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ABSTRACT2

Influenza is a serious global health threat that shows varying pathogenicity among different3
virus strains. Understanding similarities and differences among activated functional pathways4
in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To5
compare the types and timing of functional modules activated in host cells by four influenza6
viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that7
addresses the need to compare functional module utilization over time. This integrative approach8
overlays whole genome time series expression data onto an immune-specific functional9
network, and extracts conserved modules exhibiting either different temporal patterns or overall10
transcriptional activity. We identified a common core response to influenza virus infection that11
is temporally shifted for different viruses. We also identified differentially regulated functional12
modules that reveal unique elements of responses to different virus strains. Our work highlights13
the usefulness of combining time series gene expression data with a functional interaction map14
to capture temporal dynamics of the same cellular pathways under different conditions. Our15
results help elucidate conservation of the immune response both globally and at a granular16
level, and provide mechanistic insight into the differences in the host response to infection by17
influenza strains of varying pathogenicity.18
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1 INTRODUCTION
The possibility of influenza virus pandemics remains a potent public health threat. While most annual21
influenza strains are associated with a relatively low global infection rate and mortality, more widely22
infectious or lethal influenza virus strains arise periodically. The influenza pandemic of 1918 was23
responsible for more than 50 million deaths and, within one year, reduced the life expectancy in the United24
States by a dozen years (1). More recently, the swine-origin influenza pandemic in 2009 infected 20-5025
percent of the population of some countries, although, fortunately, it had a mortality rate comparable26
to that of seasonal influenza strains (2). Thus, individual seasonal and pandemic influenza strains vary27
in their infectivity and pathogenicity. Although the genetic mechanisms underlying the emergence of28
new viruses are relatively well understood, less is known about virus-host interaction effects that may29
influence influenza transmission or disease outcome. Implementing a computational approach to identify30
commonalities and differences in the host biological response to different influenza virus strains is31
important in providing insight into common and distinct components of the host response program that32
may contribute to pathogenicity.33

Increasingly, emerging research suggests that temporal dynamics may play an important role in the34
varying pathogenicity that is observed among different influenza strains (3). This premise motivates35
a systematic study of time series expression datasets to gain a more complete understanding of the36
differences in host response dynamics observed with each virus. However, time series analyses present37
computational and experimental challenges. Measurements must be obtained at the appropriate time38
scales. Proper temporal alignment among different datasets and possible time shifts in activity patterns39
need to be addressed when interpreting such data. The standard approach of identifying lists of40
differentially expressed genes provides only limited insight into the biological mechanisms underlying41
commonalities and differences among host responses to multiple influenza strains (4, 5, 6, 7, 8, 9).42

Integration of gene expression data with complementary information about physical or functional43
associations between molecular entities has been proposed as a powerful approach to improve the44
interpretation of global transcriptional changes. These integrative approaches analyze gene expression45
experiments in the context of an independently constructed connectivity map, such as a protein-46
protein interaction (PPI) network, to identify modules comprised of genes or proteins that participate47
in common biological pathways or functions (10). More recently, integrative methods have been48
developed to identify ‘active’ modules (i.e. related groups of genes exhibiting concordant transcriptional49
changes (10, 11, 12, 13)), modules conserved across species (14, 15) and ‘differential’ modules (16, 17).50
(For an overview, see also a review article by T. Ideker and colleagues (18) and references therein).51

Time-course gene expression datasets capture important features of the temporal trajectories of52
transcriptional changes. While the majority of integrative gene expression and interaction network53
analyses have not utilized the temporal dimension of the data, there have been attempts to incorporate54
temporal information into module discovery (19, 20, 21, 22, 23, 24). For example, Gao and Wang (22)55
used a phase-locking approach (25) to identify yeast cell cycle genes that show temporal coordination and56
whose interactions are supported by a PPI network. In another study, Jin and colleagues (23) applied57
a time-warping dynamic programming algorithm (26) to identify locally-similar temporal expression58
patterns among groups of genes forming connected components of a PPI network. These methodological59
advancements do not offer a solution to the problem we call ‘comparative module discovery’, i.e.60
the identification of temporally-shifted, network-based patterns of expression showing conservation (or61
divergence) between time-course datasets that are generated in the same experimental system by different62
perturbations. Developing such an analysis method would be valuable in elucidating commonalities and63
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differences in the biological responses to these perturbations. The identification of such comparative64
modules is critical for addressing the central question of our study - that of understanding the similarities65
and differences in virus-host interaction effects in response to related influenza virus infections.66

In order to perform comparative module discovery, we developed a novel integrative DYNAmic MOdule67
(DYNAMO) method, and applied it to understand the common and unique features of the host immune68
response to infection by related strains of the influenza virus. Integrating datasets that capture the temporal69
progression of the global gene expression response post-infection with an interaction network, our70
method discovers both conserved and differential comparative modules. Conserved comparative module71
discovery identifies a set of highly functionally connected genes that show a high degree of similarity72
between their regulation and response patterns for perturbations being compared. Our approach allows the73
possibility that the module responses may be shifted in time across different perturbations. Differential74
comparative module discovery identifies genes that show differences in their pattern of regulation across75
different perturbations. Differential module discovery is a difficult problem because truly condition-76
specific regulatory patterns must be distinguished from experimental and biological variability (18, 14).77
Our method is able to identify high-confidence differential subnetworks by exploiting the temporal nature78
of the expression data and anchoring the modules in functional network connectivity relationships. By79
computing the optimal temporal alignment of each module’s expression profile between two different80
conditions, we are able to capture divergent activation patterns. Overall, our method addresses the broad81
problem of combining functional connectivity and genome-scale time series expression data to extract82
vital temporal information and to enable a comparison of gene programs and module activation across83
time.84

