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ABSTRACT

Influenza is a serious global health threat that shows varying pathogenicity among different
virus strains. Understanding similarities and differences among activated functional pathways
in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To
compare the types and timing of functional modules activated in host cells by four influenza
viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that
addresses the need to compare functional module utilization over time. This integrative approach
overlays whole genome time series expression data onto an immune-specific functional
network, and extracts conserved modules exhibiting either different temporal patterns or overall
transcriptional activity. We identified a common core response to influenza virus infection that
is temporally shifted for different viruses. We also identified differentially regulated functional
modules that reveal unique elements of responses to different virus strains. Our work highlights
the usefulness of combining time series gene expression data with a functional interaction map
to capture temporal dynamics of the same cellular pathways under different conditions. Our
results help elucidate conservation of the immune response both globally and at a granular
level, and provide mechanistic insight into the differences in the host response to infection by
influenza strains of varying pathogenicity.
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1 INTRODUCTION

The possibility of influenza virus pandemics remains a potent public health threat. While most annual
influenza strains are associated with a relatively low global infection rate and mortality, more widely
infectious or lethal influenza virus strains arise periodically. The influenza pandemic of 1918 was
responsible for more than 50 million deaths and, within one year, reduced the life expectancy in the United
States by a dozen years (1). More recently, the swine-origin influenza pandemic in 2009 infected 20-50
percent of the population of some countries, although, fortunately, it had a mortality rate comparable
to that of seasonal influenza strains (2). Thus, individual seasonal and pandemic influenza strains vary
in their infectivity and pathogenicity. Although the genetic mechanisms underlying the emergence of
new viruses are relatively well understood, less is known about virus-host interaction effects that may
influence influenza transmission or disease outcome. Implementing a computational approach to identify
commonalities and differences in the host biological response to different influenza virus strains is
important in providing insight into common and distinct components of the host response program that
may contribute to pathogenicity.

Increasingly, emerging research suggests that temporal dynamics may play an important role in the
varying pathogenicity that is observed among different influenza strains (3). This premise motivates
a systematic study of time series expression datasets to gain a more complete understanding of the
differences in host response dynamics observed with each virus. However, time series analyses present
computational and experimental challenges. Measurements must be obtained at the appropriate time
scales. Proper temporal alignment among different datasets and possible time shifts in activity patterns
need to be addressed when interpreting such data. The standard approach of identifying lists of
differentially expressed genes provides only limited insight into the biological mechanisms underlying
commonalities and differences among host responses to multiple influenza strains (4, 5, 6, 7, 8, 9).

Integration of gene expression data with complementary information about physical or functional
associations between molecular entities has been proposed as a powerful approach to improve the
interpretation of global transcriptional changes. These integrative approaches analyze gene expression
experiments in the context of an independently constructed connectivity map, such as a protein-
protein interaction (PPI) network, to identify modules comprised of genes or proteins that participate
in common biological pathways or functions (10). More recently, integrative methods have been
developed to identify ‘active’ modules (i.e. related groups of genes exhibiting concordant transcriptional
changes (10, 11, 12, 13)), modules conserved across species (14, 15) and ‘differential’ modules (16, 17).
(For an overview, see also a review article by T. Ideker and colleagues (18) and references therein).

Time-course gene expression datasets capture important features of the temporal trajectories of
transcriptional changes. While the majority of integrative gene expression and interaction network
analyses have not utilized the temporal dimension of the data, there have been attempts to incorporate
temporal information into module discovery (19, 20, 21, 22, 23, 24). For example, Gao and Wang (22)
used a phase-locking approach (25) to identify yeast cell cycle genes that show temporal coordination and
whose interactions are supported by a PPI network. In another study, Jin and colleagues (23) applied
a time-warping dynamic programming algorithm (26) to identify locally-similar temporal expression
patterns among groups of genes forming connected components of a PPI network. These methodological
advancements do not offer a solution to the problem we call ‘comparative module discovery’, i.e.
the identification of temporally-shifted, network-based patterns of expression showing conservation (or
divergence) between time-course datasets that are generated in the same experimental system by different
perturbations. Developing such an analysis method would be valuable in elucidating commonalities and
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differences in the biological responses to these perturbations. The identification of such comparative
modules is critical for addressing the central question of our study - that of understanding the similarities
and differences in virus-host interaction effects in response to related influenza virus infections.

In order to perform comparative module discovery, we developed a novel integrative DY NAmic MOdule
(DYNAMO) method, and applied it to understand the common and unique features of the host immune
response to infection by related strains of the influenza virus. Integrating datasets that capture the temporal
progression of the global gene expression response post-infection with an interaction network, our
method discovers both conserved and differential comparative modules. Conserved comparative module
discovery identifies a set of highly functionally connected genes that show a high degree of similarity
between their regulation and response patterns for perturbations being compared. Our approach allows the
possibility that the module responses may be shifted in time across different perturbations. Differential
comparative module discovery identifies genes that show differences in their pattern of regulation across
different perturbations. Differential module discovery is a difficult problem because truly condition-
specific regulatory patterns must be distinguished from experimental and biological variability (18, 14).
Our method is able to identify high-confidence differential subnetworks by exploiting the temporal nature
of the expression data and anchoring the modules in functional network connectivity relationships. By
computing the optimal temporal alignment of each module’s expression profile between two different
conditions, we are able to capture divergent activation patterns. Overall, our method addresses the broad
problem of combining functional connectivity and genome-scale time series expression data to extract
vital temporal information and to enable a comparison of gene programs and module activation across
time.

