

1    **Dietary restriction and *clock* delay eye aging to extend lifespan in *D. melanogaster***

2    Brian A. Hodge<sup>1\*</sup>, Geoffrey T. Meyerhof<sup>1,4</sup>, Subhash D. Katewa<sup>1,2</sup>, Ting Lian<sup>1,3</sup>, Charles

3    Lau<sup>1</sup>, Sudipta Bar<sup>1</sup>, Nicole Leung<sup>4,5</sup>, Menglin Li<sup>4</sup>, David Li-Kroeger<sup>6</sup>, Simon Melov<sup>1</sup>, Birgit

4    Schilling<sup>1</sup>, Craig Montell<sup>4</sup>, Pankaj Kapahi<sup>1\*</sup>

5    <sup>1</sup>Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.

6    <sup>2</sup>NGM Biopharmaceuticals, 333 Oyster Point Blvd, South San Francisco, CA 94080, USA.

7    <sup>3</sup>Sichuan Agricultural University, 46 Xinkang Rd, Yucheng District, Ya'an, Sichuan, China.

8    <sup>4</sup>Neuroscience Research Institute and Department of Molecular, Cellular and

9    Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106,

10    California, USA.

11    <sup>5</sup>Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA

12    94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

13    <sup>6</sup>Department of Neurology, Baylor College of Medicine, Houston, TX 77096, USA.

14

15    \*Correspondence: [bhodge@buckinstitute.org](mailto:bhodge@buckinstitute.org), [pkapahi@buckinstitute.org](mailto:pkapahi@buckinstitute.org)

16

17

18

19

20

21

22

23

24

25 **Abstract**

26 **Many vital processes in the eye are under circadian regulation, and circadian dysfunction**  
27 **has emerged as a potential driver of eye aging. Dietary restriction is one of the most**  
28 **robust lifespan-extending therapies and amplifies circadian rhythms with age. Herein, we**  
29 **demonstrate that dietary restriction extends lifespan in *D. melanogaster* by promoting**  
30 **circadian homoeostatic processes that protect the visual system from age- and light-**  
31 **associated damage. Disrupting circadian rhythms in the eye by inhibiting the transcription**  
32 **factor, Clock (CLK), or CLK-output genes, accelerated visual senescence, induced a**  
33 **systemic immune response, and shortened lifespan. Flies subjected to dietary restriction**  
34 **were protected from the lifespan-shortening effects of photoreceptor activation.**  
35 **Inversely, photoreceptor inactivation, achieved via mutating rhodopsin or housing flies in**  
36 **constant darkness, primarily extended lifespan in flies reared on a high-nutrient diet. Our**  
37 **findings establish the eye as a diet-sensitive modulator of lifespan and indicate that vision**  
38 **is an antagonistically pleiotropic process that contributes to organismal aging.**

39

40

41

42

43

44

45

46

47

48 **Introduction**

49 Circadian rhythms are approximate 24-hour oscillations in behavior, cellular physiology,  
50 and biochemistry, which evolved to anticipate and manage predictable changes  
51 associated with the solar day (e.g., predator/prey interactions, nutrient availability,  
52 phototoxicity, etc.) [1]. Circadian rhythms are generated by endogenous clocks that sense  
53 time-cues (e.g., light and food) to govern rhythmic oscillations of gene transcriptional  
54 programs, synchronizing cellular physiology with daily environmental stressors [2]. In  
55 addition to keeping time, the molecular clock regulates the temporal expression of  
56 downstream genes, known as clock-controlled genes, to promote tissue-specific rhythms  
57 in physiology [3]. The *Drosophila* molecular clock is comprised of transcriptional-  
58 translational feedback loops, where the transcription factors Clock (CLK) and Cycle (CYC)  
59 rhythmically activate their own repressors, Period and Timeless [2]. This feedback loop not

60 only exists in central pacemaker neurons, where it sets rhythms in locomotor activity, it  
61 also functions in peripheral tissues, such as the eye [4].

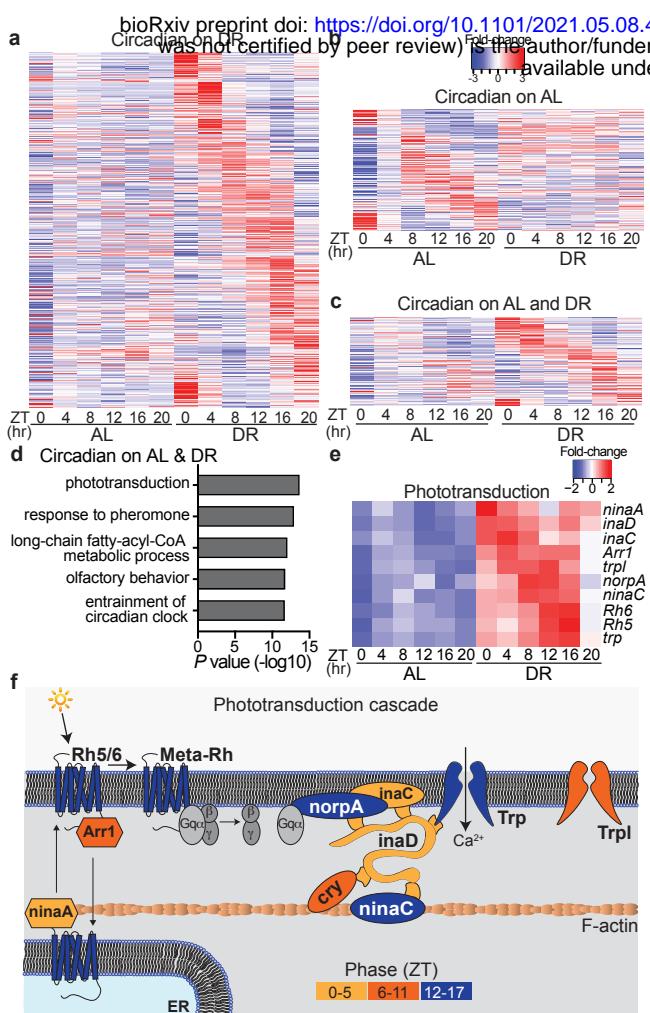
62 Aging is associated with a progressive decline in visual function and an increase in  
63 the incidence of ocular disease. *Drosophila* photoreceptor cells serve as a powerful model  
64 of both visual senescence and retinal degeneration [5, 6]. *Drosophila* and mammalian  
65 photoreceptors possess a cell-intrinsic molecular clock mechanism that temporally  
66 regulates a large number of physiological processes, including light-sensitivity,  
67 metabolism, pigment production, and susceptibility to light-mediated damage [7]. Visual  
68 senescence is accompanied by a reduced circadian amplitude in core-clock gene  
69 expression within the retina [8]. This reduction in retinal circadian rhythms may be causal  
70 in eye aging, as mice harboring mutations in their core-clock genes, either throughout  
71 their entire body, or just in their photoreceptor cells, display several early-onset aging  
72 phenotypes within the eye. These mice prematurely form cataracts and have reduced  
73 photoreceptor cell light-sensitivity and viability [8]. However, the molecular mechanisms  
74 by which the molecular clock influences eye aging are not fully understood.

75 Dietary restriction (DR), defined by reducing specific nutrients or total calories, is  
76 the most robust mechanism for delaying disease and extending lifespan [9]. The  
77 mechanisms by which DR promotes health and lifespan may be integrally linked with  
78 circadian function, as DR enhances the circadian transcriptional output of the molecular  
79 clock and preserves circadian function with age [10]. Inversely, high-nutrient diets (i.e.,

80 excess consumption of protein, fats, or total calories) repress circadian rhythms and  
81 accelerate organismal aging [11, 12]. However, how DR modulates circadian rhythms  
82 within the eye, and how these rhythms influence DR-mediated lifespan extension, had yet  
83 to be examined.

84 Herein, we sought to elucidate the circadian processes that are activated by DR by  
85 performing an unbiased, 24-hour time-course mRNA expression analysis in whole flies.  
86 We found that circadian processes within the eye are highly elevated in expression in flies  
87 reared on DR. In particular, DR enhanced the rhythmic expression of genes involved in the  
88 adaptation to light (i.e., calcium handling and de-activation of rhodopsin-mediated  
89 signaling). Building on this observation, we demonstrate that the majority of these  
90 circadian phototransduction components were transcriptionally regulated by CLK.  
91 Eliminating CLK function either pan-neuronally, or just in the photoreceptors, accelerated  
92 visual decline with age. Furthermore, disrupting photoreceptor homeostasis increased  
93 systemic immune responses and shortened lifespan. Several eye-specific CLK-output  
94 genes that were upregulated in expression in response to DR, were also required for DR-  
95 to slow visual senescence and extend lifespan.

96


97

98 **Results**

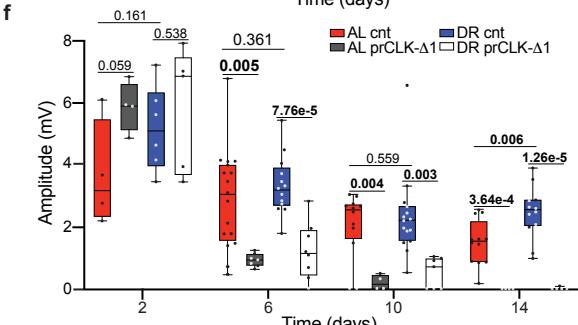
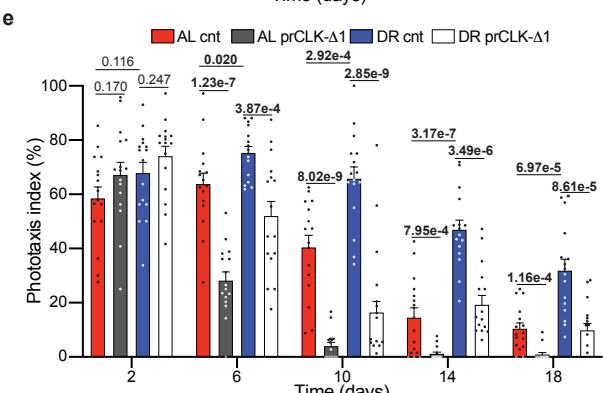
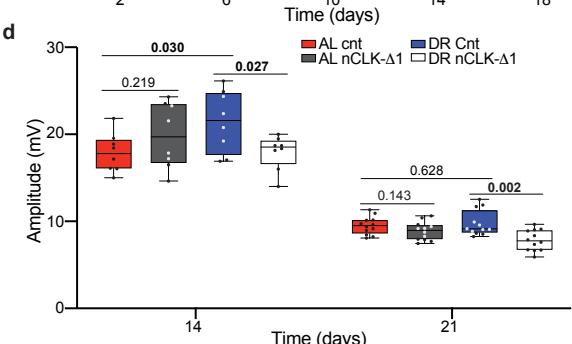
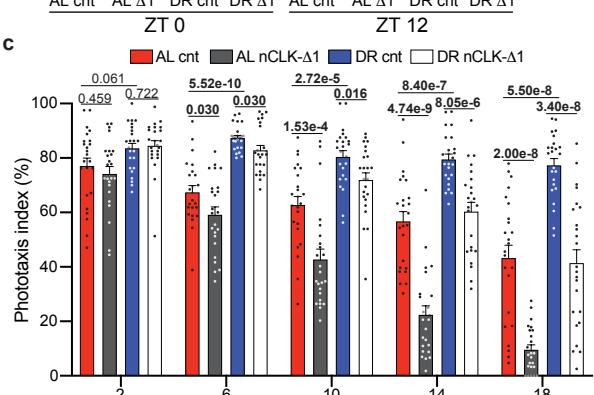
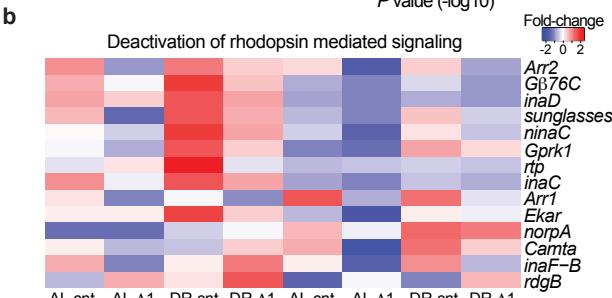
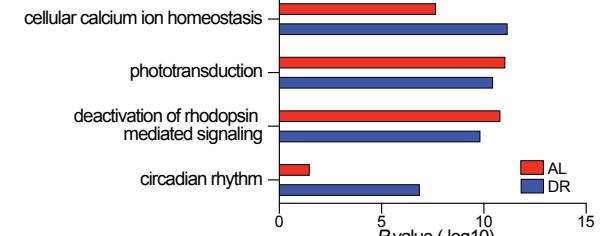
99 *Dietary restriction amplifies circadian transcriptional output and delays visual senescence*  
100 *in a CLK-dependent manner*

101 To determine how DR changes circadian transcriptional output, we performed a series of  
102 microarray experiments over the span of 24-hours in female *Canton-S* flies (whole body)  
103 reared on either a high-yeast (5%; *ad libitum*, AL) diet or a low-yeast (0.5%; DR) diet  
104 (**Supplementary Fig. 1a**). Flies maintained on DR displayed nearly twice the number  
105 circadian transcripts compared to flies on AL (**Fig. 1a, b and Supplementary Fig. 1b**).  
106 Circadian gene expression was also more robust on DR vs AL. DR-specific oscillators were  
107 statistically more rhythmic (lower JTK\_CYCLE circadian *p*-values) and displayed larger  
108 circadian amplitudes than AL-specific oscillators (**Supplementary Fig. 1c, d**). Diet also  
109 drastically altered the circadian transcriptional profile, as only 16% of DR oscillators were  
110 also oscillating on AL (**Supplementary Fig. 1b**). Furthermore, the AL and DR circadian  
111 transcriptomes were enriched for distinct processes (**Supplementary Fig. 1e, f and**  
112 **Supplementary Data 1**).

113 Transcripts that oscillate on both AL and DR diets were highly enriched for genes  
114 that comprise the canonical phototransduction signaling cascade (**Fig. 1c-d**), which is the  
115 process by which *Drosophila* photoreceptor cells, the primary light-sensitive neurons,  
116 transduce light information into a chemical signal [13]. Briefly, light-mediated conversion  
117 of rhodopsin proteins to their meta-rhodopsin state stimulates heterotrimeric Gq proteins  
118 that activate phospholipase C (*norpA*), which produces secondary messengers and



**Figure 1: Dietary restriction amplifies circadian transcriptional output and rhythmicity of phototransduction genes.** (a-c) Circadian transcriptome heatmaps for Canton-S flies representing 24-hour expression plots for transcripts that cycle only on DR (a,  $n=1609$  transcripts), only on AL (b,  $n=568$  transcripts), or on both diets (c,  $n=301$  transcripts). Circadian transcripts (24h period, JTK\_CYCLE  $p$ value<0.05) are plotted by phase. (d) Gene-ontology enrichment categories corresponding to transcripts that cycle on both AL and DR diets. (e) Heatmap of phototransduction transcript expression on AL and DR. (f) Phototransduction cascade diagram with components colored according to their circadian phase on DR.







119 promotes the opening of Transient Receptor Potential channels (TRP, TRPL), ultimately  
120 allowing  $\text{Ca}^{2+}$  and  $\text{Na}^+$  to depolarize the photoreceptor cell [14]. Although the  
121 phototransduction transcripts were cyclic on both diets, on DR their expression became  
122 more rhythmic (lower JTK\_CYCLE *p*-values & larger circadian amplitudes) and elevated  
123 (~2-fold increase in expression across all timepoints) (**Fig. 1e and Supplementary Fig. 1i**).  
124 Since our time-course analyses were performed in whole-fly, we queried publicly available  
125 circadian transcriptomes from wild-type heads to further investigate the rhythmic  
126 oscillations of eye-related transcripts [15]. The majority of the DR-sensitive  
127 phototransduction genes also robustly cycled in wild-type heads (**Supplementary Table**  
128 **1**). Furthermore, the GO-term “phototransduction” (GO:0007602) was amongst the most  
129 enriched cyclic processes in the heads of wild-type flies, as ~70% of the genes that  
130 comprise the category oscillate in a circadian fashion (**Supplemental Data 2**).

131 In *Drosophila* and mammals, visual function oscillates to align with daily changes  
132 in ambient illuminance from the sun, which can be  $10^6$  to  $10^8$ -fold brighter during the day  
133 than at night [16]. Photoreceptors are unique in that they have evolved mechanisms  
134 responsible for maintaining homeostasis in the presence of light-induced calcium ion  
135 gradients that are magnitudes greater than what other neuronal populations experience  
136 [17, 18]. Mechanisms of light adaptation within photoreceptors include the rapid  
137 (millisecond) closure of TRP channels (facilitated via enzymes scaffolded by *inaD*),  
138 rhodopsin internalization from the rhabdomere membrane (e.g., *arr1*, *arr2*), and calcium

139 efflux (e.g., *calx*) [19, 20]. Acrophase analyses (i.e., time of peak expression) revealed that  
140 circadian transcripts that promote photoreceptor activation ( $\text{Ca}^{2+}$  influx) reach peak  
141 expression during the dark-phase, while genes that terminate the phototransduction  
142 response (i.e., deactivation of rhodopsin mediated signaling) peak in anticipation of the  
143 light-phase (**Fig. 1f and Supplementary Fig. 1j**). These findings provide a potential  
144 mechanistic explanation for the rhythmic response pattern in light-sensitivity observed in  
145 *Drosophila* photoreceptors and suggests that DR's ability to delay visual senescence is  
146 mediated in part by amplifying circadian rhythms within photoceptors (See **Supplemental**  
147 **Discussion 1** for additional interpretations).

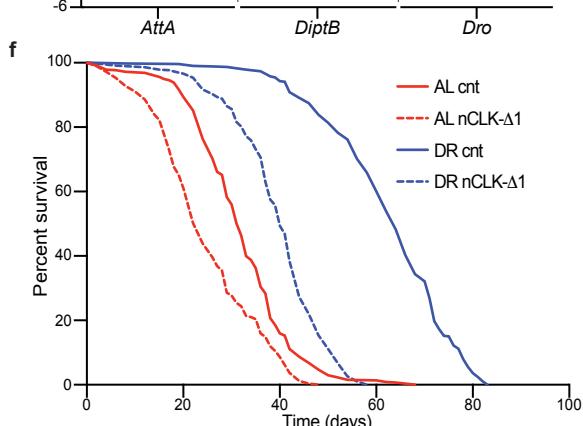
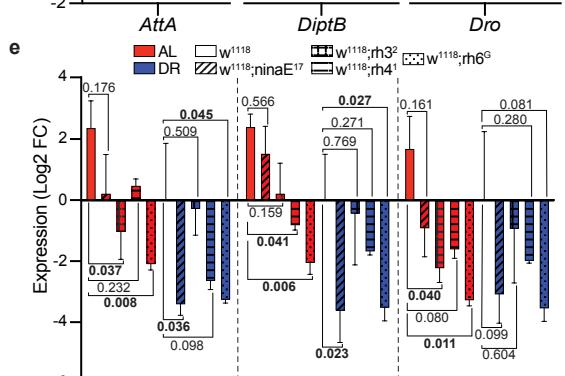
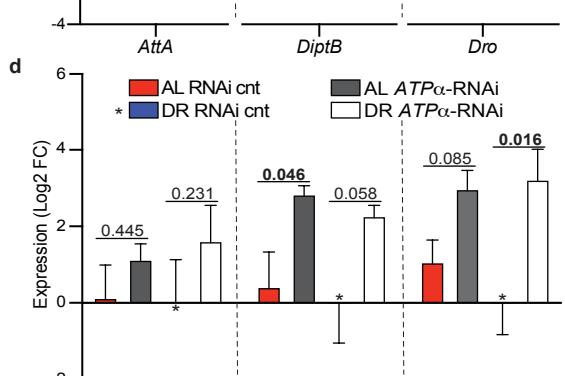
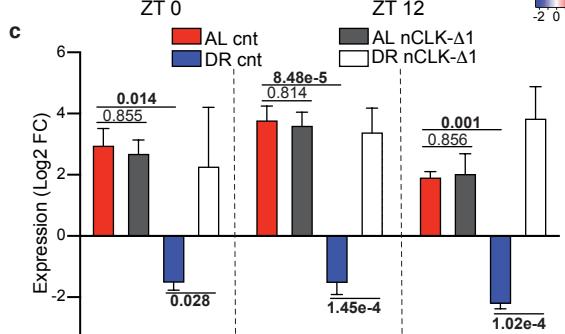
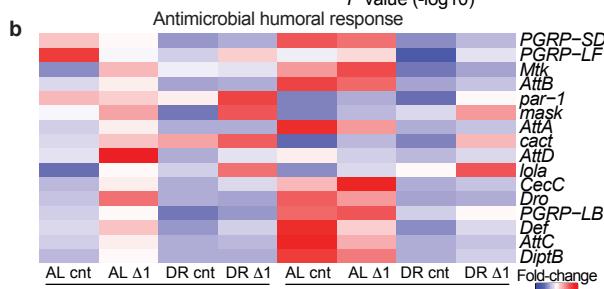
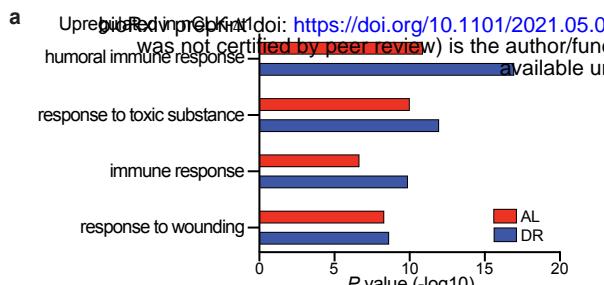
148 To determine if molecular clocks mediate the enhanced rhythmic expression of  
149 phototransduction genes on DR, we measured the transcriptome of fly heads with pan-  
150 neuronal over-expression of a dominant negative form of the core-clock factor, CLK (Elav-  
151 GS-GAL4>UAS-CLK- $\Delta$ 1; denoted nCLK- $\Delta$ 1) (**Supplementary Fig. 2a**). To avoid potential  
152 developmental defects related to Clk disruption, we used a drug-inducible (RU486) "gene-  
153 switch" driver to express CLK- $\Delta$  in adult flies. Genes downregulated in nCLK- $\Delta$ 1 heads  
154 were enriched for light-response pathways, including "response to light stimulus" and  
155 "deactivation of rhodopsin signaling" (**Fig. 2a, b and Supplemental Data 3**). Additionally,  
156 genes that were both circadian in wild-type heads and downregulated in nCLK- $\Delta$ 1 were  
157 highly enriched for homeostatic processes related to eye function (**Supplementary Fig. 2c**

Figure 1. Photoreceptor rhythmic activity is delayed in nCLK-Δ1 flies.



