was
129  filled with the mixture of 60-cm?® wheat bran (Tamagoya Shoten), 60-cm? rice bran, 180-cm?
130  leaf mold (Akagi Gardening Co., Ltd., S1), and 70-mL distilled water. The filled culture bags
131  were sealed with a heat sealer (ANT-300, AS ONE Corporation, Osaka) and they were

132 autoclaved three times at 121 °C for 30 min with 24 h intervals. For each fungal isolate,

133 approximately ten pieces of mycelial disks (8.0 mm in diameter) was then transferred from
134  1/2 CMMY medium (cornmeal agar, 8.5 g/L; malt extract, 10.0 g/L; yeast extract, 1.0 g/L)
135  (Becton, Dickinson and Co.) to the autoclaved substrate and the fungal culture bag was

136  incubated at room temperature (approximately 25 °C) for 10-21 days until it was filled with
137  mycelia. In addition to the 13 fungal inocula, a mock inoculum without fungi was prepared as

138  a control.
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139 Each of the fungal/control inocula was mixed with autoclaved potting soil consisting
140  mainly of fermented bark, peat moss, and coconut peat [“Gin-no-tsuchi”’; Total N, 0.41 %
141  (w/w); P20s, 0.62 %; K>0, 0.34 %; Kanea Inc., Takamatsu] by the proportion of 1:9. The
142  mixed soil was then transferred into plastic cell trays: the size of each cell in the trays was 49
143  mm x 49 mm x 56.5 mm. Plant seeds were then introduced into the cell trays as detailed

144  below.

145
146  Inoculation experiments

147  The “Komatsuna Wase” variety of Brassica rapa var. perviridis (Atariya Noen Co. Ltd.,

148  Katori) was used as the target plant in the inoculation experiments. Before inoculation, the
149  seeds of Brassica were surface sterilized by being shaken in 70 % ethanol solution for 1 min
150  and then in 1 % sodium hypochlorite solution for 1.5 min. The seeds were then rinsed three
151  times in distilled water. They were subsequently placed on 1 % agar petri dishes and

152  incubated at 23 °C in the dark for 24-26 h until rooting. The rooted seeds were transferred to
153  the inoculum-mixed soil on the following day: two seeds were introduced into each of the 20
154  or more replicate cells for each single inoculation experiment. The cell trays were maintained
155  in the laboratory with the 16hL/8hD light condition at 25 °C. The plants were watered 3-4
156  times a week. The locations of the cell trays were rotated to equalize plants’ growing

157  conditions.

158 In addition to the above single-inoculation experiments, dual-inoculation experiments
159  were performed for all the 78 possible combinations of the 13 fungal isolates. For each pair of
160  fungal isolate, their inocula were mixed by the proportion of 1 : 1, collectively constituting
161  1/10 volume of the total soil volume within the cell pots. Two Brassica seeds were then

162  introduced into each of the 20 replicate cell pots and they were kept in the laboratory

163  conditions detailed above. Due to the large number of treatments and replicates as well as the
164  limited spatial capacity of the laboratory, the inoculation experiments were split into several
165  experimental rounds (up to 13 single/dual/control treatments per round; see Supplementary
166  Data S2 for the information of experimental rounds). To take into account potential difference
167  of micro-environmental conditions among the experimental rounds, a control (mock

168  inoculum) treatment was included in every round in order to standardize plant growth

169  responses throughout the study (see below for the calculation of a standardized growth index).
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170 After seven days, the ratio of geminating seeds to introduced seeds (i.e., germination
171  rate) was recorded for each single/dual/control treatment. The seedlings were randomly

172 thinned to one seedling per cell and they were kept in the same environmental conditions for
173  another two weeks. The 21-day old Brassica plant samples were harvested to evaluate their
174  responses to fungal inoculations. For all the replicate samples, shoot dry weight (above-