We apply DYNAMO to the problem of studying host-pathogen interactions for multiple H1N1 influenza85
virus strains. Our study builds upon the availability of identically sampled time series data for H1N186
seasonal and pandemic influenza virus of a human immune cell that lends itself to a systems-wide87
comparison of the dynamics underlying the modulation of the host response by each virus (27). DYNAMO88
extracts functionally conserved modules that show a difference in their temporal dynamics or pattern of89
transcriptional changes between each pair of infection time-course datasets. We demonstrate that the90
groups of modules identified are statistically significant and that the algorithmic element of optimization91
for the best temporal alignment is crucial for their identification. Our analysis provides insight into the92
biological mechanisms underlying the module response patterns elicited by these influenza virus strains.93
DYNAMO is accessible via a user-friendly interface at http://tsb04.mssm.edu/.94

2 MATERIALS AND METHODS
2.1 Subnetworks with shifted temporal dynamics95

DYNAMO searches for groups of genes in two time-series expression experiments that exhibit similar96
gene-by-gene expression patterns while allowing a temporal shift. DYNAMO is an integrative method97
that overlays expression data on a functional interaction network and leverages the methodology of the98
neXus algorithm (14) to reinforce functional coherence within each discovered module.99

2.1.1 Overview of the neXus algorithm.100

The neXus algorithm (14) was developed to search for conserved subnetworks between a pair101
of expression datasets across species or within a single species. In its single species version, the102
method attempts to form dense gene subnetworks within a chosen functional interaction network while103
maintaining sufficient similarity in the expression levels of the subnetwork genes. Briefly, neXus initiates104
a depth-first search from a seed gene as it aims to build a subnetwork in the underlying functional105

Frontiers 3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443162
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nudelman et al. Comparing host module activation patterns and temporal dynamics

network. For each gene that it considers for addition to the growing subnetwork, two conditions have106
to be met. First, it evaluates that the connectivity requirement is met by maintaining a minimum desired107
clustering coefficient of the genes in the putative subnetwork. Second, the expression similarity condition108
is evaluated by computing the average expression activity score of the subnetwork genes. The subnetwork109
grows until there are either no genes to be considered or it has reached a maximal size. The process is110
repeated for every initial seed gene, and final subnetworks with large overlaps can be merged.111

2.1.2 Incorporating a time shift.112

Consider the expression vectors of gene g in two aligned time-course expression datasets. DYNAMO113
evaluates optimal similarity between the two vectors while allowing one vector to be shifted relative to the114
other by some time shift, ∆t. To assess similarity in expression at any such ∆t, we calculate time-lagged115
Pearson correlation coefficient of the two vectors. Let T be the set of discrete time points at which gene116
expression was sampled for each virus infection and T ′ be the corresponding set of time points shifted117
by ∆t. Denoting the expression vectors as XT (g) for the stationary time-course and YT ′(g) for the time-118
shifted course, we compute time-lagged correlation coefficient, (TLC) ρg∆t for gene g between the two119
responses as120

ρg∆t =
cov(XT (g), YT ′(g))√

cov(XT (g), XT (g))cov(YT ′(g), YT ′(g))

where cov is the standard covariance. We use linear interpolation to calculate the values in the stationary121
time course that correspond to the new time points. Just like the standard correlation, a time-lagged122
correlation close to 1 means that the expression of gene g is perfectly correlated between the two responses123
once the time-shift is taken into account. We determined (data not shown) that transforming the correlation124
distributions via the Fisher Z-transform125

Z =
1

2
ln

1 + ρ

1− ρ
= arctanh(ρ)

resulted in better findings, and used these Fisher-transformed scores within the algorithm when assessing126
expression coherence of growing subnetworks at various time lags.127

2.1.3 Algorithm to find temporally-shifted subnetworks.128

We begin with a list of seed genes, and their expression vectors from a pair of aligned time-course129
experiments. We use fold-change values over a control condition, though other quantitative vectors such130
as differential expression p-values can be used as well. The matrix of standardized z-scores is computed131
for all genes at every considered time lag. Putative subnetworks are grown greedily from every seed in132
turn. First, candidate genes are identified via a depth-first search from the seed gene, as in the original133
neXus algorithm (14). To assess subnetwork coherence at a particular time lag ∆t, we calculate the134
subnetwork’s score as the average of the Fisher-transformed z-scores of its constituent genes at that time135
lag. To select a gene for addition to the growing subnetwork, DYNAMO then optimizes over all considered136
time lags and corresponding putative subnetwork scores, provided that the minimum desired connectivity137
requirement in the underlying functional network is met. The connectivity condition, measured as the138
average weighted clustering coefficient of the subnetwork, enforces functional coherence of the growing139
module. The network score maximization component enables the algorithm to identify the best time-140
lag (if one exists) that brings the group of genes in the two responses into temporal alignment. Note141
that the optimal time lag for a growing network can change with addition of new genes, but, in our142
experience, does not vary widely. We use the average of the per-gene maximal fold-changes during the143
time course in each response as a third cutoff to be met in order to filter out false high subnetwork scores144
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that may be due to a good alignment of flat time courses of genes that do not show significant differential145
expression. Finally, we merge the discovered subnetworks if there is considerable (0.6) overlap among146
their constituent genes and their identified time lags are the same.147

