

1 Synergistic and offset effects of fungal species 2 combinations on plant performance

3

4 Yoshie Hori^{1*}, Hiroaki Fujita^{1*}, Kei Hiruma², Kazuhiko Narisawa³ and Hirokazu Toju^{1†}

5

6 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

7 ²Graduate School of Arts and Sciences, Multi-Disciplinary Sciences Life Sciences, The
8 University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 JAPAN

9 ³College of Agriculture, Ibaraki University, Ami Ibaraki 300-0393, Japan

10

11 *These authors contributed equally to the work.

12 **†Correspondence:** Hirokazu Toju (toju.hirokazu.4c@kyoto-u.ac.jp).

13

14 This article includes 7 Figures, 2 Tables, 3 Supplementary Figures, and 3 Supplementary
15 Data.

16

17 Running head: Synergistic and offset effects in microbiomes

18

19

20 **Abstract**

21 In natural and agricultural ecosystems, survival and growth of plants depend substantially on
22 microbes in the endosphere and rhizosphere. Although numerous studies have reported the
23 presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a
24 major challenge to understand how sets of microbial species positively or negatively affect
25 plants' performance. By conducting a series of single- and dual-inoculation experiments of 13
26 endophytic and soil fungi targeting a Brassicaceae plant species, we here evaluated how
27 microbial effects on plants depend on presence/absence of co-occurring microbes. The
28 comparison of single- and dual-inoculation experiments showed that combinations of the
29 fungal isolates with the highest plant-growth promoting effects in single inoculations did not
30 yield highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast,
31 pairs of fungi including small/moderate contributions to plants in single-inoculation contexts
32 showed the greatest effects on plants among the 78 fungal pairs examined. These results on
33 the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of
34 single microbial species/isolates can result in the overestimation or underestimation of
35 microbial functions in multi-species contexts. Because keeping single-microbe systems in
36 outdoor conditions is impractical, designing sets of microbes that can maximize performance
37 of crop plants is an important step for the use of microbial functions in sustainable
38 agriculture.

39

40 Keywords: biodiversity, endophytes, microbe-microbe interactions, microbial functions,
41 plant-fungus interactions, species interactions, symbiosis

42

43 INTRODUCTION

44 Plants in natural and agricultural ecosystems are associated with diverse taxonomic groups of
45 microbes, forming both positive and negative interactions with the microbiomes (Lundberg et
46 al., 2012; Peay et al., 2016; Busby et al., 2017; Toju et al., 2018b). In particular, bacteria and
47 fungi found within and around root systems have been reported as key determinants of plants'
48 survival and growth (Hiruma et al., 2016, 2018; Castrillo et al., 2017; Trivedi et al., 2020). A
49 number of rhizosphere bacteria, for example, are known to stimulate plants' growth by
50 producing phytohormones (Lugtenberg and Kamilova, 2009; Bhattacharyya and Jha, 2012;
51 Finkel et al., 2020). Mycorrhizal fungi are ancient symbionts of land plants (Remy et al.,
52 1994; Taylor et al., 1995), providing soil phosphorus and/or nitrogen to their hosts
53 (Richardson et al., 2009; Tedersoo et al., 2010; Jansa et al., 2019). Moreover, a growing
54 number of studies have shown that diverse clades of endophytic and soil fungi support host
55 plants by provisioning inorganic/organic forms of nutrients (Usuki and Narisawa, 2007;
56 Newsham, 2011; Hiruma et al., 2016), activating plant immune systems (van Wees et al.,
57 2008; Pieterse et al., 2014), and suppressing populations of pathogens/pests in the rhizosphere
58 (Narisawa et al., 2004; Khastini et al., 2012; Gu et al., 2020). Thus, developing scientific
59 bases for maximizing the benefits from those plant-associated microbiomes is an essential
60 step for fostering sustainable agriculture and restoring forest/grassland ecosystems (Bulgarelli
61 et al., 2013; Carlström et al., 2019; Wagg et al., 2019; Saad et al., 2020).

62 One of the major challenges in utilizing plant-associated microbiome functions is to
63 design sets of microbial species/isolates (Vorholt et al., 2017; Paredes et al., 2018; Toju et al.,
64 2018a; Wei et al., 2019). While a single microbial species or isolate can have specific
65 functions in promoting plant growth, broader ranges of positive effects on plants are
66 potentially obtained by introducing multiple microbial species/isolates (Wang et al., 2011;
67 Ważny et al., 2018; He et al., 2020). For example, a fungal species degrading organic nitrogen
68 (Newsham, 2011) and that suppressing soil pathogens (Vinale et al., 2008) may provide
69 plants with a broader spectrum of physiological functions than each of them alone, potentially
70 having additive or synergistic effects on the growth of their hosts. Meanwhile, sets of
71 microbes trying to colonize the plant endosphere or rhizosphere may compete for
72 resources/space (Kennedy et al., 2009; Werner and Kiers, 2015; Toju et al., 2016) or inhibit
73 each other's growth (Helfrich et al., 2018), making their impacts on host plants more negative
74 than that observed in single-inoculation conditions (i.e., offset effects) (Nelson et al., 2018).
75 Given that multiple microbial species inevitably interact with a single plant in agroecosystems

76 (Toju et al., 2018a), knowledge of those synergistic and offset effects in plant-associated
77 microbiomes is crucial for optimizing microbial functions in agriculture.

78 A starting point for designing sets of microbes is to use the information of single-
79 inoculation assays, in each of which a single microbial species/isolate is introduced to a target
80 plant species/variety (Ahmad et al., 2008; Harbort et al., 2020). Through this initial assay,
81 respective species/isolates are scored in terms of their functions (e.g., plant-growth promotion
82 effects) in single-inoculation conditions (Nara, 2006; Dai et al., 2008; Taurian et al., 2010;
83 Tsolakidou et al., 2019). The next step is to consider how we can use these single-inoculation
84 scores for designing sets of microbes that potentially promote plant growth in synergistic
85 ways. As the number of combinations inflates with that of constituent species/isolates [e.g.,
86 $\{N \times (N - 1)\}/2$ combinations in two-species systems], prioritizing candidate species/isolate
87 combinations based on single-inoculation results is an important step (Paredes et al., 2018;
88 Toju et al., 2018a, 2020). The simplest way of exploring best sets of microbes is to combine
89 microbes with highest single-inoculation scores. This strategy of combining microbes in
90 highest ranks is promising if synergistic (or additive) effects are common in plant-associated
91 microbiomes. In contrast, if offset effects of multiple microbes on plant performance are
92 ubiquitous, alternative strategies for exploring species/isolate combinations are required to
93 maximize benefits from plant-associated microbiomes.

94 In this study, we tested the hypothesis that synergistic effects on plant growth are
95 common in below-ground fungal biomes in a series of single- and dual-inoculation
96 experiments. By using 13 endophytic/soil fungal species belonging to various taxonomic
97 groups, we first evaluated their basic effects on plant growth in a single-inoculation
98 experiments with a Brassicaceae species (*Brassica rapa* var. *perviridis*). We also performed
99 dual-inoculation experiments for all the 78 possible combinations of the fungal species and
100 then evaluated the performance of the combinations in light of single-inoculation results. The
101 data then provided a platform for testing whether plant-growth promoting effects exceeding
102 those of all the single-inoculation conditions are attainable in dual-inoculation conditions. We
103 further examined whether such synergistic effects could be obtained with “high ranker \times high
104 ranker” combinations or in other types of combinations. Overall, this study provides a basis
105 for understanding to what extent plant-growth promotion effects of microbiomes can be
106 expected from the information of single-species inoculations, illuminating the potential
107 importance of “non-additivity” in multi-microbe contexts.

109 **MATERIALS AND METHODS**

110 **Fungal isolates for inoculation experiments**

111 In the inoculation experiments detailed below, we used diverse fungal species isolated from
112 plant roots or soil (Table 1). Among the 13 fungal isolates used (Table 1; Supplementary Data
113 S1), some are reported as endophytic fungi promoting host plant growth [e.g., *Colletotrichum*
114 *tofieldiae*, *Cladophialophora chaetospira*, and *Veronaeopsis simplex*] in previous studies
115 (Usuki and Narisawa, 2007; Hiruma et al., 2016; Guo et al., 2018). In addition, a species of
116 *Trichoderma* with growth-promotion effects on tomato (*Solanum lycopersicum*) and *Brassica*
117 plants (Toju et al., 2020) was used in the experiment. To gain insights from a broad ecological
118 spectrum of fungi in the experiments, isolates belonging to diverse genera were selected from
119 the ca. 3,500 fungal isolates maintained in the culture collection of Centre for Ecological
120 Research, Kyoto University. Putative functional groups of these fungi were inferred using the
121 FUNGuild program (Nguyen et al., 2016) as shown in Table 1. Note that such profiling
122 information based on ecological guild databases should be interpreted with caution: even in a
123 fungal genus embracing a number of plant pathogenic species, some species can have positive
124 impacts on plants (Radhakrishnan et al., 2015; Hiruma et al., 2016).

125

126 **Fungal inocula**

127 Prior to the inoculation experiments, fungal inocula were prepared. Each of the 1.3-L high-
128 density polyethylene bags with air-conditioning filters (Shinkoen Co. Ltd., Mino-kamo) was
129 filled with the mixture of 60-cm³ wheat bran (Tamagoya Shoten), 60-cm³ rice bran, 180-cm³
130 leaf mold (Akagi Gardening Co., Ltd., S1), and 70-mL distilled water. The filled culture bags
131 were sealed with a heat sealer (ANT-300, AS ONE Corporation, Osaka) and they were
132 autoclaved three times at 121 °C for 30 min with 24 h intervals. For each fungal isolate,
133 approximately ten pieces of mycelial disks (8.0 mm in diameter) was then transferred from
134 1/2 CMMY medium (cornmeal agar, 8.5 g/L; malt extract, 10.0 g/L; yeast extract, 1.0 g/L)
135 (Becton, Dickinson and Co.) to the autoclaved substrate and the fungal culture bag was
136 incubated at room temperature (approximately 25 °C) for 10–21 days until it was filled with
137 mycelia. In addition to the 13 fungal inocula, a mock inoculum without fungi was prepared as
138 a control.

139 Each of the fungal/control inocula was mixed with autoclaved potting soil consisting
140 mainly of fermented bark, peat moss, and coconut peat [“Gin-no-tsuchi”; Total N, 0.41 %
141 (w/w); P₂O₅, 0.62 %; K₂O, 0.34 %; Kanea Inc., Takamatsu] by the proportion of 1:9. The
142 mixed soil was then transferred into plastic cell trays: the size of each cell in the trays was 49
143 mm × 49 mm × 56.5 mm. Plant seeds were then introduced into the cell trays as detailed
144 below.

145

146 **Inoculation experiments**

147 The “Komatsuna Wase” variety of *Brassica rapa* var. *perviridis* (Atariya Nuen Co. Ltd.,
148 Katori) was used as the target plant in the inoculation experiments. Before inoculation, the
149 seeds of *Brassica* were surface sterilized by being shaken in 70 % ethanol solution for 1 min
150 and then in 1 % sodium hypochlorite solution for 1.5 min. The seeds were then rinsed three
151 times in distilled water. They were subsequently placed on 1 % agar petri dishes and
152 incubated at 23 °C in the dark for 24-26 h until rooting. The rooted seeds were transferred to
153 the inoculum-mixed soil on the following day: two seeds were introduced into each of the 20
154 or more replicate cells for each single inoculation experiment. The cell trays were maintained
155 in the laboratory with the 16hL/8hD light condition at 25 °C. The plants were watered 3-4
156 times a week. The locations of the cell trays were rotated to equalize plants’ growing
157 conditions.

158 In addition to the above single-inoculation experiments, dual-inoculation experiments
159 were performed for all the 78 possible combinations of the 13 fungal isolates. For each pair of
160 fungal isolate, their inocula were mixed by the proportion of 1 : 1, collectively constituting
161 1/10 volume of the total soil volume within the cell pots. Two *Brassica* seeds were then
162 introduced into each of the 20 replicate cell pots and they were kept in the laboratory
163 conditions detailed above. Due to the large number of treatments and replicates as well as the
164 limited spatial capacity of the laboratory, the inoculation experiments were split into several
165 experimental rounds (up to 13 single/dual/control treatments per round; see Supplementary
166 Data S2 for the information of experimental rounds). To take into account potential difference
167 of micro-environmental conditions among the experimental rounds, a control (mock
168 inoculum) treatment was included in every round in order to standardize plant growth
169 responses throughout the study (see below for the calculation of a standardized growth index).