**CLK-dependent manner.** (a) GO enrichment scores corresponding to downregulated light-response genes in heads from RNA-Seq of nCLK-Δ1 (Elav-GS-GAL4>UAS-CLK-Δ1) vs controls. (b) Heatmap of normalized RNA-Seq expression corresponding to the gene-ontology category "Deactivation of rhodopsin mediated signaling" (GO:0016059) in nCLK-Δ1 and controls at zeitgeber times 0 and 12 (lights on and lights off, respectively). (c) Positive phototaxis responses for nCLK-Δ1 flies. For each timepoint results are represented as average percent positive phototaxis +/- SEM ( $n=24$  biological replicates,  $N=480$  flies per condition). (d) Boxplots of electroretinogram amplitudes for nCLK-Δ1 flies and controls at day 14 and 21. (e) Positive phototaxis responses for prCLK-Δ1 flies (Trpl-GAL4; GAL80<sup>ts</sup>> UAS-CLK-Δ1) and control flies (Trpl-GAL4; GAL80<sup>ts</sup>> *CantonS*) reared at 30°C. For each timepoint results are represented as average percent positive phototaxis +/- SEM ( $n=16$  biological replicates,  $N=320$  flies per condition). (f) Boxplots of electroretinogram amplitudes for prCLK-Δ1 and control flies reared at 30°C. Illuminance was set at 150 Lux. (c-f) Pvalues were determined by two-tailed Student's *t*test (unpaired), comparing responses between diet and/or genotype at each timepoint.

158 **and Supplemental Data 4**). Together, this indicates that CLK governs the circadian  
159 transcriptional regulation of many eye-related processes in *Drosophila*.







160         Given DR's ability to improve homeostasis across an array of tissues [21], and its  
161 ability to enhance the circadian rhythmicity of light-response genes, we examined how  
162 diet and clocks influence visual function with age. We longitudinally quantified the  
163 positive phototaxis response of wild-type flies (*Canton-S* and *Oregon-R*) reared on either  
164 AL or DR diets (experimental setup in Supplementary Fig. 2d). Compared to AL-fed flies,  
165 DR slowed the decline in positive phototaxis observed with age (**Supplementary Fig. 2e**,  
166 **f**). Importantly, this effect cannot solely be attributed to diet-dependent changes in  
167 locomotor activity, as climbing activity and phototaxis declined at different rates with age  
168 (**Supplementary Fig. 2g**). Compared to wild-type flies, DR minimally protected *C/k<sup>out</sup>* (*C/k*-  
169 null) flies from age-related declines in phototaxis (**Supplementary Fig. 2h**). *nCLK-Δ1* and  
170 *nCLK-Δ2* (an additional dominant negative *C/k* mutant, *Elav-GS-GAL4>UAS-CLK-Δ2*) flies  
171 displayed accelerated declines in positive phototaxis with age compared to controls (**Fig.**  
172 **2c and Supplementary Fig. 2i**). Since the positive phototaxis assay measures a behavioral  
173 response to light, we next evaluated how diet and CLK directly influence photoreceptor  
174 function with age by performing extracellular electrophysiological recordings of the eye  
175 (electroretinograms, ERG [22]). We observed larger ERG amplitudes, i.e. the light-induced  
176 summation of receptor potentials from the photoreceptors [23], in control flies reared on

177 DR vs AL at day 14 (Fig. 2d). Furthermore, the DR-mediated enhancements in the ERG  
178 amplitudes were significantly reduced in nCLK-Δ1 flies with age (Fig. 2d).

179 Since the Elav-GS-GAL4 driver is expressed in a pan-neuronal fashion (i.e.,  
180 photoreceptors + extra-ocular neurons), we sought to examine how disrupting CLK  
181 function solely within photoreceptors influences visual function with age. To this end, we  
182 crossed UAS-CLK-Δ1 flies with a photoreceptor-specific GAL4 driver line under the  
183 temporal control of the temperature sensitive GAL80 protein (Trp1-GAL4; GAL80<sup>ts</sup>>UAS-  
184 CLK-Δ1, denoted prCLK-Δ1). To avoid disrupting CLK function during development,  
185 prCLK-Δ1 flies were raised at 18°C (GAL80 active, GAL4 repressed) and then transferred  
186 to 30°C (GAL80 repressed, GAL4 active) following eclosion. When compared to control  
187 flies (Trp1-GAL4; GAL80<sup>ts</sup>> *CantonS*), prCLK-Δ1 flies displayed accelerated declines in both  
188 positive phototaxis and ERG amplitude with age, and in a similar fashion to the nCLK-Δ1  
189 flies (Fig. 2e-f). Together, our gene expression, phototaxis, and ERG data indicate that DR  
190 functions in a CLK-dependent manner to delay photoreceptor aging in the fly.

191 ***nCLK-Δ drives a systemic immune response and reduces longevity***

192 Age-related declines in tissue homeostasis are accompanied by elevated immune  
193 responses and inflammation [24, 25]. Interestingly, we found that genes upregulated in  
194 nCLK-Δ1 fly heads were significantly enriched for immune and antimicrobial humoral  
195 responses (Fig. 3a, b). In *Drosophila*, damage-associated molecular patterns can induce a  
196 sterile immune response that is characterized by the expression of anti-microbial peptides



**Figure 3. nCLK-Δ1 flies display elevated immune responses and shortened lifespan.** (a) GO enrichment scores corresponding to upregulated inflammatory genes in heads from RNA-Seq of nCLK-Δ1 vs controls. (b) Heatmap of normalized RNA-Seq expression corresponding to the gene-ontology category "Antimicrobial humoral responses" (GO:0019730) in nCLK-Δ1 and controls. (c) Relative expression of AMP genes (*AttA*, *DiptB*, and *Dro*) calculated by RT-qPCR with mRNA isolated from nCLK-Δ1 bodies. Results are plotted as average Log2 fold-change in expression calculated by the  $\Delta\Delta$ -Ct method, normalized to DR vehicle treated control samples, as well as the housekeeping gene *rp49* +/- SEM ( $n=3$  biological replicates,  $N=30$  flies per biological replicate). (d) Relative mRNA expression of AMP genes calculated by RT-qPCR with mRNA isolated from bodies of eye-specific *ATPα* knockdown flies (GMR-GAL4>UAS-*ATPα*-RNAi) vs RNAi control flies (GMR-GAL4>UAS-*mCherry*-RNAi). Results are plotted as average Log2 fold-change in expression calculated by the  $\Delta\Delta$ -Ct method, normalized to DR RNAi control samples as well as housekeeping gene *rp49* +/- SEM ( $n=3$  biological replicates,  $N=30$  flies per biological replicate). (e) Relative mRNA expression of immune genes (*AttA*, *DiptB*, and *Dro*) calculated by RT-qPCR with mRNA isolated from bodies of *w<sup>1118</sup>* and rhodopsin mutant flies housed in 12:12h LD. Results are plotted as average Log2 fold-change in expression calculated by the  $\Delta\Delta$ -Ct method normalized *w<sup>1118</sup>* DR control samples as well as *rp49* +/- SEM ( $n=3$  biological replicates,  $N=30$  flies per biological replicate). (f) Kaplan-Meyer survival analysis of nCLK-Δ1 flies (Elav-GS-GAL4>UAS-CLK-Δ1). Survival data is plotted as an average of three independent lifespan repeats. Control flies (vehicle treated): AL N=575, DR N=526; nCLK-Δ1 flies (RU486 treated): AL N=570, DR N=565. (c-e) Pvalues were calculated with the pairwise Student's *t*test comparing Log2 fold-changes in expression.

197 (AMPs), similar to the effects from infections by pathogens [26]. We quantified the mRNA  
198 expression of AMPs in the bodies of nCLK- $\Delta$ 1 and nCLK- $\Delta$ 2 flies to determine if neuronal  
199 damage signals propagate throughout the body to drive systemic immune responses; the  
200 *Drosophila* fat body generates high levels of AMPs in response to intrinsic damage signals  
201 [26]. AMP expression (*AttA*, *DiptB*, and *Dro*) was reduced in control flies reared on DR  
202 compared to AL, however nCLK- $\Delta$ 1 and nCLK- $\Delta$ 2 elevated AMP expression on DR (Fig. 3c  
203 and Supplementary Fig. 3a). To further investigate this systemic inflammatory response,  
204 we isolated and quantified hemolymph from nCLK- $\Delta$ 1 and control flies. In agreement with  
205 the transcriptional activation of AMPs in both the heads and bodies of nCLK- $\Delta$ 1 flies, we  
206 found the most highly upregulated protein in nCLK- $\Delta$ 1 hemolymph to be the  
207 antimicrobial peptide, AttC (Supplementary Fig. 3b). Furthermore, we observed an  
208 enrichment for proteins associated with translational activation (e.g., cytoplasmic  
209 translation and ribosomal biogenesis) within the upregulated proteins in the nCLK- $\Delta$ 1  
210 hemolymph, which may reflect the activation of hemocytes, the immune effector cells in  
211 *Drosophila* (Supplemental Data 5) [27]. Taken together, these data demonstrate that  
212 disrupting neuronal CLK function elevates systemic immune responses.

213 To determine if photoreceptor degeneration induces a systemic immune response  
214 in *Drosophila*, we forced photoreceptor degeneration by knocking down *ATP $\alpha$*  within the  
215 eye (GMR-GAL4>UAS-*ATP $\alpha$* -RNAi), and quantified expression of AMPs within the bodies.  
216 *ATP $\alpha$*  encodes the catalytic alpha subunit of the Na<sup>+</sup>K<sup>+</sup>ATPase responsible for

217 reestablishing ion balance in the eye during light responses [28, 29]. Our decision to use  
218 *ATP $\alpha$*  knockdown as a model of photoreceptor degeneration was motivated by previous  
219 reports indicating that its expression is under circadian regulation [30] and that its  
220 knockdown in the eye results in aberrant ion homeostasis that drives age-dependent,  
221 light-independent photoreceptor degeneration [31]. Ocular knockdown of *ATP $\alpha$*   
222 rendered flies blind in both AL and DR conditions compared to controls (**Supplementary**  
223 **Fig. 3c**). Knocking down *ATP $\alpha$*  in the eye also drove the expression of AMPs within the  
224 bodies of flies reared on either an AL or DR diet (**Fig. 3d**). Thus, DR fails to suppress  
225 immune responses in the context of forced photoreceptor degeneration.

226 Since we found that photoreceptor degeneration induced systemic immune  
227 responses, we postulated that reducing phototransduction should reduce inflammation.  
228 To assess how stress from environmental lighting influences immune responses, we  
229 analyzed a circadian microarray dataset comparing gene expression changes in wild-type  
230 (*yw*) heads in flies reared in 12hr light and 12hr darkness (12:12LD) or constant darkness  
231 [32]. We found immune response genes to be among the most highly enriched processes  
232 upregulated in the flies housed in 12:12LD vs constant darkness (**Supplementary Fig. 3d,**  
233 **e and Supplemental Data 8**). We quantified AMPs within the bodies of flies harboring  
234 rhodopsin null mutations to evaluate how the different photoreceptor subtypes influence  
235 systemic immune responses. The *Drosophila* ommatidia consists of eight photoreceptors  
236 (R1-8) that express different rhodopsins with varying sensitivities to distinct wavelengths of

237 light [33]. The R1-6 photoreceptors express the major rhodopsin Rh1, encoded by *ninaE*,  
238 while the R7 photoreceptor expresses either Rh3 or Rh4. The R8 photoreceptor expresses  
239 either Rh5 or Rh6 [34]. The rhodopsin null mutants [*ninaE*[35], *rh3* [36], *rh4* [37], or *rh6*  
240 [38]] displayed reductions in immune marker expression in their bodies compared to *w<sup>1118</sup>*  
241 outcrossed controls (**Fig. 3e**). Taken together, these findings indicate that suppression of  
242 rhodopsin mediated signaling is sufficient to suppress systemic immune responses in  
243 *Drosophila*.

244 Given the strong associations between chronic immune activation and accelerated  
245 aging, we examined the lifespans of nCLK- $\Delta$  flies [24]. Both nCLK- $\Delta$ 1 and nCLK- $\Delta$ 2 flies  
246 displayed significantly shortened lifespans, with a proportionally greater loss in median  
247 lifespan in flies reared on DR compared to AL (**Fig. 3f and Supplementary Fig. 3f-h**). nCLK-  
248  $\Delta$  flies have altered CLK function throughout all neurons, however, it is possible that the  
249 lifespan-shortening effect observed in these lines was substantially driven by loss of CLK-  
250 function within the eye; Others have demonstrated that CLK is highly enriched (>5-fold)  
251 within photoreceptors compared to other neuronal cell types in *Drosophila*  
252 (**Supplementary Fig. 3i**) [5]. Furthermore, over-expressing CLK- $\Delta$ 1 within just  
253 photoreceptors (prCLK- $\Delta$ 1) also shortened lifespan (**Supplementary Fig. 3j**). These findings  
254 argue that neuronal CLK function is required for the full lifespan extension mediated by  
255 DR and indicate that photoreceptor clocks are essential for maintenance of visual function  
256 with age and organismal survival.

257 ***DR protects against lifespan shortening from photoreceptor cell stress***

258 Previous reports have demonstrated that exposure to light can decrease lifespan—

259 extending the daily photoperiod, or housing flies in blue light reduces longevity [39, 40].

260 Since DR delays visual senescence and promotes the rhythmic expression of genes

261 involved in photoreceptor homeostasis (i.e., light adaptation, calcium handling), we

262 investigated how diet influences survival in the context of light and/or phototransduction.

263 To test the interrelationship among diet, light, and survival, we housed *w<sup>1118</sup>* (white-eyed)

264 in either a 12:12 LD cycle or constant darkness. Housing flies in constant darkness

265 extended the lifespan of flies reared on AL, while the lifespans of flies reared on DR were

266 unaffected (Fig. 4a). Constant darkness failed to extend the lifespan of red-eyed (*w<sup>r</sup>*)

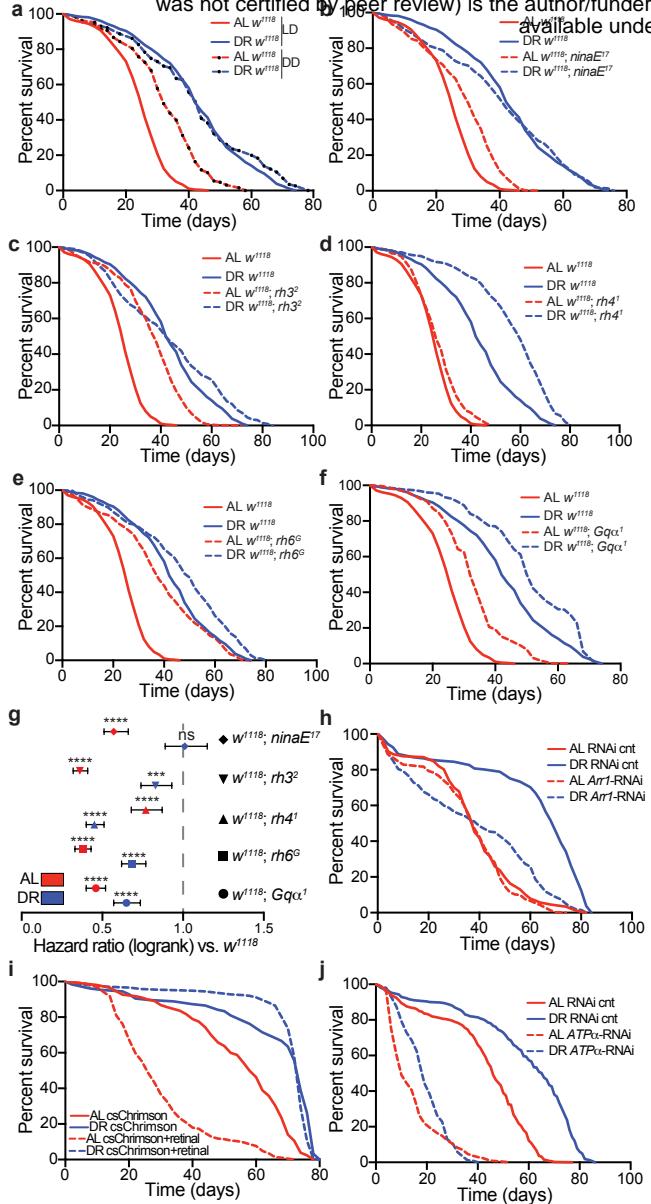
267 *Canton-S* wild-type flies (Supplementary Fig. 4a), suggesting that the ATP-binding

268 cassette transporter encoded by *w*, and the red-pigment within the cone-cells, helps to

269 protect against lifespan shortening from diet- and light-mediated stress [41]. White-eyed,

270 photoreceptor null flies (homozygous for *TRP<sup>P365</sup>* mutation [42]) reared on AL failed to

271 display lifespan extension in constant darkness (Supplementary Fig. 4b), indicating that


272 the lifespan shortening effects of light exposure are primarily mitigated by the

273 photoreceptors.

274 We performed survival analyses in rhodopsin null flies to examine how activation

275 of the different photoreceptor subtypes influence lifespan on AL and DR. In agreement

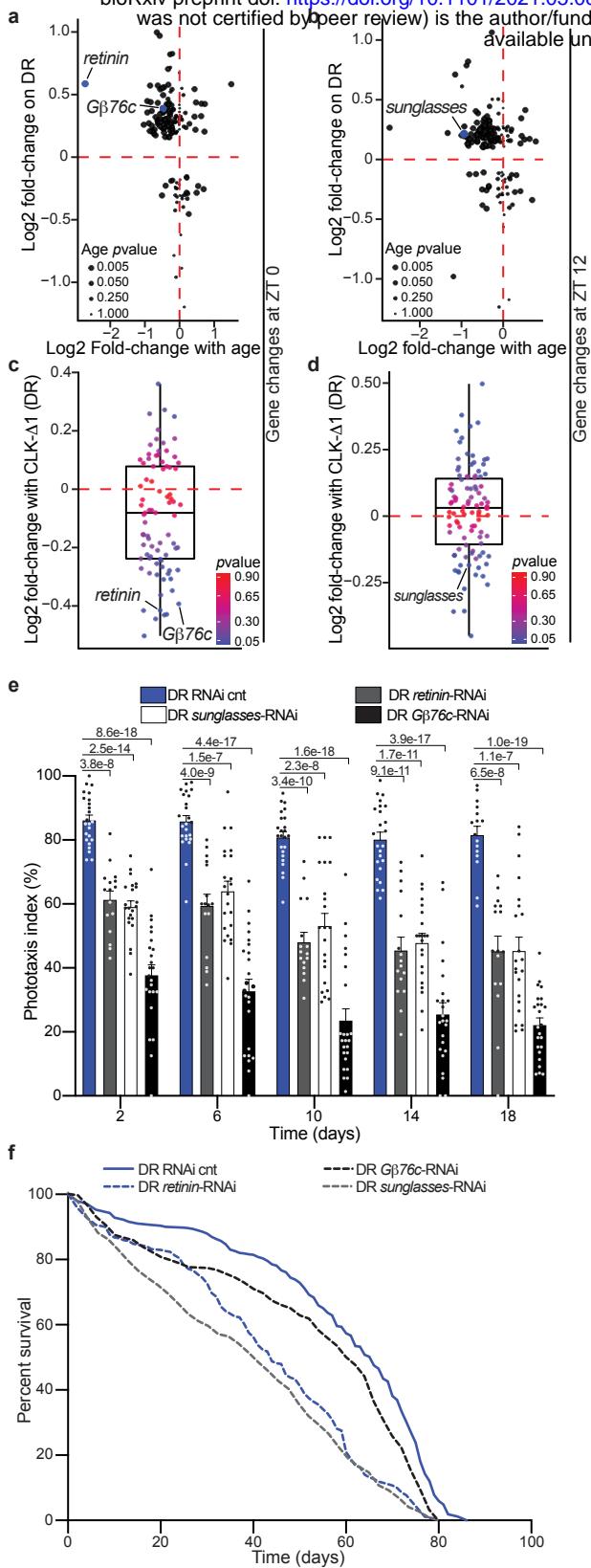
276 with the reduction in systemic immune responses observed in the rhodopsin null strains,



**(g)** Pvalues were determined by Log-rank (Mantel-Cox) test, ns denotes a non-significant pvalues, \*\*\*\* indicates pvalues less than 0.0001.

**Figure 1: Photoreceptor activation modulates lifespan in a diet-dependent fashion.** (a) Survival analysis of *w<sup>1118</sup>* flies housed in 12:12h LD or constant darkness (DD). Survival data is plotted as an average of three independent lifespan repeats. LD housed flies: AL N=560, DR N=584; DD: AL N=460, DR N=462. (b-f) Survival analysis of *w<sup>1118</sup>; ninaE<sup>17</sup>*, *w<sup>1118</sup>; rh3<sup>2</sup>*, *w<sup>1118</sup>; rh4<sup>1</sup>*, *w<sup>1118</sup>; rh6<sup>G</sup>*, and *w<sup>1118</sup>; Gqα<sup>1</sup>* mutants compared to *w<sup>1118</sup>* control flies housed in 12:12h LD. Survival data is plotted as an average of three independent lifespan repeats. \*Survival curves for *w<sup>1118</sup>* are re-plotted (b-f) for visual comparison, and the *w<sup>1118</sup>* and rhodopsin null lifespans repeats were performed simultaneously. All mutant lines were outcrossed to *w<sup>1118</sup>*. *w<sup>1118</sup>; ninaE<sup>17</sup>* flies: AL N=514, DR N=511; *w<sup>1118</sup>; rh3<sup>2</sup>* flies: AL N=543, DR N=597; *w<sup>1118</sup>; rh4<sup>1</sup>* flies: AL N=550, DR N=593; *w<sup>1118</sup>; rh6<sup>G</sup>* flies: AL N=533, DR N=563; *w<sup>1118</sup>; Gqα<sup>1</sup>* flies: AL N=403, DR N=400. (g) Hazard ratios for rhodopsin and Gq mutant flies compared to *w<sup>1118</sup>* control flies (ratios<1 indicate flies that are more likely to survive compared to *w<sup>1118</sup>*). Error bars indicate the 95% confidence interval of the hazard ratios. (h) Survival analysis of eye-specific *arr1*-RNAi knockdown flies vs RNAi control flies. Survival data is plotted as an average of two independent lifespan repeats for *arr1*-RNAi and one independent lifespan replicate for RNAi-controls. RNAi control flies: AL N=177, DR N=161; *arr1*-RNAi flies: AL N=333, DR N=322. (i) Survival analysis of retinal inducible, photoreceptor-specific optogenetic flies (Trp1-GAL4>UAS-csChrimson[red-shifted]) supplemented with retinal or vehicle control and housed in 12:12h red-light:dark. Survival data is plotted as an average of two independent lifespan repeats. Retinal treated flies: AL N=289, DR N=236; Vehicle treated flies: AL N= 256, DR N=126. (j) Survival analysis of eye-specific *ATPα* RNAi knockdown flies vs RNAi control flies. Survival data is plotted as an average of three independent lifespan repeats. RNAi control flies: AL N=493, DR N= 490; *ATPα* RNAi flies: AL N=510, DR N=535. (g) Pvalues were determined by Log-rank (Mantel-Cox) test, ns denotes a non-significant pvalues, \*\*\*\* indicates pvalues less than 0.0001.