2.2 Subnetworks with differential expression patterns148

Identifying genes that behave differently between a pair of responses is a difficult problem because149
many spurious expression differences can arise for individual genes. We again employ the insight of150
constraining expression differences by requiring tight clustering of such genes in the underlying functional151
network. The structure of the algorithm is similar to that of the algorithm for finding conserved temporally-152
shifted subnetworks. We enforce the network connectivity requirement by maintaining a minimum desired153
clustering coefficient, and optimize the choice of candidate genes for addition to the growing subnetwork154
by selecting one that shows the highest divergence in its expression pattern between the responses,155
provided that the average expression score stays below a selected score threshold. The subnetwork156
expression score that, in the case of differential modules, needs to identify genes with divergent expression157
patterns, is modified to reflect that difference. We observe that the correlations and their corresponding158
Fisher z-score distributions for most time lags have positive means (Supplementary Figure 1), indicating159
that most genes show similar expression trends in the infection responses. Genes that exhibit different160
expression trends between responses may show only slightly negative absolute correlations. To better161
identify such genes, we use standardized rather than raw Fisher z-scores. This way, DYNAMO searches162
for genes that are within some number of standard deviations below the mean of the Fisher z-score163
distributions. The average fold-change requirement is also altered to enforce that only subnetworks in164
one of the responses pass the cutoff. This change allows the algorithm to capture both subnetworks that165
show opposing activation patterns as well as those that show activation in only one of the responses.166

2.3 Assessing subnetwork significance167

We employ a randomization analysis, and use it as a tool to calibrate various DYNAMO parameters and168
assess biological significance of the subnetworks discovered in the comparison of the influenza infection169
responses. We create five randomized expression profiles by randomly shuffling the expression vectors170
with respect to gene labels. Our algorithm for subnetwork discovery is applied to these profiles while the171
functional network structure remains intact, enabling an estimation of the temporally shifted (or divergent)172
expression pattern coherence that arises from the clustering of genes by random chance. For a given173
expression score threshold, the subnetworks discovered in the randomized data at that threshold represent174
false positive findings and enable an estimation of false discovery rate. We calculate the associated175
subnetwork confidence value as176

confidence = 1− number of random subnetworks

number of real subnetworks

and use it to assess the subnetworks’ statistical significance. Overall, exploring the algorithm’s findings177
over various parameter ranges for randomized and real data allows a substantiation of our parameter178
choices and a quantification of the biological significance of the results.179

2.4 Experimental data and algorithm parameters180

2.4.1 Microarray data.181

Human monocyte-derived dendritic cells were infected with each of the four strains of the H1N1182
influenza virus (Tx, NC, Brevig and Cal). For each infection, cells were collected at the following time183
points post infection: 120, 160, 200, 240, 300, 360, 420, 480 min. Naı̈ve non-infected DCs underwent184
the same experimental handling as infected DCs in virus-free allantoic fluid to ensure that mechanical185
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manipulations could not be responsible for differences in experimental readouts. These served as a186
negative control time-course. All time points and controls were performed in triplicates. The details of187
DC maturation, virus preparation and infection as well as RNA extraction for microarray experiments188
are described elsewhere (27). The RNA samples were processed and hybridized to HumanHT-12 v4189
Expression BeadChip Kit (Illumina San Diego, CA) by the Yale Center for Genome Analysis following190
the manufacturer’s instructions, and raw expression data were output by the Illumina GenomeStudio191
software. These data were log-transformed, filtered for minimum intensity (log2(expression) > 6.6),192
determined based on visual inspection of the distribution), averaged over the triplicates, and converted to193
fold-change values over the time-matched allantoic fluid control condition. Each viral time-course was194
analyzed for differential expression using LIMMA (BioConductor implementation) after correction for195
multiple hypothesis testing (q < 0.05) (28). Maximally expressed probes were chosen for differentially196
expressed genes with multiple probes. We took the union of genes that passed the differential expression197
criterion at any time-point in each viral time-course as our candidate seed set.198

2.4.2 Flow Cytometry.199

Human monocyte-derived DCs were infected with either NC, Tx (both seasonal) or Cal (pandemic)200
H1N1 IAV. Samples were fixed in 1.6% paraformaldehyde (Sigma) and subsequently stained with201
fluorophore conjugated antibodies against CD86 and HLADR (both BD) at multiple time points post202
infection. Cells were analyzed with a LSRII flow cytometer (BD) and data was analyzed with Cytobank203
and R.204