We apply DYNAMO to the problem of studying host-pathogen interactions for multiple HIN1 influenza
virus strains. Our study builds upon the availability of identically sampled time series data for HIN1
seasonal and pandemic influenza virus of a human immune cell that lends itself to a systems-wide
comparison of the dynamics underlying the modulation of the host response by each virus (27). DYNAMO
extracts functionally conserved modules that show a difference in their temporal dynamics or pattern of
transcriptional changes between each pair of infection time-course datasets. We demonstrate that the
groups of modules identified are statistically significant and that the algorithmic element of optimization
for the best temporal alignment is crucial for their identification. Our analysis provides insight into the
biological mechanisms underlying the module response patterns elicited by these influenza virus strains.
DYNAMO is accessible via a user-friendly interface at http://tsb04.mssm.edu/.

2 MATERIALS AND METHODS
2.1 Subnetworks with shifted temporal dynamics

DYNAMO searches for groups of genes in two time-series expression experiments that exhibit similar
gene-by-gene expression patterns while allowing a temporal shift. DYNAMO is an integrative method

that overlays expression data on a functional interaction network and leverages the methodology of the
neXus algorithm (14) to reinforce functional coherence within each discovered module.

2.1.1  Overview of the neXus algorithm.

The neXus algorithm (14) was developed to search for conserved subnetworks between a pair
of expression datasets across species or within a single species. In its single species version, the
method attempts to form dense gene subnetworks within a chosen functional interaction network while
maintaining sufficient similarity in the expression levels of the subnetwork genes. Briefly, neXus initiates
a depth-first search from a seed gene as it aims to build a subnetwork in the underlying functional
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network. For each gene that it considers for addition to the growing subnetwork, two conditions have
to be met. First, it evaluates that the connectivity requirement is met by maintaining a minimum desired
clustering coefficient of the genes in the putative subnetwork. Second, the expression similarity condition
is evaluated by computing the average expression activity score of the subnetwork genes. The subnetwork
grows until there are either no genes to be considered or it has reached a maximal size. The process is
repeated for every initial seed gene, and final subnetworks with large overlaps can be merged.

2.1.2 Incorporating a time shift.

Consider the expression vectors of gene ¢ in two aligned time-course expression datasets. DYNAMO
evaluates optimal similarity between the two vectors while allowing one vector to be shifted relative to the
other by some time shift, At. To assess similarity in expression at any such At, we calculate time-lagged
Pearson correlation coefficient of the two vectors. Let 7" be the set of discrete time points at which gene
expression was sampled for each virus infection and 7" be the corresponding set of time points shifted
by At. Denoting the expression vectors as X7(g) for the stationary time-course and Y7~ (g) for the time-
shifted course, we compute time-lagged correlation coefficient, (TLC) pgAt for gene g between the two

responses as
cov(Xr(g),Yr/(9))

Veou(Xr(g), Xr(g))cov(Yri(g), Y1!(9))

where cov is the standard covariance. We use linear interpolation to calculate the values in the stationary
time course that correspond to the new time points. Just like the standard correlation, a time-lagged
correlation close to 1 means that the expression of gene g is perfectly correlated between the two responses
once the time-shift is taken into account. We determined (data not shown) that transforming the correlation
distributions via the Fisher Z-transform

9 _
PAr =

1. 1+p
Z = —ln—— = arctanh
P (p)
resulted in better findings, and used these Fisher-transformed scores within the algorithm when assessing
expression coherence of growing subnetworks at various time lags.

2.1.3 Algorithm to find temporally-shifted subnetworks.

We begin with a list of seed genes, and their expression vectors from a pair of aligned time-course
experiments. We use fold-change values over a control condition, though other quantitative vectors such
as differential expression p-values can be used as well. The matrix of standardized z-scores is computed
for all genes at every considered time lag. Putative subnetworks are grown greedily from every seed in
turn. First, candidate genes are identified via a depth-first search from the seed gene, as in the original
neXus algorithm (14). To assess subnetwork coherence at a particular time lag At, we calculate the
subnetwork’s score as the average of the Fisher-transformed z-scores of its constituent genes at that time
lag. To select a gene for addition to the growing subnetwork, DYNAMO then optimizes over all considered
time lags and corresponding putative subnetwork scores, provided that the minimum desired connectivity
requirement in the underlying functional network is met. The connectivity condition, measured as the
average weighted clustering coefficient of the subnetwork, enforces functional coherence of the growing
module. The network score maximization component enables the algorithm to identify the best time-
lag (if one exists) that brings the group of genes in the two responses into temporal alignment. Note
that the optimal time lag for a growing network can change with addition of new genes, but, in our
experience, does not vary widely. We use the average of the per-gene maximal fold-changes during the
time course in each response as a third cutoff to be met in order to filter out false high subnetwork scores
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that may be due to a good alignment of flat time courses of genes that do not show significant differential
expression. Finally, we merge the discovered subnetworks if there is considerable (0.6) overlap among
their constituent genes and their identified time lags are the same.