175  ground biomass) and the number of mature leaves (> 20 mm in length) were recorded. For the
176  measurement of shoot dry weight, plant samples were oven-dried at 60 °C for at least 72 h.
177  Leaves longer than 20 mm were also subjected to SPAD measurements to infer chlorophyll
178  concentrations using a SPAD-502Plus meter (Konica Minolta, Inc., Tokyo) (Netto et al.,

179  2005; Zhu et al., 2012). For each of the randomly-selected 15 plant samples per treatment, the
180  SPAD readings at three points were averaged. While shoot dry weight and the number of

181  mature leaves are metrics of plant total biomass, SPAD readings are often regarded as (weak)

182  indicators of foliar nitrogen concentrations (Chang and Robison, 2003; Esfahani et al., 2008).
183
184  Plants’ growth responses

185  To standardize the variables representing plants’ responses to fungal inoculations, we

186  proposed a standardized growth index as follows:

187 SG (i) = %;X_C 1),
188  where X (i) is a measurement of a target trait of a plant sample 7 in a target single-/dual-
189  inoculation treatment, while X and SD, are the mean and standard deviation of plant traits
190  (variables) observed in the control samples of the focal experimental round, respectively. In
191  terms of basic statistics assuming the Gaussian distribution, the standardized growth index
192 [SG1(i)] values less than -1.96 and those larger than 1.96 roughly represented plant

193 performance outside the 95 % confidence intervals of the control samples in the same

194  experimental rounds, providing an intuitive criterion for comparing results within/across

195  inoculation experiments (see Supplementary Figure S1 for relationship between the

196  standardized growth index values and false discovery rates). This standardized growth index
197  was calculated for each of the three plant variables representing plant performance: the

198  number of mature leaves, shoot dry weight, and SPAD readings.

199
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200  Synergistic and offset effects

201  Based on the standardized growth index, we evaluated potential synergistic effects in dual
202  inoculations of two fungal isolates in comparison to single-inoculation results. For a replicate
203  plant sample inoculated with a pair of fungal isolates A and B, the index representing

204  deviation from the maximum effects in single inoculations is calculated as follows:
205 DMX,5(i) = SGa5(i) — max (SG,, SGg) (2),

206  where SG,p (i) is the standardized growth index of a replicate plant in the dual inoculation
207  treatment, while SG, and SGp are means of standardized growth index values for the single
208 inoculation of fungal isolates A and B, respectively. By definition, when there are synergistic
209 effects of the presence of two fungal isolates [i.e., SG,5 > max (SG,, SGz)], the mean of the
210  deviation index over replicate plant samples ( DMX,5) is larger than zero. Likewise, to

211  evaluate offset effects in dual inoculations of two fungal isolates, an index representing

212 deviation from the minimum effects in single inoculations was defined as follows:
213 DMN,5(i) = min(SG,, SGg) — SG45 (i) (3).

214 When there are offset effects [i.e., SG45 < min (E, E)] for a focal pair of fungi, mean of

215  the offset effect index over replicate samples (DM N,p) is larger than zero.

216 We further developed a simple index for evaluating deviations of observed dual-
217  inoculation results from those expected as intermediate results of single inoculations. For a
218  pair of fungal isolates A and B, the index for deviation from intermediate effects is calculated
219  as follows:

SG, + SGg

220 Dl4p(i) = SGup(i) — 2 (4).

221  If the plant-growth promoting effects under the presence of two fungal isolates is close to
222 what expected as the intermediate results of the single inoculation assays of the two isolates,
223 the index for deviation from intermediate effects [DI45(i)] or its mean over replicate samples

224 (Dlyp) 1s likely to have a value around zero.
225

226  Nonlinearity of fungus—fungus combinations
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227  For each pair of fungal isolates (A and B), an analysis of variance (ANOV A) model of

228  standardized growth index was constructed by including the presence/absence of isolate A,
229  the presence/absence of isolate B, and the interaction term of the two (i.e., isolate A x isolate
230  B) as explanatory variables. Then, across the 78 fungal pairs examined, F values of the isolate
231 A xisolate B term were compared as indicators of how combinations of the two fungal

232 isolates had “nonlinear” effects on plant performance traits. We then examined how the

233 nonlinearity measures of fungal pairs are associated with the abovementioned index values
234  representing deviations of observed dual-inoculation results from those expected as

235  intermediate results of single inoculations (Dlyp).