170 After seven days, the ratio of germinating seeds to introduced seeds (i.e., germination
171 rate) was recorded for each single/dual/control treatment. The seedlings were randomly
172 thinned to one seedling per cell and they were kept in the same environmental conditions for
173 another two weeks. The 21-day old *Brassica* plant samples were harvested to evaluate their
174 responses to fungal inoculations. For all the replicate samples, shoot dry weight (above-
175 ground biomass) and the number of mature leaves (> 20 mm in length) were recorded. For the
176 measurement of shoot dry weight, plant samples were oven-dried at 60 °C for at least 72 h.
177 Leaves longer than 20 mm were also subjected to SPAD measurements to infer chlorophyll
178 concentrations using a SPAD-502Plus meter (Konica Minolta, Inc., Tokyo) (Netto et al.,
179 2005; Zhu et al., 2012). For each of the randomly-selected 15 plant samples per treatment, the
180 SPAD readings at three points were averaged. While shoot dry weight and the number of
181 mature leaves are metrics of plant total biomass, SPAD readings are often regarded as (weak)
182 indicators of foliar nitrogen concentrations (Chang and Robison, 2003; Esfahani et al., 2008).

183

184 **Plants' growth responses**

185 To standardize the variables representing plants' responses to fungal inoculations, we
186 proposed a standardized growth index as follows:

187
$$SG_T(i) = \frac{X_T(i) - \bar{X}_C}{SD_C} \quad (1),$$

188 where $X_T(i)$ is a measurement of a target trait of a plant sample i in a target single-/dual-
189 inoculation treatment, while \bar{X}_C and SD_C are the mean and standard deviation of plant traits
190 (variables) observed in the control samples of the focal experimental round, respectively. In
191 terms of basic statistics assuming the Gaussian distribution, the standardized growth index
192 [$SG_T(i)$] values less than -1.96 and those larger than 1.96 roughly represented plant
193 performance outside the 95 % confidence intervals of the control samples in the same
194 experimental rounds, providing an intuitive criterion for comparing results within/across
195 inoculation experiments (see Supplementary Figure S1 for relationship between the
196 standardized growth index values and false discovery rates). This standardized growth index
197 was calculated for each of the three plant variables representing plant performance: the
198 number of mature leaves, shoot dry weight, and SPAD readings.

199

200 **Synergistic and offset effects**

201 Based on the standardized growth index, we evaluated potential synergistic effects in dual
202 inoculations of two fungal isolates in comparison to single-inoculation results. For a replicate
203 plant sample inoculated with a pair of fungal isolates A and B, the index representing
204 deviation from the maximum effects in single inoculations is calculated as follows:

205
$$DMX_{AB}(i) = SG_{AB}(i) - \max(\overline{SG}_A, \overline{SG}_B) \quad (2),$$

206 where $SG_{AB}(i)$ is the standardized growth index of a replicate plant in the dual inoculation
207 treatment, while \overline{SG}_A and \overline{SG}_B are means of standardized growth index values for the single
208 inoculation of fungal isolates A and B, respectively. By definition, when there are synergistic
209 effects of the presence of two fungal isolates [i.e., $\overline{SG}_{AB} > \max(\overline{SG}_A, \overline{SG}_B)$], the mean of the
210 deviation index over replicate plant samples (\overline{DMX}_{AB}) is larger than zero. Likewise, to
211 evaluate offset effects in dual inoculations of two fungal isolates, an index representing
212 deviation from the minimum effects in single inoculations was defined as follows:

213
$$DMN_{AB}(i) = \min(\overline{SG}_A, \overline{SG}_B) - SG_{AB}(i) \quad (3).$$

214 When there are offset effects [i.e., $\overline{SG}_{AB} < \min(\overline{SG}_A, \overline{SG}_B)$] for a focal pair of fungi, mean of
215 the offset effect index over replicate samples (\overline{DMN}_{AB}) is larger than zero.

216 We further developed a simple index for evaluating deviations of observed dual-
217 inoculation results from those expected as intermediate results of single inoculations. For a
218 pair of fungal isolates A and B, the index for deviation from intermediate effects is calculated
219 as follows:

220
$$DI_{AB}(i) = SG_{AB}(i) - \frac{\overline{SG}_A + \overline{SG}_B}{2} \quad (4).$$

221 If the plant-growth promoting effects under the presence of two fungal isolates is close to
222 what expected as the intermediate results of the single inoculation assays of the two isolates,
223 the index for deviation from intermediate effects [$DI_{AB}(i)$] or its mean over replicate samples
224 (\overline{DI}_{AB}) is likely to have a value around zero.

225

226 **Nonlinearity of fungus–fungus combinations**

227 For each pair of fungal isolates (A and B), an analysis of variance (ANOVA) model of
228 standardized growth index was constructed by including the presence/absence of isolate A,
229 the presence/absence of isolate B, and the interaction term of the two (i.e., isolate A \times isolate
230 B) as explanatory variables. Then, across the 78 fungal pairs examined, F values of the isolate
231 A \times isolate B term were compared as indicators of how combinations of the two fungal
232 isolates had “nonlinear” effects on plant performance traits. We then examined how the
233 nonlinearity measures of fungal pairs are associated with the abovementioned index values
234 representing deviations of observed dual-inoculation results from those expected as
235 intermediate results of single inoculations ($\overline{DI_{AB}}$).

236 All the calculations of the above indexes and statistical analyses were performed using
237 the R ver. 3.6.0.

238

239 **RESULTS**

240 **Germination rates**

241 The germination rates of *Brassica* plants varied within single inoculation treatments and
242 within dual inoculation treatments (Supplementary Figure S2). Meanwhile, the rates were
243 generally higher in dual inoculation treatments than in single inoculation treatments (Welch's
244 test; $t = -3.97$, $df = 13.6$, $P = 0.015$).

245

246 **Plants' growth responses**

247 For all the three plant performance variables (shoot dry weight, the number of mature leaves,
248 and SPAD), the single inoculation effects on *Brassica* plants differed significantly among the
249 13 fungal isolates examined (Table 2). For example, the mean standardized growth index for
250 *V. simplex* Y34 and *Alternaria* sp. KYOCER00001239 were, on average, ca. seven-fold larger
251 than the standard deviation of control sample's growth (i.e., $\overline{SG_T} > 7$) in terms of shoot dry
252 weight, indicating high growth-promoting effects of those fungi on *Brassica* plants (Fig. 2A).
253 In addition, *C. chaetospora* M4006, *Trichoderma* sp. KYOCER00000218, *Curvularia* sp.
254 KYOCER0000077, *Phoma* sp. KYOCER0000052, and *Stemphylium* sp.
255 KYOCER00000804 showed high plant growth promoting effects (Fig. 2A). In contrast, *C.*
256 *tofieldiae* MAFF 712334, *Mucor* sp. KYOCER00000113, *Setophphaeria* sp.
257 KYOCER0000031, *Fusarium* sp. KYOCER00000983 and *Tolyphocladium* sp.

258 KYOCER00000289 displayed weak or almost neutral effects on plant growth and *Aspergillus*
259 sp. KYOCER00000917 had negative impacts on the *Brassica* plants (Fig. 2A). When the
260 number of mature leaves was used as a metric of plant performance, *Alternaria* sp.
261 KYOCER00001239 and *Aspergillus* sp. KYOCER00000917 turned out to have strongly
262 positive and negative effects, respectively (Fig. 2B). Meanwhile, the effects of other fungal
263 isolates were moderately positive or neutral (Fig. 2B).

264 In the dual inoculation experiments, the pair of the fungal isolates that exhibited the
265 greatest effects in single inoculation treatments (i.e., *V. simplex* Y34 and *Alternaria* sp.
266 KYOCER00001239) had relatively weak positive effects on *Brassica* growth in terms of
267 shoot dry weight (Fig. 2A). Instead, the highest plant-growth promoting effects were observed
268 for the combination of *V. simplex* Y34 and *Fusarium* sp. KYOCER00000983, which had
269 neutral effects on plants in the single inoculation (Fig. 2A). Highly positive effects on plants
270 (e.g., $\overline{SG_T} > 5$) were observed, as well, in *Curvularia*–*Fusarium*, *Cladophialophora*–
271 *Alternaria*, *Colletotrichum*–*Cladophialophora*, *Aspergillus*–*Alternaria*, and
272 *Cladophialophora*–*Veronaeopsis* pairs and several other pairs including *Curvularia* sp.
273 KYOCER00000077: for these pairs, at least one partner had neutral to weakly positive
274 performance in single inoculation treatments (Fig. 2A).

275 In contrast to those combinations with relatively high plant-growth promoting effects
276 (in the metrics of shoot dry weight and the number of mature leaves), *Aspergillus* sp.
277 KYOCER00000917, which restricted plant growth in the single inoculation condition (Fig.
278 2A, B), had negative impacts on plants in some of the 12 combinations with other fungal
279 isolates (Fig. 3A, B). However, their negative effects diminished in dual inoculations with
280 some fungi such as *Alternaria* sp. KYOCER00001239 and *Curvularia* sp.
281 KYOCER00000077 (Fig. 3A, B). Results also showed that *Phoma* sp. KYOCER00000052,
282 whose impacts on plants were positive in the single inoculation setting, inhibited plant growth
283 in the presence of other fungi (Fig. 3A, B).

284 When SAPD readings were used as metrics of plant performance, the *Curvularia* sp.
285 KYOCER00000077 and *Fusarium* sp. KYOCER00000983 had relatively high positive
286 effects on *Brassica* plants ($\overline{SG_T} \approx 2$), while *Setophaeeria* sp. KYOCER00000031 and
287 *Aspergillus* sp. KYOCER00000917 had negative impacts (Fig. 2C). Note that SPAD readings
288 were weakly correlated with shoot dry weight and the number of mature leaves
289 (Supplementary Fig. S3). In the dual inoculation experiments, some fungal pairs including
290 *Aspergillus* sp. KYOCER00000917 had relatively high positive effects on *Brassica* plants

291 (Fig. 3C) despite negative impacts of the *Aspergillus* isolate in a single-inoculation condition
292 (Fig. 2C). The pair of *Curvularia* and *Veronaeopsis* moderately increased SPAD readings as
293 well (Fig. 3C). Meanwhile, SPAD readings did not differ greatly from the control for most
294 fungal pairs (Fig. 2C).

295 For all the three plant performance variables examined, standardized growth index
296 values of single inoculation experiments were uncorrelated with those averaged across dual
297 inoculations for respective fungi (shoot dry weight, $r = -0.09$, $P = 0.78$; number of mature
298 leaves $r = 0.11$, $P = 0.71$; SPAD, $r = -0.41$, $P = 0.17$; Fig. 3). In other words, fungi with more
299 positive effects on plants in single-inoculation experiments did not increased plant
300 performance more efficiently. The experimental results also indicated that some combinations
301 of fungi exhibited higher impacts on *Brassica* performance than that observed in all the
302 single-inoculation settings (Fig. 2A-C).

303

304 **Synergistic and offset effects**

305 Among the 78 combinations of fungal isolates, strong synergistic effects [$\overline{SG_{AB}} >$
306 $\max(\overline{SG_A}, \overline{SG_B})$] were observed in some pairs of fungi in terms of shoot dry weight (Fig.
307 4A). The fungal combinations with the largest synergistic effects ($\overline{DMX_{AB}}$) consisted of
308 *Curvularia* sp. KYOCER00000077 and *Fusarium* sp. KYOCER00000983, each of which had
309 weakly or moderately positive impacts on plant growth in single inoculations. Large
310 synergistic effects were detected in other pairs of fungi including fungi with moderate or
311 weakly positive effects on plants (e.g., *Colletotrichum*–*Cladophialophora*, *Colletotrichum*–
312 *Fusarium*, and *Veronaeopsis*–*Fusarium* pairs; Fig. 4A). Similarly, for the number of mature
313 leaves, fungal pairs with large synergistic effects involved fungi with weakly positive or even
314 negative effects in single inoculations (Fig. 4B). In terms of SPAD readings, pairs of fungi
315 with negative impacts on plants in single-inoculation conditions had large synergistic effects
316 (Fig. 4C).