2.2 Subnetworks with differential expression patterns

Identifying genes that behave differently between a pair of responses is a difficult problem because
many spurious expression differences can arise for individual genes. We again employ the insight of
constraining expression differences by requiring tight clustering of such genes in the underlying functional
network. The structure of the algorithm is similar to that of the algorithm for finding conserved temporally-
shifted subnetworks. We enforce the network connectivity requirement by maintaining a minimum desired
clustering coefficient, and optimize the choice of candidate genes for addition to the growing subnetwork
by selecting one that shows the highest divergence in its expression pattern between the responses,
provided that the average expression score stays below a selected score threshold. The subnetwork
expression score that, in the case of differential modules, needs to identify genes with divergent expression
patterns, is modified to reflect that difference. We observe that the correlations and their corresponding
Fisher z-score distributions for most time lags have positive means (Supplementary Figure 1), indicating
that most genes show similar expression trends in the infection responses. Genes that exhibit different
expression trends between responses may show only slightly negative absolute correlations. To better
identify such genes, we use standardized rather than raw Fisher z-scores. This way, DYNAMO searches
for genes that are within some number of standard deviations below the mean of the Fisher z-score
distributions. The average fold-change requirement is also altered to enforce that only subnetworks in
one of the responses pass the cutoff. This change allows the algorithm to capture both subnetworks that
show opposing activation patterns as well as those that show activation in only one of the responses.

2.3 Assessing subnetwork significance

We employ a randomization analysis, and use it as a tool to calibrate various DYNAMO parameters and
assess biological significance of the subnetworks discovered in the comparison of the influenza infection
responses. We create five randomized expression profiles by randomly shuffling the expression vectors
with respect to gene labels. Our algorithm for subnetwork discovery is applied to these profiles while the
functional network structure remains intact, enabling an estimation of the temporally shifted (or divergent)
expression pattern coherence that arises from the clustering of genes by random chance. For a given
expression score threshold, the subnetworks discovered in the randomized data at that threshold represent
false positive findings and enable an estimation of false discovery rate. We calculate the associated
subnetwork confidence value as

number of random subnetworks

confidence =1 —
/ number of real subnetworks

and use it to assess the subnetworks’ statistical significance. Overall, exploring the algorithm’s findings
over various parameter ranges for randomized and real data allows a substantiation of our parameter
choices and a quantification of the biological significance of the results.

2.4 Experimental data and algorithm parameters
2.4.1 Microarray data.

Human monocyte-derived dendritic cells were infected with each of the four strains of the HIN1
influenza virus (Tx, NC, Brevig and Cal). For each infection, cells were collected at the following time
points post infection: 120, 160, 200, 240, 300, 360, 420, 480 min. Naive non-infected DCs underwent
the same experimental handling as infected DCs in virus-free allantoic fluid to ensure that mechanical
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manipulations could not be responsible for differences in experimental readouts. These served as a
negative control time-course. All time points and controls were performed in triplicates. The details of
DC maturation, virus preparation and infection as well as RNA extraction for microarray experiments
are described elsewhere (27). The RNA samples were processed and hybridized to HumanHT-12 v4
Expression BeadChip Kit (Illumina San Diego, CA) by the Yale Center for Genome Analysis following
the manufacturer’s instructions, and raw expression data were output by the Illumina GenomeStudio
software. These data were log-transformed, filtered for minimum intensity (logs(expression) > 6.6),
determined based on visual inspection of the distribution), averaged over the triplicates, and converted to
fold-change values over the time-matched allantoic fluid control condition. Each viral time-course was
analyzed for differential expression using LIMMA (BioConductor implementation) after correction for
multiple hypothesis testing (¢ < 0.05) (28). Maximally expressed probes were chosen for differentially
expressed genes with multiple probes. We took the union of genes that passed the differential expression
criterion at any time-point in each viral time-course as our candidate seed set.

2.4.2 Flow Cytometry.

Human monocyte-derived DCs were infected with either NC, Tx (both seasonal) or Cal (pandemic)
HINI1 TAV. Samples were fixed in 1.6% paraformaldehyde (Sigma) and subsequently stained with
fluorophore conjugated antibodies against CD86 and HLADR (both BD) at multiple time points post
infection. Cells were analyzed with a LSRII flow cytometer (BD) and data was analyzed with Cytobank
and R.

2.4.3 Functional networks.

We consider two human functional linkage networks, the general network (29) that is trained on diverse
curated functional pathway data (30) and an immune-specific network (31) trained on immune pathways
only. Both networks integrate many heterogeneous data from diverse sources including physical and
genetic interactions as well as microarray data to create the functional associations between gene pairs.
The edge weight distributions, which reflect the confidence in the gene-gene associations and are inferred
via Bayesian integration, differ between the two networks, with the median edge weights being 0.85 and
0.22 for the general functional network and the immune-specific network, respectively. We retained one
million most highly weighted edges for each network. We explored the algorithm’s performance and its
dependence on the clustering coefficient parameter for each network separately (data not shown), and
found that in each case there exists a range of this parameter (different for each network because of the
differences in the underlying edge weight distributions) with comparably good performance. We use these
ranges, and set the average clustering coefficient cutoffs to 0.8 and 0.5 for general and immune-specific
networks respectively.