236 All the calculations of the above indexes and statistical analyses were performed using

237  the R ver. 3.6.0.
238

239 RESULTS
240  Germination rates

241  The gemination rates of Brassica plants varied within single inoculation treatments and
242 within dual inoculation treatments (Supplementary Figure S2). Meanwhile, the rates were
243 generally higher in dual inoculation treatments than in single inoculation treatments (Welch’s

244 test; t=-3.97,df=13.6, P=0015).
245

246  Plants’ growth responses

247  For all the three plant performance variables (shoot dry weight, the number of mature leaves,
248  and SPAD), the single inoculation effects on Brassica plants differed significantly among the
249 13 fungal isolates examined (Table 2). For example, the mean standardized growth index for
250 V. simplex Y34 and Alternaria sp. KYOCERO00001239 were, on average, ca. seven-fold larger
251  than the standard deviation of control sample’s growth (i.e., SG > 7) in terms of shoot dry
252  weight, indicating high growth-promoting effects of those fungi on Brassica plants (Fig. 2A).
253 In addition, C. chaetospira M4006, Trichoderma sp. KYOCER00000218, Curvularia sp.
254  KYOCERO00000077, Phoma sp. KYOCERO00000052, and Stemphylium sp.

255  KYOCER00000804 showed high plant growth promoting effects (Fig. 2A). In contrast, C.
256  tofieldiae MAFF 712334, Mucor sp. KYOCERO00000113, Setophaeria sp.

257  KYOCERO00000031, Fusarium sp. KYOCERO00000983 and Tolypocladium sp.
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258  KYOCER00000289 displayed weak or almost neutral effects on plant growth and Aspergillus
259  sp. KYOCERO00000917 had negative impacts on the Brassica plants (Fig. 2A). When the

260  number of mature leaves was used as a metric of plant performance, Alternaria sp.

261  KYOCERO00001239 and Aspergillus sp. KYOCER00000917 turned out to have strongly

262  positive and negative effects, respectively (Fig. 2B). Meanwhile, the effects of other fungal

263  isolates were moderately positive or neutral (Fig. 2B).

264 In the dual inoculation experiments, the pair of the fungal isolates that exhibited the

265  greatest effects in single inoculation treatments (i.e., V. simplex Y34 and Alternaria sp.

266 KYOCERO00001239) had relatively weak positive effects on Brassica growth in terms of

267  shoot dry weight (Fig. 2A). Instead, the highest plant-growth promoting effects were observed
268  for the combination of V. simplex Y34 and Fusarium sp. KYOCER00000983, which had

269  neutral effects on plants in the single inoculation (Fig. 2A). Highly positive effects on plants
270  (e.g., SG; > 5) were observed, as well, in Curvularia—Fusarium, Cladophialophora—

271 Alternaria, Colletotrichum—Cladophialophora, Aspergillus—Alternaria, and

272 Cladophialophora—Veronaeopsis pairs and several other pairs including Curvularia sp.

273  KYOCERO00000077: for these pairs, at least one partner had neutral to weakly positive

274  performance in single inoculation treatments (Fig. 2A).

275 In contrast to those combinations with relatively high plant-growth promoting effects
276  (in the metrics of shoot dry weight and the number of mature leaves), Aspergillus sp.

277  KYOCER00000917, which restricted plant growth in the single inoculation condition (Fig.
278  2A, B), had negative impacts on plants in some of the 12 combinations with other fungal

279  isolates (Fig. 3A, B). However, their negative effects diminished in dual inoculations with
280  some fungi such as Alternaria sp. KYOCERO00001239 and Curvularia sp.

281  KYOCERO00000077 (Fig. 3A, B). Results also showed that Phoma sp. KYOCER00000052,
282  whose impacts on plants were positive in the single inoculation setting, inhibited plant growth

283  in the presence of other fungi (Fig. 3A, B).