317 In contrast to synergistic effects, offset effects [$\overline{SG_{AB}} < \min(\overline{SG_A}, \overline{SG_B})$] were evident
318 especially in the fungal pairs including fungi that had highly positive impacts on plant
319 performance traits in single-inoculation conditions (Fig. 5). In particular, the pairs of fungi
320 with the largest positive effects (i.e., the *Veronaeopsis*–*Alternaria* pair) showed large offset
321 effects (Fig. 5).

322 Across the 78 combinations of fungi, synergistic effects (i.e., $\overline{DMX_{AB}}$) decreased with
323 increasing mean values of single inoculation effects of the target fungi (i.e., $\frac{\overline{SG_A} + \overline{SG_B}}{2}$) (Fig.
324 6A-C). In other words, pairs of fungi that showed greater plant-performance increasing effects
325 tended to have weaker synergistic effects. As expected by the trend in synergistic effects,
326 offset effects were increased with increasing mean values of single inoculation effects of the
327 target fungi (Fig. 6D-F).

328

329 **Nonlinearity of fungus–fungus combinations**

330 Deviations of observed dual-inoculation results from those expected as intermediate results of
331 single inoculations ($\overline{DI_{AB}}$) varied among fungal pairs (Fig. 6). Higher absolute $\overline{DI_{AB}}$ values
332 were indicative of nonlinearity in effects on plants for the particular fungus–fungus
333 combinations as evaluated by a series of ANOVA models (Fig. 7; Supplementary Data S3).

334

335 **DISCUSSION**

336 By using taxonomically diverse endophytic and soil fungi, we here evaluated plant-growth
337 promoting effects of pairs of fungal isolates in light of those observed in single-isolate
338 inoculation experiments. The 13 fungal isolates differed greatly in their independent effects
339 on *Brassica* plants (Figs. 2-3), providing an ideal opportunity for examining how the ranking
340 of plant-growth promoting effects in single-inoculation contexts were related to that in multi-
341 species (dual-inoculation) contexts (Figs. 4-6). Such information of synergistic and offset
342 effects in the presence of multiple microbial species is indispensable for understanding to
343 what extent we can predict functions of microbial communities (microbiomes) from the
344 datasets of single-species/isolate screening.

345 A series of single- and dual-inoculation experiments indicated that greater performance
346 of plants are potentially obtained in multi-species than in single-species contexts (Fig. 2). This
347 result, itself, is consistent with previous reports of enhanced plant growth by specific pairs of
348 bacteria/fungi (Han and Lee, 2006; Wang et al., 2011; Ważny et al., 2018; He et al., 2020).
349 Meanwhile, our experiments on 78 combinations of fungi suggested that pairs of microbes,
350 each of which had greatly positive impacts on plant growth in single inoculations, could show
351 minor effects on plants in multi-species conditions. For example, the strategy of combining

352 the two “highest rankers” in the single inoculation experiments (i.e., *Veronaeopsis simplex*
353 and *Alternaria* sp. KYOCER00001239) did not result in high plant-growth promoting effects
354 (Fig. 3); rather, offset effects were observed in the highest ranker pairs (Figs. 4-6). Thus,
355 biological functions at the community (microbiome) level may be rarely maximized by the
356 “bottom-up” exploration of sets of microbes based solely on single-inoculation experiments.

357 Our experiments also suggested that pairs of microbes with subordinate performance in
358 single inoculation assays could show largest growth-promoting effects on plants (Fig. 2). This
359 result suggests that single-species/isolate screening does not always provide sufficient
360 information for predicting microbial performance at the multi-species level (Toju et al.,
361 2018a). Interestingly, the fungal pairs with highest synergistic effects in our experiment
362 involved fungi in the genera *Fusarium* and *Curvularia* (Fig. 4A), which were often described
363 as plant pathogenic taxa (Michielse and Rep, 2009; Ma et al., 2013; Manamgoda et al., 2015).
364 Basically, physiological effects on plants vary remarkably among species/isolates within taxa
365 as evidenced by the presence of *Fusarium* and *Curvularia* species enhancing plant health and
366 growth (Olivain et al., 2006; Nahalkova et al., 2008; Priyadharsini and Muthukumar, 2017).
367 In fact, the *Fusarium* and *Curvularia* isolates examined in our study had positive effects on
368 *Brassica* plants even in the single-inoculation assays (Fig. 2). Moreover, the results of the
369 dual inoculation experiments suggested that some fungi in these predominantly plant-
370 pathogenic genera can have even greater positive effects on plants in combination with
371 specific other fungi (Figs. 2-3). Our results on synergistic effects in multi-species contexts
372 further illuminate the potential use of diverse endosphere/rhizosphere microbes whose
373 biological functions have been underestimated in conventional screening of single
374 inoculations.

375 The fact that microbial functions critically depend on combinations of microbial
376 species/isolates highlight the importance of “bird’s-eye” views of designing microbiomes.
377 Given that microbial functions at the community (multi-species) levels are not the simple
378 sums/averages of functions in single-species contexts (Figs. 2 & 7), research strategies taking
379 into account not only each microbe’s roles but also the nature of microbe–microbe
380 interactions will provide platforms for optimization of microbiome functions (Agler et al.,
381 2016; Toju et al., 2016; Banerjee et al., 2018). In this respect, interdisciplinary approaches
382 integrating the observational, genomic, and metagenomic information of microbial functions
383 (Bulgarelli et al., 2015; Levy et al., 2018; Ichihashi et al., 2020) with community ecological
384 analyses of species interaction networks (Agler et al., 2016; van der Heijden and Hartmann,

385 2016; Toju et al., 2017) will help us explore highly functional and stable microbial sets
386 among numerous candidate combinations of species (Paredes et al., 2018; Saad et al., 2020;
387 Toju et al., 2020). In other words, information of microbial functions in single-species
388 contexts is utilized by being combined with insights into dynamics and processes within
389 microbiomes.

390 While the experiments conducted in this study provided a unique opportunity for
391 systematically evaluating synergistic/offset effects of microbes on plants, the obtained
392 datasets should be interpreted with caution given the following limitations. First,
393 physiological mechanisms by which the examined fungi affected plant growth were
394 unexplored in the current study. Although detailed physiological and/or molecular biological
395 investigations have been done for some of the fungal species used in this study [e.g., *C.*
396 *tofieldiae* (Hiruma et al., 2016), *Veronaeopsis simplex* (Guo et al., 2018), and *C. chaetospira*
397 (Harsonoawati et al., 2020)], metabolites and genes involved in the plant–fungus interactions
398 are unknown for the remaining species. For more mechanistic understanding of interactions
399 involving plants and multiple microbial species, we need to perform transcriptomic analyses
400 targeting plants’ responses to each microbe as well as those comparing plants’ gene
401 expression patterns between single- and multiple-symbiont conditions. Comparative
402 transcriptomic analyses across experiments with different environmental conditions (e.g., soil
403 nutrient concentrations) will provide essential insights into microbial functions as well.
404 Second, the inoculation test based on single plant species precluded us from understanding
405 how general synergistic/offset effects existed in plant–fungal biome interactions. Although
406 some of the fungal taxa used in this study have been reported to interact with multiple
407 families of plants (Hermosa et al., 2012; Toju et al., 2018b), impacts of endophytic/soil fungi
408 on plants can vary depending on plant taxa and environmental conditions (Kiers et al., 2011;
409 Pineda et al., 2013; Rudgers et al., 2020). Therefore, to gain more robust insights into
410 synergistic/offset effects in interactions of plants and multiple microbial species/isolates, the
411 reproducibility of the patterns observed in this study should be examined in inoculation
412 experiments targeting diverse other plant species. Third, it is important to acknowledge that
413 the complexity of the microbial sets examined in this study is minimal (i.e., two fungal
414 species): different types of phenomena may be observed in combinations of three or more
415 bacterial/fungal species (Durán et al., 2018; Paredes et al., 2018; Carlström et al., 2019; Wei
416 et al., 2019)(Durán et al., 2018; Paredes et al., 2018; Carlström et al., 2019; Wei et al., 2019).
417 Moreover, it remains to be examined how we can increase microbial functions (e.g., host
418 plant growth rates) by increasing the number of microbial species/isolates. The presence of

419 microbial pairs outperforming single-microbe systems (Fig. 2) leads to the working
420 hypothesis that compatible sets of three or more microbial species yield greater functions than
421 simpler communities by playing complementary roles. Meanwhile, it is expected that benefits
422 of microbiomes do not increase linearly with increasing number of microbial species (i.e.,
423 saturating curves of benefits against increasing number of microbes) (van der Heijden et al.,
424 1998), at least in terms of specific functions such as provisioning of soil phosphorus or
425 blocking of soil pathogens.

426 We here showed that screening based on inoculations of single microbial
427 species/isolates can result in the underestimation of the microbes that potentially have large
428 plant-growth promoting effects in combinations with specific other microbes. Given that
429 plants are inevitably associated with hundreds or more of microbial species in agricultural and
430 natural ecosystems (Lundberg et al., 2012; Schlaeppi and Bulgarelli, 2015; van der Heijden
431 and Hartmann, 2016), such nonlinearity found in microbe–microbe associations deserve
432 future intensive research. Interdisciplinary studies on relationships between microbiome
433 compositions and their ecosystem-level functions are awaited towards the maximization of
434 microbial functions for sustainable agriculture and ecosystem restoration.

435

436 **AUTHOR CONTRIBUTIONS**

437 YH and HT designed the work. YH carried out the experiments. YH, HF, and HT analyzed
438 the data. YH and HT wrote the manuscript based on discussion with HF, KH, and KN.

439

440 **ACKNOWLEDGEMENTS**

441 This work was financially supported in part by Precursory Research for Embryonic Science
442 and Technology (PRESTO) of Japan Science and Technology Agency (JST; JPMJPR16Q6 to
443 HT), Human Frontier Science Program (HFSP; RGP0029/2019 to HT), and New Energy and
444 Industrial Technology Development Organization (NEDO; JPNP18016 to HT).

445

446 **SUPPLEMENTARY MATERIAL**

447 The Supplementary Material for this article can be found online at [XXXXXX](#).

448

449 **REFERENCES**

450 Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S. T., Weigel, D., et al. (2016). Microbial
451 hub taxa link host and abiotic factors to plant microbiome variation. *PLoS Biology* 14, 1–
452 31. doi:10.1371/journal.pbio.1002352.

453 Ahmad, F., Ahmad, I., and Khan, M. S. (2008). Screening of free-living rhizospheric bacteria
454 for their multiple plant growth promoting activities. *Microbiological Research* 163, 173–
455 181. doi:10.1016/j.micres.2006.04.001.

456 Banerjee, S., Schlaeppi, K., and van der Heijden, M. G. A. (2018). Keystone taxa as drivers of
457 microbiome structure and functioning. *Nature Reviews Microbiology* 16, 567–576.
458 doi:10.1038/s41579-018-0024-1.

459 Bhattacharyya, P. N., and Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR):
460 Emergence in agriculture. *World Journal of Microbiology and Biotechnology* 28, 1327–
461 1350. doi:10.1007/s11274-011-0979-9.

462 Bulgarelli, D., Garrido-Oter, R., Münch, P. C., Weiman, A., Dröge, J., Pan, Y., et al. (2015).
463 Structure and function of the bacterial root microbiota in wild and domesticated barley.
464 *Cell Host and Microbe* 17, 392–403. doi:10.1016/j.chom.2015.01.011.

465 Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., and Schulze-Lefert, P.
466 (2013). Structure and functions of the bacterial microbiota of plants. *Annual Review of
467 Plant Biology* 64, 807–838. doi:10.1146/annurev-arplant-050312-120106.