2.4.3 Functional networks.205

We consider two human functional linkage networks, the general network (29) that is trained on diverse206
curated functional pathway data (30) and an immune-specific network (31) trained on immune pathways207
only. Both networks integrate many heterogeneous data from diverse sources including physical and208
genetic interactions as well as microarray data to create the functional associations between gene pairs.209
The edge weight distributions, which reflect the confidence in the gene-gene associations and are inferred210
via Bayesian integration, differ between the two networks, with the median edge weights being 0.85 and211
0.22 for the general functional network and the immune-specific network, respectively. We retained one212
million most highly weighted edges for each network. We explored the algorithm’s performance and its213
dependence on the clustering coefficient parameter for each network separately (data not shown), and214
found that in each case there exists a range of this parameter (different for each network because of the215
differences in the underlying edge weight distributions) with comparably good performance. We use these216
ranges, and set the average clustering coefficient cutoffs to 0.8 and 0.5 for general and immune-specific217
networks respectively.218

2.4.4 Algorithm parameters.219

We chose the values of 1.5 for subnetwork score (see discussion in Supplementary Materials), 0.5 for220
minimum clustering coefficient of the immune-specific network and 0.9 for subnetwork confidence, and221
considered subnetworks that pass all these cutoffs. The subnetworks were grown to maximal size of 25222
nodes. Additional internal neXus parameters were left at their defaults.223

3 RESULTS
3.1 Overview of algorithm developed for comparative module discovery224

We developed DYNAMO to find conserved and differential subnetworks that exist between time-course225
datasets that measure gene expression responses to different perturbations in the same experimental226
system. As a motivation for our study was an observation made while investigating a time-course227
microarray dataset of the responses to four strains of the influenza virus in human monocyte-derived228
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dendritic cells (DCs) (27). We noted a time shift in the expression dynamics for many important immune229
response genes (Figure 1). This served as an impetus for addressing the aspect of temporal dynamics230
in our methodology development. The DC infection study comprised of four A/H1N1 influenza viruses231
that differ in their infectivity and clinical severity, including two pandemic strains, the influenza of 1918232
(Brevig) and the recent 2009 strain (Cal), as well as two seasonal strains, the New Caledonia strain of233
1999 (NC) and Texas 1991 (Tx). Global expression was sampled with high frequency during the first234
eight hours post-infection. Thus, our investigation relied on a well-controlled dataset representing time-235
course responses in a single cell type to antigenically similar influenza strains varying in pathogenicity236
and transmission efficiency.237

We built upon the approach of neXus (14), an algorithm that overlays gene expression data on functional238
interaction networks (29, 32) to identify functionally coherent groups of genes that have similarity in their239
expression patterns across species. We describe our approach briefly here, and a more extensive discussion240
of the algorithm is found in the Materials and Methods section. Each DYNAMO module is grown from241
a seed gene by adding nearby genes in the interaction network in a way that maximizes the average gene242
expression activity score of the module, while maintaining a minimum desired clustering coefficient.243
DYNAMO’s expression activity score (subnetwork score) addresses the challenge of comparing time-244
course datasets and studying response programs that may be temporally shifted with respect to one245
another. DYNAMO samples time-shifts in the gene expression dynamics, computing the time-lagged246
Pearson correlation coefficient, and conducts a greedy search for coherent active subnetworks, such that247
each module member gene in one dataset exhibits a maximally similar expression pattern (possibly with248
a temporal shift) to the same gene in the other dataset. For each module, the optimal time shift, applied249
to all genes, is identified. Subnetworks with high overlap in gene membership that exhibit the same250
time lag are merged. DYNAMO identifies the set of highly coherent, statistically significant modules251
by determining the false discovery rate (FDR) via analysis of randomly shuffled expression data. The252
same methodological approach is applied to the problem of differential comparative module discovery.253
DYNAMO identifies maximally differentially regulated genes in two datasets that represent a highly254
functionally related module in the underlying functional interaction network.255

In the following sections, we used DYNAMO to identify and compare modules in time-course responses256
to the different influenza viruses. We first performed an in-depth analysis of the Brevig/Cal response257
comparison, validating our method and offering insight into the biology of their shared and unique258
response processes. We then compared temporal dynamics and functional pathway activity, computed259
as GO term enrichment of discovered modules, for all the strains. Detailed analyses of each comparison,260
including conserved and differential comparative modules, functional pathway activity and performance261
characteristics are available at http://tsb04.mssm.edu/.262

3.2 Evaluating the DYNAMO algorithm263

We evaluated two important aspects of the DYNAMO algorithm. First, we considered the effect of264
the choice of the functional network used by DYNAMO to identify functional connectivity. Next, we265
assessed the effects of allowing a temporal shift of the gene expression dynamics on module discovery.266
In evaluating the algorithm’s performance, we considered the number of conserved modules that were267
discovered by the algorithm, and we estimated the false positive rates for the discovered modules via a268
randomization analysis (see details in the Materials and Methods).269
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3.2.1 Functional network selection.270

Functional networks are constructed from heterogeneous data sources and represent diverse associations271
between genes or proteins (33, 29). Bayesian integration of multiple data types, including protein-272
protein and genetic interactions, gene expression, protein localization, phenotype, and sequence data,273
was used to infer functional connections between molecular entities. Given their more comprehensive274
coverage of a broad variety of gene relationships, functional networks allow for more sensitive discovery275
of conserved active modules and have been shown as advantageous for this task over protein-protein276
interaction networks (14).277

