

Comparing host module activation patterns and temporal dynamics in infection by influenza H1N1 viruses

Irina Nudelman^{1,2,†}, Daniil Kudrin^{1,†}, German Nudelman¹, Raamesh Deshpande³, Boris M. Hartmann^{1,4}, Steven H. Kleinstein⁵, Chad L. Myers^{3,6}, Stuart C. Sealfon^{1,4}, and Elena Zaslavsky^{1,4,*}

¹ Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ² Division of General Internal Medicine, New York University Langone Medical Centre, New York, NY 10016, USA ³ Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA ⁴ Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ⁵ Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA and ⁶ Program in Biomedical Informatics and Computational Biology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA

† These authors have contributed equally to this work and share first authorship

Correspondence*:

Elena Zaslavsky

elena.zaslavsky@mssm.edu

2 ABSTRACT

Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.

Keywords: transcriptional profile, temporal dynamics, module discovery, module activation, Influenza H1N1, differential regulation, functional network, virus infection

1 INTRODUCTION

21 The possibility of influenza virus pandemics remains a potent public health threat. While most annual
22 influenza strains are associated with a relatively low global infection rate and mortality, more widely
23 infectious or lethal influenza virus strains arise periodically. The influenza pandemic of 1918 was
24 responsible for more than 50 million deaths and, within one year, reduced the life expectancy in the United
25 States by a dozen years (1). More recently, the swine-origin influenza pandemic in 2009 infected 20-50
26 percent of the population of some countries, although, fortunately, it had a mortality rate comparable
27 to that of seasonal influenza strains (2). Thus, individual seasonal and pandemic influenza strains vary
28 in their infectivity and pathogenicity. Although the genetic mechanisms underlying the emergence of
29 new viruses are relatively well understood, less is known about virus-host interaction effects that may
30 influence influenza transmission or disease outcome. Implementing a computational approach to identify
31 commonalities and differences in the host biological response to different influenza virus strains is
32 important in providing insight into common and distinct components of the host response program that
33 may contribute to pathogenicity.

34 Increasingly, emerging research suggests that temporal dynamics may play an important role in the
35 varying pathogenicity that is observed among different influenza strains (3). This premise motivates
36 a systematic study of time series expression datasets to gain a more complete understanding of the
37 differences in host response dynamics observed with each virus. However, time series analyses present
38 computational and experimental challenges. Measurements must be obtained at the appropriate time
39 scales. Proper temporal alignment among different datasets and possible time shifts in activity patterns
40 need to be addressed when interpreting such data. The standard approach of identifying lists of
41 differentially expressed genes provides only limited insight into the biological mechanisms underlying
42 commonalities and differences among host responses to multiple influenza strains (4, 5, 6, 7, 8, 9).

43 Integration of gene expression data with complementary information about physical or functional
44 associations between molecular entities has been proposed as a powerful approach to improve the
45 interpretation of global transcriptional changes. These integrative approaches analyze gene expression
46 experiments in the context of an independently constructed connectivity map, such as a protein-
47 protein interaction (PPI) network, to identify modules comprised of genes or proteins that participate
48 in common biological pathways or functions (10). More recently, integrative methods have been
49 developed to identify ‘active’ modules (i.e. related groups of genes exhibiting concordant transcriptional
50 changes (10, 11, 12, 13)), modules conserved across species (14, 15) and ‘differential’ modules (16, 17).
51 (For an overview, see also a review article by T. Ideker and colleagues (18) and references therein).

52 Time-course gene expression datasets capture important features of the temporal trajectories of
53 transcriptional changes. While the majority of integrative gene expression and interaction network
54 analyses have not utilized the temporal dimension of the data, there have been attempts to incorporate
55 temporal information into module discovery (19, 20, 21, 22, 23, 24). For example, Gao and Wang (22)
56 used a phase-locking approach (25) to identify yeast cell cycle genes that show temporal coordination and
57 whose interactions are supported by a PPI network. In another study, Jin and colleagues (23) applied
58 a time-warping dynamic programming algorithm (26) to identify locally-similar temporal expression
59 patterns among groups of genes forming connected components of a PPI network. These methodological
60 advancements do not offer a solution to the problem we call ‘*comparative module discovery*’, i.e.
61 the identification of temporally-shifted, network-based patterns of expression showing conservation (or
62 divergence) *between* time-course datasets that are generated in the same experimental system by different
63 perturbations. Developing such an analysis method would be valuable in elucidating commonalities and

64 differences in the biological responses to these perturbations. The identification of such comparative
65 modules is critical for addressing the central question of our study - that of understanding the similarities
66 and differences in virus-host interaction effects in response to related influenza virus infections.

67 In order to perform comparative module discovery, we developed a novel integrative DYNAmic MOdule
68 (DYNAMO) method, and applied it to understand the common and unique features of the host immune
69 response to infection by related strains of the influenza virus. Integrating datasets that capture the temporal
70 progression of the global gene expression response post-infection with an interaction network, our
71 method discovers both conserved and differential comparative modules. Conserved comparative module
72 discovery identifies a set of highly functionally connected genes that show a high degree of similarity
73 between their regulation and response patterns for perturbations being compared. Our approach allows the
74 possibility that the module responses may be shifted in time across different perturbations. Differential
75 comparative module discovery identifies genes that show differences in their pattern of regulation across
76 different perturbations. Differential module discovery is a difficult problem because truly condition-
77 specific regulatory patterns must be distinguished from experimental and biological variability (18, 14).
78 Our method is able to identify high-confidence differential subnetworks by exploiting the temporal nature
79 of the expression data and anchoring the modules in functional network connectivity relationships. By
80 computing the optimal temporal alignment of each module's expression profile between two different
81 conditions, we are able to capture divergent activation patterns. Overall, our method addresses the broad
82 problem of combining functional connectivity and genome-scale time series expression data to extract
83 vital temporal information and to enable a comparison of gene programs and module activation across
84 time.

85 We apply DYNAMO to the problem of studying host-pathogen interactions for multiple H1N1 influenza
86 virus strains. Our study builds upon the availability of identically sampled time series data for H1N1
87 seasonal and pandemic influenza virus of a human immune cell that lends itself to a systems-wide
88 comparison of the dynamics underlying the modulation of the host response by each virus (27). DYNAMO
89 extracts functionally conserved modules that show a difference in their temporal dynamics or pattern of
90 transcriptional changes between each pair of infection time-course datasets. We demonstrate that the
91 groups of modules identified are statistically significant and that the algorithmic element of optimization
92 for the best temporal alignment is crucial for their identification. Our analysis provides insight into the
93 biological mechanisms underlying the module response patterns elicited by these influenza virus strains.
94 DYNAMO is accessible via a user-friendly interface at <http://tsb04.mssm.edu/>.

2 MATERIALS AND METHODS

95 2.1 Subnetworks with shifted temporal dynamics

96 DYNAMO searches for groups of genes in two time-series expression experiments that exhibit similar
97 gene-by-gene expression patterns while allowing a temporal shift. DYNAMO is an integrative method
98 that overlays expression data on a functional interaction network and leverages the methodology of the
99 neXus algorithm (14) to reinforce functional coherence within each discovered module.

100 2.1.1 Overview of the neXus algorithm.

101 The neXus algorithm (14) was developed to search for conserved subnetworks between a pair
102 of expression datasets across species or within a single species. In its single species version, the
103 method attempts to form dense gene subnetworks within a chosen functional interaction network while
104 maintaining sufficient similarity in the expression levels of the subnetwork genes. Briefly, neXus initiates
105 a depth-first search from a seed gene as it aims to build a subnetwork in the underlying functional

106 network. For each gene that it considers for addition to the growing subnetwork, two conditions have
107 to be met. First, it evaluates that the connectivity requirement is met by maintaining a minimum desired
108 clustering coefficient of the genes in the putative subnetwork. Second, the expression similarity condition
109 is evaluated by computing the average expression activity score of the subnetwork genes. The subnetwork
110 grows until there are either no genes to be considered or it has reached a maximal size. The process is
111 repeated for every initial seed gene, and final subnetworks with large overlaps can be merged.

112 2.1.2 Incorporating a time shift.