468 Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., et al. (2017).
469 Research priorities for harnessing plant microbiomes in sustainable agriculture. *PLoS
470 Biology* 15, 1–14. doi:10.1371/journal.pbio.2001793.

471 Carlström, C. I., Field, C. M., Bortfeld-Miller, M., Müller, B., Sunagawa, S., and Vorholt, J.
472 A. (2019). Synthetic microbiota reveal priority effects and keystone strains in the
473 *Arabidopsis* phyllosphere. *Nature Ecology and Evolution* 3, 1445–1454.
474 doi:10.1038/s41559-019-0994-z.

475 Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E.,
476 et al. (2017). Root microbiota drive direct integration of phosphate stress and immunity.
477 *Nature* 543, 513–518. doi:10.1038/nature21417.

478 Chang, S. X., and Robison, D. J. (2003). Nondestructive and rapid estimation of hardwood
479 foliar nitrogen status using the SPAD-502 chlorophyll meter. *Forest Ecology and*
480 *Management* 181, 331–338. doi:10.1016/S0378-1127(03)00004-5.

481 Dai, C. C., Yu, B. Y., and Li, X. (2008). Screening of endophytic fungi that promote the
482 growth of *Euphorbia pekinensis*. *African Journal of Biotechnology* 7, 3505–3510.
483 doi:10.4314/ajb.v7i19.59361.

484 Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., et al.
485 (2018). Microbial interkingdom interactions in roots promote *Arabidopsis* survival. *Cell*
486 175, 973–983. doi:10.1016/j.cell.2018.10.020.

487 Esfahani, M., Abbasi, H. R. A., Rabiei, B., and Kavousi, M. (2008). Improvement of nitrogen
488 management in rice paddy fields using chlorophyll meter (SPAD). *Paddy and Water*
489 *Environment* 6, 181–188. doi:10.1007/s10333-007-0094-6.

490 Finkel, O. M., Salas-González, I., Castrillo, G., Conway, J. M., Law, T. F., Teixeira, P. J. P.
491 L., et al. (2020). A single bacterial genus maintains root growth in a complex
492 microbiome. *Nature* 587, 103–108. doi:10.1038/s41586-020-2778-7.

493 Gu, S., Wei, Z., Shao, Z., Friman, V. P., Cao, K., Yang, T., et al. (2020). Competition for iron
494 drives phytopathogen control by natural rhizosphere microbiomes. *Nature Microbiology*
495 5, 1002–1010. doi:10.1038/s41564-020-0719-8.

496 Guo, Y., Matsuoka, Y., Nishizawa, T., Ohta, H., and Narisawa, K. (2018). Effects of
497 rhizobium species living with the dark septate endophytic fungus *veronaeopsis simplex*
498 on organic substrate utilization by the host. *Microbes and Environments* 33, 102–106.
499 doi:10.1264/jsme2.ME17144.

500 Han, H. S., and Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium
501 solubilizing bacteria on mineral uptake and growth of pepper and cucumber. *Plant, Soil*
502 and Environments

503 Harbort, C. J., Hashimoto, M., Inoue, H., Niu, Y., Guan, R., Rombolà, A. D., et al. (2020).
504 Root-secreted coumarins and the microbiota interact to improve iron nutrition in
505 *Arabidopsis*. *Cell Host and Microbe* 28, 825–837. doi:10.1016/j.chom.2020.09.006.

506 Harsonowati, W., Marian, M., Surono, M., and Narisawa, K. (2020). The effectiveness of a
507 dark septate endophytic fungus, *Cladophialophora chaetospira* SK51, to mitigate
508 strawberry Fusarium wilt disease and with growth promotion activities. *Frontiers in*
509 *Microbiology* 11, 585–585. doi:10.3389/fmicb.2020.00585.

510 He, C., Wang, W., and Hou, J. (2020). Plant performance of enhancing licorice with dual
511 inoculating dark septate endophytes and *Trichoderma viride* mediated via effects on root
512 development. *BMC Plant Biology* 20, 1–14. doi:10.1186/s12870-020-02535-9.

513 Helfrich, E. J. N., Vogel, C. M., Ueoka, R., Schäfer, M., Ryffel, F., Müller, D. B., et al.
514 (2018). Bipartite interactions, antibiotic production and biosynthetic potential of the
515 *Arabidopsis* leaf microbiome. *Nature Microbiology* 3, 909–919. doi:10.1038/s41564-
516 018-0200-0.

517 Hermosa, R., Viterbo, A., Chet, I., and Monte, E. (2012). Plant-beneficial effects of
518 *Trichoderma* and of its genes. *Microbiology* 158, 17–25. doi:10.1099/mic.0.052274-0.

519 Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., et al. (2016).
520 Root Endophyte *Colletotrichum tofieldiae* Confers Plant Fitness Benefits that Are
521 Phosphate Status Dependent. *Cell* 165, 464–474. doi:10.1016/j.cell.2016.02.028.

522 Hiruma, K., Kobae, Y., and Toju, H. (2018). Beneficial associations between Brassicaceae
523 plants and fungal endophytes under nutrient-limiting conditions : evolutionary origins
524 and host – symbiont molecular mechanisms. *Current Opinion in Plant Biology* 44, 145–
525 154. doi:10.1016/j.pbi.2018.04.009.

526 Ichihashi, Y., Ichihashi, Y., Date, Y., Date, Y., Shino, A., Shimizu, T., et al. (2020). Multi-
527 omics analysis on an agroecosystem reveals the significant role of organic nitrogen to
528 increase agricultural crop yield. *Proceedings of the National Academy of Sciences of the*
529 *United States of America* 117, 14552–14560. doi:10.1073/pnas.1917259117.

530 Jansa, J., Forczek, S. T., Rozmoš, M., Püschel, D., Bukovská, P., and Hršelová, H. (2019).
531 Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions.

532 *Chemical and Biological Technologies in Agriculture* 6, 1–10. doi:10.1186/s40538-019-
533 0147-2.

534 Kennedy, P. G., Peay, K. G., and Bruns, T. D. (2009). Root tip competition among
535 ectomycorrhizal fungi: are priority effects a rule or an exception? *Ecology* 90, 2098–107.
536 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/19739372>.

537 Khastini, R. O., Ohta, H., and Narisawa, K. (2012). The Role of a Dark Septate Endophytic
538 Fungus, *Veronaeopsis simplex* Y34, in Fusarium Disease Suppression in Chinese
539 Cabbage. 50, 618–624. doi:10.1007/s12275-012-2105-6.

540 Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., et al.
541 (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. *Science*
542 333, 880–882. doi:10.1126/science.1208473.

543 Levy, A., Salas Gonzalez, I., Mittelviefhaus, M., Clingenpeel, S., Herrera Paredes, S., Miao,
544 J., et al. (2018). Genomic features of bacterial adaptation to plants. *Nature Genetics* 50,
545 138–150. doi:10.1038/s41588-017-0012-9.

546 Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. *Annual
547 Review of Microbiology* 63, 541–556. doi:10.1146/annurev.micro.62.081307.162918.

548 Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., et al.
549 (2012). Defining the core *Arabidopsis thaliana* root microbiome. *Nature* 488, 86–90.
550 doi:10.1038/nature11237.

551 Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F., et al. (2013).
552 Fusarium pathogenomics. *Annual Review of Microbiology* 67, 399–416.
553 doi:10.1146/annurev-micro-092412-155650.

554 Manamgoda, D. S., Rossman, A. Y., Castlebury, L. A., Chukeatirote, E., and Hyde, K. D.
555 (2015). A taxonomic and phylogenetic re-appraisal of the genus *Curvularia*
556 (Pleosporaceae): Human and plant pathogens. *Phytotaxa* 212, 175–198.
557 doi:10.11646/phytotaxa.212.3.1.

558 Michielse, C. B., and Rep, M. (2009). Pathogen profile update: *Fusarium oxysporum*.
559 *Molecular Plant Pathology* 10, 311–324. doi:10.1111/j.1364-3703.2009.00538.x.

560 Nahalkova, J., Fatehi, J., Olivain, C., and Alabouvette, C. (2008). Tomato root colonization
561 by fluorescent-tagged pathogenic and protective strains of *Fusarium oxysporum* in
562 hydroponic culture differs from root colonization in soil. *FEMS Microbiology Letters*
563 286, 152–157. doi:10.1111/j.1574-6968.2008.01241.x.

564 Nara, K. (2006). Ectomycorrhizal networks and seedling establishment during early primary
565 succession. *New Phytologist* 169, 169–178. doi:10.1111/j.1469-8137.2005.01545.x.

566 Narisawa, K., Usuki, F., and Hashiba, T. (2004). Control of *Verticillium* yellows in Chinese
567 cabbage by the dark septate endophytic fungus LtVB3. *Phytopathology* 94, 412–418.
568 doi:10.1094/PHYTO.2004.94.5.412.

569 Nelson, J. M., Hauser, D. A., Hinson, R., and Shaw, A. J. (2018). A novel experimental
570 system using the liverwort *Marchantia polymorpha* and its fungal endophytes reveals
571 diverse and context-dependent effects. *New Phytologist* 218, 1217–1232.
572 doi:10.1111/nph.15012.

573 Netto, A. T., Campstrini, E., de Oliveira, J. G., and Bressan-Smith, R. E. (2005).
574 Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings
575 in coffee leaves. *Scientia Horticulturae* 104, 199–209.
576 doi:10.1016/j.scienta.2004.08.013.

577 Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes.
578 *The New phytologist* 190, 783–93. doi:10.1111/j.1469-8137.2010.03611.x.

579 Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., et al. (2016).
580 FUNGuild: An open annotation tool for parsing fungal community datasets by ecological
581 guild. *Fungal Ecology* 20, 241–248. doi:10.1016/j.funeco.2015.06.006.

582 Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L’Haridon, F., and Alabouvette, C. (2006).
583 Colonization of tomato root by pathogenic and nonpathogenic *Fusarium oxysporum*
584 strains inoculated together and separately into the soil. *Applied and Environmental
585 Microbiology* 72, 1523–1531. doi:10.1128/AEM.72.2.1523-1531.2006.

586 Paredes, H. S., Gao, T., Law, T. F., Finkel, O. M., Mucyn, T., Teixeira, P. J. P. L., et al.
587 (2018). Design of synthetic bacterial communities for predictable plant phenotypes.
588 *PLoS Biology* 16, 1–41. doi:10.1371/journal.pbio.2003962.

589 Peay, K. G., Kennedy, P. G., and Talbot, J. M. (2016). Dimensions of biodiversity in the
590 Earth mycobiome. *Nature Reviews Microbiology* 14, 434–447.
591 doi:10.1038/nrmicro.2016.59.

592 Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C. M., and
593 Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes.
594 *Annual Review of Phytopathology* 52, 347–375. doi:10.1146/annurev-phyto-082712-
595 102340.

596 Pineda, A., Dicke, M., Pieterse, C. M. J., and Pozo, M. J. (2013). Beneficial microbes in a
597 changing environment: Are they always helping plants to deal with insects? *Functional
598 Ecology* 27, 574–586. doi:10.1111/1365-2435.12050.

599 Priyadharsini, P., and Muthukumar, T. (2017). The root endophytic fungus *Curvularia
600 geniculata* from *Parthenium hysterophorus* roots improves plant growth through
601 phosphate solubilization and phytohormone production. *Fungal Ecology* 27, 69–77.
602 doi:10.1016/j.funeco.2017.02.007.

603 Radhakrishnan, R., Khan, A. L., Kang, S. M., and Lee, I. J. (2015). A comparative study of
604 phosphate solubilization and the host plant growth promotion ability of *Fusarium
605 verticillioides* RK01 and *Humicola* sp. KNU01 under salt stress. *Annals of Microbiology*
606 65, 585–593. doi:10.1007/s13213-014-0894-z.

607 Remy, W., Taylor, T. N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old
608 vesicular arbuscular mycorrhizae. *Proceedings of the National Academy of Sciences of
609 the United States of America* 91, 11841–11843. doi:10.1073/pnas.91.25.11841.

610 Richardson, A. E., Barea, J. M., McNeill, A. M., and Prigent-Combaret, C. (2009).
611 Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion
612 by microorganisms. *Plant and Soil* 321, 305–339. doi:10.1007/s11104-009-9895-2.