We assessed DYNAMO’s performance using the general human functional network (29) and an278
immune-specific functional network that should, in principle, capture associations that are more relevant279
for immune contexts (31). The edge weight distributions, which reflect the confidence in the gene-280
gene associations and are inferred via Bayesian integration, vastly differ between the two networks.281
Correspondingly, the network related parameters can not be set at the same values for the two networks.282
Retaining one million most confident edges for each network, we explored the algorithm’s performance283
for each network separately, and set the clustering coefficient parameters to values that maximized284
performance for each network individually (see Materials and Methods for details). We identified the285
conserved comparative modules for the Brevig and Cal pair using the two functional networks and varying286
the gene expression based activity score parameter of the algorithm. To assess the statistical significance of287
the modules discovered, we performed a randomization analysis. Specifically, the expression time-course288
vectors were randomly shuffled five times with respect to the gene labels, and the algorithm was applied289
to the shuffled expression profiles. Any modules identified in these randomized expression data would290
represent false positives and not biologically meaningful conservation. As seen in Figure 2, utilizing the291
immune-specific functional network was far superior to using the general functional network. We observed292
that many more coherent modules were discovered at every subnetwork score cutoff, suggesting that the293
functional connectivity that underlies the gene relationships in influenza responses is better reflected in294
the immune-specific functional network. Focusing on the randomization experiments, our evaluations295
suggested a false discovery rate of < 5% for a broad range of subnetwork score cutoffs when using296
the immune-specific functional network. Overall, comparing DYNAMO’s results with the two different297
underlying functional networks, we found that many more modules are discovered at every FDR setting298
when the immune-specific network is used, indicating in a substantial improvement in sensitivity.299

We further assessed the importance of enforcing the functional coherence of the modules and considered300
whether our method can extract high-confidence subnetworks from expression data alone. We used301
DYNAMO without enforcing the clustering coefficient parameter, while adding putative module member302
genes in the same order from a pool that is functionally proximal to the seed gene. As shown previously303
by Deshpande et al. (14) and corroborated in our analysis, fewer modules were discovered without304
enforcing the clustering coefficient parameter. Furthermore, they were of low significance in view of the305
similar number of modules identified via a randomization analysis. We concluded that using a functional306
connectivity map and selecting a map that is most relevant for the experimental study (an immune-specific307
functional network in our case of subnetwork discovery in the responses to influenza viral infection) are308
essential for identifying significant modules. As such, we used the immune-specific functional network in309
all further evaluations within this study.310

3.2.2 Advantage of allowing a temporal shift.311

We evaluated the advantage gained by the introduction of a time shift in the identification of active312
subnetworks shared by the Brevig and Cal responses. We considered possible time lags of -80, -60, -40,313
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-20, 0, 20, 40, 60 and 80 minutes, and shifted the Cal time-course with respect to the Brevig time-314
course. We compared DYNAMO’s results when optimizing module discovery over the possible time-lags315
to those found with no time shift allowed (i.e. using standard Pearson correlation), while keeping all316
other parameters the same. As shown in Figure 2 and noted above, many conserved temporally shifted317
subnetworks were identified over the range of considered network score cutoffs (red curve). In contrast,318
almost no subnetworks were identified when a temporal shift was disallowed (green curve). These319
observations indicate the importance of the temporal shift element in enabling discovery of conserved320
comparative functional modules.321

3.3 Comparison to existing algorithms322

DYNAMO’s objective in identifying conserved or divergent temporally shifted modules that are323
common between two responses is quite unique, and, to the best of our knowledge, has not been addressed324
in the literature. Nonetheless, we evaluated DYNAMO against two other methods that are most similar325
and identify conserved subnetworks from gene expression data, ModuleBlast (34) and TDARACNE (35).326

ModuleBlast was designed to compare module activation patterns across species. It uses expression327
data and network topology information to search for conserved and divergent sub-networks. Analysis of328
the host immune response gene expression data comparing Brevig and Cal infections using ModuleBlast329
resulted in 38 modules. These modules were generally not functionally enriched for immune-specific330
processes, according to functional annotation within ModuleBlast. Analysis by DYNAMO shows the331
importance of the network context in which gene expression data is analyzed. Biological pathways that are332
activated in an immune context are best identified using an underlying network that emphasizes immune-333
specific interactions. Since ModuleBlast employs a generic interaction network, the relative paucity of334
conserved modules is not surprising. Furthermore, while ModuleBlast makes use of temporal information,335
it does not optimally align the responses. This is a key difference that enables DYNAMO to capture336
coherent activation patterns that are temporally shifted.337

We also applied TDARACNE to our dataset. TDARACE was designed to address a different problem -338
it is a subnetwork inference method that is not comparative and operates on each gene expression dataset339
individually. Therefore, it generally infers dissimilar sets of modules for the Brevig and Cal datasets,340
making a direct comparison with DYNAMO meaningless.341