113 Consider the expression vectors of gene g in two aligned time-course expression datasets. DYNAMO
114 evaluates optimal similarity between the two vectors while allowing one vector to be shifted relative to the
115 other by some time shift, Δt . To assess similarity in expression at any such Δt , we calculate time-lagged
116 Pearson correlation coefficient of the two vectors. Let T be the set of discrete time points at which gene
117 expression was sampled for each virus infection and T' be the corresponding set of time points shifted
118 by Δt . Denoting the expression vectors as $X_T(g)$ for the stationary time-course and $Y_{T'}(g)$ for the time-
119 shifted course, we compute time-lagged correlation coefficient, (TLC) $\rho_{\Delta t}^g$ for gene g between the two
120 responses as

$$\rho_{\Delta t}^g = \frac{\text{cov}(X_T(g), Y_{T'}(g))}{\sqrt{\text{cov}(X_T(g), X_T(g))\text{cov}(Y_{T'}(g), Y_{T'}(g))}}$$

121 where cov is the standard covariance. We use linear interpolation to calculate the values in the stationary
122 time course that correspond to the new time points. Just like the standard correlation, a time-lagged
123 correlation close to 1 means that the expression of gene g is perfectly correlated between the two responses
124 once the time-shift is taken into account. We determined (data not shown) that transforming the correlation
125 distributions via the Fisher Z-transform

$$Z = \frac{1}{2} \ln \frac{1 + \rho}{1 - \rho} = \text{arctanh}(\rho)$$

126 resulted in better findings, and used these Fisher-transformed scores within the algorithm when assessing
127 expression coherence of growing subnetworks at various time lags.

128 2.1.3 Algorithm to find temporally-shifted subnetworks.

129 We begin with a list of seed genes, and their expression vectors from a pair of aligned time-course
130 experiments. We use fold-change values over a control condition, though other quantitative vectors such
131 as differential expression p-values can be used as well. The matrix of standardized z-scores is computed
132 for all genes at every considered time lag. Putative subnetworks are grown greedily from every seed in
133 turn. First, candidate genes are identified via a depth-first search from the seed gene, as in the original
134 neXus algorithm (14). To assess subnetwork coherence at a particular time lag Δt , we calculate the
135 subnetwork's score as the average of the Fisher-transformed z-scores of its constituent genes at that time
136 lag. To select a gene for addition to the growing subnetwork, DYNAMO then optimizes over all considered
137 time lags and corresponding putative subnetwork scores, provided that the minimum desired connectivity
138 requirement in the underlying functional network is met. The connectivity condition, measured as the
139 average weighted clustering coefficient of the subnetwork, enforces functional coherence of the growing
140 module. The network score maximization component enables the algorithm to identify the best time-
141 lag (if one exists) that brings the group of genes in the two responses into temporal alignment. Note
142 that the optimal time lag for a growing network can change with addition of new genes, but, in our
143 experience, does not vary widely. We use the average of the per-gene maximal fold-changes during the
144 time course in each response as a third cutoff to be met in order to filter out false high subnetwork scores

145 that may be due to a good alignment of flat time courses of genes that do not show significant differential
146 expression. Finally, we merge the discovered subnetworks if there is considerable (0.6) overlap among
147 their constituent genes and their identified time lags are the same.

148 **2.2 Subnetworks with differential expression patterns**

149 Identifying genes that behave differently between a pair of responses is a difficult problem because
150 many spurious expression differences can arise for individual genes. We again employ the insight of
151 constraining expression differences by requiring tight clustering of such genes in the underlying functional
152 network. The structure of the algorithm is similar to that of the algorithm for finding conserved temporally-
153 shifted subnetworks. We enforce the network connectivity requirement by maintaining a minimum desired
154 clustering coefficient, and optimize the choice of candidate genes for addition to the growing subnetwork
155 by selecting one that shows the highest divergence in its expression pattern between the responses,
156 provided that the average expression score stays below a selected score threshold. The subnetwork
157 expression score that, in the case of differential modules, needs to identify genes with divergent expression
158 patterns, is modified to reflect that difference. We observe that the correlations and their corresponding
159 Fisher z-score distributions for most time lags have positive means (Supplementary Figure 1), indicating
160 that most genes show similar expression trends in the infection responses. Genes that exhibit different
161 expression trends between responses may show only slightly negative absolute correlations. To better
162 identify such genes, we use standardized rather than raw Fisher z-scores. This way, DYNAMO searches
163 for genes that are within some number of standard deviations below the mean of the Fisher z-score
164 distributions. The average fold-change requirement is also altered to enforce that only subnetworks in
165 one of the responses pass the cutoff. This change allows the algorithm to capture both subnetworks that
166 show opposing activation patterns as well as those that show activation in only one of the responses.

167 **2.3 Assessing subnetwork significance**

168 We employ a randomization analysis, and use it as a tool to calibrate various DYNAMO parameters and
169 assess biological significance of the subnetworks discovered in the comparison of the influenza infection
170 responses. We create five randomized expression profiles by randomly shuffling the expression vectors
171 with respect to gene labels. Our algorithm for subnetwork discovery is applied to these profiles while the
172 functional network structure remains intact, enabling an estimation of the temporally shifted (or divergent)
173 expression pattern coherence that arises from the clustering of genes by random chance. For a given
174 expression score threshold, the subnetworks discovered in the randomized data at that threshold represent
175 false positive findings and enable an estimation of false discovery rate. We calculate the associated
176 subnetwork confidence value as

$$confidence = 1 - \frac{\text{number of random subnetworks}}{\text{number of real subnetworks}}$$

177 and use it to assess the subnetworks' statistical significance. Overall, exploring the algorithm's findings
178 over various parameter ranges for randomized and real data allows a substantiation of our parameter
179 choices and a quantification of the biological significance of the results.

180 **2.4 Experimental data and algorithm parameters**

181 **2.4.1 Microarray data.**

182 Human monocyte-derived dendritic cells were infected with each of the four strains of the H1N1
183 influenza virus (Tx, NC, Brevig and Cal). For each infection, cells were collected at the following time
184 points post infection: 120, 160, 200, 240, 300, 360, 420, 480 min. Naïve non-infected DCs underwent
185 the same experimental handling as infected DCs in virus-free allantoic fluid to ensure that mechanical

186 manipulations could not be responsible for differences in experimental readouts. These served as a
187 negative control time-course. All time points and controls were performed in triplicates. The details of
188 DC maturation, virus preparation and infection as well as RNA extraction for microarray experiments
189 are described elsewhere (27). The RNA samples were processed and hybridized to HumanHT-12 v4
190 Expression BeadChip Kit (Illumina San Diego, CA) by the Yale Center for Genome Analysis following
191 the manufacturer's instructions, and raw expression data were output by the Illumina GenomeStudio
192 software. These data were log-transformed, filtered for minimum intensity ($\log_2(expression) > 6.6$),
193 determined based on visual inspection of the distribution), averaged over the triplicates, and converted to
194 fold-change values over the time-matched allantoic fluid control condition. Each viral time-course was
195 analyzed for differential expression using LIMMA (BioConductor implementation) after correction for
196 multiple hypothesis testing ($q < 0.05$) (28). Maximally expressed probes were chosen for differentially
197 expressed genes with multiple probes. We took the union of genes that passed the differential expression
198 criterion at any time-point in each viral time-course as our candidate seed set.

199 2.4.2 Flow Cytometry.

200 Human monocyte-derived DCs were infected with either NC, Tx (both seasonal) or Cal (pandemic)
201 H1N1 IAV. Samples were fixed in 1.6% paraformaldehyde (Sigma) and subsequently stained with
202 fluorophore conjugated antibodies against CD86 and HLADR (both BD) at multiple time points post
203 infection. Cells were analyzed with a LSRII flow cytometer (BD) and data was analyzed with Cytobank
204 and R.

205 2.4.3 Functional networks.

206 We consider two human functional linkage networks, the general network (29) that is trained on diverse
207 curated functional pathway data (30) and an immune-specific network (31) trained on immune pathways
208 only. Both networks integrate many heterogeneous data from diverse sources including physical and
209 genetic interactions as well as microarray data to create the functional associations between gene pairs.
210 The edge weight distributions, which reflect the confidence in the gene-gene associations and are inferred
211 via Bayesian integration, differ between the two networks, with the median edge weights being 0.85 and
212 0.22 for the general functional network and the immune-specific network, respectively. We retained one
213 million most highly weighted edges for each network. We explored the algorithm's performance and its
214 dependence on the clustering coefficient parameter for each network separately (data not shown), and
215 found that in each case there exists a range of this parameter (different for each network because of the
216 differences in the underlying edge weight distributions) with comparably good performance. We use these
217 ranges, and set the average clustering coefficient cutoffs to 0.8 and 0.5 for general and immune-specific
218 networks respectively.

219 2.4.4 Algorithm parameters.