284 When SAPD readings were used as metrics of plant performance, the Curvularia sp.
285  KYOCERO00000077 and Fusarium sp. KYOCERO00000983 had relatively high positive

286  effects on Brassica plants (SGy ~ 2), while Setophaeria sp. KYOCER00000031 and

287  Aspergillus sp. KYOCERO00000917 had negative impacts (Fig. 2C). Note that SPAD readings
288  were weakly correlated with shoot dry weight and the number of mature leaves

289  (Supplementary Fig. S3). In the dual inoculation experiments, some fungal pairs including

290  Aspergillus sp. KYOCERO00000917 had relatively high positive effects on Brassica plants
10
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291  (Fig. 3C) despite negative impacts of the Aspergillus isolate in a single-inoculation condition
292  (Fig. 2C). The pair of Curvularia and Veronaeopsis moderately increased SPAD readings as
293  well (Fig. 3C). Meanwhile, SPAD readings did not differ greatly from the control for most
294  fungal pairs (Fig. 2C).

295 For all the three plant performance variables examined, standardized growth index

296  values of single inoculation experiments were uncorrelated with those averaged across dual
297  inoculations for respective fungi (shoot dry weight, » =-0.09, P = 0.78; number of mature
298 leavesr=0.11, P=0.71; SPAD, r=-0.41, P=0.17; Fig. 3). In other words, fungi with more
299  positive effects on plants in single-inoculation experiments did not increased plant

300 performance more efficiently. The experimental results also indicated that some combinations
301  of fungi exhibited higher impacts on Brassica performance than that observed in all the

302  single-inoculation settings (Fig. 2A-C).
303
304  Synergistic and offset effects

305 Among the 78 combinations of fungal isolates, strong synergistic effects [SG,5 >

306  max (SG,,SGg)] were observed in some pairs of fungi in terms of shoot dry weight (Fig.
307  4A). The fungal combinations with the largest synergistic effects (DMX,5) consisted of

308  Curvularia sp. KYOCERO00000077 and Fusarium sp. KYOCER00000983, each of which had
309  weakly or moderately positive impacts on plant growth in single inoculations. Large

310  synergistic effects were detected in other pairs of fungi including fungi with moderate or

311  weakly positive effects on plants (e.g., Colletotrichum—Cladophialophora, Colletotrichum—
312 Fusarium, and Veronaeopsis—Fusarium pairs; Fig. 4A). Similarly, for the number of mature
313  leaves, fungal pairs with large synergistic effects involved fungi with weakly positive or even
314  negative effects in single inoculations (Fig. 4B). In terms of SPAD readings, pairs of fungi
315  with negative impacts on plants in single-inoculation conditions had large synergistic effects
316  (Fig. 4C).

317 In contrast to synergistic effects, offset effects [SG, < min (E, E)] were evident
318  especially in the fungal pairs including fungi that had highly positive impacts on plant

319  performance traits in single-inoculation conditions (Fig. 5). In particular, the pairs of fungi
320  with the largest positive effects (i.e., the Veronaeopsis—Alternaria pair) showed large offset

321  effects (Fig. 5).
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322 Across the 78 combinations of fungi, synergistic effects (i.e., DM X,p) decreased with

323  increasing mean values of single inoculation effects of the target fungi (i.e., SGat3Gp

) (Fig.

324 6A-C). In other words, pairs of fungi that showed greater plant-performance increasing effects
325 tended to have weaker synergistic effects. As expected by the trend in synergistic effects,
326  offset effects were increased with increasing mean values of single inoculation effects of the

327  target fungi (Fig. 6D-F).
328
329  Nonlinearity of fungus—fungus combinations

330  Deviations of observed dual-inoculation results from those expected as intermediate results of
331  single inoculations (Dl,p) varied among fungal pairs (Fig. 6). Higher absolute DI, values
332  were indicative of nonlinearity in effects on plants for the particular fungus—fungus