3.4 Conserved time-shifted host response to Brevig and Cal influenza strains342

DYNAMO identified 207 high confidence functionally-coherent subnetworks that are time-shifted343
between the two pandemic strains, Brevig and Cal. To evaluate the subnetworks for biological344
significance, we assessed functional enrichment in the set of genes contained in each subnetwork. The345
enrichment was computed for each subnetwork individually based on the overlap of its constituent genes346
with the Gene Ontology (GO) (36) biological process terms using enrichR (37). Every subnetwork347
identified was enriched for at least one GO term with p-value of 0.0001. Overall, 71 GO terms were348
associated with the discovered subnetworks, of which vast majority were immune related. Nearly all349
subnetworks were annotated with GO terms describing cytokines, type I interferon signaling, and response350
to virus (Figure 3). This enrichment is consonant with extensive experimental evidence identifying351
cytokine and interferon responses elicited by influenza infection (38, 39, 6, 8). In particular, type I352
interferons provide a first line of defense against the virus (Garcia-Sastre et al., 1998), functioning in353
both autocrine and paracrine fashions to prevent its replication and spread to neighboring cells, and are354
crucial in host defence against influenza infection.355
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Absolute majority of the subnetworks (82%) identified showed optimal similarity when aligned at the356
80 minute time lag, with the Cal response activated after the Brevig response. Our findings confirmed357
the earlier observations (3) that the highly pathogenic Brevig strain is characterized by rapid activation of358
the host immune response and that this early activation may account for the extreme severity of disease359
caused by this strain (40). Furthermore, the considerable similarity in the activated immune response360
program when accounted for the shift in temporal dynamics indicated that the timing of the host immune361
response may be at the basis of the key differences observed between disease outcomes for these two362
infections.363

3.5 Conservation and temporal alignment of the global host response and specific364
immune processes365

We next used DYNAMO to identify conserved temporally shifted modules to compare all pairs of366
influenza strains. Table 1 summarizes the results for each pair-wise comparison and includes the dominant367
time lag, i.e. the time lag assigned to the largest fraction of the discovered subnetworks. For example,368
for the Brevig/Cal pair, the Brevig response is shifted 80 minutes earlier in comparison to Cal for the369
majority of modules identified. We found that the responses to the two seasonal strains, Tx and NC,370
show the largest number of subnetworks, and 69% of them show maximal similarity with no time shift.371
The increased number of similarly regulated subnetworks in the Tx/NC comparison resulted from a large372
down-regulation effect not seen with the other viruses (27). Because the algorithm optimizes subnetwork373
conservation over time and different components of the responses may contribute to conservation for374
each strain pair, some dominant time lags appear inconsistent. For example, the Tx/NC pair exhibits the375
dominant time lag of zero, but these responses do not have the same time lag relative to the Cal strain.376
However, a clear overall temporal pattern emerges. The conserved modules show that the Brevig infection377
elicits the earliest response, Tx and NC are intermediate, and Cal is the latest.378

An overall conservation of the immune response for all the pairwise comparisons was evident in the379
functional enrichment observed in the subnetworks. Using GO term enrichment by enrichR (37), we380
found a set of 27 highly enriched (p < 0.0001) immune-related GO terms that were common to all the381
comparisons and collectively were assigned to the absolute majority of the subnetworks. Representative382
GO terms are shown in Figure 4. They describe host immune response to viral infection and capture383
cytokine and interferon-regulated processes that are essential in defense against the influenza virus. For384
each comparison individually, these processes exhibited a temporal consistency, assigning to modules385
with a singular time lag. These results imply that there is a conserved set of immune processes that is386
activated in response to the four different influenza strain infections. Within the response to one infection,387
the relative timing of these immune processes appears to be consistent. In comparisons of the responses,388
these coherent immune processes are shifted in time on block (Figure 4). This suggests the presence of a389
highly conserved core of the host immune response.390

3.6 Identification of comparative differential subnetworks391

Comparative differential subnetworks are a group of highly functionally related genes that show392
differences in their pattern of regulation in response to two perturbations being compared. Because their393
identification is a less constrained problem than conserved subnetwork discovery, the reliable selection of394
comparative differential modules is challenging. When identifying conserved subnetworks, the effects of395
noise in the data are mitigated by the requirement that common regulatory changes must be observed in396
different experiments. Methods that rely on pairwise gene interactions (41, 42) to reconstruct differential397
modules are limited by the fact that differential modules, by definition, allow inconsistencies across398
experiments. DYNAMO addresses this limitation by exploiting the functional modularity inherent in399
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biological networks and leveraging the temporal dimension of time-course expression data in its time-lag400
optimization search. These aspects of the algorithm allow to better constrain the problem of differentially401
activated gene identification and improve selection of high confidence subnetworks.402

We applied our method for differential module discovery to all pairs of influenza strain responses.403
Shown in Supplementary Figure 2 are the results of DYNAMO’s application to the Cal/NC comparison.404
DYNAMO identified many differential comparative modules at a wide range of subnetwork score values.405
Importantly, the curves tracking subnetwork discovery for the real and randomized data show substantial406
separation, with false discovery rate of < 10% for a broad range of subnetwork score cutoffs. This finding407
implies that the differential subnetworks discovered by DYNAMO had a low proportion of false positives408
and likely represent biologically meaningful differences in the responses to the Cal and NC influenza409
infections. As such, DYNAMO is able to overcome some of the challenges in differential subnetwork410
discovery and improve the reliability of differential subnetwork identification.411

Overall, we found many fewer differential modules as compared to conserved identified among pairs412
of responses (Supplementary Table 1). For example, we found only 20 differential subnetworks for the413
pair of responses Brevig/Cal that shows 207 conserved subnetworks. Also, in contrast to the results for414
the conserved subnetwork discovery, the differential modules generally did not exhibit a dominant time415
lag. Although DYNAMO benefits from its ability to optimize over a set of time lags to capture divergent416
expression trends and thereby identifies many more differential modules, these time lags do not exhibit417
a singular consistency. These results suggest that differentially active modules do not show the temporal418
coherence that was observed with conserved subnetworks.419