277 these flies were also longer lived in comparison to  $w^{1118}$  outcrossed controls (Fig. 4b-e).  
278 Furthermore,  $rh6^G$  mutants, which displayed the largest reductions in inflammation, also  
279 displayed the greatest extension in lifespan compared to the other rhodopsin null lines.  
280  $Gq\alpha^1$  mutants [43], which harbor a mutation in the G-protein that mediates activation of  
281 TRP channels downstream of rhodopsin, also displayed increased longevity compared to  
282 control flies (Fig. 4f). Interestingly, with the exception of Rh4, rhodopsin null mutations  
283 and  $Gq\alpha^1$  mutants primarily extended lifespan on AL, indicated by the hazard ratios in Fig.  
284 4g. We next sought to investigate how increases in rhodopsin-mediated signaling  
285 influence survival. To this end, we knocked down the major arrestin protein, *arr1*, within  
286 the eyes of flies (GMR-GAL4>UAS-*arr1*-RNAi). Arr1 is required for light-mediated  
287 rhodopsin internalization from the rhabdomere membrane into endocytic vesicles, thus  
288 suppressing rhodopsin-mediated signaling and associated  $\text{Ca}^{2+}$ -mediated  
289 phototoxicity/cell death [19, 44, 45]. In agreement with its physiological role in light-  
290 adaptation, we found that *arr1*-RNAi knockdown flies were hypersensitized to light  
291 (Supplementary Fig. 4i). In contrast to the Rhodopsin null strains which displayed greater  
292 proportional improvements in survival on AL vs DR, *arr1*-RNAi knockdown flies displayed  
293 significantly lifespan shortening on DR, while the lifespan on AL was indistinguishable  
294 from the control (Fig. 4h). Together, these data argue that DR-protects against lifespan  
295 shortening downstream of light and/or rhodopsin-mediated signaling in a manner that  
296 requires light-adaptation, and by extension, *arr1*-mediated rhodopsin endocytosis.


297 We utilized an optogenetics approach to examine how chronic photoreceptor  
298 activation influences survival in flies reared on AL or DR. Optogenetics is a powerful tool  
299 for examining how photoreceptor activation/suppression influences lifespan as it allows  
300 for the ability to compare lifespans within flies reared under the same lighting conditions,  
301 thus diminishing potential confounding variables present when comparing lifespan in  
302 different lighting conditions (i.e., LD vs constant darkness), such as extra-ocular effects of  
303 light on survival. To generate optogenetic flies we expressed the red-light-sensitive  
304 csChrimson cation channel [46] within photoreceptors (Trp1-GAL4>UAS-csChrimson). To  
305 activate the csChrimson channels, we housed the optogenetic flies in a 12:12 red-  
306 light:dark cycle and supplemented their food with either all-*trans* retinal (a chromophore  
307 required for full activation of csChrimson channels [47]) or a vehicle control  
308 (**Supplementary Fig. 4c**). Optogenetic activation of the photoreceptors (retinal treated)  
309 drastically reduced AL lifespan compared to vehicle treated controls, while the lifespan on  
310 DR was unaffected (**Fig. 4i**). Retinal did not appear to be toxic to flies lacking csChrimson  
311 channels, as the lifespan of *Canton-S* wild-type flies were indistinguishable between  
312 vehicle and retinal treated groups (**Supplementary Fig. 4d**).

313 Although DR protected flies from lifespan shortening from the optogenetic  
314 activation of photoreceptors, we found that forcing photoreceptor degeneration, by  
315 knocking down *ATPα* in the eye shortened lifespan on both AL and DR (**Fig. 4j**). Similarly,  
316 eye-specific knockdown of *nervana-2* and -3 (*nrv2*, GMR-GAL4>UAS-*nrv2*-RNAi and *nrv3*,

317 GMR-GAL4>UAS-*nrv3*-RNAi), which encode the *Beta* subunit of the Na<sup>+</sup>K<sup>+</sup>ATPase of the  
318 eye [31] also reduced phototaxis responses and shortened lifespan (**Supplementary Fig.**  
319 **4e-h**). Taken together, these data support a model where DR protects flies from lifespan  
320 shortening caused by photoreceptor stress, as chronic photoreceptor activation reduces  
321 survival in flies reared on AL while having minimal to no effect on flies reared on DR.  
322 Inversely, photoreceptor deactivation primarily improves survival of flies reared on AL.

323 ***Eye-specific, CLK-output genes modulate lifespan***

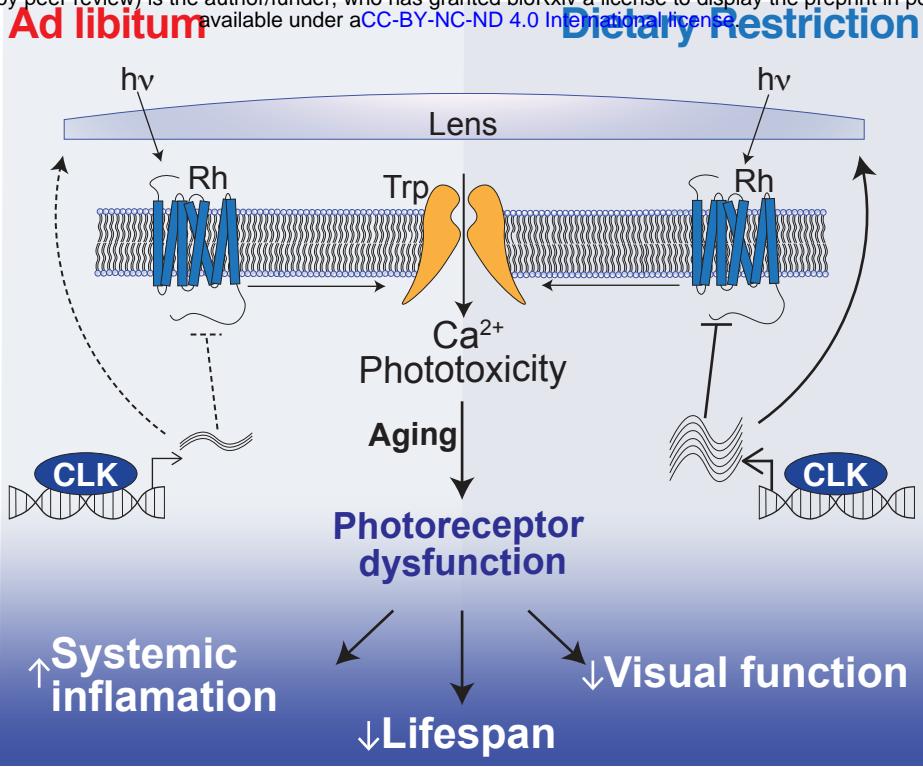
324 We next sought to determine if CLK-output genes in the eye influence age-related visual  
325 declines and lifespan. We employed a bioinformatics approach to identify candidate eye-  
326 specific circadian genes transcriptionally regulated by CLK (**Supplementary Fig. 5a and**  
327 **Supplemental Data 6**). First, we compared age-associated changes in photoreceptor-  
328 enriched gene expression [5] to genes that were differentially expressed on DR compared  
329 to AL. More than half of the photoreceptor-enriched genes that were downregulated with  
330 age were also upregulated on DR at ZT 0 and ZT 12 (**upper left quadrant of Fig. 5a, b and**  
331 **Supplementary Fig. 5a**). We then subset this gene list, selecting just transcripts whose  
332 expression was downregulated with age and upregulated on DR, and examined how their  
333 expression changed in nCLK-Δ1 fly heads (**Supplementary Fig. 5a**). From this analysis, we  
334 identified *Gβ76c*, *retinin*, and *sunglasses* as genes that were significantly downregulated  
335 in nCLK-Δ1 fly heads at ZT 0 and/or ZT 12 (**Fig. 5c, d and Supplementary Fig. 5a, e-g**).  
336 *Gβ76c* encodes the eye-specific G beta subunit that plays an essential role in terminating



**Figure 5. Knockdown of DR-sensitive, eye-specific**

**CLK-output genes reduces survival.** (a-b) Scatterplot of circadian, photoreceptor-enriched gene changes with age in wild-type heads (x-axis: 5- vs 55-day old flies) vs diet-dependent gene expression changes in heads from nCLK-Δ1 RNA-Seq control flies (y-axis: DR- vs AL-minus RU486) at ZT 0 (a) and ZT 12 (b). (c-d) Boxplots of the expression changes in nCLK-Δ1 heads (DR plus- vs DR minus-RU486) at ZT 0 (c) and ZT 12 (d) of genes that were downregulated with age and upregulated on DR (upper left quadrants of Fig. 5a, b). (e) Positive phototaxis responses with eye-specific knockdown of Gβ76c (GMR-GAL4> UAS-Gβ76c-RNAi), retinin (GMR-GAL4>UAS-retinin-RNAi), and sunglasses (GMR-GAL4>UAS-sunglasses-RNAi) compared to RNAi control flies (GMR-GAL4>UAS-mCherry-RNAi) reared on DR. For each timepoint results are represented as average phototaxis response +/- SEM (RNAi control  $n=24$  biological replicates,  $N=480$  flies per condition; Gβ76c RNAi  $n=24$  biological replicates,  $N=480$  flies per condition; retinin RNAi  $n=16$  biological replicates,  $N=384$  flies per condition; sunglasses RNAi  $n=24$  biological replicates,  $N=480$  flies per condition). (f) Survival analysis of eye-specific Gβ76c, retinin, sunglasses, and RNAi knockdown flies compared to RNAi control flies reared on DR. Survival data is plotted as an average of three independent lifespan repeats for RNAi control, sunglasses, and Gβ76c flies and two independent lifespan repeats for retinin RNAi knockdown flies. RNAi-cnt flies:  $N=490$ ; retinin-RNAi flies:  $N=363$ ; sunglasses-RNAi flies:  $N=468$ ; Gβ76c-RNAi flies:  $N=509$ . (e) Pvalues were determined by two-tailed Student's ttest (unpaired) at each timepoint comparing the phototaxis index of RNAi control flies to Gβ76c-, retinin-, and sunglasses-RNAi flies.

337 phototransduction [13, 48]. *Retinin* encodes one of the four most highly expressed  
338 proteins in the lens of the *Drosophila* compound eye [49]. Furthermore, *retinin* functions  
339 in the formation of corneal nanocoatings, knockdown of which results in degraded  
340 nanostructures and a reduction in their anti-reflective properties [50]. *Sunglasses*, also  
341 called *Tsp42Ej*, encodes for a lysosomal tetraspanin concentrated in the retina that  
342 protects against photoreceptor degeneration by degrading rhodopsin in response to light  
343 [51]. We analyzed a published CLK Chromatin Immunoprecipitation (ChIP-chip) dataset in  
344 flies and observed rhythmic CLK binding at the 5'-untranslated region of *sunglasses* in  
345 *Drosophila* eye tissue [52] (**Supplementary Fig. 5h and Supplementary Table 1**), which  
346 supports our bioinformatics approach and provides further evidence that *sunglasses* is an  
347 eye-specific CLK-output gene. Eye-specific knockdown of *Gβ76c* (GMR-GAL4>UAS-  
348 *Gβ76c*-RNAi), *retinin* (GMR-GAL4>UAS-*retinin*-RNAi), and *sunglasses* (GMR-GAL4>UAS-  
349 *sunglasses*-RNAi) reduced phototaxis responses (**Fig. 5e and Supplementary Fig. 5i**), and  
350 shortened lifespan in comparison to RNAi control flies (GMR-GAL4>UAS-*mCherry*-RNAi)  
351 (**Fig. 5f, Supplementary Fig. 5j**). These findings indicate that DR and CLK function together  
352 in the regulation of eye-specific circadian genes involved in the negative regulation of  
353 rhodopsin signaling (i.e., phototransduction termination). Furthermore, these  
354 observations support previous findings that lifespan extension upon DR requires  
355 functional circadian clocks [10, 53], and establishes CLK-output genes as diet-dependent  
356 regulators of eye aging and lifespan in *Drosophila*.


357 **Discussion**

358 Progressive declines in circadian rhythms are one of the most common hallmarks of aging  
359 observed across most lifeforms [54]. Quantifying the strength, or amplitude, of circadian  
360 rhythms is an accurate metric for predicting chronological age [55]. Many cellular  
361 processes involved in aging (e.g., metabolism, cellular proliferation, DNA repair  
362 mechanisms, etc.) display robust cyclic activities. Both genetic and environmental  
363 disruptions to circadian rhythms are associated with accelerated aging and reduced  
364 longevity [56, 57]. These observations suggest that circadian rhythms may not merely be  
365 a biomarker of aging; rather, declines in circadian rhythms might play a causal role. The  
366 observation that DR and DR-memetics, such as calorie restriction and time-restricted  
367 feeding, improve biological rhythms suggests that clocks may play a fundamental role in  
368 mediating their lifespan-extending benefits.

369 Herein, we identified circadian processes that are selectively amplified by DR. Our findings  
370 demonstrate that DR amplifies circadian homeostatic processes in the eye, some of which  
371 are required for DR to delay visual senescence and improve longevity in *Drosophila*. Taken  
372 together, our data demonstrate that photoreceptor stress has deleterious effects on  
373 organismal health; disrupting CLK function and/or overstimulation of the photoreceptors  
374 induced a systemic immune response and reduced longevity. Our findings establish the  
375 eye as a diet-sensitive regulator of lifespan. DR's neuroprotective role in the  
376 photoreceptors appears to be mediated via the molecular clock, which promotes the

377 rhythmic oscillation of genes involved in the suppression of phototoxic cell stress (Fig. 6  
378 **and Supplemental Discussion 1**). Our data also support the idea that age-related declines  
379 in the visual system impose a high cost on an organism. Perhaps this is why a number of  
380 long-lived animals have visual systems that have undergone regressive evolution (e.g.,  
381 cave-dwelling fish and naked-mole rats) [58]. Failing to develop a visual system may help  
382 these organisms avoid age-related damage and inflammation caused by retinal  
383 degeneration. Ultimately, developing a visual system, which is critical for reproduction  
384 and survival, may be detrimental to an organism later in life. Thus, vision may be an  
385 example of an antagonistically pleiotropic mechanism that shapes lifespan.

386



**Fig. 6. Dietary restriction extends lifespan by promoting rhythmic homeostatic processes in the eye.** DR promotes CLK-output processes in the eye that suppress light/Ca<sup>2+</sup>-mediated phototoxicity to suppress systemic inflammation, delay visual senescence, and improve survival.

387 **Methods**

388 **Fly stocks:** The genotypes of the *Drosophila* lines used in this study are listed in  
389 **Supplemental Table 2.** The following lines were obtained from the Bloomington  
390 *Drosophila* Stock Center: *Oregon R.* (25125), GMR-GAL4 (1104), Elav-GS-GAL4 (43642),  
391 Trpl-GAL4 (52274), *Cik*<sup>OUT</sup> (56754), UAS-csChrimson (55134), UAS-CLK-Δ1 (36318), UAS-  
392 CLK-Δ2 (36319), *Gβ76c*-RNAi (28507), *tsp42Ej/sunglasses*-RNAi (29392), *retinin*-RNAi  
393 (57389), *ATPα*-RNAi (28073), *nrv2*-RNAi (28666), *nrv3*-RNAi (60367), and mCherry-RNAi  
394 (Bloomington RNAi-cnt, 35785). The following lines were obtained from the Vienna  
395 *Drosophila* Resource Center: *arr1*-RNAi (22196), *RNAi*-cnt (empty vector, 60100). The  
396 following lines were received from the laboratory of Craig Montell: *CantonS*, *w*<sup>1118</sup>, *w*<sup>1118</sup>;  
397 *ninaE*<sup>17</sup>, *w*<sup>1118</sup>, *rh3*<sup>2</sup>, *w*<sup>1118</sup>, *rh4*<sup>1</sup>, *w*<sup>1118</sup>, *rh6*<sup>G</sup>, *w*<sup>1118</sup>; *Gqα*<sup>1</sup>, and *TRP*<sup>365</sup>. The following lines were  
398 outcrossed to *w*<sup>1118</sup> for this manuscript: UAS-CLK-Δ1<sup>OC</sup> and *CantonS*<sup>OC</sup>. The Trpl-GAL4 line  
399 was recombined with GAL80 for this manuscript: Trpl-GAL4; GAL80<sup>ts</sup>.

400

401 **Fly husbandry and survival analyses:** All flies were maintained at 25±1 °C, 60% humidity  
402 under a 12h:12h LD cycle (~750lux, as measured with a Digital Lux Meter, Dr. Meter Model  
403 LX1330B) unless otherwise indicated. Fly stocks and crosses were maintained on a  
404 standard fly media as described previously [59]. Briefly, standard fly media consisted of  
405 1.5% yeast extract, 5% sucrose, 0.46% agar, 8.5% of corn meal, and 1% acid mix (a 1:1 mix  
406 of 10% propionic acid and 83.6% phosphoric acid). Fly bottles were seeded with live yeast

407 prior to collecting virgins or setting up crosses. Mated adult progeny were then  
408 transferred to *ad libitum* (AL) or dietary restriction (DR) media within three days of  
409 eclosion. Adult flies used in experiments were transferred to fresh media every 48h at  
410 which point deaths were recorded for survival analysis. AL and DR fly media differed only  
411 in its percentage of yeast extract, respectively containing 5% or 0.5% (Yeast Extract, B.D.  
412 Bacto, Thermo Scientific 212720, Cat no. 90000-722). *Optogenetic experiments*: For  
413 experiments using the csChrimson channel rhodopsin [46], adult flies were transferred to  
414 media supplemented with 50µM all-trans-retinal (Sigma Aldrich, R2500-1G) or drug  
415 vehicle (100% ethanol), and maintained under a 12h:12h red light:dark cycle, with ~10lux  
416 of red light (~590nm) during the light phase. *Elav-GeneSwitch flies*: GeneSwitch [60], adult  
417 flies were transferred to media supplemented with 200µM RU486 (Mifepristone, United  
418 States Biological), indicated as either AL+ or DR+, for post-developmental induction of  
419 transgenic elements; isogenic control flies were transferred to food supplemented with a  
420 corresponding concentration of drug vehicle (100% ethanol), indicated as either AL- or  
421 DR-. *prCLK-Δ1 experiments*: GAL80 temperature sensitive crosses were set in bottles at  
422 25°C, 60% humidity under a 12h:12h LD cycle for four days. Parental flies were removed,  
423 and the bottles were transferred to 18°C for approximately three-weeks to suppress GAL4  
424 activity throughout development. After eclosion, the F1 generations were sorted onto AL  
425 or DR food the flies were maintained at 30°C to de-repress GAL80 and activate GAL4 (60%  
426 humidity under a 12h:12h LD cycle) for the remainder of their lifespans. The F1

427 generations for these experiments share the same genetic background, as both the UAS-  
428 CLK- $\Delta$ 1 and the *CantonS* control lines were fully outcrossed to the same *w<sup>1118</sup>* strain prior  
429 to setting up the cross with Trp1-GAL4; GAL80<sup>ts</sup>.

430

431 Circadian time-course expression analysis: Mated *Canton-S* females were reared on AL or  
432 DR diets for seven days at 25 $\pm$ 1 °C, under a 12:12h light-dark (LD) regimen. Beginning on  
433 the seventh day, four independent biological replicates (per diet/timepoint) of  
434 approximately 35 flies were collected on dry ice every four-hours for 20-hours starting at  
435 ZT 0 (six total timepoints, 48 total samples). RNA extraction, DNA amplification/labeling,  
436 and gene expression arrays were performed following the same protocols as in Katewa *et*  
437 *al.*, 2012 [61]. In summary, RNA was isolated from whole fly lysates with Qiagen's RNeasey  
438 Lipid Tissue Mini Kit (74804) and RNA quantity and quality were accessed with a Nanodrop  
439 and Agilent's bioanalyzer (RNA 600 Nano Kit (5067-15811)). DNA amplification from total  
440 RNA was performed using Sigma's TransPlex Complete Whole Transcriptome  
441 Amplification Kit (WTA2) and purified with Qiagen's QIAquick PCR Purification Kit (28104).  
442 Gene expression labeling was performed with NimbleGen One-Color DNA Labeling Kit  
443 (05223555001) and hybridized to NimbleGen 12-Plex gene expression arrays. Arrays were  
444 quantitated with NimbleGen's NimbleScan2 software, and downstream expression  
445 analyses were conducted in R (<http://www.r-project.org>). Transcript-level expression from  
446 the four independent biological replicates were averaged for each time-point.