2.4.4 Algorithm parameters.

We chose the values of 1.5 for subnetwork score (see discussion in Supplementary Materials), 0.5 for
minimum clustering coefficient of the immune-specific network and 0.9 for subnetwork confidence, and
considered subnetworks that pass all these cutoffs. The subnetworks were grown to maximal size of 25
nodes. Additional internal neXus parameters were left at their defaults.

3 RESULTS
3.1 Overview of algorithm developed for comparative module discovery

We developed DYNAMO to find conserved and differential subnetworks that exist between time-course
datasets that measure gene expression responses to different perturbations in the same experimental

system. As a motivation for our study was an observation made while investigating a time-course
microarray dataset of the responses to four strains of the influenza virus in human monocyte-derived
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dendritic cells (DCs) (27). We noted a time shift in the expression dynamics for many important immune
response genes (Figure 1). This served as an impetus for addressing the aspect of temporal dynamics
in our methodology development. The DC infection study comprised of four A/HINT1 influenza viruses
that differ in their infectivity and clinical severity, including two pandemic strains, the influenza of 1918
(Brevig) and the recent 2009 strain (Cal), as well as two seasonal strains, the New Caledonia strain of
1999 (NC) and Texas 1991 (Tx). Global expression was sampled with high frequency during the first
eight hours post-infection. Thus, our investigation relied on a well-controlled dataset representing time-
course responses in a single cell type to antigenically similar influenza strains varying in pathogenicity
and transmission efficiency.

We built upon the approach of neXus (14), an algorithm that overlays gene expression data on functional
interaction networks (29, 32) to identify functionally coherent groups of genes that have similarity in their
expression patterns across species. We describe our approach briefly here, and a more extensive discussion
of the algorithm is found in the Materials and Methods section. Each DYNAMO module is grown from
a seed gene by adding nearby genes in the interaction network in a way that maximizes the average gene
expression activity score of the module, while maintaining a minimum desired clustering coefficient.
DYNAMO'’s expression activity score (subnetwork score) addresses the challenge of comparing time-
course datasets and studying response programs that may be temporally shifted with respect to one
another. DYNAMO samples time-shifts in the gene expression dynamics, computing the time-lagged
Pearson correlation coefficient, and conducts a greedy search for coherent active subnetworks, such that
each module member gene in one dataset exhibits a maximally similar expression pattern (possibly with
a temporal shift) to the same gene in the other dataset. For each module, the optimal time shift, applied
to all genes, is identified. Subnetworks with high overlap in gene membership that exhibit the same
time lag are merged. DYNAMO identifies the set of highly coherent, statistically significant modules
by determining the false discovery rate (FDR) via analysis of randomly shuffled expression data. The
same methodological approach is applied to the problem of differential comparative module discovery.
DYNAMO identifies maximally differentially regulated genes in two datasets that represent a highly
functionally related module in the underlying functional interaction network.

In the following sections, we used DYNAMO to identify and compare modules in time-course responses
to the different influenza viruses. We first performed an in-depth analysis of the Brevig/Cal response
comparison, validating our method and offering insight into the biology of their shared and unique
response processes. We then compared temporal dynamics and functional pathway activity, computed
as GO term enrichment of discovered modules, for all the strains. Detailed analyses of each comparison,
including conserved and differential comparative modules, functional pathway activity and performance
characteristics are available at http://tsbO4.mssm.edu/.

3.2 Evaluating the DYNAMO algorithm

We evaluated two important aspects of the DYNAMO algorithm. First, we considered the effect of
the choice of the functional network used by DYNAMO to identify functional connectivity. Next, we
assessed the effects of allowing a temporal shift of the gene expression dynamics on module discovery.
In evaluating the algorithm’s performance, we considered the number of conserved modules that were
discovered by the algorithm, and we estimated the false positive rates for the discovered modules via a
randomization analysis (see details in the Materials and Methods).
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3.2.1 Functional network selection.

Functional networks are constructed from heterogeneous data sources and represent diverse associations
between genes or proteins (33, 29). Bayesian integration of multiple data types, including protein-
protein and genetic interactions, gene expression, protein localization, phenotype, and sequence data,
was used to infer functional connections between molecular entities. Given their more comprehensive
coverage of a broad variety of gene relationships, functional networks allow for more sensitive discovery
of conserved active modules and have been shown as advantageous for this task over protein-protein
interaction networks (14).