613 Rudgers, J. A., Afkhami, M. E., Bell-Dereske, L., Chung, Y. A., Crawford, K. M., Kivlin, S.
614 N., et al. (2020). Climate Disruption of Plant-Microbe Interactions. *Annual Review of
615 Ecology, Evolution, and Systematics* 51, 561–586. doi:10.1146/annurev-ecolsys-011720-
616 090819.

617 Saad, M. M., Eida, A. A., and Hirt, H. (2020). Tailoring plant-associated microbial inoculants
618 in agriculture: a roadmap for successful application. *Journal of Experimental Botany* 71,
619 3878–3901. doi:10.1093/jxb/eraa111.

620 Schlaeppi, K., and Bulgarelli, D. (2015). The Plant Microbiome at Work. *Molecular Plant-*
621 *Microbe Interactions MPMI* 212, 212–217. doi:10.1094/MPMI-10-14-0334-FI.

622 Taurian, T., Anzuay, M. S., Angelini, J. G., Tonelli, M. L., Ludueña, L., Pena, D., et al.
623 (2010). Phosphate-solubilizing peanut associated bacteria: Screening for plant growth-
624 promoting activities. *Plant and Soil* 329, 421–431. doi:10.1007/s11104-009-0168-x.

625 Taylor, T. N., Remy, W., Haas, H., and Kerp, H. (1995). Fossil arbuscular mycorrhizae from
626 the early Devonian. *Mycologia* 87, 560–573. doi:10.2307/3760776.

627 Tedersoo, L., May, T. W., and Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global
628 diversity, distribution, and evolution of phylogenetic lineages. *Mycorrhiza* 20, 217–263.
629 doi:10.1007/s00572-009-0274-x.

630 Toju, H., Abe, M. S., Ishii, C., Hori, Y., Fujita, H., and Fukuda, S. (2020). Scoring species for
631 synthetic community design: network analyses of functional core microbiomes.
632 *Frontiers in Microbiology* 11, 1361–1361. doi:10.3389/fmicb.2020.01361.

633 Toju, H., Peay, K. G. K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., et al.
634 (2018a). Core microbiomes for sustainable agroecosystems. *Nature Plants* 4, 247–257.
635 doi:10.1038/s41477-018-0139-4.

636 Toju, H., Tanabe, A. S., and Sato, H. (2018b). Network hubs in root-associated fungal
637 metacommunities. *Microbiome* 6, 116. doi:10.1101/270371.

638 Toju, H., Yamamichi, M., Jr, P. R. G., Olesen, J. M., Mougi, A., Yoshida, T., et al. (2017).
639 Species-rich networks and eco-evolutionary synthesis at the metacommunity level.
640 *Nature Ecology & Evolution* 1, 1–11. doi:10.1038/s41559-016-0024.

641 Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T., and Ishii, H. S. (2016). Network
642 modules and hubs in plant-root fungal biomes. *Journal of the Royal Society Interface* 13,
643 20151097–20151097. doi:10.1098/rsif.2015.1097.

644 Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., and Singh, B. K. (2020). Plant–microbiome
645 interactions: from community assembly to plant health. *Nature Reviews Microbiology*
646 18, 607–621. doi:10.1038/s41579-020-0412-1.

647 Tsolakidou, M. D., Stringlis, I. A., Fanega-Sleziak, N., Papageorgiou, S., Tsalakou, A., and
648 Pantelides, I. S. (2019). Rhizosphere-enriched microbes as a pool to design synthetic
649 communities for reproducible beneficial outputs. *FEMS Microbiology Ecology* 95, 1–14.
650 doi:10.1093/femsec/fiz138.

651 Usuki, F., and Narisawa, K. (2007). A mutualistic symbiosis between a dark septate
652 endophytic fungus, *Heteroconium chaetospira*, and a nonmycorrhizal plant, Chinese
653 cabbage. *Mycologia* 99, 175–184. doi:10.3852/mycologia.99.2.175.

654 van der Heijden, M. G. A., and Hartmann, M. (2016). Networking in the plant microbiome.
655 *PLoS Biology* 14, 1–9. doi:10.1371/journal.pbio.1002378.

656 van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R.,
657 Boller, T., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity ,
658 ecosystem variability and productivity. *Nature* 396, 69–72. doi:10.1038/23932.

659 van Wees, S. C., van der Ent, S., and Pieterse, C. M. (2008). Plant immune responses
660 triggered by beneficial microbes. *Current Opinion in Plant Biology* 11, 443–448.
661 doi:10.1016/j.pbi.2008.05.005.

662 Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., and Lorito, M.
663 (2008). Trichoderma–plant–pathogen interactions. *Soil Biology and Biochemistry* 40, 1–
664 10. doi:10.1016/j.soilbio.2007.07.002.

665 Vorholt, J. A., Vogel, C., Carlström, C. I., and Müller, D. B. (2017). Establishing causality:
666 opportunities of synthetic communities for plant microbiome research. *Cell Host and*
667 *Microbe* 22, 142–155. doi:10.1016/j.chom.2017.07.004.

668 Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., and van der Heijden, M. G. A. (2019).
669 Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning.
670 *Nature Communications* 10, 1–10. doi:10.1038/s41467-019-12798-y.

671 Wang, X., Pan, Q., Chen, F., Yan, X., and Liao, H. (2011). Effects of co-inoculation with
672 arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root

673 architecture and availability of N and P. *Mycorrhiza* 21, 173–181. doi:10.1007/s00572-
674 010-0319-1.

675 Ważny, R., Rozpądek, P., Jędrzejczyk, R. J., Śliwa, M., Stojakowska, A., Anielska, T., et al.
676 (2018). Does co-inoculation of *Lactuca serriola* with endophytic and arbuscular
677 mycorrhizal fungi improve plant growth in a polluted environment? *Mycorrhiza* 28,
678 235–246. doi:10.1007/s00572-018-0819-y.

679 Wei, Z., Gu, Y., Friman, V.-P. P., Kowalchuk, G. A., Xu, Y., Shen, Q., et al. (2019). Initial
680 soil microbiome composition and functioning predetermine future plant health. *Science
681 Advances* 5, 1–11. doi:10.1126/sciadv.aaw0759.

682 Werner, G. D. A., and Kiers, E. T. (2015). Order of arrival structures arbuscular mycorrhizal
683 colonization of plants. *New Phytologist* 205, 1515–1524. doi:10.1111/nph.13092.

684 Zhu, J., Tremblay, N., and Liang, Y. (2012). Comparing SPAD and atLEAF values for
685 chlorophyll assessment in crop species. *Canadian Journal of Soil Science* 92, 645–648.
686 doi:10.4141/CJSS2011-100.

687

688 **Conflict of Interest Statement:** The authors declare that the research was conducted in the
689 absence of any commercial or financial relationships that could be construed as a potential
690 conflict of interest.

691 **TABLE 1** | Fungal isolates used in the inoculation experiments.

692

Isolate	Abbreviation	Phylum	Class	Order	Family	Genus	Guild	Blast top-hit	E value	Per. Ident	Accession
<i>Phoma</i> sp. KUCER00000052	pho_0052	Ascomycota	Dothideomycetes	Pleosporales	Didymellaceae	<i>Phoma</i>	P ES	<i>Phoma leveillei</i>	9.00E-123	99.6%	KY827373.1
<i>Alternaria</i> sp. KUCER00001239	alt_1239	Ascomycota	Dothideomycetes	Pleosporales	Periconiaceae	<i>Alternaria</i>	P ES	<i>Alternaria broccoli-italicae</i>	2.00E-123	100.0%	MH374617.1
<i>Curvularia</i> sp. KUCER00000077	cur_0077	Ascomycota	Dothideomycetes	Pleosporales	Periconiaceae	<i>Curvularia</i>	P	<i>Curvularia coatesiae</i>	4.00E-126	100.0%	MK804384.1
<i>Setosphaeria</i> sp. KUCER00000031	set_0031	Ascomycota	Dothideomycetes	Pleosporales	Periconiaceae	<i>Setosphaeria</i>	P E	<i>Setosphaeria pedicellata</i>	1.00E-126	100.0%	LT837452.1
<i>Stemphylium</i> sp. KUCER00000804	ste_0804	Ascomycota	Dothideomycetes	Pleosporales	Periconiaceae	<i>Stemphylium</i>	P S	<i>Stemphylium lycopersici</i>	2.00E-125	100.0%	MN386223.1
<i>Veronaeopsis simplex</i> Y34	ver_0232	Ascomycota	Dothideomycetes	Venturiales	Sympoventuriaceae	<i>Veronaeopsis</i>	E	<i>Veronaeopsis simplex</i>	5.00E-125	100.0%	MH865233.1
<i>Cladophialophora chaetospira</i> M4006	cla_0230	Ascomycota	Eurotiomycetes	Chaetothyriales	Herpotrichiellaceae	<i>Cladophialophora</i>	E	<i>Cladophialophora chaetospira</i>	3.00E-123	99.6%	LC077702.1
<i>Aspergillus</i> sp. KUCER00000917	asp_0917	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillaceae	<i>Aspergillus</i>	S	<i>Aspergillus terreus</i>	7.00E-124	99.6%	MH124236.1
<i>Colletotrichum tofieldiae</i> MAFF 712334	col_0223	Ascomycota	Sordariomycetes	Glomerellales	Glomerellaceae	<i>Colletotrichum</i>	P E	<i>Colletotrichum tofieldiae</i>	2.00E-125	100.0%	KX069824.1
<i>Trichoderma</i> sp. KUCER00000218	tri_0218	Ascomycota	Sordariomycetes	Hypocreales	Hypocreaceae	<i>Trichoderma</i>	PFES	<i>Trichoderma asperellum</i>	5.00E-125	100.0%	MT530021.1
<i>Fusarium</i> sp. KUCER00000983	fus_0983	Ascomycota	Sordariomycetes	Hypocreales	Nectriaceae	<i>Fusarium</i>	P ES	<i>Fusarium oxysporum</i>	5.00E-125	100.0%	MT610995.1
<i>Tolypocladium</i> sp. KUCER00000289	tol_0289	Ascomycota	Sordariomycetes	Hypocreales	Ophiocordycipitaceae	<i>Tolypocladium</i>	FE	<i>Tolypocladium album</i>	9.00E-123	99.6%	LC386577.1
<i>Mucor</i> sp. KUCER00000113	muc_0113	Mucoromycota	-	Mucorales	Mucoraceae	<i>Mucor</i>	S	<i>Mucor abundans</i>	1.00E-125	100.0%	MK164195.1

693 For each fungal isolate, taxonomy, functional guild information inferred by the FUNGuild database (P, plant pathogen; F, fungal pathogen; E,
 694 endophyte; S, saprophyte), and NCBI BLAST top-hit results of the ITS sequences are indicated for each isolate.
 695

696 **TABLE 2** | ANOVA results of single- and dual-inoculation experiments.

697

ANOVA model	df	F	P
Single inoculation (across 13 fungal isolates)			
Shoot dry weight	12	41.6	< 0.0001
Number of mature leaves	12	127.7	< 0.0001
SPAD readings	12	12.0	< 0.0001
Dual inoculation (across 78 fungal pairs)			
Shoot dry weight	77	25.7	< 0.0001
Number of mature leaves	77	23.1	< 0.0001
SPAD readings	77	5.7	< 0.0001

698 For each of the three plant performance variables, an ANOVA model was constructed to examine the variation across single- or dual-inoculation
699 treatments.

700

Figure legends

FIGURE 1 | Evaluation of effects on plant performance. **(A)** Schema of single- and dual-inoculation assays. **(B)** Indexes for comparing single vs. dual inoculation effects. Along the axis of standardized growth index defined by the equation (1), index values representing synergistic/offset effects on plants are calculated for each replicate plant sample for each pair of microbial (fungal) isolates [$DMX_{AB}(i)$ and $DMN_{AB}(i)$]. Likewise, index values representing deviation of dual-inoculation effects from single-inoculation effects are obtained [$DI_{AB}(i)$]. **(C)** Example of inoculation experiments. *Brassica* plants inoculated with two fungal isolates (tri_0218 × ste_0804; right) and those without fungal inoculations (control; left).