220 We chose the values of 1.5 for subnetwork score (see discussion in Supplementary Materials), 0.5 for
221 minimum clustering coefficient of the immune-specific network and 0.9 for subnetwork confidence, and
222 considered subnetworks that pass all these cutoffs. The subnetworks were grown to maximal size of 25
223 nodes. Additional internal neXus parameters were left at their defaults.

3 RESULTS

224 3.1 Overview of algorithm developed for comparative module discovery

225 We developed DYNAMO to find conserved and differential subnetworks that exist between time-course
226 datasets that measure gene expression responses to different perturbations in the same experimental
227 system. As a motivation for our study was an observation made while investigating a time-course
228 microarray dataset of the responses to four strains of the influenza virus in human monocyte-derived

229 dendritic cells (DCs) (27). We noted a time shift in the expression dynamics for many important immune
230 response genes (Figure 1). This served as an impetus for addressing the aspect of temporal dynamics
231 in our methodology development. The DC infection study comprised of four A/H1N1 influenza viruses
232 that differ in their infectivity and clinical severity, including two pandemic strains, the influenza of 1918
233 (Brevig) and the recent 2009 strain (Cal), as well as two seasonal strains, the New Caledonia strain of
234 1999 (NC) and Texas 1991 (Tx). Global expression was sampled with high frequency during the first
235 eight hours post-infection. Thus, our investigation relied on a well-controlled dataset representing time-
236 course responses in a single cell type to antigenically similar influenza strains varying in pathogenicity
237 and transmission efficiency.

238 We built upon the approach of neXus (14), an algorithm that overlays gene expression data on functional
239 interaction networks (29, 32) to identify functionally coherent groups of genes that have similarity in their
240 expression patterns across species. We describe our approach briefly here, and a more extensive discussion
241 of the algorithm is found in the Materials and Methods section. Each DYNAMO module is grown from
242 a seed gene by adding nearby genes in the interaction network in a way that maximizes the average gene
243 expression activity score of the module, while maintaining a minimum desired clustering coefficient.
244 DYNAMO's expression activity score (subnetwork score) addresses the challenge of comparing time-
245 course datasets and studying response programs that may be temporally shifted with respect to one
246 another. DYNAMO samples time-shifts in the gene expression dynamics, computing the time-lagged
247 Pearson correlation coefficient, and conducts a greedy search for coherent active subnetworks, such that
248 each module member gene in one dataset exhibits a maximally similar expression pattern (possibly with
249 a temporal shift) to the same gene in the other dataset. For each module, the optimal time shift, applied
250 to all genes, is identified. Subnetworks with high overlap in gene membership that exhibit the same
251 time lag are merged. DYNAMO identifies the set of highly coherent, statistically significant modules
252 by determining the false discovery rate (FDR) via analysis of randomly shuffled expression data. The
253 same methodological approach is applied to the problem of differential comparative module discovery.
254 DYNAMO identifies maximally differentially regulated genes in two datasets that represent a highly
255 functionally related module in the underlying functional interaction network.

256 In the following sections, we used DYNAMO to identify and compare modules in time-course responses
257 to the different influenza viruses. We first performed an in-depth analysis of the Brevig/Cal response
258 comparison, validating our method and offering insight into the biology of their shared and unique
259 response processes. We then compared temporal dynamics and functional pathway activity, computed
260 as GO term enrichment of discovered modules, for all the strains. Detailed analyses of each comparison,
261 including conserved and differential comparative modules, functional pathway activity and performance
262 characteristics are available at <http://tsb04.mssm.edu/>.

263 3.2 Evaluating the DYNAMO algorithm

264 We evaluated two important aspects of the DYNAMO algorithm. First, we considered the effect of
265 the choice of the functional network used by DYNAMO to identify functional connectivity. Next, we
266 assessed the effects of allowing a temporal shift of the gene expression dynamics on module discovery.
267 In evaluating the algorithm's performance, we considered the number of conserved modules that were
268 discovered by the algorithm, and we estimated the false positive rates for the discovered modules via a
269 randomization analysis (see details in the Materials and Methods).

270 3.2.1 Functional network selection.

271 Functional networks are constructed from heterogeneous data sources and represent diverse associations
272 between genes or proteins (33, 29). Bayesian integration of multiple data types, including protein-
273 protein and genetic interactions, gene expression, protein localization, phenotype, and sequence data,
274 was used to infer functional connections between molecular entities. Given their more comprehensive
275 coverage of a broad variety of gene relationships, functional networks allow for more sensitive discovery
276 of conserved active modules and have been shown as advantageous for this task over protein-protein
277 interaction networks (14).

278 We assessed DYNAMO's performance using the general human functional network (29) and an
279 immune-specific functional network that should, in principle, capture associations that are more relevant
280 for immune contexts (31). The edge weight distributions, which reflect the confidence in the gene-
281 gene associations and are inferred via Bayesian integration, vastly differ between the two networks.
282 Correspondingly, the network related parameters can not be set at the same values for the two networks.
283 Retaining one million most confident edges for each network, we explored the algorithm's performance
284 for each network separately, and set the clustering coefficient parameters to values that maximized
285 performance for each network individually (see Materials and Methods for details). We identified the
286 conserved comparative modules for the Brevig and Cal pair using the two functional networks and varying
287 the gene expression based activity score parameter of the algorithm. To assess the statistical significance of
288 the modules discovered, we performed a randomization analysis. Specifically, the expression time-course
289 vectors were randomly shuffled five times with respect to the gene labels, and the algorithm was applied
290 to the shuffled expression profiles. Any modules identified in these randomized expression data would
291 represent false positives and not biologically meaningful conservation. As seen in Figure 2, utilizing the
292 immune-specific functional network was far superior to using the general functional network. We observed
293 that many more coherent modules were discovered at every subnetwork score cutoff, suggesting that the
294 functional connectivity that underlies the gene relationships in influenza responses is better reflected in
295 the immune-specific functional network. Focusing on the randomization experiments, our evaluations
296 suggested a false discovery rate of < 5% for a broad range of subnetwork score cutoffs when using
297 the immune-specific functional network. Overall, comparing DYNAMO's results with the two different
298 underlying functional networks, we found that many more modules are discovered at every FDR setting
299 when the immune-specific network is used, indicating in a substantial improvement in sensitivity.

300 We further assessed the importance of enforcing the functional coherence of the modules and considered
301 whether our method can extract high-confidence subnetworks from expression data alone. We used
302 DYNAMO without enforcing the clustering coefficient parameter, while adding putative module member
303 genes in the same order from a pool that is functionally proximal to the seed gene. As shown previously
304 by Deshpande *et al.* (14) and corroborated in our analysis, fewer modules were discovered without
305 enforcing the clustering coefficient parameter. Furthermore, they were of low significance in view of the
306 similar number of modules identified via a randomization analysis. We concluded that using a functional
307 connectivity map and selecting a map that is most relevant for the experimental study (an immune-specific
308 functional network in our case of subnetwork discovery in the responses to influenza viral infection) are
309 essential for identifying significant modules. As such, we used the immune-specific functional network in
310 all further evaluations within this study.

311 3.2.2 Advantage of allowing a temporal shift.

312 We evaluated the advantage gained by the introduction of a time shift in the identification of active
313 subnetworks shared by the Brevig and Cal responses. We considered possible time lags of -80, -60, -40,

314 -20, 0, 20, 40, 60 and 80 minutes, and shifted the Cal time-course with respect to the Brevig time-
315 course. We compared DYNAMO's results when optimizing module discovery over the possible time-lags
316 to those found with no time shift allowed (i.e. using standard Pearson correlation), while keeping all
317 other parameters the same. As shown in Figure 2 and noted above, many conserved temporally shifted
318 subnetworks were identified over the range of considered network score cutoffs (red curve). In contrast,
319 almost no subnetworks were identified when a temporal shift was disallowed (green curve). These
320 observations indicate the importance of the temporal shift element in enabling discovery of conserved
321 comparative functional modules.

322 3.3 Comparison to existing algorithms

323 DYNAMO's objective in identifying conserved or divergent temporally shifted modules that are
324 common between two responses is quite unique, and, to the best of our knowledge, has not been addressed
325 in the literature. Nonetheless, we evaluated DYNAMO against two other methods that are most similar
326 and identify conserved subnetworks from gene expression data, ModuleBlast (34) and TDARACNE (35).