We assessed DYNAMO’s performance using the general human functional network (29) and an
immune-specific functional network that should, in principle, capture associations that are more relevant
for immune contexts (31). The edge weight distributions, which reflect the confidence in the gene-
gene associations and are inferred via Bayesian integration, vastly differ between the two networks.
Correspondingly, the network related parameters can not be set at the same values for the two networks.
Retaining one million most confident edges for each network, we explored the algorithm’s performance
for each network separately, and set the clustering coefficient parameters to values that maximized
performance for each network individually (see Materials and Methods for details). We identified the
conserved comparative modules for the Brevig and Cal pair using the two functional networks and varying
the gene expression based activity score parameter of the algorithm. To assess the statistical significance of
the modules discovered, we performed a randomization analysis. Specifically, the expression time-course
vectors were randomly shuffled five times with respect to the gene labels, and the algorithm was applied
to the shuffled expression profiles. Any modules identified in these randomized expression data would
represent false positives and not biologically meaningful conservation. As seen in Figure 2, utilizing the
immune-specific functional network was far superior to using the general functional network. We observed
that many more coherent modules were discovered at every subnetwork score cutoff, suggesting that the
functional connectivity that underlies the gene relationships in influenza responses is better reflected in
the immune-specific functional network. Focusing on the randomization experiments, our evaluations
suggested a false discovery rate of < 5% for a broad range of subnetwork score cutoffs when using
the immune-specific functional network. Overall, comparing DYNAMO?’s results with the two different
underlying functional networks, we found that many more modules are discovered at every FDR setting
when the immune-specific network is used, indicating in a substantial improvement in sensitivity.

We further assessed the importance of enforcing the functional coherence of the modules and considered
whether our method can extract high-confidence subnetworks from expression data alone. We used
DYNAMO without enforcing the clustering coefficient parameter, while adding putative module member
genes in the same order from a pool that is functionally proximal to the seed gene. As shown previously
by Deshpande et al. (14) and corroborated in our analysis, fewer modules were discovered without
enforcing the clustering coefficient parameter. Furthermore, they were of low significance in view of the
similar number of modules identified via a randomization analysis. We concluded that using a functional
connectivity map and selecting a map that is most relevant for the experimental study (an immune-specific
functional network in our case of subnetwork discovery in the responses to influenza viral infection) are
essential for identifying significant modules. As such, we used the immune-specific functional network in
all further evaluations within this study.

3.2.2 Advantage of allowing a temporal shift.
We evaluated the advantage gained by the introduction of a time shift in the identification of active
subnetworks shared by the Brevig and Cal responses. We considered possible time lags of -80, -60, -40,
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-20, 0, 20, 40, 60 and 80 minutes, and shifted the Cal time-course with respect to the Brevig time-
course. We compared DYNAMO’s results when optimizing module discovery over the possible time-lags
to those found with no time shift allowed (i.e. using standard Pearson correlation), while keeping all
other parameters the same. As shown in Figure 2 and noted above, many conserved temporally shifted
subnetworks were identified over the range of considered network score cutoffs (red curve). In contrast,
almost no subnetworks were identified when a temporal shift was disallowed (green curve). These
observations indicate the importance of the temporal shift element in enabling discovery of conserved
comparative functional modules.

3.3 Comparison to existing algorithms

DYNAMO'’s objective in identifying conserved or divergent temporally shifted modules that are
common between two responses is quite unique, and, to the best of our knowledge, has not been addressed
in the literature. Nonetheless, we evaluated DYNAMO against two other methods that are most similar
and identify conserved subnetworks from gene expression data, ModuleBlast (34) and TDARACNE (35).

ModuleBlast was designed to compare module activation patterns across species. It uses expression
data and network topology information to search for conserved and divergent sub-networks. Analysis of
the host immune response gene expression data comparing Brevig and Cal infections using ModuleBlast
resulted in 38 modules. These modules were generally not functionally enriched for immune-specific
processes, according to functional annotation within ModuleBlast. Analysis by DYNAMO shows the
importance of the network context in which gene expression data is analyzed. Biological pathways that are
activated in an immune context are best identified using an underlying network that emphasizes immune-
specific interactions. Since ModuleBlast employs a generic interaction network, the relative paucity of
conserved modules is not surprising. Furthermore, while ModuleBlast makes use of temporal information,
it does not optimally align the responses. This is a key difference that enables DYNAMO to capture
coherent activation patterns that are temporally shifted.

We also applied TDARACNE to our dataset. TDARACE was designed to address a different problem -
it is a subnetwork inference method that is not comparative and operates on each gene expression dataset
individually. Therefore, it generally infers dissimilar sets of modules for the Brevig and Cal datasets,
making a direct comparison with DYNAMO meaningless.