333  combinations as evaluated by a series of ANOVA models (Fig. 7; Supplementary Data S3).
334

335 DISCUSSION

336 By using taxonomically diverse endophytic and soil fungi, we here evaluated plant-growth
337  promoting effects of pairs of fungal isolates in light of those observed in single-isolate

338 inoculation experiments. The 13 fungal isolates differed greatly in their independent effects
339  on Brassica plants (Figs. 2-3), providing an ideal opportunity for examining how the ranking
340  of plant-growth promoting effects in single-inoculation contexts were related to that in multi-
341  species (dual-inoculation) contexts (Figs. 4-6). Such information of synergistic and offset
342 effects in the presence of multiple microbial species is indispensable for understanding to
343  what extent we can predict functions of microbial communities (microbiomes) from the

344  datasets of single-species/isolate screening.

345 A series of single- and dual-inoculation experiments indicated that greater performance
346  of plants are potentially obtained in multi-species than in single-species contexts (Fig. 2). This
347  result, itself, is consistent with previous reports of enhanced plant growth by specific pairs of
348  bacteria/fungi (Han and Lee, 2006; Wang et al., 2011; Wazny et al., 2018; He et al., 2020).
349  Meanwhile, our experiments on 78 combinations of fungi suggested that pairs of microbes,
350  each of which had greatly positive impacts on plant growth in single inoculations, could show

351  minor effects on plants in multi-species conditions. For example, the strategy of combining
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352  the two ‘“highest rankers” in the single inoculation experiments (i.e., Veronaeopsis simplex
353  and Alternaria sp. KYOCER00001239) did not result in high plant-growth promoting effects
354  (Fig. 3): rather, offset effects were observed in the highest ranker pairs (Figs. 4-6). Thus,

355  biological functions at the community (microbiome) level may be rarely maximized by the

356  “bottom-up” exploration of sets of microbes based solely on single-inoculation experiments.

357 Our experiments also suggested that pairs of microbes with subordinate performance in
358  single inoculation assays could show largest growth-promoting effects on plants (Fig. 2). This
359  result suggests that single-species/isolate screening does not always provide sufficient

360 information for predicting microbial performance at the multi-species level (Toju et al.,

361  2018a). Interestingly, the fungal pairs with highest synergistic effects in our experiment

362 involved fungi in the genera Fusarium and Curvularia (Fig. 4A), which were often described
363  as plant pathogenic taxa (Michielse and Rep, 2009; Ma et al., 2013; Manamgoda et al., 2015).
364  Basically, physiological effects on plants vary remarkably among species/isolates within taxa
365 as evidenced by the presence of Fusarium and Curvularia species enhancing plant health and
366  growth (Olivain et al., 2006; Nahalkova et al., 2008; Priyadharsini and Muthukumar, 2017).
367  In fact, the Fusarium and Curvularia isolates examined in our study had positive effects on
368  Brassica plants even in the single-inoculation assays (Fig. 2). Moreover, the results of the
369  dual inoculation experiments suggested that some fungi in these predominantly plant-

370  pathogenic genera can have even greater positive effects on plants in combination with

371  specific other fungi (Figs. 2-3). Our results on synergistic effects in multi-species contexts
372 further illuminate the potential use of diverse endosphere/rhizosphere microbes whose

373  biological functions have been underestimated in conventional screening of single

374  inoculations.

375 The fact that microbial functions critically depend on combinations of microbial

376  species/isolates highlight the importance of “bird’s-eye” views of designing microbiomes.
377  Given that microbial functions at the community (multi-species) levels are not the simple
378  sums/averages of functions in single-species contexts (Figs. 2 & 7), research strategies taking
379  into account not only each microbe’s roles but also the nature of microbe—microbe

380 interactions will provide platforms for optimization of microbiome functions (Agler et al.,
381  2016; Toju et al., 2016; Banerjee et al., 2018). In this respect, interdisciplinary approaches
382  integrating the observational, genomic, and metagenomic information of microbial functions
383  (Bulgarelli et al., 2015; Levy et al., 2018; Ichihashi et al., 2020) with community ecological

384  analyses of species interaction networks (Agler et al., 2016; van der Heijden and Hartmann,
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385  2016; Toju et al., 2017) will help us explore highly functional and stable microbial sets

386  among numerous candidate combinations of species (Paredes et al., 2018; Saad et al., 2020;
387  Toju et al., 2020). In other words, information of microbial functions in single-species

388  contexts is utilized by being combined with insights into dynamics and processes within

389  microbiomes.