327 ModuleBlast was designed to compare module activation patterns across species. It uses expression
328 data and network topology information to search for conserved and divergent sub-networks. Analysis of
329 the host immune response gene expression data comparing Brevig and Cal infections using ModuleBlast
330 resulted in 38 modules. These modules were generally not functionally enriched for immune-specific
331 processes, according to functional annotation within ModuleBlast. Analysis by DYNAMO shows the
332 importance of the network context in which gene expression data is analyzed. Biological pathways that are
333 activated in an immune context are best identified using an underlying network that emphasizes immune-
334 specific interactions. Since ModuleBlast employs a generic interaction network, the relative paucity of
335 conserved modules is not surprising. Furthermore, while ModuleBlast makes use of temporal information,
336 it does not optimally align the responses. This is a key difference that enables DYNAMO to capture
337 coherent activation patterns that are temporally shifted.

338 We also applied TDARACNE to our dataset. TDARACE was designed to address a different problem -
339 it is a subnetwork inference method that is not comparative and operates on each gene expression dataset
340 individually. Therefore, it generally infers dissimilar sets of modules for the Brevig and Cal datasets,
341 making a direct comparison with DYNAMO meaningless.

342 3.4 Conserved time-shifted host response to Brevig and Cal influenza strains

343 DYNAMO identified 207 high confidence functionally-coherent subnetworks that are time-shifted
344 between the two pandemic strains, Brevig and Cal. To evaluate the subnetworks for biological
345 significance, we assessed functional enrichment in the set of genes contained in each subnetwork. The
346 enrichment was computed for each subnetwork individually based on the overlap of its constituent genes
347 with the Gene Ontology (GO) (36) biological process terms using enrichR (37). Every subnetwork
348 identified was enriched for at least one GO term with p-value of 0.0001. Overall, 71 GO terms were
349 associated with the discovered subnetworks, of which vast majority were immune related. Nearly all
350 subnetworks were annotated with GO terms describing cytokines, type I interferon signaling, and response
351 to virus (Figure 3). This enrichment is consonant with extensive experimental evidence identifying
352 cytokine and interferon responses elicited by influenza infection (38, 39, 6, 8). In particular, type I
353 interferons provide a first line of defense against the virus (Garcia-Sastre et al., 1998), functioning in
354 both autocrine and paracrine fashions to prevent its replication and spread to neighboring cells, and are
355 crucial in host defence against influenza infection.

356 Absolute majority of the subnetworks (82%) identified showed optimal similarity when aligned at the
357 80 minute time lag, with the Cal response activated after the Brevig response. Our findings confirmed
358 the earlier observations (3) that the highly pathogenic Brevig strain is characterized by rapid activation of
359 the host immune response and that this early activation may account for the extreme severity of disease
360 caused by this strain (40). Furthermore, the considerable similarity in the activated immune response
361 program when accounted for the shift in temporal dynamics indicated that the timing of the host immune
362 response may be at the basis of the key differences observed between disease outcomes for these two
363 infections.

364 **3.5 Conservation and temporal alignment of the global host response and specific 365 immune processes**

366 We next used DYNAMO to identify conserved temporally shifted modules to compare all pairs of
367 influenza strains. Table 1 summarizes the results for each pair-wise comparison and includes the dominant
368 time lag, i.e. the time lag assigned to the largest fraction of the discovered subnetworks. For example,
369 for the Brevig/Cal pair, the Brevig response is shifted 80 minutes earlier in comparison to Cal for the
370 majority of modules identified. We found that the responses to the two seasonal strains, Tx and NC,
371 show the largest number of subnetworks, and 69% of them show maximal similarity with no time shift.
372 The increased number of similarly regulated subnetworks in the Tx/NC comparison resulted from a large
373 down-regulation effect not seen with the other viruses (27). Because the algorithm optimizes subnetwork
374 conservation over time and different components of the responses may contribute to conservation for
375 each strain pair, some dominant time lags appear inconsistent. For example, the Tx/NC pair exhibits the
376 dominant time lag of zero, but these responses do not have the same time lag relative to the Cal strain.
377 However, a clear overall temporal pattern emerges. The conserved modules show that the Brevig infection
378 elicits the earliest response, Tx and NC are intermediate, and Cal is the latest.

379 An overall conservation of the immune response for all the pairwise comparisons was evident in the
380 functional enrichment observed in the subnetworks. Using GO term enrichment by enrichR (37), we
381 found a set of 27 highly enriched ($p < 0.0001$) immune-related GO terms that were common to all the
382 comparisons and collectively were assigned to the absolute majority of the subnetworks. Representative
383 GO terms are shown in Figure 4. They describe host immune response to viral infection and capture
384 cytokine and interferon-regulated processes that are essential in defense against the influenza virus. For
385 each comparison individually, these processes exhibited a temporal consistency, assigning to modules
386 with a singular time lag. These results imply that there is a conserved set of immune processes that is
387 activated in response to the four different influenza strain infections. Within the response to one infection,
388 the relative timing of these immune processes appears to be consistent. In comparisons of the responses,
389 these coherent immune processes are shifted in time on block (Figure 4). This suggests the presence of a
390 highly conserved core of the host immune response.

391 **3.6 Identification of comparative differential subnetworks**

392 Comparative differential subnetworks are a group of highly functionally related genes that show
393 differences in their pattern of regulation in response to two perturbations being compared. Because their
394 identification is a less constrained problem than conserved subnetwork discovery, the reliable selection of
395 comparative differential modules is challenging. When identifying conserved subnetworks, the effects of
396 noise in the data are mitigated by the requirement that common regulatory changes must be observed in
397 different experiments. Methods that rely on pairwise gene interactions (41, 42) to reconstruct differential
398 modules are limited by the fact that differential modules, by definition, allow inconsistencies across
399 experiments. DYNAMO addresses this limitation by exploiting the functional modularity inherent in

400 biological networks and leveraging the temporal dimension of time-course expression data in its time-lag
401 optimization search. These aspects of the algorithm allow to better constrain the problem of differentially
402 activated gene identification and improve selection of high confidence subnetworks.

403 We applied our method for differential module discovery to all pairs of influenza strain responses.
404 Shown in Supplementary Figure 2 are the results of DYNAMO's application to the Cal/NC comparison.
405 DYNAMO identified many differential comparative modules at a wide range of subnetwork score values.
406 Importantly, the curves tracking subnetwork discovery for the real and randomized data show substantial
407 separation, with false discovery rate of < 10% for a broad range of subnetwork score cutoffs. This finding
408 implies that the differential subnetworks discovered by DYNAMO had a low proportion of false positives
409 and likely represent biologically meaningful differences in the responses to the Cal and NC influenza
410 infections. As such, DYNAMO is able to overcome some of the challenges in differential subnetwork
411 discovery and improve the reliability of differential subnetwork identification.

412 Overall, we found many fewer differential modules as compared to conserved identified among pairs
413 of responses (Supplementary Table 1). For example, we found only 20 differential subnetworks for the
414 pair of responses Brevig/Cal that shows 207 conserved subnetworks. Also, in contrast to the results for
415 the conserved subnetwork discovery, the differential modules generally did not exhibit a dominant time
416 lag. Although DYNAMO benefits from its ability to optimize over a set of time lags to capture divergent
417 expression trends and thereby identifies many more differential modules, these time lags do not exhibit
418 a singular consistency. These results suggest that differentially active modules do not show the temporal
419 coherence that was observed with conserved subnetworks.

420 In the four comparisons of differential modules for a pandemic and a seasonal strain, a considerable
421 overlap in the GO terms assigned to these subnetworks was observed. We found 31 processes enriched
422 ($p < 0.0001$) among the subnetworks and annotated by GO terms that are shared across pairs. The GO
423 enrichment analysis of differential modules for the Cal/NC comparison is shown in Figure 5. Although
424 the cytokine mediated signaling pathway was implicated as enriched by both conserved and differential
425 modules (see also Figure 4), the genes contributing to this annotation show little overlap. For example,
426 contributing to the annotation in the conserved modules of the Brevig/Cal comparison are classical
427 antiviral program genes, including the MX, OAS, and IFIT family genes (43, 44, 45). Enrichment of
428 the cytokine signaling pathway in the differential modules is driven by immunomodulatory genes, such
429 as IL6 (46). These results reveal that despite sharing GO annotations, conserved and differential modules
430 have different compositions.

431 Notably, the GO terms for antigen processing and apoptosis were enriched among the differential
432 modules. Supplementary Figure 3 shows the genes implicated by the apoptosis-annotated subnetworks
433 found to be differential between the seasonal and pandemic influenza infections. DYNAMO's
434 identification of apoptosis, known to be induced by influenza viruses (47, 27), as a differential process is
435 consonant with other studies that show differences in global patterns of RNA degradation in response to
436 seasonal and pandemic influenza infections (27).