447

448 nCLK-Δ1 RNA-Seq analyses: nCLK-Δ1 (Elav-GS-GAL4>UAS-nCLK-Δ1) adult flies were  
449 developed on standard stock food (1.5% yeast-extract) for four days. Three independent  
450 biological replicates of 100 mated female flies were then reared on AL or DR diets treated  
451 with RU486 or vehicle control at  $25 \pm 1$  °C, under a 12:12h LD regimen. Diets were changed  
452 approximately every 48-hours, until the seventh day at which point flies were flash frozen  
453 on dry-ice at ZT 0 and ZT 12 (lights-on and -off, respectively). See Supplemental Fig. 2a  
454 for RNA-Seq. experimental design. *RNA-extraction*: Frozen flies were vortexed to remove  
455 heads and mRNA from each biological replicate of pooled heads was isolated with the  
456 Quick-RNA MiniPrep Kit (Zymo Research #11-328), per manufacturers' instructions.  
457 *Fragment library preparation and deep sequencing*: Library preparation was performed  
458 by the Functional Genomics Laboratory (FGL), a QB3-Berkeley Core Research Facility at  
459 University of California, Berkeley. cDNA libraries were produced from the low-input RNA  
460 using the Takara SMART-Seq v4 Ultra-low input RNA kit. An S220 Focused-Ultrasonicator  
461 (Covaris®) was used to fragment the DNA, and library preparation was performed using  
462 the KAPA hyper prep kit for DNA (KK8504). Truncated universal stub adapters were used  
463 for ligation, and indexed primers were used during PCR amplification to complete the  
464 adapters and to enrich the libraries for adapter-ligated fragments. Samples were checked  
465 for quality on an AATI (now Agilent) Fragment Analyzer. Samples were then transferred  
466 to the Vincent J. Coates Genomics Sequencing Laboratory (GSL), another QB3-Berkeley

467 Core Research Facility at UC Berkeley, where Illumina sequencing library molarity was  
468 measured with quantitative PCR with the Kapa Biosystems Illumina Quant qPCR Kits on a  
469 BioRad CFX Connect thermal cycler. Libraries were then pooled evenly by molarity and  
470 sequenced on an Illumina NovaSeq6000 150PE S4 flowcell, generating 25M read pairs per  
471 sample. Raw sequencing data was converted into fastq format, sample specific files using  
472 the Illumina bcl2fastq2 software on the sequencing centers local linux server system. *Read*  
473 *alignment and differential expression analyses*: Raw fastq reads were filtered by the  
474 Trimmomatic software [62] (Trimmomatic-0.36) to remove Illumina-specific adapter  
475 sequences and the minimal length was set to 36 (MINLEN) for trimming sequences. The  
476 paired end filtered reads were then aligned to the *D. Melanogaster* dm6 genome (BDGP  
477 Release 6 + ISO1 MT/dm6) by HISAT2 [63] to generate BAM files with the specific strand  
478 information set to "Reverse". Count files were then generated by featureCounts [64] and  
479 the *D. Melanogaster* reference genome was utilized as the gene annotation file with  
480 specific strand information set to "stranded (Reverse)". Resulting count files (tabular  
481 format) were then analyzed with DEseq2 [65] with fit-type set to "local", and *pvalues* of  
482 less than 0.05 were considered differentially expressed between factor levels. Normalized  
483 count reads were outputted for visualization of expression (heatmaps), and Supplemental  
484 Data Files 3a contains normalized count reads across all experimental samples. *UCSC*  
485 *genome browser visualization*: The makeUCSCfile software package from HOMER was

486 utilized to generate bedGraph files for visualizing changes in tag density at exon 2 of *c/k*  
487 comparing nCLK-Δ1 and control samples (Supplementary Fig. 2B).

488

489 Heatmap visualizations: We employed the heatmap2 function from R gplots package to  
490 visualize bioinformatics data. Data were not clustered, and data were scaled by row for  
491 normalization across time-points.

492

493 Electroretinogram assays: ERGs were performed and analyzed in two independent  
494 laboratories. ERGs were recorded for nCLK-Δ1 flies reared on AL or DR diets supplemented  
495 with vehicle or RU486 at day 14 at the Baylor College of Medicine (BCM), and at day 21  
496 at the University of California, Santa Barbara (UCSB). ERGs were recorded for prCLK-Δ1  
497 flies at UCSB reared on AL or DR and maintained at either 18°C or 30°C. *BCM*: ERG  
498 recordings were performed as in Wang *et al.*, 2014 [66]. Flies were glued on a glass slide.  
499 A recording electrode was placed on the eye and a reference electrode was inserted into  
500 the back of the fly head. Electrodes were filled with 0.1 M NaCl. During the recording, a  
501 1 s pulse of light stimulation was given. The ERG traces of at least eight flies per  
502 genotype/diet were recorded and analyzed by LabChart8 software (AD Instruments).  
503 *UCSB*: ERG recordings were performed as in Wes *et al.*, 1999 [67]. Two glass electrodes  
504 were filled with Ringer's solution and electrode cream was applied to immobilized flies. A  
505 reference electrode was placed on the thorax, while the recording electrode was placed

506 on the eyes. Flies were then exposed to a 10s pulse of ~200lux white light, a light intensity  
507 that is comparable to the phototaxis assay. An EI-210 amplifier (Warner Instruments) was  
508 used for amplifying the electrical signal from the eye after light stimulation, and the data  
509 were recorded using a Powerlab 4/30 device along with the LabChart 6 software (AD  
510 Instruments). Raw data were then uploaded into R-statistical software for plotting and  
511 statistical analysis. All electroretinograms were performed between ZT4-8 or ZT12-14.

512

513 Positive phototaxis assay: Positive phototaxis was performed using an adapted protocol  
514 from Vang *et al.*, 2014 [68] (Fig S2D). Phototaxis measurements were recorded  
515 longitudinally on populations of female flies aged on either AL or DR food (with or without  
516 200 $\mu$ M RU486 when indicated) at a density of 10-25 flies per tube prior to and after  
517 phototaxis measurements. On the day of phototaxis recording, eight groups of flies (four  
518 AL and four DR groups) were placed in separate 2.5cm x 20cm tubes (created from three  
519 enjoined narrow fly vials [Genesee Scientific]) and dark-adapted for 15-minutes prior to  
520 light exposure (no food was available in the vials during phototaxis assays). Flies were  
521 then gently tapped to the bottom of the tube, placed horizontally, and exposed to white  
522 light from an LED strip (Ustellar, UT33301-DW-NF). A gradient of light intensity was  
523 created, with 500lux at the nearest point in the fly tube to the light source and 150lux at  
524 the furthest point. Phototaxis activity was recorded by video at 4K resolution (GoPro,  
525 Hero5 black). Positive phototaxis was scored manually as the percentage of flies that had

526 traveled >19cm toward the light source in three 15s intervals (15s, 30s, and 45s).  
527 "Phototaxis index" was calculated by averaging the percent of positive phototaxis for each  
528 vial at the three 15s intervals. To control for light-independent wandering activity, a  
529 phototaxis index was also calculated when the light source was placed in parallel to the  
530 fly tube, such that all parts of the tube were equally illuminated with 500lux. \*Normalizing  
531 phototaxis responses to wandering activity failed to significantly affect phototaxis index,  
532 data not shown.

533

534 RNA extraction and cDNA preparation: Flies were maintained on AL or DR for the  
535 indicated amount of time, then flash frozen on dry ice. Heads were separated from bodies  
536 (thorax and abdomen) by vigorous shaking. Flies were then ground using a hand-held  
537 homogenizer at room temperature following MiniPrep instructions. Total RNA was  
538 isolated using the Quick-RNA MiniPrep Kit (Zymo Research, 11-328). In brief, flies were  
539 maintained on AL or DR for the indicated amount of time, then flash frozen on dry ice.  
540 Heads were separated from bodies (thorax and abdomen) by vigorous shaking. Flies were  
541 then ground using a hand-held homogenizer at room temperature following MiniPrep  
542 instructions. RNA was collected into 30 $\mu$ l DNase/RNase-free water and quantified using  
543 the NanoDrop 1000 Spectrophotometer (Thermo Scientific). For each experiment, 120-  
544 180 age-, genotype-, and diet-matched flies were collected, and three independent RNA  
545 extractions were performed. To extract RNA from heads, 40-60 flies were used; to extract

546 RNA from bodies, 20-30 flies were used. *cDNA preparation*: The iScript Reverse  
547 Transcription Supermix for RT-qPCR (Bio-Rad, 1708841) was used to generate cDNA from  
548 RNA extracted from heads and bodies. For each group, 1 µg of total RNA was placed in a  
549 volume of 4µl iScript master mix, then brought to 20µl with DNase/RNase-free water. A  
550 T1000 thermocycler (BioRad) was used for first-strand RT-PCR reaction following iScript  
551 manufacturers' instructions—priming step (5min at 25°C), reverse transcription (30min at  
552 42°C), and inactivation of the reaction (5min at 85°C).

553 Real-time quantitative PCR: Reactions were performed in a 384-well plate. Each reaction  
554 contained 2µl of 1:20 diluted cDNA, 1µl of primers (forward and reverse at 10µM), 5µl  
555 SensiFAST SYBR Green No-ROX Kit (BIOLINE, BIO-98020), and 2µl of DNase/RNase-free  
556 water. The qPCR reactions were performed with a Light Cycler 480 Real-Time PCR machine  
557 (Roche Applied Science) with the following run protocol: pre-incubation (95°C for 2 min),  
558 forty PCR cycles of denaturing (95°C for 5s, ramp rate 4.8°C/s), and annealing and  
559 extension (60°C for 20 s, ramp rate 2.5°C/s).

560

561 Hemolymph Mass spectrometry: *Proteomic sample preparation*: nCLK-Δ1 female flies  
562 (Elav-GeneSwitch-GAL4>UAS-nCLK-Δ1) were reared on AL diet plus RU486 or vehicle  
563 control (N=300 flies per biological replicate, n=3 biological replicates). At day 14, flies  
564 were snap frozen on dry ice and transferred to pre-chilled vials. The vials were vortexed  
565 for 5-10s to remove heads and the frozen bodies were transferred to room temperature

566 vials fitted with 40 $\mu$ m filters. Headless bodies were thawed at room temperature for 5  
567 minutes and spun at 5000 rpm for 10min at 4 °C. Following the spin, hemolymph collected  
568 at the bottom of each vial and the bodies remained within the filters. *Digestion*. A  
569 Bicinchoninic Acid protein assay (BCA) was performed for each of the hemolymph samples  
570 and a 100 $\mu$ g aliquot was used for tryptic digestion for each of the 6 samples. Protein  
571 samples were added to a lysis buffer containing a final concentration of 5% SDS and 50  
572 mM triethylammonium bicarbonate (TEAB), pH ~7.55. The samples were reduced in 20  
573 mM dithiothreitol (DTT) for 10 minutes at 50° C, subsequently cooled at room temperature  
574 for 10 minutes, and then alkylated with 40 mM iodoacetamide (IAA) for 30 minutes at  
575 room temperature in the dark. Samples were acidified with a final concentration of 1.2%  
576 phosphoric acid, resulting in a visible protein colloid. 90% methanol in 100 mM TEAB was  
577 added at a volume of 7 times the acidified lysate volume. Samples were vortexed until the  
578 protein colloid was thoroughly dissolved in the 90% methanol. The entire volume of the  
579 samples was spun through the micro S-Trap columns (Protifi) in a flow-through Eppendorf  
580 tube. Samples were spun through in 200  $\mu$ L aliquots for 20 seconds at 4,000 x g.  
581 Subsequently, the S-Trap columns were washed with 200  $\mu$ L of 90% methanol in 100 mM  
582 TEAB (pH ~7.1) twice for 20 seconds each at 4,000 x g. S-Trap columns were placed in a  
583 clean elution tube and incubated for 1 hour at 47° C with 125  $\mu$ L of trypsin digestion buffer  
584 (50 mM TEAB, pH ~8) at a 1:25 ratio (protease:protein, wt:wt). The same mixture of trypsin  
585 digestion buffer was added again for an overnight incubation at 37° C.

586 Peptides were eluted from the S-Trap column the following morning in the same elution  
587 tube as follows: 80  $\mu$ L of 50 mM TEAB was spun through for 1 minute at 1,000 x g. 80  $\mu$ L  
588 of 0.5% formic acid was spun through next for 1 minute at 1,000 x g. Finally, 80  $\mu$ L of 50%  
589 acetonitrile in 0.5% formic acid was spun through the S-Trap column for 1 minute at 4,000  
590 x g. These pooled elution solutions were dried in a speed vac and then re-suspended in  
591 0.2% formic acid. *Desalting*: The re-suspended peptide samples were desalted with stage  
592 tips containing a C18 disk, concentrated and re-suspended in aqueous 0.2% formic acid  
593 containing "Hyper Reaction Monitoring" indexed retention time peptide standards (iRT,  
594 Biognosys). *Mass spectrometry system*: Briefly, samples were analyzed by reverse-phase  
595 HPLC-ESI-MS/MS using an Eksigent Ultra Plus nano-LC 2D HPLC system (Dublin, CA) with  
596 a cHiPLC system (Eksigent) which was directly connected to a quadrupole time-of-flight  
597 (QqTOF) TripleTOF 6600 mass spectrometer (SCIEX, Concord, CAN). After injection,  
598 peptide mixtures were loaded onto a C18 pre-column chip (200  $\mu$ m x 0.4 mm ChromXP  
599 C18-CL chip, 3  $\mu$ m, 120  $\text{\AA}$ , SCIEX) and washed at 2  $\mu$ l/min for 10 min with the loading  
600 solvent (H<sub>2</sub>O/0.1% formic acid) for desalting. Subsequently, peptides were transferred to  
601 the 75  $\mu$ m x 15 cm ChromXP C18-CL chip, 3  $\mu$ m, 120  $\text{\AA}$ , (SCIEX), and eluted at a flow rate  
602 of 300 nL/min with a 3 h gradient using aqueous and acetonitrile solvent buffers. *Data-*  
603 *dependent acquisitions (for spectral library building)*: For peptide and protein  
604 identifications the mass spectrometer was operated in data-dependent acquisition [51]  
605 mode, where the 30 most abundant precursor ions from the survey MS1 scan (250 msec)

606 were isolated at 1 m/z resolution for collision induced dissociation tandem mass  
607 spectrometry (CID-MS/MS, 100 msec per MS/MS, 'high sensitivity' product ion scan  
608 mode) using the Analyst 1.7 (build 96) software with a total cycle time of 3.3 sec as  
609 previously described [69]. *Data-independent acquisitions*: For quantification, all peptide  
610 samples were analyzed by data-independent acquisition (DIA, e.g. SWATH), using 64  
611 variable-width isolation windows [70, 71]. The variable window width is adjusted  
612 according to the complexity of the typical MS1 ion current observed within a certain m/z  
613 range using a DIA 'variable window method' algorithm (more narrow windows were  
614 chosen in 'busy' m/z ranges, wide windows in m/z ranges with few eluting precursor ions).  
615 DIA acquisitions produce complex MS/MS spectra, which are a composite of all the  
616 analytes within each selected Q1 m/z window. The DIA cycle time of 3.2 sec included a  
617 250 msec precursor ion scan followed by 45 msec accumulation time for each of the 64  
618 variable SWATH segments.

619

620 Identification of photoreceptor enriched CLK-output genes: Diagram of bioinformatics  
621 steps reported in Supplementary Fig. 5A. Gene-lists are reported in **Supplemental Data 6**.  
622 We identified the top 1,000 photoreceptor-enriched genes from Charlton-Perkins *et al.*,  
623 2017 [72] (GSE93782). We then filtered this list for genes that oscillate in a circadian  
624 fashion, and that are downregulated with age from Kuintzle *et al.*, 2017 [15] (GSE81100).  
625 Approximately 1/3 of the photoreceptor enriched genes (366 genes) were expressed in a

626 circadian fashion in young wild-type heads and approximately one-half of these (172  
627 genes) displayed a significant loss in expression with age (5- vs 55-day old heads). We  
628 further analyzed the remaining gene lists to identify those that are significantly  
629 upregulated on DR compared to AL at either ZT 0 or ZT 12 from control (vehicle treated)  
630 samples from our nCLK-Δ1 RNA-Seq analyses. For the final filtering step, we analyzed the  
631 genes that were significantly downregulated in nCLK-Δ1 on DR (RU486 vs vehicle treated  
632 controls), resulting in the identification of *Gβ76c*, *retinin*, and *sunglasses*.

633

#### 634 **Statistical analysis**

635 The individual biological replicates "n" and the number of individual flies "N" is denoted  
636 in each figure legend along with the particular statistical test utilized. The *pvalue* statistics  
637 are included in each figure. All error bars are represented as standard error of the mean  
638 (SEM), and all graphs were generated in PRISM 9 (GraphPad). The experiments in this  
639 manuscript were performed with populations of female flies (i.e., typically greater than 20  
640 flies per technical replicate).

641 Time-course microarray analyses: Four independent biological replicates (per  
642 diet/timepoint) of approximately 35 *CantonS* female flies were collected on dry ice every  
643 four-hours for 20-hours starting at ZT 0 (six total timepoints, 48 total samples). Differential  
644 expression was determined by two-tailed Student's *t*test (paired) comparing the averaged  
645 transcript-level expression values between AL and DR samples across all timepoints, and

646 *p*values less than 0.05 were considered significant. The JTK\_CYCLE algorithm [73] (v3.0)  
647 was utilized to identify circadian transcripts from the AL and DR time-course expression  
648 arrays. Transcript level expression values for each of the four biological replicates (per  
649 timepoint/diet) were used as input for JTK\_CYCLE, and period length was set to 24-hours.  
650 We defined circadian transcripts as those displaying a JTK\_CYCLE *p*value of less than 0.05.  
651 Subsequent analyses compared diet-dependent changes in JTK\_CYCLE outputs (phase  
652 and amplitude).

653 nCLK-Δ1 RNA-Seq: Three independent biological replicates of 100 mated female adult  
654 flies were utilized per genotype/diet/time-point. DEseq2 software [65] was utilized and  
655 *p*values of less than 0.05 were considered differentially expressed between factor levels.  
656 ERG responses: For ERG experiments we quantified responses from 6-15 individual flies  
657 per standards in the field. Statistical significance was determined by two-tailed Student's  
658 *t*test (unpaired), comparing ERG responses between diet and genotypes. Full ERG statistics  
659 are reported in **Supplemental Data 10**.

660 Survival analyses: The Log-rank (Mantel-Cox) test was used to determine statistical  
661 significance comparing average lifespan curves from a minimum of two independent  
662 lifespan replicates. Hazard Ratios (logrank) were also utilized to determine the probability  
663 of death across genotypes, lighting conditions, and diet. Detailed Log-rank and hazard  
664 ratios for each lifespan are reported in **Supplemental Data 7**.

665 Positive phototaxis assay: Statistical significance for phototaxis index at each timepoint  
666 were calculated with the Student's *t*test (two-tailed, un-paired). 2way ANOVA or mixed-  
667 effects models were performed to determine statistical significance between diet,  
668 genotype, or time interactions. Full statistical output (2way ANOVA and *t*test) for all  
669 phototaxis experiments is reported in **Supplemental Data 9**.

670 Real time quantitative PCR: Fold-change in gene expression was calculated using the  $\Delta\Delta Ct$   
671 method and the values were normalized using *rp49* as an internal control. *P*values were  
672 calculated with the pairwise Student's *t*-test comparing Log2 fold-changes in expression.

673 Mass-spectrometric data processing, quantification and bioinformatics: Mass  
674 spectrometric data-dependent acquisitions [51] were analyzed using the database search  
675 engine ProteinPilot (SCIEX 5.0 revision 4769) using the Paragon algorithm (5.0.0.0,4767).  
676 Using these database search engine results a MS/MS spectral library was generated in  
677 Spectronaut 14.2.200619.47784 (Biognosys). The DIA/SWATH data was processed for  
678 relative quantification comparing peptide peak areas from various different time points  
679 during the cell cycle. For the DIA/SWATH MS2 data sets quantification was based on XICs  
680 of 6-10 MS/MS fragment ions, typically y- and b-ions, matching to specific peptides  
681 present in the spectral libraries. Peptides were identified at  $Q < 0.01\%$ , significantly  
682 changed proteins were accepted at a 5% FDR (*q*-value  $< 0.01$ ).  
683 Gene-ontology enrichment analysis: To identify enriched gene-ontology (i.e., bioprocess)  
684 categories with the resultant lists from bioinformatics approaches, we utilized the

685 "findGO.pl" package from HOMER. Full gene-ontology lists including enrichment statistics  
686 and associated gene-lists are reported in supplemental data files. A maximal limit of 200  
687 gene identifiers per GO category was implemented to reduce the occurrence of large,  
688 over-represented terms that lack specificity (i.e., *metabolism*). Full gene-ontology lists are  
689 reported in supplemental data files.

690

691

692 **Data availability**

693 Time-course microarray data and accompanied JTK\_CYCLE statistics that support the  
694 findings in this study have been deposited in the Gene Expression Omnibus [74] with the  
695 GSE158286 accession code. The RNAseq data and accompanied differential expression  
696 analyses that support the findings in this study have been deposited to GEO with the  
697 GSE158905 accession code. The mass spectrometric raw data are deposited at  
698 <ftp://MSV000086781@massive.ucsd.edu> (MassIVE user ID: MSV000086781, password:  
699 winter; preferred engine: Firefox); it is also available at ProteomeXchange with the ID  
700 PXD023896. Additional mass spectrometric details from DIA and DDA acquisitions, such  
701 as protein identification and quantification details are available at the repositories  
702 (including all generated Spectronaut and Protein Pilot search engine files).