390 While the experiments conducted in this study provided a unique opportunity for

391  systematically evaluating synergistic/offset effects of microbes on plants, the obtained

392  datasets should be interpreted with caution given the following limitations. First,

393  physiological mechanisms by which the examined fungi affected plant growth were

394  unexplored in the current study. Although detailed physiological and/or molecular biological
395 investigations have been done for some of the fungal species used in this study [e.g., C.

396  tofieldiae (Hiruma et al., 2016), Veronaeopsis simplex (Guo et al., 2018), and C. chaetospira
397  (Harsonowati et al., 2020)], metabolites and genes involved in the plant—fungus interactions
398  are unknown for the remaining species. For more mechanistic understanding of interactions
399  involving plants and multiple microbial species, we need to perform transcriptomic analyses
400 targeting plants’ responses to each microbe as well as those comparing plants’ gene

401  expression patterns between single- and multiple-symbiont conditions. Comparative

402  transcriptomic analyses across experiments with different environmental conditions (e.g., soil
403  nutrient concentrations) will provide essential insights into microbial functions as well.

404  Second, the inoculation test based on single plant species precluded us from understanding
405  how general synergistic/offset effects existed in plant—fungal biome interactions. Although
406  some of the fungal taxa used in this study have been reported to interact with multiple

407  families of plants (Hermosa et al., 2012; Toju et al., 2018b), impacts of endophytic/soil fungi
408  on plants can vary depending on plant taxa and environmental conditions (Kiers et al., 2011;
409  Pineda et al., 2013; Rudgers et al., 2020). Therefore, to gain more robust insights into

410  synergistic/offset effects in interactions of plants and multiple microbial species/isolates, the
411  reproducibility of the patterns observed in this study should be examined in inoculation

412  experiments targeting diverse other plant species. Third, it is important to acknowledge that
413  the complexity of the microbial sets examined in this study is minimal (i.e., two fungal

414  species): different types of phenomena may be observed in combinations of three or more
415  bacterial/fungal species (Duran et al., 2018; Paredes et al., 2018; Carlstrom et al., 2019; Wei
416  etal., 2019)(Duran et al., 2018; Paredes et al., 2018; Carlstrom et al., 2019; Wei et al., 2019).
417  Moreover, it remains to be examined how we can increase microbial functions (e.g., host

418  plant growth rates) by increasing the number of microbial species/isolates. The presence of
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419  microbial pairs outperforming single-microbe systems (Fig. 2) leads to the working

420  hypothesis that compatible sets of three or more microbial species yield greater functions than
421  simpler communities by playing complementary roles. Meanwhile, it is expected that benefits
422  of microbiomes do not increase linearly with increasing number of microbial species (i.e.,
423  saturating curves of benefits against increasing number of microbes) (van der Heijden et al.,
424  1998), at least in terms of specific functions such as provisioning of soil phosphorus or

425  blocking of soil pathogens.

426 We here showed that screening based on inoculations of single microbial

427  species/isolates can result in the underestimation of the microbes that potentially have large
428  plant-growth promoting effects in combinations with specific other microbes. Given that

429  plants are inevitably associated with hundreds or more of microbial species in agricultural and
430  natural ecosystems (Lundberg et al., 2012; Schlaeppi and Bulgarelli, 2015; van der Heijden
431  and Hartmann, 2016), such nonlinearity found in microbe—microbe associations deserve

432  future intensive research. Interdisciplinary studies on relationships between microbiome

433  compositions and their ecosystem-level functions are awaited towards the maximization of

434  microbial functions for sustainable agriculture and ecosystem restoration.
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TABLE 1 | Fungal isolates used in the inoculation experiments.