3.4 Conserved time-shifted host response to Brevig and Cal influenza strains

DYNAMO identified 207 high confidence functionally-coherent subnetworks that are time-shifted
between the two pandemic strains, Brevig and Cal. To evaluate the subnetworks for biological
significance, we assessed functional enrichment in the set of genes contained in each subnetwork. The
enrichment was computed for each subnetwork individually based on the overlap of its constituent genes
with the Gene Ontology (GO) (36) biological process terms using enrichR (37). Every subnetwork
identified was enriched for at least one GO term with p-value of 0.0001. Overall, 71 GO terms were
associated with the discovered subnetworks, of which vast majority were immune related. Nearly all
subnetworks were annotated with GO terms describing cytokines, type I interferon signaling, and response
to virus (Figure 3). This enrichment is consonant with extensive experimental evidence identifying
cytokine and interferon responses elicited by influenza infection (38, 39, 6, 8). In particular, type I
interferons provide a first line of defense against the virus (Garcia-Sastre et al., 1998), functioning in
both autocrine and paracrine fashions to prevent its replication and spread to neighboring cells, and are
crucial in host defence against influenza infection.
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Absolute majority of the subnetworks (82%) identified showed optimal similarity when aligned at the
80 minute time lag, with the Cal response activated after the Brevig response. Our findings confirmed
the earlier observations (3) that the highly pathogenic Brevig strain is characterized by rapid activation of
the host immune response and that this early activation may account for the extreme severity of disease
caused by this strain (40). Furthermore, the considerable similarity in the activated immune response
program when accounted for the shift in temporal dynamics indicated that the timing of the host immune
response may be at the basis of the key differences observed between disease outcomes for these two
infections.

3.5 Conservation and temporal alignment of the global host response and specific
immune processes

We next used DYNAMO to identify conserved temporally shifted modules to compare all pairs of
influenza strains. Table 1 summarizes the results for each pair-wise comparison and includes the dominant
time lag, i.e. the time lag assigned to the largest fraction of the discovered subnetworks. For example,
for the Brevig/Cal pair, the Brevig response is shifted 80 minutes earlier in comparison to Cal for the
majority of modules identified. We found that the responses to the two seasonal strains, Tx and NC,
show the largest number of subnetworks, and 69% of them show maximal similarity with no time shift.
The increased number of similarly regulated subnetworks in the Tx/NC comparison resulted from a large
down-regulation effect not seen with the other viruses (27). Because the algorithm optimizes subnetwork
conservation over time and different components of the responses may contribute to conservation for
each strain pair, some dominant time lags appear inconsistent. For example, the Tx/NC pair exhibits the
dominant time lag of zero, but these responses do not have the same time lag relative to the Cal strain.
However, a clear overall temporal pattern emerges. The conserved modules show that the Brevig infection
elicits the earliest response, Tx and NC are intermediate, and Cal is the latest.

An overall conservation of the immune response for all the pairwise comparisons was evident in the
functional enrichment observed in the subnetworks. Using GO term enrichment by enrichR (37), we
found a set of 27 highly enriched (p < 0.0001) immune-related GO terms that were common to all the
comparisons and collectively were assigned to the absolute majority of the subnetworks. Representative
GO terms are shown in Figure 4. They describe host immune response to viral infection and capture
cytokine and interferon-regulated processes that are essential in defense against the influenza virus. For
each comparison individually, these processes exhibited a temporal consistency, assigning to modules
with a singular time lag. These results imply that there is a conserved set of immune processes that is
activated in response to the four different influenza strain infections. Within the response to one infection,
the relative timing of these immune processes appears to be consistent. In comparisons of the responses,
these coherent immune processes are shifted in time on block (Figure 4). This suggests the presence of a
highly conserved core of the host immune response.

3.6 Identification of comparative differential subnetworks

Comparative differential subnetworks are a group of highly functionally related genes that show
differences in their pattern of regulation in response to two perturbations being compared. Because their
identification is a less constrained problem than conserved subnetwork discovery, the reliable selection of
comparative differential modules is challenging. When identifying conserved subnetworks, the effects of
noise in the data are mitigated by the requirement that common regulatory changes must be observed in
different experiments. Methods that rely on pairwise gene interactions (41, 42) to reconstruct differential
modules are limited by the fact that differential modules, by definition, allow inconsistencies across
experiments. DYNAMO addresses this limitation by exploiting the functional modularity inherent in
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biological networks and leveraging the temporal dimension of time-course expression data in its time-lag
optimization search. These aspects of the algorithm allow to better constrain the problem of differentially
activated gene identification and improve selection of high confidence subnetworks.

We applied our method for differential module discovery to all pairs of influenza strain responses.
Shown in Supplementary Figure 2 are the results of DYNAMO’s application to the Cal/NC comparison.
DYNAMO identified many differential comparative modules at a wide range of subnetwork score values.
Importantly, the curves tracking subnetwork discovery for the real and randomized data show substantial
separation, with false discovery rate of < 10% for a broad range of subnetwork score cutoffs. This finding
implies that the differential subnetworks discovered by DYNAMO had a low proportion of false positives
and likely represent biologically meaningful differences in the responses to the Cal and NC influenza
infections. As such, DYNAMO is able to overcome some of the challenges in differential subnetwork
discovery and improve the reliability of differential subnetwork identification.

Overall, we found many fewer differential modules as compared to conserved identified among pairs
of responses (Supplementary Table 1). For example, we found only 20 differential subnetworks for the
pair of responses Brevig/Cal that shows 207 conserved subnetworks. Also, in contrast to the results for
the conserved subnetwork discovery, the differential modules generally did not exhibit a dominant time
lag. Although DYNAMO benefits from its ability to optimize over a set of time lags to capture divergent
expression trends and thereby identifies many more differential modules, these time lags do not exhibit
a singular consistency. These results suggest that differentially active modules do not show the temporal
coherence that was observed with conserved subnetworks.