703

704

705

706

707

708

709

710

711

712

713 **References**

- 714 1. Rijo-Ferreira, F. and J.S. Takahashi, *Genomics of circadian rhythms in health and disease*.  
715 *Genome Med*, 2019. **11**(1): p. 82.
- 716 2. Patke, A., M.W. Young, and S. Axelrod, *Molecular mechanisms and physiological*  
717 *importance of circadian rhythms*. *Nat Rev Mol Cell Biol*, 2020. **21**(2): p. 67-84.
- 718 3. Rouyer, F., *Clock genes: from Drosophila to humans*. *Bull Acad Natl Med*, 2015. **199**(7):  
719 p. 1115-1131.
- 720 4. Ogueta, M., R.C. Hardie, and R. Stanewsky, *Non-canonical Phototransduction Mediates*  
721 *Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light*  
722 *Responses*. *Curr Biol*, 2018. **28**(11): p. 1725-1735 e3.
- 723 5. Hall, H., et al., *Transcriptome profiling of aging Drosophila photoreceptors reveals gene*  
724 *expression trends that correlate with visual senescence*. *BMC Genomics*, 2017. **18**(1): p.  
725 894.
- 726 6. Lin, J.B., K. Tsubota, and R.S. Apte, *A glimpse at the aging eye*. *NPJ Aging Mech Dis*,  
727 2016. **2**: p. 16003.
- 728 7. Felder-Schmittbuhl, M.P., et al., *Ocular Clocks: Adapting Mechanisms for Eye Functions*  
729 *and Health*. *Invest Ophthalmol Vis Sci*, 2018. **59**(12): p. 4856-4870.
- 730 8. Baba, K. and G. Tosini, *Aging Alters Circadian Rhythms in the Mouse Eye*. *J Biol Rhythms*,  
731 2018. **33**(4): p. 441-445.
- 732 9. Kapahi, P., M. Kaeberlein, and M. Hansen, *Dietary restriction and lifespan: Lessons from*  
733 *invertebrate models*. *Ageing Res Rev*, 2017. **39**: p. 3-14.
- 734 10. Katewa, S.D., et al., *Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent*  
735 *Changes in Lifespan and Fat Metabolism in Drosophila*. *Cell Metab*, 2016. **23**(1): p. 143-  
736 54.
- 737 11. Eckel-Mahan, K.L., et al., *Reprogramming of the circadian clock by nutritional challenge*.  
738 *Cell*, 2013. **155**(7): p. 1464-78.
- 739 12. Honma, T., et al., *High-fat diet intake accelerates aging, increases expression of*  
740 *Hsd11b1, and promotes lipid accumulation in liver of SAMP10 mouse*. *Biogerontology*,  
741 2012. **13**(2): p. 93-103.
- 742 13. Montell, C., *Visual transduction in Drosophila*. *Annu Rev Cell Dev Biol*, 1999. **15**: p. 231-  
743 68.
- 744 14. Montell, C., *Drosophila visual transduction*. *Trends Neurosci*, 2012. **35**(6): p. 356-63.
- 745 15. Kuintzle, R.C., et al., *Circadian deep sequencing reveals stress-response genes that adopt*  
746 *robust rhythmic expression during aging*. *Nat Commun*, 2017. **8**: p. 14529.
- 747 16. Spitschan, M., et al., *Variation of outdoor illumination as a function of solar elevation*  
748 *and light pollution*. *Sci Rep*, 2016. **6**: p. 26756.
- 749 17. Gu, Y., et al., *Mechanisms of light adaptation in Drosophila photoreceptors*. *Curr Biol*,  
750 2005. **15**(13): p. 1228-34.
- 751 18. Oberwinkler, J. and D.G. Stavenga, *Calcium transients in the rhabdomeres of dark- and*  
752 *light-adapted fly photoreceptor cells*. *J Neurosci*, 2000. **20**(5): p. 1701-9.
- 753 19. Shieh, B.H., *Molecular genetics of retinal degeneration: A Drosophila perspective*. *Fly*  
754 (Austin), 2011. **5**(4): p. 356-68.

755 20. Voolstra, O. and A. Huber, *Ca(2+) Signaling in Drosophila Photoreceptor Cells*. *Adv Exp  
756 Med Biol*, 2020. **1131**: p. 857-879.

757 21. Katewa, S.D. and P. Kapahi, *Dietary restriction and aging*, 2009. *Aging Cell*, 2010. **9**(2): p.  
758 105-12.

759 22. Hotta, Y. and S. Benzer, *Abnormal electroretinograms in visual mutants of Drosophila*.  
760 *Nature*, 1969. **222**(5191): p. 354-6.

761 23. Vilinsky, I. and K.G. Johnson, *Electroretinograms in Drosophila: a robust and genetically  
762 accessible electrophysiological system for the undergraduate laboratory*. *J Undergrad  
763 Neurosci Educ*, 2012. **11**(1): p. A149-57.

764 24. Garschall, K. and T. Flatt, *The interplay between immunity and aging in Drosophila*.  
765 *F1000Res*, 2018. **7**: p. 160.

766 25. Pletcher, S.D., et al., *Genome-wide transcript profiles in aging and calorically restricted  
767 Drosophila melanogaster*. *Curr Biol*, 2002. **12**(9): p. 712-23.

768 26. Ferrandon, D., et al., *The Drosophila systemic immune response: sensing and signalling  
769 during bacterial and fungal infections*. *Nat Rev Immunol*, 2007. **7**(11): p. 862-74.

770 27. Handke, B., et al., *The hemolymph proteome of fed and starved Drosophila larvae*. *PLoS  
771 One*, 2013. **8**(6): p. e67208.

772 28. Palladino, M.J., et al., *Neural dysfunction and neurodegeneration in Drosophila Na+/K+  
773 ATPase alpha subunit mutants*. *J Neurosci*, 2003. **23**(4): p. 1276-86.

774 29. Baumann, O., *Distribution of Na+,K(+)-ATPase in photoreceptor cells of insects*. *Int Rev  
775 Cytol*, 1997. **176**: p. 307-48.

776 30. Damulewicz, M., E. Rosato, and E. Pyza, *Circadian regulation of the Na+/K+-ATPase  
777 alpha subunit in the visual system is mediated by the pacemaker and by retina  
778 photoreceptors in Drosophila melanogaster*. *PLoS One*, 2013. **8**(9): p. e73690.

779 31. Luan, Z., K. Reddig, and H.S. Li, *Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors  
780 leads to blindness and age-dependent neurodegeneration*. *Exp Neurol*, 2014. **261**: p.  
781 791-801.

782 32. Wijnen, H., et al., *Control of daily transcript oscillations in Drosophila by light and the  
783 circadian clock*. *PLoS Genet*, 2006. **2**(3): p. e39.

784 33. Kumar, J.P., *Building an ommatidium one cell at a time*. *Dev Dyn*, 2012. **241**(1): p. 136-  
785 49.

786 34. Wang, T. and C. Montell, *Phototransduction and retinal degeneration in Drosophila*.  
787 *Pflugers Arch*, 2007. **454**(5): p. 821-47.

788 35. Kurada, P. and J.E. O'Tousa, *Retinal degeneration caused by dominant rhodopsin  
789 mutations in Drosophila*. *Neuron*, 1995. **14**(3): p. 571-9.

790 36. Li, Q., et al., *Temperature and Sweet Taste Integration in Drosophila*. *Curr Biol*, 2020.  
791 **30**(11): p. 2051-2067 e5.

792 37. Vasiliauskas, D., et al., *Feedback from rhodopsin controls rhodopsin exclusion in  
793 Drosophila photoreceptors*. *Nature*, 2011. **479**(7371): p. 108-12.

794 38. Leung, N.Y., et al., *Functions of Opsins in Drosophila Taste*. *Curr Biol*, 2020. **30**(8): p.  
795 1367-1379 e6.

796 39. Shostal, O.A. and A.A. Moskalev, *The genetic mechanisms of the influence of the light  
797 regime on the lifespan of Drosophila melanogaster*. *Front Genet*, 2012. **3**: p. 325.

798 40. Nash, T.R., et al., *Daily blue-light exposure shortens lifespan and causes brain*  
799 *neurodegeneration in Drosophila*. NPJ Aging Mech Dis, 2019. **5**: p. 8.

800 41. Ferreiro, M.J., et al., *Drosophila melanogaster White Mutant w(1118) Undergo Retinal*  
801 *Degeneration*. Front Neurosci, 2017. **11**: p. 732.

802 42. Yoon, J., et al., *Novel mechanism of massive photoreceptor degeneration caused by*  
803 *mutations in the trp gene of Drosophila*. J Neurosci, 2000. **20**(2): p. 649-59.

804 43. Scott, K., et al., *Gq alpha protein function in vivo: genetic dissection of its role in*  
805 *photoreceptor cell physiology*. Neuron, 1995. **15**(4): p. 919-27.

806 44. Shieh, B.H., I. Kristaponyte, and Y. Hong, *Distinct roles of arrestin 1 protein in*  
807 *photoreceptors during Drosophila development*. J Biol Chem, 2014. **289**(26): p. 18526-  
808 34.

809 45. Satoh, A.K. and D.F. Ready, *Arrestin1 mediates light-dependent rhodopsin endocytosis*  
810 *and cell survival*. Curr Biol, 2005. **15**(19): p. 1722-33.

811 46. Klapoetke, N.C., et al., *Independent optical excitation of distinct neural populations*. Nat  
812 Methods, 2014. **11**(3): p. 338-46.

813 47. Simpson, J.H. and L.L. Looger, *Functional Imaging and Optogenetics in Drosophila*.  
814 Genetics, 2018. **208**(4): p. 1291-1309.

815 48. Dolph, P.J., et al., *An eye-specific G beta subunit essential for termination of the*  
816 *phototransduction cascade*. Nature, 1994. **370**(6484): p. 59-61.

817 49. Stahl, A.L., et al., *The cuticular nature of corneal lenses in Drosophila melanogaster*. Dev  
818 Genes Evol, 2017. **227**(4): p. 271-278.

819 50. Kryuchkov, M., et al., *Reverse and forward engineering of Drosophila corneal*  
820 *nanocoatings*. Nature, 2020. **585**(7825): p. 383-389.

821 51. Xu, H., et al., *A lysosomal tetraspanin associated with retinal degeneration identified via*  
822 *a genome-wide screen*. EMBO J, 2004. **23**(4): p. 811-22.

823 52. Abruzzi, K.C., et al., *Drosophila CLOCK target gene characterization: implications for*  
824 *circadian tissue-specific gene expression*. Genes Dev, 2011. **25**(22): p. 2374-86.

825 53. Patel, S.A., et al., *Circadian clocks govern calorie restriction-mediated life span extension*  
826 *through BMAL1- and IGF-1-dependent mechanisms*. FASEB J, 2016. **30**(4): p. 1634-42.

827 54. Giebultowicz, J.M. and D.M. Long, *Ageing and Circadian rhythms*. Curr Opin Insect Sci,  
828 2015. **7**: p. 82-86.

829 55. Hood, S. and S. Amir, *The aging clock: circadian rhythms and later life*. J Clin Invest,  
830 2017. **127**(2): p. 437-446.

831 56. Boomgarden, A.C., et al., *Chronic circadian misalignment results in reduced longevity*  
832 *and large-scale changes in gene expression in Drosophila*. BMC Genomics, 2019. **20**(1):  
833 p. 14.

834 57. Martinez-Nicolas, A., et al., *Circadian monitoring as an aging predictor*. Sci Rep, 2018.  
835 **8**(1): p. 15027.

836 58. Retaux, S. and D. Casane, *Evolution of eye development in the darkness of caves:*  
837 *adaptation, drift, or both?* Evodevo, 2013. **4**(1): p. 26.

838 59. Lang, S., et al., *A conserved role of the insulin-like signaling pathway in diet-dependent*  
839 *uric acid pathologies in Drosophila melanogaster*. PLoS Genet, 2019. **15**(8): p. e1008318.

840 60. Nicholson, L., et al., *Spatial and temporal control of gene expression in Drosophila using*  
841 *the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers.*  
842 *Genetics*, 2008. **178**(1): p. 215-34.

843 61. Katewa, S.D., et al., *Intramyocellular fatty-acid metabolism plays a critical role in*  
844 *mediating responses to dietary restriction in Drosophila melanogaster*. *Cell Metab*, 2012.  
845 **16**(1): p. 97-103.

846 62. Bolger, A.M., M. Lohse, and B. Usadel, *Trimmomatic: a flexible trimmer for Illumina*  
847 *sequence data*. *Bioinformatics*, 2014. **30**(15): p. 2114-20.

848 63. Kim, D., B. Langmead, and S.L. Salzberg, *HISAT: a fast spliced aligner with low memory*  
849 *requirements*. *Nat Methods*, 2015. **12**(4): p. 357-60.

850 64. Liao, Y., G.K. Smyth, and W. Shi, *featureCounts: an efficient general purpose program for*  
851 *assigning sequence reads to genomic features*. *Bioinformatics*, 2014. **30**(7): p. 923-30.

852 65. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and*  
853 *dispersion for RNA-seq data with DESeq2*. *Genome Biol*, 2014. **15**(12): p. 550.

854 66. Wang, S., et al., *The retromer complex is required for rhodopsin recycling and its loss*  
855 *leads to photoreceptor degeneration*. *PLoS Biol*, 2014. **12**(4): p. e1001847.

856 67. Wes, P.D., et al., *Termination of phototransduction requires binding of the NINAC myosin*  
857 *III and the PDZ protein INAD*. *Nat Neurosci*, 1999. **2**(5): p. 447-53.

858 68. Vang, L.L., A.V. Medvedev, and J. Adler, *Simple ways to measure behavioral responses of*  
859 *Drosophila to stimuli and use of these methods to characterize a novel mutant*. *PLoS*  
860 *One*, 2012. **7**(5): p. e37495.

861 69. Christensen, D.G., et al., *Identification of Novel Protein Lysine Acetyltransferases in*  
862 *Escherichia coli*. *mBio*, 2018. **9**(5).

863 70. Collins, B.C., et al., *Multi-laboratory assessment of reproducibility, qualitative and*  
864 *quantitative performance of SWATH-mass spectrometry*. *Nat Commun*, 2017. **8**(1): p.  
865 291.

866 71. Schilling, B., B.W. Gibson, and C.L. Hunter, *Generation of High-Quality SWATH((R))*  
867 *Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF((R))*  
868 *Mass Spectrometers*. *Methods Mol Biol*, 2017. **1550**: p. 223-233.

869 72. Charlton-Perkins, M.A., et al., *Multifunctional glial support by Semper cells in the*  
870 *Drosophila retina*. *PLoS Genet*, 2017. **13**(5): p. e1006782.

871 73. Hughes, M.E., J.B. Hogenesch, and K. Kornacker, *JTK\_CYCLE: an efficient nonparametric*  
872 *algorithm for detecting rhythmic components in genome-scale data sets*. *J Biol Rhythms*,  
873 2010. **25**(5): p. 372-80.

874 74. Hardie, R.C., et al., *Molecular basis of amplification in Drosophila phototransduction:*  
875 *roles for G protein, phospholipase C, and diacylglycerol kinase*. *Neuron*, 2002. **36**(4): p.  
876 689-701.

877

878

879

880

881 **Acknowledgements**

882 We would like to thank the QB3 Genomics Functional Genomics Lab at UC Berkeley and  
883 the Vincent J. Coates Genomics Sequencing Lab for RNA-seq library preparation and deep  
884 sequencing. We thank the Bloomington *Drosophila* Stock Center, the Vienna *Drosophila*

885 Resource Center, and Craig Montell for providing flies used in this study. We would like  
886 to acknowledge Hugo Bellen and Zhongyuan Zuo for contributing resources and insight.

887 We thank Daron Yim and John McCarthy for their assistance. We would like to  
888 acknowledge the work of Paolo Sassone-Corsi and his recent contributions to the fields  
889 on nutrition, circadian rhythms, and aging that helped in the conception of this project.

890 This work is funded by grants awarded to P.K. from the American Federation of Aging  
891 Research, NIH grants R01 R01AG038688 and AG045835 and the Larry L. Hillblom  
892 Foundation. B.A.H. is supported by NIH/NIA T32 award AG000266 and C.M. is supported  
893 by NIH/NEI awards EY008117 and EY010852. We acknowledge the Buck Institute  
894 Proteomics Core and the support of instrumentation from the NCRR shared  
895 instrumentation grant 1S10 OD016281.

896

897 **Author Contributions**

898 Conceptualization, B.A.H., G.T.M., and S.K.; Software, B.A.H., G.T.M., B.S., and S.K.; Formal  
899 analysis, B.A.H., G.T.M., and B.S.; Investigation, B.A.H., G.T.M., C.L., T.L., N.L., D.L-K., and S.B.;

900 Visualization, B.A.H.; Writing-Original Draft, B.A.H., Writing-Review & Editing, B.A.H.,  
901 G.T.M., and P.K.; Data Curation, B.A.H., G.T.M., S.M., and B.S.; Methodology, G.T.M. and  
902 M.L., Resources, C.M. and P.K., Supervision, P.K., Funding acquisition, C.M. and P.K.

903

904

905 **Additional information**

906 The authors declare no competing interests.

907

908 **Supplementary Information** is available for this paper

909 Correspondence and requests for materials should be addressed to

910 P.K. (pkapahi@buckinstitute.org)

911

## Supplemental Discussion 1.

### *DR amplifies and modifies circadian transcriptional output*

DR and DR-memetics have long been known to improve circadian behavioral rhythms in old age [1]. Over the past decade, improvements in molecular genetic techniques and next-generation sequencing have allowed investigators to examine how nutrient composition and time of feeding influence circadian transcriptional rhythms. Reports in mammals have demonstrated that calorie restriction, a reduction in total calorie intake without malnutrition, enhances the number and amplitude of rhythmic transcripts [2]. Inversely, high-nutrient diets, such as high-fat/western diets suppress circadian transcriptional rhythms [3]. The near doubling in the number of circadian transcripts we quantified on DR vs AL in *Drosophila* is consistent with observations in mammals. Additionally, transcripts oscillating on DR displayed an increased circadian amplitude. DR-mediated increases in the number of circadian transcripts, and their amplitude, is likely due to enhanced transcriptional output by CLK/CYC. Recent reports in both mice and flies have demonstrated that nutrient-sensing mechanisms (i.e., AMPK/TOR and Sirtuin signaling) signal directly to the core-clock transcription factors to activate transcription [4-6]. For instance, the *Drosophila* AMPK, which is activated in response to cellular energy depletion (e.g., elevated AMP concentrations), directly phosphorylates CLK, enhancing its circadian transcriptional output [4]. Because we extracted mRNA from populations of flies, the transcript expression values we report here are influenced by both individual and

population-wide transcript expression levels. Therefore, the DR-mediated improvements to the circadian transcriptome we have observed may also reflect greater synchronicity between individual flies.

Interestingly, we also observed relatively low overlap between the transcripts that oscillate on AL compared to DR. We found that DR-oscillating genes are enriched for processes related to homeostatic function, while circadian processes on AL-oscillating genes are enriched for processes related to damage-response pathways. These findings are similar to those reported in mouse liver tissue, comparing transcriptome of mice reared on standard chow versus those on calorie restriction [2]. A combination of aging and damage response signals (e.g., reactive oxygen species) also influence which transcripts cycle in the fly [7]. This phenomenon, termed “circadian reprogramming,” is also observed in response to nutrient cues, where differing nutrient signals direct which specific transcripts are transcriptionally targeted downstream of the molecular clock. The similarities between the diet-dependent changes we report here and those previously reported in mice on calorie restriction indicates that the molecular clock’s response to nutrient restriction is evolutionarily conserved.

Given DR’s ability to robustly extend lifespan while amplifying circadian transcriptional output, we postulated that DR-sensitive circadian processes play an important role in slowing aging and improving survival. Although highly informative, to date, the diet-dependent circadian transcriptome studies have analyzed only a small

number of mammalian tissues and thus have provided only a limited description of how diet influences circadian transcriptional output at the whole-organism level. Our ability to analyze the AL/DR circadian transcriptomes in the whole fly allowed for an unbiased approach for identifying the most DR-sensitive, cyclic processes throughout the body. This approach led to the observation that phototransduction was among the top circadian processes amplified by DR. The phototransduction genes we identified were also cyclic in flies reared on AL, albeit at a lower expression and circadian amplitude, indicating that their transcriptional regulation is likely not a result of circadian reprogramming. This, however, highlights the biological importance of their circadian regulation. A limitation of our AL/DR circadian transcriptome analyses is that they are likely under-powered to identify the full spectrum of eye-specific circadian transcripts, because our mRNA samples were pooled from whole-body lysates and were collected for only one circadian cycle (24hr). Analyses of a more robust circadian transcriptome, performed from mRNA collected from heads, over 2 circadian cycles (48hr), indicated that phototransduction components were among the most rhythmic circadian processes, thus underscoring the importance of circadian regulation within the eye [7].

### ***DR delays visual senescence by amplifying circadian rhythms in the eye***

Metabolic dysfunction is strongly correlated with accelerated aging and eye-disease (e.g. diabetic retinopathy) [8, 9]. Declines in the circadian amplitude of clocks within the eye have been reported in wild-type mice with age and in models of diabetic retinopathy,

which may further exacerbate disease pathology [10, 11]. Calorie restriction protects against several age-related eye diseases—dry-eye disease, cataracts, and age-related macular degeneration [12]. Calorie restriction also has a neuroprotective effect in photoreceptors and retinal-ganglion cells with age [12]. To date, no studies have investigated whether calorie restriction enhances circadian amplitude within the eye or whether its benefits within the eye are dependent on the molecular clock. Our results in flies demonstrate that DR amplifies circadian rhythms within the eye and delays visual senescence in a CLK-dependent manner. Additionally, we identified the DR-sensitive CLK-output genes *Gβ76c*, *retinin*, and *sunglasses* and demonstrated that their knockdown in the eye accelerated visual declines, thus indicating that DR's neuroprotective role in the eye functions mechanistically through the molecular clock.

Several age-associated morphological and physiological declines have been reported in circadian mutant mouse models [13]. The positive-limb of the core molecular clock in mice is comprised of the basic-helix-loop-helix transcription factors BMAL1 and CLOCK [14]. Mice harboring whole-body genetic knockouts of either BMAL1 or CLOCK develop cataracts and corneal inflammation with age [13]. Additionally, photoreceptor-specific (cone-cell, HRGP-Cre x *Bma1* fl/fl) BMAL1 knockout mice display a significantly altered circadian transcriptome, a shift in the distribution of short vs medium wavelength opsins, and a reduction in photoreceptor cell viability with age [15, 16]. Consistently, our data demonstrates that diminishing CLK function in adult animals (post-development) is

sufficient to drive eye aging in flies. However, there are important distinctions between the mechanism of phototransduction used by mammalian rod and cone photoreceptors, and what exists in the fly.

In mammals, light-activated rhodopsin in rod and cone photoreceptor neurons couples to, and inactivates, cyclic nucleotide gated channels, hyperpolarizing the cell [17]. This is distinctly different from what occurs in the fly, where light-activated rhodopsin couples to a TRP channel, which when activated depolarizes the cell [18]. However, in a third class of mammalian photoreceptors, the intrinsically-photosensitive retinal ganglion cells (ipRGCs), there is a nearly identical mechanism of phototransduction to *Drosophila* [19]. The ipRGCs play a role in non-image forming light sensation, effecting pupillary constriction and the entrainment of the central circadian clock to light. There is some evidence that eliminating *Bmal1* in mice (either specifically in their ipRGCs or throughout their entire body) impairs the functionality of the ipRGCs [20]. This is consistent with what we observed when we disrupted *clk* in the *Drosophila* photoreceptors. Together, this suggests that there may be a conserved mechanism through which circadian clocks mediate the health of photoreceptor cells.