FIGURE 2 | Single- and dual-inoculation effects on *Brassica* plants. **(A)** Standardized growth index in terms of shoot dry weight. For respective single- and dual-inoculation experiments, 25 % quantiles, medians, and 75 % quantiles are displayed as boxes and the ranges from the maximum to minimum values are shown as bars. See Table 1 for the abbreviation of fungal isolates. The combination of the fungal species with the largest positive effects on *Brassica* plants in single inoculation experiments is highlighted. **(B)** Standardized growth index in terms of the number of mature leaves. **(C)** Standardized growth index in terms of SPAD readings.

FIGURE 3 | Pairwise representation of dual inoculation results. **(A)** Standardized growth index in terms of shoot dry weight for each pair of fungal isolates. Single-inoculation effects and mean effects across the dual inoculation assays are shown for each fungal isolate in the left. **(B)** Standardized growth index in terms of the number of mature leaves. **(C)** Standardized growth index in terms of SPAD readings.

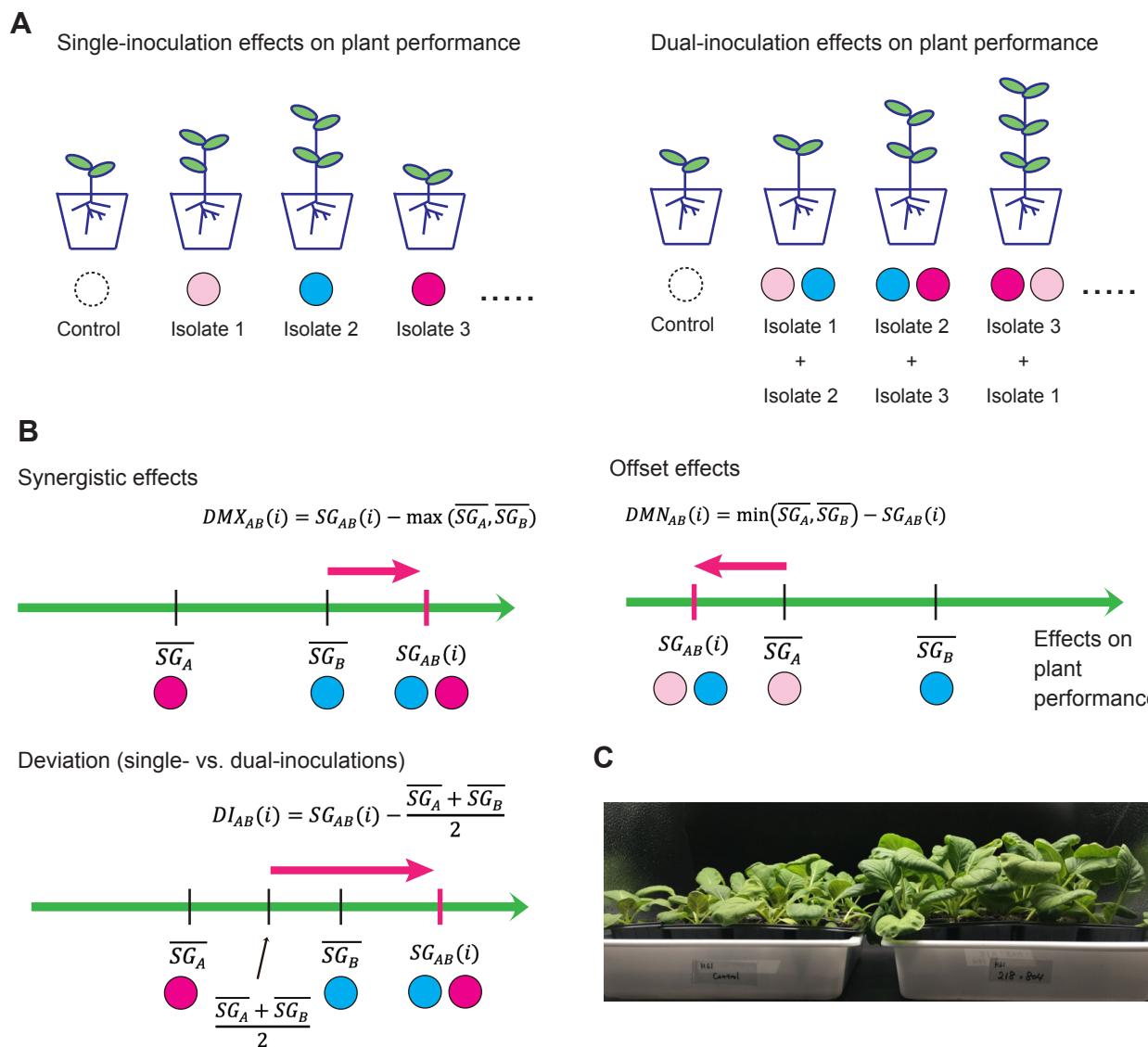
FIGURE 4 | Synergistic effects observed in dual-inoculation experiments. **(A)**

Synergistic effect index in terms of shoot dry weight. The index representing deviation of dual-inoculation effects from the maximum effects in single inoculations are shown for each pair of fungal isolates. Circles represent single-inoculation effects of respective fungal isolates. **(B)** Synergistic effect index in terms of the number of mature leaves. **(C)** Synergistic effect index in terms of SPAD readings.

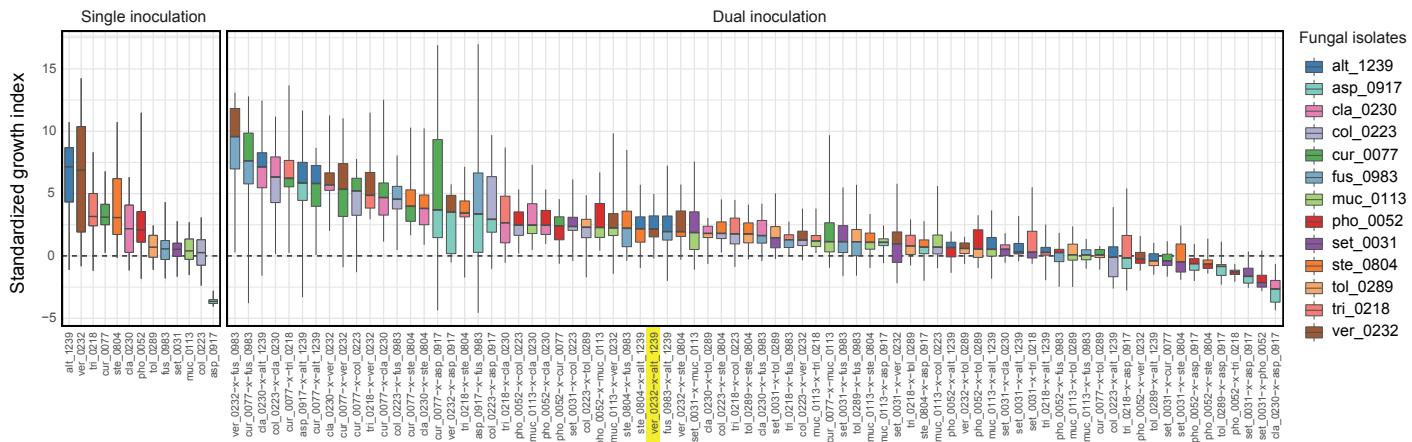
FIGURE 5 | Offset effects observed in dual-inoculation experiments. **(A)** Offset effect index in terms of shoot dry weight. The index representing deviation of dual-inoculation effects from the minimum effects in single inoculations are shown for each pair of fungal isolates. Circles represent single-inoculation effects of respective fungal isolates. **(B)** Offset effect index in terms of the number of mature leaves. **(C)** Offset effect index in terms of SPAD readings.

FIGURE 6 | Relationship between single-inoculation effects and synergistic/offset effects. **(A)** Trends in synergistic effects in terms of shoot dry weight. For each pair of

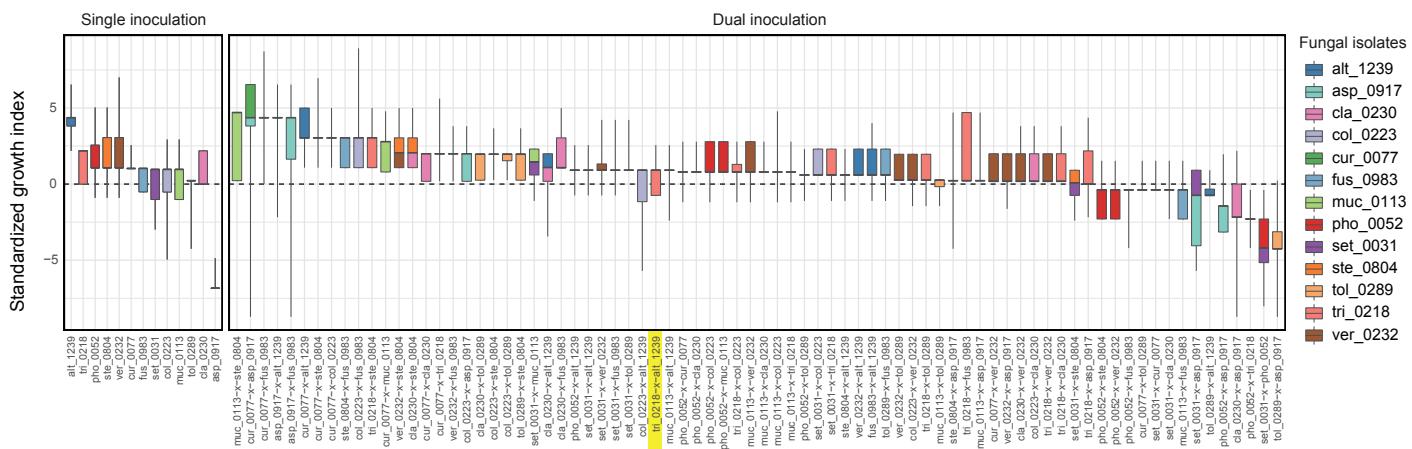
fungi, mean values of single inoculation effects of the target fungi (i.e., $\frac{\overline{SG_A} + \overline{SG_B}}{2}$) and

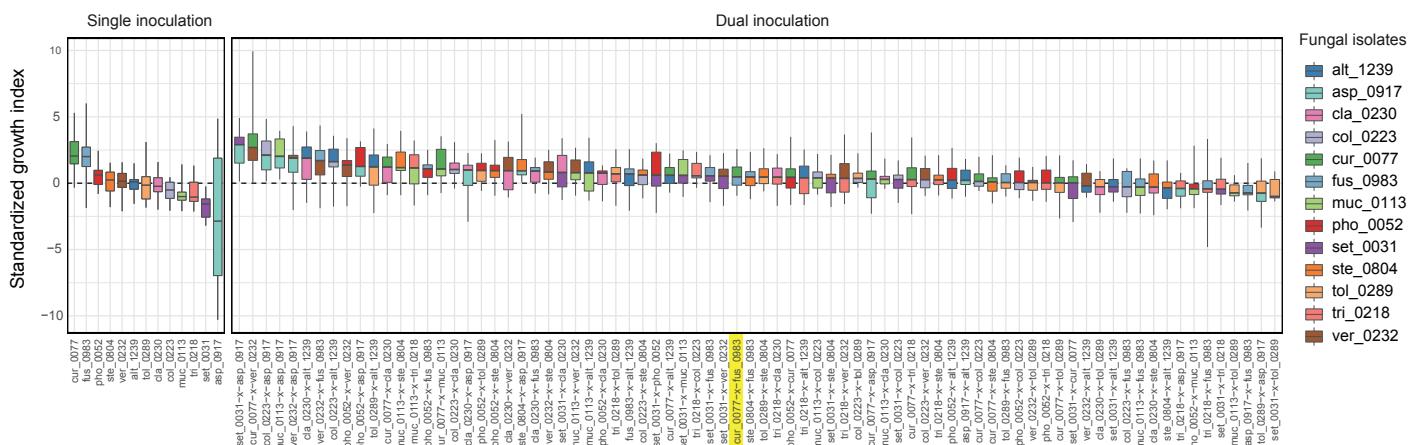

index values of synergistic effects [i.e., $DMX_{AB}(i)$] are shown at the horizontal and vertical axes, respectively. Error bars represent standard deviations of synergistic effects. **(B)** Trends in synergistic effects in terms of the number of mature leaves. **(C)**