In the four comparisons of differential modules for a pandemic and a seasonal strain, a considerable420
overlap in the GO terms assigned to these subnetworks was observed. We found 31 processes enriched421
(p < 0.0001) among the subnetworks and annotated by GO terms that are shared across pairs. The GO422
enrichment analysis of differential modules for the Cal/NC comparison is shown in Figure 5. Although423
the cytokine mediated signaling pathway was implicated as enriched by both conserved and differential424
modules (see also Figure 4), the genes contributing to this annotation show little overlap. For example,425
contributing to the annotation in the conserved modules of the Brevig/Cal comparison are classical426
antiviral program genes, including the MX, OAS, and IFIT family genes (43, 44, 45). Enrichment of427
the cytokine signaling pathway in the differential modules is driven by immunomodulatory genes, such428
as IL6 (46). These results reveal that despite sharing GO annotations, conserved and differential modules429
have different compositions.430

Notably, the GO terms for antigen processing and apoptosis were enriched among the differential431
modules. Supplementary Figure 3 shows the genes implicated by the apoptosis-annotated subnetworks432
found to be differential between the seasonal and pandemic influenza infections. DYNAMO’s433
identification of apoptosis, known to be induced by influenza viruses (47, 27), as a differential process is434
consonant with other studies that show differences in global patterns of RNA degradation in response to435
seasonal and pandemic influenza infections (27).436

3.7 DC antigen presentation differences after seasonal and pandemic influenza437
infection438

The dendritic cell is a professional antigen presenting cell (48), raising the possibility that the seasonal439
and pandemic viruses differ in their modulation of this response. Dendritic cells, important mediators440
of innate and adaptive immunity, act by presenting antigens to T cells to initiate adaptive immune441
responses (48). Antigen presentation occurs either via direct presentation of digested viral peptides442
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on the surface of infected cells or via cross-presentation of exogenous antigens by uninfected cells.443
Other studies (49) have found that influenza infection reduces both the efficiency of influenza antigen444
presentation and the ability of dendritic cells to cross-present antigens from other pathogens, such as445
bacteria, that cause co-infection during the course of influenza infection. In view of the centrality of446
antigen presentation by dendritic cells in the immunological response to influenza, the differences in447
antigen presentation between seasonal and pandemic influenza viruses inferred by the DYNAMO analysis448
might contribute to differences in the immunological and clinical response to these viruses.449

To validate the hypothesis of the DYNAMO algorithm, we experimentally tested if infection with the two450
seasonal and one pandemic IAV strain resulted in differences in antigen presentation. Antigen presentation451
by professional APCs, such as dendritic cells, occurs via three signals (50). In T cell-DC interaction,452
Signal 1 is the interaction of an MHC-I or MHC-II molecule loaded with a processed part of a pathogen,453
with the T cell receptor of an antigen specific T cell. Signal 2 consists of a set of co-stimulatory markers454
(e.g CD86 on the DCs, which interacts with CD28 on T cells). Signal 2 is essential for T cell activation as455
presentation of a pathogen through Signal 1 alone leads to anergy of the specific T cells. Signal 3 consists456
of secreted factors, which influence the direction of the target T cells (eg Th1, Th2 or Th17). Here we used457
flow cytometry to quantify the induction of Signal 1 (MHC-II) and Signal 2 (CD86) after infection with458
one pandemic (Cal) and two seasonal (Tx and NC) H1N1 IAV strains. Consonant with the prediction of459
the DYNAMO algorithm, infection with the seasonal IAV strains resulted in lower expression of HLADR460
(Signal 1) and CD86 (Signal 2) in comparison with infection with the pandemic strain (Figure 6). (p <461
0.05 for Cal/NC and p < 0.005 for Cal/Tx, using Student’s t-test).462

Overall, the application of DYNAMO to the seasonal and pandemic H1N1 influenza infection datasets463
derived insight into commonalities and differences in the regulation of functional modules and potential464
mechanisms of immune response modulation by the individual influenza virus strains.465

4 DISCUSSION
In this study, we applied DYNAMO, a technique for discovery of comparative modules with different466
temporal dynamics or patterns of activation, to investigate host responses to infection by four different467
influenza virus strains and gain insight into the temporal and functional similarities and differences468
between them. We showed that the ability to search over multiple temporal lags allowed us to discover469
conserved temporally shifted mechanisms between different immune responses. Overall, we found470
remarkable temporally coherent conservation of a core group of immune processes that are crucial to471
infection control, such as cytokine signaling and specifically interferon signaling, in responses to all four472
viruses.473

Our search for differential modules pointed to potential mechanistic differences among the seasonal474
and pandemic strains, discovering subnetworks that suggest a key role for apoptosis, a finding consonant475
with previous experimental work implicating apoptosis in the host response to influenza (47). Moreover,476
presence of differential subnetworks functionally annotated with antigen processing and presentation477
suggests an interesting potential direction for future experimental work.478