437 **3.7 DC antigen presentation differences after seasonal and pandemic influenza 438 infection**

439 The dendritic cell is a professional antigen presenting cell (48), raising the possibility that the seasonal
440 and pandemic viruses differ in their modulation of this response. Dendritic cells, important mediators
441 of innate and adaptive immunity, act by presenting antigens to T cells to initiate adaptive immune
442 responses (48). Antigen presentation occurs either via direct presentation of digested viral peptides

443 on the surface of infected cells or via cross-presentation of exogenous antigens by uninfected cells.
444 Other studies (49) have found that influenza infection reduces both the efficiency of influenza antigen
445 presentation and the ability of dendritic cells to cross-present antigens from other pathogens, such as
446 bacteria, that cause co-infection during the course of influenza infection. In view of the centrality of
447 antigen presentation by dendritic cells in the immunological response to influenza, the differences in
448 antigen presentation between seasonal and pandemic influenza viruses inferred by the DYNAMO analysis
449 might contribute to differences in the immunological and clinical response to these viruses.

450 To validate the hypothesis of the DYNAMO algorithm, we experimentally tested if infection with the two
451 seasonal and one pandemic IAV strain resulted in differences in antigen presentation. Antigen presentation
452 by professional APCs, such as dendritic cells, occurs via three signals (50). In T cell-DC interaction,
453 Signal 1 is the interaction of an MHC-I or MHC-II molecule loaded with a processed part of a pathogen,
454 with the T cell receptor of an antigen specific T cell. Signal 2 consists of a set of co-stimulatory markers
455 (e.g CD86 on the DCs, which interacts with CD28 on T cells). Signal 2 is essential for T cell activation as
456 presentation of a pathogen through Signal 1 alone leads to anergy of the specific T cells. Signal 3 consists
457 of secreted factors, which influence the direction of the target T cells (eg Th1, Th2 or Th17). Here we used
458 flow cytometry to quantify the induction of Signal 1 (MHC-II) and Signal 2 (CD86) after infection with
459 one pandemic (Cal) and two seasonal (Tx and NC) H1N1 IAV strains. Consonant with the prediction of
460 the DYNAMO algorithm, infection with the seasonal IAV strains resulted in lower expression of HLADR
461 (Signal 1) and CD86 (Signal 2) in comparison with infection with the pandemic strain (Figure 6). ($p <$
462 0.05 for Cal/NC and $p < 0.005$ for Cal/Tx, using Student's t-test).

463 Overall, the application of DYNAMO to the seasonal and pandemic H1N1 influenza infection datasets
464 derived insight into commonalities and differences in the regulation of functional modules and potential
465 mechanisms of immune response modulation by the individual influenza virus strains.

4 DISCUSSION

466 In this study, we applied DYNAMO, a technique for discovery of comparative modules with different
467 temporal dynamics or patterns of activation, to investigate host responses to infection by four different
468 influenza virus strains and gain insight into the temporal and functional similarities and differences
469 between them. We showed that the ability to search over multiple temporal lags allowed us to discover
470 conserved temporally shifted mechanisms between different immune responses. Overall, we found
471 remarkable temporally coherent conservation of a core group of immune processes that are crucial to
472 infection control, such as cytokine signaling and specifically interferon signaling, in responses to all four
473 viruses.

474 Our search for differential modules pointed to potential mechanistic differences among the seasonal
475 and pandemic strains, discovering subnetworks that suggest a key role for apoptosis, a finding consonant
476 with previous experimental work implicating apoptosis in the host response to influenza (47). Moreover,
477 presence of differential subnetworks functionally annotated with antigen processing and presentation
478 suggests an interesting potential direction for future experimental work.

479 Methodologically, the development of DYNAMO represents an important advance, which adds
480 the element of temporal dynamics to the broad systems biology problem of functional subnetwork
481 discovery (18). Our method builds upon the successes in the development of sophisticated integrative
482 approaches that combine heterogeneous data to elucidate the modular functional architecture of the cell.
483 DYNAMO is the first method to successfully exploit the temporal dimension of gene expression data for
484 comparative module discovery and analysis.

485 While our algorithm development and successful application to the study of the immune response
486 to multiple strains of the influenza virus is encouraging, a number of promising directions for further
487 improvement of the method remain. The current version is restricted to expression data that is identically
488 sampled and aligned. Since few datasets in the public domain share the same experimental design,
489 relaxing this restriction, possibly using the time-warping algorithm (26), would make our method more
490 broadly applicable. Furthermore, the approach is readily extended to simultaneously compare more
491 than two datasets. Together, these improvements would enable the study of conserved and differential
492 components of the response to infection by multiple pathogens, providing insight into the functioning of
493 the host immune system and common and unique aspects of virus-host interactions, as well as facilitate
494 comparative study of the pattern and timing of module activation elicited by other biological stimuli.

CONFLICT OF INTEREST STATEMENT

495 The authors declare that the research was conducted in the absence of any commercial or financial
496 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

497 Irina Nudelman and Daniil Kudrin developed and implemented the algorithm and conducted all data
498 analysis. German Nudelman provided support for the development of the website. Raamesh Deshpande
499 assisted with algorithm implementation and software development. Boris M. Hartmann conducted the
500 experimental work. Steven H. Kleinstein, Chad L. Myers and Stuart C. Sealfon supervised the analyses
501 and edited the manuscript. Elena Zaslavsky conceptualized and managed the research project, supervised
502 the algorithm development and data analyses and wrote the manuscript.

FUNDING

503 This work was supported by National Institutes of Health contract HHSN272201000054C and Grant
504 1U19AI117873. Irina Nudelman was supported by the Graduate School of Arts and Science, New York
505 University.

REFERENCES

- 506 1. Watanabe T, Kawaoka Y. Pathogenesis of the 1918 pandemic influenza virus. *PLoS Pathog* **7** (2011) 507 e1001218.
- 508 2. Michaelis M, Doerr HW, Cinatl J Jindrich. Novel swine-origin influenza a virus in humans: another 509 pandemic knocking at the door. *Med. Microbiology and Immunology* **198** (2009) 175–183.
- 510 3. Korth MJ, Tchitchev N, Benecke AG, Katze MG. Systems approaches to influenza-virus host 511 interactions and the pathogenesis of highly virulent and pandemic viruses. *Seminars in Immunology* 512 **25** (2013) 228 – 239.
- 513 4. Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, et al. Cellular transcriptional 514 profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein 515 in the evasion of the host innate defense and its potential contribution to pandemic influenza. *PNAS* 516 **99** (2002) 10736–10741.
- 517 5. Baskin CR, García-Sastre A, Tumpey TM, Bielefeldt-Ohmann H, Carter VS, Nistal-Villán E, et al. 518 Integration of clinical data, pathology, and cDNA microarrays in influenza virus-infected pigtailed 519 macaques (macaca nemestrina). *J. Vir.* **78** (2004) 10420–10432.
- 520 6. Kash J, Tumpey T, Proll S, Carter V, Perwitasari O, Thomas M, et al. Genomic analysis of increased 521 host immune and cell death responses induced by 1918 influenza virus. *Nature* **443** (2006) 578–581.

522 7.Kobasa D, Jones SM, Shinya K, Kash JC, Coppins J, Ebihara H, et al. Aberrant innate immune response
523 in lethal infection of macaques with the 1918 influenza virus. *Nature* **445** (2007) 319–323.

524 8.Lee SMY, Gardy JL, Cheung CY, Cheung TKW, Hui KPY, Ip NY, et al. Systems-level comparison
525 of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human
526 macrophages. *PLoS ONE* **4** (2009) e8072.

527 9.Josset L, Belser JA, Pantin-Jackwood MJ, Chang JH, Chang ST, Belisle SE, et al. Implication of
528 inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence
529 of pandemic 2009 H1N1 influenza A virus after host adaptation. *J. Vir.* **86** (2012) 7192–7206.

530 10.Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in
531 molecular interaction networks. *Bioinformatics* **18** (2002) S233–S240.

532 11.Reiss D, Baliga N, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the
533 inference of global regulatory networks. *BMC Bioinformatics* **7** (2006) 280.

534 12.Lan A, Smoly IY, Rapaport G, Lindquist S, Fraenkel E, Yeger-Lotem E. ResponseNet: revealing
535 signaling and regulatory networks linking genetic and transcriptomic screening data. *Nucleic Acids
536 Research* **39** (2011) W424–W429.

537 13.Leiserson MD, Blokh D, Sharan R, Raphael BJ. Simultaneous identification of multiple driver
538 pathways in cancer. *PLoS Comput Biol* **9** (2013) e1003054.