An inability to adequately respond to light stress may underly the accelerated photoreceptor aging we observe when CLK function is diminished in the eye of adult flies. Chronic exposure to phototoxic wavelengths or strong ambient light intensities, as well as mutations in light adaptation proteins, elevates intracellular calcium ion concentrations

that result in rapid photoreceptor degeneration [21, 22]. Pittendrigh's "escape the light" hypothesis posits that circadian rhythms evolved as a means for cells/organisms to anticipate and manage the deleterious effects of daily light exposure [23, 24]. One of the key neuroprotective functions of intrinsic clocks within photoreceptors is their ability to modulate time-of-day sensitivities to light. Electroretinogram (ERG) recordings in both flies and mammals have revealed a circadian response pattern that peaks at night when luminescence is approximately one-billion-fold less than during the day, and this pattern in light sensitivity is abolished in circadian mutants [25, 26]. Interestingly, exposing rats to a bout of intense light at night results in significantly greater photoreceptor damage and degeneration than when the same treatment is performed during the day, thus highlighting the physiologic importance of the clocks in suppressing light sensitivity during the day [27]. Our acrophase analyses revealed that circadian transcripts that promote photoreceptor activation ( $\text{Ca}^{2+}$  influx) reach peak expression during the dark-phase, while genes that terminate the phototransduction response (i.e., reducing rhodopsin mediated signaling) peak in anticipation of the light-phase (Fig. 1f and Supplementary Fig. 1j).

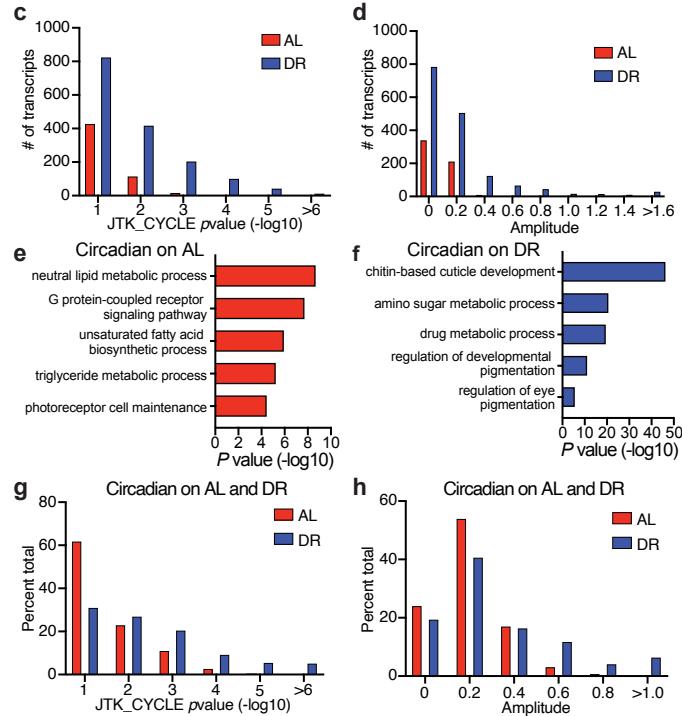
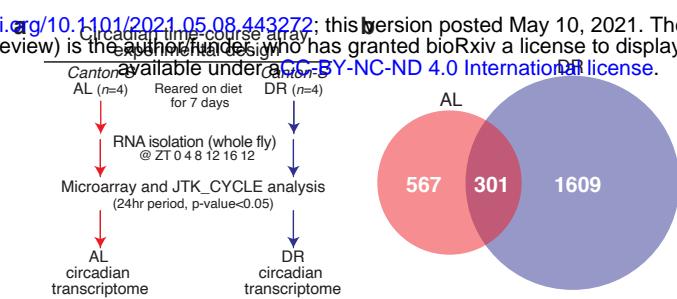
### ***The eye regulates longevity in *Drosophila****

With age, declines in tissue homeostasis and chronic activation of the immune system increases local and systemic inflammation, termed "inflammaging." The deleterious effects from inflammaging exacerbate pre-existing aging phenotypes and reduce survival

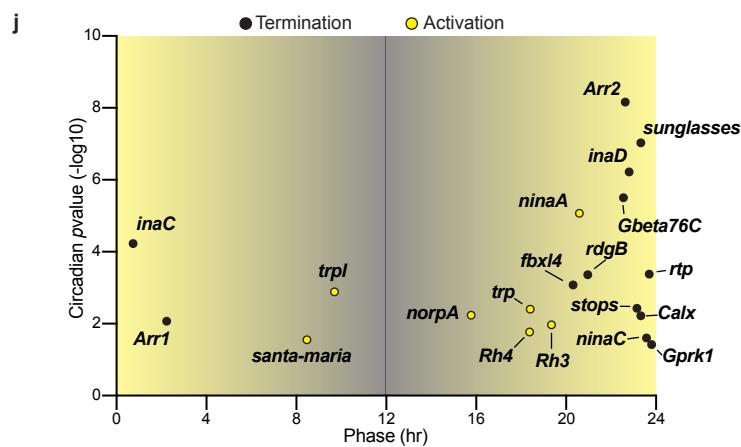
[28, 29]. Interestingly, partial inhibition of the primary immune response regulator, NFκB, extends lifespan in *Drosophila* [30]. Photoreceptor degeneration is a main source of inflammation within the mouse retina [31]. Here, our results demonstrate that diminishing neuronal CLK function and forcing photoreceptor degeneration significantly elevates systemic immune responses. Furthermore, we report dampened AMP expression in the bodies of Rh null lines, indicating that reductions in phototransduction coincide with reduced systemic inflammation in the fly. We have also found that flies reared on DR, which improves photoreceptor viability, displayed dampened immune responses in comparison to flies reared on AL. Interestingly, photoreceptor degeneration caused by light- or calcium-mediated excitotoxicity is primarily the result of necrotic cell death [21]. Forced photoreceptor necrosis also results in necrotic cell death of surrounding cells [32]. Given that cytosolic f-actin can drive the sterile immune response in the fly, it is possible that the increased systemic inflammation we report is due in part to elevations in necrosis [33]. However, future studies will be needed to elucidate how diet and circadian rhythms influence necrotic cell death in photoreceptors, and the effect this has on the local niche.

Circadian disruption, achieved either genetically or via chronic circadian misalignment with the environment, is associated with reduced longevity [34, 35]. Long-lived humans (i.e., centenarians) display significantly improved behavioral rhythms compared to “normal” aging groups [36]. Inversely, studies in mice and flies have demonstrated that organisms that display arrhythmic, or non-24h rhythms, are

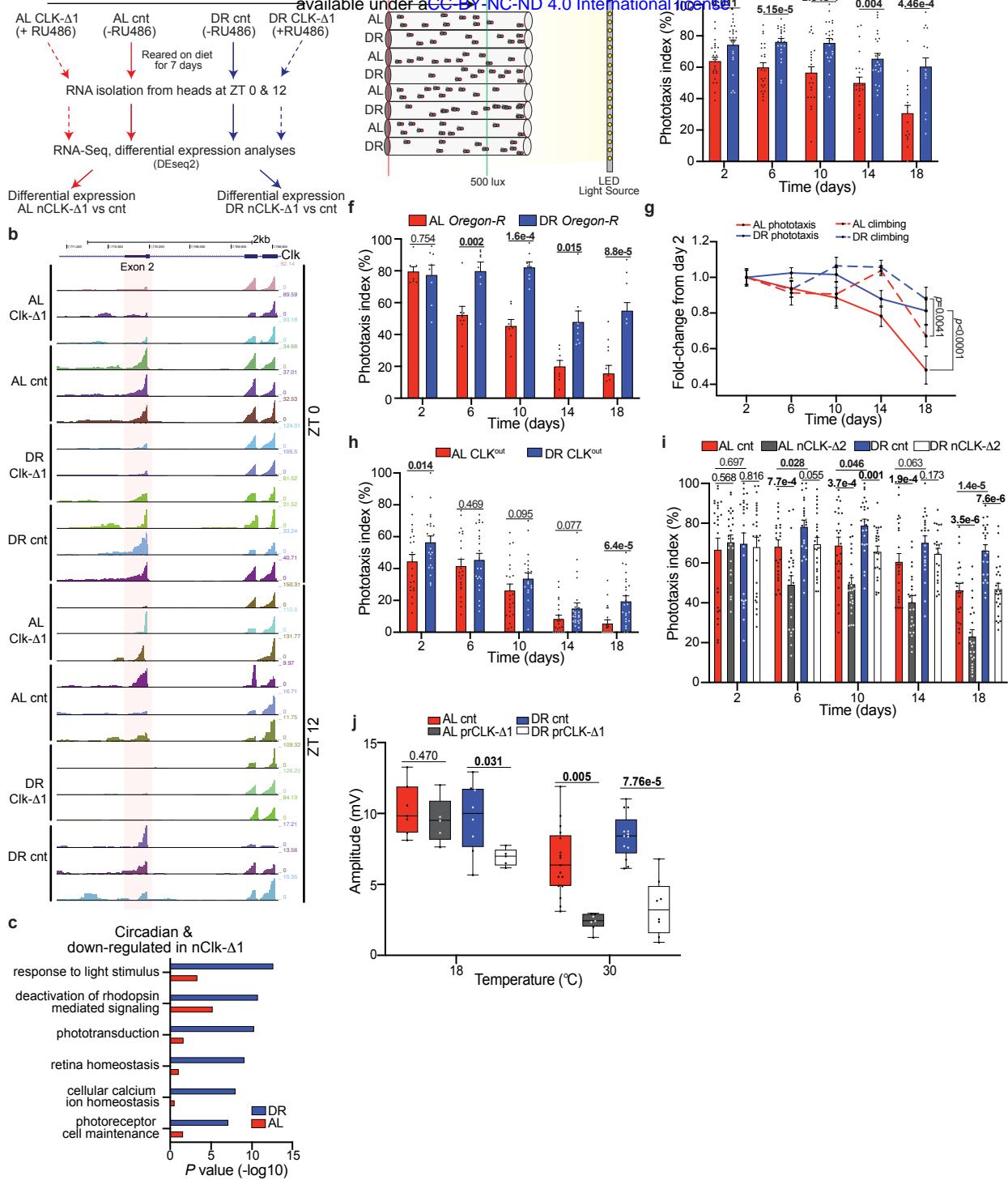
significantly shorter-lived than those who display near 24h (wild-type) circadian rhythms [37, 38]. Furthermore, chronic phase-adjustments, as is common in shift workers, is associated with early aging phenotypes and reduced lifespan in both mice and flies [35, 39]. Interestingly, placing BMAL1 knockout mice on calorie restriction fails to extend their lifespan [40]; although, these mice lack BMAL1 expression in all tissues and throughout development. To our knowledge, our study is the first to demonstrate that disruptions to the photoreceptor, and in particular to the photoreceptor clocks, is sufficient to shorten lifespan.



#### *DR extends lifespan in part by maintaining photoreceptor homeostasis*

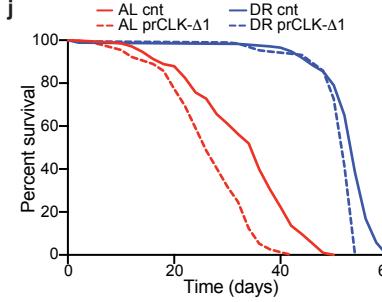
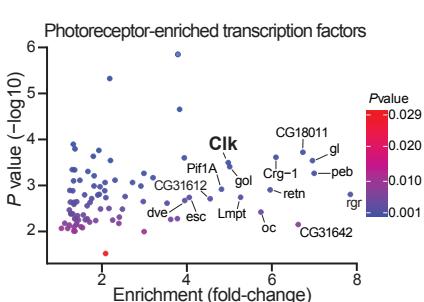
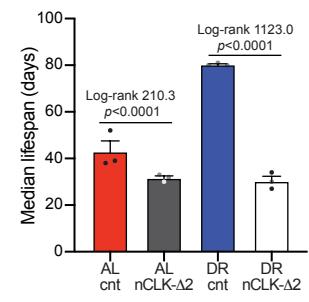
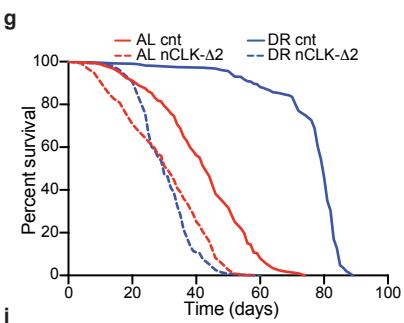
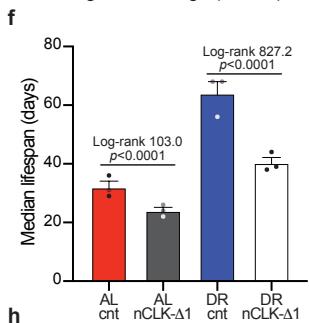
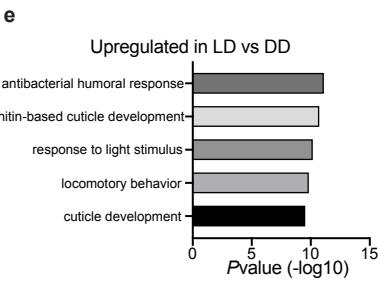
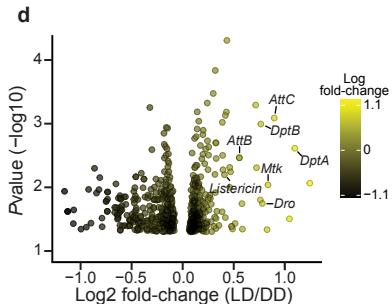
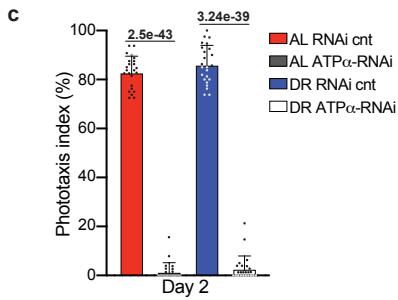
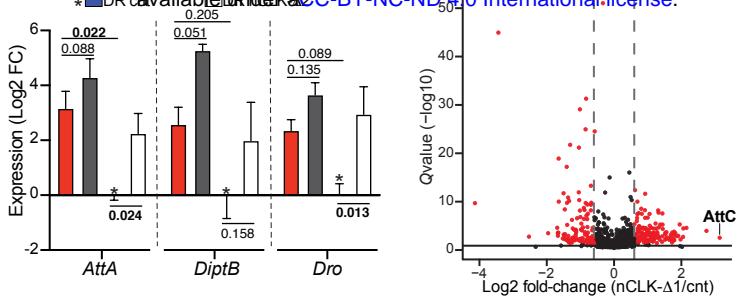
A number of studies have previously investigated the effects of light exposure on lifespan in *Drosophila* [41]. These studies, however, have not simultaneously examined the influence of diet and the influence of the photoreceptor cells. Exposure to short-wavelength light (i.e., blue-light), which is especially phototoxic, reduces survival in worms and flies [22, 42]. Interestingly, housing flies in a 12:12 blue-light/dark cycle significantly shortens lifespan even when those flies lack photoreceptors [22]. This effect appears to be directly related to blue-light mediated neuronal cell death (i.e., extraocular blue light sensing). Our lab previously demonstrated that DR-mediated lifespan extension is completely abolished in flies reared in constant lighting conditions (LL), while flies reared on AL experienced only a minor decrease in lifespan in LL [43]. We previously attested that LL blocked DR's lost ability to extend lifespan because it induces arrhythmicity. A new,


alternative hypothesis is that the LL-mediated lifespan shortening on DR was also a result of the phototoxic effects of LL, which force photoreceptors to rapidly degenerate. The observation that knocking down *ATP $\alpha$*  in the eye (a model of forced photoreceptor degeneration) also significantly reduced lifespan on DR, further supports the photoreceptor hypothesis. Furthermore, as discussed above, photoreceptors regulate the timing of their light-sensitivity through the molecular clock. Therefore, housing a fly in LL would likely render their photoreceptor clocks arrhythmic, and increase the photoreceptor cells' susceptibility to phototoxic stress. Interestingly, chronic dim-light exposure at night also shortens lifespan in *Drosophila* [44]. Our results here, indicate that DR protects flies from the lifespan-shortening effects of photoreceptor activation.

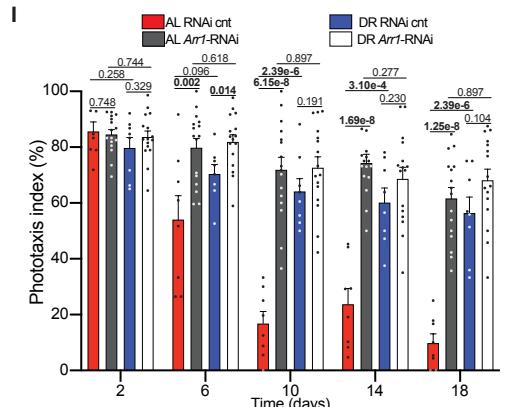
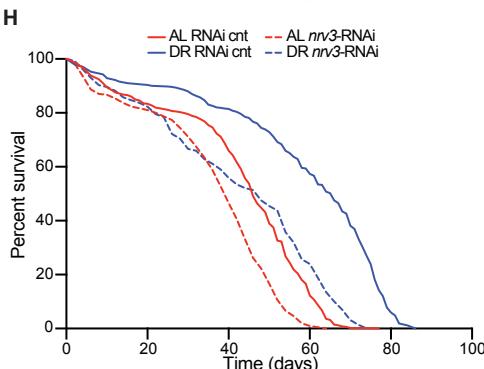
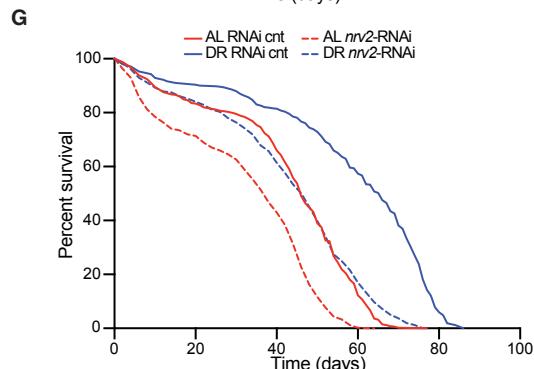
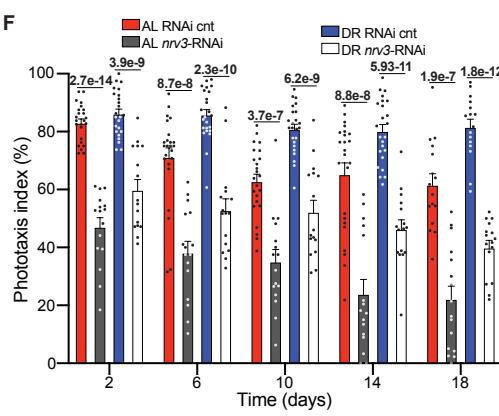
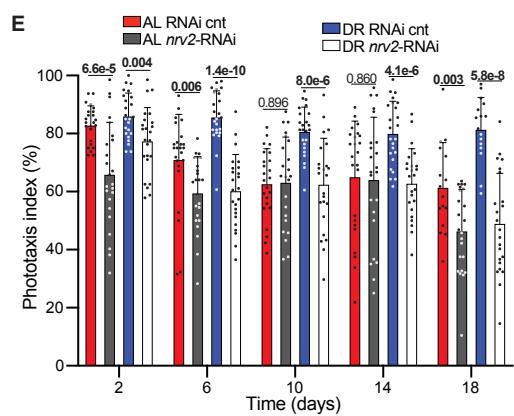
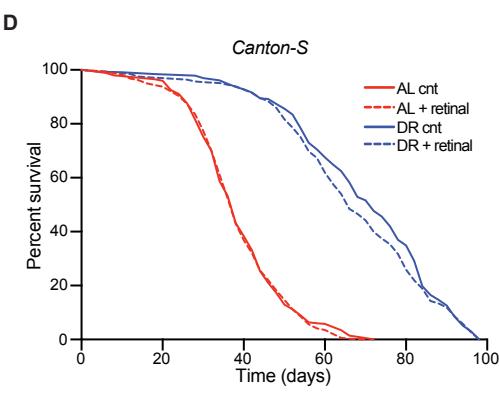
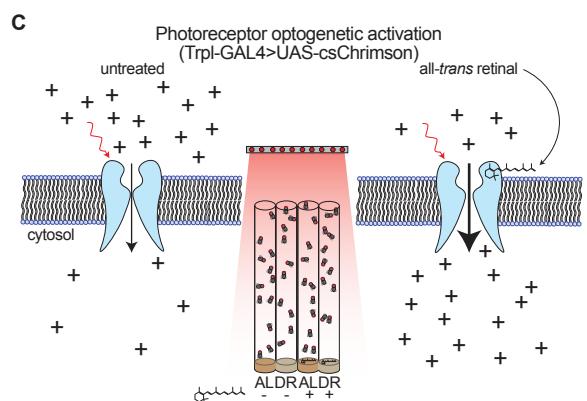
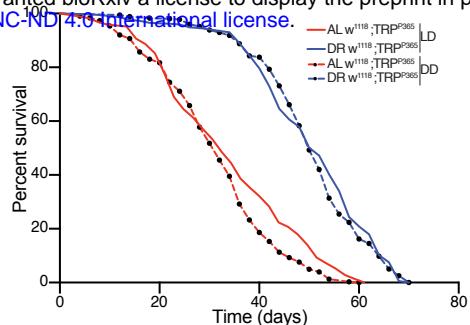
Although, forced photoreceptor degeneration is sufficient to significantly reduce longevity on DR, we also demonstrate that DR protects against the lifespan-shortening effects of photoreceptor activation during a normal 12:12 LD cycle. Flies reared on AL, which display damped circadian rhythms within the eye, were selectively sensitive to lethality from the optogenetic activation of the photoreceptors. Inversely, we report that white-eyed flies, which are highly susceptible to light-mediated retinal degeneration, only display lifespan extension from constant darkness when they are reared on AL. Consistent with this observation, Rh null flies (which have reduced photoreceptor activity) display proportionally larger increases in lifespan when maintained on AL vs. DR. Importantly, although Rh expression is enriched in the photoreceptor cells, it is also expressed in other


populations of neurons. Therefore, we cannot be certain that the lifespan extensions we observe in Rh null flies is solely the result of diminished Rh levels in the photoreceptor cells.