In the four comparisons of differential modules for a pandemic and a seasonal strain, a considerable
overlap in the GO terms assigned to these subnetworks was observed. We found 31 processes enriched
(p < 0.0001) among the subnetworks and annotated by GO terms that are shared across pairs. The GO
enrichment analysis of differential modules for the Cal/NC comparison is shown in Figure 5. Although
the cytokine mediated signaling pathway was implicated as enriched by both conserved and differential
modules (see also Figure 4), the genes contributing to this annotation show little overlap. For example,
contributing to the annotation in the conserved modules of the Brevig/Cal comparison are classical
antiviral program genes, including the MX, OAS, and IFIT family genes (43, 44, 45). Enrichment of
the cytokine signaling pathway in the differential modules is driven by immunomodulatory genes, such
as IL6 (46). These results reveal that despite sharing GO annotations, conserved and differential modules
have different compositions.

Notably, the GO terms for antigen processing and apoptosis were enriched among the differential
modules. Supplementary Figure 3 shows the genes implicated by the apoptosis-annotated subnetworks
found to be differential between the seasonal and pandemic influenza infections. DYNAMO’s
identification of apoptosis, known to be induced by influenza viruses (47, 27), as a differential process is
consonant with other studies that show differences in global patterns of RNA degradation in response to
seasonal and pandemic influenza infections (27).

3.7 DC antigen presentation differences after seasonal and pandemic influenza
infection
The dendritic cell is a professional antigen presenting cell (48), raising the possibility that the seasonal
and pandemic viruses differ in their modulation of this response. Dendritic cells, important mediators
of innate and adaptive immunity, act by presenting antigens to T cells to initiate adaptive immune
responses (48). Antigen presentation occurs either via direct presentation of digested viral peptides
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on the surface of infected cells or via cross-presentation of exogenous antigens by uninfected cells.
Other studies (49) have found that influenza infection reduces both the efficiency of influenza antigen
presentation and the ability of dendritic cells to cross-present antigens from other pathogens, such as
bacteria, that cause co-infection during the course of influenza infection. In view of the centrality of
antigen presentation by dendritic cells in the immunological response to influenza, the differences in
antigen presentation between seasonal and pandemic influenza viruses inferred by the DYNAMO analysis
might contribute to differences in the immunological and clinical response to these viruses.

To validate the hypothesis of the DYNAMO algorithm, we experimentally tested if infection with the two
seasonal and one pandemic [AV strain resulted in differences in antigen presentation. Antigen presentation
by professional APCs, such as dendritic cells, occurs via three signals (50). In T cell-DC interaction,
Signal 1 is the interaction of an MHC-I or MHC-II molecule loaded with a processed part of a pathogen,
with the T cell receptor of an antigen specific T cell. Signal 2 consists of a set of co-stimulatory markers
(e.g CD86 on the DCs, which interacts with CD28 on T cells). Signal 2 is essential for T cell activation as
presentation of a pathogen through Signal 1 alone leads to anergy of the specific T cells. Signal 3 consists
of secreted factors, which influence the direction of the target T cells (eg Th1, Th2 or Th17). Here we used
flow cytometry to quantify the induction of Signal 1 (MHC-II) and Signal 2 (CD86) after infection with
one pandemic (Cal) and two seasonal (Tx and NC) HIN1 IAV strains. Consonant with the prediction of
the DYNAMO algorithm, infection with the seasonal IAV strains resulted in lower expression of HLADR
(Signal 1) and CD86 (Signal 2) in comparison with infection with the pandemic strain (Figure 6). (p <
0.05 for Cal/NC and p < 0.005 for Cal/Tx, using Student’s t-test).

Overall, the application of DYNAMO to the seasonal and pandemic HIN1 influenza infection datasets
derived insight into commonalities and differences in the regulation of functional modules and potential
mechanisms of immune response modulation by the individual influenza virus strains.

4 DISCUSSION

In this study, we applied DYNAMO, a technique for discovery of comparative modules with different
temporal dynamics or patterns of activation, to investigate host responses to infection by four different
influenza virus strains and gain insight into the temporal and functional similarities and differences
between them. We showed that the ability to search over multiple temporal lags allowed us to discover
conserved temporally shifted mechanisms between different immune responses. Overall, we found
remarkable temporally coherent conservation of a core group of immune processes that are crucial to
infection control, such as cytokine signaling and specifically interferon signaling, in responses to all four
viruses.

Our search for differential modules pointed to potential mechanistic differences among the seasonal
and pandemic strains, discovering subnetworks that suggest a key role for apoptosis, a finding consonant
with previous experimental work implicating apoptosis in the host response to influenza (47). Moreover,
presence of differential subnetworks functionally annotated with antigen processing and presentation
suggests an interesting potential direction for future experimental work.