Isolate Abbreviation Phylum Class Order Family Genus Guild Blast top-hit E value Per. Ident Accession
Phoma sp. KUCER00000052 pho_0052 Ascomycota Dothideomycetes ~ Pleosporales Didymellaceae Phoma P ES Phoma leveillei 9.00E-123 99.6%  KY827373.1
Alternaria sp. KUCER00001239 alt_1239 Ascomycota Dothideomycetes ~ Pleosporales Periconiaceae Alternaria P ES Alternaria broccoli-italicae 2.00E-123 100.0%  MH374617.1
Curvularia sp. KUCER00000077 cur_0077 Ascomycota Dothideomycetes ~ Pleosporales Periconiaceae Curvularia P Curvularia coatesiae 4.00E-126 100.0%  MK804384.1
Setosphaeria sp. KUCER00000031 set_0031 Ascomycota Dothideomycetes ~ Pleosporales Periconiaceae Setosphaeria P E Setosphaeria pedicellata 1.00E-126 100.0%  LT837452.1
Stemphylium sp. KUCER00000804 ste_0804 Ascomycota Dothideomycetes ~ Pleosporales Periconiaceae Stemphylium P S Stemphylium lycopersici 2.00E-125 100.0%  MN386223.1
Veronaeopsis simplex Y34 ver_0232 Ascomycota Dothideomycetes ~ Venturiales Sympoventuriaceae Veronaeopsis E Veronaeopsis simplex 5.00E-125 100.0%  MH865233.1
Cladophialophora chaetospira M4006 cla_0230 Ascomycota Eurotiomycetes Chaetothyriales  Herpotrichiellaceae Cladophialophora E Cladophialophora chaetospira 3.00E-123 99.6%  LC077702.1
Aspergillus sp. KUCER00000917 asp_0917 Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus Aspergillus terreus 7.00E-124 99.6% MH124236.1
Colletotrichum tofieldiae MAFF 712334 col_0223 Ascomycota Sordariomycetes Glomerellales Glomerellaceae Colletotrichum P E Colletotrichum tofieldiae 2.00E-125 100.0%  KX069824.1
Trichoderma sp. KUCER00000218 tri_0218 Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma PFES Trichoderma asperellum 5.00E-125 100.0% MT530021.1
Fusarium sp. KUCER00000983 fus_0983 Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium P ES Fusarium oxysporum 5.00E-125 100.0% MT610995.1
Tolypocladium sp. KUCER00000289 tol_0289 Ascomycota Sordariomycetes Hypocreales Ophiocordycipitaceae  Tolypocladium FE Tolypocladium album 9.00E-123 99.6% LC386577.1
Mucor sp. KUCER00000113 muc_0113 Mucoromycota - Mucorales Mucoraceae Mucor Mucor abundans 1.00E-125 100.0% MK164195.1

For each fungal isolate, taxonomy, functional guild information inferred by the FUNGuild database (P, plant pathogen; F, fungal pathogen; E,

endophyte; S, saprophyte), and NCBI BLAST top-hit results of the ITS sequences are indicated for each isolate.
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TABLE 2 | ANOVA results of single- and dual-inoculation experiments.

ANOVA model df P
Single inoculation (across 13 fungal isolates)
Shoot dry weight 12 41.6 <0.0001
Number of mature leaves 12 127.7 <0.0001
SPAD readings 12 12.0 <0.0001
Dual inoculation (across 78 fungal pairs)
Shoot dry weight 77 25.7 <0.0001
Number of mature leaves 77 23.1 <0.0001
SPAD readings 77 5.7 <0.0001

For each of the three plant performance variables, an ANOV A model was constructed to examine the variation across single- or dual-inoculation

treatments.
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Figure legends

FIGURE 1 | Evaluation of effects on plant performance. (A) Schema of single- and
dual-inoculation assays. (B) Indexes for comparing single vs. dual inoculation effects.
Along the axis of standardized growth index defined by the equation (1), index values
representing synergistic/offset effects on plants are calculated for each replicate plant
sample for each pair of microbial (fungal) isolates [DMX,5(i) and DMN,g(i)].
Likewise, index values representing deviation of dual-inoculation effects from single-
inoculation effects are obtained [DI,5(i)]. (C) Example of inoculation experiments.
Brassica plants inoculated with two fungal isolates (tri_ 0218 x ste_0804; right) and

those without fungal inoculations (control; left).