539 14.Deshpande R, Sharma S, Verfaillie CM, Hu WS, Myers CL. A scalable approach for discovering
540 conserved active subnetworks across species. *PLoS Comput Biol* **6** (2010) e1001028.

541 15.Waltman P, Kacmarczyk T, Bate A, Kearns D, Reiss D, Eichenberger P, et al. Multi-species integrative
542 biclustering. *Genome Biology* **11** (2010) R96.

543 16.Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray
544 data. *BMC Bioinformatics* **11** (2010) 95.

545 17.Zhang B, Tian Y, Jin L, Li H, Shih IM, Madhavan S, et al. DDN: a caBIG analytical tool for differential
546 network analysis. *Bioinformatics* **27** (2011) 1036–1038.

547 18.Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in
548 biological networks. *Nat Rev Genet* **14** (2013) 719–732.

549 19.Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M. Genomic analysis of regulatory
550 network dynamics reveals large topological changes. *Nature* **431** (2004) 308–312.

551 20.Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: it's about time. *Briefings in
552 Bioinformatics* **11** (2010) 15–29.

553 21.Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological processes using time-
554 series gene expression data. *Nat Rev Genet* **13** (2012) 552–564.

555 22.Gao S, Wang X. Identification of highly synchronized subnetworks from gene expression data. *BMC
556 Bioinformatics* **14** (2013) s5.

557 23.Jin R, McCallen S, Liu C, Xiang Y, Almaas E, XJ Z. Identifying dynamic network modules with
558 temporal and spatial constraints. *Pac Symp Biocomput* (2009), 203–214.

559 24.ElBakry O, Ahmad M, Swamy M. Inference of gene regulatory networks from time-series microarray
560 data. *NEWCAS Conference (NEWCAS), 2010 8th IEEE International* (2010), 141–144.

561 25.Gao S, Hartman IV J, Carter J, Hessner M, Wang X. Global analysis of phase locking in gene
562 expression during cell cycle: the potential in network modeling. *BMC Systems Biology* **4** (2010)
563 167.

564 26.Aach J, Church GM. Aligning gene expression time series with time warping algorithms.
565 *Bioinformatics* **17** (2001) 495–508.

566 27. Hartmann BM, Thakar J, Albrecht RA, Avey S, Zaslavsky E, Marjanovic N, et al. Human dendritic
567 cell response signatures distinguish 1918, pandemic and seasonal H1N1 influenza viruses. *J Virol.* **89**
568 (2015) 10190–10205.

569 28. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to
570 multiple testing. *J. Royal Statistical Society* **57** (1995) 289–300.

571 29. Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, Coller HA, et al. Exploring the
572 human genome with functional maps. *Genome Res.* **19** (2009) 1093–1106.

573 30. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the
574 genome. *Nuc. Acids Res.* **32** (2004) D277–D280.

575 31. Gorenshteyn D, Zaslavsky E, Fridbourg M, Park C, Wong AK, Tadych A, et al. Interactive big data
576 resource to elucidate human immune pathways and diseases. *Immunity* **43** (2015) 605—614.

577 32. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, Troyanskaya OG. A genomewide functional
578 network for the laboratory mouse. *PLoS Comput Biol* **4** (2008) e1000165.

579 33. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, et al. Discovery of biological
580 networks from diverse functional genomic data. *Genome Biology* **6** (2005) R114.

581 34. Zinman GE, Naiman S, O'Dee DM, Kumar N, Nau GJ, Cohen HY, et al. Moduleblast: identifying
582 activated sub-networks within and across species. *Nucleic Acids Research* **43** (2015) e20.

583 35. Pietro Zoppoli MC Sandro Morganella. Timedelay-aracne: Reverse engineering of gene networks
584 from time-course data by an information theoretic approach. *BMC Bioinformatics* **11** (2010).

585 36. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the
586 unification of biology. *Nat. Gen.* **25** (2000) 25–29.

587 37. et al CE. Enrichr: interactive and collaborative html5 gene list enrichment analysis tool. *BMC
588 Bioinformatics* **128** (2013).

589 38. Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, et al. The role of interferon in
590 influenza virus tissue tropism. *J. Vir.* **72** (1998) 8550–8558.

591 39. Haller O, Kochs G, Weber F. The interferon response circuit: Induction and suppression by pathogenic
592 viruses. *Virology* **344** (2006) 119 – 130.

593 40. Cillóniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, et al. Lethal influenza virus infection
594 in macaques is associated with early dysregulation of inflammatory related genes. *PLoS Pathog* **5**
595 (2009) e1000604.

596 41. Eddy JA, Hood L, Price ND, Geman D. Identifying tightly regulated and variably expressed networks
597 by differential rank conservation (DIRAC). *PLoS Comput Biol* **6** (2010) e1000792.

598 42. Valcàrcel B, Würtz P, Seich al Basatena NK, Tukiainen T, Kangas AJ, Soininen P, et al. A differential
599 network approach to exploring differences between biological states: An application to prediabetes.
600 *PLoS ONE* **6** (2011) e24702.

601 43. Pitossi F, Blank A, Schröder A, Schwarz A, Hüssi P, Schwemmle M, et al. A functional GTP-binding
602 motif is necessary for antiviral activity of Mx proteins. *Journal of Virology* **67** (1993) 6726–6732.

603 44. Melchjorsen F, Kristiansen H, Christiansen R, Rintahaka J, Matikainen S, Paludan S, et al. Differential
604 regulation of the OASL and OAS1 genes in response to viral infections. *Journal of Interferon &
605 Cytokine Research* **29** (2009) 199–208.

606 45. Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. *Nat
607 Rev Immunol* **13** (2013) 46–57.

608 46. Dienz O, Rud J, Eaton S, Lanthier P, Burg E, Drew A, et al. Essential role of IL-6 in protection
609 against H1N1 influenza virus by promoting neutrophil survival in the lung. *Mucosal Immunol* **5**
610 (2012) 258–266.

611 47 .Schultz-Cherry S, Krug RM, Hinshaw VS. Induction of apoptosis by influenza virus. *Seminars in*
612 *Virology* **8** (1998) 491 – 495.

613 48 .Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell
614 stimulation by dendritic cells. *Ann. Rev. Imm.* **20** (2002) 621–667.

615 49 .Smed-Sorensen A, Chalouni C, Chatterjee B, Cohn L, Blattmann P, Nakamura N, et al. Influenza A
616 virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8
617 T cells. *PLoS Pathog* **8** (2012) e1002572.

618 50 .Hufford MM, Kim TS, Sun J, Braciale TJ. The effector t cell response to influenza infection. *Current*
619 *topics in microbiology and immunology* **386** (2015) 423–455.

620 51 .Pavlovic J, Haller O, Staeheli P. Human and mouse Mx proteins inhibit different steps of the influenza
621 virus multiplication cycle. *J. Vir.* **66** (1992) 2564–2569.

FIGURE CAPTIONS

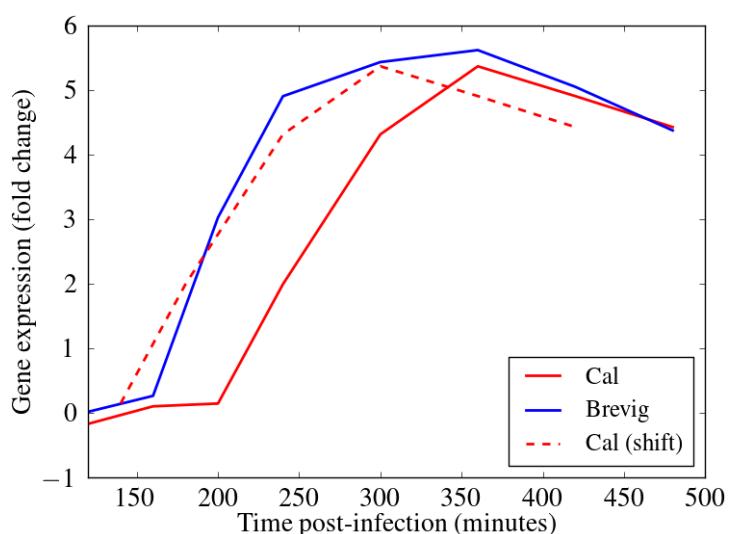


Figure 1. Alignment of the gene expression time courses for MX1, an important immune response gene (51), following Cal and Brevig Influenza H1N1 infections. The solid red and blue lines represent the actual MX1 expression in Cal and Brevig responses, respectively. The dashed red line represents the Cal time course shifted to the left by 60 minutes. The fold change gene expression measurements are normalized relative to the results obtained from uninfected control cells.