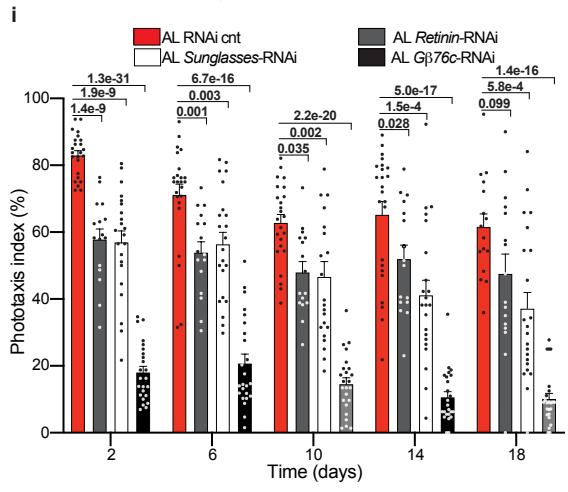
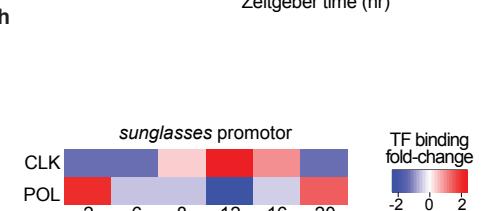
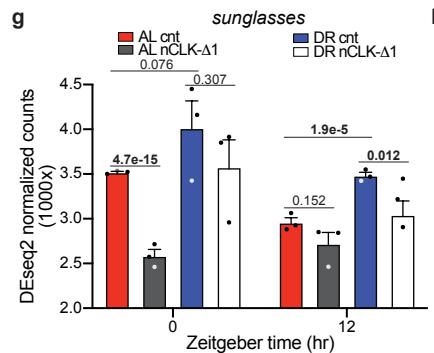
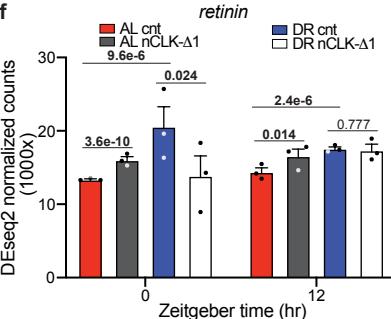
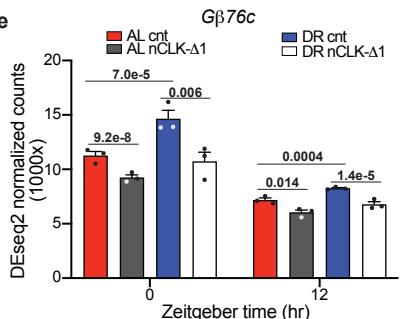
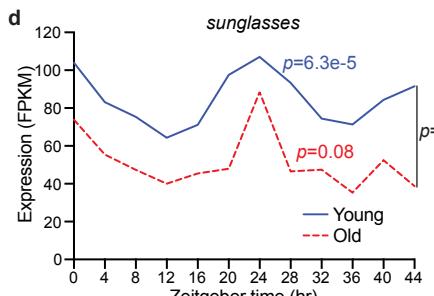
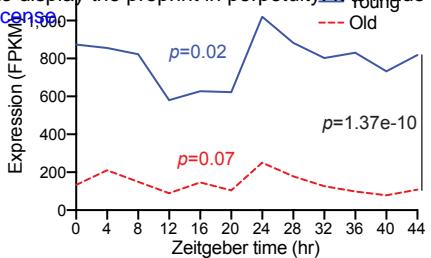
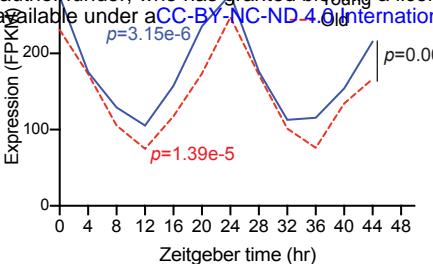
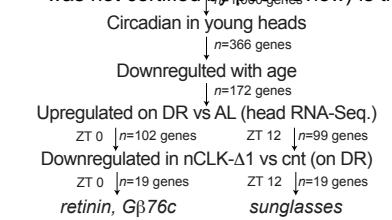











| Gene         | AL pvalue | DR pvalue | AL amplitude | DR amplitude | DR fold change -t test |        |
|--------------|-----------|-----------|--------------|--------------|------------------------|--------|
| <i>arr1</i>  | 0.0302    | 0.1066    | 0.092        | 0.083        | 2.18                   | 3.4e-4 |
| <i>cry</i>   | 0.1415    | 4.07e-7   | 0.190        | 0.443        | 1.43                   | 0.002  |
| <i>inaC</i>  | 0.0030    | 0.0019    | 0.281        | 0.380        | 2.62                   | 0.002  |
| <i>inaD</i>  | 0.0423    | 0.0178    | 0.214        | 0.132        | 2.92                   | 0.001  |
| <i>ninaA</i> | 0.0068    | 0.0001    | 0.352        | 0.350        | 2.69                   | 0.034  |
| <i>ninaC</i> | 0.0178    | 0.0037    | 0.223        | 0.279        | 2.58                   | 0.002  |
| <i>norpA</i> | 1.0000    | 0.0024    | 0.038        | 0.144        | 1.25                   | 0.002  |
| <i>rh5</i>   | 0.0068    | 0.0029    | 0.223        | 0.249        | 2.18                   | 0.014  |
| <i>rh6</i>   | 0.0030    | 0.0148    | 0.174        | 0.281        | 2.08                   | 0.004  |
| <i>trp</i>   | 0.0497    | 0.0045    | 0.147        | 0.189        | 2.82                   | 0.004  |
| <i>trpl</i>  | 0.0084    | 0.0009    | 0.243        | 0.250        | 2.27                   | 7.3e-4 |











**Supplemental Figure 1. Dietary restriction amplifies circadian transcriptional output.** (a) Experimental design of the time-course microarray and generation of the AL/DR circadian transcriptomes. Canton-S females were reared on AL or DR diets for 7 days. Flies were then collected, and mRNA was isolated from whole-fly lysates at 4-hour intervals for 24 hours ( $n=4$  pooled mRNA samples from 30 flies per condition/timepoint). Circadian transcripts were identified with the JTK\_CYCLE algorithm [45]. (b) Venn-diagram displaying the number of circadian transcripts that oscillate in flies reared on AL, DR, or in both diets. (c-d) Histograms of JTK\_CYCLE  $p$ value statistics and circadian amplitudes of transcripts that cycle only on AL or DR diets. The y-axis indicates the total number of transcripts. A rightward shift was observed in  $p$ value and amplitude for transcripts that are circadian on DR compared to AL. (e-f) Gene-ontology enrichment categories corresponding to transcripts that cycle on AL (e) or DR (f). (g-h) Histograms of JTK\_CYCLE  $p$ value statistics (g) and circadian amplitudes (h) of transcripts that are circadian on both diets. The y-axis indicates percent of transcripts out of the 301 total transcripts that oscillate on both diets. Transcripts that are circadian on both diets display smaller circadian  $p$ values and larger circadian amplitudes on DR compared to AL. (i) Table of phototransduction genes that are circadian on AL and DR. \**cry* is only circadian in DR, and *arr1* is only circadian on DR. Fold-changes and  $t$ test statistics were calculated by averaging the individual fold-changes in expression for each timepoint. (j) Circadian acrophase chart of transcripts that oscillate on DR and AL plotted as number of transcripts that peak at different timepoints throughout the day (as calculated by JTK\_CYCLE algorithm). (k) Differential expression heatmap and associated GO terms for transcripts that are significantly upregulated ( $n=524$ ) or downregulated ( $n=543$ ) across all timepoints on DR compared to AL. Data were analyzed by student's  $t$ test comparing expression values from AL and DR transcriptome from ZT0-20, and transcripts that display a  $p$ value less than 0.05 were considered differentially expressed.












**Supplemental Figure 2. Design and additional analyses of nCLK-Δ1 RNA-Seq., positive phototaxis, and ERG experiments.** (a) Design of nCLK-Δ1 RNA-Seq. Mated females were reared on AL or DR with the addition of vehicle or RU486 to induce the expression of CLK-Δ1 pan-neuronally for 7 days. mRNA was isolated from heads ( $n=3$  biological replicates,  $N=30$  heads per replicates) at ZT0 and ZT12. RNA-sequencing was performed and differentially expressed genes were identified with the DEseq2 software [46] package. (b) UCSC genome browser visualization of the individual tracks for each nCLK-Δ1 RNA-Seq sample zoomed into exon 2 of *c/k* (chr3L:7,766,807-7,773,169). Exon 2 (highlighted in red) of *c/k* encodes the basic helix-loop-helix domain (DNA binding) of CLK that is selectively ablated in CLK-Δ1 flies. Overexpression of CLK-Δ1 results in a relative decrease in the ratio of tags at exon 2 vs exon 3-4 (right), while exon 3-4 display elevated tag density compared to control samples. Track size is normalized for each sample and the total number of tags is indicated as the top number (color coded to match each track) on the far right. (c) Gene-ontology enrichment terms and *p*value statistics for genes that are circadian in young heads (GEO81100) [7] and significantly down-regulated in the nCLKΔ1 RNA-Seq on AL or DR. (d) Diagram of positive-phototaxis setup. Flies are sorted in clear elongated fly vials, dark adapted for 15 minutes, knocked to the bottom of the vial, and then laid horizontally and perpendicular to an LED light source. Once the light is turned on flies that reach the green line are scored as “positive-phototaxis” and counted at 15, 30, 45 seconds (See methods for additional details). (e) Positive phototaxis responses for *Canton-S* females reared on AL or DR diets. See methods for calculation of phototaxis index. For each timepoint results are represented as average percent positive phototaxis  $\pm$  SEM ( $n=24$  biological reps,  $N=480$  flies per condition). (f) Phototaxis responses for *Oregon-R* females. For each timepoint results are represented as average percent phototaxis response  $\pm$  SEM ( $n=8$  biological replicates,  $N=160$  flies per condition). (g) *Canton-S* climbing activity and positive phototaxis plotted as fold-change from responses at day 2. ( $n=24$  biological replicates,  $N=480$  flies per condition). (h) Positive phototaxis responses for *C/k<sup>out</sup>* females reared on AL or DR diets. For each timepoint results are represented as average percent positive phototaxis  $\pm$  SEM ( $n=24$  biological reps,  $N=480$  flies per condition). (i) Positive phototaxis responses for nCLK-Δ2 flies (Elav-GS-GAL4>UAS-CLK-Δ2). For each timepoint results are represented as average percent positive phototaxis  $\pm$  SEM ( $n=24$  biological replicates,  $N=480$  flies per condition). (j) Box-plots of electroretinogram amplitudes for prCLK-Δ1 (Trpl-GAL4;GAL80>UAS-CLK-Δ1<sup>OC</sup>) and control flies (Trpl-GAL4;GAL80>*CantonS<sup>OC</sup>*) reared at 18°C (GAL80 active, GAL4 inactive) and 30°C (GAL80 inactive, GAL4 active) for 6 days. Illuminance was set at 15000 Lux. (e-f and h-j) *P*values were determined by two-tailed Student’s *t*test (unpaired) at each timepoint. (g) *P*values were determined by two-tailed Student’s *t*test (unpaired) across genotypes.



**Supplemental Figure 3. nCLK elevates immune responses and shortens longevity in a diet-dependent fashion.** (a) Relative expression of AMP genes (*AttA*, *DiptB*, and *Dro*) calculated by RT-qPCR with mRNA isolated from nCLK-Δ2 bodies. Results are plotted as average Log2 fold-change in expression calculated by the  $\Delta\Delta$ -Ct method, normalized to DR vehicle treated control samples as well as *rp49* +/- SEM ( $n=3$  biological replicates,  $N=30$  flies per biological replicate). (b) Volcano-plot of hemolymph proteins identified by tandem mass-spectrometry comparing nCLK-Δ1 (RU486 treated,  $N=300$ ) and control (vehicle treated,  $N=300$ ) flies reared on AL at day 14. Each dot represents an individual protein with a statistical significance less than 0.0001 comparing nCLK-Δ1 and control hemolymph samples. Black dots are considered to be differentially expressed protein candidates with a Log2 fold-change cutoff of  $\pm 0.6$ . AttC was the most highly up-regulated protein in nCLK-Δ1 hemolymph compared to control. (c) Volcano-plot of gene expression changes in heads of *y.w.* flies housed in 12:12 LD vs constant darkness (DD) from Wijnen et al, 2006 (GSE3842) [47]. Fold-changes in response to light were calculated by averaging the changes in expression at each timepoint from a circadian time-course microarray (ZT 2, 6, 10, 14, 18, 22) and comparing expression between flies housed in LD compared to DD. (d) The top-5 enriched gene-ontology categories corresponding to genes that are upregulated in heads of flies housed in LD vs DD. (e) Positive phototaxis responses with eye-specific knockdown of *ATP $\alpha$*  (GMR-GAL4>UAS-*ATP $\alpha$* -RNAi) compared to RNAi control flies (GMR-GAL4>UAS-*mCherry*-RNAi). For each timepoint results are represented as average phototaxis response +/- SEM ( $n=24$  biological replicates,  $N=480$  flies per condition). (f) Median lifespan of nCLK-Δ1 flies corresponding to lifespans in (Fig. 3D). Data are plotted as the average median lifespan of the 3 biological replicates and error bars indicate +/- SEM. (g) Survival analysis of nCLK-Δ2 flies. Survival data is plotted as an average of three independent lifespan repeats. Control flies (vehicle treated): AL  $N=505$ , DR  $N=504$ ; nCLK-Δ1 flies (RU486 treated): AL  $N=497$ , DR  $N=508$ . (h) Median lifespan of nCLK-Δ2 flies corresponding to lifespans in (Supplemental Fig. 3D). Data are plotted as the average median lifespan of the 3 biological replicates and error bars indicate +/- SEM. (i) Volcano-plot of photoreceptor-specific transcription factors [48]. (j) Survival analysis of prCLK-Δ1 flies. Survival data is plotted from one independent lifespan. Control flies (Trpl-GAL4;GAL80>UAS-*CantonS*<sup>OC</sup>): AL  $N=206$ , DR  $N=172$ ; prCLK-Δ1 flies (Trpl-GAL4;GAL80>UAS-CLK-Δ1<sup>OC</sup>): AL  $N=154$ , DR  $N=190$ . \*The *CantonS* and UAS-CLK-Δ1 parental lines were outcrossed to *w<sup>1118</sup>* and the F1 generations share the same genetic background. (a) Pvalues were calculated with the pairwise Student's *t*test comparing Log2 fold-changes in expression. (e) Pvalues were determined by two-tailed Student's *t*test (unpaired) at each timepoint. (f, h) Pvalues were determined by Chi square from Log-rank (Mantel-Cox) test.



**Supplemental Figure 4. Lighting and retinal control lifespans, optogenetic activation diagram, and lifespans of RNAi-mediated knockdown of *ATP $\alpha$* -subunits in the eye.** (a) Survival analysis of *Canton-S* wildtype flies housed in 12:12h LD and constant darkness (DD). Survival data is plotted as an average of three independent lifespan crosses. AL LD  $N=549$ , AL DD  $N=510$ , DR LD  $N=558$ , DR DD  $N=509$ . (b) Survival analysis of white-eyed, photoreceptor null flies ( $w^{1118}$ ; *TRPP365*) housed in 12:12h LD or DD. Survival data is plotted as an average of two independent lifespan repeats. LD housed flies: AL  $N=290$ , DR  $N=373$ ; DD housed flies: AL  $N=301$ , DR  $N=357$ . (c) Diagram of optogenetic activation of photoreceptors. The photoreceptor-specific driver, *Trpl-GAL4*, drives the expression of a red-shifted csChrimson channel in R1-R8 photoreceptors. Addition of all-*trans* retinal (50 $\mu$ M) in the fly media promotes the opening of optogenetic channels in the presence of red-light, allowing the flow of positively charged ions into the cytosol to activate photoreceptors. (d) Survival analysis of *Canton-S* flies reared in 12:12 red-light:dark on AL and DR diets with the addition of all-*trans* retinal or vehicle (control). Survival data is plotted as an average of two independent lifespan repeats. All-*trans* retinal treated flies: AL  $N=340$ , DR  $N=328$ ; Vehicle treated flies: AL  $N=347$ , DR  $N=328$ . (e-f) Positive phototaxis responses with eye-specific knockdown *nrv2* (e, GMR-GAL4>UAS-*nrv2*-RNAi), and *nrv3* (f, GMR-GAL4>UAS-*nrv3*-RNAi) compared to RNAi control flies (GMR-GAL4>UAS-*mCherry*-RNAi). For each timepoint results are represented as average phototaxis response +/- SEM (RNAi control and *nrv2*:  $n=24$  biological replicates,  $N=480$  flies per condition; *nrv3*:  $n=16$  biological replicates,  $N=320$  flies per condition). (g-h) Survival analysis of eye-specific *nrv2* (g) and *nrv3* (h) RNAi knockdown flies compared to RNAi control flies. Survival data is plotted as an average of three independent lifespan repeats for RNAi controls and *nrv2* RNAi flies, and two independent lifespan crosses for *nrv3* RNAi knockdown flies. RNAi cnt flies: AL  $N=493$ , DR  $N=490$ ; *nrv2* RNAi flies: AL  $N=482$ , DR  $N=513$ ; *nrv3* RNAi flies: AL  $N=301$ , DR  $N=288$ . (e-f) *P*values were determined by two-tailed Student's *t*test (unpaired) at each timepoint.



**Supplemental Figure 5. Identification of photoreceptor enriched CLK-output genes, and additional analyses with eye-specific knockdown of *Gβ76c*, *retinin*, and *sunglasses*.** (a) Bioinformatics pipeline for identifying photoreceptor enriched, CLK-output genes. (b-d) Circadian expression of *Gβ76c*, *retinin*, and *sunglasses* and their corresponding circadian *p*value statistics for young (5-day old) and old (55-day old) wildtype heads from Kuintzle *et al.*, 2017 [7]. (e-g) Normalized expression counts for *Gβ76c*, *retinin*, and *sunglasses* from the nCLK-Δ1 RNA-Seq. Results are represented as average expression counts calculated by DEseq2 +/- SEM. (h) Heatmap of CLK and POL (*Drosophila* polymerase) tag-densities at the 5'-untranslated region of the *sunglasses* promoter over a circadian time-course from ChIP-Chip analyses [49]. Consistent with other direct CLK target genes, Abruzzi *et al.*, 2011 report maximal CLK binding at ZT 12, while POL displayed antiphasic binding to that of CLK and aligned with the phase of *sunglasses* mRNA expression (ZT 0-2). \*CLK binding was not observed in GMR-HID heads suggesting *sunglasses* is under CLK transcriptional regulation specifically in the neurons of the eye. (i) Positive phototaxis responses with eye-specific knockdown of *Gβ76c* (GMR-GAL4>UAS- *Gβ76c*-RNAi), *retinin* (GMR-GAL4>UAS-*retinin*-RNAi), and *sunglasses* (GMR-GAL4>UAS-*sunglasses*-RNAi) compared to RNAi control flies (GMR-GAL4>UAS-*mCherry*-RNAi) reared on AL. For each timepoint results are represented as average phototaxis response +/- SEM (RNAi control  $n=24$  biological replicates,  $N=480$  flies per condition; *Gβ76c* RNAi  $n=24$  biological replicates,  $N=480$  flies per condition, *retinin* RNAi  $n=16$  biological replicates,  $N=384$  flies per condition; *sunglasses* RNAi  $n=24$  biological replicates,  $N=480$  flies per condition). (j) Survival analysis of eye-specific *Gβ76c*-RNAi, *retinin*-RNAi, *sunglasses*-RNAi, and RNAi control knockdown flies compared to RNAi control flies reared on AL. Survival data is plotted as an average of three independent lifespan repeats for RNAi control, *Gβ76c*-RNAi, *sunglasses*-RNAi flies and two independent lifespan repeats for *retinin*-RNAi flies. RNAi cnt flies:  $N=493$ ; *Gβ76c* RNAi flies:  $N=543$ ; *retinin* RNAi flies:  $N=353$ ; *sunglasses* RNAi flies:  $N=503$ . (b-d) Circadian *p*values were determined by ARSER algorithm by Kuintzle *et al.*, 2017 [7] (AL=red, DR=blue). To compare gene expression profiles with age we utilized the two-tailed Student's *t*test (paired) to determine *P*values (black). (e-g) *P*values were determined by DEseq2 differential expression analysis. (i) *P*values were determined by two-tailed Student's *t*test (unpaired) at each timepoint comparing the phototaxis index of RNAi control flies to *retinin*- and *sunglasses*-RNAi flies.