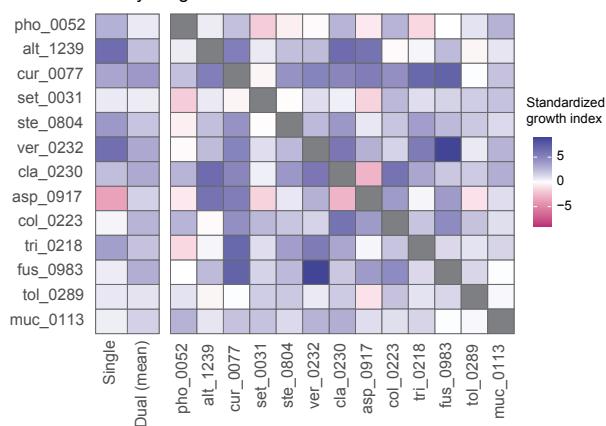
Trends in synergistic effects in terms of SPAD readings. **(D)** Trends in synergistic effects in terms of shoot dry weight. For each pair of fungi, mean values of single

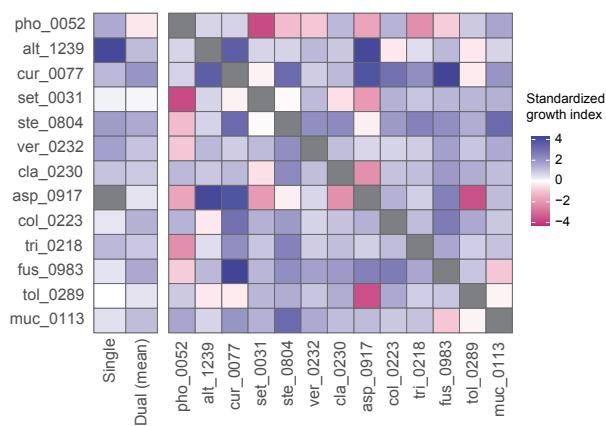

inoculation effects of the target fungi (i.e., $\frac{\overline{SG_A} + \overline{SG_B}}{2}$) and index values of offset effects

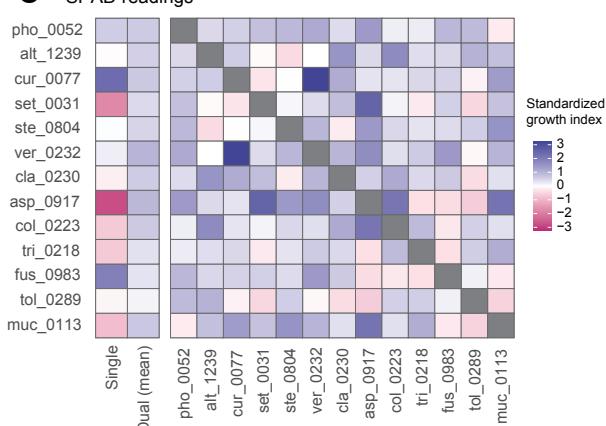
[i.e., $DMN_{AB}(i)$] are shown at the horizontal and vertical axes, respectively. **(E)** Trends in synergistic effects in terms of the number of mature leaves. **(F)** Trends in synergistic effects in terms of SPAD readings.

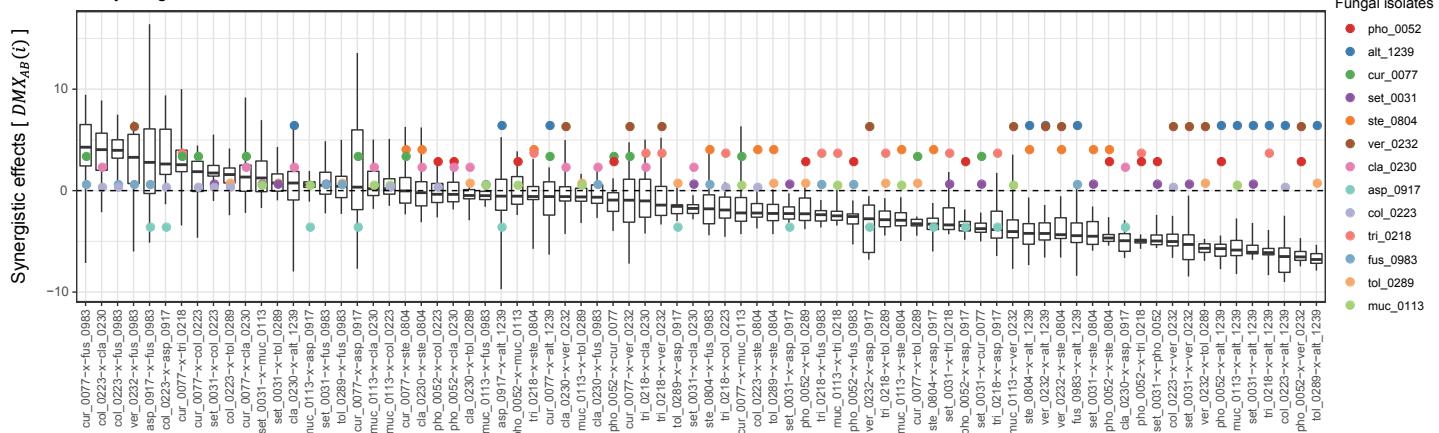

FIGURE 7 | Deviations of observed dual-inoculation results from those expected as intermediate results of single inoculations. **(A)** Deviation index for shoot dry weight. The index values representing deviations of dual-inoculation effects from intermediate effects in single inoculations ($\overline{DI_{AB}(i)}$) are shown for each fungal isolate included in the target fungal pairs (left). For each fungal pair, F values of the isolate A \times isolate B term in the ANOVA model (middle) and false discovery rate (FDR) values of the interaction term (right) are shown across the axis of the deviation index: FDR are calculated across the 78 fungal combinations examined. **(B)** Deviation index for the number of mature leaves. **(C)** Deviation index for SPAD readings.