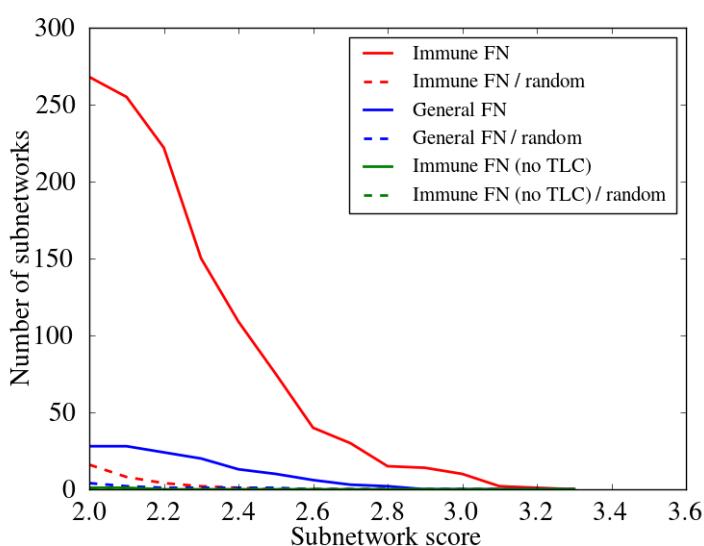


Figure 2. Assessment of the choice of the functional network (FN) and importance of introducing a temporal shift in conserved comparative module discovery. The number of subnetworks across a wide range of subnetwork expression scores (see Materials and Methods), is compared for different approaches. To enforce functional coherence, two different functional networks were used, a general (General FN) and an immune-specific (Immune FN) functional network. Subnetwork identification was performed employing either standard (no time lag) or optimized time-lagged Pearson correlation (TLC). A randomization analysis, averaged over five randomization instances, was performed for each comparison to assess the false discovery rate (dashed lines). The red curves are produced using TLC optimization and Immune FN, the blue curves use TLC optimization and General FN, and the green curves use standard Pearson correlation and Immune FN. All discovered modules are reported, regardless of the confidence threshold. Note that the number of modules discovered never rises above one for the green curves.

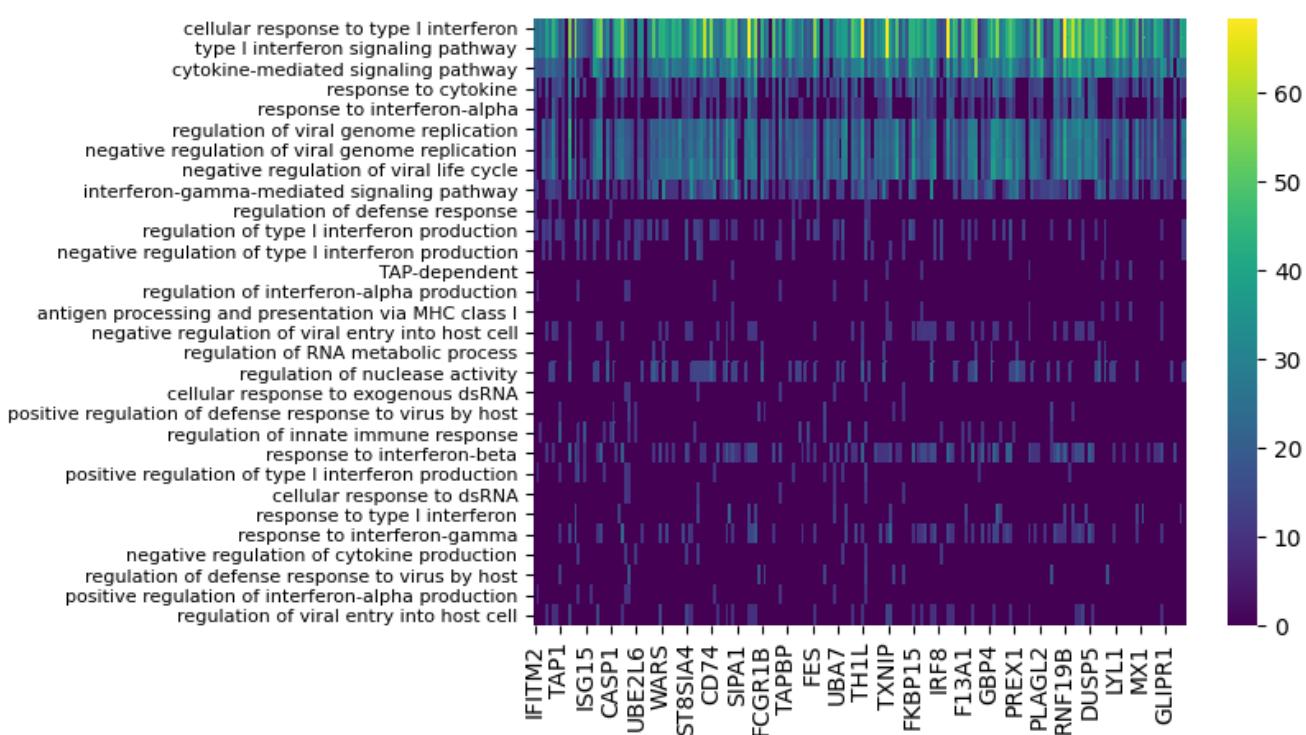


Figure 3. Functional enrichment analysis of conserved subnetworks appearing with the 80 minute time lag for the Cal/Brevig comparison. The immune-specific nature of the modules was determined by using GO term enrichment for individual subnetworks with p-value cutoff 0.0001. The rows represent the GO terms and the columns are the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance of the GO term enrichment and is based on $-\log(p\text{value})$. For clarity, GO terms that assign to fewer than seven subnetworks or that annotate more than 100 genes in GO are not shown.