Methodologically, the development of DYNAMO represents an important advance, which adds479
the element of temporal dynamics to the broad systems biology problem of functional subnetwork480
discovery (18). Our method builds upon the successes in the development of sophisticated integrative481
approaches that combine heterogeneous data to elucidate the modular functional architecture of the cell.482
DYNAMO is the first method to successfully exploit the temporal dimension of gene expression data for483
comparative module discovery and analysis.484
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While our algorithm development and successful application to the study of the immune response485
to multiple strains of the influenza virus is encouraging, a number of promising directions for further486
improvement of the method remain. The current version is restricted to expression data that is identically487
sampled and aligned. Since few datasets in the public domain share the same experimental design,488
relaxing this restriction, possibly using the time-warping algorithm (26), would make our method more489
broadly applicable. Furthermore, the approach is readily extended to simultaneously compare more490
than two datasets. Together, these improvements would enable the study of conserved and differential491
components of the response to infection by multiple pathogens, providing insight into the functioning of492
the host immune system and common and unique aspects of virus-host interactions, as well as facilitate493
comparative study of the pattern and timing of module activation elicited by other biological stimuli.494
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FIGURE CAPTIONS

Figure 1. Alignment of the gene expression time courses for MX1, an important immune response
gene (51), following Cal and Brevig Influenza H1N1 infections. The solid red and blue lines represent
the actual MX1 expression in Cal and Brevig responses, respectively. The dashed red line represents the
Cal time course shifted to the left by 60 minutes. The fold change gene expression measurements are
normalized relative to the results obtained from uninfected control cells.
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Figure 2. Assessment of the choice of the functional network (FN) and importance of introducing
a temporal shift in conserved comparative module discovery. The number of subnetworks across a
wide range of subnetwork expression scores (see Materials and Methods), is compared for different
approaches. To enforce functional coherence, two different functional networks were used, a general
(General FN) and an immune-specific (Immune FN) functional network. Subnetwork identification was
performed employing either standard (no time lag) or optimized time-lagged Pearson correlation (TLC). A
randomization analysis, averaged over five randomization instances, was performed for each comparison
to assess the false discovery rate (dashed lines). The red curves are produced using TLC optimization and
Immune FN, the blue curves use TLC optimization and General FN, and the green curves use standard
Pearson correlation and Immune FN. All discovered modules are reported, regardless of the confidence
threshold. Note that the number of modules discovered never rises above one for the green curves.
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Figure 3. Functional enrichment analysis of conserved subnetworks appearing with the 80 minute time
lag for the Cal/Brevig comparison. The immune-specific nature of the modules was determined by using
GO term enrichment for individual subnetworks with p-value cutoff 0.0001. The rows represent the GO
terms and the columns are the individual subnetworks, indexed by their seed genes. The color scale
indicates the level of significance of the GO term enrichment and is based on -log(pvalue). For clarity,
GO terms that assign to fewer than seven subnetworks or that annotate more that 100 genes in GO are not
shown.

This is a provisional file, not the final typeset article 18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443162
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nudelman et al. Comparing host module activation patterns and temporal dynamics

Figure 4. Timing consistency of the nine conserved immune response processes in the pair-wise
comparisons between Brevig and the other virus strain responses. A group of representative GO terms was
selected from the larger immune-related set of 27 processes found enriched among conserved modules for
these comparisons. The number of modules enriched in these GO terms is indicated on the Y axis in log2
scale. This suggests a conserved temporally coherent core immune response. Here, the temporal shift
of the modules is shown with respect to Brevig and indicates a delay of these processes in Cal, Tx and
NC responses with respect to the Brevig infection. Only GO terms with fewer than 100 annotated genes
were considered. “Antigen processing and presentation of peptide antigen via MHC class I” was also a
conserved GO term, but was enriched in very few modules and is omitted from the figure.
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Figure 5. Functional enrichment analysis of differential subnetworks for the Cal/NC comparison using
GO term enrichment with p-value cutoff 0.0001. The rows represent the GO terms and the columns are
the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance
of the GO term enrichment and is based on -log(pvalue). For clarity, the majority of GO terms that assign
to fewer than seven subnetworks or that annotate more that 100 genes in GO are not shown. Notably, the
same group of biological processes is enriched in differential subnetworks for the Brevig/Tx and Cal/Tx
comparisons (data not shown).
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Figure 6. DC HLADR/CD86 surface expression following IAV infection. Percent of dendritic cells
showing both HLADR and CD86 surface marker expression is plotted after infection with seasonal or
pandemic IAV strains as measured by flow cytometry. All experiments were done in triplicates. Values
shown are mean ± s.e.m. The levels of surface marker expression was identical following mock and
each virus infection at 1 h, and diverged at 8 h (p < 0.05, Student’s t-test), with higher surface marker
expression following the pandemic Cal09 infection.

TABLES

Virus comparison # subnetworks average size dominant time lag % at dominant time lag
Brevig/Cal 207 24 80 83

Tx/Cal 377 21 20 54
Tx/NC 2982 24 0 69

Brevig/Tx 382 22 20 60
NC/Cal 203 24 80 83

Brevig/NC 400 22 20 37

Table 1. Subnetworks conserved across pairs of influenza responses. For every comparison, the
lagging influenza strain response is listed second (e.g. the Cal response is delayed compared to Brevig).
The dominant time lag is measured in minutes, and the last column indicates the percent of modules that
are found at the dominant time lag.
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