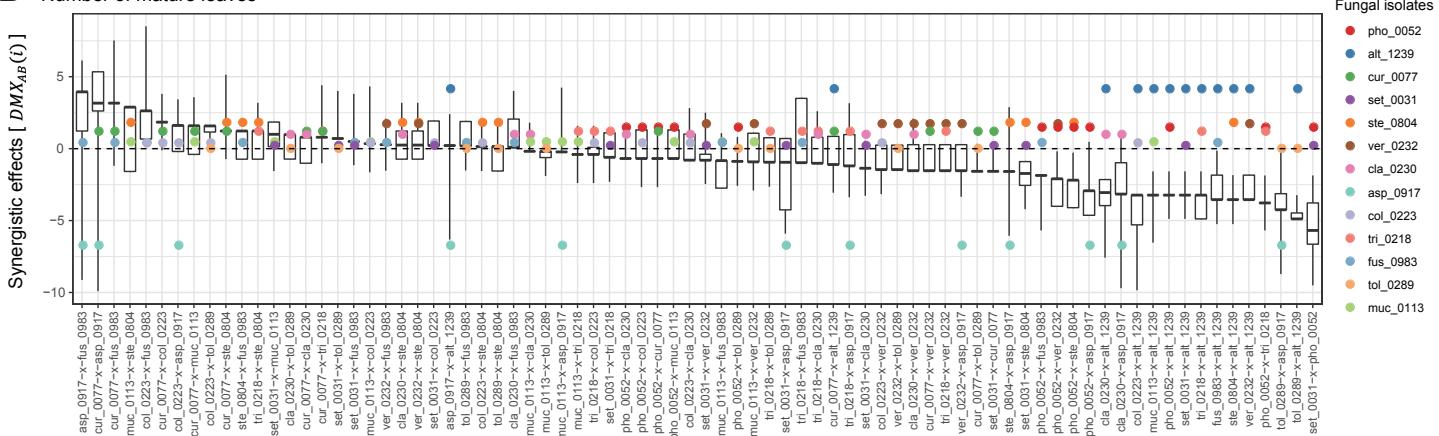

A Shoot dry weight

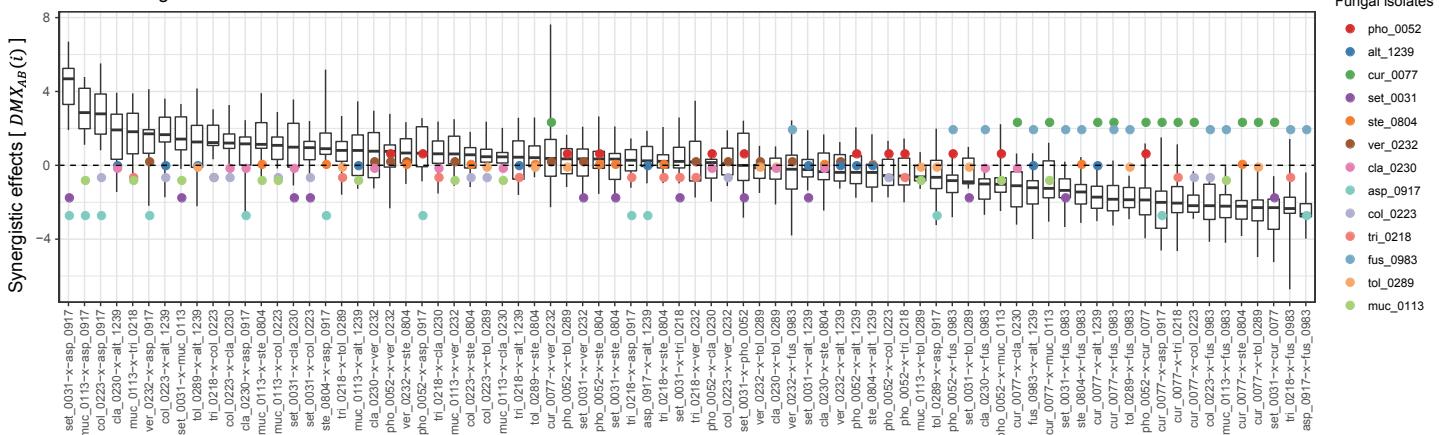

B Number of mature leaves

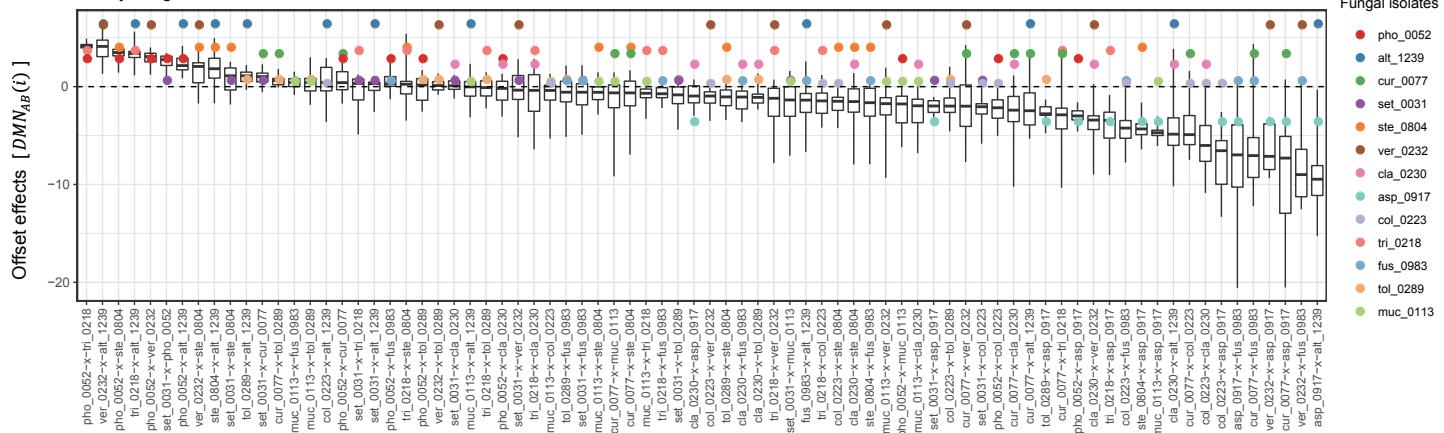

C SPAD readings

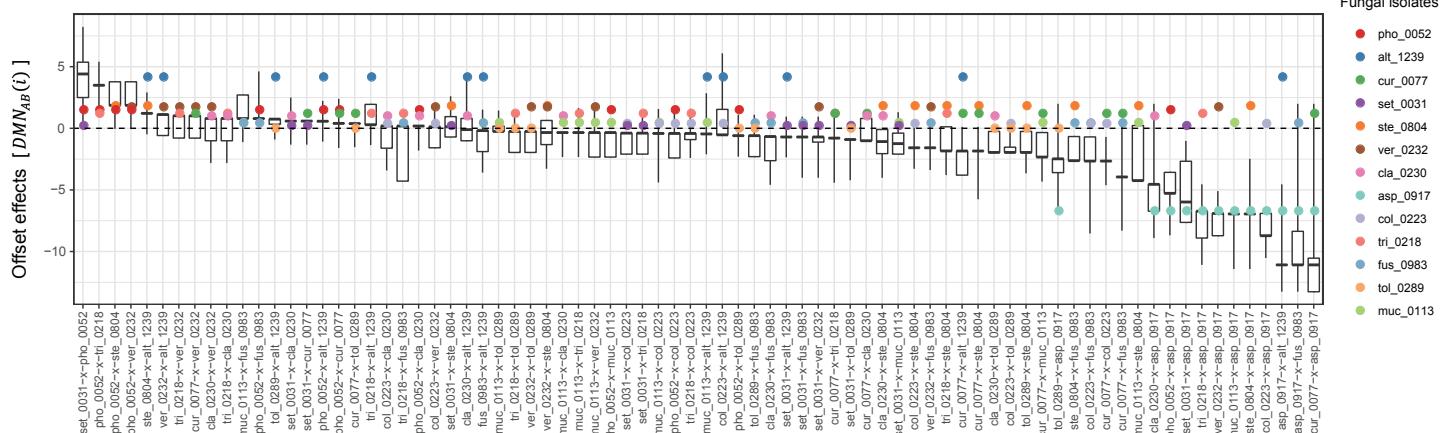

A Shoot dry weight

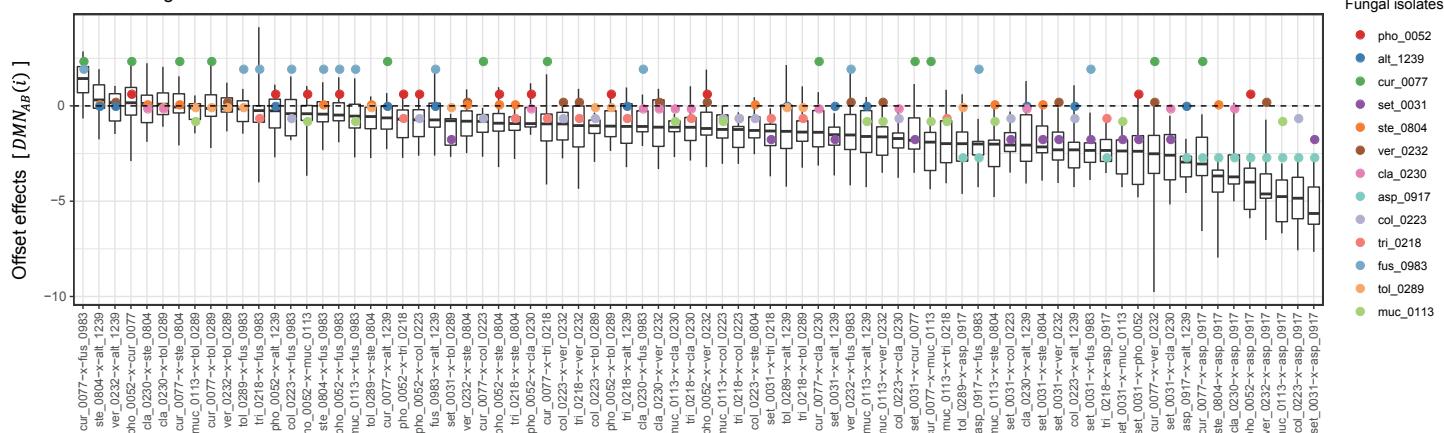

B Number of mature leaves

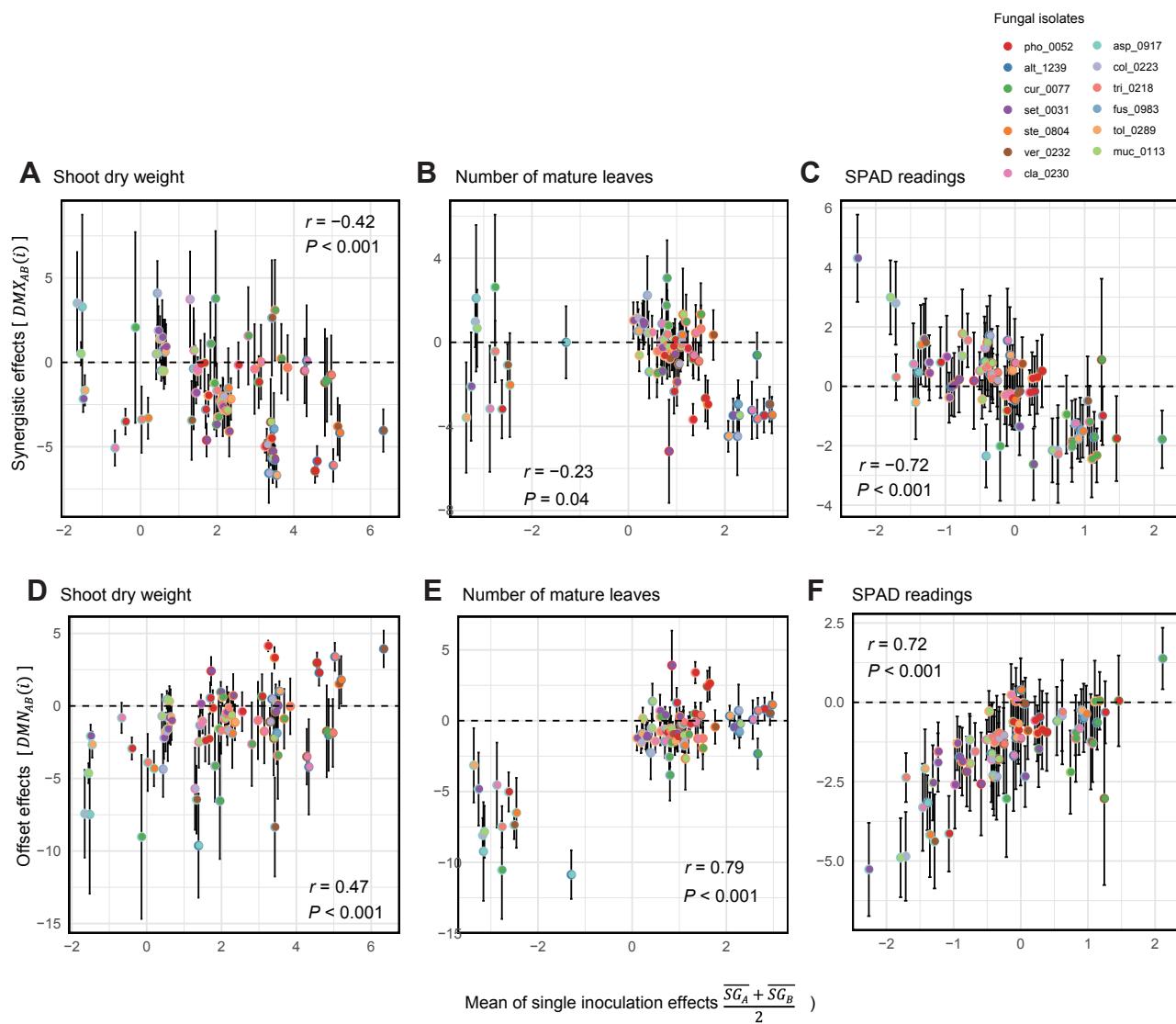

C SPAD readings

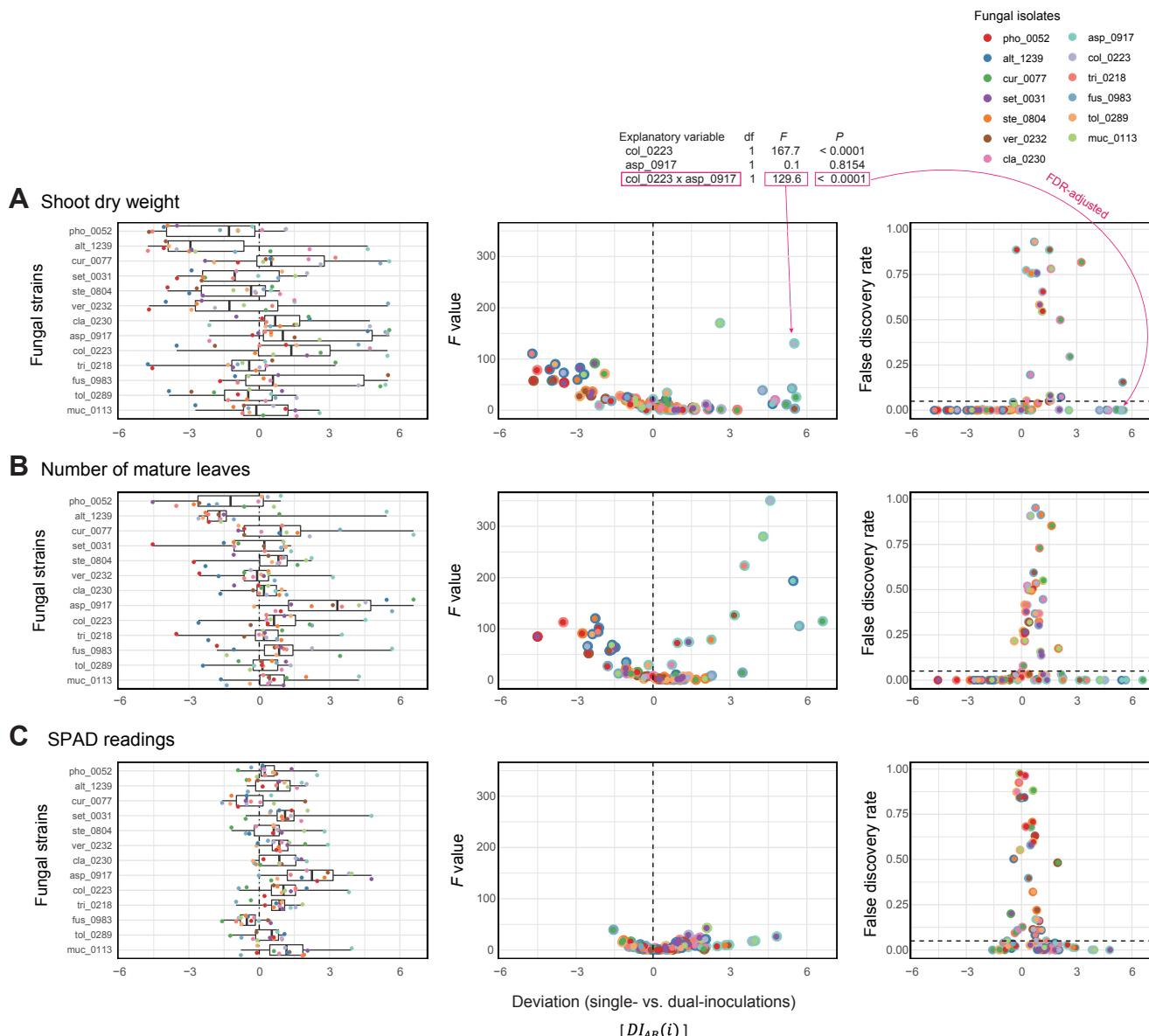

A Shoot dry weight


B Number of mature leaves


C SPAD readings


A Shoot dry weight




B Number of mature leaves

C SPAD readings