Methodologically, the development of DYNAMO represents an important advance, which adds
the element of temporal dynamics to the broad systems biology problem of functional subnetwork
discovery (18). Our method builds upon the successes in the development of sophisticated integrative
approaches that combine heterogeneous data to elucidate the modular functional architecture of the cell.
DYNAMO is the first method to successfully exploit the temporal dimension of gene expression data for
comparative module discovery and analysis.
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While our algorithm development and successful application to the study of the immune response
to multiple strains of the influenza virus is encouraging, a number of promising directions for further
improvement of the method remain. The current version is restricted to expression data that is identically
sampled and aligned. Since few datasets in the public domain share the same experimental design,
relaxing this restriction, possibly using the time-warping algorithm (26), would make our method more
broadly applicable. Furthermore, the approach is readily extended to simultaneously compare more
than two datasets. Together, these improvements would enable the study of conserved and differential
components of the response to infection by multiple pathogens, providing insight into the functioning of
the host immune system and common and unique aspects of virus-host interactions, as well as facilitate
comparative study of the pattern and timing of module activation elicited by other biological stimuli.
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Figure 1. Alignment of the gene expression time courses for MX1, an important immune response
gene (51), following Cal and Brevig Influenza HIN1 infections. The solid red and blue lines represent
the actual MX1 expression in Cal and Brevig responses, respectively. The dashed red line represents the
Cal time course shifted to the left by 60 minutes. The fold change gene expression measurements are
normalized relative to the results obtained from uninfected control cells.
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Figure 2. Assessment of the choice of the functional network (FN) and importance of introducing
a temporal shift in conserved comparative module discovery. The number of subnetworks across a
wide range of subnetwork expression scores (see Materials and Methods), is compared for different
approaches. To enforce functional coherence, two different functional networks were used, a general
(General FN) and an immune-specific (Immune FN) functional network. Subnetwork identification was
performed employing either standard (no time lag) or optimized time-lagged Pearson correlation (TLC). A
randomization analysis, averaged over five randomization instances, was performed for each comparison
to assess the false discovery rate (dashed lines). The red curves are produced using TLC optimization and
Immune FN, the blue curves use TLC optimization and General FN, and the green curves use standard
Pearson correlation and Immune FN. All discovered modules are reported, regardless of the confidence
threshold. Note that the number of modules discovered never rises above one for the green curves.
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Figure 3. Functional enrichment analysis of conserved subnetworks appearing with the 80 minute time
lag for the Cal/Brevig comparison. The immune-specific nature of the modules was determined by using
GO term enrichment for individual subnetworks with p-value cutoff 0.0001. The rows represent the GO
terms and the columns are the individual subnetworks, indexed by their seed genes. The color scale
indicates the level of significance of the GO term enrichment and is based on -log(pvalue). For clarity,
GO terms that assign to fewer than seven subnetworks or that annotate more that 100 genes in GO are not

shown.
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Figure 4. Timing consistency of the nine conserved immune response processes in the pair-wise
comparisons between Brevig and the other virus strain responses. A group of representative GO terms was
selected from the larger immune-related set of 27 processes found enriched among conserved modules for
these comparisons. The number of modules enriched in these GO terms is indicated on the Y axis in logo
scale. This suggests a conserved temporally coherent core immune response. Here, the temporal shift
of the modules is shown with respect to Brevig and indicates a delay of these processes in Cal, Tx and
NC responses with respect to the Brevig infection. Only GO terms with fewer than 100 annotated genes
were considered. “Antigen processing and presentation of peptide antigen via MHC class I”” was also a
conserved GO term, but was enriched in very few modules and is omitted from the figure.
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Figure 5. Functional enrichment analysis of differential subnetworks for the Cal/NC comparison using
GO term enrichment with p-value cutoff 0.0001. The rows represent the GO terms and the columns are
the individual subnetworks, indexed by their seed genes. The color scale indicates the level of significance
of the GO term enrichment and is based on -log(pvalue). For clarity, the majority of GO terms that assign
to fewer than seven subnetworks or that annotate more that 100 genes in GO are not shown. Notably, the
same group of biological processes is enriched in differential subnetworks for the Brevig/Tx and Cal/Tx
comparisons (data not shown).
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Figure 6. DC HLADR/CD86 surface expression following IAV infection. Percent of dendritic cells
showing both HLADR and CD86 surface marker expression is plotted after infection with seasonal or
pandemic [AV strains as measured by flow cytometry. All experiments were done in triplicates. Values
shown are mean £ s.e.m. The levels of surface marker expression was identical following mock and
each virus infection at 1 h, and diverged at 8 h (p < 0.05, Student’s t-test), with higher surface marker
expression following the pandemic Cal(09 infection.

TABLES
Virus comparison | # subnetworks | average size | dominant time lag | % at dominant time lag
Brevig/Cal 207 24 80 83
Tx/Cal 377 21 20 54
Tx/NC 2982 24 0 69
Brevig/Tx 382 22 20 60
NC/Cal 203 24 80 83
Brevig/NC 400 22 20 37

Table 1. Subnetworks conserved across pairs of influenza responses. For every comparison, the
lagging influenza strain response is listed second (e.g. the Cal response is delayed compared to Brevig).
The dominant time lag is measured in minutes, and the last column indicates the percent of modules that
are found at the dominant time lag.
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