FIGURE 2 | Single- and dual-inoculation effects on Brassica plants. (A) Standardized
growth index in terms of shoot dry weight. For respective single- and dual-inoculation
experiments, 25 % quantiles, medians, and 75 % quantiles are displayed as boxes and
the ranges from the maximum to minimum values are shown as bars. See Table 1 for
the abbreviation of fungal isolates. The combination of the fungal species with the
largest positive effects on Brassica plants in single inoculation experiments is
highlighted. (B) Standardized growth index in terms of the number of mature leaves.

(C) Standardized growth index in terms of SPAD readings.

FIGURE 3 | Pairwise representation of dual inoculation results. (A) Standardized
growth index in terms of shoot dry weight for each pair of fungal isolates. Single-
inoculation effects and mean effects across the dual inoculation assays are shown for
each fungal isolate in the left. (B) Standardized growth index in terms of the number of

mature leaves. (C) Standardized growth index in terms of SPAD readings.
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FIGURE 4 | Synergistic effects observed in dual-inoculation experiments. (A)
Synergistic effect index in terms of shoot dry weight. The index representing deviation
of dual-inoculation effects from the maximum effects in single inoculations are shown
for each pair of fungal isolates. Circles represent single-inoculation effects of respective
fungal isolates. (B) Synergistic effect index in terms of the number of mature leaves.

(C) Synergistic effect index in terms of SPAD readings.

FIGURE 5 | Offset effects observed in dual-inoculation experiments. (A) Offset effect
index in terms of shoot dry weight. The index representing deviation of dual-inoculation
effects from the minimum effects in single inoculations are shown for each pair of
fungal isolates. Circles represent single-inoculation effects of respective fungal isolates.
(B) Offset effect index in terms of the number of mature leaves. (C) Offset effect index

in terms of SPAD readings.

FIGURE 6 | Relationship between single-inoculation effects and synergistic/offset

effects. (A) Trends in synergistic effects in terms of shoot dry weight. For each pair of

Gp+SGp

fungi, mean values of single inoculation effects of the target fungi (i.e., 5 ) and

index values of synergistic effects [i.e., DM X,z (i)] are shown at the horizontal and
vertical axes, respectively. Error bars represent standard deviations of synergistic
effects. (B) Trends in synergistic effects in terms of the number of mature leaves. (C)
Trends in synergistic effects in terms of SPAD readings. (D) Trends in synergistic

effects in terms of shoot dry weight. For each pair of fungi, mean values of single

SGa+SGp

inoculation effects of the target fungi (i.e., .

) and index values of offset effects

[i.e., DMN,g(i)] are shown at the horizontal and vertical axes, respectively. (E) Trends
in synergistic effects in terms of the number of mature leaves. (F) Trends in synergistic

effects in terms of SPAD readings.
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FIGURE 7 | Deviations of observed dual-inoculation results from those expected as
intermediate results of single inoculations. (A) Deviation index for shoot dry weight.
The index values representing deviations of dual-inoculation effects from intermediate
effects in single inoculations (DI, (1)) are shown for each fungal isolate included in the
target fungal pairs (left). For each fungal pair, F' values of the isolate A x isolate B term
in the ANOV A model (middle) and false discovery rate (FDR) values of the interaction
term (right) are shown across the axis of the deviation index: FDR are calculated across
the 78 fungal combinations examined. (B) Deviation index for the number of mature

leaves. (C) Deviation index for SPAD readings.
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