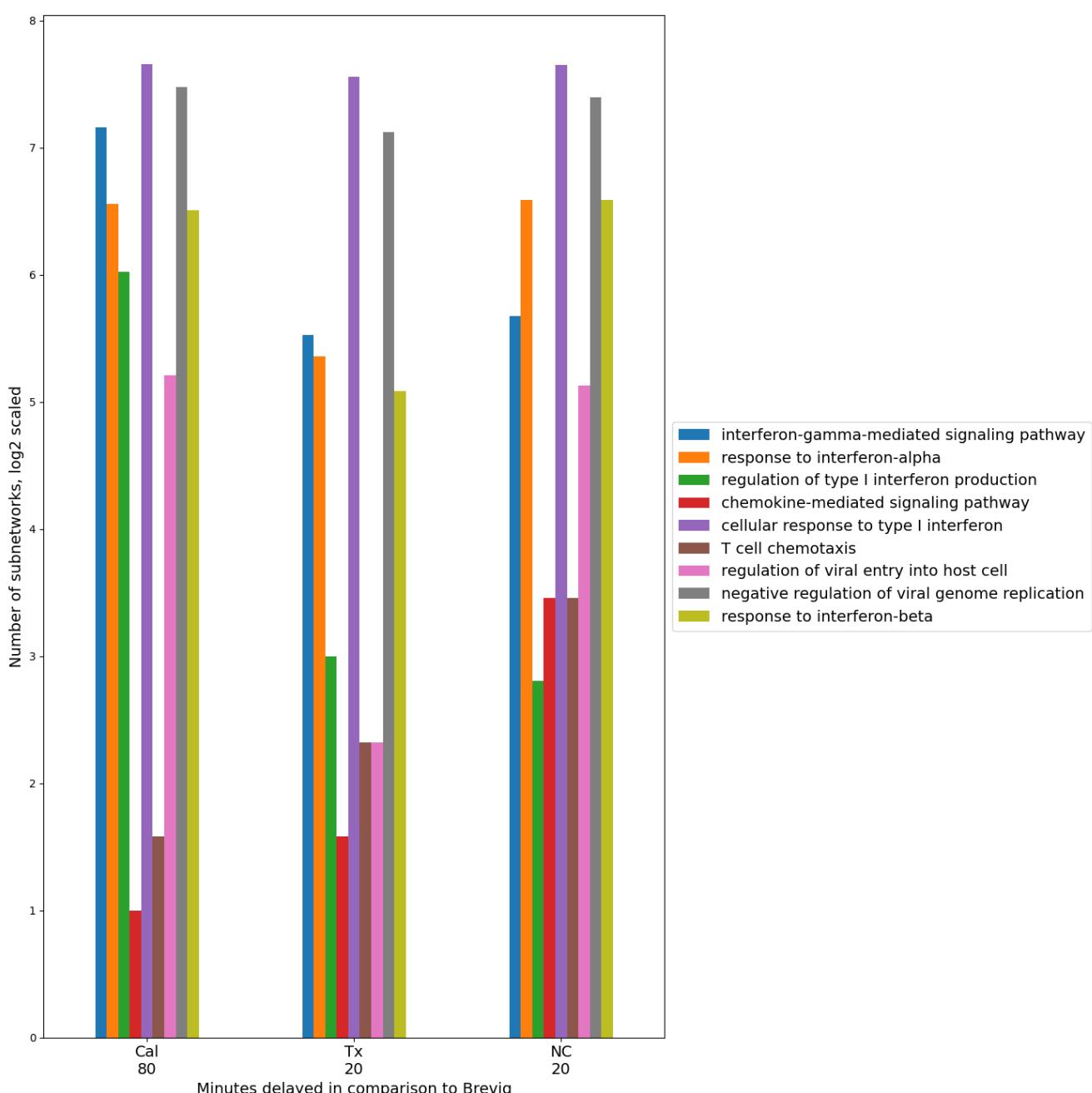


Figure 4. Timing consistency of the nine conserved immune response processes in the pair-wise comparisons between Brevig and the other virus strain responses. A group of representative GO terms was selected from the larger immune-related set of 27 processes found enriched among conserved modules for these comparisons. The number of modules enriched in these GO terms is indicated on the Y axis in \log_2 scale. This suggests a conserved temporally coherent core immune response. Here, the temporal shift of the modules is shown with respect to Brevig and indicates a delay of these processes in Cal, Tx and NC responses with respect to the Brevig infection. Only GO terms with fewer than 100 annotated genes were considered. “Antigen processing and presentation of peptide antigen via MHC class I” was also a conserved GO term, but was enriched in very few modules and is omitted from the figure.

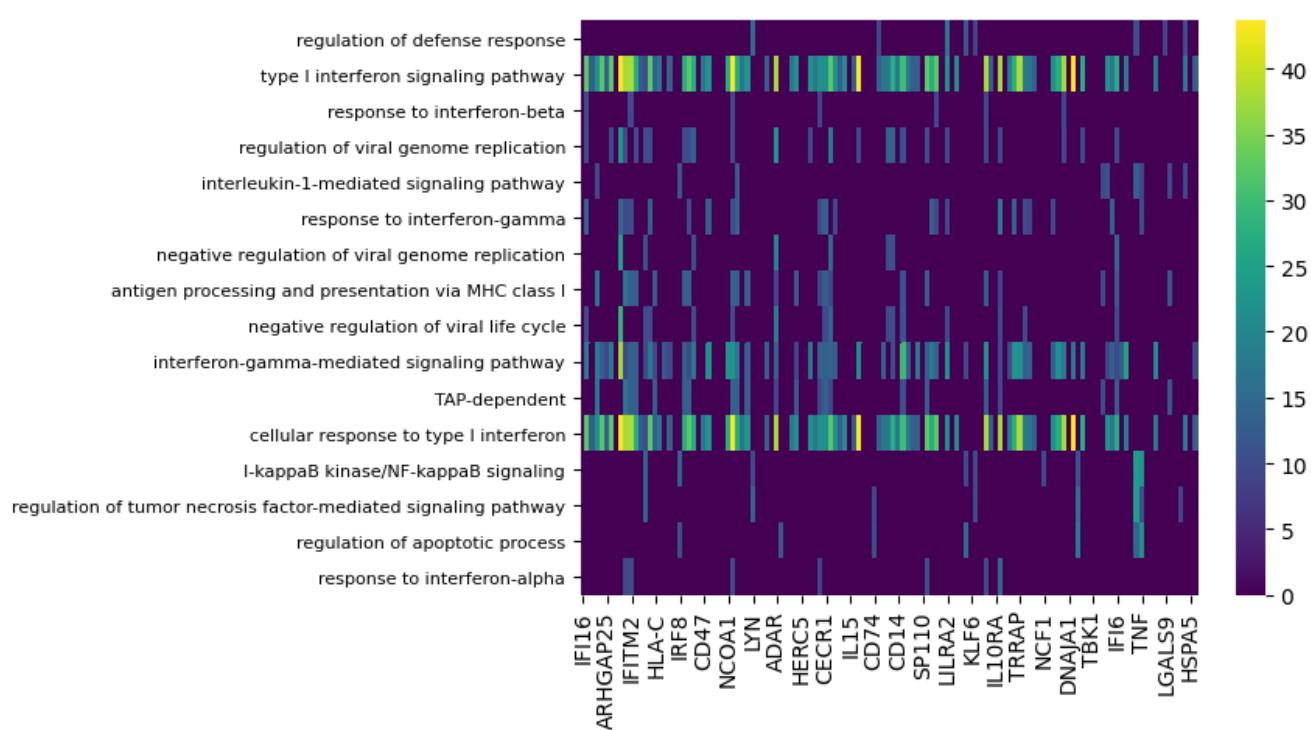


Figure 5. Functional enrichment analysis of differential subnetworks for the Cal/NC comparison using GO term enrichment with p-value cutoff 0.0001. The rows represent the GO terms and the columns are the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance of the GO term enrichment and is based on $-\log(p\text{value})$. For clarity, the majority of GO terms that assign to fewer than seven subnetworks or that annotate more than 100 genes in GO are not shown. Notably, the same group of biological processes is enriched in differential subnetworks for the Brevig/Tx and Cal/Tx comparisons (data not shown).

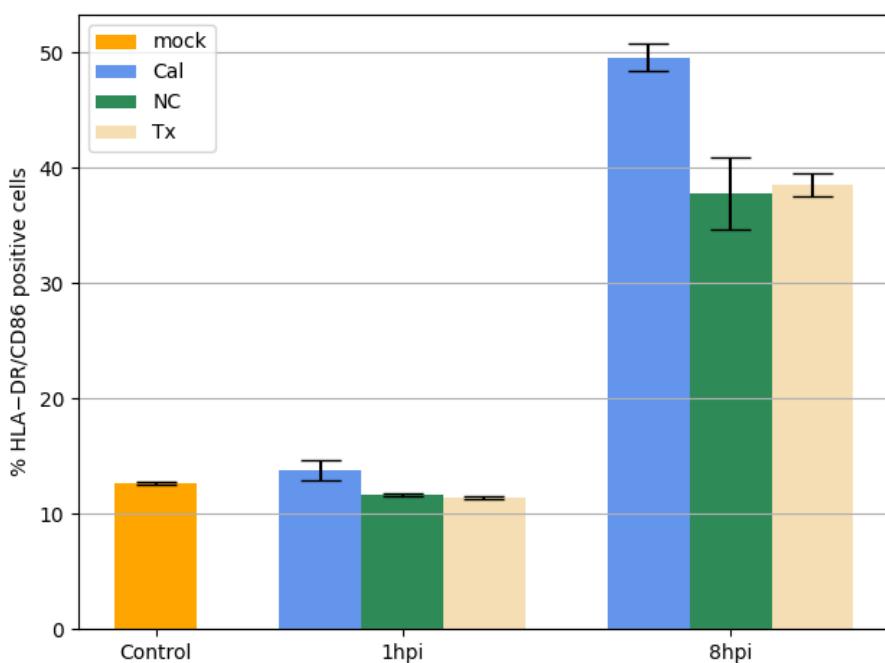


Figure 6. DC HLA-DR/CD86 surface expression following IAV infection. Percent of dendritic cells showing both HLA-DR and CD86 surface marker expression is plotted after infection with seasonal or pandemic IAV strains as measured by flow cytometry. All experiments were done in triplicates. Values shown are *mean* \pm *s.e.m.* The levels of surface marker expression was identical following mock and each virus infection at 1 h, and diverged at 8 h ($p < 0.05$, Student's t-test), with higher surface marker expression following the pandemic Cal09 infection.

TABLES

Virus comparison	# subnetworks	average size	dominant time lag	% at dominant time lag
Brevig/Cal	207	24	80	83
Tx/Cal	377	21	20	54
Tx/NC	2982	24	0	69
Brevig/Tx	382	22	20	60
NC/Cal	203	24	80	83
Brevig/NC	400	22	20	37

Table 1. Subnetworks conserved across pairs of influenza responses. For every comparison, the lagging influenza strain response is listed second (e.g. the Cal response is delayed compared to Brevig). The dominant time lag is measured in minutes, and the last column indicates the percent of modules that are found at the dominant time lag.