| <i>Arr1</i>               | Arrestin 1                                                              | 0.0084   | 0.0040   | 0.0302 | 0.1066   | * † |
|---------------------------|-------------------------------------------------------------------------|----------|----------|--------|----------|-----|
| <i>Arr2</i>               | Arrestin 2                                                              | 6.89e-09 | 0.0096   | 1      | 1        |     |
| <i>Calx</i>               | Na/Ca-exchange protein                                                  | 0.0059   | 0.0001   | 1      | 0.1623   | * † |
| <i>Camta</i>              | Calmodulin-binding transcription factor                                 | 0.0158   | 0.0029   | 1      | 1        | *   |
| <i>CdsA</i>               | CDP diglyceride synthetase                                              | 8.67e-06 | 0.0026   | 1      | 0.1856   | * † |
| <i>Cib2</i>               | Calcium and integrin binding family member 2                            | 0.4123   | 0.0301   | 1      | 0.7501   |     |
| <i>cl</i>                 | clot                                                                    | 0.0069   | 0.0406   | 1      | 1        | * † |
| <i>cry</i>                | cryptochrome                                                            | 0.0006   | 0.0005   | 0.1415 | 4.07e-7  | *   |
| <i>Dmn</i>                | Dynactin 2, p50 subunit                                                 | 0.0084   | 0.0401   | 1      | 1        |     |
| <i>Ekar</i>               | Eye-enriched kainate receptor                                           | 0.0170   | 0.0432   | 1      | 0.6100   |     |
| <i>Fbxl4</i>              | F box and leucine-rich-repeat gene 4                                    | 0.0008   | 0.5073   | 0.2729 | 0.0583   | * † |
| <i>Galphaq</i>            | G protein alpha q subunit                                               | 0.1135   | 0.0076   | 1      | 1        | * † |
| <i>Gbeta76c</i>           | G protein beta-subunit 76C                                              | 3.15e-06 | 1.39e-05 | 1      | 1        |     |
| <i>Gprk1</i>              | G protein-coupled receptor kinase 1                                     | 0.0378   | 0.0260   | 1      | 1        | *   |
| <i>Gycalp99B</i>          | Guanyllyl cyclase alpha-subunit at 99B                                  | 0.0060   | 0.0208   | 1      | 1        |     |
| <i>lh</i>                 | ΙΙΙ[h] channel                                                          | 0.0001   | 0.0002   | 1      | 0.3086   | * † |
| <i>inaC</i>               | inactivation no afterpotential C                                        | 5.92e-05 | 0.0001   | 0.0030 | 0.0012   |     |
| <i>inaD</i>               | inactivation no afterpoteinal D                                         | 5.99e-07 | 2.48e-05 | 0.0423 | 0.0178   |     |
| <i>Inx3</i>               | Innixin 3                                                               | 0.0498   | 0.0212   | 1      | 0.0213   |     |
| <i>Inx7</i>               | Innixin 7                                                               | 0.0254   | 0.3187   | 1      | 0.0583   |     |
| <i>Itpr</i>               | Inositol 1,4,5,-tris-phosphate receptor                                 | 0.0261   | 0.1080   | 1      | 1        |     |
| <i>laza</i>               | lazaro                                                                  | 0.0049   | 0.0024   | 1      | 0.0148   |     |
| <i>Lrpprc</i>             | Leucine-rich pentatricopeptide repeat containing 2                      | 0.0136   | 0.0918   | 0.8288 | 0.3086   |     |
| <i>ninaA</i>              | neither inactivation nor afterpotential A                               | 8.46e-06 | 0.0025   | 0.0068 | 0.0001   |     |
| <i>ninaB</i>              | neither inactivation nor afterpotential B                               | 0.3094   | 0.0049   | 1      | 0.9134   |     |
| <i>ninaC</i>              | neither inactivation nor afterpotential C                               | 0.0251   | 0.0001   | 0.0178 | 0.0037   | * † |
| <i>ninaD</i>              | neither inactivation nor afterpotential D                               | 0.0241   | 0.1043   | 1      | 1        |     |
| <i>ninaE</i>              | neither inactivation nor afterpotential E                               | 0.1575   | 0.0044   | 0.3480 | 1        | * † |
| <i>norpA</i>              | no receptor potential A                                                 | 0.0057   | 0.0447   | 1      | 0.0024   | * † |
| <i>PAPLA1</i>             | Phosphatidic Acid Phospholipase A1                                      | 0.0241   | 0.8591   | 1      | 1        | *   |
| <i>Pdh</i>                | Photoreceptor dehydrogenase                                             | 0.0017   | 0.0044   | 0.0003 | 3.37e-05 |     |
| <i>pinta</i>              | prolonged depolarization afterpotential (PDA) is not apparent           | 0.0346   | 0.3933   | 1      | 1        |     |
| <i>PIP5k59B</i>           | Phosphatidylinositol 4-phosphate 5-kinase 59B                           | 0.2862   | 0.0159   | 1      | 0.2729   |     |
| <i>Pld</i>                | Phospholipase D                                                         | 0.0290   | 0.0860   | 1      | 1        | * † |
| <i>porin</i>              | porin                                                                   | 0.0095   | 0.0017   | 0.8288 | 1        | *   |
| <i>rdgB</i>               | retinal degeneration B                                                  | 0.0004   | 0.3399   | 1      | 1        | * † |
| <i>rdgC</i>               | retinal degeneration C                                                  | 0.0681   | 0.0766   | 1      | 0.3914   | * † |
| <i>rdhb</i>               | retinol dehydrogenase B                                                 | 2.70e-05 | 0.0074   | 0.4911 | 0.0148   |     |
| <i>Rh3</i>                | Rhodopsin 3                                                             | 0.0107   | 0.4194   | 1      | 1        |     |
| <i>Rh4</i>                | Rhodopsin 4                                                             | 0.0169   | 0.2723   | 1      | 1        |     |
| <i>Rh5</i>                | Rhodopsin 5                                                             | 0.0546   | 0.0029   | 0.0068 | 0.0030   | *   |
| <i>Rh6</i>                | Rhodopsin 6                                                             | 0.1415   | 0.0097   | 0.0030 | 0.0148   |     |
| <i>rtp</i>                | retinophilin                                                            | 0.0004   | 0.0272   | 1      | 1        |     |
| <i>santa-maria</i>        | scavenger receptor acting in neural tissue and majority of rh is absent | 0.0284   | 0.0002   | 1      | 0.0123   |     |
| <i>shakB</i>              | shaking B                                                               | 0.0120   | 0.0304   | 0.0084 | 0.5481   | * † |
| <i>stmA</i>               | stambha A                                                               | 0.0074   | 0.0045   | 1      | 0.4390   | * † |
| <i>stops</i>              | slow termination of phototransduction                                   | 0.0037   | 0.0008   | 1      | 1        | * † |
| <i>trp</i>                | transient receptor potential                                            | 0.0040   | 0.0121   | 0.0497 | 0.0045   | * † |
| <i>TrpA1</i>              | Transient receptor potential cation channel A1                          | 0.1622   | 0.0208   | 0.6773 | 0.3914   |     |
| <i>trpl</i>               | transient receptor potential-like                                       | 0.0013   | 0.0002   | 0.0084 | 0.0009   |     |
| <i>Tsp42Ej/sunglasses</i> | Tetraspanin 42Ej (sunglasses)                                           | 6.29e-05 | 0.0774   | 1      | 1        | * † |
| <i>Xport-A</i>            | exit protein of rhodopsin and TRP A                                     | 0.0022   | 0.0002   | 1      | 1        |     |

\* CLK binding

† CLK binding is eye-specific

**Supplemental Table 1. Circadian statistics and CLK binding of light-response genes.** Circadian pvalue statistics for light response genes in young and old wildtype heads (calculated by ARSER by Kuintzle et al., 2017 [7]) and whole flies reared on AL and DR (calculated by JTK\_CYCLE in this study).

|                                                                   |                                                                                                                                       |                                            |         |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|
| <i>ninaE</i> <sup>17</sup> outcrossed to <i>w</i> <sup>1118</sup> | <i>w</i> <sup>1118</sup> , <i>ninaE</i> <sup>17</sup>                                                                                 | Laboratory of Craig Montell                | N/A     |
| <i>rh3</i> <sup>2</sup> outcrossed to <i>w</i> <sup>1118</sup>    | <i>w</i> <sup>1118</sup> , <i>rh3</i> <sup>2</sup>                                                                                    | Laboratory of Craig Montell                | N/A     |
| <i>rh4</i> <sup>1</sup> outcrossed to <i>w</i> <sup>1118</sup>    | <i>w</i> <sup>1118</sup> , <i>rh4</i> <sup>1</sup>                                                                                    | Laboratory of Craig Montell                | N/A     |
| <i>rh6</i> <sup>G</sup> outcrossed to <i>w</i> <sup>1118</sup>    | <i>w</i> <sup>1118</sup> , <i>rh6</i> <sup>G</sup>                                                                                    | Laboratory of Craig Montell                | N/A     |
| <i>Gqα</i> <sup>1</sup> outcrossed to <i>w</i> <sup>1118</sup>    | <i>w</i> <sup>1118</sup> ; <i>Gqα</i> <sup>1</sup>                                                                                    | Laboratory of Craig Montell                | N/A     |
| <i>CantonS</i>                                                    | <i>CantonS</i> (Janelia Farm)                                                                                                         | Laboratory of Craig Montell                | N/A     |
| <i>CantonS</i> outcrossed to <i>w</i> <sup>1118</sup>             | <i>CantonS</i>                                                                                                                        | This manuscript                            | N/A     |
| <i>OregonR</i>                                                    | <i>OregonR</i>                                                                                                                        | Bloomington <i>Drosophila</i> Stock Center | BL25125 |
| <i>Trp</i> <sup>P365</sup>                                        | <i>w</i> <sup>*</sup> ; <i>trp</i> [P365]                                                                                             | Bloomington <i>Drosophila</i> Stock Center | BL9044  |
| <i>GMR-GAL4</i>                                                   | <i>w</i> <sup>*</sup> ; <i>P</i> { <i>w</i> [+mC]= <i>GAL4-ninaE.GMR</i> }12                                                          | Bloomington <i>Drosophila</i> Stock Center | BL1104  |
| <i>Elav-GS-GAL4</i>                                               | <i>y</i> [1] <i>w</i> <sup>*</sup> ; <i>P</i> { <i>w</i> [+mC]= <i>elav-Switch.O</i> }GSG301                                          | Bloomington <i>Drosophila</i> Stock Center | BL43642 |
| <i>Trp1-GAL4</i>                                                  | <i>w</i> ; <i>trp1-GAL4/Tm6B,Tb</i>                                                                                                   | Bloomington <i>Drosophila</i> Stock Center | BL52274 |
| <i>Trp1-GAL4; GAL80<sup>ts</sup></i>                              | <i>w</i> ; <i>trp1-GAL4/CyO;tub-GAL80<sup>ts</sup></i>                                                                                | This manuscript                            | N/A     |
| <i>CLK<sup>out</sup></i>                                          | <i>w</i> <sup>*</sup> ; <i>[ClkOUT]</i>                                                                                               | Bloomington <i>Drosophila</i> Stock Center | BL56754 |
| UAS-csChrimson (optogenetic)                                      | <i>w</i> [1118] <i>P</i> { <i>y</i> [+t7.7] <i>w</i> [+mC]=20XUAS-IVS-CsChrimson.mVenus}attP18                                        | Bloomington <i>Drosophila</i> Stock Center | BL55134 |
| UAS-CLKΔ1                                                         | <i>w</i> <sup>*</sup> ; <i>P</i> { <i>w</i> [+mC]=UAS-Clk.Delta}1                                                                     | Bloomington <i>Drosophila</i> Stock Center | BL36318 |
| UAS-CLKΔ1 outcrossed to <i>w</i> <sup>1118</sup>                  | <i>w</i> <sup>*</sup> ; <i>P</i> { <i>w</i> [+mC]=UAS-Clk.Delta}1                                                                     | This manuscript                            | N/A     |
| UAS-CLKΔ2                                                         | <i>w</i> <sup>*</sup> ; <i>P</i> { <i>w</i> [+mC]=UAS-Clk.Delta}865                                                                   | Bloomington <i>Drosophila</i> Stock Center | BL36319 |
| Gr76c-RNAi                                                        | <i>y</i> [1] <i>v</i> [1]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.JF03127}attP2                                            | Bloomington <i>Drosophila</i> Stock Center | BL28507 |
| <i>tsp42Ej-RNAi (sunglasses)</i>                                  | <i>y</i> [1] <i>v</i> [1]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.JF03325}attP2/TM3, <i>Sb</i> [1]                         | Bloomington <i>Drosophila</i> Stock Center | BL29392 |
| <i>retinin-RNAi</i>                                               | <i>y</i> [1] <i>sc</i> <sup>*</sup> <i>v</i> [1] <i>sev</i> [21]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.HMC04693}attP40   | Bloomington <i>Drosophila</i> Stock Center | BL57389 |
| <i>ATP<math>\alpha</math>-RNAi</i>                                | <i>y</i> [1] <i>sc</i> <sup>*</sup> <i>v</i> [1] <i>sev</i> [21]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.HMS00703}attP2    | Bloomington <i>Drosophila</i> Stock Center | BL28073 |
| <i>nrv2-RNAi</i>                                                  | <i>y</i> [1] <i>v</i> [1]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.JF03081}attP2                                            | Bloomington <i>Drosophila</i> Stock Center | BL28666 |
| <i>nrv3-RNAi</i>                                                  | <i>y</i> [1] <i>v</i> [1]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=TRiP.HM22547}attP40                                           | Bloomington <i>Drosophila</i> Stock Center | BL60367 |
| RNAi-cnt (BDSC)                                                   | <i>y</i> [1] <i>sc</i> <sup>*</sup> <i>v</i> [1] <i>sev</i> [21]; <i>P</i> { <i>y</i> [+t7.7] <i>v</i> [+t1.8]=VALIUM20-mCherry}attP2 | Bloomington <i>Drosophila</i> Stock Center | BL35785 |
| <i>arr1-RNAi</i>                                                  | <i>w</i> 1118; <i>P</i> {GD11744}v22196/TM3                                                                                           | Vienna <i>Drosophila</i> Resource Center   | v22196  |
| RNAi-cnt (VDRC)                                                   | <i>y,w</i> [1118]; <i>P</i> {attP, <i>y</i> [+], <i>w</i> [3']}                                                                       | Vienna <i>Drosophila</i> Resource Center   | v60100  |

Supplemental Table 2. *Drosophila* strains used in this study.

**Supplemental Data 1. AL and DR circadian transcriptome analyses.** These files contain JTK\_CYCLE statistics accompanied gene-ontology enrichment terms/scores for AL and DR circadian transcriptomes, circadian acrophase analyses, and differential gene-expression analyses.

**Supplemental Data 2. Gene-ontology enrichment analyses of genes that are circadian in young heads.** These files contain the enriched biological processes in young wild-type heads from Kuintzle *et al.*, 2017, highlighting circadian processes within the eye.

**Supplemental Data 3. Additional nCLK-Δ1 RNA-Seq analyses.** Included in these files are normalized count reads generated by DEseq2 across all experimental groups and replicates from the nCLK-Δ1 RNA-Seq. The normalized expression counts across all samples for the gene-ontology terms “Deactivation of rhodopsin mediated signaling” and “Antimicrobial humoral response” (corresponding to Fig. 2b and 3b) are also reported.

**Supplemental Data 4. Cross-comparison of wild-type circadian transcriptome and nCLK-Δ1 RNA-Seq analyses.** These files include gene-ontology enrichment terms/scores for genes that are circadian in wild-type heads (from Kuintzle *et al.*, 2017, GSE81100) and downregulated in nCLK-Δ1 heads.

**Supplemental Data 5. nCLK-Δ1 hemolymph mass-spec analysis.** These files contain the proteins identified and quantification of differential expression comparing proteomic profiles between nCLK-Δ1 and control hemolymph. Enriched bioprocesses are also included for significantly up- or downregulated proteins.

**Supplemental Data 6. Bioinformatic pipeline for identification of eye-specific and DR-sensitive CLK-output genes *Gbeta76c*, *retinin*, and *sunglasses*.** These files provide the filtered gene-lists that correspond to the bioinformatic filtering steps performed in Fig. 5a-d and Supplementary Fig. 5a.

**Supplemental Data 7. Survival analyses.** These files report lifespan statistics (Log-Rank and Hazard Ratios) and group sizes (*n*) for the survival analyses performed.

**Supplemental Data 8. Analyses of transcriptional responses to light.** These files report gene-ontology enrichment terms/scores for genes that are differentially expressed in wild-type fly heads in response to being housed in 12:12h LD vs constant dark (from Wijnen *et al.*, 2006, GSE3842) and correspond to Supplementary Fig. 3D-E.

**Supplemental Data 9. Positive phototaxis responses and statistics.** These files report detailed statistics (*t*test and 2way ANOVA) for the positive phototaxis experiments performed.

**Supplemental Data 10. Electroretinogram analyses and statistics.** These files include detailed *t*test statistics for the ERG assays performed at day 14 and 21 in nCLK- $\Delta$ 1 flies.

**Supplemental Data 11. Experimental materials.**

1. Chaudhari, A., et al., *Circadian clocks, diets and aging*. Nutr Healthy Aging, 2017. **4**(2): p. 101-112.
2. Sato, S., et al., *Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging*. Cell, 2017. **170**(4): p. 664-677 e11.
3. Eckel-Mahan, K.L., et al., *Reprogramming of the circadian clock by nutritional challenge*. Cell, 2013. **155**(7): p. 1464-78.
4. Cho, E., et al., *AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in Drosophila*. J Neurosci, 2019. **39**(18): p. 3537-3550.
5. Ramanathan, C., et al., *mTOR signaling regulates central and peripheral circadian clock function*. PLoS Genet, 2018. **14**(5): p. e1007369.
6. Bae, S.A., et al., *At the Interface of Lifestyle, Behavior, and Circadian Rhythms: Metabolic Implications*. Front Nutr, 2019. **6**: p. 132.
7. Kuintzle, R.C., et al., *Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging*. Nat Commun, 2017. **8**: p. 14529.
8. Zhang, M., et al., *Dysregulated metabolic pathways in age-related macular degeneration*. Sci Rep, 2020. **10**(1): p. 2464.
9. Vallee, A., et al., *Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/beta-Catenin Pathway*. Int J Mol Sci, 2020. **21**(3).
10. Baba, K. and G. Tosini, *Aging Alters Circadian Rhythms in the Mouse Eye*. J Biol Rhythms, 2018. **33**(4): p. 441-445.
11. Felder-Schmittbuhl, M.P., et al., *Ocular Clocks: Adapting Mechanisms for Eye Functions and Health*. Invest Ophthalmol Vis Sci, 2018. **59**(12): p. 4856-4870.
12. Kawashima, M., et al., *Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders*. Exp Gerontol, 2013. **48**(10): p. 1096-100.
13. Baba, K., et al., *The Retinal Circadian Clock and Photoreceptor Viability*. Adv Exp Med Biol, 2018. **1074**: p. 345-350.
14. Partch, C.L., C.B. Green, and J.S. Takahashi, *Molecular architecture of the mammalian circadian clock*. Trends Cell Biol, 2014. **24**(2): p. 90-9.
15. Baba, K., et al., *Removal of clock gene Bmal1 from the retina affects retinal development and accelerates cone photoreceptor degeneration during aging*. Proc Natl Acad Sci U S A, 2018. **115**(51): p. 13099-13104.
16. Sawant, O.B., et al., *The Circadian Clock Gene Bmal1 Controls Thyroid Hormone-Mediated Spectral Identity and Cone Photoreceptor Function*. Cell Rep, 2017. **21**(3): p. 692-706.

17. Fu, Y. and K.W. Yau, *Phototransduction in mouse rods and cones*. *Pflugers Arch*, 2007. **454**(5): p. 805-19.
18. Montell, C., *Drosophila visual transduction*. *Trends Neurosci*, 2012. **35**(6): p. 356-63.
19. Do, M.T. and K.W. Yau, *Intrinsically photosensitive retinal ganglion cells*. *Physiol Rev*, 2010. **90**(4): p. 1547-81.
20. Owens, L., et al., *Effect of circadian clock gene mutations on nonvisual photoreception in the mouse*. *Invest Ophthalmol Vis Sci*, 2012. **53**(1): p. 454-60.
21. Shieh, B.H., *Molecular genetics of retinal degeneration: A Drosophila perspective*. *Fly (Austin)*, 2011. **5**(4): p. 356-68.
22. Nash, T.R., et al., *Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila*. *NPJ Aging Mech Dis*, 2019. **5**: p. 8.
23. Baik, L.S., et al., *Circadian modulation of light-evoked avoidance/attraction behavior in Drosophila*. *PLoS One*, 2018. **13**(8): p. e0201927.
24. Pittendrigh, C.S., *Temporal organization: reflections of a Darwinian clock-watcher*. *Annu Rev Physiol*, 1993. **55**: p. 16-54.
25. Nippe, O.M., et al., *Circadian Rhythms in Visual Responsiveness in the Behaviorally Arrhythmic Drosophila Clock Mutant Clk(Jrk)*. *J Biol Rhythms*, 2017. **32**(6): p. 583-592.
26. Storch, K.F., et al., *Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information*. *Cell*, 2007. **130**(4): p. 730-741.
27. Organisciak, D.T., et al., *Circadian-dependent retinal light damage in rats*. *Invest Ophthalmol Vis Sci*, 2000. **41**(12): p. 3694-701.
28. Ferrucci, L. and E. Fabbri, *Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty*. *Nat Rev Cardiol*, 2018. **15**(9): p. 505-522.
29. Fougere, B., et al., *Chronic Inflammation: Accelerator of Biological Aging*. *J Gerontol A Biol Sci Med Sci*, 2017. **72**(9): p. 1218-1225.
30. Kounatidis, I., et al., *NF- $\kappa$ B Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration*. *Cell Rep*, 2017. **19**(4): p. 836-848.
31. Du, Y., et al., *Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina*. *Proc Natl Acad Sci U S A*, 2013. **110**(41): p. 16586-91.
32. Yang, Y., et al., *Neuronal necrosis and spreading death in a Drosophila genetic model*. *Cell Death Dis*, 2013. **4**: p. e723.
33. Srinivasan, N., et al., *Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster*. *Elife*, 2016. **5**.
34. Kondratov, R.V., et al., *Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock*. *Genes Dev*, 2006. **20**(14): p. 1868-73.
35. Boomgarden, A.C., et al., *Chronic circadian misalignment results in reduced longevity and large-scale changes in gene expression in Drosophila*. *BMC Genomics*, 2019. **20**(1): p. 14.
36. Mazzotti, D.R., et al., *Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile*. *Front Aging Neurosci*, 2014. **6**: p. 134.
37. Kumar, S., A. Mohan, and V.K. Sharma, *Circadian dysfunction reduces lifespan in Drosophila melanogaster*. *Chronobiol Int*, 2005. **22**(4): p. 641-53.
38. Libert, S., et al., *Deviation of innate circadian period from 24 h reduces longevity in mice*. *Aging Cell*, 2012. **11**(5): p. 794-800.

39. Inokawa, H., et al., *Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice*. *Sci Rep*, 2020. **10**(1): p. 2569.
40. Patel, S.A., et al., *Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms*. *FASEB J*, 2016. **30**(4): p. 1634-42.
41. Shen, J. and J. Tower, *Effects of light on aging and longevity*. *Ageing Res Rev*, 2019. **53**: p. 100913.
42. Hori, M., et al., *Lethal effects of short-wavelength visible light on insects*. *Sci Rep*, 2014. **4**: p. 7383.
43. Katewa, S.D., et al., *Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila*. *Cell Metab*, 2016. **23**(1): p. 143-54.
44. McLayout, L.K., M.P. Green, and T.M. Jones, *Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster*. *J Insect Physiol*, 2017. **100**: p. 15-20.
45. Hughes, M.E., J.B. Hogenesch, and K. Kornacker, *JTK\_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets*. *J Biol Rhythms*, 2010. **25**(5): p. 372-80.
46. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2*. *Genome Biol*, 2014. **15**(12): p. 550.
47. Wijnen, H., et al., *Control of daily transcript oscillations in Drosophila by light and the circadian clock*. *PLoS Genet*, 2006. **2**(3): p. e39.
48. Charlton-Perkins, M.A., et al., *Multifunctional glial support by Semper cells in the Drosophila retina*. *PLoS Genet*, 2017. **13**(5): p. e1006782.
49. Abruzzi, K.C., et al., *Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression*. *Genes Dev*, 2011. **25**(22): p. 2374-86.